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Highlights 

 

 Adipose derived mesenchymal stem cells transplantation contributed positively to 

the clinical improvement  

 The percutaneous electromyography response during loading on hind limb showed 

voluntary contraction improvements 30 and 60 days after the experiments  

 The low-intensity electrical stimulation, stem cell therapy, and both therapies 

together, showed positive effects in the patients, but without statistical differences 

between them 

 The therapies also showed positive results in chronic patients  

 
Introduction. The application of low-intensity electrical stimulation (LIES) to neural tissue 

increases neurochemical factors responsible for regeneration as nerve growth factor. Stem cell 

(SC) therapy for patients with Spinal cord injury (SCI) promote some increase functional 

improvement. Objective. Investigate the electromyographic response in paraplegic dogs 
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undergoing LIES and SC transplantation. Methods. 27 dogs paraplegics with SCI were divided 

into three groups with different types of therapy. GADSC: two SC transplants (n=9); GLIES: LIES 

(n=8); GCOMB: two SC transplants and LIES (n=10). Adipose derived mesenchymal stem cells 

(ADSCs) were transplanted by lumbar puncture in the amount of 1.2x106 cells/50µL. 

Acupuncture needles positioned in the interspinous space were used for stimulation. The 

electrical stimulation was applied with a mean voltage ~30 mV and four consecutive modulated 

frequencies (5Hz, 10Hz, 15Hz and 20Hz) within 5 minutes each. The patients motor performance 

was evaluated before (Pre) the procedure and after 30 (Post30) and 60 (Post60) days, from 

electromyography root mean square (EMGRMS) registered with subcutaneous electrodes in the 

vastus lateralis muscle, while the animals were in quadrupedal position. Results. All three groups 

showed a significant intra-group increase of EMGRMS (Pre vs. Post30 or Pre vs. Post60). However, 

there were no statistically significant differences between Post30 and Post60. The inter-group test 

(GADSC X GLIES X GCOMB) did not present significance when compared the instants Pre (p = 0.34), 

Post30 (p = 0.78) and Post60 (p = 0.64). Conclusion. Some dogs recovered motor activity, 

expressed by the EMGRMS, in all groups, in pre vs. post (30 or 60 days) comparisons. 

 

 

Key words: Electrotherapy, Neural Rehabilitation, Spinal Cord Injury, Adipose derived 

Mesenchymal Stem Cells. 

 

 

 

 

 

Introduction 

 

Spinal cord injury (SCI) is classified as a neurological disorder that affects motor and 

sensory functions below the injury level, causes various degrees of deterioration and functional 

loss to the axons of the spine and their downstream targets [20]. There are several 

methodologies that can be used as assistive and/or therapeutic approaches after spinal cord 

injuries, such as functional electrical stimulation, robot-assisted training, epidural stimulation 

and intraspinal microstimulation [10]. A recent study of Donati et al. [16] showed that intensive 

training leads to partial recovery of functions below the lesion level and improvements from 

level A to C on ASIA scale; however, it is more likely that initial classification of patients is 

inaccurate in most cases when assessed immediately after injury, and after a period of initial 

care, because intensive training allows patients to reach maximal potential of the remaining 

functions. Recently, Capogrosso et al. [8] tested a brain–spine interface in monkeys, as a bypass 

on a lesion, with promising but incipient results. 

One interesting finding of regenerative medicine is the applicability of stem cells (SC) 

in different human and animal tissues. Stem cells are defined as cells that have the capacity of 
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self-renewal as well the differentiation capacity in several lineages of cells [19, 34]. 

Mesenchymal stem cells (MSCs) are adult stem cells and have the advantage of easy isolation, 

expansion and low antigenicity, which allow the use of allogeneic MSCs [7]. The mechanisms 

through which this type of cell therapy achieves neurological recovery have not yet been fully 

understood. After MSC transplantation, various repair processes take place, including the 

release of neurotrophic factors by the cells [40], reduction of neuroinflammation [23], or the 

activation of endogenous mechanisms of the spinal cord, able to partially restore neurological 

functions previously abolished [46]. 

Low-intensity electrical stimulation (LIES) uses current intensities around 0.5-1mA and 

voltage amplitudes around 3-5V, that do not activate motor nerves. Since 1982 the LIES has 

been tested as an adjuvant to peripheral nerve regeneration [1] and could effectively improve 

the speed and accuracy of nerve regeneration after peripheral nerve injury [52]. Controversially, 

electrical stimulation with high voltage pulses can retard the effective nerve growth [53]. 

Studies like those from Franz et al. [21] have demonstrated that electrical stimulation applied 

for 1 hour to transected peripheral nerves accelerates the reinnervation of distal target tissues 

like muscles. 

Despite the positive results obtained in experimental models using a variety of animal 

species and significant recent advances in cell transplantation, the development of effective 

strategies to treat chronic spinal cord injuries remains a major clinical challenge [28]. In order 

to solve this challenge, the aim of this study was to evaluate the effects of treatment with low-

intensity electrical stimulation and/or ADSCs (Adipose-derived stem cells) transplantation in 

paraplegic dogs. Our hypothesis is that both types of therapies would lead to some motor 

recovery, but combined treatment with low-intensity electrical stimulation and ADSCs 

transplantations would result in highest recovery rates. 
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Methods and materials 

 

Participants 

This work was approved by Animal Ethics Committee of Technological Federal 

University - Paraná according to the protocol number 2015 – 016. The animal care and all 

operative procedures were performed according to animal care and safety guidelines. The dog 

proprietors signed the informed consent. The study included 33 dogs with spinal cord injury 

(Table 1). Inclusive criterion was adult paraplegic dogs. Exclusive criteria were tetraplegia, the 

presence of infections, absence of quadricipital reflex, the presence of voluntary contraction or 

treatment not finalized. After the experimental procedures, both hind limbs (right and left) were 

included in the evaluation analysis. Four dogs were excluded due to the presence of voluntary 

contractions (N=4), and two dogs did not conclude the experiments (N=2). We included twenty-

seven adult dogs paraplegics aged between two and seven years with a history of chronic 

thoracolumbar spinal cord injury (between six months and two years), without concomitant 

disease. They were subjected to clinical evaluations to determine the severity of the lesion as 

described in [43].The included participants (N=27) were randomly divided into three groups: 

ADSC  two stem cells transplants, with an interval of one week (N=9), LIES - low-intensity 

electrical stimulation (N=8) and COMB – two stem cells transplants, with an interval of one 

week, plus low-intensity electrical stimulation (N=10). 

 

Research design 

 

Figure 1 illustrates the research design. The sequence of experiments was:  

 First day: the first electromyography assessments (Pre);  
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 One week after first evaluation: the experimental treatment was applied (ADSC, 

LIES or COMB) twice with one week of interval between them;  

 One month after injury: the second electromyography assessments (Post30);  

 Two months after injury: the third electromyography assessments (Post60). 

 

Figure 1 

Electromyography acquisition 

 

The equipment used for the signal acquisition was purchased and calibrated by EMG 

System do Brasil Ltda®, model 430C. The amplification was 2000, and sampling frequency 

was 1 kHz. The pair of bipolar EMG electrodes (disposable acupuncture sterilized needle type, 

stainless steel, 0.25 x 30mm - DongBang®), connected with alligator clamps, were inserted 

subcutaneously (not intramuscular) in the vastus lateralis muscle. On the lateral aspect of the 

thigh in the craniocaudal direction are the muscles: sartorius (fine and long); tensor of the fascia 

lata (triangular shape); vastus lateralis (covered by fascia lata) and femoral biceps. The vastus 

lateralis and femoral biceps muscles are the most voluminous and it is possible to identify a 

mild depression in non-obese animals. Another way to differentiate them is that only the vastus 

lateralis muscle is inserted in the greater trochanter of the femur, an easily palpable bone 

eminence, even in obese animals.  

 

The reference electrode was positioned subcutaneously in the region of the spinous 

process of the fourth lumbar vertebrae. The acquisition was initiated while the animals were 

supported by a technician in quadrupedal position. After that, the animal was raised by the 

animal's front limbs to get loading (in total ~10s) on the hind limbs. 

 

Signal processing 
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The signal processing was performed by a customized routine in MatLab® 

(MathWorks, Inc, version 2013). The signals during the assisted bipedal position, 2s (in the 

middle of 10s) were used for EMG analysis. The EMG signals were filtered using a 3rd order 

Butterworth band-pass filter (20-450 Hz) with notch filters on power line harmonics (60, 120, 

180, 240, 300, 360 and 420 Hz). The root mean square (EMGRMS) was calculated.  

 

Anesthetic and surgical procedure 

 

The surgery procedure was accomplished in PUCPR Veterinary Hospital, Curitiba - 

Brazil. As premedication, first, the fentanyl (2 µg/kg) and ketamine (1 mg/kg), and after that 

propofol bolus (5 mg/kg), were administered intravenously. The anesthesia was maintained 

with isoflurane inhalation and fentanyl (0.1 µg/kg/min). Wide trichotomy was performed in the 

dorsal region, followed by antisepsis with polyvinylpyrrolidone. With the patient positioned on 

the ventral side, the ADSCs transplantation was performed in epidural space according to the 

technique described by Dewey [15]. 

 

Postoperative care 

 

The patient remained under observation for 72 hours in the semi-intensive care unit of 

the PUCPR veterinary hospital. During five days, the patient received analgesia with tramadol 

(2mg/kg/bid) and Dipyrone (25 mg/kg/bid) subcutaneously. Antibiotic prophylaxis was 

performed by subcutaneous injection of enrofloxacin (5 mg/kg/bid) during seven days. The 

dogs’ owners received instructions for the rest of the period, as well as for the monitoring of 

urinary function and mild physical activities. 
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Adipose derived stem cells and cell transplantation 

 

Adipose derived stem cells (n=3) were isolated using enzymatic dissociation [56]. 

Briefly, after consent of the dog owners, part of the omentum was removed, to serve as a source 

of adipose tissue, the material was collected during elective ovariohysterectomy surgery. The 

omentum, was cut into small pieces and washed with sterile phosphate-buffered saline (PBS) 

(Gibco, Grand Island, NY, USA). The dissociation step was performed with 1 mg/mL 

collagenase type I (Gibco, Grand Island, NY, USA), for 30 minutes, at 37°C, under permanent 

shaking, followed by filtration through a 100 μm mesh filter (BD Biosciences Discovery 

Labware, Bedford, MA, USA). Cell suspension was centrifuged at 800 g for 10 minutes, and 

contaminating erythrocytes were removed with cell lysis buffer. Cells were then washed, 

counted and 1x105 cells/cm2 were seeded in 75 cm2 culture flasks in Dulbecco’s Modified 

Eagle’s Medium (DMEM-F12) medium (Gibco, Grand Island, NY, USA), supplemented with 

10% of fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA ), penicillin (100 units/mL, 

Sigma-Aldrich, Saint Louis, MO, USA) and streptomycin (100 μg/mL, Sigma-Aldrich, Saint 

Louis, MO, USA). Cells were kept at 37°C in a 5% CO2 atmosphere and the medium was 

changed after two days. Culture medium was then replaced twice-a-week. ADSC were 

cultivated until cells reached 80%-90% confluence; then cells were detached with 0.25% 

trypsin/EDTA (Gibco, Grand Island, NY, USA) and were seeded as passage-1 cells. The cells 

were expanded until the desired cell numbers were obtained for transplantation. 

The characterization of cells was established by the potential of cell differentiation and 

the expression of cell-surface antigen profile. ADSC were assessed for their potency by 

inducing their differentiation into adipocytes, osteoblasts and chondrocytes. ADSC were seeded 

on glass coverslips in twenty-four wells plates (Sarstedt, Newton, USA) to evaluate adipogenic 
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and osteogenic differentiation. Commercial differentiation media (GibcoTM Invitrogen, NY, 

USA) was used during 21 days. ADSC were stained with Oil Red O to analyze adipogenic 

induction and with Alizarin Red S for osteogenic differentiation. In chondrogenic 

differentiation assays, the cells were cultivated in three-dimensional conformation and stained 

with Toluidine Blue [30].  

In order to determine cell-surface antigen profile, ADSCs were labelled with antibodies 

against several dog proteins to analyse cell-surface expression of typical marker proteins: CD29 

PE (canidae reactivity – Abcam - Cambridge, United Kingdom), CD44 Alexa fluor 488 (dog 

reactivity – AbD Serotec - Bio-Rad, Hercules, CA, USA), CD90 PE (human reactivity – BD 

Pharmingen - San Jose, CA, USA), CD45 FITC (canidae reactivity – eBioscience - Thermo 

Fisher, San Diego, CA, USA), CD34 PE (canidae reactivity – eBioscience - Thermo Fisher, 

San Diego, CA, USA) and CD14 APC (human reactivity – BD Pharmingen - San Jose, CA, 

USA ). For cell viability and apoptosis cells were labeled with 7-aminoactinomycin D dye (7-

AAD) and annexin V, respectively. Cells were washed with PBS, and incubated in the dark for 

30 min at room temperature with the respective antibody. Cells were then washed with PBS 

and resuspended in 500 µL of 1% formaldehyde solution. Mouse isotype IgG1 antibodies were 

employed as controls (BD Pharmingen - San Jose, CA, USA). Approximately 100,000 labeled 

cells were passed through a FACS Calibur flow cytometer (Becton Dickinson, Franklin Lakes, 

NJ, USA) and were analyzed by FlowJo software (Flowjo, Ashland, Oregon, USA). 

The cells were transplanted into spinal cord by lumbar puncture in the space (L7–S1) in 

the amount of 1 x 107 [31, 35, 41] cells/50µL, with a volume rate of 10µL/min. The needle was 

maintained for five minutes to avoid any reflux [39]. 

 

Electrical stimulation therapy  
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The low-intensity electrical stimulation was applied on sub sensorial (~500 µA) level 

with rectangular waves. The acupuncture needle type electrodes (disposable acupuncture 

sterilized needle type, stainless steel, 0.25 x 10 mm - DongBang®), connected with alligator 

clamps were used subcutaneously to lower the tissue impedance to less than 1 kΩ [5] with high 

current density. They were positioned in the interspinal space, above (anode) and below 

(cathode) the lesion level. The mean voltage applied was ~30 mV, and the burst frequency was 

modulated from 5 to 20 Hz. The carrier frequency was ~1.3 kHz with ~200 µs pulse width. 

Each modulated frequency was applied during 5 minutes in the following order: 5 Hz, 10 Hz, 

15 Hz and 20 Hz (20 min total application period) with approximately 15% duty cycle, where 

first 14% consisted of standard pulse polarity followed by 1% of reverse polarity to prevent 

charge build-up and possible biochemical changes of the tissue during treatment [38]. 

Statistical analysis 

 

For statistical analysis, a custom routine was developed the MatLab® software 

(MathWorks R2012b), applying: (1) Shapiro-Wilk test, to confirm that the data do not have a 

Gaussian distribution; (2) Friedman test for intra-group comparison (Pre vs. Post30, Pre vs. 

Post60 and Post30 vs. Post60) and consequent posthoc Bonferroni (multcompare in MatLab®); (3) 

Kruskal-Wallis test inter-group (SC vs. ES vs. SCES) at the Pre, Post30 and Post60 instants; (4) 

Effect size (d) was calculated for the results in the groups that showed statistical difference. 

 

Results 

 

Cell viability and apoptosis average using 7-AAD and annexin V dual staining were 

98.44% and 1.58% respectively, demonstrating that cells were viable before transplantation 

(Figure 2).  
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Figure 2 

 

Differentiation into adipocyte lineage was demonstrated by staining with Oil Red O and 

it was observed large, rounded cells with cytoplasmic lipid-rich vacuoles. Mineralization of the 

extracellular matrix in osteogenic differentiation was observed by Alizarin Red S staining. In 

chondrogenic differentiation assays, high-density micromass ADSC cultures generated cellular 

nodules, which produced large amounts of cartilage-related extra-cellular matrix molecules like 

collagen. Paraffin sections of the aggregates stained with toluidine blue showed a cartilaginous 

extracellular matrix stained in purple (metachromasia) while undifferentiated or fibrous tissue 

stained in blue. Untreated control cultures, which were growing in regular medium without 

adipogenic, osteogenic or chondrogenic differentiation stimuli, did not exhibit spontaneous 

adipocyte, osteoblast or chondrocyte formation after 21 days of cultivation (Figure 3). 

 

Figure 3 

 

The expression of the surface antigens in the ADSCs was evaluated by flow cytometry 

and the following results were obtained: CD29 (99.8%), CD44 (68.8%), CD90 (3.81%), CD45 

(6.9%), CD34 (4.84%), CD14 (0.079%) (Figure 4). 

 

 Figure 4 

 

The statistical results calculated from EMG signals is demonstrated in Figure 5. The 

Shapiro-Wilk test showed that none of the data groups followed the Gaussian distribution. The 

Friedman test showed p < 0.01 for all groups (GADSC, GLIES, GCOMB). All three groups had a 
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significant increase of EMGRMS after the application of the therapies (Pre vs. Post30 or Pre vs. 

Post60). However, there were no statistically significant differences between Post30 and Post60. 

The inter-group test of Kruskal-Wallis (GADSC X GLIES X GCOMB) did not show statistical 

significance in any of the instants Pre (p = 0.34), Post30 (p = 0.78) and Post60 (p = 0.64). 

 

Figure 5 

 

Discussion  

 

The aim of this study was to evaluate the effects of treatment with low-intensity 

electrical stimulation and/or stem cells in paraplegic dogs. We evaluated the motor response of 

vastus lateralis muscle by EMG recordings during loading on the hind limbs, and dogs from 

three test groups exhibited motor improvements confirmed by EMG recordings (“I” and “N” 

motor responses showed in Table 1); however, in contrary to our expectations, the combined 

therapy group, SCES, was not superior to the ES or ST groups. 

 

Adipose derived stem cell group 

 

Our hypothesis was that ADSC promotes the axon growth in the injured spinal cord 

contributing to the restoration of the function [50]. Stem cell transplantation may lead to axon 

remyelination and reconnection of the neural pathway [45]. In our study, the ADSC were 

administered by lumbar puncture, in contrary to Bakshi et al. [3] who showed that most 

experiments in animals had been performed by injecting cells directly into the injured 

parenchyma. This invasive technique compromises the injured spinal cord, although it delivers 
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cells into the friendly environment of the acutely injured cord. Also, lumbar puncture more 

efficiently distributes the stem cells in the injured spinal cord compared to the intravenous route. 

As mesenchymal stem cells transplantation should increase the nerve fiber count and 

accelerate the functional recovery in the peripheral nervous system [13], it may have been 

responsible for the increase in EMGRMS after the therapy, consequently improving the motor 

response. The mesenchymal stem cell transplantation is more effective in acute stages and sub-

acute tissue injury, and in later stages often does not show functional benefits [49]; however, in 

our study, positive results emerged in a chronic patient, Pt3 (table 1) with 3 years of lesion, but 

with cause of injure not conclusive, that can beneficiated this improvement. 

In this study, with the use of allogeneic stem cell, there was a slight improvement in motor 

function. This is in accordance with results observed by Azari et al. [18], Pal et al. [39], 

Rodrigues [44], Carvalho [9] and Kaminski [32] with autologous cells. 

We presume that ADSC transplantation contributed positively to the clinical improvement. 

This effect is possible due to the paracrine effect that stem cells can perform on the site of 

injury, the release of bioactive molecules that mediate proliferation and the homing of 

endogenous stem cells at the injury site [14, 25, 39]. In this study, we showed improvement in 

the motor recovery in early stage (30 days) after transplantation. This result corroborates the 

previous studies of Cho et al. [12], showing that paracrine action has the main contribution in 

this therapeutic modality. 

 

Low-intensity electrical stimulation group 

 

The application of LIES accelerates the axonal regeneration and improves the specificity 

of sensory reinnervation [6, 21, 47]. The use of low-intensity electrical stimulation accelerates 

the tissue regeneration mainly due to the increasing concentration of adenosine triphosphate 

ACCEPTED M
ANUSCRIP

T



molecules (~500%)  [37]. The current intensity was less than 1mA, although there is no standard 

for these parameters [37]. Only 2 hours of LIES with a current of 10µA applied to neural 

proteins in culture, provides organelles’ movement and a discreet stretching of structures [33]. 

Related to nervous systems, it is known that LIES induces neuron growing and elongation in 

the direction of the cathode (negative pole) [4, 42].  

Borgens and Bohnert [4] evaluated the regeneration for a month with the electrical 

stimulator and electrodes implanted on the spinal cord of adult pigs. The cathode was positioned 

above the level of the injury, with an amplitude of 0.4mV/mm (extremely low-intensity) and 

continuous current with intensity of 45µA. At the end of two months, there was no significant 

improvement in the experimental group. Maybe the negative results of Borgens and Bohnert 

[4] were due to the continuous application and extremely low-intensity. In our study, we applied 

just 40 min of LIES (divided in two days) because brief trans-vertebral electrical stimulation 

accelerates the reinnervation of damaged femoral nerve [21] better than longer stimulation 

periods. 

Han et al. [27] stated that one month after a lesion in sciatic nerve of a rat the LIES fails 

due to distal fibrosis. However, Elzinga et al. [17] found significant improvements using the 

same frequency as Han et al. [27] (20Hz) in femoral nerves of rats 3 months after lesion. In our 

study, the time from injury for different participants varied from 2 months to 8 years, although, 

subjects with the shorter time from injury, as Pt 17 (4 months) did not show improvements, and 

subjects as Pt3 (3 years) showed improvements. Moreover, our participants did not undergo 

any surgical procedure to remove the astrocytic scar because modern theories say that the 

astrocytic scar is important to promote the axonal regrowth [51]. 

Our protocol applied the LIES subcutaneously with needles to reach the central nerve 

systems (spinal cord) on the dorsal side. The presence of several layers of tissue between needle 

electrodes and spinal cord can reduce the effects of already very low-intensity stimulation. 
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However, if the needles are positioned near the dorsal rami of spinal nerves [48], they can lead 

electrical stimuli to spinal cord because of much greater electrical conductivity (1.2 S/m) than 

other neighboring tissues, e.g. muscles (0.175 S/m) [22]. 

The electroacupuncture is usually applied via needle electrodes at meridian points. 

Zhang et al. [55] evaluated the locomotor recovery of SCI rats who had been treated with 

electroacupuncture. The acupoints were proximal (posterior region of the neck) and distal (leg) 

to the lesion level (T10). They found that LIES improved the locomotor recovery by inhibiting 

the activation of astrocytes and microglia, and apoptosis. With a similar electroacupuncture 

protocol on SCI rats, Chen and Wu [11] applied (during 30 min) a constant ES with 2 Hz 

frequency and 0.2 mA intensity, 2 and 8 hours after the surgical injury. The authors found a 

significant decrease on neural apoptosis through inhibition of P38 mitogen-activated protein 

kinases. These results are corroborated with our data, indicating that neuroprotective effects 

may allow the patient recovery (through neuroplasticity) and can be registered by techniques 

as electromyography. 

 

Combined therapies group 

 

Huang et al. [29] suggest that stem cell therapy combined with stimulation techniques, 

such as deep brain stimulation, functional electrical stimulation, transcranial magnetic 

stimulation or electroacupuncture, may be a promising non-pharmaceutic approach for recovery 

of the central nervous system. In this sense, Yamada et al. [53] proved that embryonic stem 

cells, when electrically stimulated, initiate mechanisms of differentiation. 

In our study, the COMB group that used combined therapy did not achieve better 

recovery than other groups, although it showed positive results. Moreover, our results may be 

associated with the importance of LIES for ADSC differentiation [24]. Liu [36] showed similar 
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results in patients with multiple sclerosis. They combined ES with transplantation of bone 

marrow mesenchymal stem cells (BM-MSC), and the results showed increased not only BM-

MSC differentiation but also the promoted myelin repair. Gu et al. [26] proved that low-

frequency (~20 Hz) ES promoted proliferation and contributed to the differentiation of blood 

stem cells in Schwann cells. 

Ashour et al. [2] reported very promising results evaluation both techniques, LIES and 

stem cells transplantation, on repair of sciatic nerve crush injury in rats. They showed that both, 

LIES or stem cells, accelerate and promote the functional nerve regeneration in a period of 8 

weeks. They analyzed the nerve conduction velocity (mm/s), showing that stem cells 

transplantation group (34.87 ± 1.3 mm/s) and LIES group (34.96 ± 1.29 mm/s) had a 

significantly higher nerve conduction velocity than SCI control group (26.71 ± 1.3 mm/s) [2]. 

As in our results, Ashour et al. [2] proved that stem cells and LIES groups showed EMG 

improvements, without demonstrating a superiority of one technique over another.  

Hybrid therapies with stem cell showed positive results. Yan et al. [54] investigated the 

effect of electroacupuncture on the differentiation of mesenchymal stem cells of nerve fibers in 

mice (N=20). Mice were separated into four groups (N= 5 each), (1) control, (2) 

electroacupuncture, (3) stem cells and (4) electroacupuncture with stem cells. The authors 

showed that experimental groups 2, 3 and 4 had an increase in neurotrophin-3 (NT-3), in other 

words, the electroacupuncture was efficient in nerve regeneration; furthermore, the combined 

application of electroacupuncture with stem cells made this regeneration even more 

pronounced.  

Conclusion 

 

We found that application of low-intensity electrical stimulation or adipose derived stem 

cells transplantation can lead to a similar motor recovery in paraplegic dogs 30 (Post30) and 60 
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(Post60) days after the procedure. A combined therapy of both, LIES and ADSC led to 

improvements but there was not sufficient statistical significance for inter-group results at any 

instant (Pre, Post30, and Post60). The mechanisms involved in potential underachievement of 

combined therapy are unclear. The heterogeneous characteristics of dogs participants indicate 

that our results were not biased by intrinsic factors like breed, age, weight, time and cause of 

lesion. All participants were domestic dogs, although this research is an experimental treatment, 

a control group was not included to provide therapy to all participants. Further studies should 

be conducted to test the optimal number of sessions and period of application to promote neural 

plasticity on the spinal cord. 
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Figure Legend 

 

Figure 1. Research design. EMG: electromyography; ADSC: adipose derived stem cells group; LIES: 

low-intensity electrical stimulation group; COMB: adipose derived stem cells + low-intensity electrical 

stimulation group.  

Figure 2. Cell viability by flow cytometry. Annexin V it was used to apoptosis detection and 7-AAD 

for cell viability. Representative histograms are displayed. Isotype control is shown as red line 

histogram. 

Figure 3. Differentiation of MSC. Differentiation into adipocyte lineage was demonstrated by staining 

with Oil Red O (D), Alizarin Red S staining shows mineralization of the extracellular matrix in 

osteogenic differentiation (E) and toluidine blue shows the deposition of proteoglycans and lacunaes in 

chondrogenic differentiation (F). Untreated control cultures without adipogenic, osteogenic or 

chondrogenic differentiation stimuli are shown (A, B, C). Bar scale: 50 µm. 

Figure 4. Immune phenotype by flow cytometry. ADSCs were labelled with antibodies against the 

indicated antigens and quantitative analyses were performed using a FlowJo software. Isotype control 

is shown as red line histogram. 

 

Figure 5. Box-plot of electromyography response. (A) ADSC; (B) LIES; (C) COMB; d: effect size; *: 

p < 0.05. Whiskers indicate the minimum and maximum value respectively. 
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Table 1. Participants demography 

Pt – 

Participant; F – Female; M – Male; ADSC – Adipose derived stem cells; LIES – Electrical Stimulation, COMB – 

Pt Group Sex 
Age 

(years) 

Weight 

(kg) 
Breed Injury Time 

Cause of 

Injury 

Motor 

responses 

1  

ADSC  

F  4 5.2 DA  7m   DH   I   

2 

M 2 9.2 MBD 3m   CA   I   

3  
F   7 4.5 PI   3y   FA/DH   I   

4  
F   1 15.0 MBD   3m   AT L   

5   
F   6 17.6 LA   7m   DH   L   

6   
F   3 5.6 LA   7m   DH   L   

7   
M   3 13.8 MBD   2y   CA   L   

8   
M   8 3.7 LA   1y   DH   N   

9   
F   10 6.1 DA   8y   TR   N   

10  

LIES  

F   5 3.9 PO   1y   DH   I   

11   
M   7 9.1 FB   1y   DH   I   

12   
M   4 27.5 MBD   3m   CA   I   

13   
M   5 9.0 FB   2m   DH   I   

14   
F   9 7.6 DA   1y   DH   L   

15   
M   2 10.2 MBD   5m   CA  L   

16   
M   4 10.4 PO   1y   DH   N   

17   
M   4 12.5 MBD   4 m   DH   N   

18   

COMB 

M   6 9.8 LA   1y 5m   DH   I   

19   
M   2 2.6 YO   1y 5m   FA   I   

20   
F    4 10.0 FB   5m   DH   L   

21   
F   9 8.4 DA   3m   DH   L   

22   
F   1 19.3 MBD   8 m   UN   L   

23 
F   6 45.0 SB  6y   UN   L   

24 
M   8 4.7 YO   6y   TR   N   

25 
M   3 15.0 MBD   1y 5m   CA   N   

26 
F   5 6.2 DA   3m   DH   N   

27 
F   4 8.0 LA   5m   FA   N   
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Adipose derived stem cells and Electrical Stimulation; DA - Dachshund, MBD – Mixed Breed Dog; PI – Pinscher; 

LA - Lhasa Apso; PO – Poodle; FB - French Bulldog; YO – Yorkshire; SB - St Bernard; y – Year; m – Month; DH 

- Disk Herniation; CA - Car Accident; FA – Fall; TR – Trauma; UN – Unknown; I – motor improvement (keeping 

the quadrupedal position for 10 s or more); L – Low motor improvement (keeping the quadrupedal position for less 

than 10 s) ; N – None motor improvement. 
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