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Metric Dimension: from Graphs to Oriented Graphs

Julien Bensmail', Fionn Mc Inerney', and Nicolas Nisse!

1Université Cote d’Azur, Inria, CNRS, I3S, France

Abstract

The metric dimension MD(G) of an undirected graph G is the cardinality of a smallest set of
vertices that allows, through their distances to all vertices, to distinguish any two vertices of G.
Many aspects of this notion have been investigated since its introduction in the 70’s, including
its generalization to digraphs.

In this work, we study, for particular graph families, the maximum metric dimension over
all strongly-connected orientations, by exhibiting lower and upper bounds on this value. We
first exhibit general bounds for graphs with bounded maximum degree. In particular, we prove
that, in the case of subcubic n-node graphs, all strongly-connected orientations asymptotically
have metric dimension at most 5, and that there are such orientations having metric dimension
%". We then consider strongly-connected orientations of grids. For a torus with n rows and m
columns, we show that the maximum value of the metric dimension of a strongly-connected Eu-
lerian orientation is asymptotically %5* (the equality holding when n,m are even, which is best
possible). For a grid with n rows and m columns, we prove that all strongly-connected orienta-
tions asymptotically have metric dimension at most 2”{{”, and that there are such orientations

nm

having metric dimension “3*.

Keywords: Resolving sets, Metric dimension, Strongly-connected orientations.

1 Introduction

1.1 Resolving sets and metric dimension in undirected graphs

The distance distg(u,v) (or simply dist(u, v) when no ambiguity is possible) between two vertices
u,v of an undirected graph G is the length of a shortest path from w to v. A resolving set R of
G is a subset of vertices that permits to distinguish all vertices of G according to their distances
to the vertices of R. In other words, R is resolving if and only if, for every two distinct vertices
u, v of G, there exists w € R such that distg(w, u) # distg(w, v). The metric dimension MD(G)
of G is the minimum cardinality of a resolving set of G. Since V(G) \ {v} is a resolving set of
G for every v € V(G), this parameter MD(G) is defined for every undirected graph G.

The notions of resolving sets and metric dimension have been widely studied since their
introduction in the 70’s by Harary and Melter [8], and Slater [14], notably because they can be
used to model many real-life problems. Many related aspects have been investigated to date,

*This work has been partially supported by ANR project MultiMod and ANR program “Investments for the
Future” under reference ANR-11-LABX-0031-01. Due to lack of space, several proofs are only sketched. Full proofs
can be found at https://hal.inria.fr/hal-01938290.
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including algorithmic and complexity aspects, and bounds on the metric dimension of particular
graph families. Our main focus in this paper being the metric dimension of oriented graphs, we
refer the interested reader to surveys (e.g. [II, 2]) for more details about investigations in the
undirected context.

1.2 Resolving sets and metric dimension in digraphs

A natural way of generalizing graph theoretical problems is to consider their directed coun-
terparts. In the context of the metric dimension of graphs, this was first considered by
Chartrand, Rains, and Zhang in [3], before receiving further consideration in several works
(see [BL[6] @, [TTL [12]). It is worthwhile recalling that, in digraphs, distances have behaviours that
differ from those in undirected graphs. Notably, an important point that should be addressed
is that, in the context of general digraphs D, we might have dist(u,v) # dist(v,u) for any two
vertices u,v, where dist(u,v) here refers to the length of a shortest directed path from w to
v. A digraph D is strongly-connected (or strong for short) if, for every u,v € V(D), there is a
directed path from u to v, and conversely one from v to u. Hence, if D is not strong, then there
are vertices u,v € V(D) such that no directed paths from u to v exist. In such a case, we set
dist(u, v) = +o0.

These peculiar aspects of distances in digraphs must be taken into account when defining
directed notions of resolving sets and metric dimension. Throughout this work, the notions of
resolving sets and metric dimension in digraphs are with respect to the following definitions.
Let R be a subset of vertices of a digraph D. T'wo vertices u, v of D are said to be distinguished,
denoted by u =g v, if there exists w € R such that dist(w,u) # dist(w,v). Otherwise, u and v
are undistinguished by R, which is denoted by u ~g v. In particular, if dist(w,u) is finite and
dist(w, v) is not for some w € R, then u = v. A set R C V(D) is called resolving if all pairs of
vertices of D are distinguished by R. The metric dimension MD(D) of D is then the smallest
size of a resolving set. Note that MD(D) is defined for every digraph D; in particular, we have
MD(D) < |V(D)| since R = V(D) \ {v} is a resolving set for any v € V(D) (as having any
vertex in a resolving set makes it distinguished from all other vertices).

Our definitions of directed resolving sets and metric dimension actually differ from those
originally introduced by Chartrand, Rains, and Zhang. On the one hand, in their definition of
resolving sets, they consider the distances from each of the vertices not in R to the vertices in
R in order to distinguish the vertices of D. In our definition, the distances from each of the
vertices in R to the vertices not in R are considered. Note that both definitions are equivalent
on that point, as, given a digraph D, if we reverse the direction of all arcs, resulting in a digraph
D, then any shortest path from u to v in D becomes a shortest path from v to u in D.

On the other hand, their definition of resolving sets requires that the distances from each pair
of distinct vertices to the vertices in R which distinguish them be defined, while our definition
(with distances from vertices in R to the other vertices) allows for undefined distances (+0o0) to
be used as well. Contrary to our definition, this implies that their definition of metric dimension
is not defined for all digraphs. As far as we know, the characterization of digraphs that admit
a metric dimension (following their definition) is still an open problem [3].

Although our definitions and those of Chartrand, Rains, and Zhang are different, it is worth-
while mentioning that most of our investigations in this paper also apply to their context, as we
mainly focus on strong digraphs, in which case our definitions and theirs are equivalent (up to
reversing all arcs).

To date, the investigations on the metric dimension of digraphs have thus been with respect
to the definitions originally introduced by Chartrand, Rains, and Zhang. As a first step, they
notably gave in [3], a characterization of digraphs with metric dimension 1. Complexity aspects
were considered in [I2], where it was proved that determining the metric dimension of a strong
digraph is NP-complete. Bounds on the metric dimension of various digraph families were



later exhibited (Cayley digraphs [5], line digraphs [6], tournaments [9], digraphs with cyclic
covering [I1], De Bruijn and Kautz digraphs [12], etc.).

1.3 From undirected graphs to oriented graphs

To avoid any confusion, let us recall that an orientation D of an undirected graph G is obtained
when every edge uv of G is oriented either from u to v (resulting in the arc (u,v)) or conversely
(resulting in the arc (v,u)). An oriented graph D is a directed graph that is an orientation of
a simple graph. Note that when G is simple, D cannot have two vertices u,v such that (u,v)
and (v,u) are arcs. Such symmetric arcs are allowed in digraphs, which is the main difference
between oriented graphs and digraphs. Throughout this paper, when simply referring to a graph,
we mean an undirected graph.

In [4], Chartrand, Rains, and Zhang considered the following way of linking resolving sets of
undirected graphs and digraphs. They considered, for a given graph G, the worst orientations
of G for the metric dimension, i.e., orientations of G with maximum metric dimension. Looking
at our definition of resolving sets and metric dimension, this is a legitimate question as it has to
be pointed out that, for a graph, the metric dimension might or might not be preserved when
orienting its edges. An interesting example (reported e.g., in [3, @]) is the case of a graph G
with a Hamiltonian path: while MD(G) can be arbitrarily large in general (consider e.g., any
complete graph), there is an orientation D of G verifying MD(D) = 1 (just orient all edges of a
Hamiltonian path from the first vertex towards the last vertex, and all remaining edges in the
opposite direction). Conversely, there exist orientations D of G for which MD(D) can be much
larger than MD(G). As an example, let us consider any path P with 2n + 1 vertices vy, ..., va,.
Clearly, MD(P) = 1; however, the orientation D of P obtained by making every vertex vo41
(k=0,...,n — 1) become a source (i.e., orienting its incident edges away) verifies MD(D) = n.
As shown in this paper, this phenomenon occurs for strong orientations as well.

In [4], the authors proved that, for every positive integer k, there exist infinitely many graphs
for which the metric dimension of any of its strongly-connected orientations is exactly k. They
have also proved that there is no constant k£ such that the metric dimension of any tournament
is at most k.

1.4 Our results

Motivated by these observations, we investigate, throughout this work, the parameter WOMD
defined as follows. For any connected graph G, let WOMD(G) denote the maximum value of
MD(D) over all strong orientations D of G. Let us extend this definition to graph families as fol-

lows. For any family G of 2-edge-connected graph let WOMD(G) = Iélaé{ %GD)('G). Section
€

first introduces tools and results that will be used In the next sections. In Section 3] bounds on
WOMD(Ga) are proved, where Ga refers to the family of 2-edge-connected graphs with maxi-
mum degree A. In particular, we prove that we asymptotically have % < WOMD(Gs) < % In
Section {4l we then consider the families of grids and tori. For the family T of tori, we prove
that we asymptotically have WEOMD(T) = %, where the parameter WEOMD(T) is defined
similarly to WOMD(T) except that only strong Eulerian orientations of tori (i.e., all vertices
have in-degree and out-degree 2) are considered. For the family G of grids, we then prove that
asymptotically % < WOMD(G) < % Remaining open questions and problems are gathered in
Section [l

Terminology and notation Let D be a digraph. For a vertex v of D, we denote by
d,(v) (vesp. dj,(v)) the in-degree (vesp. out-degree) of v which is the number of in-coming

!The edge-connectivity requirement, here and further, is to guarantee the good definition of WOMD(G) for every
G € Ga, as it is a well-known fact that a graph has strong orientations if and only if it is 2-edge-connected (see [13]).



(resp. out-going) arcs incident to v. For every arc (v,u) (resp. (u,v)) in-coming to (resp.
out-going from) wu, we call u an out-neighbour (resp. in-neighbour) of v. The set of all in-
neighbours (resp. out-neighbours) of v is denoted by Np, (v) (resp. N}, (v)). The subscripts in
the previous notations might be dropped when no ambiguity is possible. We denote by AT (D)
(resp., A7 (D)) the maximum out-degree (resp., maximum in-degree) of a vertex in D. Note
that, in an oriented graph D, the in-degree (resp. out-degree) of a vertex corresponds to the
cardinality of its in-neighbourhood (resp. out-neighbourhood).

2 Tools and preliminary results

We start off by pointing out the following property of resolving sets in digraphs having vertices
with the same in-neighbourhood. This result will be one of our main tools for building digraphs
with large metric dimension.

Lemma 1. Let D be a digraph and S C V(D) be a subset of |S| > 2 wvertices such that, for
every u,v € S, we have N~ (u) = N~ (v). Then, any resolving set of D contains at least | S| — 1
vertices of S.

Proof. If two vertices u,v € S do not belong to a resolving set R, then dist(w,u) = dist(w,v)
for every w € R, contradicting that R is a resolving set. O

We now introduce a technique that will be used in the next sections for exhibiting upper
bounds on the metric dimension of strong digraphs with maximum out-degree at least 2. The
technique is based on a connection between the resolving sets of a such digraph and the vertex
covers of a particular graph associated to it. A vertex cover of a graph G is a subset S C V(G)
of vertices such that, for every edge uv of G, at least one of u and v belongs to S. To any digraph
D we associate an auziliary (undirected) graph D,.x constructed as follows: the vertices of Daux
are those of D; for every two distinct vertices u, v of D such that N (u) NN (v) # 0, let us add
the edge uv to D,ux. In other words, D,y is the simple undirected graph depicting the pairs of
distinct vertices of D sharing an in-neighbour. By construction, note that, in D,,x, every two
distinct vertices are joined by at most one edge.

It turns out that, for strong digraphs D with maximum out-degree at least 2, a vertex cover
of D,uy is resolving in D.

Lemma 2. Let D be a strong digraph with AT (D) > 2. Any vertex cover of Dauyx is a Tesolving
set of D.

Proof. Towards a contradiction, assume the claim is false, i.e., there exists a set S C V(D)
which is a vertex cover of D,,x but not a resolving set of D. Since AT(D) > 2, there are
edges in D,yx and thus S # 0. Let v1,v2 be two vertices that cannot be distinguished through
their distances from S; in other words, for every w € S (note that w # wvy,v2), we have
distp (w,v1) = distp(w, v2), and that distance is finite since D is strong. Now consider such a
vertex w € S at minimum distance from v, and vs. In D, any shortest path P; from w to v
has the same length as any shortest path P, from w to wvs.

Because v1 # vy and P;, P> are shortest paths, note that all vertices of P, and P, cannot be
the same; let thus x; denote the first vertex of P; that does not belong to P, and, similarly,
let thus x5 denote the first vertex of P, that does not belong to P;. In other words, the first
vertices of P; and P, coincide up to some vertex x, but the next vertices z1 (in P;) and o
(in Py) are different. So, D,.x contains the edge zix2, and at least one of z1,xo belongs to
S. Furthermore, 1 and o are closer to vy, vs than w is; this is a contradiction to the original
choice of w. O



Figure 1: (a) The oriented graph Ds 3. The set of red vertices is an example of an optimal resolving
set. (b) A strong orientation D of the 6 x 6 torus Ts ¢ verifying MD(D) = |V (Ts6)|/2. Every two
vertices marked with a same letter have the same in-neighbourhood; thus, every resolving set must
contain at least one of them.

Lemma [2 shows that a resolving set of any strong digraph (with maximum out-degree at
least 2) can be obtained by considering every vertex and choosing at least all of its out-neighbours
but one. The proof suggests that this is because this is a way to distinguish all shortest paths
from a vertex to other ones.

Corollary 3. For every strong digraph D with AT (D) > 2, the metric dimension MD(D) of D
is at most the size of a minimum vertex cover of Dyx.

Unfortunately, determining the minimum size of a vertex cover of a given graph is an NP-
complete problem in general [7]. However, in the context of Corollary we are mostly interested
in having reasonable upper bounds on the size of a minimum vertex cover of D,ux. Such upper
bounds can be exhibited when D has particular additional properties, as will be shown in the
next sections.

3 Strong oriented graphs with bounded maximum degree

By the mazimum degree A(D) of a given oriented graph D, we mean the maximum degree of
its underlying undirected graph (i.e., the maximum value of d~(v) + d*(v) over the vertices
v of D). In this section, we investigate the maximum value that MD(D) can take among all
strong orientations D of a graph with given maximum degree. Since a strong oriented graph D
with A(D) = 2 is a directed cycle, in which case MD(D) is trivially 1, we focus on cases where
A(D) > 3.

All our lower bounds in this section are obtained through the following constructions. For
any k € N and A > 2, we denote by Ta i the rooted A-ary complete tree with depth k. More
precisely, Ta ; is a rooted tree such that every non-leaf vertex has A children and all leaves



are at distance k from the root. Note that |V (Ta )| = Az\tl_l and Ta . has AF leaves and
maximum degree A 4+ 1. For any k € N and A, > 2, let Da 1 ; be the oriented graph defined
as follows (see Figure u Lal for an illustration). Start Wlth T being a copy of T'a -1 with all edges

oriented from the root to the leaves. Let vk ... UM . be the leaves of T" and let r be its root.

For every 1 < j < AF=1 add i out-neighbours ul7 <ol to ’Uk ! Then, for 1 < j < A*¥=1 and
1 < /¢ < i, add the arc (uz, ) Then, add a copy T” of Ta k-2 where all edges are oriented from
the leaves to the root. Let vy,---,v)\._» be the leaves of T’ and let v’ be its root. For every
1 <j < AF=2 and for every 1 < ¢ < A, add the arc (u; A= l)H v}). Finally, add the arc (r',7);
note that this ensures that D j; is strong.

Theorem 4. For every k € N and A,i > 2, Da y; is a strong oriented graph with mazimum
degree A 41,

AR =1 gy AR k-1 k—1 .
‘V(DA,k,i” = A1 +iA +ﬁ and MD(DAJf,i) > A —1+A max{l,z — 2}
Proof. We only need to prove the last statement. For every 1 < £ < AP~ let of, .- ,veN
denote the vertices of Da 1, at distance ¢ from r = v{. Note that, for every 0 < ¢ < k — 2
and 1 < j < A’ the vertices vei(jl D1 veAszl DtA have the same in-neighbourhood {vé}
By Lemma |I|, every resolving set of DA ki thus has to include at least A — 1 of these vertices.
For every 1 < j < AF~1! the vertices vz(j D41 z(j Dtio1 have the same in-neighbourhood

{v;-C 1}. Again by Lemma (1| every resolving set of Da j; must thus include at least i — 2 of
these vertices. Moreover, it can be checked that, when i = 2, every resolving set of Da j ; must
include at least one of v’g(j_l) +1,v§(j_1) 4o Figure [laf shows an example of a resolving set of
D3 35.

Hence, any resolving set R of Da i ; verifies the following inequation and the result follows:

|R| > (ZAK > + A* " Tmax{1,i — 2}.

O

In the rest of this section, we exhibit upper bounds on MD(D) for oriented graphs D with
bounded maximum degree, some of which are close to lower bounds that can be established
using Theorem [4]

We begin with an upper bound for strong subcubic (i.e., with maximum degree 3) oriented
graphs D.

Lemma 5. For every strong subcubic n-node oriented graph D, we have MD(D) < 3.
Sketch of proof. In D, there are only 3 types of vertices v, namely: either d=(v) = d*(v) = 1; or
d~(v) =1and d*(v) =2; or d” (v) =2 and d*(v) = 1. Only the vertices v verifying d*(v) = 2
create edges in D,,x and there are at most %n of these vertices v since ZUGV(D) dp(v) =
ZUEV( D) dg (v). Thus, D,uyx contains at most %n edges and thus, admits a vertex cover S with
size at most %n The result follows Corollary O
In the next result, we exhibit a general upper bound on MD(D) for every strong digraph
D with given maximum in-degree and maximum out-degree (at least 2). Recall that a proper
vertex-colouring of an undirected graph is a partition of the vertices into stable sets.

Theorem 6. For every strong n-node digraph D with mazx. in-degree A~ and maz. out-degree
A+ Z 2)

A~ (AT —1)
A-(AT —-1)+1

MD(D) <

6



Proof. The maximum degree of a vertex v of Dyyx is A7(AT — 1): this is because v has at
most A~ in-neighbours in D, each of which, if it has an out-neighbour different from v, might
yield a new edge incident to v in D,,x. So each of these at most A~ in-neighbours of v in D
might create, in Dauy, up to AT — 1 edges incident to v. Hence, the maximum degree of D,
is AT(AT —1). From greedy colouring arguments, it thus follows that D,., admits a proper
vertex-colouring using at most A~(A* — 1) + 1 colours.

The claim now follows from Lemma [2| by just noting that, for any graph with a given
proper vertex-colouring, a vertex cover can be obtained by taking all colour classes but one. In
particular, since a proper k-vertex-colouring of an n-node graph always has a colour class with
size at least %n, we deduce the claim by considering, as a vertex cover of D,,x, all colour classes
but a biggest one of any proper (A~ (A* — 1) + 1)-vertex-colouring. O

Theorems [4] and [6] and Lemma [5] yield the following:

Corollary 7. Let Ga be the family of 2-edge-connected graphs with mazimum degree A. Then,
for any € > 0,

2 1 1
——e < WOMD(G3) < —, and ——e < WOMD(G,) < 9, and lim WOMD(Ga)
) 2 2 7 A—o0

4 Strong orientations of grids and tori

By a grid Gy, m,, we refer to the Cartesian product P,,[1P,, of two paths P,, P,,. A torus T,
is the Cartesian product C,,0C,, of two cycles C),, Cy,. In the undirected context, it is easy to
see that MD(G,, ) = 2 while MD(T,, ,,,) = 3 (see e.g., [10]); however, things get a bit more
tricky in the directed context.

Grids and tori have maximum degree 4; thus, bounds on the maximum metric dimension
of a strong oriented grid or torus can be derived from our results in Section [3] In this section,
we improve these bounds through dedicated proofs and arguments. We first consider strong
Eulerian oriented tori (all vertices have in-degree and out-degree 2), for which we exhibit the
maximum value of the metric dimension. We then consider strong oriented grids, for which we
provide improved bounds.

4.1 Strong Eulerian orientations of tori

Let 0 < n < m be two integers, and let T}, ,, be the torus on nm vertices. That is, V(T ) =
{(1,7) | 0 < i < n,0 <j < m}, and (4,)), (k,€) € E(T,,) if and only if |i — k| € {1,n — 1}
and j =/, or |j —¢| € {1,m — 1} and i = k. By convention, the vertex (0,0) is regarded as the
topmost, leftmost vertex of the torus. That is, {(0,7) € V(Th,m) | 0 < j < m} is the topmost
(or first) row, and {(i,0) € V(T.m) | 0 < i < n} is the leftmost (or first) column.

As a main result in this section, we determine the maximum metric dimension of a strong
Eulerian oriented torus. More precisely, we study the following slight modifications of the
parameter WOMD. For a connected graph G, we denote by WEOMD(G) the maximum value

of MD(D) over all strong Eulerian orientations D of G. For a family G of 2-edge-connected
_ WEOMD(G)
graphs, we set WEOMD(G) = rggéc O

Theorem 8. For the family T of tori, we have WEOMD(T) = %

Sketch of proof. Let us consider the case of a torus T, ,, when n and m are even. We first
show that there exists a strong Eulerian orientation D of T, ,, with MD(D) > 75+ Indeed, let
us orient T), ., such that odd (resp., even) columns are oriented bottom to top (resp., top to
bottom) and odd (resp., even) rows are oriented right to left (resp., left to right). See Figure



column j

Figure 2: (a) The two cases of “bad squares” in the torus. Black vertices are the ones in the initial
set R. (b) Configuration with two undistinguished vertices u and v in the grid. Black vertices are
those in R and white ones are in V(Gy, ) \ R. The vertex w is the LCV of u and w.

for an illustration. The lower bound follows from Lemma [1| since vertices can be partitioned
into pairs of vertices having a common in-neighbourhood.

For the upper bound, the proof is constructive and provides a resolving set of size at most
. The algorithm starts with the set R = {(i,j) € V(D) | i + j even} (note that it is a
minimum vertex cover and a stable set of size ) and iteratively performs local modifications

(swaps one vertex in R with one of its neighbourzs not in R) without changing the size of R until
R becomes a resolving set R*. Precisely, if R is not a resolving set (otherwise, we are done)
then at least two vertices are not distinguishable by their distances to the vertices in R. Let u
and v be two such vertices. We prove that such two vertices belong to a so-called bad square
as depicted in Figure [2a] (there are two cases). We then prove that all bad-squares are pairwise
vertex-disjoint. Finally, we prove (by a case analysis) that the vertex set R* obtained from R
by exchanging vertices v and n, (as defined in Figure for every bad square is a resolving
set. O

4.2 Strong oriented grids

In this section, we consider the maximum metric dimension of a strong oriented grid. For every
such grid, we deal with its vertices using the same terminology introduced in Section [£.1]for tori
(i.e., the vertices of the topmost row have first coordinate 0, and the vertices of the leftmost
column have second coordinate 0). Our main result to be proved in this section is the following.

Theorem 9. Let G be the family of grids. For any ¢ > 0, we have
1 2

Sketch of proof. Let us consider the case of a grid G,, ,,, when n and m are even. We first show

that there exists a strong orientation D of G, ,, with MD(D) > W Indeed, let us orient
G,m similarly to T, ,, in Theorem [§| (and Figure . The lower bound follows from Lemma
since vertices can be partitioned into bad pairs of vertices having a common in-neighbourhood
(except for the vertices on the borders (first/last row/column) in which case only half of the

vertices are included in the bad pairs).



For the upper bound, let us assume that m = 0 mod 3. The proof is constructive and
provides a resolving set of size at most Q”Tm + €. The algorithm starts with the set R =
{V(Grm) \ (1,3 —1)|0 < i <n-1,1 <j <m/3} (ie, R contains the first 2 out of every
3 columns from left to right in the grid) and iteratively performs local modifications (swaps
one vertex in R with one of its neighbours not in R) without changing the size of R until R
becomes a resolving set R*. Precisely, if R is not a resolving set (otherwise, we are done) then
at least two vertices are not distinguishable by their distances to the vertices in R. Let u and
v be two such vertices. We prove that, for any such two vertices u and v, they belong to the
same column C' (not including any vertex in R) and there exists a unique vertex w € C (called
the Last Common Vertezx (LCV) of u and v) at the same distance from u and v (see Figure [2b]
where superscripts * have been omitted.). In that case, let z* be the vertex on the left of w, =%
be the vertex above w, a® be the vertex on the left of 2% and above z%, and b* be the vertex
below z*. We show that, for every LCV w, the vertices {w, z%,a",b"} and the vertices around
them are pairwise vertex-disjoint. Finally, we prove (by a tedious case analysis) that the vertex
set R* is a resolving set where R* is obtained from R by exchanging, for every LCV w, vertices
2% and =¥ (if (", z") or (b*,z") is an arc) or exchanging vertices a* and z* otherwise. [J

5 Conclusion

In this work, we have investigated, for a few families of graphs, the worst strong orientations
in terms of metric dimension. In particular settings, such as when considering strong Eulerian
orientations of tori, we managed to identify the worst possible orientations (Theorem . For
other families (graphs with bounded maximum degree and grids), we have exhibited both lower
and upper bounds on WOMD that are more or less distant apart. As further work on this topic,
it would be interesting to lower the gap between our lower and upper bounds, or consider strong
orientations of other graph families.

In particular, two appealing directions could be to improve Corollary [7| (for max. degree 3)
and Theorem [9] For graphs with maximum degree 3, we do wonder whether there are strong
orientations for which the metric dimension is more than % of the vertices. It is also legitimate to
ask whether our upper bound (% of the vertices), which was obtained from the simple technique
described in Corollary [3] can be lowered further.

In Theorem [9] we proved that any strong orientation of a grid asymptotically has metric
dimension at most % of the vertices. Towards improving this upper bound, one could consider
applying Corollary [3] for instance as follows. For a given oriented grid D, let A* be the graph
obtained as follows (where we deal with the vertices of D using the same terminology as in
Section [4)):

e V(A*) =V(D).

e We add, in A*, an edge between two vertices (4, ) and (¢, j') if they are joined by a path of
length exactly 2 in the grid underlying D. That is, the edge is added whenever (i, j') is of
the form (i —1,7—1), (1—2,5), i —1,5+1), (¢,7+2), (i+1,7+1), (i+2,5), i+1,5j—1),
or (i,j —2).

Note that A* has two connected components C7,Cs being basically obtained by glueing Kj’s
along edges. See Figure [3| for an illustration.

It can be noticed that for any oriented grid D, its auxiliary graph D,.x is a subgraph of A*.
From Corollary [3] any upper bound on the size of a minimum vertex cover of A* is thus also an
upper bound on MD(D) (assuming D is strong, in which case it necessarily verifies At (D) > 2).
Unfortunately, we have observed that any minimum vertex cover of A* covers % of the vertices,
which is not better than our upper bound in Theorem [9

There is still hope, however, to improve our upper bound using the vertex cover method.
Indeed, under the assumption that D is a strong oriented graph, actually D,y can be far from
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Figure 3: The grid Gg g and the associated graph A*.

having all the edges that A* has. For instance, it can easily be proved that, in D,,, it is not
possible that a vertex (i, j) is adjacent to all four vertices (i — 2, 7), (i,7+2), (i +2,7), (i, —2)
(if they exist). Using a computer, we were actually able to check on small grids that, for all
strong orientations D, the minimum vertex cover of D,uyx has size at most % of the vertices.
This leads us to raising the following two questions related to our upper bound in Theorem [3}

Problem 10. For any strong orientation D of a grid G, ,, do the minimum vertex covers of
Daux have size at most “5* ¢

Problem 11. For any strong orientation D of a grid Gy m, do we have MD(D) < ™7 2

Note that if the upper bound in Problem [L1] held, then it would be close to the lower bound
in Th.
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