
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 147.91.1.42

This content was downloaded on 18/01/2017 at 14:22

Please note that terms and conditions apply.

Nanostructured SnO2 thick films for gas sensor application: analysis of structural and

electronic properties

View the table of contents for this issue, or go to the journal homepage for more

2016 IOP Conf. Ser.: Mater. Sci. Eng. 108 012003

(http://iopscience.iop.org/1757-899X/108/1/012003)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Nanostructured SnO2 films prepared from evaporated Sn and their application as gassensors

J G Partridge, M R Field, J L Peng et al.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serbian Academy of Science and Arts Digital Archive (DAIS)

https://core.ac.uk/display/200194694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1757-899X/108/1
http://iopscience.iop.org/1757-899X
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/0957-4484/19/12/125504


 

 

 

 

 

 

Nanostructured SnO2 thick films for gas sensor application: 

analysis of structural and electronic properties 

Goran Miskovic1, Obrad S Aleksic2, Maria V Nikolic2, Johann Nicolics1, Goran 

Radosavljevic1, Zorka Z Vasiljevic3, Miloljub D Lukovic2 , Walter Smetana1 

1 Department of Applied Electronic Materials, Institute of Sensor and Actuator 

Systems, Technische Universität Wien, Vienna, Austria 
2Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, 

Serbia.  
3Institute of Technical Sciences, Serbian Academy of Science and Arts, 11000 

Belgrade, Serbia 

goran.miskovic@tuwien.ac.at 

Abstract. This research is focused on structural and electrical characterisation of tin oxide 

(SnO2) applied as a thick film and investigation of its properties as gas sensitive material. Micron 

sized SnO2 powder was milled in an agate mill for six hours to fabricate SnO2 nanopowder, 

which was afterwards sieved by 325 mesh sieve and characterized by XRD and SEM. This 

powder was used as functional part in the production of thick film tin oxide paste containing a 

resin vehicle with 4 wt. % nanosize glass frits acting as permanent binder. The glass frits where 

additionally milled for twelve hours in the agate mills to nanosized powder and sieved by a 325 

mesh sieve as well. The achieved thick film paste was screen printed on alumina and fired at 

850oC peak temperature for 10 minutes in air. After the sintering process, thick film samples 

where characterized by X-ray powder diffraction (XRD) and scanning electron microscopy 

(SEM). The reflectivity was measured on the same samples by UV-VIS spectrophotometer: the 

band gap was determined from the slope of reflectance. After that a matrix of different 

interdigitated electrode structure of PdAg paste was printed and sintered using the mentioned 

sintering conditions. The tin oxide thick film was printed over the interdigitated electrodes as a 

top layer and sintered again under the same conditions. The total electrical resistance was 

measured as a function of the electrode spacing and temperature. A negative temperature 

coefficient (NTC) was identified and measured in the range from room temperature 

(27°C) to 180°C in a climate chamber. Finally the samples were placed into a gas reactor with 

NOx and CO gas and the resistance was measured in the same temperature range (27°C-200°C).  

1.  Introduction 

Solid state gas sensors are one of the most used and the most present type of gas sensors for commercial 

applications in auto industry, airplane industry, heavy industry, environmental monitoring etc. In 

particular gas sensors based on semiconducting sensitive materials, such as metal oxides (MOX), have 

attracted the attention of the scientific community for the last few decades [1]. However, not all materials 

are suitable for all kinds of gas detection and the right choice of a suitable and effective solid state sensor 

depends on analysis and correlation between various metal oxide parameters, such as electro-physical 

(band gap, conductivity etc.) and electronic, structural and other properties.  
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SnO2-based gas sensors have been the subject of much research [2] due to the advantage of a 

relatively low operating temperature, long term stability and low cost. Thin and thick films of SnO2 have 

been deposited using a variety of techniques [2-4]. Thick film gas sensors have a certain advantage such 

as low cost, simple construction and high sensitivity [5]. One of the factors affecting gas sensitivity is 

the microstructure [6, 7]. Nanostructured materials for gas sensor applications have been the subject of 

much research as the large surface to volume ratio of these materials enhances gas response 

characteristics thus having a great influence on the sensor performance. 

In this work we have used milling as a simple, low cost method to reduce the grain size of the starting 

SnO2 powder and also glass frit used in thick film paste. Structural and electronic properties of SnO2 

thick films were analyzed in view of application as inexpensive gas sensors. 

2.  Experimental 

SnO2 powder (Sigma Aldrich, 99.9% purity, 325 mesh) was milled in an agate mill for six hours in order 

to reduce grain size and obtain nanopowder. The milled powder was sieved through a 325 mesh sieve. 

XRD analysis was performed on a Philips PW1050 diffractometer with CuKα radiation step f  0.05s and 

hold time of 10 s, 2θ 10-90o. A SEM analysis was performed on a TESCAN Electron Microscope VEGA 

TS 5130MM device.  

Thick film paste was prepared by mixing the milled powder with a resin vehicle and 4 wt.% 

nanosized glass frits acting as a permanent binder. The glass frit was additionally milled for twelve hours 

in an agate mill to reduce grain size and then sieved through a 325 mesh sieve. The prepared SnO2 thick 

film paste was screen printed on an alumina substrate and sintered in a hybrid conveyor furnace at 850oC 

for 10 minutes in air. Thick film samples were characterized by XRD and SEM analysis.  

Diffuse reflectance spectra of thick film samples were measured on an UV/Vis Shimadzu UV-2600 

with an ISR2600-Plus integrating sphere attachment in the measuring range 220-1000 nm.  

Interdigitated test matrices were made by screen printing an interdigitated electrode structure of 

PdAg paste with an electrode spacing of 0.25 μm and 0.35 μm. The tin oxide thick film was screen 

printed as a top layer and sintered in a hybrid conveyor furnace at 850oC for 10 minutes in air. The 

electrical resistance was measured as a function of the electrode spacing value and the input voltage. 

The DC resistance versus temperature was measured in a climate chamber in the temperature range of 

27°C to 200oC enabling the determination of the material constant B characteristic for negative 

temperature coefficient (NTC) materials.  

3.  Results and Discussion 

XRD patterns of the milled SnO2 powder and thick film are shown in Fig. 1.  

  

Figure 1 XRD patterns of milled SnO2 powder (a) and thick films (b) 

Structural refinement was carried out by the Rietveld method using the GSAS [8] package with the 

EXPGUI graphical user interface [9]. SnO2 (cassiterite) with a tetragonal structure (space group - 

P42/mnm) was determined. Starting values for tetragonal SnO2 were taken from Bolzan et al [10]. The 

a) b) 
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lattice parameters determined were a=4.7364(3), c=3.1853(3), crystallite size 59.6 nm for milled SnO2 

powder and a=4.7419(2), c=3.1894(2), crystallite size 67.3 nm for SnO2 thick film samples.    

SEM micrographs of SnO2 powder and thick film are shown in Fig 2 and Fig. 3, respectively, 

confirming the small grain size of both. The thick film is porous with a small relatively uniform grain 

size. 

  
Figure 2. SEM micrograph of milled  

SnO2 powder. 

Figure 3. SEM micrograph of SnO2 thick  

film sample. 

The measured diffuse reflectance specter of a tin oxide thick film sample is shown in Fig. 4. It was 

converted to the Kubelka-Munk function that is proportional to the absorption coefficient using the UV-

Probe software. The optical band gap was estimated using a Tauc plot relating the Kubelka-Munk 

function to the density of optically absorbing energy transitions using the relationship of Davis and Mott:  

 

ℎ𝜗 ∙ 𝐹(𝑅∞) = 𝐴(ℎ𝜗 − 𝐸𝑔)
𝑚, 

 

where hν is the absorbed photon energy, A is a constant related to the density of electronic states above 

and below the band gap, Eg is the optical band gap where m=1/2 is direct allowed transition and m=2 is 

indirect allowed transition. In case of SnO2 the allowed transition is direct [11]. The band gap of the tin 

oxide thick film was determined as 3.95 eV (as shown in the inset in Fig. 4) that is in accordance with 

literature data where the optical band gap of SnO2 varies in the range between 3.4 and 4.6 eV [5]. 
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Figure 4. Diffuse reflectance spectra of 

SnO2 thick film sample (inset: Tauc plot for 

the allowed direct transition). 

 

The measured resistance in a climate chamber in the temperature range 27-180oC is shown in Fig. 5. 
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Figure 5. Resistance of SnO2 thick film sample exposed to air and to 5% of CO measured in a 

climate chamber. 

 

As Fig. 5 shows, the measured values are quite high. Up to 120°C the measured values were unstable 

so 100 measurements were made and the average value has been taken for further analysis. From 120°C 

the measured values are stable and 10 measurements were taken for averaging. Clearly samples with 

bigger spacing between electrodes (0.35mm) have higher values of resistance, but both types of samples 

exhibit the same temperature dependence. In both atmospheres a decrease in the resistance with increase 

in temperature can be noted. In case of air, the B-value (material constant) can be determined from the 

slope of the lnR-1000/T (in Kelvin) characteristic over the specified temperature range [12]. B27/180 for 

both analysed electrode spacing values (0.25 and 0.35 mm) was determined as 5931 K and 8081 K, 

respectively. After exposing samples to 5% of CO gas, measurements were performed for 1 hour. As an 

example, the ratio Rair/Rgas at 140°C for both samples is given in Fig. 5. As it can be seen, there is a 

lack of reaction towards CO gas and similar values were obtained for other temperatures as well as for 

5% of NO gas.  

 

4.  Conclusion 

In this paper a complete analysis and characterisation of nanostructured SnO2 thick film was made. 

Micron sized SnO2 powder was milled in an agate mill to fabricate SnO2 nanopowder, which was 

afterwards characterized by XRD and SEM. This powder was used as functional part in the production 

of thick film tin oxide paste. The achieved thick film paste was screen printed on alumina and fired at 

850oC peak temperature for 10 minutes in air. After the sintering process, thick film samples where 

characterized by X-ray powder diffraction (XRD) and SnO2 (cassiterite) with a tetragonal structure 

(space group - P42/mnm) was determined. Scanning electron microscopy (SEM) confirmed the small 

and relatively uniform grain size. The reflectivity was measured on the same samples by UV-VIS 

spectrophotometer: the band gap of SnO2 was determined from the slope of reflectance as 3.95 eV. As 

for the response toward CO and NO, the samples exhibited a lack of sensitivity, which is explained with 

the low temperature needed for electro-chemical reactions. Plans for future work is to add catalytic 

dopants (Pt, Pd) and to perform measurements at higher temperatures. 
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