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Abstract

Hybrid clouds are increasingly used to outsource non-critical applications to

public clouds. However, the main challenge within such environments, is to en-

sure a cost-efficient distribution of the systems between the resources that are

on/off premises. For Multi Agent Systems (MAS), this challenge is deepened

due to irregular workload progress and intensive communication between the

agents, which may result in high computing and data transfer costs. Thus, in

this paper we propose a generic framework for adaptive cost-efficient deploy-

ment of MAS with a special focus on hybrid clouds. The framework is based

mainly on the use of a performance evaluation process that consists of simulat-

ing various partitioning options to estimate and optimize the overall deployment

costs. Further, to cope with the irregular workload changes within a MAS and

dynamically adapt its initial deployment, we propose an extended version of

the Fiduccia-Mattheyses algorithm (E-FM). The experimental results highlight

the efficiency of E-FM and show that an efficient MAS deployment to hybrid

clouds depends on various factors such as the cloud providers and their different

cost-models, the network state, the used partitioning algorithm, and the initial

deployment.
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1. Introduction

Multi-agent systems (MAS) are widely used to model and simulate scalable

software systems in many research domains [1][2][3]. Due to their distinct ca-

pabilities such as autonomy, adaptability and flexibility, agents represent an

attractive solution for building distributed applications. However, the main

problem with such applications is the irregular workload as well as the inten-

sive communication between the agents, which may inhibit the efficiency of the

underlying infrastructure used to run the system. Further, to cope with the

significant workload variations, to reduce delays (long simulation times), and to

meet new system requirements in terms of computing and memory resources,

a powerful computing infrastructure is required for a proper execution. Un-

limited computational resources are not in the reach of all organizations and

budget constraints always remain a strong consideration. Thereby, a flexible

on-premise infrastructure that can expand and shrink based on the computa-

tional requirements of the application is required. As hybrid cloud computing

has become a popular architecture where systems are built to take advantage

of both public and private infrastructures to meet different requirements [4], it

presents a good target environment for the aforementioned challenge.

A hybrid cloud is a cloud computing environment that integrates both on-

premise and public cloud resources. The use of such a cloud model can be tackled

from two perspectives: (i) a privacy perspective, in which an organization can

process its critical data in private and process the non sensitive operations in

public, and (ii) a bursting perspective, where the local resources are insufficient,

thus extra public cloud resources are required to handle the workload peaks. In

our work, we use the hybrid cloud to overcome the challenge of scalability that

can be induced by using only the private infrastructure and to minimize the

costs of outsourcing the whole data and computing on public resources.

To make an efficient use of such environment, the agents in the MAS must

be efficiently deployed across the hybrid cloud resources so that the overall

deployment costs are reduced. Since the MAS requirements in terms of compu-

tational resources may be subject to continuous changes during run-time due to

workload changes, the deployment may need to be continuously adapted by: (i)

allocating additional public cloud resources and/or de-allocating existing ones

as well as (ii) ensuring a load-balancing over the used resources. However, given

the diversity of both cloud providers and their offered resources, the continuous

changes in the entire system workload, the frequent load-balancing issues and
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the intensive communications within the MAS, the deployment may result in

high computation and data transfer costs. Consequently, achieving an adaptive

cost-efficient MAS distribution across hybrid clouds is a challenging task. Ef-

ficiency is expressed in terms of reduced deployment costs while fulfilling the

system requirements in terms of memory and computing resources.

In the frame of this work we propose:

• A generic framework for adaptive cost-efficient deployment of MAS to a

hybrid cloud. The framework is based mainly on the use of a performance

evaluation process that takes as input: (i) a MAS with varying demands

for computational resources and (ii) a hybrid cloud with its diverse on/off

premise resources. The evaluation process then estimates and optimizes

the overall deployment costs by allocating the right public cloud resources

and minimizing the communication costs between the private and public

clouds. The estimation and optimization are performed based on the

changes in the MAS requirements in terms of memory and computing

resources due to the dynamic changes in the agents’ workload during their

execution.

• An extension of the Fiduccia-Mattheyses (E-FM) graph based partitioning

algorithm to cope with the problem of finding a hybrid cloud deployment

with reduced costs. As communication is a key challenge in cloud envi-

ronments, E-FM focuses mainly on minimizing the cost of the exchanged

data between the private and public cloud resources.

The implemented approach highlights the efficiency of the proposed E-FM algo-

rithm and shows that the final deployment costs of an agent-based system with

varying demands in terms of computational resources is sensitive to multiple

factors such as the cloud providers and their different cost-models, the network

state, the used partitioning algorithm, as well as the executed scenarios.

Thus far, the distribution of MAS towards more scalable systems has been

widely addressed through the use of clusters [5] [6] and grids [7] [8]. Whereas,

few approaches have been elaborated to deploy MAS on resources within a

single cloud provider [9] [10]. To the best of our knowledge, this is the first

approach that focuses on deploying MAS with varying demands for computa-

tional resources on a cloud environment that can incorporate multi-public cloud

providers.

The rest of the paper is organized as follows: section 2 presents a moti-

vating example. Section 3 gives an overview of the basic concepts. Section 4
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describes the proposed generic framework for deploying MAS to hybrid clouds.

Afterwards, section 5 highlights the experimental results. Related work and

conclusions are presented in sections 6 and 7 respectively.

2. Motivating example

MAS have been widely used to model, simulate and test various evacuation

and coordination strategies within disaster management domain [11] [12] [1].

Using crisis evacuation as a scenario, we consider the MAS shown in Figure 1,

which consists of N agents moving around in the spatial environment of a city.

«City»

a1
v2

r4

v5

v9

v3

v6

v4

v8

v1
v7

r2

r1

r5

r3
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a4
a2

a3

hospital

At time t=t0

cpu=20 Mb

ram=0.5 Gb

At time t=t1

cpu=50 Mb

ram=1 Gb

Figure 1: Agent-based Model

The model contains three types of agents including victims shown as black

ellipsis, rescuers presented as red triangles, and ambulances/transport vehicles

shown as blue squares. The victim agent has three possible states: (i) normal

injury that can be treated on the accident site, (ii) serious injury that can be

treated in the hospital and (iii) dead if the agent is seriously injured and no

rescuer appears. The rescuer agent retrieves a victim after receiving a notifica-

tion about its location. The ambulance agents are responsible for carrying the

seriously injured victims to the hospitals.

Each agent has a set of requirements in terms of memory and computational

resources at start time t=t0. Those requirements change during run-time based

on the workload executed by the agent.

4



For example, initially at t=t0, the agent r6 needs to be assigned to a Virtual

Machine (VM) with a minimal memory (0.5 Gb) and a minimal CPU (20 Mb).

Whereas at t = t1, r6 requirements in terms of memory and computational

resources change to a minimal memory of (1 Gb) and a minimal CPU of (50

Mb).
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Figure 2: Hybrid Cloud

The hybrid cloud shown in Figure 2 integrates the on-premise resources

within a research organization and two public cloud providers cloud1 and cloud2.

Each public cloud provider hosts a set of VMs. For example cloud1 has three

VMs= (vm1, vm2, vm3). Each VM is characterized by its compute and data

transfer prices, its availability zone as well as a set of capabilities including CPU,

RAM and bandwidth. For example vm1 within cloud2 has a compute price of

(0.2 $/hour), a transfer data price of (0.4 $/Gb) and an availability zone in

the region R1. Moreover, it has a CPU of (150 Mb), a (7 Gb) of RAM and a

bandwidth of (150 Mbit/s).

A suitable MAS deployment to the hybrid cloud consists of (i) starting with

an appropriate initial distribution of the MAS that minimizes the deployment

costs, and (ii) adapting the resource allocation to the changes in the demands

for memory and computational resources of all agents within a MAS. Assume

that the current on-premise infrastructure is insufficient in terms of available

memory and computational resources to run the MAS shown in Figure 1. Let

S1 and S2 illustrated respectively in Figure 3a and Figure 3b be two possible

initial deployment solutions for the MAS across the hybrid cloud of Figure 2.

Assuming S1 costs (6$) for compute and data transfer costs, whereas S2 is
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cloud2.vm1On-premise

(a) Initial deployment solution S1.

cloud2.vm1On-premise

(b) Initial deployment solution S2.

Figure 3: Initial Deployment of the MAS to the hybrid cloud.

charged for (8$) for overall deployments costs. Thereby, among all the possi-

ble initial deployment solutions, we are interested in achieving a cost-efficient

deployment that reduces the compute and data transfer costs. Assume that S1

presents the suitable initial deployment at t=t0 . At t=t1, with the dynamic

changes in terms of required CPU and RAM, one of the two following cases may

arise:

O
n

On-premise cloud1.vm1 

At time t=t1

vm1.cpu=100 Mb

vm1.ram=4 Gb

b=150 Mbit/S

required cpu=110 Mb

required ram= 4 Gb

At time t=t1

vm1.cpu=100 Mb

vm1.ram=3 Gb

b=150 Mbit/S

required cpu=50 Mb

required ram= 1 Gb

(a) Imbalanced partitions.

O
n

On-premise cloud1.vm1 

At time t=t1

vm1.cpu=100 Mb

vm1.ram=4 Gb

b=150 Mbit/S

required cpu=120 Mb

required ram= 5 Gb

At time t=t1

vm1.cpu=100 Mb

vm1.ram=3 Gb

b=150 Mbit/S

required cpu=99 Mb

required ram= 2.9 Gb

(b) Insufficient public cloud resources.

Figure 4: Dynamic changes of the agents requirements at t = t1.

• Imbalanced partitions: as shown in Figure 4a, the virtual machine

within the provider cloud1 is overloaded, in other words the required CPU

exceeds the capabilities of the VM, while the on-premise VM is under-

loaded. In this case, a redistribution of the agents within the MAS is

sufficient to solve the problem. However, while migrating a set of agents

from the overloaded partition to the opposite side, the communication

costs need to be kept minimized.
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• Insufficient used resources: as shown in Figure 4b, the current leased

cloud resource is insufficient in terms of CPU and RAM to execute the

hosted agents. Due to the minimal available CPU and RAM on-premise

resource, a redistribution of the agents can not solve the problem. Thus

new public cloud resource allocations are required to properly execute the

MAS.

We are interested in providing a cost-efficient adaptive deployment solution

over time of a given MAS to a given hybrid cloud. Therefore an offline approach

consisting of predicting and optimizing the overall deployment costs is required.

The next section provides an overview of the basic used concepts. Afterwards

the proposed approach is presented.

3. Preliminaries and Background

In this section, we provide an overview of the basic used concepts in this work

including (i) hybrid cloud, (ii) MAS and, (iii) adaptive deployment of MAS on

hybrid clouds.

3.1. Hybrid Cloud

A hybrid cloud [13] refers to the integration of both private and public cloud

models via defined bandwidths. In our work, we use a hybrid infrastructure to

expand the on-premise resources with public ones to ensure a proper execution

of the MAS over time. We define the on-premise infrastructure , the public

cloud provider and the hybrid cloud respectively in definitions 1,2 and 3.

Definition 1: (On-premise Infrastructure) An on-premise infrastruc-

ture Ip is defined as a tuple (VM ) where:

VM = {vmi | i ≥ 1} represents the set of virtual machines available within

Ip. Each vm is defined as a tuple vm = (mr,mc,mb) where the terms cor-

respond respectively to maximum memory capacity (Gb), maximum compute

capacity (Gb), and the maximum bandwidth capacity (Mb/s).

Definition 2: (Public cloud provider) A cloud provider Cp is defined

as a tuple (VM) where:

VM = {vmj | j ≥ 1} represents the set of virtual machines provided within

Cp. Each vm is defined as a tuple vm = (pc, pd, a,mr,mc,mb) where the

terms correspond respectively to the compute price ($/hour), data transfer price

($/GB), availability zone, maximum memory capacity (Gb), maximum compute

capacity (Gb), and the maximum bandwidth capacity (Mb/s).
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Definition 3: (Hybrid cloud) A hybrid cloud HC is defined as a tuple

(CapHC
,C ) where:

• CapHC
= ({Bi, pbi} | i ≥ 0) represents the characteristics of HC in terms

of used bandwidths (Gb/s) and its prices ($/hour).

• C represents both on-premise resources Ip and the set of cloud providers

Cp within HC .

An example of a hybrid cloud HC =(CapHC
,C ) is depicted in Figure 2

where, CapHC
= ({B1, pb1}, {B2, pb2}, {B12, pb12} ) such that {B1, pb1}= (5

Gb, 1.1 $), {B2, pb2}=(5 Gb, 1.12 $) and {B12, pb12}=(10 Gb, 2 $). Fur-

ther, C =(cloud1, cloud2, Cp ); cloud2=(VM ); VM = (vm1, vm2); vm1=(0,2

$/hour,0,4 $/Gb, R1, 150 Mb, 7Gb, 150 Mbit/S); Cp=(VM); VM=(vm1);

vm1=(100Mb, 4 Gb, 100 Mb/s)

3.2. Multi-Agent System

A multi-agent system consists of a set of agents, which interact with one

another via messages, in a common environment(real/virtual) where they can

act and cooperate to achieve system objectives [14] [15] [16]. We define an agent

and a MAS respectively in Definition 4 and 5.

Definition 4: (Agent) Let ag ∈ A be an agent, ag is a tuple (W , AQoS ,

T) where :

• W represents the agent workload to be performed to accomplish a given

task.

• AQoS represents the set of QoS requirements which are defined as a tuple

(rr, rc) where : (i) rr represents the required minimal memory and (ii) rc

is the minimal required computing capacity.

• T: W → AQoS which assigns for the agent workload w ∈ W a set of QoS

requirements in terms of RAM and CPU in AQoS to be correctly executed.

For example, the agent r7 within the MAS illustrated in Figure 1 requires

at (t=t0) (20 Mb) of CPU and (0.5 Gb) of RAM, whereas at (t=t1) those

requirements increase to (50 Mb) of CPU and (1 Gb) of RAM due to an increase

in its performed workload.

Definition 5: (Multi-Agent System) A MAS is a tuple (A, E, I, O)

(vowels decomposition [17]) where:

8



• A : represents the set of agents within the MAS.

• E : represents the virtual or real entity where the agents are embedded.

• I ⊆ A × A represents the set of direct interactions between the agents.

An interaction denotes the exchange of messages between the agents;

• O : represents the set of organizations within the MAS.

For example, as shown in Figure 1, the MAS= (A, E, I, O) where : A=

(a1, .., a4, v1, .., v9, r1, .., r7); E= ”The city”; I1= {(a1, v3),(a1, v1), (r3, r7)...};
O=(O1, O2, O3) where O1 is the group of rescuers, O2 is the group of victims

and O3 is the group of ambulances.

3.3. Adaptive deployment of MAS into hybrid clouds

An adaptive deployment of MAS into a hybrid cloud consists of (i) allocating

the appropriate public cloud resources once the existing ones are insufficient

and/or (ii) redistributing the agents among the on/off premises once a load-

balance issue occurs.

Let mas be the multi-agent system to be deployed in a hybrid cloud environ-

ment HC . The deployment of mas into HC is given in definition 6.

Definition 6: Adaptive MAS Deployment The adaptive deployment of

mas into HC is a function D: A ×W → C×VM which is invoked each time a load

balance issue is detected due to the changes in agents workloads. It assigns for

each agent ag ∈ A the suitable VM within the appropriate cloud C ∈HC . We

denote by D = {(ag1, D(ag1,wag1 )), (ag2, D(ag2,wag2 )), . . . , (agn, D(agn,wagn ))}
the set of agents and their allocated resources corresponding to the executed

workload within each agent over-time.

The deployment of MAS on a hybrid cloud needs to be cost-efficient. In other

words, the distribution of the agents across the on and off premise resources

should result in minimal compute and data transfer costs. In the following

section, we detail our proposed approach, which given a MAS and a hybrid

cloud environment, dynamically provide a cost-efficient deployment.

1presented in Figure 1 with arrows
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4. Proposed Approach to support MAS distribution on cloud envi-

ronments

In this section we present an overview of the proposed framework to support

MAS distribution and deployment on a given cloud environment (section 4.1).

Afterwards, we describe in more detail the performance evaluation process to

estimate and optimize the overall cloud deployment costs (section 4.2) as well as

we present the extended Fiduccia-Mattheyses (E-FM) algorithm (section 4.3).

4.1. Architecture of the proposed framework to support MAS deployment on

cloud environments

The proposed framework, shown in Figure 5, takes as input a given MAS

and a given cloud environment (e.g. hybrid cloud, cloud federation) in order to

achieve an adaptive cost-efficient deployment of the system across the underlying

infrastructure. The framework incorporates two main processes: (i) a pre-

deployment process, and (ii) a deployment process.

4.1.1. The pre-deployment process

The pre-deployment process represents a prediction phase to investigate and

optimize the overall deployment costs of a given MAS on a given cloud environ-

ment. It is composed of two processes:

• The pre-selection process 2 takes as input a given MAS and a set of

partitioning algorithms and provides as output a set of candidate algo-

rithms that can be used to efficiently deploy the MAS across a distributed

infrastructure. An efficient deployment of agent-based systems on dis-

tributed computational environments requires significant efforts to assign

the agents to the corresponding VMs while minimizing the communica-

tion costs. To do so, various partitioning algorithms such as this of [5] [6]

[18] have been used to distribute agents across different infrastructures.

Based on a deep literature study, we proposed a conceptual framework

[19] that defines a set of recurrent criteria related to (i) the MAS such

as its type, the agents proprieties, the characteristics of the environment

and the type of the interactions as well as; (ii) the target infrastructure.

The framework allows analyzing the appropriateness of the partitioning

algorithms for a given MAS type and giving guidelines to develop new

2The pre-selection process is out of the scope of this paper
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distributed systems. As far as we know only the approach elaborated in

[9] [10] focused on using the cloud environment to run distributed MAS.

The proposed approach is dedicated to develop social simulations to be

executed on a HPC cluster hosted in a single cloud environment. Fur-

ther, the existing approaches for distributing applications on clouds [20]

[4] [21] are too specific and dependent on the type of applications (more

details in section 6.1 ). Therefore, we adapt and extend existing parti-

tioning algorithms by taking into consideration the cloud specifications

(compute costs, data transfer costs and latency, to name a few) in order

to efficiently distribute MAS on different cloud environments (hybrid and

multi-cloud environments). Afterwards, the conceptual framework will be

enriched with additional extended algorithms that can be recommended

to distribute a given MAS on a given cloud infrastructure.

• The performance evaluation process consists of estimating and opti-

mizing the overall deployment costs by providing a suitable efficient dis-

tribution of the MAS across the cloud environment. It takes as input,

the MAS to be deployed, the list of candidate algorithms provided by the

pre-selection phase and the cloud specifications and provides as output an

adaptive cost-efficient deployment solution of the MAS. The evaluation

process is based mainly on using a reference machine to run a profiling

phase of the MAS. It aims at collecting the required information includ-

ing the execution time and the intra/inter communications within a MAS.

The collected data is used as an input to the partitioning algorithms virtu-

ally simulated to distribute the system on the cloud resources. As shown

in Figure 5, the prediction process is based on three essential services

which are as follows: the monitoring service, the decision making service

and the invoking algorithms service. Since the current work focuses on

the prediction process, all the aforementioned services will be thoroughly

described in the next section (4.2).

4.1.2. The deployment process

The deployment process takes as input the deployment solution provided by

the pre-deployment process in order to assign each agent within the MAS to

the corresponding cloud resource. In the next sections, we focus mainly on the

performance prediction process in order to evaluate the E-FM algorithm and its
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Figure 5: The proposed Framework to support MAS deployment process on a cloud environ-
ment

integral version. We assume that both of the algorithms are chosen as candidate

algorithms from the pre-selection phase.

4.2. Performance evaluation process

The main steps of the performance evaluation process are presented in algo-

rithm 1.

The process takes as input a MAS to be deployed, the hybrid cloud HC ,

the number of steps required to finish the simulation (tend is expressed in terms

of time unit) and the list of the candidate partitioning algorithms Lalgp . The

main idea consists of running a profiling phase using a sequential simulation

(non-distributed MAS) on a reference machine to perform many partitioning

options and provide the suitable deployment solution. The algorithm starts by

calculating the initial deployment by assigning each agent within the MAS to

the corresponding cloud resource within HC . Then, at each simulation step,
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Algorithm 1 Pseudo-code of the Performance Evaluation Process

Input: MAS,HC ,tend, Lalgp
Output: D

1: Calculate initial deployment
2: Start Sequential Simulation and trigger the Monitoring
3: stepsim ← 0
4: balance ← true
5: while stepsim 6= tend do
6: Suspend the Simulation
7: balance=Check the load-balance on used VMs
8: if balance == false then
9: D= Perform partition algorithms within Lalgp

10: Perform re-allocation according to D
11: end if
12: Resume Simulation
13: stepsim ← stepsim + 1
14: end while

the CPU and RAM usage as well as the exchanged data between the agents

residing on different VMs is analyzed to check the load-balance (line 2-7). If

this is the case, the candidate algorithm within Lalgp are separately invoked to

restore the balance or allocate new resources if the existing ones are insufficient

to fulfill the agents new requirements while maintaining reduced data transfer

costs (line 9). Afterwards, the resources are allocated according to the new com-

puted deployment solutions using the different algorithms and the simulation is

resumed (Line 10-12). As shown in the algorithm 1, the process incorporates

mainly three activities: (i) the sequential simulation, (ii) the monitoring and

(iii) load-balance and re-deployment. The Table 1 summarizes all the notations

used in this paper.

4.2.1. Sequential Simulation

The agent-based system is executed on a reference machine as a sequential

monolithic application. At each simulation step, the collected data is logged and

used to detect the need for invoking the partitioning algorithms with the aim

of restoring the balance between the partitions allocating and/or de-allocating

new cloud resources to fulfill the system requirements in terms of memory and

computing capacities. The logged data consists of the detected execution time

on the reference machine, the VMs used to deploy the agents, the size of the

intra/inter exchanged data between the agents. The data is gathered using a

monitoring service, which is triggered at the beginning of the simulation. Then,
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it is communicated to the decision-making service (Figure 5), which is respon-

sible for invoking all the candidate algorithms to assess different partitioning

options. The agent-based system is not affected by any of the partitioning

mechanisms.

4.2.2. Monitoring

Due to the complex behaviors of the simulated entities and their interactions,

the computational structure of the simulation may change during run-time,

which leads to an unbalanced system and affects the overall performance.

Symbols Definitions
agi agent i / (i=1,..., n)
A the set of agents
HC the hybrid cloud
Ip the on-premise infrastructure
Cp the set of public cloud providers

TUnit time unit defined by the cloud provider to apply charges.
DUnit data unit defined by the cloud provider to apply charges.

CostExecTunit
cost associated to TUnit.

CostExecDunit
cost associated to DUnit.

β bandwidth
λ communication Latency for a given Cloud
PI performance Index between the source machine and the target

one.
TexecSV Mk

execution time of VMk on the source machine performing the
sequential simulation.

TexecTV Mk
estimated Execution Time of VMk on the target machine per-
forming the sequential simulation.

TexecT The execution time of one iteration of the MAS.

Table 1: Notations.

Therefore, computing time and agents loads including computational and

communication loads are monitored at the beginning of each iteration. The

design of an agent always requires a deep specification of the environment. An

environment within a MAS can have the following characteristics [22]:

• Fully observable (vs partially observable): The agent has access to the

complete state of the environment at each point of time.

• Deterministic (vs Stochastic) : The next state of the environment is com-

pletely determined by the current state and the action executed by the

agent.
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• Episodic (vs sequential) : An agent action is divided into atomic episodes.

Decisions do not depend on previous decisions/actions.

• Static (vs dynamic) : The environment is unchanged while an agent is

deliberating.

• Discrete (vs continuous): A limited number of distinct, clearly defined

percepts and actions.

• Single agent (vs multi-agent): An agent operating by itself in an environ-

ment.

We are interested in a MAS, in which the environment has the following

characteristics: fully observable, deterministic, sequential, dynamic, discrete

and multi-agent. For our case study of evacuation described in section 2, the

aforementioned proprieties characterize our simulation environment. Therefore

based on the history of the previous iteration, we can determine for the current

iteration the load that will be executed by each agent based on the pre-achieved

behavior. Consequently, we can determine the time that will be taken by each

partition to execute the overall workload. The estimated execution time on a

used VM within the hybrid cloud HC during a simulation step is determined

using the captured execution time on the reference machine. Indeed, each agent

has a workload to be executed, which can be expressed in terms of the number

of performed instructions. Further, the reference machine is characterized by

its MIPS (Millions of Instructions Per Second).

Thus, let {agi | i = 1..n} ⊆ A be a set of agents deployed on the VMk within

the hybrid cloud HC . Each agent agi ∈ {agi | i = 1..n} has a set of instructions

Nagi to be performed. Therefore the execution time of {agi | i = 1..n} on the

reference machine is determined in equation 1 as follows:

TexecSvmk
=

∑
agi∈VMk

Nagi

MIPS ∗ 106
(1)

The numerator corresponds to the total number of instructions performed

by the agents deployed on the virtual machine VMk within HC . The calculated

execution time on the source machine is used to determine the estimated exe-

cution time on the target virtual machine VMk. Thus the estimated execution

time is determined using the equation 2:

TexecTV Mk
= TexecSvmk

∗ PI (2)

The first element of the equation denotes the captured execution time on the

reference machine multiplied by the Performance Indicator (PI) that gives the
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ability of the target machine to execute the load compared to the source ma-

chine.The estimated execution time of one iteration corresponds to the maximal

execution time recorded over all the used VMs within HC . The recorded time

value, shown in equation 3, is used to detect the imbalance between partitions

if it exists and invoke the partitioning algorithm of the load-balance mechanism.

TexecT = max(TexecTvmk
) (3)

The load-balance mechanism is activated once the execution time on the target

infrastructure exceeds a given threshold value 3.

4.2.3. Load-balance

Once an imbalance is detected, the candidate algorithms are invoked in par-

allel to start the partitioning phase. In fact, each instance of the running algo-

rithms uses the logged simulation data as well as the hybrid cloud specifications

(cloud provider, charges, latency, bandwidth and virtual machines capabilities

to name a few) to proceed with the virtual partitioning. The number of the

executed instances depends on the number of the candidate algorithms. At the

end of the partitioning phase, each running instance generates the total cost of

the deployment solutions provided using the partitioning algorithms. All the

costs are logged in order to be used at the end of the simulation to evaluate the

overall performance of all the algorithms across the hybrid cloud.

A generated cost incorporates three metrics namely, the execution time cost,

the communication cost, and the migration cost defined in a previous work[19].

The performance evaluation process is used to compare the performance of a

new adapted algorithm called E-FM to its original FM version .

4.3. Candidate Partitioning Algorithms

In this section, we highlight the graph-based partitioning problem and present

our extended version of the FM algorithm used to find an efficient deployment.

4.3.1. Problem Statement

We map the task of finding a cost-efficient deployment to a graph-partitioning

problem. Graph partitioning is NP-hard problem [23]. It consists of dividing

a given graph into well balanced K sub-graphs while minimizing the number of

3The threshold value is determined during the experimentation
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the interconnecting edges. The selection of the graph approach is not arbitrary.

For all the existing partitioning algorithms (discussed in more details in section

6) for agent-based systems, only graph-based partitioning algorithms consider

explicitly the minimization of the communication costs, which is a key issue

within distributed environments. Our objective is to assign each agent ag ∈ A

within a MAS to one of the VMs within the hybrid cloud HC . Further, we aim

at finding a deployment solution, in which the overall costs are minimized.

Let G=(A ,E ,Wag,We) be an un-directed graph where :

• A = (ag1, ag2,.., agi, i ≥ 1) is the set of agents within a given MAS to be

deployed on cloud resources (Definition 4).

• E represents the set of edges connecting the agents. Within a MAS an

edge denotes an interaction between two agents (Definition 5).

• Wag denotes a set of requirements assigned to each agent agi. Each agent

has a list of needs in terms of computing and memory resources.

• We represents an edge’ s weight. It denotes the communication overhead

between the agents. C=(wi,j) is the adjacency matrix of the graph G.

If there exists a communication between agi and agj , wi,j represents the

amount of the communicated data.

Let M =(mkl) be a matrix where mkl depicts the cost of transferring data

($/Gb) between the virtual machines k and l within the hybrid cloud HC .

If both virtual machines belong to the same cloud provider 4, then the data

exchange cost mkl =0. Otherwise, mkl represents the inter-cloud bandwidth

utilization cost.

More formally, for each agent agi ∈ A within the MAS we consider the

following decision variable:

Yijk equal to 1 if agi is deployed on the virtual machine VMk within the

cloud Cj , and 0 otherwise.

The main objective is to minimize the inter-cloud communication, conse-

quently the sum of the edges weight between the VMs belonging to private and

public clouds. Our goal is to find two partitions of the graph G where the first

and second partitions present the private and public clouds respectively. Thus,

we use the variable pij which is equal to 1 if the virtual machines VMi and VMj

4means both of machines are on the private cloud or within the same public cloud provider
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are in different clouds and, 0 otherwise. Therefore, we consider the following

objective function depicting the sum of the inter-edges communications (F) to

be minimized (equation 4):

F =

A∑
i,j

C∑
k,l

V M∑
t,n

(YiktYjlnPtnmtnwij). (4)

Also more constraints represented in the equations 5 and 6 are required to

describe properly our problem:

∀j ∈ C , k ∈ VM,

A∑
i

(Yijkrc) 6 mcYijk. (5)

∀j ∈ C , k ∈ VM,

A∑
i

(Yijkrr) 6 mrYijk. (6)

Equations 5 and 6 indicate that the total requirements expressed in terms

of CPU and RAM of a set of agents residing in the same machine, should not

exceed the maximum capacity of that machine.

4.3.2. Extended-Fiduccia-Mattheyses

To partition the graph and find a cost-efficient deployment, we extend the

FM algorithm, which was firstly introduced in [24]. FM is a bi-partitioning

algorithm that takes as input a graph and provides as output a graph partitioned

into two subsets such that the number of the edges interconnecting the partitions

is minimized. Our extended version of FM is different in the sense that:

• We are interested in minimizing the cost of the transferred data between

the on and off premise resources instead of minimizing the number of

communications ( number of the inter-edges in the graph). In fact, the

number of communications may be high, whereas the amount of the ex-

changed data is low and vice versa.

• Further, we want to find public cloud VMs that fulfill the agents require-

ments in terms of memory and computing resources. Thus, we may find

public cloud VMs with minimal costs, however, its capabilities are insuf-

ficient to deploy the agents.

E-FM algorithm (Algorithm 2) takes as input the MAS and the hybrid cloud

environment. It provides as output a deployment solution D (Definition 6) that

consists of assigning each agent within the MAS to a pair: the cloud provider and

a VM in the hybrid cloud. The algorithm is performed on two phases: (i) the
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first phase allows generating a deployment graph on which the partitioning

will be performed (Line 1). The second phase denotes the re-partitioning

of the graph in order to meet the agents new requirements and minimize the

communication overhead (Line 2-Line 19).

Resource Allocation

The first phase consists of assigning the agents within the MAS to the cor-

responding resources within the hybrid cloud. The objective is to generate a

graph on which the partitioning will be performed. The graph depicts the com-

munication costs between the on and off premise VMs, where the agents

are deployed. An example of the graph is shown in Figure 6. The generated

graph consists of four layers. The first layer (the smallest nodes) represents the

agents within the MAS and the communications between them. The second

layer shows the VMs, which are connected if they are allocated to interacting

agents. The third layer shows the cloud providers, where the VMs are hosted.

The forth layer, represents the private and public infrastructures, to which the

cloud providers belong. The graph edges are annotated with weights that are

defined as the data exchange between the agents within the MAS multiplied by

the bandwidth price in the hybrid cloud.

On-premise
Public clouds

cloud1

cloud2

VM1

VM2 VM3

VM1

VM1

private cloud

VM1

VM2

1$

0.5$

1$

1$

2$

0.5$

Figure 6: Generated deployment nested graph

In order to generate the graph, we need to find an initial resource allocation.

To do so, many algorithms can be used such as the first fit algorithm, the best

fit algorithm and random allocation, to name a few. The impact of an algorithm

used for initial allocation is out of the scope of this paper. In the frame of this

work, we used the first fit algorithm that consists of assigning the agents within

the MAS and leasing low cost public cloud VMs. It takes as input, the list of
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the agents, as well as the list of the clouds and VMs within the hybrid cloud.

As output, it provides a deployment solution that assigns each agent to the first

available VM that fulfills the agent’s needs in terms of CPU and RAM.

The partitioning phase This phase consists of re-partitioning the gener-

ated graph in order to minimize the communication costs between the on and

off premise resources. The partitioning is performed at the fourth level of the

Algorithm 2 Pseudo-code E-FM

Input: MAS, HC

Output: D
1: Resource allocation: Generate a deployment graph
2: repeat
3: Compute the gain for each agent
4: Order agents into a bucket
5: repeat
6: Select the agent with Maximum gain value
7: if agent needs are verified then
8: Move agent to the opposite side
9: Lock the Moved agent

10: Delete the agent from the bucket
11: Update the gain for the agent neighbors
12: Compute the cumulative gain
13: else
14: Select next maximum gain in the bucket
15: Goto to instruction 7
16: end if
17: until No free cells
18: Update partitions: Confirm swaps
19: until no reduction in cut-size
20: Return partitions

generated graph, which shows the distribution of the agents between the on-

premise infrastructure and the set of the public cloud providers. During this

phase, E-FM redistributes the agents so that the updated partitions represent

the lowest communication costs. The agents migrate from and to the on-premise

resources. The decision of migrating an agent is based on computing a gain value

determined in equation 7. Let agi ∈ A be an agent deployed on a VM within

HC and gi is the gain associated to the agent agi to be migrated from/to the

on-premise infrastructure.

gi = gi,ExecT + gi,ComD
(7)

Where gi,ExecT is the gain associated to the agent agi in terms of the data
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transmission time, which affects the overall execution time. Whereas, gi,ComD

is the gain associated to the agent agi in terms of the amount of the exchanged

data.

In our extended algorithm we distinguish two cases for determining the agent

gain value:

• If the agent is deployed on a VM hosted within the on-premise infrastruc-

ture, its gain is defined as the sum of both equations 8 and 9. Let agi ∈ A

be an agent deployed on a VMj ∈ Ip, gi,ExecT and gi,ComD
are the gains

associated to the agent agi, to be migrated from Ip to Cp, in terms of

data transmission time and size of the communicated data respectively.

gi,ExecT = (
(
ES(agi,Cp)−IF (agi,Ip)

β ) + λ

Tunit
) ∗ costExecT (8)

gi,ComD
= (

ES(agi,Cp)− IF (agi,Ip)

Dunit
) ∗ costComD

(9)

Where within both equations 8 and 9, ES(agi,Cp) is a function that re-

turns the size of the data received by the agent agi and sent from a set

of agents deployed on VMs hosted within Cp. Whereas, IF (agi,Ip) is a

function that returns the size of data sent by agi to a set of agents de-

ployed on VMs hosted within Ip.

• If the agent is deployed on a VM hosted in one of the public cloud

providers, its gain is defined as the sum of both equations 10 and 11.

Let agi ∈ A be an agent deployed on a VMj ∈ Cp, gi,ExecT and gi,ComD

are the gains associated to the agent agi, to be migrated from Cp to Ip,

in terms of data transmission time and size of the communicated data

respectively.

gi,ExecT = (
(
EF (agi,Ip)−IS(agi,Cp)

β ) + λ

Tunit
) ∗ costExecT (10)

gi,ComD
= (

EF (agi,Ip)− IS(agi,Cp)

Dunit
) ∗ costComD

(11)

Where within both equations 10 and 11, EF (agi,Ip) is a function that

returns the size of the data sent from the agent agi and received by a set

of agents deployed on VMs hosted within Ip. Whereas, IS(agi,Ip) is a

function that returns the size of data sent by a set of agents deployed on
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VMs hosted within Cp and received by agi.

In both equations 8 and 10, the gain in the transmission time is multiplied

by the computing costs. Whereas, in the equations 9 and 11, the gain in the

amount of the transferred data is multiplied by the bandwidth price within the

hybrid cloud.

Once the gains are computed and ordered (Line 3-Line 4), the migration

of the agent with the maximum gain is only valid if the hosting infrastructure

contains a VM that fulfills the agent needs in terms of CPU and RAM (Line 5-

Line 17). The algorithm stops when no improvement in the inter communication

costs is recorded in two successive iterations.

5. Experiments and Results

The proposed approach is implemented using the JADE agent platform 5,

which is compliant with the FIPA 6 specifications. In other words, the perfor-

mance evaluation process is implemented as an agent-based system where each

of the services described above (in section 4.2) is performed by a single agent.

Furthermore the graph-based algorithms FM and E-FM are implemented using

the Java language and Eclipse. We conducted a set of experiments to compare

both algorithms using different hybrid cloud settings and various simulation

scenarios. As input, we considered five different configurations to run different

simulation scenarios of the MAS presented in section 2. Each configuration in

Table 2 consists of the numbers of the victims, rescuers and ambulances. The

configurations vary in terms of the total number of agents within the simulation.

The different hybrid cloud settings have been simulated. Indeed, many re-

search works [25] [26] [27] focused on using the simulation technique for cloud

environment testing. Indeed, it allows decreasing the complexities of dealing

with the underlying infrastructure while focusing on the quality concerns. The

simulation of cloud system has shown its usefulness in: (i) investigating the

effectiveness of various approaches dedicated for provisioning, deployment and

scheduling; (ii) offering a controllable environment where researchers can test

their approaches in a repeatable way without paying any cloud fees and (iii)

5http://jade.tilab.com/
6http://www.fipa.org/
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Configurations
(Total agents
number)

Victims
Number

Rescuers
Num-
ber

Ambulances
Number

200 130 40 30
400 270 100 30
600 400 120 80
800 500 200 100
1000 600 250 150

Table 2: MAS Configurations.

providing reasonable and near results compared to the real conducted exper-

iments such as in [27] [28]. Thus, in the current work, the simulation of the

hybrid cloud environment exempted us from dealing with the complexities of

the underlying infrastructure while ensuring reasonable simulated results. As

shown in Table 3, the used hybrid cloud interconnects an on-premise infrastruc-

ture with two VMs and two public cloud providers (P1 and P2). Each cloud

provider offers 30 types of VMs, located in two different availability zones (see

Table 3) . Both private and public infrastructures are interconnected through

a bandwidth, which we varied its values to determine its impact on the overall

deployment costs.

Table 3: Hybrid cloud settings

Hybrid
setting 1

Hybrid
setting 2

Bandwidth

On-premise Vms number 2
B1= 100 Mb/s
B2=300 Mb/spublic cloud

providers P1 P2
VM types number 30

Availability zones
R1: eu-central-1
R2: ap-southeast-1

The experiments were conducted on a laptop with a 64-bit Intel Core 2.10

GHz CPU, 4 GB RAM and Windows 7 as operating system. Further, the

experiments were performed under the following assumptions:

• All the messages have the same size. We used the known maximum mes-

sage size value, to overestimate the size of the rest of the messages. Our

objective is to properly provide an accurate deployment with minimum

communication costs. Thus using the overestimation whether the agents

are exchanging small or large data size will improve the partitioning re-
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sults.

• The latency is fixed for each used availability zone in hybrid cloud settings.

It is represented as the mean of 10 measurements for each zone.

5.1. Experiment 1

In this section, we compare E-FM to FM using the following efficiency cri-

teria:

• The inter-data transfer costs.

• The overall deployment costs.

The partitioning algorithms are virtually simulated to provide deployment so-

lutions on the hybrid cloud setting 1 shown in Table 3 using as availability zone

R1 and 100 Mbit/S of bandwidth.

Figure 7 presents the comparison between the obtained deployment solutions

generated using E-FM and FM in terms of inter transferred data within the

hybrid cloud. For all the configurations (see Table 2), our extended version of

FM provides better results in terms of reduced communication costs between

the on/off premise resources. Thus considering the minimization of the data

transfer costs is more pertinent than focusing only on reducing the number

of the communications (number of edges interconnecting the partitions). As a

consequence, the deployment solution provided by FM results in increased inter-

communication costs. Further, as shown in Figure 8, E-FM provides the lowest

overall deployment solution costs compared to FM. Due to the large amount of

transferred data within the FM solution, the time of processing and executing

the simulation are both increased, consequently the deployment costs present

highest values compared to those found using E-FM.

5.2. Experiment 2

In this section, we present the impact of varying parameters related to the

hybrid cloud setting on the data transfer and overall deployment costs. E-

FM outperforms FM within the same hybrid cloud and provides a deployment

solution with reduced costs. However, the extended algorithm is based mainly

on the computation of gains in terms of data transfer costs through a formula

that uses provider cost model, bandwidth and network latency. Thus, varying

those parameters may have a huge impact on the system performance as well as

the overall deployment costs. The experiments are conducted using the E-FM

partitioning algorithm while varying at each time one of the following factors:
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Figure 7: Inter Data Transfer costs of the deployment solutions on the hybrid cloud setting 1
using FM and E-FM
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Figure 8: Overall costs of the deployment solutions on the hybrid cloud setting 1 using FM
and E-FM

• Varying the cost model through the use of different public cloud providers

(P1, P2)

• Varying the network latency by using different availability zones (R1, R2)

within the used hybrid cloud.

• Varying the bandwidth interconnecting the on/off premise infrastructures

(B1, B2).

5.2.1. Impact of public cloud providers

In this section, we present the impact of varying the used public cloud

providers within the hybrid infrastructure while maintaining the same band-

width and availability zone. The cloud market is in continuous growth with

competitive third parties, therefore choosing the right public provider is a chal-

lenging issue. We consider the use of two virtual machines vm1 and vm2 within
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the cloud providers P1 and P2 respectively. Both of the VMs are similar in

terms of technical capabilities. As shown in the Figure 9, with the use of the

cloud provider P2, E-FM gives reduced overall deployment costs compared to

provider P1. The results are explained by the fact that each cloud provider has

its own cost model, which impacts the overall deployment costs.
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Figure 9: Overall costs of the deployment solution on the hybrid cloud setting 1 and 2 with
E-FM

5.2.2. Impact of availability zones

In this section, we present the impact of the used availability zones within

the same cloud provider, while maintaining a fixed bandwidth. Indeed, the

data centers within an IaaS provider are distributed in different locations in the

world. Those locations contain independent regions. Each region is composed of

a set of isolated interconnected availability zones. The latency within a hybrid

cloud architecture is a critical issue, however with the use of different regions

and availability zones, the latency problem is more complicated and may affect

the system performance and induce extra costs. Thus, studying the impact

of the network latency within a hybrid architecture is of great importance to

provide a cost-efficient deployment solution.

The experiments are performed using the hybrid cloud setting 2 (see Table

3) by varying both the region and availability zone of the allocated Vms within

P2. Figure 10, shows the overall costs of the deployment solutions provided by

E-FM using two different availability zones within two different regions.

The results show that the network latency induced by using different avail-

ability zones within different regions has a huge impact on the overall deploy-

ment costs. As shown in Figure10, the extended algorithm used with the region

R1 provides better results (reduced deployment costs) compared to the selection
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Figure 10: Overall costs of the deployment solution on the hybrid cloud setting 1 using R1
and R2

of the region R2. The results are explained by the fact that the induced latency

within R2 is large and increased with the amount of communicated data be-

tween the on/off premise VMs. To minimize the impact of the network latency,

it is important to select the right locations to allocate the resources.

5.2.3. Impact of bandwidth

In this section we present the impact of the used bandwidth within the

hybrid cloud on the data transfer costs. The experiments are conducted using

the hybrid cloud setting 2 with R2 as an availability zone.
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Figure 11: Overall deployment costs within the hybrid cloud setting 2 using B1 and B2

As shown in Figure 11, the used bandwidth has an impact on the deployment

costs for all the configurations. E-FM provides better results (reduced costs)

by using B2 within the hybrid cloud. The allocation of the right bandwidth, in

the context of distributed environments is of great importance. On one hand

the use of a small bandwidth may cause extra delays and consequently lead
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to undetermined execution time, impact the system performance and inhibit

the efficiency of the used cloud resources. On the other hand, allocating large

bandwidth may result in high deployment costs.

Thus given the various parameters that may impact the system performance

and increase the overall costs, an offline approach to estimate and optimize the

deployment of MAS to hybrid clouds is of great importance.

6. Related Work

In this section, we provide an overview of existing prediction and perfor-

mance evaluation approaches as well as the partitioning strategies of MAS on

distributed environments.

6.1. Prediction-based approaches for cost-efficient deployment on cloud environ-

ments

Estimating and optimizing cloud deployment costs have been widely ex-

plored in several research work with various types of applications and diverse

cloud environments. Table 4 provides a synthesis of a selection of existing

prediction-based approaches according to the following criteria: (i) Focus; (ii)

Application type; (iii) Granularity; (iv) Metrics; (v) Cloud environment.

In [20], the authors present the CloudWard Bound for partially outsourcing

enterprise services to a hybrid cloud environment. Based on the application

performance requirements as well the privacy restrictions a set of candidate

components are selected to be migrated to the public cloud. The authors use a

set of metrics including the amount of executed workload, the storage capacity

and the transaction delays to provide an efficient hybrid cloud deployment. In

[29], the authors present both a methodology and chain tool for cloud bench-

marking and cost-efficient outsource of a set applications including databases,

file systems and JVM applications to the cloud. The proposed approach assumes

the use of a single VM within a cloud provider. In [30], the authors are interested

in achieving a cost-efficient deployment of deadline constrained bag-of-tasks

applications to a multi-vendor hybrid cloud. A set of scheduling algorithms

have been studied to predict and optimize the tasks outsource cost. In [31] a

prediction approach to ensure effective VM-provisioning and admission control

of multi-tiers web-applications is proposed. The approach provides an adaptive

automatic deployment solution on a given IaaS provider (Amazon EC2) by

using a set of auto-scaling and admission control algorithms. In [32], a cloud
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broker system called BioCloud is introduced. Given the budget constraints

and the workflow to be executed, BioCloud achieves a cost-efficient deployment

in a multi-cloud environment. It incorporates a profiler that estimates and

optimizes the overall costs before proceeding with the real deployment. To the

best our knowledge, we are the first to address the prediction and optimization

of deployment costs for MAS on cloud environments.

In the aforementioned work, each proposed prediction-based approach is

dedicated to be used with a given type of application and a given cloud environ-

ment. Each approach implements a set of scheduling and distribution algorithms

to generate different deployment solutions and defines objective functions to be

maximized or minimized based on the target aim. Granularity, which represents

the considered level of detail varies from one type of application to another. In

MAS, we consider the agent as the deeper level of detail in the deployment pro-

cess. Compared to the defined granularities in [20] [29] [30] [31] [31] an agent is

an active autonomous and continuously running entity that can be goal-oriented,

mobile, communicative and flexible, to name a few. Such characteristics make

the MAS different from the rest of the above applications types in the sense

that:

• A MAS, with autonomous mobile agents that can migrate (move) from one

VM to another multiple times during the simulation, requires a continuous

monitoring of its state over-time to detect any issue (imbalance and/or

insufficient resources). Whereas, within the rest of the applications the

deployed entities (tasks, jobs, components, etc) are immobile and the need

for additional resources is triggered by external events such as the large

numbers of user requests, tasks or jobs to be processed.

• Based on the simulated system, an agent may have a set of requirements

such as CPU, RAM, bandwidth, security and availability, to name a few.

Such requirements may change continuously over-time and new resource

allocation may be required to fulfill the ever-changing needs. In the exist-

ing approaches, only few QoS requirements are taken into consideration

specifically CPU and RAM loads. While, additional requirements induce

more challenges in finding the right cloud resources.

Further, since MAS can be used to model and simulate different system types,

our prediction-based approach is generic provided that a mapping from the

considered application to a MAS can be achieved.
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Moreover, additional research work have been elaborated to predict the per-

formance of simulations and specifically MAS. In [33], the authors focus on

predicting the performance of parallel synchronous simulations mainly the sim-

ulation of computer networks. A model using sequential simulation as input and

taking into consideration several factors including load-balance, communication

overhead, computation granularity and partitioning was developed. The authors

show the efficiency and the correctness of their model by comparing the pre-

dicted performance with the real system performance. In [34], performance an-

alyzer tools were developed to predict the performance of parallel discrete event

simulations(asynchronous and synchronous models) before proceeding with the

real implementation. The developed tools predict the speedup change of the sim-

ulation model with the number of the used processors. In [18], an operational

framework for evaluating partitioning mechanisms for agent-based simulations

on a cluster is presented. The authors used a sequential simulation to test mul-

tiple partitioning mechanisms and recommend a suitable one for a given initial

configuration. Similarly to the aforementioned works, we consider the use of

sequential simulation running as a monolithic application on a reference ma-

chine in order to analyze and profile its execution over time. However, our goal

is to provide an adaptive cost-efficient deployment of agent-based systems on

cloud environments specifically hybrid ones. Consequently, additional factors

including cloud market, network state (latency, bandwidth), characteristics of

the VMs and monetary costs need to be considered to properly distribute the

system and enhance its performance. Therefore the key novelty of the pro-

posed performance evaluation process is the incorporation of both hybrid cloud

specifications and MAS performance factors to provide a proper deployment so-

lution that assigns each agent to the corresponding cloud VM while maintaining

reduced communication costs.

6.2. Partitioning mechanisms for MAS

The distribution of agent-based systems across distributed environments has

been addressed in many research work [5] [6] [18]. The existing distribution

approaches consist mainly of partitioning the agents between the different re-

sources composing the used infrastructure. The partitioning approaches applied

to MAS fall into the following three categories: (i) Cluster-based approach

[6] [35] [36] in which the agents are clustered based on given criteria (member-

ship, position, etc) and then assigned to different machines; (ii) Grid-based

approach [37] [38], called also region-based approach, consists of decompos-
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ing the space component (environment) into multiple portions. Each portion

together with the set of agents residing on it are assigned to a machine; (iii)

Graph-based approach [39] [40] consists of representing the agents network

in the form of a graph which can be divided into sub-graphs (partitions). Then

each partition is assigned to a machine while minimizing the communication

overhead. In our work, we used a graph-based algorithm to provide a cost-

efficient deployment of a MAS on a given hybrid cloud. Among all the existing

partitioning approaches for agent-based systems, only graph-based partition-

ing algorithms consider explicitly the minimization of the communication costs,

which is a key issue within distributed environments specifically within cloud

infrastructures.

Graph partitioning has been applied to different application types. In [40],

the authors present a graph-based Automatic Load Balancing (ADLB) strategy

developed with the aim of distributing Agent Based Models on High Perfor-

mance Computing (HPC) infrastructure. The proposed strategy uses a moni-

toring approach to detect the imbalance and an activation mechanism to invoke

the load-balance. Likewise, we used the computation time per iteration to detect

the unsteadiness between the partitions. Otherwise, distributing ABS across hy-

brid cloud rises more challenges to consider in order to meet all the performance

requirements during run-time. Consequently, a partitioning algorithm should

incorporate additional factors such as monetary costs, size of the communicated

data, latency, bandwidth and cloud charges while restoring the balance between

the partitions.

Also in [39], the authors propose a graph-based dynamic load-balancing

mechanism for parallel discrete-event agent-based large-scale nanoscopic traffic

simulation. The elaborated approach consists of representing the spatial net-

work as a weighted graph using workload and communication. To do the load

balance, the authors fixed a threshold that invokes the algorithm to do the re-

partitioning each time it is needed. Likewise, we focus on using weighted graphs

using the workload and the communication captured during the sequential sim-

ulation. Otherwise, we do not consider the geographical aspect to determine

the agents migration. In our work the clustering of the agents is more related

to the frequency of their inter and intra communications rather than their geo-

graphical positions which do not necessarily minimize the inter-communication

overhead between partitions. In [41] , the authors discuss the challenges re-

lated to a carpooling agent-based application including the matching problem

and the partitioning to have systems that are more scalable. Since the agents
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may rapidly change their preferences about their partners, a frequent match-

ing is needed to meet the requirements of the application. However, due to its

complexity, the matching problem is partitioned into sub problems executed in

parallel. The authors used graph partitioning in order to have disconnected

sub-graphs (minimize connectivity between agents sets) and equal sized parti-

tions. The normalized cut is used to achieve an efficient partitioning. Proof of

concept experiments were conducted with a small number of agents (15 agents).

In our work we consider the distribution of large-scale MAS (thousands) on a

hybrid cloud infrastructure where the partitioning problem is proven to be more

complicated and requires considering different metrics with the aim of ensuring

an efficient distribution at run-time.

7. Conclusions and Future work

We proposed a prediction process to estimate and optimize the deployment

costs of a given MAS on a given hybrid cloud environment. Moreover, we

extended the FM algorithm to provide an adaptive cost-efficient deployment

solution. The former process consists of simulating virtually various partitioning

options and assessing their relative effects on the system performance by varying

both scenarios definitions and hybrid cloud specifications. Our implemented

approach highlights the efficiency of our extended algorithm E-FM compared

to its original version and shows that the deployment costs are sensitive to

multiple factors such as the simulated scenarios and hybrid cloud specifications

including the public cloud providers and their cost models, the bandwidth and

the network latency.

As a future work, we intend to improve our extended algorithm E-FM to be

performed on k partitions (K > 2). E-FM is a bi-partitioning algorithm used

to minimize the communication costs between the on/off premise resources.

However, in the case where the hybrid cloud is composed of more than one

public cloud provider, we may end up with high deployment costs even if the

communication costs between the on/off resources is reduced. Indeed, the high

costs may be due to an excessive data transfer across the used public cloud

providers, which also needs to be kept minimized to optimize the deployment.

Moreover, to ensure the genericity of our prediction-approach we intend to use

the MAS as a finality to model and simulate different types of applications.

Consequently, we provide a broker system that can provide automatic adaptive

deployment solutions regardless the application type. Moreover, we intend to
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explore more partitioning algorithms to extend the selection service partitioning

library and enhance the generated deployment solution. Further, in order to

prove the efficiency and reliability of our prediction approach, we intend to

perform real deployment of MAS on a hybrid cloud environment and compare

the results with those already estimated.
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Table 4: Comparison of existing prediction-based approaches

Focus
Application
type

Granularity Metrics
Cloud
Environment

[20]
code entities
partitioning

web
application

code function

- execution
time
- communication
time
-deployment
costs

hybrid cloud

[30]
scheduling
optimization

bag-of-tasks
Applications

task

-computation
costs
-data transfer
costs
-bandwidth

hybrid cloud

[29]
cloud right-
sizing and
optimization

cloud
applications

————
-consumed Time
-compute Costs
-service Efficiency

multi-clouds

[32]
optimizing
multi-cloud
deployment

bioinformatics
applications

job
-execution Time
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