
HAL Id: hal-01865340
https://hal.archives-ouvertes.fr/hal-01865340v3

Submitted on 6 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A unified view on patch aggregation
Alexandre Saint-Dizier, Julie Delon, Charles Bouveyron

To cite this version:
Alexandre Saint-Dizier, Julie Delon, Charles Bouveyron. A unified view on patch aggregation. Jour-
nal of Mathematical Imaging and Vision, Springer Verlag, 2020, �10.1007/s10851-019-00921-z�. �hal-
01865340v3�

https://hal.archives-ouvertes.fr/hal-01865340v3
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

A unified view on patch aggregation

Alexandre SAINT-DIZIER · Julie DELON · Charles BOUVEYRON

the date of receipt and acceptance should be inserted later

Abstract Patch-based methods are widely used in var-
ious topics of image processing, such as image restora-
tion or image editing and synthesis. Patches capture
local image geometry and structure and are much eas-
ier to model than whole images: in practice, patches are
small enough to be represented by simple multivariate
priors. An important question arising in all patch-based
methods is the one of patch aggregation. For instance,
in image restoration, restored patches are usually not
compatible, in the sense that two overlapping restored
patches do not necessarily yield the same values to their
common pixels. A standard way to overcome this diffi-
culty is to see the values provided by different patches
at a given pixel as independent estimators of a true un-
known value and to aggregate these estimators. This
aggregation step usually boils down to a simple aver-
age, with uniform weights or with weights depending
on the trust we have on these different estimators. In
this paper, we propose a probabilistic framework aim-
ing at a better understanding of this crucial and often
neglected step. The key idea is to see the aggregation
of two patches as a fusion between their models rather
than a fusion of estimators. The proposed fusion oper-
ation is pretty intuitive and generalizes previous aggre-
gation methods. It also yields a novel interpretation of
the Expected Patch Log Likelihood (EPLL) proposed
in [40].
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Introduction

Over the past fifteen years, numerous image restora-
tion and image editing approaches have been relying
on patch-based representations. These representations
exploit the semi-local redundancy of images and have
led to decisive improvements in solving ill-posed inverse
problems such as, for instance, denoising [3, 2, 6, 40, 24,
23, 39, 35, 19, 38], inpainting [25], interpolation [38, 35],
deblurring [7], image enhancement [17], texture synthe-
sis [11, 10, 22] style transfer [15, 13] or HDR imaging [1].

All of these methods have in common to decom-
pose images in overlapping patches and to make these
patches collaborate for restoration, synthesis or editing
purposes. Finally, the processed patches are merged to-
gether into a single image. While much attention has
been paid on statistical or geometrical patch represen-
tations and interpretation, little work has been dedi-
cated to explore this merging or aggregation step. Go-
ing from the image space to the patch space is a linear
and straightforward operation, but recovering an im-
age from a set of overlapping patches is straightforward
only if all of these patches share the same values on
their common pixels. Even for patches coming from the
same image, this property is lost as soon as the patches
undergo non trivial operations. Each pixel belongs to d
different patches and these patches yield d different es-
timates for the pixel value, as illustrated by Figure 1. In
the literature, there are essentially four ways to answer
the aggregation question:

1. For each pixel, keep only the estimator provided
by the patch centered at this pixel (central aggre-
gation);

2. For each pixel, average the d estimators with uni-
form weights (uniform aggregation);
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3. For each pixel, average the d estimators with adapted
weights (weighted aggregation);

4. Reconstruct the image from the patches as a solu-
tion of a variational problem.

The first solution is the one chosen in the first version
of Non Local Means [3]. This approach ignores the in-
formation available in the rest of the patches. As a re-
sult, when applied in the context of image denoising for
instance, residual noise can often be observed around
edges or rare regions. A majority of methods tackle this
issue by averaging the d estimates of the pixel, either
with uniform weights [21] or with weights taking into
account the precision of each estimator [6, 31, 34], in
order to minimize the variance of the aggregated es-
timator. A recent approach [29], called SOS boosting,
proposes to improve iteratively a denoising algorithm
by reducing the gap between each restored patch and
its value after uniform aggregation. The BM3D algo-
rithm [6] uses weights which are chosen inversely pro-
portional to the total variance of the sample of noisy
patches used to estimate the denoised patch. More re-
cently, the DCT-based denoising approaches [16, 27]
use weights chosen inversely proportional to the number
of non-zero coefficients of the DCT after thresholding,
giving more weights to patches that have a lot of co-
efficients set to 0 (flat patches for example). Other ap-
proaches draw on similar ideas to derive optimal weights
[9, 32, 20, 14]. Instead of the variance, some authors
also attempt to minimize the risk of the final estimator
at each pixel, by making use of Stein’s Unbiased Risk
Estimator (SURE) [8, 36]. In [4], a comparison is led
between global optimization and weighted aggregation
for denoising purposes.

The last solution for patch aggregation, explored for
instance in [12, 40], consists in a global variational for-
mulation of the restoration problem, including a global
prior. These global formulations intrinsically include
the aggregation problem, which is treated iteratively
during the optimization process. In [40], the log of the
global prior (the expected patch log likelihood, or EPLL)
is a sum of local priors on the patches and interpreted,
up to a scalar, as “the expected log likelihood of a
randomly chosen patch in the image”. However, it can
also be interpreted, up to a constant, as (the log of) a
global image probability distribution, as already noted
by [33]. Other attempts [30, 5] have been made to con-
struct a global image probability distribution from lo-
cal patch priors, such as the field of experts [30] which
uses Markov Random Fields priors on pixels. We will
see that the approach developed in the current paper
has strong links with these global interpretations. In a
related direction, the fact that patches should coincide
on their intersections can also be written as a hard con-

straint that can be included in any variational frame-
work, as explored in the recent paper [26].

In texture synthesis, alternatives to aggregation have
been considered, such as [10] which finds a minimal
error boundary cut between two overlapping patches,
or [28] which uses conditioning to force the new patches
to be coherent with the part of the image which has al-
ready been synthesized.

In this paper, we propose a novel perspective on the
aggregation stage. To this aim, we focus on the case
where each image patch is given a stochastic model
on Rd, for instance a Gaussian distribution or a mix-
ture of Gaussian models. This situation is quite clas-
sical in Bayesian image restoration, where each patch
is restored with a prior model [40, 23, 37, 38, 35, 19].
It is usual that these different models do not coincide
on overlapping patches. In order to overcome this lim-
itation, we introduce the notion of patch fusion, which
draw on all the prior models to construct a global model
on the whole image (up to a normalization), by taking
into account the fact that these models should coincide
on their overlaps. At the end, the final models for over-
lapping patches coincide but are not generally the same
than the ones prescribed as input. As we shall see, the
classical aggregation techniques described above can be
interpreted as special cases of our fusion framework.
Our notion of patch fusion also reconciles the point of
view developed in EPLL [40] and the conditioning ap-
proach suggested in [28] for texture synthesis.

The paper is organized as follows. In Section 1, we
recall the main steps of patch-based signal processing.
In Section 2, we present the notions of patch model,
patch agreement and patch fusion. We study the spe-
cial cases of Uniform and Gaussian patch models in
Section 3 and we show the links between our framework
and the classical aggregation methods in Section 4. Fi-
nally, Section 5 is devoted to experiments and highlights
the behavior of the different aggregation models.

Notations

We define in the following some of the notations used
in this paper.

– For a continuous random variable X, we denote by
p(X = x) the value of the probability density func-
tion of X at x.

– The identity map of the set S is denoted by IdS ,
and by Id when the notation is not ambiguous.

– For two real numbers a and b, Ja, bK refers to the set
of all integers between a and b.

– Let E be a finite set and consider a map φ : E → R,
and F a subset of E. We denote by φ|F the restric-
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tion of the map φ to F . If ν is a probability distri-
bution on RE , we define ν|F the marginal distribu-
tion of ν on RF . If F = ∅, by convention, we define
ν|F = 1.

1 Background: patch aggregation in image
processing

The goal of this section is to present the main steps
of patch-based signal processing, as illustrated in Fig-
ure 1. We focus here on the case of images, which are
2D-signals, but all the concepts presented hereafter are
much more general and can be defined for signals with
any number of dimensions1.

Let Ω be a discrete rectangular grid of size sx × sy
in R2 and let u : Ω→ R be a grey level image on Ω.

1.1 Patch extraction

A patch of an image u can be written as a sub-image
u|Ω ∈ RΩ where Ω ⊂ Ω is the domain of the patch.
The number of pixels |Ω| is called the size of the patch.
Patches usually considered in the literature have con-
nected domains. For example, if Ω = J1,

√
dK2, u|Ω is

the square patch of size d at the top left corner of u. The
image u can be considered itself as a (large) patch of size
sx×sy, and contains N = (sx−

√
d+1)× (sy−

√
d+1)

overlapping square patches of size d.
The patch extraction is characterized by an extrac-

tion operator χ which gives a set of patches from an
image. In most applications, this set is composed of all
overlapping square patches of size d of u. Assimilating
u to a sx × sy matrix and patches as vectors of size
d (read column-wise), this extraction operator can for
instance be written

χ : Rsx×sy → Rd×N ,

where the ith column yi of the matrix χ(u) is the ith

patch of u. Since χ is a linear operator, Im(χ) is a lin-
ear subspace of Rd×N of dimension sx × sy at most.
Therefore, Im(χ) 6= Rd×N .

In the general case, χ is not surjective, and an ele-
ment of Im(χ) has lots of redundancies, since each pixel
may appear in many different patches.

1.2 Patch-based editing or restoration

Given an extraction operator χ returning a set of N
patches, patch-based signal processing consists in pro-
cessing the set of patches χ(u) instead of the signal u.

1 For example, patches of size l of a 1D-signal x = (x1, . . . , xn)
are of the form (xi, . . . , xi+l), for i ∈ J1, n− lK.

Rs2

Rs2
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Fig. 1: Illustration of the 3 steps of patch-based im-
age processing. Patches are small image pieces, they
can be seen as vectors of a high dimensional space.
Patch-based methods decompose images in overlapping
patches (step 1) and make these patches collaborate
for restoration, synthesis or editing purposes (step 2).
At this point, the processed overlapping patches do
not necessarily share the same values on their com-
mon pixels. Aggregation techniques aim at combining
all these different overlapping patches into a single im-
age (step 3).

However, after this processing, the set of patches is usu-
ally not in Im(χ) anymore. It means that a pixel which
belongs to several patches can have different values in
all these processed patches.

For example, in image restoration, we have access
to ũ, a distorted version of the true signal u. In order
to construct û, an estimate of u, we first extract the
patches (ỹi)i∈J1,NK := χ(ũ) and we try to infer their
restored versions ŷi. For instance, in a Bayesian frame-
work, if we have access to a posterior probability dis-
tribution for each patch, we can estimate each ŷi by

ŷi = arg max
y

p(y|ỹi).



4 Alexandre SAINT-DIZIER et al.

However, after this estimation, there is no guaranty that
(ŷi)i∈J1,NK ∈ Im(χ), i.e. no guaranty that we can find
û such that χ(û) = (ŷi)i∈J1,NK.

1.3 Patch aggregation

The patch aggregation is the action of recovering an
image from a set of patches. It is characterized by an
aggregation operator ξ, which reconstructs an image
from a set of patches. Most of the time, it satisfies ξ◦χ =

Idsx×sy , but it is not mandatory.
If χ extracts all N overlapping square patches of

size d from u, ξ can be seen as a map from Rd×N to
Rsx×sy . In this case, the most common aggregations are
the central pixel aggregation, which consists in keeping
only the central pixel of each patch and the uniform
(resp. weighted) aggregation which consists in taking,
at each pixel, the uniform (resp. weighted) average of
the d different values provided by the patches it belongs
to.

1.4 Aggregation of patch distributions

Patch aggregation is usually seen as a deterministic
process. However, many patch-based methods rely on
a probabilistic modeling, where a probability distribu-
tion is associated to each patch. In image restoration for
instance, such distributions are generally used to con-
struct an estimator for each patch, such as the maxi-
mum a posteriori, which leads to several different values
for each pixel, and an aggregation procedure is used to

Fig. 2: Illustration of our new aggregation paradigm.
On the first line, the classical process, which consists in
computing estimates from patch distributions and then
aggregating these estimates. On the second line, a sim-
plified view of our framework, where we first aggregate
probability distributions, and then use the fused model
for estimation.

deduce the final value of the pixels from these estima-
tions (first line of Figure 2). We can argue that keeping
a deterministic estimate for each patch seems quite re-
ductive since no difference are made between distribu-
tions with small or large variances. In this context, it
might be more interesting to reconstruct a probability
distribution on the whole image from all these probabil-
ity distributions on patches. The question of the aggre-
gation of probability distributions is a natural general-
ization of the deterministic patch aggregation. Solving
this question enables to estimate directly a probability
distribution on the whole image. This probability dis-
tribution can be used afterwards for estimation (second
line of Figure 2). This is the path that we develop in
the next section.

2 Patch model, agreement and fusion

In this section, we define what we call a patch model,
which extends the classical definition of a deterministic
patch in a stochastic setting. This model will be used
thereafter to define a notion of patch fusion, motivated
by the situation described in Section 1.4.

2.1 Patch model: a probabilistic patch representation

Let us define a patch model of size d on the discrete
grid Ω. The notion is illustrated by Figure 3.

P = (Ω, ν)

Ω
probability distribution on ℝΩ

Fig. 3: A patch model on Ω is composed of a domain
Ω (a subset of Ω) and a probability distribution ν on
RΩ .

Definition 1 A patch model P on the grid Ω is a cou-
ple (Ω, ν), where Ω ⊂ Ω and where ν is a probability
distribution on RΩ . We refer to ν as the distribution of
the patch model, and to Ω as its domain. We denote by
P the set of all patch models on Ω.
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(a) The two patches agree,
the aggregation is straight-
forward

(b) The two patches do not
agree, the aggregation is am-
biguous

Fig. 4: Illustration of the notion of agreement between
two deterministic patches.

This definition is a generalization of the classical defini-
tion of a patch on a grid. Indeed, a deterministic patch
P can be assimilated to a Dirac distribution on RΩ . We
do not impose any connectedness of Ω in our definition.

We are now in the position to define the notion of
agreement between two patch models (see Figure 4),
which says that two patch models agree if they share
the same distribution on their intersection.

Definition 2 (Patch model agreement) Let P1 =

(Ω1, ν1) and P2 = (Ω2, ν2) be two patch models in P.
We say that these two patch models agree and we write
P1=̂P2 if and only if

ν1|Ω1∩Ω2
= ν2|Ω1∩Ω2

.

Therefore, two disjoint patch models (P1 and P2 such
that Ω1 ∩Ω2 = ∅) agree automatically. The =̂ relation
is reflexive and symmetric, but not transitive. Observe
that this definition can also be applied to determinis-
tic patches. We say that they agree if their values on
their overlap coincide. We will also denote this with the
symbol =̂.

We now define the notion of compatibility between
patch models, which is much less restrictive that the
patch agreement, and will be important to introduce
the notion of patch fusion in the next section.

Definition 3 (Patch model compatibility)
Let (Pn)n∈J1,NK = (Ωn, fn(x)dx)n∈J1,NK be a set of N
patch models with bounded densities f1, . . . , fn. We say
that these patch models are compatible if

ˆ
z∈R∪

N
n=1Ωn

N∏
n=1

fn(z|Ωn)dz > 0.

2.2 Patch model fusion

We can now define the fusion of two patch models. As
explained before, this definition is motivated by the sit-

uation where we end up with one or several distribu-
tions on the different patches. The fusion operation per-
mits to construct directly a distribution for the whole
image from the different patch models. It simply con-
sists in aggregating patch models by merging their do-
mains, and defining a novel distribution on this merged
domain as a (specific) product of their original distri-
butions.

Definition 4 (Patch model fusion)
Let P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be two compatible
patch models. We suppose that the distributions ν1 and
ν2 have bounded densities f1 and f2.

The fusion P1 � P2 is the patch model defined by
(Ω, ν) where Ω = Ω1 ∪Ω2 and ν(dx) = f(x)dx, with

∀x ∈ RΩ , f(x) =
f1(x|Ω1

)f2(x|Ω2
)´

z∈RΩ f1(z|Ω1
)f2(z|Ω2

)dz
.

Remark 1 – For the sake of simplicity, we restrict our-
selves to the set of patch models with bounded den-
sities. This strong assumption is convenient because
it is stable for the fusion operation, and it is always
satisfied with the distributions we consider, but it
could be relaxed. In practice, we only need to ensure
that ˆ

z∈RΩ
f1(z|Ω1

)f2(z|Ω2
)dz < +∞.

– With this definition, the notion of patch fusion does
not directly apply to deterministic patches if we see
them as Dirac distributions. However, as we shall
see in Section 4, the notion of fusion extends well to
deterministic patches if these are modeled by Gaus-
sian distributions with their value as expectation,
and with a covariance proportional to the identity.

This fusion definition has a very intuitive motiva-
tion, as we shall see in the next proposition.

Proposition 1 (Interpretation of the fusion) Let
P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be two compatible
patch models and define P1�P2 = (Ω, ν). Assume that
the distributions ν1 and ν2 have bounded densities f1
and f2. Let Z1 ∼ ν1 and Z2 ∼ ν2 be two indepen-

dent random vectors. We write Z1 =

(
X1

Y1

)
, where X1

corresponds to the coordinates of Z1 on Ω1 ∩ Ω2 (so
X1 ∼ (ν1)|Ω1∩Ω2

) and Y1 to the coordinates on Ω1 \Ω2.

We write Z2 =

(
X2

Y2

)
in the same way, where X2 cor-

responds to the coordinates of Z2 on Ω1∩Ω2 and Y2 on
Ω2 \Ω1 (Y1 and Y2 may not have the same dimension).
Then ν is the conditional probability distribution of the

vector

X1

Y1
Y2

 given X1 = X2.
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Proof In the following, we denote by p(X = x) the
value of the density of the random variable X at x. For
z = (x1, y1, y2) ∈ RΩ1∩Ω2 ×RΩ1\Ω2 ×RΩ2\Ω1 , we want
to calculate the conditional density

p

X1

Y1
Y2

 =

x1y1
y2

 |X1 = X2

 .

This conditional density can be written

p((X1, Y1, X2, Y2) = (x1, y1, x1, y2))

p(X1 −X2 = 0)

where

p((X1, Y1, X2, Y2) = (x1, y1, x1, y2))

= p((X1, Y1) = (x1, y1))× p((X2, Y2) = (x1, y2))

= f1

((
x1
y1

))
× f2

((
x1
y2

))
= f1(z|Ω1

)× f2(z|Ω2
),

by independence of Z1 and Z2. Moreover,

p(X1 −X2 = 0) =

ˆ
p(X1 = x1, X2 = x1)dx1

=

ˆ
p(X1 = x1)× p(X2 = x1)dx1.

Since

p(X1 = x1) =

ˆ
f1

((
x1
y1

))
dy1, and

p(X2 = x1) =

ˆ
f2

((
x1
y2

))
dy2, we conclude that

p(X1 −X2 = 0) =

ˆ
f1(z|Ω1

)× f2(z|Ω2
)dz > 0.

�

The fusion operation is therefore a way to combine
two patch models while imposing these models to be
equal on the intersection of their domains.

In order to extend this fusion operation to larger
sets of patches, we need the following proposition.

Proposition 2 For any compatible patch models with
bounded densities P1, P2 and P3 in P, the fusion oper-
ation � is well-defined and satisfies

– P1 � P2 ∈ P and has a bounded density.
– (P1 � P2)� P3 = P1 � (P2 � P3).

– P1 � P2 = P2 � P1.

Proof Let P1 = (Ω1, f1(x)dx), P2 = (Ω2, f2(x)dx), P3 =

(Ω3, f3(x)dx) and (Ω̂, f̂(x)dx) = P1 � P2. We have
Ω̂ = Ω1 ∪Ω2 and

f̂(x) ∝ f1(x|Ω1
)× f2(x|Ω2

),

which clearly shows the commutativity. So P1�P2 has
also a bounded density and it is straightforward from
the definition that P1 � P2 is compatible with P3. Be-
sides, if we have (Ω̄, f̄dx) = (P1 � P2)� P3, we get

f̄(x) ∝ f1(x|Ω1
)× f2(x|Ω2

)× f3(x|Ω3
),

which clearly shows the associativity. �

Remark 2 As a consequence, the patch fusion can be
extended to any number of compatible patch models
without ambiguity. Indeed, the previous proposition en-
sures that merging patch models in any order will al-
ways yield the same result (under the condition of com-
patibility and bounded densities). For any set of com-
patible patch models with bounded densities written

(Pn)n∈J1,NK = (Ωn, fn(x)dx)n∈J1,NK,

we will denote this fusion by⊙
n

Pn = (Ω, f(x)dx), with Ω =
⋃
n

Ωn and

∀x ∈ RΩ , f(x) ∝
∏
n

fn(x|Ωn).

This operation can be used to propagate and connect
all patch models to obtain a single image model.

2.3 Fused image model

The previous fusion operation can be used to define a
global model on the whole image space from a set of
local patch models.

Definition 5 Let E be a set of patch models. We say
that E covers the image support if every pixel of Ω

belongs to the domain of at least one patch model of
E, i.e.

∀i ∈ Ω,∃P = (Ω, ν) ∈ E such that i ∈ Ω.

We say that E is coherent if all patch models in E
agree, i.e.

∀ (P1, P2) ∈ E2, P1=̂P2.

We say that E represents an image if E covers the
image support and is coherent.
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For a set E of compatible patch models which cov-
ers the image support, Proposition 2 ensures that it is
possible to fuse all the patch models of E to obtain
a global model (Ω,ν) =

⊙
P∈E P on the image. As a

by-product, this constructs a new set Ê by

Ê := {
(
Ω,ν|Ω

)
with P = (Ω, ν) ∈ E}.

For each patch (Ω, ν) in E, there is a patch
(
Ω,ν|Ω

)
in

Ê with the same domain, but with the marginal of ν
on Ω as a distribution instead of ν. Therefore, Ê covers
the image, according to the previous definition.

Observe that this coherent set Ê is generally differ-
ent from the set E, even in the case where E is obtained
as all the marginals of a patch model on the whole im-
age. Even if they agree, fusing two patch models does
not preserve their common distribution on their inter-
section. Indeed, the fusion operation is not stable, in the
sense that in general P � P 6= P . Fusing P with itself
gives more confidence to its distribution and reduces
its variance. Still, the fusion ensures a weaker form of
stability, since MLE(P �P ) = MLE(P ), where MLE

is the Maximum Likelihood Estimator.

In practice, the previous definitions lead to generic
algorithms which consist in fusing all patch models it-
eratively, in any order. This is justified by proposition
2, but is not necessarily efficient. How the fusion is per-
formed in practice should depend on the considered dis-
tributions.

In the case of normal or uniform patch models, we
will see in the next section that the fusion has a closed-
form solution. We did not investigate more involved
models, but we think that approximate schemes could
be used for more complex distributions.

3 Application to particular distributions

3.1 Uniform distribution

A very simple example of patch model fusion can be
derived in the case of uniform distributions.

Proposition 3 (Fusion of uniform patch models)
Let ΩA and ΩB be two subsets of Ω. Let A ⊂ RΩA
and B ⊂ RΩB be two bounded borelian sets, and PA =

(ΩA, νA), PB = (ΩB , νB) be two patch models, with νA
and νB uniform distributions respectively on A and B,
with densities 1

|A|1A and 1
|B|1B. Let Ω = ΩA∪ΩB and

C = {x ∈ RΩ ;x|ΩA ∈ A and x|ΩB ∈ B}.
If C is of strictly positive Lebesgue measure in RΩ,

then PA and PB are compatible and denoting PA � PB
by (Ω, ν), ν is the uniform distribution on C.

In other terms, the fusion of two uniform patch mod-
els is also a uniform patch model. Its distribution is the
only uniform distribution on RΩ whose marginal distri-
butions on ΩA and ΩB are PA and PB .

This illustrates the behavior of the fusion operation,
which forces patch models to agree on their intersection.
As a consequence, a patch model with a peaked distri-
bution will impose its opinion to the other patch mod-
els: we expect a confident model to be given more credit
in the final aggregation. As we shall see, the Gaussian
case keeps this behavior, but in a softer way.

3.2 Gaussian distributions

The Gaussian distribution also yields a closed form ex-
pression for the fusion operation.

Proposition 4 (Fusion of Gaussian patch mod-
els) Let P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be two Gaus-
sian patch models with positive definite covariances. We
write x the variable representing the common pixels of
the two patch models (i.e. those in Ω1 ∩ Ω2) and y for
the others (i.e. those in Ω1 \ Ω2 for P1, and those in
Ω2 \Ω1 for P2), and we write

ν1 = N
((

µx
µy

)
,

(
Σx Σxy
ΣT
xy Σy

))
and ν2 = N

((
µ′x
µ′y

)
,

(
Σ′x Σ′xy

(Σ′xy)T Σ′y

))
.

Then (Ω1, ν1) and (Ω2, ν2) are compatible and the
distribution of (Ω1, ν1)� (Ω2, ν2) is Gaussian with pa-
rameters

µ =

µxµy
µ′y

+

 Σx (Σx +Σ′x)
−1

(Σxy)T (Σx +Σ′x)
−1

−(Σxy)T (Σx +Σ′x)
−1

 (µx − µ′x)

and

Σ=

( Σx Σxy

(Σxy)T Σ′y

)
0

0 Σ′y

−
 Σx (Σx +Σ′x)

−1

(Σxy)T (Σx +Σ′x)
−1

−(Σ′xy)T (Σx +Σ′x)
−1

 Σx

Σxy

−Σ′xy

T

.

Proof Let Z1 =

(
X1

Y1

)
∼ ν1 and Z2 =

(
X2

Y2

)
∼ ν2

be two independent Gaussian random vectors. From
proposition 1, we know that the distribution we are
looking for is the conditional probability distribution

of

X1

Y1
Y2

 knowing X1 = X2. The random variable

W = X1 − X2 follows a Gaussian distribution with
expectation µx−µ′x and covariance Σx+Σ′x. Similarly,
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we know that

Z1

Y2
W

 is a Gaussian random vector with

parameters µ̂, Σ̂ such that

µ̂ =


µx
µy
µ′y

µx − µ′x

 and Σ̂ =


Σx Σxy 0 Σx
ΣT
xy Σy 0 ΣT

xy

0 0 Σ′y −Σ′Txy
ΣT
x Σxy −Σ′xy Σx +Σ′x

 .

Indeed, since Z1 =

(
X1

Y1

)
and Z2 =

(
X2

Y2

)
are indepen-

dent, the covariance between Z1 and W can be written

Cov(Z1,W ) = Cov(Z1, X1 −X2) = Cov(Z1, X1) =

(
Σx
ΣT
xy

)
and the covariance between Y2 and W is

Cov(Y2,W ) = −Cov(Y2, X2) = −Σ′Txy.

It follows that the conditional density of

X1

Y1
Y2

 know-

ing W = 0 is a normal distribution with expectation

µ = E
(
Z1

Y2

)
+

(
Cov(Z1,W )

Cov(Y2,W )

)
Cov(W,W )−1(0− E(W ))

=

µxµy
µ′y

+

 Σx (Σx +Σ′x)
−1

ΣT
xy (Σx +Σ′x)

−1

−Σ′Txy (Σx +Σ′x)
−1

 (µ′x − µx)

and covariance matrix

Σ = Cov

((
Z1

Y2

)
,

(
Z1

Y2

))
−
(
Cov(Z1,W )
Cov(Y2,W )

)
Cov(W,W )−1

(
Cov(Z1,W )T

Cov(Y2,W )T

)

=

( Σx Σxy

(Σxy)T Σ′y

)
0

0 Σ′y

−
 Σx (Σx +Σ′x)

−1

(Σxy)T (Σx +Σ′x)
−1

−(Σ′xy)T (Σx +Σ′x)
−1

 Σx

Σxy

−Σ′xy

T

.

�

Remark 3 We have defined the fusion only for distri-
butions with densities, but in this case we see that we
could extend the fusion to singular Gaussian distribu-
tions such that Σx +Σ′x is invertible.

As a consequence, the set of all Gaussian patch mod-
els is stable by fusion. So if we have a set E of Gaussian
patch models which covers the image, the resulting fu-
sion of all the patch models from E will be a huge Gaus-
sian model on the whole image support.

If we mergeN Gaussian patch models (Ωn, νn)n∈J1,NK
with expectations (µn)n∈J1,NK and precision matrices 2

2 The precision matrix is the inverse of the covariance matrix.

(Λn)n∈J1,NK, a very simple formula can be derived to
link the parameters (µ,Λ) of the fused Gaussian model
and the set (µn, Λn)n∈J1,NK. Before giving this formula
in the next proposition, note that we see the expecta-
tions µn as vectors of RΩ and matrices Λn as matrices
of RΩ×Ω , which means that µn(i) is the expectation of
the patch n at the pixel i, and is thus defined only if i
belongs to Ωn.

Proposition 5 Let (Ωn, νn)n∈J1,NK be N Gaussian patch
models, with expectations (µn)n∈J1,NK and precision ma-
trices (Λn)n∈J1,NK, and let

P = (Ω, ν) :=
⊙

n∈J1,NK

(Ωn, νn).

Then P is a Gaussian patch model, whose precision ma-
trix Λ and expectation µ satisfy, for all (i, j) ∈ Ω ×Ω,

Λ(i, j) =
∑

1≤n≤N,i∈Ωn,j∈Ωn

Λn(i, j).

(Λµ)(i) =
∑

1≤n≤N,i∈Ωn

(Λnµn)(i).
(1)

Proof From Proposition 4, we know that ν is a Gaus-
sian distribution N (µ,Λ−1). Denoting the density of
this distribution by f , we have

− log f(x) =
1

2
(x− µ)TΛ(x− µ) + cst.

According to remark 2, we also have

− log f(x) = −
∑
n

log fn(x|Ωn) + cst

=
1

2

N∑
n=1

(x|Ωn − µn)TΛn(x|Ωn − µn) + cst.

Equations for Λ and µ follow by identifying the co-
variance matrices and expectations of these Gaussian
distributions.

�

Remark 4 Observe that while the precision matrices
can be easily derived, the value of the expectation of
the whole Gaussian is not directly accessible from (1),
since the precision matrix needs to be inverted.

3.3 Fusion algorithm for Gaussian distributions

From the previous results, we can derive a simple and
explicit fusion algorithm for normally distributed patches.
In practice, if we aim at merging a set E of Gaussian
patch models covering an image, keeping in memory
and computing the covariance of the global Gaussian
model is not tractable, since it requires to deal with a
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Fig. 5: In this experiment, a complete Gaussian model
is computed for the image Lena by fusing patch models
of size 10 × 10. The figure shows the (absolute values
of the) correlation map of a pixel with its 100 × 100

neighborhood. As we can see, the correlation decreases
to 0 very fast when we move away from the center. For
this reason, we choose in practice to approximate by
0 the correlation between pixels at a distance greater
than 2

√
d.

(sx × sy)2 matrix. Thanks to Proposition 5, we know
that the precision matrix is sparse, but we have no such
result on the covariance matrix. Still, if necessary, we
can approximate the global covariance matrix by notic-
ing that pixels which are far enough from each other
do not much influence each other. For instance, using
standard Gaussian models for the image Lena, we ob-
serve that beyond a distance of 2

√
d, patch models do

not influence each other anymore, as illustrated by Fig-
ure 5. It means that the covariance matrix of the whole
image is almost sparse. This gives us the possibility to
compute and store this covariance matrix much more
easily, as described in algorithm 1 and figure 6.

In practice, this algorithm permits to compute the
whole fused model. The computation is however quite
slow: for a 512 × 512 image and 10 × 10 patches, fus-
ing all patch models takes several minutes on a recent
computer.

4 Link with classical aggregation methods

4.1 Standard aggregations

In the previous sections, we have seen how to construct
a distribution on a whole image from a set of com-
patible patch models. This construction generalizes the

Algorithm 1 Approximation of the fusion procedure
for Gaussian models with sparsity hypotheses on the
covariance matrix
Input: Set P of square patches of size d, block-size b
Output: Aggregated image u
1: Compute B, partition of the image domain composed of dis-

joint blocks of size b× b.
2: s← 2×

√
d (sparsity parameter)

3: for B ∈ B do
4: B̃ ← block of size (b+ s)× (b+ s) centered in B
5: P

B̃
← {P ∈ P|P ⊂ B̃}

6: Compute u
B̃

by fusing iteratively all patches from P
B̃

using proposition 4
7: u|B ← u

B̃ |B
8: end for

k

Fig. 6: Illustration of algorithm 1. The image is divided
into blocks of size b. For each block B, we extend this
block by a distance s into a larger block B̃. The fusion of
all patch models in B̃ is computed, but only the values
of pixels belonging to B are kept.

main aggregation procedures used in the literature as
special cases. More precisely, we shall see that these ag-
gregation procedures can be seen as special cases of the
fusion of Gaussian patch models with diagonal covari-
ances.

Proposition 6 Let (Ω1, ν1) and (Ω2, ν2) be two Gaus-
sian patch models with diagonal positive definite covari-
ances. We write these two distributions

ν1 = N
((

µx
µy

)
,

(
Σx 0

0 Σy

))
and ν2 = N

((
µ′x
µ′y

)
,

(
Σ′x 0

0 Σ′y

))
,

where the variable x represents the common coordinates
of the two patch models and y the other coordinates (µy
and µ′y may not have the same dimension), and where
all the matrices Σx, Σy, Σ′x, Σ′y are diagonal. Then the
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patch models (Ω1, ν1) and (Ω2, ν2) are compatible and
the distribution of (Ω1, ν1)� (Ω2, ν2) is a Gaussian dis-
tribution with parameters

µ =

(Σ−1x +Σ′
−1
x )−1(Σ−1x µx +Σ′

−1
x µ′x)

µy
µy′

 and

Σ =

(Σ−1x +Σ′
−1
x )−1 0 0

0 Σy 0

0 0 Σ′y

 .

Moreover, the matrix (Σ−1x +Σ′
−1
x )−1 is diagonal, and

so is Σ.

Proof This proposition is a direct application of propo-
sition 4. �

The previous proposition states that if covariance
matrices are all supposed diagonal, then the resulting
fused image has also a diagonal covariance. Since we
deal with Gaussian models, this boils down to assume
that all pixels are independent.

In the final image model, the expectation at each
pixel is simply a weighted average of all the expecta-
tions of the patches containing this pixel. The weights
are given by the precisions of the marginals at these
pixel. We recognize here a special case of the weighted
aggregation procedure of deterministic patches described
in the introduction. The more precise an estimate is, the
more weight it has in the final estimate.

A more specific case is the one obtained when all co-
variance matrices are identical and proportional to the
identity matrix. In this case, the covariance of the re-
sulting image model will be simply a diagonal, counting
for each pixel the number of patches it belongs to. The
resulting expectation at a given pixel will be a simple
average of all the expectations of the patches containing
this pixel. This corresponds to the widely used uniform
aggregation of deterministic patches.

Finally, the limit case where each patch model has
a covariance with infinite values except for its central
pixel corresponds to the central aggregation.

4.2 Expected Patch Log Likelihood

More complex strategies including both patch restora-
tion and aggregation into a single variational formula-
tion have been considered in the literature. This is the
case of the Expected Patch Log Likelihood (EPLL) of
Zoran and Weiss [40]. Starting from an image

ũ = Au+ ε, (2)

degraded by a linear operator A and an i.i.d. Gaussian
noise ε ∼ N (0, σ2Id), the authors reconstruct a restored
version of u as one of the solutions of

arg min
u

λ

2σ2
||Au− ũ||2 − EPLLf (u), (3)

where EPLLf (u) =
∑
j log f(xj), with {xj} the set

of all square patches of size
√
d ×
√
d extracted from

the image u and f a given prior density on the image
patches.

The authors of [40] interpret the quantity EPLLf (u)

as the empirical expectation of the log-likelihood of a
patch (up to a multiplicative factor 1

N with N the num-
ber of patches). This quantity has another intuitive in-
terpretation, as highlighted in the following proposi-
tion, whose proof follows directly from Remark 2.

Proposition 7 Let u be an image on the domain Ω

and assume that ν(dx) = f(x)dx is a prior on all square
patches of size

√
d×
√
d with domain inside Ω. Define

E the set of all of these square patch models sharing the
same distribution f(x)dx. Then if

P̄ = (Ω̄, f̄(x)dx) :=
⊙
P∈E

P

is well defined, there is a constant c such that

EPLLf (u) = log f̄(u) + c.

The function EPLLf is the log of the density ob-
tained by fusing all square patch models on the grid
with the same prior f(x)dx. Up to an additive con-
stant, it can thus be interpreted as the log of a prior
p(u) on the whole image u. Consequently, by choosing
λ = 1 in equation (3), the solution of (3) can be in-
terpreted as a maximum a posteriori and be written
argmaxu log p(u|ũ) on the whole image, since the term
− λ

2σ2 ||Au− ũ||2 is, up to a constant, equal to log p(ũ|u)

under the white Gaussian noise assumption.
Propositions 1 and 7 also clarify the link between the

EPLL approach and the iterative conditioning strate-
gies used for instance in [28] for texture synthesis. In-
deed, the fused image prior used in EPLL can be inter-
preted as a probability distribution of a global random
image obtained by fusing all patch distributions, con-
ditioning by their equality on all their intersections.

Now, consider the pure denoising case (A = Id).
In this case, the solution of (3) can also be interpreted
as a maximum likelihood for another fused distribution
¯̃
f(x)dx on the whole image, as shown in the following
distribution.

Proposition 8 Keeping the notations of proposition 7,
let P̄ =

⊙
P∈E P be the image model obtained by fusing
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all patch models of E. Let Pũ =
(
Ω,N (ũ, σ

2

λ Id)
)
be an

image model on the whole grid.
Then if (Ω,

¯̃
f(x)dx) := P̄ � Pũ, we have

arg min
u

λ

2σ2
||u− ũ||2 − EPLLf (u) = arg max

u

¯̃
f(u).

Proof We just have to remark that

log
¯̃
f(u) = log f̄(u) + log

(
e−λ

‖u−ũ‖2

2σ2

)
+ cst

= EPLLf (u)− λ

2σ2
||u− ũ||2 + cst.�

In the light of this proposition, the result of the
EPLL algorithm in the denoising case is simply the
maximum likelihood of the probability distribution ob-
tained by merging all the patch models with a large
Gaussian model centered on the noisy image and with
variance σ2

λ .
Under the full degradation model (2), a last inter-

pretation of (3) is possible, using the fusion of posterior
patch models. To this aim, we have to assume that the
degradation operator A is diagonal, which means that
it acts separately on pixels. The restriction of A to a
domain Ω can thus be written A|Ω and the model (2)
restricted to Ω becomes

ũ|Ω = A|Ωu|Ω + ε|Ω .

For a given patch model P = (Ω, f(x)dx) in E, the cor-
responding posterior patch model is just (Ω, fap(x)dx)

where fap(x)dx is the posterior obtained under this
degradation model on Ω and the prior f(x)dx. For the
sake of simplicity, we assume in the following propo-
sition that each pixel is covered by exactly the same
number of patch models. This is true if we assume that
the image is periodic. In practice, it is satisfied for all
pixels except those lying close to the image borders.

Proposition 9 Keeping the notations of proposition 7,
assume that each pixel of Ω is covered by exactly d patch
models of E. For each patch model P = (Ω, f(x)dx) in
E, we define the corresponding posterior patch model as
Pap = (Ω, fap(x)dx) with

fap(x) ∝ f(x)
1

(2π)d/2σd
e−

1
2σ2
‖A|Ωx−ũ|Ω‖2 .

We define Eap the set of all these posterior patch mod-
els,

Eap = {(Ω, fap(x)dx), such that (Ω, f(x)dx) ∈ E}.

Then, if P̄ap =
⊙

P∈Eap P = (Ω, f̄ap) is well defined,
we have

log f̄ap(u) = EPLLf (u)− d

2σ2
||Au− ũ||2 + cst.

Proof We just have to remark that∑
P∈E
‖A|Ωu|Ω − ũ|Ω‖2 = d||Au− ũ||2.

�

In other words, for λ = d, the solution of (3) is a max-
imum of a fused posterior model on the whole image,
assuming that all patches have the same prior f(x)dx.

4.3 Bayesian Model Averaging

We can wonder if there is a link between the fusion
operation introduced in this article and the notion of
Bayesian Model Averaging (BMA) [18], which also at-
tempts to combine information provided by different
models on data. For the sake of simplicity, assume that
we have two patch models P1 and P2 on the same do-
main Ω, and an observed degraded patch y on Ω. In
the BMA framework, the a posteriori distribution of
the (unknown) clean patch x can be written

p(x|y) =
∑
k=1,2

p(x|y, Pk)p(Pk|y),

where each p(x|y, Pk) is simply the a posteriori distri-
bution of x knowing y for the patch model Pk. Since
p(Pk|y) is a scalar, the BMA of two posterior models is
merely a linear combination of these models. It can be
interpreted as a generalization of the weighted aggrega-
tion, but is different from the fusion operation.

5 Experiments

In this section, we illustrate the behavior of the fusion
operation on different examples. We start with toy ex-
amples showing the main difference between the fusion
and the classical uniform and weighted aggregations.
Then we focus on the particular case of patch-based
image denoising and we give some insight on the advan-
tages and limitations of the fusion. We conclude with
two simple extensions: the first one consists in mixing
the fusion and the uniform aggregation in order to keep
the best of both worlds, and the second one consists in
a sparse fusion relying on a very few number of patch
models.

Throughout this experimental section, we focus on
the case of Gaussian distributions and we compute the
expectations and covariances of the fused models ex-
plicitly, as explained in Section 3.3. However, let us un-
derline that this is usually not the most efficient way to
take advantage of the fused model. Indeed, we have seen
in Remark 2 that the logarithm of the fused density can
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(a) In this case, the two patch models almost agree, but the red one
has a very large variance compared to the blue one.

(b) In this case, the two patch models completely disagree.

Fig. 7: Illustration of the behavior of the different aggre-
gation schemes for two adjacent Gaussian patch models.
On both figures, the two patch models on the left are
aggregated in three different ways to form the patches
on the right, either with the uniform aggregation, the
weighted aggregation (taking into account the precision
of each pixel) and the fusion operation.

be written directly by summing the logarithms of all the
patch models densities. As a consequence, it is very easy
to integrate such a model in any variational framework,
without any explicit computation of the fused model,
even if this won’t necessary yield a convex formulation
(it will be convex for normal densities though).

5.1 A toy example

Figure 7 shows two toy examples clarifying the differ-
ence between the fusion defined in this paper on the one
hand, and the weighted and uniform aggregation on the
other hand. In these examples (a) and (b), two Gaus-
sian patch models (shown respectively in red and blue

Fig. 8: Set of images used to illustrate the results. From
left to right: Lena, Barbara, cartoon and squares.

on the left) are fused and the three aggregation strate-
gies lead to quite different results. In both examples,
the red model has a high variance and the blue model
is more precise (or more confident, if we see patch mod-
els as persons with more or less solid opinions). On the
right, we show only the expectations of the fused mod-
els.

In both examples, the uniform aggregation gives the
same credit to both patch models, whatever their co-
variances. In (a), although both patch models seem to
almost agree on their overlap, this results in a quite
noisy result on the patches overlap, even if the blue
model has a very high precision in this region. The
weighted aggregation takes into account this precision
and yields a more satisfying result. The fusion operation
also gives much more credit to the blue patch model
than to the blue one and yields a much smoother re-
sult. As we shall see in the section devoted to image
denoising, this behavior permits to obtain very regular
results, free from the usual artifacts created by stan-
dard aggregation procedures, but at the price of some
blur.

In example (b), both patch models strongly disagree
on their overlap. The uniform aggregation yields a re-
sult which can be seen as a compromise between their
opinions but is in contradiction with both of them. The
weighted aggregation takes into account the greater pre-
cision of the blue model but still yields a result which is
quite unlikely from both models point of views. Again
the fusion yields a quite smooth result, which is likely
for both patch models (even if it is more likely for the
blue model than for the red one).

Notice that the uniform and weighted aggregations
do not update the pixels outside of the patch overlap
zone, while the fusion operation also affects these pixels,
as shown in Proposition 4.

5.2 Application to denoising

For the sake of simplicity, we restrict the rest of this
experimental section to denoising problems. We also re-
strict our experiments to the case where the patches of
E are all square patches of size

√
d×
√
d in Ω.
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NL-Bayes
Aggregation Uniform Weighted Fusion

λ = d

Fusion
λ = 10d

Lena 30.58 30.49 30.28 30.66
Barbara 28.99 28.94 28.83 29.04
Cartoon 30.04 29.98 29.57 30.35
Squares 45.28 46.87 47.35 46.54

EPLL Model
Aggregation Uniform Weighted Fusion

λ = d

Half
Quadratic
Splitting

Lena 30.69 30.42 29.88 30.71
Barbara 26.56 26.18 25.45 27.55
Cartoon 29.89 29.62 28.65 30.49
Squares 37.38 39.09 36.96 39.51

HDMI
Aggregation Uniform Weighted Fusion

λ = d

Fusion
λ = 10d

Lena 31.12 31.10 28.16 29.96
Barbara 29.55 29.54 25.57 28.72
Cartoon 30.55 30.52 25.67 29.34
Squares 44.24 48.77 46.37 35.62

Fig. 9: PSNR of the different aggregation methods with
NL-Bayes inference.

We recall here the patch-based restoration frame-
work applied to denoising. In image denoising, in order
to restore an unknown image u from its noisy version
u+ ε, we usually start by extracting all square patches
{yk, k ∈ {1, . . . , |Ω|}} from ũ = u+ ε. The noise model
on patches can be written

yk = xk + εk,

with xk the (unknown) patch before degradation. In the
following, we will assume that the noise is i.i.d Gaussian
of variance σ2.

In this situation, Bayesian patch-based methods use
a common restoration framework to restore u from u+ε:

1. estimation: estimate a prior density fk for each
clean patch xk

2. restoration: compute a denoised version x̂k from
yk using the knowledge of the noise model and the
prior fk

3. aggregation: reconstruct a whole denoised image û
from the set of denoised patches {x̂k, k ∈ {1, . . . , |Ω|}}.

The restoration step can for instance take the form
of a maximum a posteriori

x̂k = argmaxx
1

2σ2
‖yk − x‖2 − log fk(x).

Several methods in the literature use the previous
restoration scheme, with slight variations. In the fol-
lowing sections, we will focus on three of them, which
are representative of different choices in the three pre-
viously mentioned steps:

– NL-Bayes [23], which estimates a specific Gaussian
model N (µk, Σk) for each patch xk;

– HDMI [19], which estimates a low-dimensional Gaus-
sian Mixture model for the whole set of patches
xk, k ∈ {1, . . . , |Ω|};

– EPLL [40], which estimates a Gaussian Mixture model
for patches on an external database, and replaces
steps 2 and 3 above by the variational problem (3)
and solves it by Half Quadratic Splitting.

All of these methods yield a prior model fk for each
patch xk. In the case of Gaussian Mixture Models, for
the sake of simplicity, we choose to keep as a prior for
xk the Gaussian component which is the most likely for
xk.

Since the noise model is also Gaussian, these meth-
ods also yield Gaussian posterior models for each patch.
We write these posteriors f̃k, and

f̃k(x|yk) ∝ fk(x)e−
‖x−yk‖

2

2σ2 .

In the following, we will illustrate how these priors
or posterior models can be fused using the framework
introduced in the previous sections. If we compute a
fused prior model, the maximum a posteriori under the
noise degradation model can be used to restore the im-
age. In other words, if f̄ is the fused image model den-
sity, the restored image is computed as the solution of

argminu
1

2σ2
‖u− ũ‖2 − log f̄(u). (4)

If instead we compute a fused posterior model f̄(u|ũ),
the restored image can be computed directly as the
maximum of this posterior, i.e.

argmaxuf̄(u|ũ).

Now, writing xk for the patches of u,

− log f̄(u|ũ) = − log

|Ω|∏
k=1

fk(xk|yk)

= −
|Ω|∑
k=1

log fk(xk) +

|Ω|∑
k=1

‖xk − yk‖2

2σ2

= − log f̄(u) + d
‖u− ũ‖2

2σ2
.

Thus, both strategies boil down to minimize an energy
of the same form

argminu
λ

2σ2
‖u− ũ‖2 − log f̄(u), (5)

with different values of λ. The value λ = 0 corresponds
to the fusion of the prior models and λ = d corresponds
to the fusion of the posterior models. Fusing with higher
values of λ gives much more weight to the noisy image
ũ.
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Uniform aggrega-
tion

Weighted aggre-
gation

Fusion λ = d EPLL algorithm Original image

Fig. 10: Comparison of the different aggregation procedures on Lena and Barbara using EPLL for the inferrence
of Gaussian models. Images are degraded by a noise of standard deviation σ = 30.

5.3 Results for the three different inference methods

Experiments are led on four different 512×512 images,
Lena, Barbara, Cartoon and Squares. We will see that
the behaviors of the different aggregation procedures
strongly depend both on the image content and on the
way patch Gaussian models are inferred from the noisy
data.

For each of the three inference methods described
in the previous section (NLBayes [23], HDMI [19] and
EPLL [40]), we provide different visual results illustrat-
ing the visual effects of all aggregation strategies. PSNR
values are also provided in Table 9. As we shall see,
while the complete fusion operation is not really com-
petitive PSNR-wise, it leads interesting visual results,
quite different from the simpler aggregation strategies.
Our goal here is to study and highlight these different
behaviors.

5.3.1 NL-Bayes

The NL-Bayes algorithm infers a specific Gaussian mod-
els for each patch and uses very small patches (5 × 5).
As a consequence, most Gaussian covariances are quite
well approximated by their diagonal, and the differ-
ent aggregation procedures only display minor differ-
ences on natural images. Table 9 shows that the fusion
slightly improves the PSNR results, but the difference
is more significant for very simple geometric images like
squares, even if the visual differences are quite subtle
and concentrated around the junctions and edges of the
rectangles.

5.3.2 EPLL

The EPLL model [40] makes use of 8 × 8 patches and
learns a Gaussian mixture model with 200 groups on
a large external set of images. In the original paper,
patches are centered (their DC component is removed)
before processing and all the Gaussian models from the
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Uniform aggrega-
tion

Weighted aggre-
gation

Fusion λ = d Fusion λ = 10d Original image

Fig. 11: Comparison of the different aggregation procedures on Lena and Barbara, using HDMI for the inferrence
of Gaussian models. Images are degraded by a noise of standard deviation σ = 30.

GMM are assumed to have zero means. Additionally, in
order to minimize (3), the authors of [40] introduce an
auxiliary variable and make use of Half-Quadratic Split-
ting, which means that the restoration iterates between
patch estimation and image reconstruction (by a uni-
form aggregation). In consequence, while the EPLLf
term is a particular case of the fusion operation, their
model is not directly comparable to our framework.

First, in order to use the closed-form expressions
of Proposition 4, we need a Gaussian model for each
patch and not a full GMM. As explained above, we
chose to keep as a prior for each patch the Gaussian
of the mixture which is the more likely for it. However,
observe that by making this choice we loose some of the
information of the full GMM model. Second, we need
a model on patches, and not on centered patches. To
cope with this limitation, we remove the mean value of
each patch, select the most likely Gaussian component
in the GMM, and give the mean value of the original
patch to this Gaussian model. As a result, the expec-

tations of the different Gaussian models contain an im-
portant low frequency noise. For these different reasons,
the comparison of the different aggregation strategies
with the EPLL algorithm (which makes the fusion on
the full GMM model) should be made with caution.
Figure 10 provides the result of these different strate-
gies for the images Lena and Barbara with σ = 30.
The results of the fusion operation on these models are
very smooth but present what we call a “fluffy” effect
(see Section 5.4.1 and Figure 12), due to the way the
Gaussian means are handled.

5.3.3 HDMI

In the HDMI algorithm [19], a GMM is learned on 10×
10 patches, with only a few dozens of low-dimensional
Gaussian models in the mixture. Again, we keep as a
prior for each patch the Gaussian of the mixture which
is the more likely for it, so we loose part of the rich-
ness of the original model in our experiments. Figure 11
provides the result of the different strategies for the im-
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ages Lena and Barbara with σ = 30. In this case, the
different aggregations procedures produce quite impor-
tant differences. The uniform aggregation is efficient
PSNR-wise, but suffers from numerous artifacts (see
Section 5.4.2). Using the whole fused model provides
results which are below PSNR-wise but are also much
smoother, and removes numerous artifacts. Some of the
results suffer from a loss of contrast, explained in Sec-
tion 5.4.3.

It is noticeable that the fusion operation tends to
improve the results for the models inferred by NL-Bayes
while it does not for the HDMI and EPLL models, at
least PSNR-wise. We think that it can be partly ex-
plained by the fact that at this point, we are able to
take fully into account the Gaussian models inferred by
NL-Bayes and that it is not the case for the GMM in
HDMI and EPLL.

5.4 Visual effects

5.4.1 Fluffy effect

We call "fluffy effect" the effect visually similar to cot-
ton, appearing in constant regions when using single
scale patch-based methods (see Figure 12).

When using HDMI [19], the fusion aggregation clearly
reduces this defect, whereas it does increase when using
EPLL [40]. We can explain these results as follows: in
HDMI, patch priors have (almost) independent expec-
tations, since they are inferred using numerous differ-
ent patches on the whole image. The remaining incon-
sistencies between overlapping patch models are thus
removed by the fusion. With EPLL, since each noisy
patch has its own DC component as a model expec-
tation, and since these DC components are not inde-
pendent for overlapping patches, the white noise low
frequencies are reinforced by the fusion and the results
show a very pronounced fluffy effect.

5.4.2 Artifacts

The main advantage of the fusion aggregation is to re-
duce the artifacts. This is quite understandable, since
the method creates a model for which all overlapping
patches have to agree. An artifact is created when one
or several of the original overlapping patch models are
badly estimated. In this case, even if the uniform ag-
gregation averages several correct estimates with this
wrong estimate, the artifact can remain noticeable. When
using the fusion approach, if this artifact is inconsis-
tent with the other models, it will completely disappear.
This is illustrated by Figure 13.

(a) HDMI with uniform aggrega-
tion

(b) HDMI with fusion

(c) EPLL model with uniform ag-
gregation

(d) EPLL model with fusion

Fig. 12: Influence of the fusion on the fluffy effect (low
frequency noise visually similar to cotton and visible in
constant regions after patch-based processing). On the
first line, when using the HDMI algorithm, the fluffy
effect is highly reduced by the fusion, since the hypoth-
esis that the patch models are independent is almost
fulfilled. On the contrary, when using EPLL, the aver-
age of the noisy patch becomes the expectation of its
prior model. In this case, the fluffy effect is amplified
by the fusion.

5.4.3 Blur and constrast

The main drawback of the fusion operation is a loss of
constrast and sharpness around some geometric struc-
tures, which makes the PSNR decrease. This is partic-
ularly striking in regions where the patch models are
not well learned. In practice, flat patch models tend to
come with higher precisions than patch models repre-
senting geometric structures or contrasted textures. If,
across an edge or a geometric structure, some patches
are wrongly attributed to a flat patch model, this model
will count significantly more than others in the fusion
operation, and will result in an important contrast loss.
These shortcomings can be reduced by increasing the
weight λ of the data term in the final restoration (Equa-
tion 5), at the cost of a slight increase of noise. Besides,
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(a) HDMI with uniform aggrega-
tion

(b) HDMI with fusion

Fig. 13: Examples of artifacts created in patch-based
image denoising. On the left, we can see that the uni-
form aggregation creates numerous artifacts, for in-
stance around the fingers. These artifacts, which are
inconsistent across overlapping patch models, are not
present in the fusion result.

(a) HDMI with uniform aggrega-
tion

(b) HDMI with fusion

Fig. 14: Illustration of the loss of sharpness and con-
strast due to the fusion operation. As we can see, the
stripes of the legs of Barbara are perfectly restored by
the fusion aggregation, since the model is well-trained
on this region. However, on the sides of the leg, the tex-
ture looks blurry. This is explained by the lack of patch
examples for this geometry. The bound of the shadow
on the arm is also well-restored by the fusion, but the
"dark spot" on the elbow is another good example of
contrast loss: many patch models of this region are con-
sidered to be uniform and highly reduce the obscurity
of the area.

if a texture or an edge is not captured by the model,
then the fusion cannot restore it properly and the re-
sulting texture will appear blurry. This effect is illus-
trated on Figure 14 and can be reduced for instance by
using the information of the fused model, see Section
5.5.1.

5.5 Possible extensions

5.5.1 Precision estimate

As we have seen, the fusion yields good results in re-
gions where the estimated model is confident and has
been well trained. This "confidence" level can be ac-
cessed through the covariance of the fused model. A
simple way to exploit it is to consider the precision
of the marginal at a given pixel. If this precision is
high, we can consider to keep the estimate provided
by the fusion, and use another estimate otherwise, like
the uniform aggregation. This way, we can construct
the precision estimate, defined as an average of the im-
ages obtained by the uniform aggregation and the fu-
sion, weighted by the precision of the marginals for each
pixel. This idea is illustrated on Figure 15. The figure
shows the precision map obtained on Lena with the
Gaussian models of the HDMI algorithm, and the re-
sulting precision estimate, which clearly keeps the best
of both worlds, reducing the artifacts of the uniform ag-
gregation but providing a much less blurry result than
the sole fusion.

5.5.2 Sparse aggregation

The fusion does not need numerous patches at each
pixel to achieve visually smooth results. The image can
therefore be reconstructed using a reduced number of
patches, chosen either at random or using some heuris-
tics to select the best model among them, as in [33] for
instance. This could be a way to speed up the learning
phase, or to spend more time learning more compli-
cated models. Figure 16 shows an example of a simple
sparse aggregation, using only 4% of the patches (of size
10× 10), so that each pixel belongs to only 4 patches.

6 Conclusion and further work

We have presented here a new formal definition of a
patch model, which permits to define the notion of
agreement between overlapping patches. We have built
on this notion to propose a general common framework
for the aggregation operation, seen as a fusion of differ-
ent overlapping patch models. As we have shown, this
common framework includes all previous aggregation
schemes used in the literature, and reduces the design
of new ones to the design of a fusion operation.

Our approach also permits to compute a fused image
model which generalizes the Expected Patch Log Likeli-
hood introduced by [40]. When patches are assumed to
follow Gaussian distributions, this fused model is also
Gaussian, with tractable expectation and covariance.
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(a) precision map (b) uniform aggregation (c) fusion (d) precision estimate, mix of (b)
and (c)

Fig. 15: The inverse of the diagonal of the covariance matrix gives us the precision of the marginal of each pixel.
This is a basic estimate of how confident the model is for each pixel. This enables to compute the precision estimate,
which tries to keep the best of both worlds.

This whole fused model can in turn be used to restore
the whole image. In practice, the fusion operation can
be used for any model which leads to tractable compu-
tations.

We have compared experimentally several special
cases of this fusion operation for patch-based image de-
noising. As we have seen, using the fusion to aggregate
does not necessarily improve the result PSNR-wise, but
highly reduces the visual artifacts. On some images,
it sometimes outperforms the standard uniform and
weighted aggregations. The fusion is preferable if the
model is well trained, since it takes advantage of all
the provided information. However, patch models are
in practice difficult to infer, in particular on natural
images.

In the near future, we intend to apply this aggrega-
tion to other types of inverse problems, to wider classes
of signals (for instance 1D signals from audio process-
ing), or to other classes of models, like Gaussian mix-
tures. We also wish to investigate other kind of fusion
operations. Indeed, the proposed fusion has some limi-
tations. For instance, when merging two Gaussian patch
models, one could expect that the resulting covariance
would depend on the expectations of the original Gaus-
sian models, but this is not the case with the proposed
definition. It should be interesting to investigate more
deeply in this direction.
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