Supplementary information for the article:

Milović, M.D., Vasić Anićijević, D.D., Jugović, D., Anićijević, V.J., Veselinović, L., Mitrić, M., Uskoković, D., 2019. On the presence of antisite defect in monoclinic Li2FeSiO4 - A combined X-Ray diffraction and DFT study. Solid State Sciences 87, 81-86. https://doi.org/10.1016/j.solidstatesciences.2018.11.008

Supplementary

Table S1. Lattice and structural parameters of the prepared $\mathrm{Li}_{2} \mathrm{FeSiO}_{4}$ (s.g. $\# 14, P 2_{1} / c$).
Lattice parameters:
$\mathrm{a}=8.2295 \AA, \quad \mathrm{~b}=5.0170 \AA, \quad \mathrm{c}=10.6808 \AA, \quad \beta=130.436^{\circ}$
Cell volume: $335.65 \AA^{3}$

Atomic position	Wyckoff symbol	Fractional coordinates			B (\AA^{2})	Occ.
		x	y	z		
Li1	4 e	0.101	0.854	0.355	2.8	1.0
Li2	4 e	0.484	0.199	0.406	1.66	0.940
Fe1	4 e	0.254	0.7995	0.7110	1.66	0.940
Li3	4 e	$=\mathrm{Fe} 1$	$=\mathrm{Fe} 1$	$=\mathrm{Fe} 1$	1.66	0.060
Fe 2	4 e	$=\mathrm{Li} 2$	= Li2	$=\mathrm{Li} 2$	1.66	0.060
Si	4 e	0.760	0.817	0.961	1.46	1.0
O1	4 e	0.927	0.737	0.116	2.09	1.0
O2	4 e	0.497	0.218	0.599	2.09	1.0
O3	4 e	0.759	0.761	0.321	2.09	1.0
O4	4 e	0.248	0.878	0.036	2.09	1.0

Figure S1. Periodic cells used in DFT calculations: a) 32-atom cell, b) 128-atom cell.

Estimation of configuration entropy arising from antisite

Boltzmann's equation:
$\mathrm{S}=\mathrm{k}_{\mathrm{b}} \ln \mathrm{W}$
Entropy change due to antisite defect formation:
$\Delta \mathrm{S}=\mathrm{S}_{\text {(antisite) }}-\mathrm{S}_{\text {(pristine) }}=\mathrm{S}_{\text {(antisite) }}$
since $\mathrm{S}_{\text {(pristine) }}=0$. (There is only one possible arrangement $\mathrm{W}=1$, where all atoms are placed on its own positions).

If $\mathrm{Fe}-\mathrm{Li} 2$ antisite interchange occurs, the number of possible arrangements, due to the mixing of Li and Fe atoms, is given by
$\mathrm{W}=\mathrm{N}_{\mathrm{Li} 2}!/\left(\mathrm{N}_{\mathrm{Li} 2 / \mathrm{L} \mathrm{l}}!\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Fe}}!\right) \quad \mathrm{x} \quad \mathrm{N}_{\mathrm{Fe}}!/\left(\mathrm{N}_{\mathrm{Fe} / \mathrm{Fe}}!\mathrm{N}_{\mathrm{Fe} / \mathrm{L} \mathrm{l}}!\right)$
Where $\mathrm{N}_{\mathrm{Li} 2}!/\left(\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Li}}!\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Fe}}!\right)$ is the number of arrangements arising from the mixing of lithium and iron on Li2 sites; $\mathrm{N}_{\mathrm{Li} 2}$ is the number of Li 2 positions, $\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Li}}$ is the number of Li 2 positions occupied by lithium and $\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Fe}}$ is the number of Li2 positions occupied by iron $\left(\mathrm{N}_{\mathrm{Li} 2}=\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Li}}+\right.$ $\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Fe}}$). And $\mathrm{N}_{\mathrm{Fe}}!/\left(\mathrm{N}_{\mathrm{Fe} / \mathrm{Fe}}!\mathrm{N}_{\mathrm{Fe} / \mathrm{L} \mathrm{L}}!\right)$ is the the number of arrangements arising from the mixing of lithium and iron on Fe sites.

For every arrangement of atoms on Li2 sites there is $\mathrm{N}_{\mathrm{Fe}}!/\left(\mathrm{N}_{\mathrm{Fe} / \mathrm{Fe}}!\mathrm{N}_{\mathrm{Fe} / \mathrm{Li}}!\right.$) number of arrangements on Fe sites, and since $\mathrm{N}_{\mathrm{Li} 2}=\mathrm{N}_{\mathrm{Fe}}, \mathrm{N}_{\mathrm{Li} 2 / \mathrm{Li}}=\mathrm{N}_{\mathrm{Fe} / \mathrm{Fe}}, \mathrm{N}_{\mathrm{Li} 2 / \mathrm{Fe}}=\mathrm{N}_{\mathrm{Fe} / \mathrm{Li}}$, the number of all possible arrangements is given by the equation (3) or by
$\mathrm{W}=\left(\mathrm{N}_{\mathrm{Li} 2}!/\left(\mathrm{N}_{\mathrm{Li} 2 / \mathrm{L}}!\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Fe}}!\right)\right)^{2}$
If antisite interchange occurs in the amount of 25% (32-atom cell, $\mathrm{N}_{\mathrm{Li} 2}=\mathrm{N}_{\mathrm{Fe}}=4$) there is $4!/(3!1!)$ number of arrangements on Li 2 sites and the same number of arrangements on Fe sites, while the total number of arrangements is
$\mathrm{W}=16$.
Similarly, if antisite interchange occurs in the amount of 6.75% (128-atom supercell, $\mathrm{N}_{\mathrm{Li} 2}=\mathrm{N}_{\mathrm{Fe}}=$ 16) there is $16!/(15!1!)$ number of arrangements on Li2 sites and the total number of arrangements is
$\mathrm{W}=256$.
The configuration entropy change due to 6.75% antisite (in 128 -atom supercell) therefore is $\Delta \mathrm{S}=\mathrm{k}_{\mathrm{b}} \ln \left(\mathrm{N}_{\mathrm{Li} 2}!/\left(\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Li}}!\mathrm{N}_{\mathrm{Li} 2 / \mathrm{Fe}}!\right)\right)^{2} \approx 47.8 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
and per elementary cell, $\Delta \mathrm{S} \approx 11.95 \times 10^{-5} \mathrm{eV} / \mathrm{K}$.

