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ABSTRACT: The post-synthetic modification (PSM) of amino-

functionalized MOFs to those bearing pendant  

β-amidoketone arms using diketene is herein reported. Three 

unique MOF families demonstrate the scope of this transfor-

mation, which is both atom-economical and yields high conver-

sions. In each case crystallinity was retained, and instances of 

exceptional solid-state ordering were observed in the PSM prod-

ucts, which has allowed detailed crystallographic characterization 

in multiple instances. 

Metal-organic frameworks (MOFs) are hybrid inorganic-

organic materials that show exceptional promise across a range of 

applications,1 such as catalysis,2 gas adsorption, separation and 

storage,3 vessels for crystallographically viewing chemical reac-

tions,4 and both magnetic5 and optical devices.6 Many of the phys-

ical properties behind these applications rely on predetermined 

functional groups that are present within the pores of MOF archi-

tectures. While MOF pores can be furnished with simple func-

tional groups by prefunctionalizing the organic linker, the scope 

of such chemistry has been limited by the harsh synthetic proto-

cols inherent to many MOF syntheses.7 This limitation can be 

overcome by adopting a post-synthetic modification (PSM) strat-

egy, in which the chemical and physical properties of MOF mate-

rials are modified in a heterogeneous fashion.7,8 This strategy has 

been essential for placement of reactive functional groups within 

MOF pores that could not otherwise be synthetically achieved 

using a prefunctionalization approach.  

One of the main means of facilitating PSM reactions is covalent 

modification, wherein the organic linkers are reacted after MOF 

formation. Notable examples include oxidation of sulfur-tagged 

MOFs with dimethyldioxirane,9 amine induced ring-opening reac-

tions of sultones or aziridines,10 conversion of amines to reactive 

thio- and isocyanates,11 and ‘click’ chemistry performed on azides 
derived from amine groups.12 In each instance more complex 

functionalities were produced after identification of a suitable 

organic reaction or reagent, ultimately providing new materials 

and properties.7 Herein we report the discovery of a new PSM 

reaction involving the reaction of diketene with MOFs 

prefunctionalized with amine groups (Figure 1). The reaction 

yields β-amidoketones in a facile, high-yielding and atom-

economical fashion. This reaction is of further significance owing 

to the non-carcinogenic nature of diketene,13 the known metal-

chelating ability of the resulting β-amidoketone group,14 and the 

prevalence of solid-state ordering observed in many of the result-

ing PSM products, allowing direct crystallographic characteriza-

tion for multiple modified MOFs. Aminated MOFs have previous-

ly been reacted with maleic anhydride and glyoxal, but in those 

cases the resultant functionalities were less ordered.15 

 

 
Figure 1. PSM reaction of post-activated amino-functionalized 

MOFs (MOF-NH2) with diketene to yield β-amidoketones (MOF-

NHak). 

 

To best demonstrate the applicability of this new β-

amidoketone forming PSM reaction, three well-known MOFs and 

a mixed-ligand system (Section S1, ESI) were targeted: DMOF-1-

NH2
16 [Zn2(bdc-NH2)2(dabco)],17 [Zn2(bdc)(bdc-NH2)(dabco)], 

(bdc = 1,4-benzenedicarboxylate); IRMOF-318 [Zn4O(bdc-NH2)3]; 

and Fujita’s crystalline sponge (FCS),4 FCS-NH2 [Zn3I6(tpt)2]·atp-

NH2, (tpt =  2,4,6-tris(4-pyridyl)-1,3,5-triazine, atp-NH2 = ami-

notriphenylene). The PSM conversions ranged from 82% to quan-

titative as judged by 1H-NMR spectroscopy. 

DMOF-1-NHak (1): 1H-NMR spectroscopy was used to gauge 

the percentage conversion of bdc-NH2 to the PSM ligand, 3-[(1,3-

dioxobutyl)amino]-benzenedicarboxylate (bdc-NHak) on digested 

samples of [Zn2(bdc-NH2)0.32(bdc-NHak)1.68(dabco)]∙DMF 
(DMOF-1-NHak, 1). When assigning the conversion percentage, 

aromatic signals were generally used to aid comparison with the 

parent ligands. 1H-NMR analysis of a bulk crystalline sample of 1 

yielded both keto/enol tautomerism of the terminal ketone group, 

and the overall PSM conversion percentage. This data is presented 

in Table 1 with that of 2 and 3. Full 1H-NMR assignment for the 

conversion of each MOF species may be found as ESI (S2-S3). 

Table 1 | Summary of 1H-NMR results for 1-3 

MOF Digestion media NHak 

(k:e) ratioa 

Conv. (%) 

1 (30 : 1) DMSO-d6 : DCl 

(35% wt in D2O) 

10 : 1 84 

2 (30 : 1) DMSO-d6 : DCl 
(35% wt in D2O) 

10 : 1 82 

3 DMF-d7 3.3 : 1 100 

aketo/enol ratio of digested bdc-NHak assigned from integrals of the or-
tho-ring singlet resonance from each tautomer.   



 

 

The PSM reaction resulted in no outward changes to the crys-

talline appearance of 1. The framework crystallizes in the mono-

clinic space group C2/m, with the asymmetric unit containing half 

of a zinc atom, half of a bdc ligand (comprised of a 16:84 bdc-

NH2:bdc-NHak ratio), quarter of a dabco ligand and some guest 

solvent. The structure contains the zinc paddlewheel secondary 

building unit capped by dabco ligands (Fig. 2), forming the pil-

lared MOF motif that is typical of this type of material.16,17 

 

 
Figure 2. a) View down the crystallographic c axis showing the 

PSM groups disordered over two sites within the channels of 

DMOF-1-NHak. b) The paddlewheel coordination environment of 

Zn2+ in DMOF-1-NHak. 

 

Crystallographic analysis of DMOF-1-NHak (1) revealed that 

the ordering of the PSM product within the pores was sufficient to 

visualize all but the methyl terminus of the –NHak tag. The ter-

minal methyl group on this PSM arm could not be reliably located 

owing to smearing of the electron density with increasing distance 

from the ligand core. This was further evidenced by increasing 

atomic displacement parameter (ADP) size proceeding along the –
NHak chain. This observation is exceptional for functionalized 

MOFs given that electron density pertaining to functional groups 

present within MOF pores typically proves far too diffuse to allow 

crystallographic modelling. In this model the ligand moiety strad-

dles a crystallographic inversion center, which necessarily means 

that the –NH2 and –NHak tags are disordered between two posi-

tions on the phenyl ring. Beyond the anchoring nitrogen atom the 

PSM chain possesses atom occupancies of 42% reflecting the 

84% conversion of the amino groups in the PSM reaction. The 

dabco carbons similarly exhibits disorder, which is unsurprising 

considering this entity does not have mirror symmetry along the 

N…N vector. Full discussion of the disorder observed for 1, as 

well as that of a 1:1 bdc/bdc-NH2 mixed-ligand variant can be 

found as ESI (Sections S4-S5). 

A recent study of mixed ligand bdc/bdc-NH2 variants of 

DMOF-1 identified a distorted square pore geometry in which the 

ligands were offset when viewed down the crystallographic c axis, 

yet here it is the [Zn2(CO2)4] secondary building unit that distorts 

(Fig. 2b) which allows the ligands to align in an eclipsed fash-

ion.17 The zinc ions within the paddlewheel motif are misaligned 

by ca 15° relative to N…N vector of the dabco ligands, which 

likely provides a more amenable pore cavity to enclose the larger 

functional group within the channels. Ultimately, this distorts the 

regular square grid topology of the framework as described by the 

aforementioned study.17  

IRMOF-3-NHak (2): Spectroscopic analyses provided evi-

dence for the PSM reaction of IRMOF-3 with diketene. Qualita-

tive evidence of the reaction to 2 could be observed microscopi-

cally, as single crystals of IRMOF-3 became opaque and yellow 

in color post-reaction. Despite excellent diffraction of the crystals 

when irradiated with X-rays, a lack of ordering of the PSM group 

within the MOF pores prevented reliable modelling of more than 

the initial nitrogen atom. Consequently, the obtained crystal data 

offers no insight beyond the previously reported IRMOF-3, and 

has not been included here. Two prominent new bands were ob-

served in the infrared spectrum at 1755 and 1662 cm-1, which 

correspond to the newly formed keto and amido groups. As with 

the DMOF species 1, loss of the primary amine bands at 3474 and 

3351 cm-1 from the parent MOF were also evident post-reaction.  

The 1H-NMR spectrum of bdc-NHak obtained from 2 was simi-

lar to with that of the digested DMOF-1 species 1 (Fig. S1). In 

each instance, the aromatic signals are shifted downfield relative 

to the reference acid, H2bdc-NH2, upon undergoing the PSM reac-

tion. This effect is most pronounced for the hydrogen in the ortho 

position relative to the amine group, which shifts from δ 7.62 ppm 
to ca δ 9 ppm. The remaining aromatic hydrogens are also 

deshielded in each instance, albeit to a lesser degree. Evidence for 

the carboxylic acid and amido hydrogens were typically absent 

from the 1H-NMR spectrum, owing to facile exchange with deu-

terium chloride of the digestion media, however evidence for the 

methylene and terminal methyl groups could typically be ob-

served in the region from δ 2 - 3 ppm.  

FCS-NHak (3): While the triphenylene group complicated the 

aromatic region of the 1H-NMR spectrum, a considerable quantity 

of information could still be garnered. The use of DMF-d7 al-

lowed visualization of both the keto and enol amido N-H reso-

nances at δ 10.7 and 10.5 ppm respectively, giving direct evidence 
for PSM group formation. The enolic OH group was also ob-

served at δ 14.1 ppm. By contrast, the methylene and terminal 

methyl group of the keto PSM arm were observed at δ 3.95 and 
2.50 ppm, respectively. No evidence of unreacted primary amine 

cartridge was evident, and of the species found within the pores, 

one equivalent of unreacted diketene was assigned based on the 

characteristic terminal methylene resonances at δ 5.01 and 4.74 
ppm, and a multiplet that integrated for two hydrogens at δ 4.39 
ppm that was attributed to the methylene group of the oxetane 

ring.  

This system provided a second visual means of outwardly ob-

serving the PSM reaction. Electronic changes in the aminotri-

phenylene ‘cartridge’ upon PSM reaction within FCS-NH2 result-

ed in a color change in the crystals from red to yellow (Fig. S9). 

This is consistent with other reports of chemical reactions under-

taken in Fujita’s crystalline flasks.4 After screening upwards of 20 

samples, suitable single crystals of FCS-NHak were found and 

analyzed. The asymmetric unit was found to contain three zinc 

centers, six iodides, two tridentate neutral triazine-based ligands, a 

post-synthetically modified triphenylene molecule and some dif-

fuse guest solvent (Fig. 3). 

 

 
Figure 3. The modelled asymmetric unit of FCS-NHak. The PSM 

chain could only be reliably modelled to the methylene group 

(shown here as NHac). Ellipsoids are shown with 50% probabil-

ity. Diffuse solvent molecules are omitted for clarity. 



 

 

Resolving MOF framework 3, which comprises repeating three 

ZnI2 nodes linked by two tpt linkers, from the X-ray diffraction 

data was relatively straightforward. The derivatized triphenylene 

guest is sandwiched between two tpt ligands, each from distinct, 

interpenetrated layers of the framework (Fig. 3, inset). Two types 

of large pore are present, of which only one contains the PSM tag 

of atp-NHak, this being consistent with previous reports.4 Disor-

der of the triphenylene group over two proximate positions was 

observed (full details in ESI). Consequently, it was not possible to 

reliably locate the terminal CH3CO portion of the sidechain and 

thus it was omitted from the refinement along with the hydrogen 

atoms attached to methylene bridge carbon (i.e. the carbon termi-

nus of NHac shown in Fig. 3). The site occupancy of these atoms 

was treated as unity, based on 1H-NMR evidence for 100% PSM 

conversion. 

This post-synthetic reaction is exceptional in that single crystal-

linity of the products was universally retained using these proto-

cols, and the resultant modified group was directly crystallograph-

ically observable in three of the four cases studied. These features 

are extremely valuable, as powder X-ray diffraction patterns of 

MOF frameworks are typically unchanged upon PSM, and hence 

only serve to gauge the crystallinity of the products. A crystallo-

graphic window of the PSM region broadens the application of 

these materials to paramagnetic species that would interfere with 
1H-NMR analyses, and time-resolved crystallographic processes. 

In summary we have identified and evaluated the scope of a 

new PSM reaction that has exciting implications for MOF chemis-

try. The transformation imparts consistently high conversions 

(>80%), is atom-economical, synthetically easily achieved, and 

applicable to a range of common MOF families. The resultant β-

amidoketone group is a known metal chelating group with acidic 

character, opening the MOF pore to a host of further transfor-

mations. We are currently investigating these reactions on a range 

of β-amidoketone-functionalized MOFs. This combination of 

synthetic ease and useful functionality will recommend this PSM 

transformation for widespread implementation within the MOF 

community. 
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The post-synthetic modification (PSM) of amino-functionalized MOFs to pendant β-amidoketone arms using diketene has 

been demonstrated with three unique MOF families. The PSM reaction is both atom-economical and yields high conversion 

percentages. In each case crystallinity was retained, and instances of exceptional solid-state ordering were observed in the 

PSM products. 


