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Abstract  

Poly (є-caprolactone) (PCL) microspheres as a carrier for sustained release of antibacterial agent, 

selenium nanoparticles (SeNPs), were developed. The obtained PCL/SeNPs microspheres were in the 

range 1-4 m with the encapsulation efficiency of about 90 %. The degradation process and release 

behavior of SeNPs from PCL microspheres were investigated in five different degradation media: 

phosphate buffer solution (PBS), a solution of lipase isolated from the porcine pancreas in PBS, 0.1M 

hydrochloric acid (HCl), Pseudomonas aeruginosa PAO1 cell-free extract in PBS and implant fluid 

(exudate) from the subcutaneously implanted sterile polyvinyl sponges which induce a foreign-body 

inflammatory reaction. The samples were thoroughly characterized by SEM, TEM, FTIR, XRD, PSA, 

DSC, confocal microscopy, and ICP-OES techniques. Under physiological conditions at neutral pH, a 

very slow release of SeNPs occurred (3 and 8% in the case of PBS or PBS+lipase, respectively and after 

660 days), while in the acidic environment their presence was not detected. On the other hand, the release 

in the medium with bacterial extract was much more pronounced, even after 24 h (13%). After 7 days, the 
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concentration of SeNPs reached a maximum of around 30 %. Also, 37% of SeNPs have been released 

after 11 days of incubation of PCL/SeNPs in the implant exudate. These results suggest that the release of 

SeNPs from PCL was triggered by Pseudomonas aeruginosa PAO1 bacterium as well as by foreign body 

inflammatory reaction to implant. Furthermore, PCL/SeNPs microspheres were investigated in terms of 

their biocompatibility. For this purpose, cytotoxicity, the formation of reactive oxygen species (ROS), and 

genotoxicity were evaluated on HepG2 cell line. The interaction of PCL/SeNPs with phagocytic cell line 

(Raw 264.7 macrophages) was monitored as well. It was found that the microspheres in investigated 

concentration range had no acute cytotoxic effects. Finally, SeNPs, as well as PCL/SeNPs, showed a 

considerable antibacterial activity against Gram-positive bacteria: Staphylococcus aureus (ATCC 25923) 

and Staphylococcus epidermidis (ATCC 1228). These results suggest that PCL/SeNPs-based system 

could be an attractive platform for a prolonged prevention of infections accompanying implants. 

 

Keywords: PCL; microspheres; biodegradation; prolonged release; selenium nanoparticles. 

 

1. INTRODUCTION 

Degenerative and inflammatory diseases of the bones and joints make half of all chronic diseases 

in middle age people or older population in developed countries [1]. As a result, millions of medical 

devices are used every year. However, a significant quantity of these devices becomes colonized by 

microorganisms leading to implant-related infections, following implant damage and foreign-body 

reaction [2]. Despite the great progress in the field of biomaterials, this is still a major problem in 

orthopedics and soft tissue augmentation which causes implants failure. In a study conducted by Mittal et 

al. [3], more than 90 % of investigated patients stated that this is the largest drawback of metal implants. 

Implant accompanied infections are the consequence of bacterial adhesion to implant surfaces triggering 

the biofilm formation at the implantation site [4]. The formation of biofilms occurs in several phases 

leading to several major problems. The first problem is that bacterial populations on implant surfaces may 

become a reservoir of bacteria that can spread through the whole body. Furthermore, biofilms are highly 

resistant to antibiotic therapy so it is extremely hard to eliminate these bacteria by conventional 

antimicrobial therapies. Because the immune system and antimicrobial therapies are often inefficient to 

eliminate bacteria forming the biofilm, a chronic infection may take place [5]. It is a great challenge to 

manage orthopedic and soft-tissue augmentation implant infections that can cause implant replacement 

and also, in severe cases, can lead to amputation and death. About two-thirds of all orthopedic implant 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

infections are initiated by different strains of staphylococci [6]. Actually, the most serious problems could 

be caused by Staphylococcus aureus and Pseudomonas aeruginosa infections [7]. Staphylococcus aureus 

bacteria are the major contributing agents of two main infections affecting bone: arthritis and 

osteomyelitis, which are associated with inflammation and bone destruction [8]. Pseudomonas bacteria 

usually do not cause severe infections in healthy people [9]. However, infections caused by Pseudomonas 

aeruginosa are commonly associated with other infections, i.e. they often appear in already 

immunocompromised patients. Pseudomonas is the most frequent pathogen find in patients who have 

been hospitalized for an extended period of time, and it is a frequent cause of nosocomial infections [10]. 

Pseudomonas infections often occur, for example, when there is already an existing infection caused by 

Staphylococci. 

With the aim to prevent postsurgical infection, systemic antibiotic therapy is commonly applied 

to patients after the implantation [11,12]. However, there are many weaknesses, such as relatively low 

antibiotic concentration at the target site, as well as potential toxicity [13]. Also, consistent usage of 

broad-spectrum antibiotics may trigger resistant microorganism infections, which are associated with 

worse outcomes and higher costs [14,15]. Taking all this into account, coating/impregnation of implants 

with non-antibiotic antimicrobial substances emerged as a promising approach. However, many currently 

used non-antibiotic antimicrobial coating materials have been shown to be insufficiently efficient. For 

example, silver ions, well-known antimicrobial agent, are readily precipitated by chloride ions in human 

tissues [16]. Also, it should be mentioned that coating devices with silver, gold, and platinum is expensive 

[17].  

On the other hand, SeNPs recently gained attention as a material which possesses antibacterial, as 

well as antiviral activities [18–21]. Selenium is an essential trace element in human bodies, required for 

their normal functioning [22]. Furthermore, recent findings indicate that selenium has critical roles in 

different physiological processes, including the modulation of immune responses [23] and it is necessary 

for bone health [24]. The effects of selenium on bone and the underlying mechanisms are well described 

in the review of Zeng et al. [25]. Selenium deficiency can retard growth, modify bone metabolism and 

increase the risk of bone disease [25–27]. However, selenium can be also toxic at concentration levels not 

much higher than the beneficial requirement [28,29]. Conversely, compared to elemental selenium, 

SeNPs have shown a reduced risk of selenium toxicity, but same bioavailability and efficacy compared 

with other seleno-compounds [30,31].  
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Herein, we describe for the first time, the synthesis and characterization of SeNPs encapsulated 

within PCL microspheres with the aim to establish a system which will be capable to slow release the 

SeNPs from PCL matrix on site and when it is needed, i.e. when infection or inflammation occurs.  

PCL is chosen since it is FDA-approved aliphatic polyester which belongs to a group of slow-

degrading polymers. Some of its numerous applications in the field of biomedicine are summarized in a 

few review papers [32–34]. Although the majority of researches done with PCL in the past few years are 

focused on tissue engineering [35], this polymer still has a great potential in drug delivery systems thanks 

to its excellent biocompatibility [36] or ability to provide sustained release [37]. Also, the slow 

degradation and prolonged release of active components from PCL could be very beneficial in implant 

coatings approach. In this case, it is possible to provide antimicrobial protection, prevent disease 

remission or alter regeneration in a reasonable long period. For such system, degradation rate and release 

behavior are parameters that must be thoroughly investigated. The degradation rate is highly dependent 

on several factors including the degree of crystallinity, hydrophilicity, copolymer composition, molecular 

weight, molecular architecture, size and geometry of the samples, and the conditions in the degradation 

environment.  

In this study, degradation and release behavior of newly synthesized PCL/SeNPs microspheres 

were investigated in five different media: phosphate buffer solution (PBS), solution of lipase isolated 

from the porcine pancreas in PBS, 0.1M hydrochloric acid (HCl), Pseudomonas aeruginosa PAO1 cell-

free extract in PBS and implant fluid (exudate) from in vivo implanted sterile polyvinyl sponges which 

induce a foreign-body inflammatory reaction. Samples were characterized by scanning electron 

microscope (SEM), transmission electron microscope (TEM), Fourier-transform infrared spectroscopy 

(FTIR), X-ray diffraction (XRD), particle size distribution analysis (PSD), differential scanning 

calorimetry (DSC) and inductively coupled plasma optical emission spectrometry (ICP-OES). The 

influence of PCL/SeNPs on cell viability, ROS generation and formation of DNA strand breaks in HepG2 

and phagocytic Raw 264.7 cells was investigated. The antibacterial activity of the samples was 

determined against Gram-positive bacteria: Staphylococcus aureus (ATCC 25923) and Staphylococcus 

epidermidis (ATCC 1228).  

 

2. EXPERIMENTAL SECTION 

2.1. Materials  
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PCL was purchased from Lactel, Absorbable Polymers, USA. Poly(L-glutamic acid) (PGA, MW 

= 20-40 kDa, 99.9% HPLC purity) was obtained from Guilin Peptide Technology Limited, China. 

Sodium selenite (Na2SeO3, Mw=172.94 g/mol), bovine serum albumin (MW = 66kDa, BSA) and lipase 

(type II 30-90 units/mg protein isolated from porcine pancreas) were obtained from Sigma Aldrich 

Chemie GmbH. Ascorbic acid (vitamin C) was purchased from VWR Prolabo.  

 

2.2. Synthesis of SeNPs 

SeNPs were synthesized by simple chemical reduction, using sodium selenite as a source of 

selenium ions, ascorbic acid as a reducing agent and BSA as a stabilizer. Droplets of  20 mM solution of 

sodium selenite (12.5 ml) and 8.6 % solution of BSA (w/v, 5 ml) were simultaneously added to 0.125 M 

solution of ascorbic acid (10 ml). The reaction vessel with ascorbic acid (also where the reduction takes 

place) was covered with aluminum foil in order to prevent interaction with light. The obtained brick red 

colloidal solution of SeNPs was homogenized for 30 min on a magnetic stirrer (1000 rpm) and then 

filtered through the 0.24 μm syringe filter (Millipore). The final solution was stored in a refrigerator. The 

amount of SeNPs in colloidal solution was determined by ICP-OES. For the purpose of characterization 

by FTIR, XRD and antibacterial testing, obtained colloidal solution of SeNPs was lyophilized. 

 

2.3. Encapsulation of SeNPs within PCL microspheres 

The obtained colloidal solution of SeNPs was further used for encapsulation within PCL 

microspheres using a solvent/nonsolvent method. Briefly, 300 mg of commercial PCL granules was 

dissolved with mild heating to 50 °C in 30 ml of acetone. After that, 0.5 ml of a solution containing 

SeNPs was dropwise added to the organic phase. A high-speed homogenizer was used for 5 min at 21 000 

rpm to homogenize this mixture. The obtained mixture was poured into a non-solvent system ethanol (75 

ml) followed by addition of 0.05 % PGA solution (10 ml). This instantly resulted in precipitation of PCL 

microspheres loaded with SeNPs. Homogenization was then carried on a magnetic stirrer for 30 min. 

The encapsulation efficiency EE% of SeNPs was determined based on the following equation: 

 

100
t

e

W

W
%EE                                                                          (1) 
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where We is the amount of incorporated SeNPs within PCL microspheres, determined experimentally by 

ICP-OES, and Wi is the total quantity of SeNPs added initially during the preparation procedure. In order 

to thoroughly investigate some properties of obtained PCL/SeNPs, blank PCL microspheres were 

produced by the same procedure without the addition of SeNPs and high speed homogenization.   

 

2.4. Characterization of the samples 

2.4.1. Morphology studies  

The morphology of as-synthesized SeNPs and PCL/SeNPs was analyzed by SEM (JEOL JSM-639OLV) 

and TEM (2100 microscope, Jeol Ltd., Tokyo, Japan). For SEM analysis, the samples were coated with 

gold using the physical vapor deposition (PVD) process. The covering was performed by a Baltec SCD 

005 sputter coater, using 30 mA current from the distance of 50 mm during 180 s. For TEM analysis, 

samples were prepared by placing drops of suspension-containing particles onto a lacey carbon film 

supported by a 300-mesh-copper grid. 

 

2.4.2. Fourier-transform infrared spectroscopy (FTIR) 

 The quality analysis of the samples was performed by FTIR spectroscopy. FTIR spectra of 

samples were obtained on MIDAC M 2000 Series Research Laboratory FTIR Spectrometer, using the 

KBr pellet technique. Measurements were performed in a spectral range of 400–4000 cm
−1

 at room 

temperature. 

 

2.4.3. X-ray diffraction (XRD) measurements 

X-ray diffraction spectra were obtained on an X-ray diffractometer, Philips PW 1050 

diffractometer with Cu-Kα radiation (Ni filter). The samples were scanned in the 2θ range of 10° to 60°, 

with a scanning step width of 0.05°, and 2 s per step. Crystallite size determination was carried out using 

a variant of the Scherrer equation: 





cosb

.
D

90
                                                                      (2) 
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where D is the apparent crystallite size, b is the full-width at half maximum FWHM of the X-ray 

diffraction line (peak broadening) in radians, λ is the wavelength used 1.5406 Å, and θ is the angle 

between the incident ray and the scattering planes. The constant of 0.9 is a shape factor and its value 

depends on crystallite morphology. 

 

2.4.4. Particle size analysis (PSA) 

The particle size distribution of SeNPs and PCL/SeNPs samples was determined by the PSA 

Mastersizer 2000 (Malvern Instruments Ltd, UK). For characterization of SeNPs, the original colloidal 

solution was used, while particle size distribution of PCL/SeNPs was measured from the powder 

ultrasonically dispersed in ethanol.  

 

2.4.5. Differential scanning calorimetry (DSC measurements) 

DSC studies were carried out on SETARAM apparatus DSC 131 EVO controlled by CALISTO 

software. In order to evaluate effects of degradation on polymer crystallinity, samples weighing 1,5-2,5 

mg were placed in hermetically sealed 30 μl aluminium pans and heated from 30 °C to 100 °C at a rate of 

5 °C/min in nitrogen gas flow. The approximate crystallinity was calculated from the melting peak 

according to the equation: 

0

f

f

c
H

H
W




                                                                             (3) 

 

where Wc is the degree of crystallinity, ΔHf is the heat of fusion of the sample, and ΔHf
0
 is the heat of 

fusion of 100 % crystalline polymer (literature data 139.5 J/g) [38]  

 

2.4.6. Inductively coupled plasma optical emission spectrometry (ICP-OES)  

 A Thermo Scientific iCap 6500 Duo instrument was used for determination of Se concentration in 

different samples: colloidal solution of SeNPs, PCL/SeNPs powder and supernatant were taken at 

predetermined time intervals from different degradation media. Samples in powder form were prepared 
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by microwave acid-assisted digestion. Working solutions of selenium were produced by appropriate 

dilutions of the corresponding stock solutions with 2.5% nitric acid (HNO3). Working standards were 

prepared from the multi-element standard solution, MES-21-1 (AccuStandrad, USA) in following 

concentrations: 10 ppb, 20 ppb, 50 ppb, 100 ppb, 0,2 ppm, 0,5 ppm, 1 ppm, and 2 ppm. Details of the 

experimental procedure are given in Supplementary information SI. 

 

2.5. Biocompatibility study 

 First, the investigations regarding cell viability (MTT assay), the formation of reactive oxygen species 

(DCFH-DA assay) and genotoxicity (comet assay) were conducted on the HepG2 cell line. Cell viability 

after the exposure to PCL/SeNPs was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5 

diphenyltetrazolium bromide (MTT) according to Mosmann [39] with minor modifications [40]. The 

formation of intracellular reactive oxygen species (ROS) was measured spectrophotometrically using a 

fluorescent probe, dichloro-dihydro-fluorescein diacetate (DCFH-DA) as described elsewhere [41]. In 

order to investigate the genotoxicity of PCL/SeNPs, a classical comet assay was performed according to 

the protocol of Singh et al. with minor modifications [42]. Images of 50 randomly selected nuclei per 

experimental point were analyzed with image analysis software Comet Assay IV (Perceptive Instruments, 

UK). The percentages of tail DNA were used to measure the levels of DNA damage. All details regarding 

biocompatibility testing are provided within SI. 

To investigate the interaction between PCL/SeNPs with professional phagocytic cells, murine Raw 264.7 

cell line was used, and 2x10
5
 cells /well of 24-wells plates were cultivated in complete RPMI 1640 

medium with 10% fetal calf serum and 1% antibiotics (gentamycin, streptomycin, penicillin) for 24h. The 

cells were then treated with PCL/SeNPs (25, 50 or 100 μg/ml) or PBS (control) for the next 24h. The 

viability of cells was analyzed by Tripan blue exclusion assay, by counting at least 500 cells per sample. 

The % of viable (Tripan blue negative) was calculated as the % of control (PBS-treated) cells (100 %). 

Microscopy analysis of Raw 264.7 cells was carried out on cells cultivated likewise on glass coverslips 

for 24h. The slides were washed three times in PBS and then stained with May-Grunwald Giemsa. 

Alternatively, the samples were stained with the anti-mouse CD45 antibody (Abcam) for 30 minutes, 

washed in PBS and then labeled with goat anti-mouse Alexa Fluor 488 IgG (Abcam) for another 30 

minutes. Nuclei were stained afterwards using Syto 59 nuclear stain (Invitrogen), and the samples were 

analyzed by Zeiss 510 LSM confocal microscope (Zeiss, Jena, Germany). SeNPs were detected as bright 

scattering particles upon excitation with a 546nm laser. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

2.6. Degradation process and release behavior of SeNPs from PCL microspheres in simulated 

physiological conditions 

 The degradation of PCL/SeNPs and the release of SeNps from the PCL polymer matrix were 

investigated in different degradation media in order to simulate physiological conditions: (i) phosphate 

buffered saline (PBS) with pH=7.4, (ii) PBS solution with lipase isolated from porcine pancreas (3mg for 

each sample) and (iii) 0.1M HCl. All experiments were carried out in parallel. The 15mg of PCL/SeNp 

were suspended in 7.5ml of the above-mentioned media and placed in water bath at 37°C. (sodium azide 

was added to the first two media). At exact times, samples were collected, centrifuged (10 min at 7000 

rpm) and sediments and supernatants separated by decantation. In order to remove a residue from media, 

sediments were washed several times with distilled water, filtered through the quantitative filter paper and 

left to dry at room temperature for two days. All samples were stored in a refrigerator before analysis.  

 

2.7. Study on degradation efficiency of PCL by a Pseudomonas aeruginosa PAO1 cell-free extract 

 We investigated the ability and the role of this bacterium on PCL degradation, using a microcosm 

approach in order to mimic bacterial infections conditions. For this purpose, Pseudomonas aeruginosa 

PAO1 (ATCC 15692) was grown in MSM medium (Mineral Salts Medium) composed of 9.0 g/lNa2HPO4 

× 12H2O; 1.5 g/l KH2PO4;0.2 g/lMgSO4 × 7H2O; 0.002 g/lCaCl2; 1.0 g/l NH4Cl and 1 ml salt solution 

[43] supplemented with casamino acids (0.7%, w/v) and glucose (0.2%, w/v) or olive oil (1%, v/v) as 

carbon sources. Bacterial culture was incubated for 48 h at 30 
o
C with shaking at 180 rpm. After 

incubation, P. aeruginosa PAO1 bacterial culture was centrifuged at 5000 rpm for 10 min (GS-3 rotor, 

Sorvall Centrifuge, DuPont Instruments, Delaware, USA) and cell-free extract (CFE) was prepared from 

the bacterial pellet using BugBuster Protein Extraction Reagent according to the manufacturer's 

instructions (Novagen, Wisconsin, USA). Total protein concentration in cell-free extract was determined 

using coloring reagent CBB G-250 (BioRad Protein Assay, BioRad Laboratories, USA) according to 

Bradford method [44]. CFE was used in two different experimental setups including semi-solid agar-

based medium and aqueous PBS medium.  

 

2.7.1. Degradability potential of P. aeruginosa PAO1 CFE toward PCL 
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 Experiments on agar plates were conducted in order to prove degradability potential of CFE 

toward PCL. Firstly, a polymer suspension was prepared by dissolving 100 mg of PCL polymer in 2ml of 

dichloromethane and water up to 20ml, followed by sonication (60Hz, 5 pulses of 1 min) [45]. This 

suspension was further warmed at 65 
o
C to evaporate dichloromethane and then mixed with agar (final 

concentration 1% w/v in 200 mMTris-HCl buffer pH 8.5) in 1:1 ratio and poured into a glass Petri dish. 

After solidification at ambient temperature, agar plugs (diameter = 3 mm) were taken out of plates for the 

addition of cell-free extracts. For the purpose of this experiment, P. aeruginosa PAO1 was grown in 

MSM medium using either glucose or olive oil as carbon sources. Cell-free extracts (50 µl) from both 

growth media were applied into wells and plates and incubated for 24 h at 30 
o
C when another aliquot of 

cell-free extracts (50 µl) was added to wells and plates and further incubated for 3 days at 30 
o
C. 

 

2.7.2. Influence of P. aeruginosa PAO1 CFE toward PCL/SeNPs in aqueous PBS medium 

 For experiments in an aqueous medium, 85 mg of PCL/SeNPs powder was suspended in a 

mixture of 20 mM PBS (8 ml) and P. aeruginosa CFE. The experiment was carried out for three weeks at 

37 
o
C. Cell-free extracts (2 ml; 1.8 to 2 mg of total protein/ml) were added in regular periods, three times 

throughout the duration of the experiment. After 24 h, and at the beginning of the second and third week, 

before the addition of fresh cell-free extracts, aliquots of 1ml were taken from the reaction mixture, 

centrifuged (5 min, 13000 rpm, Eppendorf Centrifuge 5417C, Hamburg, Germany) and pellets and 

supernatants stored at -20 
o
C for further analysis. 

2.8. Degradability potential of implant exudate on PCL/SeNPs. 

To observe whether SeNPs could be released from PCL microspheres during an inflammatory process 

accompanying implantation, a rat model of sterile inflammation to foreign-body was applied. Namely, 

Albino Oxford (AO) rats, both sexes, 12 weeks old, were bread at the Institute for Medical Research of 

the Military Medical Academy (MMA). All animal experiments were approved by the Ethical Committee 

for Protection of Experimental Animals of MMA. A sterile inflammation to foreign body was induced by 

subcutaneous implantation of polyvinyl sponges (1cm x 1.5cm x 0.25cm), as described previously [46]. 

Two sponges per animal were implanted at the dorsal site of the skin, under the general ketamine/xylazine 

anesthesia. To collect the exudate, animals were sacrificed by the anesthetics overdose, and the sponges 

were harvested 2 days after implantation. The exudate was squeezed with a syringe and the cells were 

pelleted by centrifugation (2000 RPM for 10 minutes). The in vitro release of SeNPs from PCL 

microspheres in cell-free exudate was carried out by incubating PCL/SeNPs (0.5mg/ml) in the exudate at 
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37
o
C and 5% CO2 for 11 days, followed by the measurement of released SeNPs with ICP-OES. For the 

ICP-OES analysis, the exudate was filtered and then the measurements were done directly. 

To assess the degradability of PCL/SeNPs in vivo, PCL/SeNPs were injected into subcutaneously 

implanted sponges (totally 4 mg/animal), whereas the control groups received the equivalent amount of 

sterile PBS. The sponges from control and treated animals were extracted after 3 hours, 4 days or 11 days 

(2 animals per group per time point). The exudate was used for ICP-OES analysis. In addition to standard 

ICP-OES analysis used to detect released SeNPs, the samples were prepared without filtration, to include 

SeNPs within PCL in sponges (Total Se) in the exudate. The infiltrating cells isolated from sponges were 

placed on microscope slides using the cytocentrifuge (Shandon 4, ThermoFisher Scientific), and analyzed 

by confocal microscopy, as described for Raw 264.7 cells.  

 

2.9. Antibacterial activity 

 The antibacterial effects of PCL/SeNPs, as well as SeNPs alone, were examined against 

Staphylococcus aureus (ATCC 25923) and Staphylococcus epidermidis (ATCC 1228). For the 

determination of minimum inhibitory concentrations (MICs) of the samples a broth microdilution method 

was used. This is performed according to the Clinical and Laboratory Standards Institute (CLSI 2005) 

[47]. A serial doubling dilution of the samples was prepared in Müller-Hinton broth over the range of 

1000?–12.5 µg/ml. In the tests, 0.05% triphenyl tetrazolium chloride (TTC, Aldrich Chemical Company 

Inc., USA) was also added to the culture medium as a growth indicator. As a positive control of growth, 

wells containing only the bacteria in the broth were used. Bacteria growth was determined after 24 h of 

incubation at 37
0
C. All of the MIC determinations were performed in duplicate, and two positive growth 

controls were included as well. 

 

3. RESULTS AND DISCUSSION 

3.1. Physicochemical characterization of as-prepared samples SeNPs and PCL/SeNPs 

 The XRD pattern of lyophilized SeNPs revealed that Se was in amorphous form (Figure 1a). The 

only peak which can be noticed on the XRD pattern (Figure 1a) is peak which belongs to BSA which is 

used in the synthesis of SeNPs as a stabilizer. The concentration of SeNPs in the colloidal solution was 

estimated by ICP-OES to be 600±61 μg/ml, as calculated from three different batches. Morphology and 

size of nano- and microparticles along with surface chemistry are one of the most influential parameters 
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that determine their fate within biological systems [48–50]. One of the major requirements for the 

controlled and well-balanced release of the drugs in the body is its ideal spherical shape of the particles 

and narrow distribution of their sizes [17]. A report from particle size distribution measurement of SeNPs 

indicates that 50 % of particles have a radius below 57 nm, while 90 % of them are smaller than 97 nm 

(Figure 1b). The Figure 1c, TEM image obtained from Se colloidal solution, shows that SeNPs are quite 

uniform and spherical with a diameter below 100 nm. The stability of the colloidal solution, stored in a 

refrigerator, is estimated to be at least four months, based on the appearance of turbidity.  

 

 

Figure 1. a) XRD spectra of as-prepared SeNPs and commercial BSA which is used as a stabilizer for SeNPs; b) 

Size distribution of SeNPs; c)Representative TEM image of SeNPs.  

 

 When it comes to PCL/SeNPs, SEM image confirmed the presence of microspheres within the 

size range of 1-4 m (Figure 2a). SEM image of blank PCL microsheres is given in SI as Figure 1. PSA is 

in good agreement with SEM micrograph. Fifty percent of microspheres have a diameter smaller than 1.7 

m while 90 % are below 3.2 m (Figure 2b). PCL microspheres loaded with SeNPs were also analyzed 

by TEM in order to examine the internal structure of such particles, i.e. to visualize SeNPs within a 

polymer matrix. As shown in Figures 2c and 2d, SeNPs were randomly distributed within a PCL polymer 
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matrix. Based on equation 1 given above, the EE% was calculated to be 90.2% while the loading amount 

of Se in the PCL/SeNPs system was determined to be 0.0946%. Controlled release systems such as 

PCL/SeNPs can be an effective means for local drug delivery. In local drug delivery, the main goal is to 

supply therapeutic levels of an active substances at a physical site in the body for a prolonged period. A 

second goal is to reduce systemic toxicities [51]. Although selenium is needed for the normal functioning 

of the body, the problem is that it displays a narrow spectrum between favorable and toxic effects [28, 

29]. According to the U.S. Food and Drug Administration (FDA) recommended dietary allowances 

(RDAs) of selenium is 55 μg for adults [52] while the National institutes for health (NIH) consider 400 μg 

of selenium as the tolerable upper intake level (ULs) i.e. maximum daily intake unlikely to cause adverse 

health effects [53]. In the case of our system, this amount will be accomplished with roughly 420 mg of 

PCL/SeNPs powder. Also, the additional aspect of SeNPs loading amount which we have considered is 

the fact that, in this case, there is no significant amount of Se adsorbed on the surface of PCL 

microspheres and hence no accompanying burst release. This is very important since eliminates the 

possibility of a potential initial local toxic effect of SeNPs so the system can be considered as safe for 

prolonged release. TEM images show that SeNPs nanoparticles are heterogeneously dispersed within the 

PCL and near the edge of these microspheres, but it is not clear whether they are more concentrated in 

that part. A possible reason why only a few SeNPs are notable on the periphery of the PCL particles is 

because the thickness of the PCL particles is lowest there, while the central part of the particles is thicker 

so the difference in material density cannot be detected. Solvent/non-solvent method is a very convenient 

synthesis technique, frequently used in drug delivery systems. The main requirements are a good choice 

of polymer solvent which is also miscible with polymer non-solvent (usually water). The ratio of solvent 

to non-solvent and choice of stabilizing agents are dominant factors that determine the morphology and 

size of the particles. In our previous work, PGA has proved to be a good stabilizing agent for obtaining 

PCL submicron particles [54]. It is characterized by good biocompatibility and adhesive properties which 

allow its application in the food and pharmaceutical industry, even as a component of surgical glues 

[55,56].  
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Figure 2. Morphology of PCL/SeNPs microspheres by SEM, TEM and PSA results. a) Representative SEM image 

of PCL/SeNPs. b) Size distribution of PCL/SeNPs. c) Representative TEM image of PCL/SeNPs. d) An enlarged 

individual particle from image "c" with marked SeNPs (dark spots) within the PCL polymer matrix. 

 

 The further analysis of the PCL/SeNPs was performed by FTIR, XRD, and DSC techniques. 

FTIR spectroscopy is a very useful technique to investigate the interactions of functional groups based on 

the shift of vibrational bands. Based on the analysis of the spectra of PCL, PCL/SeNPs and SeNPs (Figure 

3a), there is no indication of chemical interaction between PCL and SeNPs. This leads to the conclusion 

that SeNPs are physically entrapped within the polymer matrix. All bands that appeared on spectra 

obtained for blank and loaded PCL particles are characteristic and well recognized for this polymer such 

as C=O at 1730 cm
-1

, CH symmetrical and asymmetrical vibrations at 2868 and 2947 cm
-1

,
 
respectively, 

C-O at 1173 cm
-1

 etc. [57]. On the spectrum obtained from lyophilized SeNPs, two dominant absorptions 

of IR radiation take place at 3425 cm
-1

 and 1635 cm
-1

. The first one corresponds to stretching vibrations 

of H atoms covalently bounded to oxygen or nitrogen atoms and probably hydrogen bonded between 

other atoms, as well. The second broad peak can be characterized as amide I band. Both bands are 

characteristic for BSA [58].  
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 The XRD patterns of blank and loaded PCL microspheres are given in Figure 3b. On both 

diagrams, two dominant peaks come from diffraction from (110) and (200) crystalline planes [59]. It is 

noticed a slight shift in 2θ values from 21.55° and 23.85° for the blank polymer to 21.65° and 23.95° for 

polymer loaded with SeNPs, respectively. Besides these diffraction peaks, a peak of small intensity at 

26.1° 2θ, that originates from PGA was also noticed (SI Figure 2). One can also observe that the baseline 

for the sample containing SeNPs, is slightly lifted (1.28x) in the 2θ interval 17-25°. A possible 

explanation for this phenomenon could be the presence of amorphous species in this sample i.e. SeNPs. 

The crystalline regions in polymers are usually composed of crystallites with nano-scale thickness. 

According to the Scherrer equation, the crystallite size decreased from 208 Å for blank PCL to 180 Å for 

PCL/SeNPs. Calculations were made for both peaks with excellent matching for PCL/SeNPs and slight 

inconsistency for blank PCL (for the second peak coming from (200) plane, size of crystallites was 

estimated to be 216 Å).  

The crystallinity of polymers is a very important property which often correlates with their 

mechanical properties. For biodegradable polymers, such is PCL, the crystallinity was also shown to have 

a significant influence on the degradation mechanism and rate [60,61]. DSC is a useful technique for the 

determination of polymer crystallinity based on enthalpy of polymer melting. Also, it could be used for 

assessment of interactions between a constituent of an investigated system based on the change of melting 

enthalpies and on the shift of the melting temperature. Melting of polymers is quite different compared to 

the melting of pure crystalline materials and always happens in a broader temperature interval. The 

broadness of melting endotherms could be correlated with a distribution of lamella thickness and 

imperfections of crystalline domains. Melting enthalpies of blank and loaded particles are 84.5 J/g and 

76.8 J/g (Figure 3c) which corresponds to the degree of crystallinity of 60 % and 55 %, respectively. The 

melting temperature is shifted from 64.9 °C for the blank sample to 63.6 °C for a sample containing 

SeNPs (Figure 3c). The decrease of crystallinity along with the decrease in melting temperature suggests 

that the addition of SeNPs colloidal solution during the synthesis procedure promoted the formation of the 

amorphous region and caused the slight decrease in the thickness of lamella. The confirmation of these 

results can be found in those obtained for crystallite size from XRD measurements.  
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Figure 3. Analysis of PCL/SeNPs by FTIR, XRD, and DSC. a) FTIR spectra of as-prepared SeNPs, PCL blank 

particles, and PCL/SeNPs. b) XRD spectra of blank PCL particles and PCL/SeNPs. c) DSC diagrams of PCL blank 

particles and PCL/SeNPs. 

 

3.2. Biocompatibility study 

The biocompatibility and safety of PCL/SeNPs were tested with the combination of several methods, 

namely MTT and comet assay, respectively, while the influence on the formation of reactive oxygen 

species was assessed with DCFH-DA method. The PCL is one of the synthetic polymers recognized as 

biocompatible and bioresorbable by leading world organizations such as FDA. On the other hand, as it 

was already mentioned above, besides its beneficial effects, selenium is considered as a very toxic 

material so its biomedical application is often limited and required great precautions. In our previous 

work, we reported that blank PCL particles have no toxic effects toward HepG2 cells [57]. For PCL 

particles loaded with selenium, similar results were obtained. The only difference noticed was a slight 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

drop of viability after 24-hour exposure to PCL/SeNPs; however, the decrease of cell viability compared 

to solvent control was approximately 20%, which is still considered not to be cytotoxic (ISO 10993-

5:2009). In addition, no concentration dependent reduction of cell viability was obtained. The reason for 

this effect could be the presence of SeNPs, which might affect the cell growth and division rather than 

inducing the direct cytotoxic effect. On the other hand, neither ROS formation (during 5 hour exposure) 

nor DNA strand breaks induction after 24h exposure of HepG2 cells to PCL/SeNPs was determined at 

applied conditions. Further more there is no clear concentration dependency in causing cytotoxic effects, 

increasing level of ROS or DNA damaging that will indicate a burst release or desorption of SeNPs from 

the surface of PCL microspheres.  

 

Figure 4. Biocompatibility studies of PCL/SeNPs. a) MTT assay for different concentration of PCL/SeNPs control 

(cells exposed only in growth media) and positive control (PC - etoposide 125 μg/ml); b) COMET test - 

genotoxicity of PCL/SeNPs SeNPs investigated in same concentrations and time point as in the MTT assay. As a 

positive control, benzo[a]pyrene (BaP) was used at a concentration of 30 µM. Data for the control are not included 

since there was no difference between them and those obtained for the solvent control; c) The induction of ROS 

formation after 5h exposure to a different concentration of PCL/SeNPs. The data for the control were excluded since 

there was no difference between them and those obtained for the solvent control; d) Relative fluorescence units RFU 

measured at every 30 min over 5h forPCL/SeNPs concentrations from 0 to 1. 
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The first cells to arrive at the site of implantation and infection are professional phagocytes, such as 

granulocytes and macrophages [2]. Thereby, the intracellular PCL/SeNPs could behave differently and 

induce cytotoxicity upon their internalization. Therefore, we also tested whether PCL/SeNPs can induce 

cell death of Raw 264.7 murine macrophages after 24 h in vitro. Expectedly, Raw 264.7 cells were able to 

internalize smaller PCL/SeNPs, whereas the larger ones were surrounded by Raw 264.7 cells and were 

located extracellularly (Figure 5a). Due to their surface plasmon resonance at 520 nm [62], SeNPs could 

be detected by confocal microscopy as strongly scattering nanoparticles upon 546 nm laser excitation. 

The analysis confirmed that smaller PCL/SeNPs were indeed localized within Raw 264.7 cells, as well as 

outside the cells. SeNPs were largely confined within the PCL microspheres irrespective of their 

intracellular localization. 

a)  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

b) 
0 25 50 100

0

50

100

150

g/ml

**

%
 V

ia
b

il
it
y

 

Figure 5. Interaction of PCL/SeNPs with Raw 264.7 cells. a) Raw 264.7 cells were cultivated with PCL/SeNPs (50 

μg/ml) on glass coverslips or without them (control), followed by staining with MGG (left column), or anti-

CD45/IgG Alexa 488 (green) and Syto59 nuclear stain (blue) (right column). SeNPs were detected as brightly 

scattering particles after 546nm laser excitation. Arrows point to extracellular or intracellular PCL/SeNPs. b) 

Viability of Raw 264.7 cells after PCL/SeNPs exposure was determined after 24h cultures with PCL/SeNPs (25, 50 

or 100 μg/ml). After that, the cells were harvested and the viability was determined by Tripan blue exclusion test. 

The results are shown as mean ± SD (n=3 measurements) of viability relative to control non-treated cells (100%), 

from a representative experiment out of two with similar results. **p<0.01 compared to control (0 μg/ml). 

Moreover, the viability of Raw 264.7 cell was not decreased for more than 20% after 24h cultures at the 

highest concentration used 100 μg/ml (0.01 v/v%) in these experiments, suggesting a lack of significant 

cytotoxicity for phagocytic Raw 264.7 cells (Figure 5b). These results suggested that there is no 

significant release of SeNPs from PCL within 24h, even upon the internalization. However, to confirm 

this hypothesis, more sensitive techniques should be applied to study the intracellular release of SeNPs 

from PCL. 

3.3. Degradation studies 

3.3.1. Calorimetric studies 

 Before starting our discussion, it should be emphasized that all samples were taken from the same 

batch so all of them had same starting morphology, microstructure, percent of crystallinity, and the same 

amount of SeNPs (assuming a homogeneous distribution of SeNPs). Therefore, we can conclude that the 

sample degradation rate and release of SeNPs was influenced only by the media nature. DSC diagrams of 

the samples suspended in phosphate buffer solution (PBS), PBS with lipase isolated from porcine 

pancreas and 0.1M HCl are given in Figure 6.  
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Figure 6. DSC melting curves of PCL/SeNPs taken at predetermined time intervals from different degradation 

media: a) PBS, b) PBS with lipase and c) 0.1M HCl. The time intervals were: 7, 14, 21, 36, 50, 108 and 660 days, 

respectively, from the highest to the lowest curve on each graphic. The change of crystallinity with degradation 

period for corresponding media are given as a’), b’) and c’). 
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Although DSC is not very precise and is often mistakenly considered as a technique for routine 

measurements of phase transitions, it provides useful data for interpretation of polymer structure and 

interactions based on the shape of the melting/crystallization curves. Generally, the more imperfect 

polymer crystals are and the wider distribution of lamella thickness is, the more irregular shape of the 

melting curve will be recorded (broadness of the peak, asymmetrical profile, shifting of melting point, 

etc.). If we compare diagrams obtained for each medium, we could observe the difference in shapes for 

samples taken after one week and at the end of experiments. Melting endotherms measured after one 

week were quite symmetrical, while those obtained at the end of experiments were irregularly shaped in a 

lower temperature range. This irregularity slowly evolves with degradation time in pH-neutral media 

(Figures 6a and 6b) while in the acidic medium (Figure 6c), it appears only at the end of the experiment 

and is less pronounced. The appearance of shoulders in lower temperature parts of the peaks could be 

related to the bimodal distribution of lamella thickness. The melting peak temperatures and corresponding 

heat of fusions are given in SI Table 1. It is evident that melting temperature and heat of fusion increase 

with degradation time since degradation first takes place in amorphous regions. By comparing the values 

of crystallinity slightly higher values were noticed in samples taken from PBS+lipase between 5
th
 and 15

th
 

week. The overall increase in crystallinity is almost the same for all media, about 15 % in total. 

 

3.3.2. X-ray diffraction studies 
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Figure 7. XRD patterns of PCL/SeNPs for samples taken at predetermined time intervals from different degradation 

media: (a) PBS, (b) PBS+lipase, and (c) 0.1M HCl. The time intervals were:7, 14, 21, 36, 50, 108 and 660 days 

respectively from the lowest to the highest diffractogram on each graphic. The change of crystallite size with time 

for corresponding media is given as a’, b’ and c’. The calculation was done for both crystalline planes (110) and 

(200). 
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 Compared to Figure 3b, the first notable change in all XRD patterns (Figure 7 a-c) is a 

disappearance of PGA diffraction peak which is probably due to PGA desorption from PCL surface 

during the degradation process. The stabilization effects of PGA on the PCL surface were previously 

determined in a similar system [54]. However, the interaction between these two polymers seems to be 

insufficient to overcome PGA desorption due to hydrophilic interactions with water. The second 

conclusion based on observation of all XRD patterns is that there is no formation of new crystalline 

phases or a significant change in crystallinity during the degradation period. As shown by Pinto et.al. 

[63], amorphous selenium spontaneously crystallizes during storage at room temperature. However, this 

behavior is not observed in our system presumably because a stabilization effect of BSA is preserved in 

hydrophobic PCL environment. In order to closer investigate changes in the crystalline structure of PCL, 

the Scherrer equation was employed and results for crystallite size are presented in Figure 7. Calculations 

were made for both peaks present in XRD patterns ((110) and (200)). The use of this equation is still a 

primary technique for gaining insight into a lamellar thickness in polymer crystallites. On the other side, 

polymer crystallites often display a relatively large number of defects. This can lead to broadening of 

diffraction peak and further diminish the accuracy of obtained results. As already mentioned, if we 

consider that all starting parameters for samples are equal, we can determine relative change of crystallite 

size with degradation time. Crystallite sizes obtained from (200) plane reflections are generally lower by 

20-40 Å than those calculated from 110 plane reflections, however, they both change with degradation 

time in a similar manner. The exception is noticed only for PBS medium where changes in crystallite size 

during the first 5 weeks are opposite. Major changes in crystallite size occurred between 2
nd

-7
th
 weeks for 

all media, and afterwards monotonously increased to reach their final values. The overall change in 

crystallite size calculated from the first peak was 209-230 Å, 215-223 Å and 213-228 Å for samples taken 

from PBS, PBS with lipase and HCl respectively. For the second peak, the crystallite size of samples 

taken after one week is much closer to the values obtained initial samples. The overall change in the 

crystallite size goes from 187 Å to 202 Å in the case of PBS as degradation medium, from 170 Å to180 Å 

in the case of PBS with lipase, and for the acidic medium, one can even notice a small drop in crystallite 

size from 189 Å to184 Å. Although there is a small inconsistency between the change of crystallite size 

calculated from different peaks, we can reach the following conclusions. Broadening of diffraction peaks 

happened between 14 and 50 days. This broadening is most pronounced for the sample suspended in an 

acidic medium for 5 weeks. As degradation continued, peaks narrowed, and at the end of the experiment 

size of crystallites increased on average 5-10%. Castilla-Cortázar et al. reported similar results for PCL 

networks during degradation in medium with Pseudomonas lipase [59]. Conversely, in the same study, it 

is observed a constant decrease of crystallite size in PBS.   
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3.3.3. Degradability potential of P. aeruginosa PAO1 CFE toward PCL and PCL/SeNPs 

 In order to examine the influence of P. aeruginosa PAO1 CFE on the degradation of PCL, 

experiments on agar plates were conducted. Zone of clearance around wells in the agar plate indicates the 

enzymatic degradability of the PCL polymer (Figure 8a.). In case of the CFE of culture grown on olive oil 

used as carbon source, a greater clearance zone was obtained (radius 10.5 mm) compared to the case 

when glucose was carbon source because higher esterase titer was induced under these growth conditions.  

 

Figure 8. a) Zone of clearance around wells in the agar plate as an indication of the enzymatic degradability of the 

PCL polymer. b) DSC heating curves of PCL/SeNPs as a function of time of the degradation in PBS with P. 

aeruginosa CFE c) Crystallinity grade analysis by DSC of the samples as a function of time of the degradation in 

PBS with P. aeruginosa PAO1 CFE. 
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 The change of melting endotherms of PCL/SeNPs with degradation time is most clearly notable 

for the medium which contains P. aeruginosa PAO1 CFE (Figure 8). The evolution of shoulder in the 

lower temperature segment of the peak was visible even after 7 days of degradation, while in the media 

which simulate physiological conditions this phenomenon was prominent only for the samples taken after 

108 and 660 days from degradation media. The overall increase in melting peak temperatures was 2.6 °C, 

which is comparable with experimental results for previous media, but with about 2 °C lower 

temperatures (SI Table 2). When it comes to crystallinity degree, the value obtained for the sample taken 

after one day was 53 % and afterward increased to 68% or 15% in total. These results are in a good 

agreement with those obtained for the first three media. Based on the DSC measurements, degradation 

effects such as an increase in crystallinity and bimodal distribution of lamellar thickness were achieved in 

the medium which contained P. aeruginosa PAO1 CFE after 3 weeks, while same effects were noticed in 

the first three media only after 660 days of degradation.  

 

3.4 In vitro release behavior of SeNPs from PCL microspheres 

 The release of versatile drugs from PCL microspheres have been thoroughly investigated in the 

past. Details of these studies are summarized in a few excellent review papers [32–34]. Diffusion of drugs 

from the microsphere matrix is recognized as a dominant mechanism of drug release from PCL [34]. For 

this reason, drug distribution within polymer microspheres has a significant influence on the drug 

diffusion rate. For instance, drug molecules distributed closer to the microsphere surface diffuse out faster 

from the polymer matrix. Encapsulation of a hydrophilic drug within a hydrophobic polymer, such is 

PCL, usually results in drug molecules distributed closer to the polymer surface [64]. 

 Another important aspect in drug release is degradation medium. Accelerated degradation could 

be achieved using an acidic/basic medium, or medium with adequate enzymes, which would enhance the 

hydrolysis of polyesters and better mimic physiological conditions than temperature degradation, for 

instance. The surrounding conditions, such as neutral or low pH, had different effects on SeNPs release 

during the degradation period in such manner that acidic environment inhibited SeNPs release (Figure 9.). 

To the best of our knowledge, such behavior has not been reported so far in the literature. A possible 

explanation for this phenomenon is related to BSA conformation under the acidic conditions. Generally, a 

low pH causes unfolding of the BSA molecule. These conformational changes can further prevent 

passage of BSA with SeNPs through diffusion channels and release from the polymer matrix. Suppression 

of BSA release in the acidic environment was already shown with PLGA microparticles [65]. As 

expected, the presence of porcine pancreas lipase accelerated SeNPs release, but not in significant 
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amount, from 2 to 8 %. On the other hand, a two-fold increase in SeNPs release was noticed in 

Pseudomonas extract after only 24 h and proceeded to its maximum value of around 30 % after 7 days. 

During the following two weeks, the concentration of SeNPs in supernatant did not increase further. On 

the opposite, a small drop in SeNPs concentration was noticed, probably due to SeNPs adsorption on the 

polymer surface. Lipase isolated from Pseudomonas are well known for their ability to significantly 

accelerate the degradation of PCL [66,67]. For the first time in this work, a CFE, instead of a single 

isolated enzyme was used to better mimic the bacterial environment. Enzymatic biodegradation occurs 

mainly on the surface because it is difficult for these high molecular weight molecules to diffuse into a 

hydrophobic polymer. A reasonable explanation for the existence of the release profile plateau in Figure 

9b is that all of the released SeNPs originate from regions that are amorphous and close to microsphere 

surface, which allows them to diffuse out faster from the polymer matrix. Conversely, the remaining 

amount of SeNPs (around 70 %) is deeply incorporated and located closer to crystalline phases. In order 

to release the remaining amount of SeNPs degradation process had to reach its final stage, i.e. breaking 

the polymer chains to soluble oligomers. Another possible explanation could be that some amount of 

SeNPs coated with BSA formed agglomerates which are not capable to diffuse out from the polymer 

matrix. 

 Bearing in mind results obtained from DSC and XRD measurements some correlations can be 

made regarding SeNPs release in different degradation media. Degradation processes such as the 

formation of diffusion channels probably produce some crystallite defects which further cause alteration 

of FWHM on XRD patterns. On the other hand, DSC technique is not sensitive enough to detect those 

initial degradation changes but it is still useful for detecting the change in crystallite size distribution as an 

evidence of advanced degradation when diffusion channels are well formed. In addition, the higher values 

of crystallinity noticed between 5
th
 and 15

th
 weeks in the medium PBS+lipase, as a consequence of higher 

degradation rate of amorphous regions, resulted in an increase in SeNPs release.  
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Figure 9. The release of SeNPs from different degradation media. a) Parallel view of release from PBS and PBS 

with lipase; b) Release from a medium which contains P. aeruginosa PAO1 CFE. For better comparison, the same 

scale was used for "y" axes in both graphics. 

 

3.5. The release of SeNPs in implant fluid (exudate) 

The release of SeNP from PCL was measured in implant fluid (exudate) extracted from the 

subcutaneously implanted polyvinyl sponges which induce a sterile inflammation as a part of foreign 

body reaction, as we described previously [46]. After 11 days of incubation of PCL/SeNPs at 0.5mg / ml 

of exudate, ICP-OES analysis showed that 37% of SeNPs have been released. This level is comparable to 

the values obtained in the medium with Pseudomonas aeruginosa bacterial extract where the 

concentration of SeNPs reached a maximum value of around 30 % after seven days. 

To test the release of SeNPs in vivo, 4 mg of PCL/SeNPs were injected in the sponges implanted 

subcutaneously into rats, followed by the extraction of sponges after 3 hours, 4 days or 11 days from the 

animals. At 3h time point, the total concentration of Se detected by ICP-OES analysis was shown to be 

9%., and the presence of brightly scattering particles sized around 1-4 µm (PCL/SeNPs) was also detected 

by confocal microscopy within the infiltrating CD45
+
 cells or extracellularly (SI Figure 3).  

The levels of total Se (released or contained within PCL) were undetectable in the extracted sponges after 

4 and 11 days post injection. These results suggest that the PCL/SeNPs were not contained within the 

sponges, and where probably distributed by lymphatics throughout the body. Therefore, to better study 

the release of SeNPs from PCL in vivo, a kind of scaffold biomaterial would be a better model than the 

porous polyvinyl sponges, so additional investigations are required to resolve the dynamics of SeNPs 

release form PCL microspheres in vivo.  
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3.6. Antibacterial activity 

 Although SeNPs are not recognized as a strong antibacterial agent, an increased scientific interest 

on this topic was noticed in the last several years. One of the main reasons for this growing interest are 

findings that elemental nano-Se expresses lower toxicity compared to other Se compounds and that this 

microelement is normally present in our bodies and very important for our health compared to other 

popular antimicrobial agents, such as Ag. Results of antibacterial activity of SeNPs as well as for 

PCL/SeNPs are presented in Figure 10. Minimum inhibitory concentration (MIC) is defined as the lowest 

concentration of a compound at which a microorganism does not demonstrate any visible growth. One 

can see that the SeNPs antibacterial effect against Staphylococcus aureus was twice stronger compared to 

that against Staphylococcus epidermidis. These results are similar to those obtained by other authors 

[21,68] and show that SeNPs have a good potential for the prevention of infections caused by investigated 

bacterial strains. Results of this study (Fig. 10) also provided evidence of a considerable antibacterial 

activity against both bacterial strains, in the presence of PCL/SeNPs as well. This probably can be 

explained also due to the fact that the PGA used for the stabilization of the PCL/SeNPs also has 

antimicrobial properties since it is a polyelectrolyte. The potent bactericidal activity of polyelectrolytes 

could be explained by their strong interaction with the charged cell membrane of bacteria [69]. 

Furthermore, in our study, the antibacterial activity of SeNPs is achieved with 125 and 250 μg (Figure 10) 

which further mean that 133 mg and 265 mg of PCL/SeNPs powder could be sufficient to prevent 

bacterial growth. 
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Figure 10. Minimum inhibitory concentrations of SeNPs and PCL/SeNPs against two bacterial strains 

Staphylococcus aureus and Staphylococcus epidermidis 

 

4. CONCLUSION 

 From the application aspect, degradation of biodegradable polymers and release of active 

components are one of the most important properties of polymer-based drug delivery systems. Unique 

PCL microparticles with incorporated selenium nanoparticles (PCL/SeNPs) were developed aiming to 

prevent infections on implants. Regarding the SeNPs release from PCL microspheres, encapsulation 

process and choice of stabilizing agent, i.e. BSA, have shown to be crucial parameters. As a consequence, 

release in an acidic environment is completely retarded while in pH neutral surrounding occurred at very 

low rates (3 and 8% in the case of PBS or PBS+lipase respectively). When Pseudomonas aeruginosa CFE 

in PBS was used as a degradation medium, significant increase of degradation and release were observed 

after one day only (13%). Although different coating materials have been developed so far, according to 

our knowledge they do not offer such slow and prolonged release of the antimicrobial agent in 

physiological conditions and fast release in adequate bacterial surroundings and during the foreign body 

reaction to implant. It was confirmed that SeNPs, as well as PCL/SeNPs, were effective in inhibiting 

Staphylococcus aureus and Staphylococcus epidermidis, the main causes of infections in orthopedics. 
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Also, it was found that particles possessed good biocompatibility since they showed no cytotoxicity, a 

low potential for ROS generation and a low genotoxicity potential. All these results imply that these 

designed particles could be a highly attractive and efficient platform for preventing infection on implants. 
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Highlights 

 Innovative PCL microspheres with incorporated SeNPs were synthesized. 

 The degradation and release processes were investigated in five different media. 

 The release is triggered in the bacterial environment as well as by foreign body 

inflammatory reaction to implant.  

 PCL/SeNPs can be considered as biocompatible. 

 Considerable antibacterial activity against S. aureus and S. epidermidis was exhibited. 
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