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Abstract 24 

The continuous biodiesel production from soybean oil was carried out under the 25 

subcritical condition of methanol with MnCO3/Na-silicate as a heterogeneous catalyst. The 26 

transesterification rate was first investigated in a set of experiments performed in a batch 27 

autoclave at 448 K using methanol-to-oil molar ratio of 18:1 and various catalyst loadings (5, 10 28 

and 20 wt% based on the oil mass). The results from these experiments, as well as the 29 

experimental data and the appropriate kinetic model recently reported in the literature were used 30 

for designing a packed bed tubular reactor (PBTR), a main unit of the pilot plant with the 31 

capacity of 100 liters of biodiesel per day. The pilot plant was constructed and tested under 32 

various operating conditions. The first 11 h of the pilot-plant operation was realized in the 33 

tubular reactor packed with inert glass beads (i.e. without the catalyst) in order to analyze the 34 

effect of the non-catalyzed subcritical biodiesel (fatty acid methyl esters, FAME) production. 35 

Then, glass beads were replaced with a mix of MnCO3/Na-silicate catalyst particles and glass 36 

beads, and the catalytic biodiesel production was continuously run under the subcritical methanol 37 

condition for 85 h. Two mass balance tests during the continuous pilot plant operation were 38 

performed. 39 

 40 

Keywords: Biodiesel; Subcritical methanolysis; Kinetic modeling; MnCO3/Na-silicate 41 

catalyst; Pilot-plant design. 42 
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1. Introduction 45 

In the past several years, many researchers have made efforts to synthesize efficient 46 

heterogeneous catalysts for biodiesel production in order to substitute the conventional 47 

technology based on homogeneous catalysis, which is currently applied in many industrial 48 

facilities. Numerous investigations have been undertaken in order to estimate the potential 49 

catalytic activity of both naturally originated and synthesized materials. Among the 50 

heterogeneous catalysts, the CaO-based catalysts are frequently studied [1][2][3][4][5] due to 51 

their high activity and possibility to be obtained from inexpensive natural and waste materials 52 

[6]. The other low-cost materials, like MnCO3, Na-silicate and MnCO3/Na-silicate, also show, 53 

after thermal activation, a high catalytic activity for biodiesel production [7][8][9][10]. Some of 54 

them, like Na-silicate, can be used even for transesterification of waste vegetable oils with a high 55 

amount of water owing to the hydolysis of the activated Na-silicate into OH
–
 and Si–O–H

+
, thus 56 

avoiding soap formation. Another advantage is the simple regeneration of the used Na-silicate 57 

catalyst with NaOH [7]. Other materials, like ion-exchange resins [11][12] and hydrotalcite [13], 58 

have also been tested in order to obtain long-lifetime catalysts that can be used for continuous 59 

processes.  60 

Heterogeneously-catalyzed methanolysis reactions are slower than homogeneously-61 

catalyzed ones due to the mass transfer limitations in the three-phase system mainly at the 62 

beginning of the transesterification process [14][15][16] The nature of heterogeneously catalyzed 63 

oil methanolysis reactions has been explained by different reaction mechanisms 64 

[17][18][19][20][21][22]. However, the resulting kinetic models based on these mechanisms are 65 

rather complex since a large number of parameters need to be determined. The recently reported 66 

studies described the suitable, relatively simple kinetic models of the vegetable oil methanolysis 67 

requiring no complicated computations [2][14]. The model proposed by Lukić et al. [14] is based 68 

on the pseudo-first order kinetics that involves the triacylglycerols (TAGs) mass transfer and 69 

chemical reaction controlled regimes. The model proposed by Miladinović et al. [2] includes a 70 

changing reaction mechanism with respect to TAGs and the first order reaction with respect to 71 

fatty acid methyl esters (FAMEs). The applicability of both models was confirmed for the 72 

sunflower oil methanolysis catalyzed by the CaO-based catalysts (CaO
.
ZnO, pure CaO and 73 



 

 

quicklime) under various reaction conditions [23][24]. They were applied and verified under 74 

continuous conditions at small scale, too [13][23].  75 

The continuous methanolysis has been investigated at both atmospheric pressure and 76 

moderate temperature [11][21][25][26][27][28] and high pressure and temperature [29][30][31] 77 

[32][33]. However, the most of the reported studies were conducted in laboratory scale devices 78 

for a short period of time [34]. Kouzu et al. reported the pilot scale transesterification of the 79 

waste cooking oil in the higher volume reactor (150 L), but it was performed in a stirred tank 80 

reactor with powdery CaO catalyst since it was concluded that the CaO-catalyzed 81 

transesterification is difficult to perform with the fixed bed reactor, due to the mass transfer 82 

limitations as well as plausible crushing of catalysts particles [35]. Catalysts used in powder 83 

form in the packed bed reactors caused blocking of the flow of the reactants throughout the 84 

catalyst bed by particle agglomeration [28] and high pressure drop inside small column at the 85 

end of the experiment due to the very dense packed bed formed [8]. Also, separation of the solid 86 

catalyst in powder form from the products of transesterification is difficult, thus, important issue 87 

for packed bed reactors, which are commonly used for continuous heterogeneously catalyzed 88 

processes at the industrial scale, is the use of coarse catalyst particles, with good mechanical 89 

strength that would not collapse during the process. 90 

The recent investigations of the heterogeneously catalyzed oil transesterification with 91 

subcritical methanol have been aimed at improving the process efficiency, i.e. at reducing the 92 

temperature, pressure and methanol-to-oil molar ratio applied under supercritical non-catalyzed 93 

vegetable oil methanolysis. Furthermore, the problem of a huge amount of waste water generated 94 

during the homogeneous transesterification and biodiesel purification, could be easily avoided by 95 

conducting the transesterification with subcritical methanol and an appropriate solid catalyst 96 

[36].  97 

Common reaction conditions for various heterogeneous catalysts at higher temperature 98 

and pressure are >150 
o
C and >30 bar [37][38][39][40] and the methanol-to-oil molar ratio 99 

higher than 15:1 (methanol is in subcritical or supercritical condition) [41][42]. High temperature 100 

synthesis have recently been applied with MnCO3, MnCO3/Na-silicate [8][9] and MnCO3/ZnO 101 

[43] catalysts in the form of powder or granules (coarse particles). Furthermore, it is worth 102 



 

 

mentioning that methanol-to-oil molar ratio and reaction temperature applied in the biodiesel 103 

production with MnCO3 or MnCO3/Na-silicate catalyst were lower than those suggested by Yin 104 

et al. [44] for the subcritical sodium silicate-catalyzed soybean oil methanolysis. The 105 

MnCO3/Na-silicate catalyst prepared in the form of granulated particles have an acceptable 106 

activity, excellent selectivity towards FAME formation from TAGs, and acceptable lifetime at 107 

high temperature [9].  108 

This article reports designing and testing of a pilot plant applied for the biodiesel 109 

production by the soybean oil transesterification catalyzed by MnCO3/Na-silicate with the 110 

capacity of 100 liters of biodiesel per day. Results of the recently reported study [9] 111 

supplemented with information from several additional experiments realized in batch autoclave 112 

with different amount of MnCO3/Na-silicate (5–20 wt% based on oil) at 448 K and 18:1 113 

methanol to oil molar ratio, were the basis for design of packed bed tubular reactor (PBTR) as 114 

main equipment of corresponding pilot plant. PBTR was filled with MnCO3/Na-silicate as 115 

catalyst mixed with inert glass beads and such reactor was applied for continuous 116 

transesterification at subcritical condition of methanol. Test of continuous operation was used to 117 

prove designed capacity and operational characteristics of pilot plant unit during 100 hours of 118 

operation. Investigation was started using PBTR filled only with glass beads for 11 h, and then, 119 

the catalyzed transesterification of soybean oil with MnCO3/Na-silicate as catalyst was realized 120 

during 85 h of continuous operation. Two complete mass balances were determined for detailed 121 

examination of the content of produced biodiesel while sample of used catalyst after 85 h of 122 

continuous process was withdrawn from reactor and its characteristics were analyzed using 123 

XRD, TG/DSC and FTIR. 124 

2. Materials and methods 125 

2.1. Catalyst preparation 126 

The preparation and characterization of the MnCO3/Na-silicate catalyst have recently 127 

been reported [9]. The catalyst was activated by drying at 473 K for 2 h, followed by the 128 

calcination in an oven at 773 K for 3 h.  129 



 

 

2.2. Experimental procedure 130 

2.3.1. Batch reactor 131 

The soybean oil transesterification was conducted in 300 mL batch autoclave (AE – 132 

Autoclave Engineers, USA), with an electrical heater and a Rushton-type mixer (560 rpm) at the 133 

methanol to soybean oil ratio of 18:1, 448 K [45] and different MnCO3/Na-silicate catalyst 134 

amounts (5, 10 and 20 wt% of the mass of oil). The reaction mixture samples withdrawn from 135 

the batch autoclave was analyzed as recently described [9][45]. The standard deviation for all 136 

experiments was determined to be ±2.86%. 137 

2.3.2. Pilot plant  138 

A pilot plant with a PBTR, designed on the basis of the kinetic data obtained in the 139 

laboratory batch reactors, was constructed and used for biodiesel production from soybean oil. 140 

During the test of the pilot-plant capacity and the catalyst activity, the following parameters were 141 

monitored: pressure, temperature and the mass flow rates of the reactants (methanol and soybean 142 

oil) while the masses of the produced biodiesel and glycerol were measured. Two tests during the 143 

continuous soybean oil transesterification were conducted:  144 

1) the non-catalyzed reaction in the PBTR only filled with 2 mm glass beads for 11 h (so 145 

called ZERO test) and  146 

2) the catalyzed reaction in the PBTR filled with a mix of 2 mm glass beads and catalyst 147 

particles (0.99 < d < 1.99 mm) in the proportion 60:40 by weight for 85 h (so called LONG 148 

TERM test, LT-t).  149 

2.3.3 Catalyst characterization 150 

The properties of the used catalyst (withdrawn from the PBTR after 85 h of continuous 151 

operation) were characterized by X-ray diffraction (XRD) on a Philips PW 1050 X-ray powder 152 

diffractometer using Ni-filtered Cu K1,2 ( = 1.54178 Å) radiation with a scanning step width of 153 

0.05
o
 and a counting time of 3 s per step, thermal analysis (TG/DTA) on a Setaram Instrument 154 

between 293 K and 1273 K in air flow (20 K min
–1

) and Furrier transformed infrared 155 

spectroscopy (FTIR) using a BOMEM spectrometer (Hartmann & Braun) in the wave number 156 

range of 4000–400 cm
–1

 with 4 cm
–1

 resolution.  157 



 

 

3. Results and discussion 158 

3.1. Analysis of soybean oil transesterification in a batch reactor 159 

The soybean oil transesterification in the presence of the MnCO3/Na-silicate catalyst 160 

occurs via two simultaneous catalytic processes [9]: one is catalyzed heterogeneously by both 161 

active species (Mn and Na) fixed on the surface of solid catalyst particles and homogeneously by 162 

Na dissolved in the esters and methanol/glycerol phases. It is important to point out that the 163 

batch transesterification reaction takes place during the heating of the reaction mixture from the 164 

room temperature to the specified reaction temperature (non-isothermal regime), and while 165 

keeping the reaction temperature constant (isothermal regime). The apparent reaction rates are 166 

simply defined by the reaction rate constants, kLT and kHT, depending on the reaction temperature 167 

and determined for the process performed with 5 wt% of the catalyst (based on the oil) [9]:  168 

For the isothermal operation at T < 423 K 169 

1

LT 7.918exp( 2465 / ),mink k T     (1a) 170 

For heating above 423 K and the isothermal transesterification at T > 423 K 171 

5 1

HT 6.355 10 exp( 7272 / ),mink k T      (1b) 172 

1

LT 7.918exp( 2465 / ),mink k T             for T < 423 K (1a) 173 

5 1

HT 6.355 10 exp( 7272 / ),mink k T    
  
for T > 423 K  (1b) 174 

The rate of TAG conversion was defined by the following kinetic equation [9]: 175 

)1( TGapp
TG xk

dt

dx
  (2) 176 

where kapp, according to the IL kinetic model, is defined as follows:  177 
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The best agreement between the calculated and experimentally determined TAG 179 

conversion degrees was obtained using the values of the reaction rate constant k (i.e. kLT or kHT), 180 

the initial value of the mass transfer coefficient kmt0 = 0.085 min
–1

, and the values of the 181 

parameters α = 55 and β = 3.5 [9].  182 

3.2. Analysis of the transesterification in the batch reactor performed with different amounts of 183 

catalyst 184 

In the present study, several experiments were conducted in the AE batch reactor using 185 

5%, 10% and 20% of MnCO3/Na-silicate catalyst based on mass of oil (particle size 0.99–1.99 186 

mm) at 448 K to verify the proposed IL kinetic model at higher catalyst amounts [9]. Besides, 187 

unlike previously reported results [9] the isothermal temperature of 448 K in this study was 188 

reached in the batch autoclave for 113 min. The difference in the heating time needed to reach 189 

the isothermal transesterification temperature in the batch autoclave could give additional 190 

information about the flexibility of the proposed IL kinetic model used to predict TAG 191 

conversion at 448 K.  192 

The experiments with 5% of catalyst (based on oil) showed that the TAG conversion of 193 

62.6% was obtained during heating period of 113 min (54.6% for 54 min [9]), while TAG 194 

conversion of 81.3% and 98.2% were obtained with 10% and 20% of catalyst, respectively for 195 

the same time of non-isothermal heating. Further 1 h of isothermal transesterification at 448 K 196 

with 5% and 10% of catalyst gave almost the complete TAG conversion (>99%). According to 197 

these data the following recalculations of the reaction apparent rate constant k (i.e. kLT and kHT) 198 

and mass transfer coefficient kmt0, which depended on the total catalytic surface area [8], were 199 

used to determine the reaction rate constant kapp applicable for both non-isothermal (heating to 200 

448 K) and isothermal regime: 201 
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thus leading to: 205 
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c
kk   (4c) 206 

where )(wcatc  is the catalyst amount used for the transesterification of soybean oil (valid for 2 < w 207 

< 8 wt% based on the mass of oil).  208 

Furthermore, recently reported results showed only a slight increase of TAG conversion 209 

(to 95%) during heating to 428 K and 1 h of isothermal transesterification at 428 K with 210 

increasing the catalyst amount from 8 to 13% [9], which implied that the apparent reaction rate 211 

constant ( )(wappk ) depended almost linearly on the catalyst concentration only in the range of 212 

catalyst amount between 2% and 8%, as shown by Eq. (4).  213 

The relation between kapp(w) and catalyst concentration might deviate from the linear 214 

dependence (valid for 5 < w < 8, Table 1), when larger catalyst concentrations are used. Namely, 215 

the apparent reaction rate constant )(wappk , as a “lumped parameter”, includes the resistance of 216 

TAG mass transfer to the surface of catalyst particles and the resistance of chemical reaction 217 

between TAGs and methoxide ions at the catalyst surface. These resistances have different and 218 

specific relation to temperature and catalyst concentration. The mass transfer coefficient is 219 

related to square root of temperature (T
0.5

) while the chemical reaction rate constant is an 220 

exponential function of temperature according to the Arrhenius equation. Also, the resistance of 221 

chemical reaction can be correlated directly to the catalyst concentration (i.e. to the available 222 

catalyst surface area) while the resistance of mass transfer depends on the hydrodynamic 223 

conditions in the reactor (mixing, viscosity). Therefore, the relation between )(wappk  and catalyst 224 

concentration may be non-linear, as shown in some recently reported investigations [8]. 225 

While the linear correlation between )(wappk  and catalyst concentration was assumed for 226 

the catalyst concentration between 2 and 8%, a different correlation was proposed for the catalyst 227 

concentration higher than 8% (i.e. 10% and 20% in this study) according to relation:  228 

)5()( appwapp kk   (5a) 229 
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which means that the maximal increase of the apparent reaction rate constant might be 2 times 231 

related to the value determined or 3.2 times higher than the value valid when 8% or 5% of 232 

catalyst is used, respectively. Thus, for the experiments conducted in the batch autoclave (300 233 

mL, 560 rpm), the corresponding values of kapp and two other kinetic model parameters (α = 55 234 

and β = 3.5, accepted from the previous work [9]) were used for calculation and comparison with 235 

the experimentally determined TAG conversions (Table 1).  236 

Table 1. Experimental results of the soybean oil transesterification during non-isothermal 237 

heating from 288 K to448 K and subsequent isothermal heating at 448 K for 1 h. 238 

Mcat, 

based on 

the mass 

of oil 

(wt%) 

Operation 

regime 

Time 

(min) 

Temperature 

(K) 

xTAG, exp 

(%) 

xTAG, calculated (%) 

After 113 

min 

At the end of 

isothermal 

operation 

5 Heating 113 288→448 62.6 66.9 – 

Isothermal 

operation 

60 448 98.3 – 98.8 

10 Heating 113 288→448 81.3 88.7 – 

Isothermal 

operation 

60 448 97.2 – 99.9 

20 Heating 113 288→448 98.2 95.9 – 

Isothermal 

operation 

60 448 99.9 – 100 

An excellent agreement between the calculated and experimentally determined TAG 239 

conversions at the end of non-isothermal heating (113 min) and the end of the overall process 240 

was observed as confirmed by small mean relative percentage deviations (4.4% and 1.6%, 241 

respectively). These results proved the proposed and used correlation between the apparent 242 

reaction rate constant and the applied catalyst amount and validated the kinetic parameters 243 

involved in the IL kinetic model.  244 



 

 

3.3. Design of packed bed tubular reactor  245 

Since the methanolysis reaction was performed in the batch stirred reactor with perfect 246 

mixing, the design equation coming out from the mole balance of TAG is the same for the PBTR 247 

with ideal plug flow. In order to calculate the residence time of the reaction mixture in the pilot 248 

PBTR operating under adiabatic condition, the following differential equations of mole and 249 

energy balances were applied:  250 

)1( TAGapp
TAG xk

d

dx



 (6) 251 

p

rTAG

TAG cm

HF

dx

dT

0

0, 
  (7) 252 

Using Eqs. (5a) and (5b) and assuming that the catalyst-to-oil mass ratio in the reactor 253 

would be much higher than 20%, the following equation, that connects reaction rate constant 254 

with temperature, was used to calculate the kapp values: 255 

6

( 5%)

7272
3.2 2.034 10 expHT wk k

T


 
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 
, min

–1
 (8) 256 

Simultaneous solution of Eqs. (6) and (7) for the initial condition: 257 

xTAG = 0 for τ = 0 and T(0) = Tin = 443 K  258 

gave the TAG conversion degree, xTAG, and the temperature at the outlet of the reactor, Tex, for 259 

the residence time of τ = 50 min. The values of the specific heat, cp, and the heat of reaction, (–260 

ΔHr), were taken from the literature [46]. 261 

For the initial activity of catalyst (100%), almost complete TAG conversion (xTAG = 1 or 262 

100%) could be obtained at the outlet of the reactor after 50 min of residence time. If the catalyst 263 

activity in the PBTR dropped to 50% of its initial value, then the TAG conversion degree at the 264 

reactor outlet would be 98%. Further decrease of the average catalyst activity in the PBTR, e.g. 265 

to 10% of its initial activity would result in 55% TAG conversion degree, as shown in Fig. 1. 266 



 

 

 267 

Fig. 1. Conversion degree versus residence time of the reaction mixture for different 268 

average catalyst activities in the PBTR. 269 

The design of the PBTR having capacity of 100 L/day was based on the following 270 

assumptions: 271 

 The process efficiency of 90% was adopted, resulting the biodiesel production capacity of 272 

4.17 kg/h (0.07 kg/min).  273 

 For the complete conversion of soybean oil (>99%), the inlet soybean oil (TAG) mass flow 274 

rate (mo,TAG) should be 4.17 kg/h.  275 

 Taking into account the molar masses of soybean oil (890 g/mol) and methanol (32 g/mol) 276 

and their molar ratio of 1:18, the inlet concentration of TAGs, represented by triolein as a key 277 

compound (cTAGo) would be 0.60 mol/L, while the molar and mass flow rates of the reaction 278 

mixture (Mo and mo) into the PBTR would be 89 mol/h and 6870 g/h, respectively; the inlet 279 

TAG molar flow rate of (FTAGo) was 4.68 mol/h. 280 



 

 

 The catalyst bed would be prepared by mixing MnCO3/Na-silicate catalyst particles (bulk 281 

density of 1.2 g/mL) and inert glass beads (2 mm; 2.5 g/mL) with the mass ratio of 40:60.  282 

 The porosity of the catalyst bed was assumed to be 50%. 283 

 The proposed residence time of the reaction mixture in the PBTR would be 50 min.  284 

 The reaction mixture would be heated in a preheater to 448 K to the reaction temperature in 285 

the PBTR.  286 

 The inlet mass flow rates of the soybean oil and methanol would be 6870 g/h or 8.6 L/h, 287 

corresponding to the methanol-to-oil molar ratio of 18: 1.  288 

 The density of the reaction mixture at 448 K and 25 bar was assumed to be about 800 kg/L.  289 

 A simple calculation gave the volume of the reaction mixture which occupied the void space 290 

of the bed of 7.16 L and the volume of the empty reactor of 14.33 L. Thus, the reactor could 291 

be packed with 8.33 L of MnCO3/Na-silicate catalyst (or 10 kg; density 1.2 kg/L) and 6 L of 292 

inert glass beads (spheres) (15 kg; density of 2.5 kg/L).  293 

 The amount of oil in the reactor would be 3.90 kg, so the catalyst concentration (based on the 294 

mass of oil) in the reactor would be 10/3.90 = 2.56 kg/kg or 256%.  295 

The final design of the PBTR was based on the following: 296 

a. Volume of the tubular reactor would be 14 L. 297 

b. Mass of 10.2 kg of catalyst particles (cylindrical granules with the average diameter between 298 

0.9 and 1.99 mm) and mass of 15.3 kg of glass beads (2 mm), respectively should be used for 299 

preparing the packed bed. 300 

c. The biodiesel production capacity would be 4.05 kg/h or 97 kg/day, i.e. slightly above 100 301 

L/day (density of biodiesel: 0.9 kg/L). 302 

3.4. Assessment of catalyst deactivation during long-term continuous operation 303 

The catalyst activity in the successive batches was evaluated in the batch autoclave with 304 

the same amount of catalyst (10 wt% based on the oil weight) at 458 K and with the 30:1 305 

methanol-to-oil molar ratio [9]. It was found that the catalyst might be reused 8–9 times without 306 

substantial decrease of the TAG conversion degree (from 100% to 97.4%) but with the change of 307 

FAME yield from 99%, to 92.6% and 88.3% after 8
th

 and 9
th

 catalyst reuse, respectively [9]. 308 



 

 

Therefore, 10 kg of the catalyst placed in the PBTR could be used for processing 800 kg of 309 

soybean oil. In other words, the catalyst might be used for 8-day continuous operation of the 310 

PBTR when TAG conversion degree would be slightly decreased to 97.4%. However, the 311 

catalyst activity after 8 days of continuous operation would be only 35% of the initial activity.  312 

4. Pilot plant design 313 

The main steps of the proposed continuous biodiesel production are the mixing of oil and 314 

methanol and preheating their mixture to the reaction temperature, the transesterification of 315 

soybean oil in the PBTR, the separation of the excess of methanol, the separation of biodiesel 316 

and glycerol and the purification of biodiesel and glycerol. In order to reduce the overall 317 

investment and operational costs of the pilot plant operation, only the capacity of the pilot plant 318 

was tested while the downstream glycerol and biodiesel purification was not considered at the 319 

present stage of the pilot plant construction. Hence, the main process scheme included:  320 

 pumping, mixing and preheating of methanol and oil; 321 

 flowing of the soybean oil/methanol mixture into the PBTR; 322 

 flash separation of the excess of methanol from the reaction mixture; and 323 

 separation of biodiesel (upper) and glycerol (lower) layer.  324 

The process flow sheet with the main streams and units is shown in Fig. 2a while the 325 

photo of the pilot plant is presented in Fig. 2b. The main equipment units of the pilot plant are 326 

specified in Table 2.  327 



 

 

 328 

    (a) 329 

 330 



 

 

    (b) 331 

Fig. 2. The pilot plant for FAME synthesis: (a) layout and (b) photo. 332 

Table 2. The main units of pilot plant. 333 

Unit Used as Dimensions Volume 

F-101 Storage tank for oil 600  1200 mm
 0.4 m

3
 

F-103 Storage tank for 

methanol 
450  1000 mm 0.176 m

3
 

M-105 Static mixer DN15 – 

E-106 Preheater 380 V, 10 kW – 

R-110 Reactor 133  5 mm 

H = 1400 mm 

0.019 m
3
 

D-310 Flash evaporator 159  4 mm 

H = 500 mm 

0.01 m
3
 

E-302 Condenser for 

methanol 

A = 0.004 m
2
 – 

E-401 Cooler of FAME–

glycerol mixture 

A = 0.008 m
2 

– 

T-411 Separator 159  4 mm 

H = 300 mm 

0.006 m
3
 

F-104 Storage tank for 

FAME 
600  1200 mm

 0.33 m
3
 

F-105 Storage tank for 

glycerol 
377  500 mm 0.06 m

3
 

The proposed operation conditions for the biodiesel production in the pilot plant facility 334 

were the methanol to soybean oil molar ratio of 18:1, the reaction temperature of 448 K and the 335 

maximal working pressure of 30 bar. The minimal TAG conversion degree achieved in the 336 



 

 

PBTR after 8
th

 day of the use the MnCO3/Na-silicate catalyst was assumed to be 97.4%. After 8 337 

days of continuous operation, the catalyst must be replaced by a packed-bed of fresh catalyst.  338 

4.1. Analysis of operating parameters 339 

The main objectives of testing the pilot plant were to investigate the soybean oil 340 

methanolysis catalyzed by MnCO3/Na-silicate for the biodiesel production under the conditions 341 

established in the laboratory batch reactor and to prove the designed capacity of the pilot plant. 342 

4.1.1. Pilot plant testing  343 

First, the pilot plant was tested on the leakage and the pressure by flowing the tap room 344 

temperature water (so-called cold test) and then soybean oil preheated in the preheater to 175 °C 345 

(448 K) at the flow rate of 6.3 L/h (maximum capacity of the pump). The pilot plant comprised 346 

the system for monitoring (measuring and manual control) temperature of the heater, the reactor 347 

(inside the packed bed, in the jacket and the reactor outlet), the flash evaporator, the condenser 348 

and the cooler as well as the system for measuring the pressure at the inlet and outlet of the 349 

reactor. 350 

4.1.2. Non-catalyzed FAME synthesis in pilot plant (ZERO test) 351 

After passing through the static mixer (M-105) and the preheater (E-106), methanol and 352 

soybean oil were pumped into the PBTR (R-110). The residence time of the reaction mixture in 353 

the preheater and the connecting pipeline between the preheater and the PBTR enabled only a 354 

minimal effect of the non-catalyzed transesterification [36]. The variation of temperature, which 355 

was controlled at several points of the pilot plant, during 11 h of the non-catalyzed FAME 356 

synthesis is shown in Fig. 3.  357 



 

 

 358 

Fig. 3. Variations of temperature at the measuring points during the non-catalyzed synthesis of 359 

FAMEs (thermal oil at the heater inlet  – ; the reactants’ mixture at the heater outlet – ; the 360 

reactor – ; the reactor jacket – ; the reactor outlet – ; the evaporator – ; the condenser – 361 

; and, the cooler – ). 362 

The temperature of the reactants leaving the preheater was slightly higher than the 363 

desired reaction temperature of 175 °C as well as the temperature inside the reactor. However, 364 

the measured temperature of the reaction mixture at the reactor outlet was about 155 °C at the 365 

beginning of the non-catalyzed (so-called ZERO test). This was attributed to the temperature 366 

sensor position which was mounted on the outside surface of the reactor wall. The detected 367 

temperature at the top of the flash evaporator was lower than the desired one (>80 
o
C), which 368 

was explained also by the position of the temperature sensor which was placed on the outside 369 

surface of the evaporator. The temperatures in the condenser and the cooler were relatively 370 

stable.  371 

The contents of FAMEs, TAGs, DAGs and MAGs in the samples of the reaction mixture 372 

taken at the outlet of the heater (inlet into the reactor) and the outlet of the reactor during the 373 

ZERO test (t = 0, 3, 7, 9 and 11 h) were determined. Only the presence of about 6% of DAGs 374 



 

 

and a negligible concentration of MAGs (0.7%) were detected in the samples at the inlet of the 375 

reactor. These data indicate that the reaction started even in a relatively short residence time of 376 

the reactants in the heater and the connecting pipeline. The HPLC analysis of the esters phase 377 

separated from the samples taken at the outlet of the reactor showed the following average 378 

contents: 60% of TAGs, 22.5% of FAME or biodiesel, 11.5% of DAGs and 6% of MAGs during 379 

11 h of non-catalyzed transesterification. Thus, for the applied residence time of oil in the empty 380 

tubular reactor, the non-catalyzed conversion of TAGs of about 40% was achieved and that 381 

about 50% of TAGs were converted into FAMEs. 382 

4.1.3. Catalyzed synthesis of FAMEs in the PBTR (Long Term test, LT-t) 383 

After the non-catalyzed reaction was completed, the reactor was discharged, and filled 384 

with catalyst particles and glass beads (mass ratio of 2:3; 10 kg of MnCO3/Na-silicate catalyst 385 

and 15 kg of glass beads; 0.51 was experimentally determined porosity of catalyst bed). 386 

Methanol and soybean oil were heated to 175 °C and kept at this temperature for 30 min. After 387 

that, the mixture of the preheated reactants was fed to the reactor bottom. The temperature of the 388 

reaction mixture (mainly soybean oil and methanol) at the outlet of the preheater was close to the 389 

temperature inside the reactor and did not exceed 190 
o
C, thus preventing the overheating of 390 

soybean oil and the unwanted side reactions (e.g. polymerization). This temperature was 391 

achieved with the temperature of heating oil in the heater in the range from 180 
o
C to 210 

o
C 392 

(Fig. 4b). The average pressure in the reactor was 2.5 MPa during the LT-t and slightly lower 393 

during the FIRST mass balance of the LT-t, compared to the average pressure during the 394 

SECOND mass balance of the LT-t (Fig. 4a). The temperature inside the PBTR varied in the 395 

range from 175 
o
C to 195 

o
C (Fig. 4b). 396 

 397 

 398 

    (a) 399 



 

 

 400 

    (b) 401 

 402 

    (c) 403 

Fig. 4. Variation of pressure and temperature: (a)  – pressure at reactor inlet measured at the 404 

pump; and temperature measured at different points during the LONG TERM experiment, (b)  405 

– thermal oil at the heater inlet,  – the reactants’ mixture at the heater outlet,  – reactor,  – 406 

jacket,  – outlet of reactor; (c)  – evaporator,  – condenser,  – cooler. 407 

Considering the methanol-to-oil molar ratio (18:1 and 25:1) employed in this process 408 

during the FIRST and SECOND mass balances, certain difficulties in the separation of the final 409 

products could be expected. Therefore, the flash evaporator (D-310, Fig. 2a) was included in the 410 

pilot plant facility, where the excess methanol from the outlet reaction mixture was removed by 411 

partial vaporization, enhancing the separation between esters and glycerol phases due to their 412 

poor mutual solubility. The temperature of 69 °C in the flash evaporator used for removing the 413 

excess of methanol from the ester and glycerol mixture was constant (Fig. 4c). After the flash 414 

evaporation step, the outlet stream of the main transesterification products, consisting of esters 415 

and glycerol phases, pass through the cooler to a gravitational separator. 416 



 

 

Generally, the measured temperatures at the outlet of the preheater, the inlet and outlet of 417 

the reactor, as well as at the surface of the flash evaporator, were stable, without extreme 418 

fluctuation. However, the pilot plant did not have the system for automatic control of 419 

temperature in the reactor, so it was regulated manually, thus making difficult to maintain stable 420 

both the pressure and the temperature in the reactor at the desired levels, as can be seen in Fig. 4. 421 

Two complete mass balances were realized (highlighted area in Fig. 4) aimed at 422 

determining the actual mass flow rates of the reactants and the products and the composition of 423 

biodiesel after its separation from glycerol. The masses of different fractions were collected at 424 

inlet and outlet of the reactor during the FIRST (between 11
th

 and 21
th

 h of operation) and 425 

SECOND (between 81
th

 and 86
th

 h of operation) mass balance and measured on scale; the 426 

obtained masses are presented in Table 3 while the composition of esters phase determined by 427 

HPLC analysis is shown in Table 4. 428 

Table 3. Mass balances realized during the Long Term test (LT-t). 429 

Mass balance 

experiment 

INLET OUTLET 

Oil (kg) Methanol (kg) 
Raw ester 

phase (kg) 

Raw glycerol 

phase (kg) 

Recovered 

methanol (kg) 

FIRST
 31.91 20.64 32.75 9.55 10.25 

SECOND
 11.2* 10* 12.56 2.75 5.89 

* The value of methanol –to-oil molar ratio during the 2nd mass balance was changed to 25:1.   430 

Table 4. The average composition of the ester phase. 431 

Mass balance FAME (%) MAG (%) DAG (%) TAG (%) 

FIRST 98.56 0.53 0.91 0.00 

SECOND 97.49 1.08 1.21 0.22 

The samples of crude ester and glycerol phases (1 L each) collected during the mass 432 

balance checking were left to stay for 2 days. The phases were separated and the following layers 433 

were detected: 434 



 

 

 The crude esters sample (vol%): the FAME phase (upper layer) about 93% and the 435 

glycerol phase (lower layer) 4% while the evaporated methanol was approximately 3%. 436 

 The crude glycerol sample (vol%): methanol (upper layer) 3.2%, FAME phase (middle 437 

layer) 2.5% and lower layer 87.3% as a mixture of glycerol (80.3 %) and methanol (7%). 438 

Based on this observation, it might be concluded that the final products collected during 439 

the FIRST mass balance contained 30.8 kg of pure ester phase (30.4 kg of FAMEs and 0.4 kg of 440 

DAGs and MAGs), 0.09 kg of methanol and 1.83 kg of glycerol.  441 

This analysis showed that the FAME content was very high in the esters phase analyzed 442 

during the LT-t (Table 4). In both mass balances FAME content was higher than 96.5%, meeting 443 

the requirements of the biodiesel standard specifications (EN 14214). It was worth mentioning 444 

that during the LT-t, the contents of DAGs and MAGs were very low, but still slightly higher 445 

than those defined by standards (0.2% for DAG and 0.8% for MAG). TAGs were not detected in 446 

the esters phase of the FIRST mass balance but they started to appear at the end of the SECOND 447 

mass balance of LT-t, being close to the standard limit (0.2%). Although the conversion of TAGs 448 

was still very high (99.8%), the yield of FAME dropped to 97.5%. This result agreed with the 449 

observed changes in the esters phase composition during the soybean oil transesterification in the 450 

repeated use of the catalyst in the batch transesterification [9].  451 

4.1.4. Catalyst deactivation during Pilot Plant experiment 452 

During 85 h of the LT-t, a small fluctuation of the esters phase composition was 453 

observed. However, there were no enough data to predict exactly the catalyst deactivation during 454 

85 h of its use. The simple calculation, mentioned above based on data collected in the batch 455 

process, indicated that the used amount of MnCO3/Na-silicate catalyst (10 kg) would be active 456 

for at least 8–9 days of the continuous process and the data of LT-t supported this expectation. At 457 

the same time, a gradual increase of the pressure in the PBTR was observed (Fig. 4a). The 458 

pressure should be enhanced for keeping the capacity of the pilot plant at the designed value, 459 

which was attributed to the blocking of the interparticle space with TAGs and the side products 460 

formed at a high temperature as a result of the oil polymerization.  461 



 

 

For defining the actual status of the used catalyst in the PBTR after the LT-t, the samples 462 

were withdrawn from the bottom and the middle part of the PBTR and analyzed by XRD, 463 

TG/DTA and FTIR. Figure 5 shows the XRD pattern of the MnCO3/Na-silicate sample (washed 464 

and centrifuged with ethanol).  465 

 466 

Fig. 5. XRD pattern of the MnCO3/Na-silicate catalyst taken from the middle part of the 467 

PBTR after 85 h of the LT-t performed at 175 
o
C and 2.5 MPa. 468 

The presence of rhombohedral structure of MnCO3 was consistent with the literature 469 

values (JCPDS Card 83-1763). Since the XRD pattern was very similar to the XRD pattern of 470 

the fresh catalyst [9] it was concluded that the catalyst did not undergo any noticeable structural 471 

changes during the 85 h of the LT-t.  472 

Thermal behavior of the as-taken (without washing) MnCO3/Na-silicate is shown in Fig. 473 

6.  474 



 

 

 475 

 476 

Fig. 6. TG/DTA analysis (heating rate: 20 K/min) of the MnCO3/Na-silicate catalyst sample 477 

taken from the middle part of the PBTR after 85 h of the LT-t. 478 

The mass change indicated a weight loss at about 320 °C (16%), which might be 479 

attributed to the release of crystalline water and the compounds adsorbed on the catalyst surface 480 

(composed of FAMEs, glycerol, and traces of TAGs, DAGs and MAGs). The second mass 481 

change was observed in the temperature range from 320 to 500 °C, with an endothermic peak at 482 

about 440 °C. It might be attributed to the thermal decomposition of MnCO3 as well to the 483 

degradation of the reactants and the products. The total weight loss was about 40%, which was 484 

10% higher than that found for the fresh catalyst [9]. Therefore, it was concluded that a part 485 

(10%) of oil phase was adsorbed on the catalyst surface.  486 

The FTIR spectra of the fresh and used catalysts are shown in Fig. 7 for comparison.  487 



 

 

 488 

Fig. 7. FTIR spectra of the fresh and used catalyst collected from the bottom and middle part of 489 

the PBTR after 85 h of the LT-t. 490 

The broad band of the spectra with the maximum at about 3400 cm
1

 might be attributed 491 

to the hydrogen (H)-bonded stretching vibration of the O–H group, and could be assigned to the 492 

water (moisture) adsorbed from air and/or the reaction mixture on the catalyst surface. The peaks 493 

at 2932, 1742 and 725 cm
1

 might be assigned to C–H, C–O and C–C functional groups, 494 

respectively, while the peak at 862 cm
−1 

corresponded to the bending vibration of CO3
2−

 in 495 

MnCO3.  496 

It was found that the absorbance values from the wavelength region of 3700–3075 cm
1

 497 

might be used for estimating the moisture content in the biodiesel samples [47]. The broad peak 498 

in this region was more pronounced for the samples taken from the middle and bottom parts of 499 

the reactor than that of the fresh sample suggesting the presence of water in the reaction mixture. 500 

Furthermore, remarkably higher intensities of the peaks at 2932, 2854 and 1742 cm
1

 for the 501 



 

 

samples of the used catalyst, compared to that for the fresh catalyst, indicate the existence of 502 

different compounds from the reaction mixture, which were adsorbed on the catalyst surface. 503 

5. Conclusion 504 

The pilot plant with the capacity of 100 liters of biodiesel per day was successfully 505 

designed and tested for biodiesel production from soybean oil catalyzed by MnCO3/Na-silicate. 506 

The kinetic model with the parameters determined based on the analysis of the experiments 507 

realized in batch autoclave at 175 °C and 25 bar over MnCO3/Na-silicate as a catalyst and taking 508 

into account the influence of temperature and catalyst loading on the apparent reaction rate 509 

constant, was used for the design of PBTR as a main equipment of corresponding pilot plant. 510 

Test of continuous operation was used to prove designed capacity and operational 511 

characteristics of pilot plant unit. Investigation was started using PBTR filled only with glass 512 

beads for 11 h, and then, the catalyzed transesterification of soybean oil with MnCO3/Na-silicate 513 

as catalyst was realized during 85 h of continuous operation. Two complete mass balances 514 

performed for detailed examination of the content of produced biodiesel revealed high TAG 515 

conversion (99.8%) and FAME yield over 97.5%, while the sample of used catalyst withdrawn 516 

from reactor after 85 h of continuous process did not show any noticeable structural changes. 517 

The results of the performed tests in pilot plant showed a good starting point for further 518 

experiments planned to be done in order to improve constructed biodiesel production facility and 519 

to test other types of catalysts. 520 
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Nomenclature 673 

TAGc  concentration of TAG, mol/L 674 

0,TAGc  initial concentration of TAG, mol/L
 

675 

wc  catalyst concentration, % (w, mass of catalyst per 100 g of soybean oil) 676 

cp mass heat capacity of reaction mixture, kJ/kg·K 677 

FAMEc  concentration of FAME, mol/L 678 

d catalyst particle diameter, mm 679 

DAG  diacylglycerols 680 

FAME  fatty acid methyl esters  681 

0,TAGF   molar flow rate of TAGs, mol/min 682 

(–ΔHr) heat effect of TAG transesterification reaction, kJ/mol 683 

appk  apparent reaction rate constant of transesterification process, min
–1 

684 

kLT reaction rate constant valid up to 423 K, min
–1

 685 

kHT  reaction rate constant valid above 423 K, min
–
 686 

)(wappk  apparent reaction rate constant as function of catalysts concentration, min
–1

 687 

mtk  mass transfer coefficient during transesterification process, min
–1

 688 

0mtk  mass transfer coefficient at the beginning of transesterification process, min
–1

 689 

0m   mass flow rate of reaction mixture, kg/h 690 

0,TAGm  mass flow rate of TAGs into PBTR, kg/h 691 

0M   molar flow rate of reaction mixture, mol/h 692 

MAG  monoacylglycerols  693 



 

 

(–rTAG) rate of triacylglycerols transesterification, mol/(min·L) 694 

t time, min 695 

T  temperature, K 696 

TAG  triacylglycerols  697 

V  volume of reaction mixture, L 698 

xTAG degree of TAG conversion 699 

Greek symbols 700 

α parameter of kinetic model, Eq. (3b) 701 

β parameter of kinetic model, Eq. (3b 702 

  residence time, min 703 

 704 


