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Abstract 

 The corrosion process of mild steel in the presence of benzoate-doped polyaniline 

coatings exposed to different environments (3% NaCl, atmosphere, and the Sahara sand) has 

been investigated. This system was also tested for cathodic protection and it has proven more 

efficient comparing to mild steel alone. Possible mechanisms of the corrosion protection of 

mild steel in the presence of a polyaniline-based coating in different corrosion media were 

also proposed.  
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1. Introduction 

Mild steel is undoubtedly the cheapest and the most commonly used construction 

material. It has been extensively used for centuries in many areas, for water pipes, boats, 

docks, tanks, vessels, etc. Because of its low nobility and structural defects, mild steel, in 

contact with other metals, corrodes practically in all environments [1].  

Depending on the corrosion environment, mild steel can be protected in many ways: 

by applying different organic coatings, by using cathodic or anodic inhibitors, cathodic and 

anodic protection, etc. These protection procedures imply the following problems: organic 

coatings are to expensive and can ensure protection for limited periods, depending on the 

quality of coatings and their thickens (if scratched, corrosion progresses with catastrophic 

consequences); inhibitors cannot be applied under certain conditions (e.g. in the protection of 

water pipes for human use); cathodic protection combined with organic coatings is very 

expensive due to high electric power consumption; moreover in the case of cathodic 

protection failure, steel corrodes if organic coatings are damaged. 

The application of electroconducting polymers is a relatively new approach in 

corrosion protection of mild steel in different environments [2-4]. These polymers show a 

semimetallic conductivity, and yield different effects when applied on metals, especially on 

mild steel. This is abundantly evidenced in literature, indicating a beneficial corrosion 

protection of many metals and alloys in different corrosion environments in the presence of 

conducting polymer-based coatings. Since the mid-1980s, numerous studies have shown that 

polyaniline-, polypyrrole-, or polythiophene-based coatings lower the corrosion rate of mild 

steel, stainless steel, aluminum, and copper [2,3]. The conducting polymer can either be 

applied as a neat coating or as dispersion in a polymer binder [4]. 

Polyaniline (PANI) is probably the most thoroughly investigated conducting polymer 

in corrosion protection of mild steel [3] It has been observed, though it is not well 
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investigated, that, unlike regular organic coatings, PANI can protect metal under a scratched 

or damaged coating surface [5,6]. Many different mechanisms explaining the role of PANI in 

metal protection have been proposed [3,7-9]. Unfortunately, the mechanism of corrosion 

protection is still elusive. 

 Electrochemically deposited benzoate-doped PANI films exhibit good anticorrosion 

performances for mild steel, aluminum and copper in 3% NaCl, if applied either individually, 

or as primer with an epoxy topcoat [10-14]. 

 The aim of this work has been to investigate the corrosion protection of mild steel in 

the presence of benzoate-doped PANI coatings in different environments, as a model system, 

in order to propose the possible corrosion protection mechanism and, moreover, to investigate 

the possibility of a practical application of the proposed coating in cathodic protection. 

 

2. Experimental 

The electrochemical synthesis of PANI on mild steel (AISI 1212) electrodes was 

performed at a constant current density of 1.5 mA cm-2, from an aqueous solution of 0.5 M Na 

benzoate (p.a. Merck) and 0.25 M aniline (p.a. Aldrich). Prior to use, aniline was distilled in 

inert atmosphere. The electrolytes were prepared with doubly distilled water. The mild steel 

electrodes were mechanically polished with fine emery papers (2/0, 3/0 and 4/0, respectively), 

degreased in acetone and pickled in hydrochloric acid with addition of 0.5% urotropine (hexa-

methylene-tetramine). Electrochemical experiments were carried out at ambient temperature, 

in three-electrode compartment cell with a saturated calomel electrode used as the reference 

and Pt wire as a counter electrode. The measurements were performed using PAR 273A 

potentiostat/galvanostat interfaced to PC.  

 The potential distribution along the mild steel sample during cathodic protection in 3% 

NaCl was investigated using the apparatuses shown on Fig. 1. The area of the exposed mild 
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steel surface was 75 cm2 (3 × 25 cm). The back side of the electrode was protected with a 

glued Plexiglas sheet. A titanium-coated ruthenium-oxide electrode with a surface of 1 cm2 

was used as an anode. The anode was placed near the mild steel sample, at the position 

denoted as l = 0. 

l = 0 cm 5 10 15 20 l = 25 cm

Reference electrode

V

3% NaCl

Mild steel

+ A-

Power supply

Anode

l(x)

 

 

Figure 1. Schematic presentation of the apparatuses used for cathodic protection experiments. 

 

 The corrosion process was investigated in 3% NaCl, in outdoor atmosphere in 

downtown Belgrade and the Sahara sand. 

Ferroxyl indicator was prepared by dissolving agar-agar in hot distilled water, and 

adding to it a mixture of phenolphthalein, sodium chloride, and potassium hexacyanoferrate 

(III). Ferroxyl indicator turns to blue in the presence of Fe2+ ions and pink in the presence of 

hydroxide ions (from an oxygen reduction reaction), marking anodic and cathodic corrosion 

zones.  

 

3. Results 

3.1. Electrochemical synthesis of benzoate-doped PANI film on mild steel 

 In Fig. 2, the anodic polarization curves of mild steel in 0.5 M Na benzoate solution 

and with 0.25 M aniline is shown. The corrosion potential of mild steel (Ecorr) in pure 0.5 M 

 4



Na benzoate solution was –0.67 V. The active dissolution of mild steel occurred until the 

potential reached –0.5 V with the maximum current density of 0.6 mA cm-2. At the potentials 

more positive than –0.45 V, passivation of the electrode occurred with the mean passivation 

current density of ~5 μA cm-2. Transpassive regions accompanied by oxygen evolution were 

observed at potentials more positive than 1.25 V. 
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Figure 2. Anodic polarization curves (v = 1 mV s-1) of mild steel in a 0.5 M sodium benzoate 

solution and with an addition of 0.25 M aniline monomer.  

 

In the presence of aniline, the corrosion potential of the mild steel electrode was 

shifted positively, to the potential of –0.25 V. The electropolymerization of aniline on mild 

steel started at potentials more positive than 1 V, with a pronounced peak at 1.6 V.  

 The galvanostatic transient of the mild steel electrodes in pure 0.5 M Na benzoate 

solution with the addition of 0.1 and 0.25 M aniline was given in Fig. 3. 
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Figure 3. Galvanostatic transient of the mild steel electrodes in pure 0.5 M Na benzoate 

solution with 0.1 and 0.25 M aniline. 

 

Without aniline in the solution, the potential-time curves had a relatively stable potential 

plateau, while the induction period was not observed. Applying the current density of 1.5 mA 

cm-2, the potential increased from 1.3 to 2.25 V during 700 s. After that period, a sharp 

increase of the potential could be related to the formation of a non-conducting precipitate (e.g. 

iron benzoate) onto the electrode surface. With aniline in the solution, the polymerization was 

dependent on the aniline monomer concentration. In a 0.1 M aniline solution, a sharp increase 

of the potential after 120 s could be brought into relationship with the diffusion limitation of 

the aniline monomer. In the solution with 0.25 M of aniline, diffusion limitations were not 

observed, while a slow increase of the potential, from 1 to 1.25 V, could be related to the 

polymerization of aniline. The obtained film was black, with good adhesion, determined by 

cracking. Assuming that the density of benzoate-doped PANI is 1.4 g cm-3 [15], and using the 

equation [16]: 

Fy
yMMjtd am

ρ)2(
)(

+
+

=          (1) 
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where Mm and Ma are the molar mass of the aniline monomer and benzoate anions, and y the 

doping degree (the polymerization potential of 1.25 V suggests that PANI was in the 

pernigraniline form, y = 1), the thickness of the PANI film has been estimated to be 6 μm.  

Figure 4 shows cyclic voltammogram of the mild steel (MS)-PANI electrode in a pure 

0.5 M Na-benzoate solution. In the anodic scan, in the potential region from –0.6 to 0.1 V, 

where doping with benzoate anions occurred, the current density was very small: ~ 1 μA cm-2. 

The dedoping of benzoate anions occurred in the broad potential region, from 0.1 V to –0.7 V, 

and was probably overlapped with an oxygen reduction reaction. This means that the MS-

PANI system is stable over a large potential range. 
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Figure 4. Cyclic voltammogram of the mild steel – PANI-benzoate electrode in a 0.5 M Na-

benzoate solution. 

 

3.2. Corrosion of mild steel and mild steel with electrochemically deposited benzoate-

doped PANI film in 3% NaCl 

  The corrosion of mild steel in sea water (simulated with 3% NaCl) is very important 

for practical applications of this material; therefore, this type of corrosion has been 

investigated in this section of the study. 
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Figure 5 shows the polarization curves for mild steel and mild steel with benzoate-

doped PANI in 3% NaCl. The anodic polarization curve for the mild steel electrode is 

characterized by a single slope (0.114 V dec−1), while the cathodic curve is diffusion-

controlled.  
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Figure 5. Potentiodynamic polarization curves (v = 1 mV s−1) for mild steel and mild steel 

with a doped and de-doped PANI film in 3% NaCl. 

 

The corrosion processes of mild steel is characterized by anodic dissolution of iron 

Fe → Fe2+ + 2e        (2) 

and the rate determining the mixed activation–diffusion-controlled cathodic oxygen reduction: 

O2 + 2H2O + 4e → 4OH−       (3) 

The corrosion current density of 12 μA cm−2 for bare mild steel was obtained from the 

intercept of the anodic Tafel line with the corrosion potential (Ecorr = −0.466 V).  
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After an hour-long immersion in 3% NaCl, the mild steel electrode with PANI in the 

doped state had a corrosion potential of −0.527 V, which is by 70 mV more negative than the 

corresponding value for a bare mild steel electrode. During the first sweep, the anodic curve 

had the similar slope as bare mild steel, while the cathodic curve, related to the oxygen 

reduction reaction and de-doping of benzoate anions, was characterized by a broad peak in the 

potential range from ~−0.6 V to ~−0.9 V. After the cathodic polarization (dedoping), the 

broad peak disappeared, as observed from the polarization curve recorded after the first 

cathodic sweep. After the cathodic polarization (de-doping), the corrosion potential was 

shifted to more negative values, Ecorr = −0.573 V, characteristic for the dedoped state of 

polyaniline. It is interesting to note that the values of the corrosion current density for mild 

steel with a doped and dedoped PANI film were almost identical: 0.6 and 0.9 μA cm−2, 

respectively. 

 

3.3. Influence of PANI on the cathodic protection of mild steel 

The corrosion of mild steel in sea water is mainly connected to the reduction of 

dissolved oxygen. The cathodic reaction in nearly neutral solutions is a diffusion-controlled 

oxygen reduction reaction (Eq. 3) and the anodic reaction is the dissolution of iron (Eq. 2),  

The theory of cathodic protection is based on the fact that the corrosion potential 

(Ecorr) has to be shifted cathodically by applying the current from an external power source 

that can ensure the minimal polarization to the 'reversible' potential, Er(Fe2+|Fe) of iron in the 

solution, defined by the equation: 

 

 Er(Fe2+|Fe) = – 0.683 + 0.029 log 10-6  (vs SCE)    (4) 
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 This minimal polarization, ΔE , is usually ~0.2 V, as it can be seen in Fig. 6. Under 

such conditions, the dissolution of iron is practically eliminated, and only oxygen reduction 

occurs on the surface of mild steel. Since corrosion is more efficiently inhibited when 

polarization is higher, polarization should be as high as 0.45 V. After that, a hydrogen 

evolution reaction may occur at the potential of ~ –1.1 V vs SCE, E p
max , which can provoke 

hydrogen penetration into the metal structure and cracking corrosion. Accordingly, the 

optimum current for mild steel protection should shift the potential of 0.2 V below the 

corrosion potential and to approximately –1.1 V vs SCE. In Fig. 6, the experimental 

polarization curve of mild steel in 3% NaCl and the theoretical curves of possible corrosion 

reactions are shown. 
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Figure 6. Polarization curve of the mild steel electrode in a 3% NaCl solution, with the 

theoretical lines of possible corrosion reactions. 

 

 The main idea underlying the following experiments has been to investigate the 

influence of a benzoate-doped PANI film in cathodic protection and in the event of a failed 

cathodic protection. The mild steel sample was exposed to a 3% NaCl solution. After the 

 10



stabilization of the corrosion potential, the distributions of the potential along the mild steel 

sample were measured, for different currents; the results are shown in Fig. 7.  
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Figure 7. Dependence of the potential along the mild steel electrode for different currents in a 

3% NaCl solution. 

 

 As it can be seen in Fig. 7, for the current densities of 20 and 30 mA, at the position l 

= 0 and 5 cm, the potential is below the line where a hydrogen evolution reaction is likely to 

occur. For the current density of 10 mA, the potential at 25 cm is near ΔE . Therefore, an 

optimal current which meets the requirements for an efficient cathodic protection is ~15 mA 

(j = 0.2 mA cm-2). 

p
min

The experiment shown in Fig. 7 was repeated with a mild steel electrode partially 

covered with PANI and the results are shown in Fig 8.  

It can be observed that the MS-PANI system requires a lower cathodic protection 

current, e.g. 10 mA (0.13 mA cm-2) or even lower than a bare mild steel electrode. This means 

that the power consumption would be more than 30% lower than for a bare mild steel 

electrode. 
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Figure 8. Dependence of the potential along the mild steel electrode partially covered with 

PANI for different currents in 3% NaCl solution; the lines represents the data from Fig 7.  

 

 Figure 9 features the re-calculated currents, as the current density for l = 0 and 25 cm 

from Figs. 7 and 8, together with the polarization curve of bare mild steel.  

It can be seen that for l = 0 cm practically identical current density-potential 

dependencies to polarization curve for bare mild steel were obtained. Hence, the optimal 

current density for the cathodic protection of bare mild steel under the investigated conditions 

was 0.2 mA cm-2. For mild steel partially covered with PANI, the optimal current density for 

cathodic protection was ~0.1 mA cm–2 or 7.5 mA. 
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Figure  9. Polarization curve of the mild steel electrode in a 3% NaCl solution with potentials 

at l = 0 and 25 cm for different applied currents (open symbols – mild steel; full symbols –

MS/PANI).  

 

 Figure 10 shows the dependence of the potential after the current of 10 mA was 

interrupted. It can be seen that the corrosion potential of ~–0.7 V was achieved within a few 

minutes. Accordingly, the corrosion of mild steel would occur rather rapidly. The experiment 

was also performed with partially covered mild steel and basically the same results were 

obtained. As it can be observed, after the current interruption, ~5 min were required for the 

potential to reach the value of the corrosion potential.  
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Figure 10. Dependence of the potential at l = 25 cm after the current was interrupted for  

mild steel (----) and mild steel partially covered with polyaniline (-•-).  

 

Figure 11 shows a comparison of the samples after a ten-hour immersion in 3% NaCl 

at the corrosion potential (simulating cathodic protection failure). It is obvious that mild steel 

partially covered with benzoate-doped PANI showed extraordinary protection of mild steel in 

the case of cathodic protection failure in a 3% NaCl solution.  

 

 

 

Figure 11. Comparison of the images of bare mild steel and mild steel with partial PANI-

benzoate coatings after a ten-hour exposure to 3% NaCl at the corrosion potential. 
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3.4. Corrosion of mild steel and mild steel-PANI in the Sahara sand 

 The corrosion reactions of steel in the Sahara sand are practically the same as in the 

electrolyte. However, without moisture, corrosion of both samples was slowed down, as it can 

be seen in Fig. 12. 

  

 

Figure. 12. Images of mild steel (left) and mild steel partially covered with polyaniline (right) 

after a 60-day exposure to dry Sahara sand.. 

 

In the presence of moisture corrosion is facilitated, as it can be seen in Fig. 13, 

probably due to the composition of the Sahara sand [17]. But even so, corrosion was less 

pronounced on the sample partially covered with benzoate-doped PANI coating than on bare 

mild steel.  

  

 

Figure 13. Images of mild steel and mild steel partially covered with polyaniline after a five-

day (left) and ten-day (right) exposure to wet (2.5%) Sahara sand. 
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3.5. Atmospheric corrosion of mild steel and mild PANI-coated mild steel 

Atmospheric corrosion of mild steel and mild steel partially covered with PANI was 

investigated in Belgrade downtown. As it can be seen in Fig. 14, a partially covered mild steel 

sample showed much better corrosion resistance compared to unprotected mild steel. It should 

be noted that during the development of corrosion, the exposed metal surfaces near the 

polymer coating remained practically without visible corrosion products. 

 

Figure 14. Images of the mild steel samples after one-day (top), 15-day (middle) and 45-day 

(bottom) exposure to atmospheric corrosion in Belgrade downtown. Left: bare mild steel, 

right: mild steel-PANI-benzoates. 

 

4. Discussion 

4.1. Possible mechanism of corrosion protection  

According to the presented results, the mechanism of the mild steel corrosion 

protection using thin benzoate-doped PANI coatings in different environments could be 

proposed.  
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From the polarization experiments (Fig. 5) in 3% NaCl it is obvious that PANI is in 

doped states and that the corrosion potential shifts to negative values, compared to bare mild 

steel, suggesting the cathodic protection mechanism. It is reasonable to conclude that the 

corrosion potential of mild steel with a doped PANI film (initial period) is determined by 

slow cathodic reactions related to the dedoping of benzoate anions and the oxygen reduction 

reaction on the conducting PANI film: 

[PANIy+(C6H5COO−)y]n+nye → [PANI]n + nyC6H5COO−   (5) 

O2 + 2H2O + 4e → 4OH−       (3) 

 

and the anodic iron dissolution reaction through the pores of PANI. The iron dissolution rate 

was small due to the slow reaction kinetics of oxygen reduction on the PANI surface. There is 

also a possibility that the released anions react with Fe2+ in the pores, forming a poorly 

soluble precipitate. 

After most of the anions were released, the corrosion potential of mild steel with a 

dedoped (low conducting) PANI film could be determined by oxygen reduction as a cathodic 

reaction at the surface of bare metal in to the bottom of the PANI pores, and the doping of a 

dedoped PANI film probably with chloride anions: 

 

[PANI]n + nyCl− → [PANIy+(Cl−)y]n + nye     (5) 

 

as an anodic reaction. The electrons released from the PANI films could be transferred 

through metal, as a cathodic site, where the oxygen reaction takes place. The negative charge 

of the metal surface induced by electron transfer from the PANI film could prevent anodic 

iron dissolution near corrosion potential due to the cathodic protection effect. After a partial 

doping of the film, the potential shifted to less negative potentials and the sequences from the 
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initial period could be repeated. Accordingly, this mechanism could be designated as the 

'switching zone mechanism'. This behavior is schematically presented in Fig. 15. 
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Figure 15. Proposed mechanism of the mild steel corrosion protection with PANI coatings. 

 
 From the experiments shown in Figs. 11, 13 and 14, it is obvious that the protection 

effect was not limited only to the metal under the PANI coatings. It is evident that the 

corrosion of mild steel partially covered with benzoate-doped PANI coating is practically 

prevented on the bare metal surface near the coating. To investigate this phenomenon, simple 

ferroxyl indicator test was applied on an unprotected and a PANI-protected nail. From the 

images shown in Fig. 16, it can bee seen that anodic and cathodic zone on the unprotected nail 

are well separated. On the contrary, the cathodic zone on the PANI-protected nail is extended 

along the free metal surface.  

  

Figure 16. Ferroxyl indicator test of an unprotected (left) and a PANI-protected nail (right) 

after 10 h. 
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From these observations the following mechanism, shown in Fig. 17, could be 

suggested. Initially, the mechanism is probably similar to the above described one (Fig. 16). 

The differences is that Fe2+ probably reacts with OH- or dissolved oxygen, producing a thin 

iron oxide film which has better catalytic properties for the oxygen reduction reaction than 

PANI and oxide-free iron surfaces. After the de-doping of PANI, a doping reaction may occur 

in a medium period, driven by an oxygen reduction reaction, but this time occurring on the 

thin iron oxide layer near PANI. The electrons released in the doping reaction are transferred 

along free metal surfaces but only to limited distances, due to the current distribution. As a 

consequence, at some distance after the protected zone, corrosion and rust formation may 

occur. The electrons formed during iron dissolution could be now involved in the oxygen 

reduction and the PANI doping reaction (with any kind of the present anions). Over time, the 

doping/de-doping properties of PANI decrease (due to degradation) and rust continues to 

grow along the protected metal surface, as it can bee seen in Fig. 14. 
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Figure 17. Proposed mechanism of the mild steel corrosion protection using a partial 

PANI coating. 
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5. Conclusion 

 The corrosion of mild steel with partial PANI-benzoate coatings in three different 

environments (3% NaCl, atmosphere and the Sahara sand) has been investigated. It has been 

concluded that in all of the tree investigated environments, benzoate-doped PANI coatings 

could protect mild steel even when the coatings are partially applied for a limited period of 

time. It has also been shown that partial benzoate-doped PANI coatings could protect mild 

steel in the case of cathodic protection failure. Based on the experimental evidence, the 

'switching zone mechanism' has been proposed and discussed in detail. 
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