

The 6th International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials and the 54th Summer Symposium on Powder Technology

Program and Abstracts

Kurashiki, Japan July 9–12, 2018

ICCCI 2018

The 6th International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials and

the 54th Summer Symposium on Powder Technology

Program and Abstracts

Kurashiki, Japan July 9-12, 2018

Committees

1. Organizing Committee

Chairman

Makio Naito Osaka University, Japan

Scientific Secretary

Junichi Tatami

Yokohama National University, Japan

Committee Members

Tawatchai Charinpanitkul

Chulalongkorn University, Thailand

Kevin G. Ewsuk

Sandia National Laboratories, USA

Masayoshi Fuji

Nagoya Institute of Technology, Japan

Thomas Graule

Empa, Switzerland

Figiri Hodaj

SIMAP, France

Yuji Hotta

AIST, Japan

Hideki Ichikawa

Kobe Gakuin University, Japan

Norifumi Isu

LIXIL Corporation, Japan

Hidehiro Kamiya

Tokyo University of Agriculture and Technology, Japan

Iunva Kano

Tohoku University, Japan

Esko I. Kauppinen

Aalto University School of Science, Finland

Hai-Doo Kim

Korea Institute of Materials Science, Korea

Hsiu-Po Kuo

Chang Gung University, Taiwan

Hua-Tay Lin

Guangdong University of Technology, China

Hisao Makino

CRIEPI, Japan

Sanjay Mathur

University of Cologne, Germany

Shuji Matsusaka

Kyoto University, Japan

Olivera Milosevic

SASA, Serbia

Steven Mullens

VITO, Belgium

Dumitru Nedelcu

Technical University of Iasi, Romania

Tatsuki Ohji

AIST, Japan

Ungyu Paik

Hanyang University, Korea

Wolfgang Peukert

University of Erlangen, Germany

Yoshio Sakka

NIMS, Japan

Loredana Santo

University of Rome "Tor Vergata", Italy

Tohru Sekino

Osaka University, Japan

Yoshiyuki Shirakawa

Doshisya University, Japan

Dileep Singh

Argonne National Laboratory, USA

Mrityunjay Singh

Ohio Aerospace Institute, USA

Candan Tamerler

University of Kansas, USA

Tomohide Tanimoto

Tokuju Corporation, Japan

Chiharu Tokoro

Waseda University, Japan

Antoni P. Tomsia

Lawrence Berkeley National Laboratory, USA

Jose M. Torralba

IMDEA Materials Institute, Spain

Wei-Hsing Tuan

National Taiwan University, Taiwan

Rolf Waesche

BAM, Germany

Di Zhang

Shanghai Jiao Tong University, China

2. Local Organizing Committee

Motoyuki Iijima

Yokohama National University, Japan

Takahiro Kozawa

Osaka University, Japan

Mitsuaki Matsuoka

Kansai University, Japan

Tadachika Nakayama

Nagaoka University of Technology, Japan

Toshiyuki Nomura

Osaka Prefecture University, Japan

Mikio Sakai

The University of Tokyo, Japan

Satoshi Tanaka

Nagaoka University of Technology, Japan

Tetsuo Uchikoshi

NIMS, Japan

Kouichi Yasuda

Tokyo Institute of Technology, Japan

Conference Information

1. Aims and Scope

Interfaces are critically important to a broad spectrum of materials and technologies. In 2003, the first International Conference on Characterization and Control of Interfaces for High Quality Advanced Materials (ICCCI2003) established an international forum for interface science and technology. Interest and participation doubled in 2006, 2009, 2012 and 2015 at the second, third, fourth and fifth International Conferences (ICCCI2006, 2009, 2012 and 2015) respectively. In 2018, the sixth International Conference (ICCCI2018) will continue the discussion on interface characterization and control to design and manufacture high quality advanced materials. Additionally, an industrial exhibition by multinational corporations will complement the technical sessions. At ICCCI2018, interface characterization and control technology for nano-scale to micro-scale materials synthesis, powder processing, composite processing, joining, and to control airborne particulates will be addressed by scientists and engineers from academia, industry, and national laboratories. Conference topics include:

Session A: Interface Characterization and Control for Nanoparticles and Powders (54th Summer Symposium on Powder Technology)

Solid-liquid interfaces

Composite interfaces

Interface characterization techniques

Interface control for processing

Control and design of interfaces in suspensions

Session B: Smart Processing Technology

Advanced materials: ceramics, metals, polymers, composites, porous materials etc.

Microsystems

Nanotechnology

Novel manufacturing: 3D printing etc.

Advanced joining and welding technology

Session C: International Symposium in Honor of Prof. Olivera Milosevic

Session D: Energy and Environment

Batteries

Fuel cells

Solar cells

Biomass, Coals

Recycling

PM2.5

Nanorisk

Session E: Material Design and Evaluation

Bio-materials

Chemicals and pigments

Electronic materials

Pharmaceutical

Engineering materials

Microstructure evaluation

Evaluation of material properties

2. Supporting Organizations and Sponsors

Organized by

The Society of Powder Technology, Japan

The Society of Chemical Engineers, Japan

Material Research Society of Serbia

Co-Sponsors

International Comminution Research Association
Japan Science and Technology Agency
Japan Welding Society
Joining and Welding Research Institute, Osaka University
Kao Corporation
Smart Processing Society for Materials, Environment & Energy
The 124th Committee on Advanced Ceramics, Japan Society for the Promotion of Science
The American Ceramic Society
The Ceramic Society of Japan
The Japan Institute of Energy
The Japan Institute of Metals and Materials
The Japan Society on Adsorption

3. Conference Venue

Yamanashi Prefecture

Kurashiki Royal Art Hotel

3-21-19 Achi, Kurashiki, Okayama 710-0055, Japan Tel: +81-86-423-2400, Fax: +81-86-423-2401 www.royal-art-hotel.co.jp

Room II

Session C: International Symposium in Honor of Prof. Olivera Milosevic

08:00-10:00 Chair: Kevin G. Ewsuk

08:00-08:30 1-II-C-01 INVITED

Design and processing of photoresponsive hierarchical nanomaterials using innovative synthesis routes

O. Milosevic

Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Serbia

08:30-09:00 1-II-C-02 INVITED

Interfaces in electronic packaging: metallurgical challenges in miniaturization F. Hodaj

Grenoble Institute of Technology, France

09:00-09:30 1-II-C-03 INVITED

Synthesis and characterization of functional ceramic materials at the nano- and microscale with enhanced properties

G. Flores-Carrasco^{1,2}, A. Urbieta³, P. Fernández³, O. Milosevic⁴, M.E. Rabanal¹ Carlos III University, Spain, ²Meritorious Autonomous University of Puebla, Mexico,

³Complutense University of Madrid, Spain, ⁴Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Serbia

09:30-10:00 1-II-C-04 INVITED

Characterization of defects in ceramics

K. Uematsu

Uematsu Consulting for Ceramic Technology, Japan

10:00-10:20

Coffee break

10:20-12:00 Chair: Olivera Milosevic

10:20-10:50 1-II-C-05 INVITED

Synthesis of nanocarbons and ilmenites nanoparticles using super-high-energy ball milling

S. Ohara

Osaka University, Japan

10:50–11:10 1-II-C-06 INVITED

Photocatalytic efficiency of TiO₂/Ag nanoparticles modified cotton fabric M. Milošević, M. Radoičić, Z. Šaponjić *University of Belgrade, Serbia*

The 6th International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials and the 54th Summer Symposium on Powder Technology

11:10–11:30 1-II-C-07 INVITED

Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn)

L. González^{1,2}, L. Muñoz-Fernandez¹, G. Flores-Carrasco^{1,3}, O. Milosevic⁴, G. Salas², M.E. Rabanal¹

¹Carlos III University, Spain, ²IMDEA Nanociencia, Spain, ³Meritorious Autonomous University of Puebla, Mexico, ⁴Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Serbia

12:00–13:20 Photo and Lunch

1-II-C-07 INVITED 11:10–11:30, July 10, Room II

Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn)

L. González^{1,2)}, L. Muñoz-Fernandez¹⁾, G. Flores-Carrasco^{1,3)}, O. Milosevic⁴⁾, G. Salas²⁾, M.E. Rabanal¹⁾

- ¹⁾ Universidad Carlos III de Madrid & IAAB, Dept. of Materials Science and Engineering and Chemical Engineering, Spain
 - ²⁾ Instituto Madrileño de Estudios Avanzados en Nanociencia, Campus Universitario de Cantoblanco, Spain
 - 3) CIDS-ICUAP Benemérita Universidad Autónoma de Puebla, México
 - ⁴⁾ Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Serbia

The synthesis of γ-Fe₂O₃&ZnO hybrid nanocomposites has been carried out by a solvothermal process at low temperature evaluating the influence of different experimental parameters and conditions. Several techniques such as X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (HR-TEM), Vibrating Sample Magnetometry (VSM), Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), Dynamic Light Dispersion (DLS), Thermogravimetric Analysis (TGA) and UV-Vis Spectroscopy have been used to characterize the size, shape, structure, chemical composition, purity, crystalline phase and spectroscopic, magnetic, and finally the photocatalytic properties of nanocomposites prepared. Based on the results obtained, under irradiation of UV-Vis light, the nanocomposites of γ-Fe₂O₃-ZnO synthesised both at 6 h and 12 hat 120 °C demonstrate a high photocatalytic activity (PCA) compared to pure γ-Fe₂O₃ and ZnO samples for the degradation of methylene blue (MB), used as a cationic dye model. The percentage of degradation obtained for both cases was much higher than that obtained for the pure compounds of γ -Fe₂O₃ and ZnO (85% and 81% vs 51% and 46%, respectively). Also, the study of stability, magnetic recovery and recyclability in MB dye degradation was carried out. For this purpose, photocatalytic tests were performed by reusing these hybrid nanocomposites during successive cycles. It has been verified that the PCA of these nanocomposites is maintained after several cicles of experiments with new MB solutions demonstrating their high photocatalytic stability. In conclusion, γ-Fe₂O₃-ZnO hybrid nanostructures are a suitable candidate for its use in environmental applications, and to solve problems of removal of organic contaminants in the wastewater treatments as a magnetically recoverable photocatalyst.