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Abstract

Recent developments in bone tissue engineering have led to an increased interest in one-

dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and 

tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and 

carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures 

using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, 

yielding HA structures composed of bundles of ribbons and wires, was typified by the 

simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity 

criteria over particle morphology and size. To overcome these issues, the preparation procedure 

was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as 

a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle 

morphologies, both the precursor and the final product exhibited excellent biocompatibility and 

caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up 

to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron 

microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the 

microstructure of the final particles. The two-step synthesis involved a more direct transformation 

of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The 

comparison of crystalline domain sizes along different crystallographic directions showed no signs 
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of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b 

crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., 

dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key 

aspects of this phase transformation, it must be investigated in more detail in the continuous 

design of smart HA micro- and nano-structures with advanced therapeutic potentials.
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1. Introduction

The most prospective biocomposites in bone tissue engineering are the combinations of (a) 

natural biopolymers as the macroporous matrix phase and (b) inorganic, organic or hybrid 

nano- and micro-structures as the reinforcement phase [1–5]. Being the natural bone mineral 

phase and being known for an array of properties that favor bone tissue regeneration, 

ranging from biocompatibility to osteoconductivity to non-immunogenicity, hydroxyapatite 

(HA) is the natural material of choice for the reinforcement phase of biocomposites, rivaled 

in response only by a handful of other biomaterials, such as bioactive glass [6], chitin [7], 

carbon/graphene-based nanostructures [8,9], and a few others. A special interest in bone 

tissue engineering has been directed to nanoparticulate and nanostructured HA with large 

surface–area–to–volume ratios [10]. Osteoconductivity of the material containing such 

nanostructures is directly dependent on their specific surface area [11], which also favors the 

high loading capacity with respect to various biologically active substances, given that 

adsorption presents the sole mechanism of drug loading when it comes to HA. One-

dimensional HA nano- and micro-structures for potential biomedical applications, such as 

tubes [12,13], wires [14], rods [15–17], ribbons [18] and similar, morphological porous and 

hierarchically assembled 3D varieties, are especially good candidates to fulfill these two 

demands. The combined effects of nano- and micro-sized surfaces in 1D HA materials could 

not only be optimal for cell proliferation and osteogenic differentiation, but also beneficial 

for the expression of angiogenetic factors in stem cell differentiation [19]. The development 

of procedures for controlled synthesis of 1D HA nanostructures is mainly driven by this 

goal, especially since the recent progress in this field still does not entirely meet the criteria 

for effective control over size and shape.

The first goal of this study was to successfully synthesize uniform 1D HA structures, 

ranging from micro- and nano-wires to micro- and nano-tubes to more complex 

morphological varieties, using a hydrothermal batch process on the gram scale. The 

framework for the synthesis was adopted by studying the traditional hydrothermal and 

solvothermal methods for the synthesis of 1D HA structures such as whiskers, ribbons, 

platelets and tubes [18,20–24] and organic modifiers assisted HA synthesis methods [25–

27]. A detailed structural characterization of different intermediates and products of the 

method developed herein was then used to clarify the mechanism of the formation of 1D 

structures. By examining previous studies concerning the mechanism of 1D HA formation, 

we have divided the initially developed one-pot procedure into two stages to achieve a better 
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control over the product properties. Finally, since uniaxial growth is often accompanied by 

the less favorable particle/cell interface, biological assays were conducted to assess the 

cytotoxicity and biocompatibility of the synthesized particles in an in vitro setting.

2. Experimental details

2.1. Preparation of HA samples by synthesis path I

Two synthesis paths were investigated and a two-liter Parr hydrothermal reactor was used in 

both of them (Fig. 1). The first path was a single-stage, so-called one-pot preparation 

method involving (a) the precipitation of calcium and phosphate ions into dicalcium 

phosphate dihydrate (DCPD, aka brushite) with the addition of urea, and (b) a subsequent 

hydrothermal treatment of the resulting slurry. More specifically, 400 ml 0.12 M calcium 

acetate solution in water (Ca(CH3COO)2·H2O, Mw=158.17 g/mol, 99 %, Acros Organics, 

Belgium) was added slowly (100 ml/h) to 400 ml 0.1 M solution of ammonium phosphate 

monobasic (NH4H2PO4, Mw=115.03 g/mol, > 98 %, VWR International, USA), under 

strong mixing. pH value of the suspension following the addition of calcium acetate was 4.5. 

After mixing, 200 ml 0.6 M urea ((NH2)2CO, Mw=60.06, 99 %, Centrohem, Serbia) was 

added tothe dispersion and no pH change was detected. The 2 L PTFE liner in which this 

suspension had been made was then placed into a 2 L stainless steel cylinder of a Parr 

hydrothermal reactor and sealed for the hydrothermal treatment. The synthesis parameters 

are summarized in Table 1. All syntheses were run at 120 °C and ~ 7 bar pressure without 

mixing. The varied parameters were Ca/P molar ratio (via reducing the Ca content), the 

hydrothermal reaction time, and polyvinylpyrrolidone (PVP, K30, Mw=40,000 Da, Fluka 

AG, Switzerland) addition.

2.2. Preparation of HA samples by synthesis path II

The second path was composed of two stages and was designed to achieve a better control of 

1D HA structures and help us gain a better insight into the mechanism of 1D HA formation. 

The first stage included the preparation of a calcium oleate complex and the precipitation of 

dicalcium phosphate anhydrous (DCPA, aka monetite) platelets. This precursor was then 

dried (or used freshly prepared) and hydrothermally treated in the second stage.

More specifically, calcium oleate complex was formed by adding 200 ml 0.25 M water – 

ethanol (3:7) solution of sodium oleate (CH3(CH2)7CH=CH(CH2)7COONa, Mw=304.44 g/

mol, ≥ 82 % oleic acid content, Sigma – Aldrich, Germany) in 200 ml 0.125 M aqueous 

solution of calcium – nitrate (Ca(NO3)2·4H2O, Mw=236.15 g/mol, ≥ 98 %, Sigma – Aldrich, 

Germany). Precipitated calcium oleate, a white sticky substance, was separated by decanting 

the liquid phase and immediately transferred to a 300 ml flask containing 200 ml water – 

ethanol (≈ 1:1) solution of ammonium phosphate monobasic (NH4H2PO4, Mw=115.03 g/

mol, > 98 %, VWR International, USA). Ca/P molar ratio in this stage was set to 0.5. The 

flask was then heated and brought to boiling in reflux for 5 h total. The hydrothermal 

precursor for Samples 7 and 8 was prepared with the addition of N,N–dimethylformamide 

(DMF) (HCON(CH3)2, Mw=73.10 g/mol, ≥ 98 %, Reanal, Hungary) into the flask three 

hours into the boiling process. After the completion of the reaction and cooling, the liquid 

phase was decanted and the products were repeatedly washed with ethanol, centrifuged, and 
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left to dry at 60°C overnight. The dried products were placed into a PTFE liner and 

dispersed by mechanical mixing in 1 L of 0.12 M urea solution. The hydrothermal reaction 

was run at 120 °C and 7 bars for 96 h without mixing. The synthesis parameters used in the 

making of the DCPA precursor and in the subsequent hydrothermal treatment are 

summarized in Table 2.

After the synthesis, the products were collected from the bottom of the liner and washed 

with distilled water and centrifuged numerous times. The washing of the samples was 

finished at the point when pH of the supernatant was ~ 5.5. The products were then dried for 

24 h in an oven at 60 °C. The amount of calcium used in both synthesis routes was the same, 

and the mass of the dried products (yield) in each hydrothermal batch was near the 

theoretically calculated relative to the calcium content, e.g., 4.5 g for Sample2.

2.3. Characterization of samples

The precursors and products were characterized using X–ray powder diffraction (XRD, 

Philips PW1050 diffractometer with CuKα1,2 radiation), a scanning electron microscope 

(SEM, JEOL JSM 5300), a field-emission SEM (FE – SEM, ULTRA plus, Carl Zeiss) 

equipped with an energy-dispersive spectrometer (EDS, Inca 400, Oxford Instruments), a 

transmission electron microscope (JEM-2100, JEOL Inc., Tokyo, Japan ), operating at 200 

kV and equipped with a slow-scan CCD camera ORIUS SC1000A (Gatan Ltd.), an optical 

microscope (B-500MET with Optikam Pro 5LT digital camera, Optika, Italy) and laser 

diffraction analyzer (LD, Mastersizer 2000, Malvern Instruments). The ethanol suspensions 

of dried precursors and samples used for optical imaging were sonicated for 2 min and 

deposited as droplets on slides. Aqueous or ethanol suspensions of dried samples were used 

for the LD analysis, depending on the dispersibility of precursors and samples.

FTIR spectra were recorded using the KBr pellet technique at the room temperature on a 

Nicolet FT-IR 5700 spectrometer (Thermo Electron Corporation, USA) over the 4000–500 

cm−1 wave number range, with 2 cm−1 resolution. Mixtools software package in R 

programming language was used to fit XRD and particle size distribution data. The size 

distribution of elongated particles, 1D and 2D structures, analyzed by LD methods appeared 

as a mixture of Gaussian distributions [28,29], i.e. a multimodal distribution. The function 

normalmixEM (expectation maximization algorithm) was used to fit the mixtures of 

univariate normals. To check how good the fit was, the Kolmogorov – Smirnov test was 

performed using an R function ks.test. The sample code, results and cumulative distributions 

of experimental and fitted data for DCP platelets are given in the supplementary section. The 

distributions were fitted with 2 or 3 Gaussians. The average diameters and aspect ratios of 

the synthesized nanowires (n = 91) were determined as a part of the image analysis 

performed using ImageJ software (National Institutes of Health, Bethesda, MD).

2.4. Cytotoxicity tests

Mouse calvarial pre-osteoblastic cell line, MC3T3-E1 subclone 4, was purchased from 

American Tissue Culture Collection (ATCC, Rockville, MD) and cultured in Alpha 

Minimum Essential Medium (α-MEM; Gibco) supplemented with 10% fetal bovine serum 

(FBS, Invitrogen) and containing no ascorbic acid. The medium was replaced every 48 h, 
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and the cultures were incubated at 37 °C in a humidified atmosphere containing 5% CO2. 

Every 7 days, the cells were detached from the surface of the 75 cm2 cell culture flask 

(Greiner Bio-One) using 0.25 wt% trypsin/EDTA, washed, centrifuged (3000 rpm × 5 min), 

resuspended in 10 ml media and subcultured in 1:10 volume ratio. To determine if the 

nanoparticles exhibited cytotoxic effects, MC3T3-E1 cells were seeded at 5 × 105 cells/well 

in 24-well plates and differentiated into the osteoblastic lineage for 14 days with 100 μg/ml 

of ascorbic acid as the chemical differentiation agent dissolved in α-MEM and in the 

presence of either 1 or 5 mg/well of nanoparticles. Cell viability was determined after 14 

days of incubation using the Vybrant MTT cell proliferation assay (Molecular Probes) and 

following the manufacturer’s instructions. Absorbance was read at 570 nm on a UV/Vis 

spectrophotometric microplate reader (BGM Labtech, FLUostar Omega). To examine the 

interaction between cells and nanoparticles, immunohistochemistry staining was done after 7 

days of differentiation in the presence of nanoparticles. The 5 × 105 cells/well were seeded 

on glass coverslips, washed with phosphate buffer saline (PBS), and fixed for 5 minutes in 

4% paraformaldehyde. Cells were then washed with PBS and incubated with Alexa Fluor 

568 Phalloidin (1:400) (Molecular Probes) and OsteoImage™ bone mineralization staining 

agent (Lonza) for 30 minutes. Cells were then washed 3 times with PBS and cell nuclei were 

counterstained using NucBlue fixed cell ReadyProbe reagent (Molecular Probes) for 20 

minutes. Images were obtained using a Zeiss LSM 710 confocal microscope (UIC core 

imaging facility). All the samples were analyzed in triplicates.

3. Results and discussion

3.1 One pot synthesis of HA nanowires and plates bundles

Preparation of the right precursors is the first and often the most crucial segment of the 

hydrothermal synthesis of fine powders. Due to the wide window of chemical parameters 

available for control in this stage (salts, complexes, hydroxides, oxides, solvents, et cetera), 

various combinations thereof are possible, each leading to a potentially unique product of 

the hydrothermal process [30]. The preparation of the precursor calcium phosphate 

precipitates, schematized in Fig. 1(a), carried out in an acidic medium (pH ≈ 4.5) and at 

room temperature, in the first synthesis method led to the formation of dicalcium phosphate 

dehydrate (DCPD) [31,32], a white flaky precipitate, and could be represented with the 

following equation:

With the molar ratio of Ca/P being ≥ 1 (Table 1), H2PO4
− ions are expected to be fully 

consumed in the process, whereas the release of protons entailing the precipitation reaction 

leads to a drop in the pH, down to ~ 4.5. The concentration of OH− ions, i.e. pH, is, in fact, 

critical for tuning the composition and morphology of calcium phosphates [32]. During the 

treatment, until its complete decomposition, urea provides a source for the steady release of 

OH− ions and CO2 at temperatures above 80 °C [21,33]. At the onset of the decomposition, 

OH− ions are mostly neutralized by the free protons, which leads to the crystallization of 

either DCPD or anhydrous dicalcium phosphate (DCPA), depending on the temperature used 

[32,34]. Regardless of the chemical composition, crystal hydrates form at lower 
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temperatures compared to their anhydrous allotropes. This is the result of the large energy 

barrier associated with the dehydration process. DCPD, consequently, forms at lower 

temperatures, e.g. 50 °C and pH 5, and has a feathery appearance [32]. In contrast, DCPA 

and DCPD/DCPA mixtures form at higher temperatures and with different morphologies, 

typically appearing in form of thicker, micrometric plates [34,35]. The formation of DCPA 

via dehydration in the hydrothermal solution can be represented as:

Upon the complete consumption of protons from the solution, the concentration of OH− ions 

starts to gradually increase and their reaction with DCPD starts, yielding water in the 

conversion process. Eventually, if prolonged enough, subjugation to the attack of OH− ions 

leads to the dissolution of DCP and recrystallization of HA via a dissolution–

recrystallization mechanism representable by the following equations:

The formation of HA can occur either subsequently, following the dissolution of DCP, or 

simultaneously, depending on the kinetic conditions under which urea decomposes:

Results of the XRD phase analysis of samples synthesized by following the single-stage, 

“one pot” route are shown in Fig. 2(a, b). All the reflections in the XRD patterns match 

those of the HA reference (AMCSD 0009357) [31]. The comparison of crystalline domain 

sizes calculated along different crystallographic directions using Scherrer’s equation 

(Appendix A: Supplementary data, Table A1) shows no signs of significant anisotropy of 

scattering domains.

The highest ratio of crystallite sizes, 3.23, corresponding to reflections (002) and (121), was 

observed in Sample 2, which consisted of highly elongated particles wrapped up in bundles 

(Figs. 3(a) and A1). However, samples denoted as 1, 3 and 4, consisting of bundles of thin 

HA plates (Fig. 3(b), A2(a, b, c), and A3(a, b)), display nearly identical crystallite sizes for 

mutually perpendicular, (002) and (300) reflections. For other samples synthesized using the 

same, “one pot” method, Samples 2 and 5, this ratio was around 2, the reason being lower 

crystallite sizes in the (300) direction in comparison to Samples 1, 3 and 4. This leads to the 

conclusion that crystallites forming bundles in Samples 1, 3 and 4, synthesized at the lowest 

reaction time (20 h), are ordered in the b crystallographic direction. By increasing the 

reaction time to 48 h or 96 h, the bundles disintegrate and 1D HA forms appear, as observed 

for Samples 2 and 5 (Fig. 3(b) and (e); Figs. A1, A2(d) and A3(c)). A considerably lower 

crystallite size than the longest particle dimensions also confirms the polycrystalline nature 

of 1D HA and validates the aggregational growth model now presumed to apply to all forms 
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of HA, be they biological or synthetic. LD particle size distribution parameters, including 

the volumetric mixing proportion (λ), the component median (μ) and the standard deviation 

(σ), are shown in Figs. 3 and A3 for all five samples synthesized using the “one pot” 

method. The difference in the mixing proportion of a component with the smallest median 

diameter (blue color) indicates that the bundles of platelets disintegrate at longer reaction 

times. Only a small fraction of loose particles was detected in Samples 1, 3, and 4, this may 

be due to edges and corrugations on bundled plates rather than to loose particles per se. This 

can explain the difference in μ-s and σ-s of the smallest particle component in these five 

samples.

The formation of plate-like HA structures and their bundles observed in almost all of the 

Samples1 – 5 could not be explained by the dissolution–recrystallization mechanism 

onlybecause the latter would result in hexagonal, far more uniaxially grown structures that 

those evidenced in this case. The crystallization of plate-shaped HA structures thus requires 

the presence of octacalciumphosphate (OCP) as an intermediate phase. OCP has a layered 

structure composed of alternating apatitic and hydrated layers [36–38]. The layered OCP has 

a thin, plate-likemorphology, often resembling ribbons or blades, in contrast to hexagonal 

HA microcrystals, which are usually of needle-shaped character. Yet, the crystal structure of 

the apatitic layers in OCP and HA is remarkably similar [39–43]. The conversion of DCP to 

HAp via OCP can be represented by the following equations:

Intermediately, hydroxyl groups react with hydrogen phosphates within hydrated OCP layers 

to yield phosphates incorporable into the apatite lattice:

In contrast to the dissolution – recrystallization mechanism, here we have a solid-to-solid 

conversion. The result is HA of the characteristic morphology, explaining along the way the 

evolution of delaminated structures observed in all the samples prepared using the “one pot” 

method, especially Samples 1, 3 and 4. The variation of Ca/P ratio and the addition of PVP 

in the ranges and amounts tested in this study (Table 1) had no effects on the morphology. 

The choice of PVP was justified by its prior association with the uniaxial growth of HA 

crystals [44]. The diffractograms and optical micrographs of the one–pot precursor of 

Samples 1 and 2 are shown in Fig. 2(a, b) and Fig. A6(a), respectively. The precursor is 

identified as DCPD (brushite) and exhibits an irregular plate-like morphology. The obvious 

change in the morphology en route from the precursors to the products in the one-pot 

synthesis indicates that the dominant formation mechanism is dissolution – recrystallization. 

Still, solid state conversion could not be excluded as a mechanism of formation of irregular 

plate–like particles in Samples 1 – 5.

The complexity of the transformation mechanisms observed in this system and its relative 

insusceptibility to morphological control called for a more simplistic approach in the 
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synthesis of the desired, 1D morphological structures. The partitioning of synthesis stages 

came out as one of the solutions.

3.2 Two stage synthesis of HA nanowires via DCPA precursor

The first step of this modified, two-stage synthesis procedure (Fig. 1(b)) belongs to the 

synthesis of DCPA precursors via hydrolysis of calcium oleate in a water–ethanol solution. 

Ethanol is used to increase the solubility of calcium oleate, a compound fairly soluble in hot 

ethanol, but practically insoluble in water. The precipitation of DCPA can be described in 

this case with the following reactions:

where OL− is the oleate anion, CH3(CH2)7CH=CH(CH2)7COO−, and OLH is the oleic acid, 

a product of the hydrolysis reaction.

Figure 4 shows XRD patterns of the precursor powders following drying in an oven at 60 °C 

for one day. Interestingly, all powders converted to HA, demonstrating the transient stability 

of DCPA. Micrographs of the precursor powders shown in Fig. 5, most importantly, show 

the lamination of platelets. All the precursor samples contained platelets with a lamellar 

substructure, being the results of the specific growth habit typical for DCPA crystals. Then, 

the (−1 2 0) reflection in the precursor for Sample 7, prepared with the addition of DMF, is 

distinctively more intense than the one in the precursor for Sample 6, prepared using the 

same parameters but excluding DMF. Sample 7 was also synthesized using different 

precursor concentrations so as to investigate the previously suggested influence of DMF on 

crystallization of calcium phosphates [35] and is shown as supplementary data. The 

mechanism for this effect has not been elucidated yet, but has been exploited in “one pot” 

solvothermal syntheses of different 1D and 2D forms of HA [35]. Although the use of DMF 

does induce a structural change in synthesized DCPA, all of the precursors synthesized in its 

presence had the same morphology (Fig. A4). Another effect that plays a crucial role in 

ensuring the growth of regularly shaped platelets comes from oleic complexes as 

Ca2+concentration buffers as well as of oleic anions as agents for the directed, face-specific 

growth. Namely, as the oleic anion, OL−, tends to form a complex bond with Ca2+, crystal 

planes terminated with the largest density of Ca2+ ions will tend to exhibit the largest 

inhibition of growth.

Dried precursors were used for the synthesis of HA Samples 6 and 7, while Sample 8 was 

hydrothermally synthesized using a freshly made and washed, but not dried, precursor 

otherwise identical to that of Sample 7. The difference in the crystallite size between these 

samples, as shown in Table A1, was insignificant. All the samples were identified as HA, 

with only a slight difference in the diffraction peak intensity ratios (Fig. 6).

Morphologically, however, the samples were very different, as seen from the corresponding 

SEM images (Fig. A5). Thus, Sample 6 consists of fine needle–like particles, oftentimes 
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arranged in ladders or woven platelets (Figs. 7 and A5(a)). Sample 7 consists of long wires 

with up to 10 μm in length and around 30 nm in diameter, having the aspect ratio of over 

100:1 (Fig. 8). The morphology of particles comprising Sample 8 is slightly different from 

those found in Sample 6. It is characterized by a small extent of disintegration, the result of 

which are particles with retained plate-like morphology, but with brush-like ends (Fig. A5 

(c)).

Morphological changes associated with the transformation of DCPA to HA were observed 

and discussed in the literature. The predominant transformation, accompanying the 

dehydration of DCPD, is thought to involve the formation of splinters, which then transition 

to nanorods and nanofibers, transforming along the way to HA [23,35], though the one 

involving OCP as the intermediate phase appears to be equally prominent [47]. Both 

mechanisms assume that the preserved morphology of the precursor is due to the similarity 

of the crystal structures of DCPA and OCP to HA. Again, ribbon–like morphologies are 

typically attributable to the transformation via OCP, whereas DCPA tends to dissolve and 

form splinters which regrow into elongated 1D shapes and eventually rearrange into 

hierarchically ordered structures. In this study we have come up with a clear evidence of the 

effect that the structural changes of DCPA precursors have on the morphology of the 

resulting HA particles. Under all the conditions tested for the hydrothermal transformation 

of DCPA into 1D HA structures, the complete conversion of shapes occurredin one case 

only (Sample 7).

The mechanism for the formation of uniform 1D HA structures is dissolution/

recrystallization, kinetically limited and controlled by the gradual solubility of DCPA as the 

intermediate and the source of ions for the growth HA. Whereas abrupt increases in 

supersaturation favor the formation of rounded and smaller particles, slow increases in 

supersaturation favor the elongation of HA crystals, alongside excluding the epitaxial growth 

of HA on an OCP template in the form of plates [21]. Urea decomposition is one factor 

enabling the slow release of a constitutive ion, OH−, and its concentration can be tuned by 

controlling the temperature of the hydrothermal treatment, i.e. temperature at which urea 

decomposes. Another factor, equally critical, is the intermediate dissolution of DCPA. For 

example, if the surface of DCP is blocked with oleic species, the dissolution is hindered and 

non-uniform growth results. The precise coupling of the two simultaneously occurring 

processes - dissolution/recrystalization and solid–to–solid conversion – appears to be crucial 

in order to obtain elongated and uniform morphologies. The presence of OCP, that occurs as 

an intermediary in the one-pot synthesis, can be used as an indicator that the transformation 

of DCP to HA is not direct enough and not optimized to yield 1D structures. Thus we 

believe that controlling the concentration of OH− ions throughout the growth process in a 

specific, relatively narrow range is a key factor in favor of the growth of 1D structures. It can 

be tuned by controlling the temperature of the hydrothermal process (mainly in lower and 

mild temperature ranges) and the amount of urea as the source of OH− ions.

3.3 FTIR analysis of precursors and samples

The FTIR spectra of the DCPD precursor for Samples 1 and 2, of Ca oleate complex, and of 

the DCPA precursors for Samples 6 – 8, along with the corresponding final products, are 

Stojanović et al. Page 9

Mater Sci Eng C Mater Biol Appl. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shown in Fig. 9. Based on the FTIR spectrum of the one-pot synthesis precursor, Fig. 9(a), it 

is identified as pure DCPD [48,49] (purple line). The spectra of precursors used in the 

second, two-stage synthetic approach (Samples 6 – 8) are identified as DCPA (green and 

black lines) and are shown along with the IR spectrum of calcium oleate complex (blue 

line). The prominent bands at 2923 cm−1 and 2852 cm−1 correspond to the asymmetric and 

symmetric stretch of -CH2- groups. The characteristic doublet at 1577 cm−1 and 1541 cm−1, 

together with the bands at 1467 cm−1 and 1429 cm−1, is assigned to the asymmetric and 

symmetric stretch of -COO− groups [50,51]. The given bands are characteristic for calcium 

oleate (calcium dioleate) complex. The DCPA precursors have characteristic bands 

originating from P-O- and P-O-H bonds at 1131 cm−1, 1067 cm−1, 902 cm−1, 578 cm−1 and 

530 cm−1. The band at 1637 cm−1 results from the H-O-H bending and rotation of the 

residual water, while bands at 2923 cm−1 and 2852 cm−1 are attributed to –CH2– groups 

from oleate anions adsorbed on the surface of monetite. Distinct bands arise in the precursor 

of Sample 6, specifically at 1707 cm−1 and 1736 cm−1, corresponding to adsorbed oleic acid 

dimer and monomer, respectively [52]. This specific band does not exist in the spectrum of 

the precursor for Samples 7 and 8. This might be the effect of hydrolysis of oleate at lower 

pH values during the reaction to which DMF is not added. The addition of DMF raises pH of 

the reaction medium and prevents the hydrolysis of oleate anion and its conversion to oleic 

acid [53]. FTIR spectra of HA samples contain all four characteristic apatite phosphate 

vibration modes with bands at 1094 cm−1, 1031 cm−1, 961 cm−1, 602 cm−1 and 564 cm−1 

[54].

From these characterization data, we can conclude that two key factors play a role in 

determining the final morphology of HA samples synthesized using the two-stage method. 

The first is the adsorption of oleic species and the second is the drying of the freshly 

synthesized precursor. In the case of the adsorption of oleic acid, presumably in bilayers, as 

we assume it occurs on the DMF-free precursor of Sample 6, it must entail a significant 

change of surface hydrophilicity. Specifically, the surface becomes more hydrophobic, 

which slows down the kinetics of dissolution. Sample 6 is morphologically different from 

Sample 8, in a way that platelets appear more disintegrated, albeit not fully. Dissolution was 

more intense than in Sample 8, but less than in Sample 7. The formation of HA nanowires 

observed in all three samples can be attributed to the presence of oleate ion, which is capable 

of binding more intensely to Ca2+ on the surface of HA;this would explain the more directed 

and uniaxial growth of HA. As for the second effect, the drying of the precursor, we believe 

that low temperature transformation, physical or chemical, may occur, e.g., dehydration of 

DCPD to DCPA and/or desorption of oleate species. One must notice that the characterized 

precursors were dried at 60 °C for 24 h. Sample 8 is prepared using a freshly synthesized 

precursor without the drying step during which we believe the solid–to–solid chemical 

reaction is promoted; as a result, the plate-like morphology is being predominantly retained. 

These intermediate processes, alongside other key aspects of this phase transformation, must 

be investigated in more detail in the design of HA micro- and nano-structures with advanced 

therapeutic potentials.
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3.4 In vitro study of synthesized DCPA platelets and HA nanowires

Cytotoxicity and biocompatibility of DCPA platelets as precursorsfor HA nanowires 

comprising Sample 7, as well as of the given HA nanowires, were examined in vitro, in 

osteoblastic MC3T3-E1 cell culture. The MTT assay measures the mitochondrial succinic 

dehydrogenase activity and is a strong indicator of cytotoxic effects affecting cell viability. 

Elongated particle morphologies are often associated with increased cytotoxicity, even for 

compositions for which round particle shapes have no adverse effects on cells. Although 

tremolite [55] and other asbestoses [56] are paradigmatic examples in favor of this effect, the 

latter has been observed for multiple other particle compositions, ranging from titania [57] 

to carbon nanotubes [58] to ceria [59]. Moreover, compared to spherical HA nanoparticles, 

needle-shaped ones induced a considerably higher cytotoxicity and inflammatory cytokines 

production in BEAS-2B and RAW264.7 cells than the spherical ones [60]. Apoptosis 

mediated by a mitochondrial-dependent pathway in primary rat osteoblasts was also 

noticeably increased following incubation with needle-shaped HA particles as opposed to 

the spherical ones [61]. Such apoptotic effects observedin HepG2 cells were the basis for 

proposing HA as utilizable in the treatment of hepatoma and other types of cancer [62]. 

Needle-shaped HA also slowed down the cell metabolism and inhibited hatching in catfish 

T-cells and zebrafish embryos in a dose-dependent manner [63]. Other studies suggested 

good biocompatibility and a lack of cytotoxic effects of needle-shaped HA when tested in 
vitro [64,65], demonstrating a great degree of variability of the biological response to such 

morphologies. The exact amount, shape, texture, aspect ratio, surface charge, agglomeration 

degree, the dosage mode (seeding cells onto the powder, depositing powder on top of the 

cells or co-seeding), the cell type and the interaction of the particles with biomolecules 

contained in the growth medium are all factors influencing the biological response to them, 

needing further studies to be discerned and analyzed. As seen in Fig. 10, no decrease in cell 

viability was observed for any of the three calcium phosphate samples (spherical HA 

standard, needle-shaped HA comprising Sample 7, and DCPA as the precursor for Sample 7) 

in comparison with the particle-free control. The only significant difference in viability was 

observed for the spherical HA nanoparticle standard synthesized using a previously reported 

protocol [66]: cells incubated with this powder demonstrated a higher viability compared to 

the control, particle-free cell population, albeit only at the lower of the two tested particle 

concentrations (Fig. 10). Also, the elongated HA particles comprising Sample 7 did not 

cause any significant change in cell viability compared to the spherical HA nanoparticle 

standard at either of the two particle concentrations. These results corroborate our previous 

finding of no markedly negative effects on osteoblastic cells exerted by elongated particles 

of DCPA synthesized in an urea-assisted precipitation process except for the mild 

granulations of the cytoskeletal microfilaments [67]. In spite of the dosage amount 

exceeding fifty times that for which apoptotic effects were observed in osteoblasts in an 

earlier study [61] (0.02 – 1 vs. 1 – 5 mg/ml), no inhibitory effects or cellular injury were 

detected for 1D HA fabricated in this study.

Concordantly, immunofluorescent images shown in Fig. 11 demonstrate a favorable particle/

cell interface for both the DCPA precursor and the final product, HA, of Sample 7. 

Cytoskeletal f-actin microfilaments display a continuous, uninterrupted structure, devoid of 

aggregations, signifying a healthy internal structure and morphology of the cells in contact 
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with the particles. No difference between the control, particle-free cell populations and those 

incubated with these two types of elongated particles of calcium phosphate was observed.

4. Conclusion

In summary, we designed a two-stage process for the high-yield synthesis of 1D HA 

nanostructures with diameters on the nano scale and aspect ratios exceeding 100:1. 

Optimization of the DCP precursor for the hydrothermal synthesis is required for its 

transformation to 1D HA to reach completion. To achieve a better control over particle size 

and morphology, the first stage of the process, involving the synthesis of DCP, must be 

investigated in more detail. Understanding the effect of various hydrothermal processing 

parameters, to which this study has contributed, will help in gaining a better control over this 

process and making it more suitable for the application as a method for the high-yield 

synthesis of various other 1D HA micro- and nano-structures. In vitro studies on osteoblastic 

cells demonstrated the absence of any cytotoxic effects caused by the particles and a very 

high level of biocompatibility, indicating a pronouncedly promising potential of these HA 

systems for biomedical applications.
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Appendix A. Supplementary data

Tables showing crystallite sizes of samples 1 – 8; SEM images accompanied with particle 

size distribution from laser diffraction; optical microscopy images of precursors and 

samples; and R markdown file showing the code for decomposition of mixed distributions 

applied on XRD data and size distribution data.
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Highlights

• novel hydrothermal synthesis of HA nanowires

• controlled synthesis of 1D and 2D morphologies

• high level of biocompatibility of nanowires
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Figure 1. 
The sketch of “one-pot” route for the synthesis of 1D HAstructures (a), and the two-stage 

1D HA synthesis route via DCP platelets (b).
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Figure 2. 
XRD patterns of precursor for samples 1 and 2 and for samples from 1 to 5 within the whole 

2Θ measurement range (a) and with a zoom on a selected interval (b). The diffractograms 

are compared to the reflections of the reference AMCSD code 0008880 and code 0009357 

corresponding to DCPD (brushite) and pure HA, respectively.
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Figure 3. 
SEM images of 1D HA along with the particle size distributions for Samples 2 (a) and 4 (b), 

including the mixing proportion and other parameters for the convoluted components of the 

distributions. The μ-s and σ-s are given in microns. Scale bars are a) 50 and 10 μm and b) 50 

and 5 μm respectively.
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Figure 4. 
XRD patterns of the precursors for the hydrothermal synthesis of HA following the second, 

two-step route (a) for the whole 2Θ measurement range and (b) with a zoom on a selected 

interval. The star (*) denotes an unidentified impurity in sample 6 (b). The patterns are 

compared with the reference cards for brushite – DCPD code no. 0008880 [45] and monetite 

– DCPA code no. 0009584 [46].
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Figure 5. 
SEM and TEM images of platelets as precursors for the hydrothermal synthesis of Samples 

6 (a) (scale bars 1 μm and 500 nm) and 7 (b) (scale bars 1 μm, 500 nm and 200 nm), 

revealing laminated microstructure.
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Figure 6. 
XRD patterns of Samples 6, 7 and 8 compared to the reference AMCSD code 0009357 

corresponding to pure HA.
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Figure 7. 
FE-SEM, TEM images and electron diffractions of Samples 6 (a) (scale bars 200 nm) and 7 

(b) (scale bars 200 and 50 nm). SAED patterns are identified as HA reflections.
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Figure 8. 
Distribution of the diameters and lengths of HA nanowires comprising Sample 7, resulting 

from the comparative analysis of several TEM and optical microscopy images. The mean 

diameter and length of HA nanowires are 37 nm and 3.7 microns respecively.
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Figure 9. 
FTIR spectra of precursors for the hydrothermal synthesis of HA (a) and of the products 

(Samples 2, 6, 7, 8) (b).
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Figure 10. 
MTT assay absorbance indicative of the viability ofosteoblastic MC3T3-E1 cells incubated 

with various calcium phosphate powders at the concentrations of 0.5 and 2.6 mg/cm2 (1 and 

5 mg per well and per ml of media in the standard 24-well plate, respectively). All the data 

are represented as averages of three independent cell/particle analyses. Error bars represent 

the standard deviation (for Sample 7 HA at 5 mg/ml it is invisible to the eye). Data points 

significantly different from the “cell only” control (p < 0.05) are marked with an asterisk.
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Figure 11. 
Confocal optical micrographs of MC3T3-E1 cells incubated either with identical amounts (5 

mg/well) of Sample 7 HA particles (a) or Sample 7 precursor DCPA particles (b) and 

culturedfor 7 days. Green – calcium phosphate particles; blue – MC3T3-E1 cell nuclei; red – 

f-actin cytoskeletal microfilaments.
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Table 2

Parameters describing the synthesis of 1D HA structures in the two-stage process

Sample6 Sample7 Sample8

Precursor synthesis

Ca/P 0.5 0.5 0.5

DMF none 100 ml 100 ml

Drying yes yes no

Hydrothermal synthesis

Time (h) 72 72 72

pH after the hydrothermal reaction 10 10 10
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