
HAL Id: hal-02099434
https://hal.inria.fr/hal-02099434

Submitted on 15 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Private votes on untrusted platforms: models, attacks
and provable scheme

Sergiu Bursuc, Constantin-Catalin Dragan, Steve Kremer

To cite this version:
Sergiu Bursuc, Constantin-Catalin Dragan, Steve Kremer. Private votes on untrusted platforms:
models, attacks and provable scheme. EuroS&P 2019 - 4th IEEE European Symposium on Security
and Privacy, Jun 2019, Stockholm, Sweden. �hal-02099434�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/200187101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02099434
https://hal.archives-ouvertes.fr


Private votes on untrusted platforms:
models, attacks and provable scheme

Sergiu Bursuc
Inria Nancy-Grand’Est,

LORIA, France
sergiu.bursuc@inria.fr

Constantin-Cătălin Drăgan
Department of Computer Science,

University of Surrey, UK
c.dragan@surrey.ac.uk

Steve Kremer
Inria Nancy-Grand’Est,

LORIA, France
steve.kremer@inria.fr

Abstract—Modern e-voting systems deploy cryptographic pro-
tocols on a complex infrastructure involving different computing
platforms and agents. It is crucial to have appropriate specifica-
tion and evaluation methods to perform rigorous analysis of such
systems, taking into account the corruption and computational
capabilities of a potential attacker. In particular, the platform
used for voting may be corrupted, e.g. infected by malware, and
we need to ensure privacy and integrity of votes even in that
case.

We propose a new definition of vote privacy, formalized as
a computational indistinguishability game, that allows to take
into account such refined attacker models; we show that the
definition captures both known and novel attacks against several
voting schemes; and we propose a scheme that is provably secure
in this setting. We moreover formalize and machine-check the
proof in the EasyCrypt theorem prover.

I. INTRODUCTION

Electronic voting through the Internet is increasingly pop-
ular, being now routinely deployed for professional elections,
and even, sometimes, for politically binding elections; Estonia
has offered the possibility to vote through the Internet for
parliament elections since 2007. An election is however a
security sensitive process and should at least guarantee two
main security properties: election integrity - the announced
result should correspond to the tally of the votes cast by
eligible voters; and vote privacy - particular voter choices
should remain secret.

These goals are extremely tricky to achieve, as they should
hold even against corrupted election organizers or corrupted
software that runs the election. Secret, end-to-end verifiable
election systems typically use cryptographic protocols to en-
sure these properties. Vote privacy is generally enforced by
encrypting individual votes and anonymizing them before
tally, e.g. using mix-nets, blind signatures or homomorphic
encryption. Integrity of the election is ensured by end-to-end
verifiability, which relies on a combination of cryptographic
proofs and individual or universal auditing for various com-
ponents of the system.

One particularly challenging problem arises when one
makes the (realistic) assumption that the device used for voting
is not trustworthy. Dedicated malware could leak a voter’s
choice or change her choice before casting the ballot. Proof
of concept malware has been demonstrated in at least two
political elections, one in Estonia [53], and one in France [29].

Benaloh [6] proposed a cut-and-choose method that allows
to audit the encryption device, but this method does not prevent
privacy leaks and usability studies suggest that most voters
do not perform this audit [39]. Other methods require the
distribution of personalized code sheets [34], which introduces
an additional, security sensitive, burden on the election setup.
Finally some protocols compute a vote code representing the
choice from a private credential (possibly with the use of an
additional device) [31]. This problem is sometimes referred
to as the malicious platform problem, and the corresponding
security property (for verifiability) is called cast-as-intended.

Given the complexity of these protocols, we believe, and
show in this paper, that an indispensable element in their
security evaluation is the use of rigorous definitions of the
properties, the system and the adversary model, together
with formal proofs that the given models satisfy the stated
definitions.

Our contributions. We study the problem of guaranteeing
vote privacy when various parts of the voting platform, in
particular the device that is used for computing the ballot to
be cast, may be compromised. We propose models that allow
to specify voting schemes, voting platforms and their execution
in such an adversarial environment. We rely on these models,
on one hand, to capture attacks on deployed voting schemes
[1], [11], [48] in presence of realistic adversaries and, on the
other hand, to propose a new voting scheme that we prove
secure.

Models. We provide a new definition of vote privacy,
allowing augmented attacker power which takes into account
compromised machines. Our definition is expressed as a
cryptographic indistinguishability game, in the line of [8], [16],
specifying that an attacker cannot extract more information
from a real execution of the voting system than from an
ideal execution, where ballots perfectly hide votes and the
tally is perfect. Getting the “right” definition is however
rather tricky, as illustrated by the numerous shortcomings of
existing definitions in [8]. Most existing definitions allow an
adversary to request a voter to cast one of given votes v0

or v1 (depending on the challenge bit b of the experiment).
The ballot for vote vb is then directly added to a bulletin
board that records cast votes. In our setting the adversary
has the possibility to modify a ballot in an arbitrary way,
and decide when and whether it is cast (to model that the



voting platform, or the bulletin board are compromised). The
definition is parametrized to allow (or not) modifications of
parts of the ballot, credential leakage, revoting policies, voter
corruption, etc. This flexibility allows to consider a large
variety of election schemes and adversaries.

Attacks. We show that our definition allows to capture
attacks against several voting schemes [1], [3], [49], some
of them previously believed to be secure. Helios [1] is a
prominent voting scheme that can be used when the voting
device is trusted not to leak votes. Yet, as shown in [21],
vote-privacy can be compromised by a simple ballot copy
attack against the bulletin board. Furthermore, even when
techniques to prevent ballot copy are in place at the level
of the bulletin board, a similar attack can be performed by
compromising other parts of the voting platform in order to
force a revote [47] (see Section II-C). Our definition is the
first that formally captures (in a computational model) both the
original attack and its latter variants, by taking into account
refined adversarial control over the platform and the ballot
casting process.

For the case when the adversary may corrupt the voting
device and leak votes, we consider schemes that rely on
computing a vote code: given a vote v and a secret credential
w, the vote code entered on the platform is computed to be
the cyclic shift v + w mod n, where n is the number of
candidates. This way of encoding votes (we call it OnePad in
the following) underlies the popular Prêt-à-Voter system [11],
[14], [48], and also the remote voting scheme proposed in [3].
Intuitively, vote-privacy is protected in these systems by the
fresh, random and secret credential w used to hide each vote.
However, these schemes turn out not to satisfy our privacy
definition. Indeed, we show that an adversary that controls
the voting device and casts f(v + w mod n), for a suitably
chosen function f , can deduce v by analyzing the outcome
of the tally, even if there are honest voters whose device is
not compromised and whose votes should contribute to the
privacy of v. We show that even a seemingly stronger version
of Prêt-à-Voter, where general permutations are used instead
of a cyclic shift, is also vulnerable to this type of attack.

Provably secure scheme: TokPad. In order to make OnePad
secure, we augment the ballot with an authentication tag, that
can be computed on a separate device (we call it token in
the following). Talliers verify the token before decoding votes
and revealing the outcome. Then, in order to perform an attack
as above, the adversary has to control both the voting device
and the token, thus trust is distributed among the two. Indeed,
we formally prove that privacy is satisfied in each of the two
cases: honest device (against untrusted token) or honest token
(against untrusted device). The proof is based on several game
transformations - each relying on cryptographic, platform or
protocol assumptions - in order to show that, at the end, the
term v + w mod n does indeed act as a one-time pad that
protects the vote v. To increase confidence in our result we
have used the special purpose theorem prover EasyCrypt [24]
to machine-check the proof.

Voting system based on TokPad. We address several prac-

tical aspects related to the instantiation of our scheme. We
consider two possible cryptographic instances for the token
functions, and show that, even for a small tag length, which
may be necessary for the usability of the scheme, we can
derive meaningful security guarantees from the generic secu-
rity of TokPad. For publicly verifiable tallying, encryptions of
secret credentials w have to be posted on a bulletin board. We
show how, based on any additively homomorphic encryption
scheme, ballots can be tallied homomorphically, so we can
avoid the use of re-encryption mixes for anonymization. We
leave some other deployment issues as open questions, such
as generation and distribution of voting credentials and token
keys, formal proofs of end-to-end verifiability and putting
everything together in a transparent way for the user.

We present our models and attacks in section II, the design
and formal security results for TokPad in section III, its de-
ployment options in section IV and related work in section V.

II. VOTING SCHEMES AND UNTRUSTED PLATFORMS

We review two schemes that aim to protect votes on
untrusted platforms, propose a formal model to analyze such
schemes and their privacy properties, and show how several
privacy issues, both old and new, are captured by our model.
NOTATIONS. For a, b, c ∈ N, we let a⊕c b = a+ b mod c and
a 	c b = a − b mod c. A selection function for a vector a =
(a1, . . . , an) is defined by a set of indices ι = {i1, . . . , ik} ⊆
{1, . . . , n}: we let ι(a) = (ai1 , . . . , aik) and ι = {1, . . . , n}r
ι. We let ⊥,> be the particular selection functions defined
by ∅ and {1, . . . , n} respectively. For a list L, we denote by
L← L+ a the append of a to L, by L[i] the i-th element of
L, and by L[I] the sublist selected by the indices in I. We
denote by empty the list with no elements.

For an encryption scheme Enc, we denote by
Encpk(·),Decsk(·) and (pk, sk) ← KGen(1λ) the operations
of encryption, decryption and respectively key generation for
a public key pk and corresponding secret key sk. λ represents
the security parameter and 1λ is used as argument by some
cryptographic algorithms to determine the size of objects to
be constructed. For a set M , we denote by x←$M the fact
that x is uniformly sampled from M .

A. Schemes based on a one time pad

A popular idea for protecting private votes from compro-
mised voting platforms is to add a secret mask to the vote.
A vote v is encoded as v ⊕m w, where m is the number of
candidates and w is a secret credential known only to the voter
and to trusted election authorities. Variants of the Prêt-à-Voter
scheme [14], [49] and the remote voting scheme of [3] rely
on this idea.

Prêt-à-Voter [14], [49]. Voters receive a paper bal-
lot containing a serial number and a random permutation
[cπ(0), . . . , cπ(m−1)] of the candidate list [c0, . . . , cm−1]. A
scanner associated to the voting device reads the serial number
from the ballot; the permutation is only known to the voter,
who inputs to the voting device the index u that corresponds to
the desired candidate cv . We have u = π(v). The voting device



Setup(1λ, (nc, I))

BB.(pk, sk)← KGen(1λ)

BB.(nc, I)← (nc, I) ;
BB.(reg, vote, cast, tally)← empty ;

return BB

Vote(v, id,BB)

(m,w)← BB.(nc, privc[id])

return v ⊕m w

BB.public: pk, pubc, nc,
reg, I, vote
cast, tally

BB.private: sk, privc

Register(1λ, id,BB)

if id ∈ BB.I r BB.reg

then

(pk,m)← BB.(pk, nc)

w←$Zm ; c← Encpk(w)

BB.privc[id]← w ; BB.pubc[id]← c

BB.reg← BB.reg + id

return BB

Valid(BB)

J , idL← empty

for (idi, pi) ∈ BB.cast

if idi /∈ idL then

J ← J + i

idL← idL + idi

return J

Tally(BB)

vL← empty ; (sk,m)← BB.(sk, nc)

for (id, p) in BB.tally

c← BB.pubc[id] ; w ← Decsk(c) ;

v ← p	m w ; vL← vL + v ;

return vL

Fig. 1. Algorithms defining the OnePad voting scheme with encryption scheme (TKGen,Enc,Dec), number of candidates nc, and set of eligible voters I

posts the index u and the serial number on the bulletin board.
The random permutation π is encrypted before the election
starts and Encpk(π) is associated to the corresponding serial
number on the bulletin board. The pairs [u,Encpk(π)] can then
go through re-encryption mixes [37], [44], after which we
can decrypt the permutation π, and obtain the decoded vote
cπ−1(u). In the following we consider the class of permutations
that are cyclic shifts which has been suggested in [14], [49].
In this case the permutation π can be represented by an offset
w, i.e. π(v) = v ⊕m w and π−1(u) = u	m w.

Remote voting [3]. As in Prêt-à-Voter, the vote is hidden
from the voting device relying on a mask v ⊕m w. The
secret shift w is sent directly to the voter’s mobile phone.
The corresponding code v ⊕m w, for the desired candidate v,
should then be computed by the voter, possibly with help from
the mobile phone. The voting device computes a ciphertext
Encpk(v⊕m w), and sends it to election servers. One election
server keeps w; relying on homomorphic properties of Enc, w
can be used to compute an encryption of v for tally. A second
server is responsible for sending to the voter a confirmation
code corresponding to v.

The OnePad voting scheme. We consider an abstract scheme
to study the privacy properties of systems described above.
It is formally defined in Figure 1, that we explain in more
detail after introducing the model in the next section. We
concentrate on the core idea that uses a one time pad to mask
private votes, considering a simplified tally procedure where
talliers are trusted. The problems that we investigate later
on are independent of the tally procedure. We also postpone
discussions on verifiability, noting that privacy should hold
even when ballots or the election have not been properly
verified.

B. Formal model and definitions

Our model of voting schemes and ballot privacy follows
the approach from [8], [16]: a set of algorithms and oracles

describes precisely the interaction of an adversary with the
voting scheme, and privacy is defined by an indistinguisha-
bility experiment. To capture malicious voting platforms and
schemes that aim to counter them, we generalize certain
oracles, allowing more adversary influence on cast ballots. We
also have a more general structure for the bulletin board, in
order to store data related to voting credentials, and any other
data that may be needed to capture the execution of voting
schemes.

In our experiment, a bulletin board BB is a data structure
with several attributes that can be accessed by agents par-
ticipating in a voting scheme. The attributes can be public
(unrestricted read but restricted write, as specified by the
voting scheme) or private (restricted read and restricted write).
We assume a basic BB structure that contains the following
attributes, which may be augmented as needed by particular
schemes: BB.sk,BB.pk are respectively the private and public
key of the election; BB.privc,BB.pubc are maps that assign
to voter identities a vector of private and public credentials,
respectively; BB.nc is the number of candidates; BB.I is
the list of eligible voters; BB.reg is the list of registered
voters; BB.vote is a map that assigns to ids the list of
ballots constructed by the respective voter - as we assume
that the platform is possibly compromised, not all of them are
necessarily cast to the election server; BB.cast is the list of
ballots cast to the election server; BB.tally is the list of ballots
to be tallied - it may be different from BB.cast, because some
cast ballots may be deemed invalid before tally. As most voting
systems allow revoting, we use the notation BB.vote[id] to
specify the list of all ballots constructed for a given voter id;
and BB.vote[id, i] to specify the ith ballot in this list.

A voting scheme V is defined by a bulletin board and the
following algorithms:
• Setup(1λ, ρ): generates initial data required by the voting

scheme, for example a public key for the election and
a corresponding secret key. It stores and returns the



generated data on a fresh bulletin board. λ is the security
parameter and ρ are parameters that may be required by
a voting scheme, e.g. the number of candidates.

• Register(1λ, id,BB): generates the private credential
vector BB.privc[id] and the public credential vector
BB.pubc[id] for the voter with the respective id. It returns
the new state of the bulletin board.

• Vote(v, id,BB): takes as input a vote v, a voter identity id
and parameters from the bulletin board, in particular the
private credential stored in BB.privc[id]. It returns a ballot
b, which may be a vector of elements. In the security
definition, we will assume that the Vote algorithm is
executed on a platform that is not corrupted. For example,
in OnePad, Vote models the computation of the one-
time pad, while in Helios [1] it models the operation
of encrypting the vote, assumed to be performed on an
honest device. The corruption capabilities of the attacker
will be modeled by dedicated constructions in the security
definition.

• Valid(BB): takes as input a bulletin board containing,
in particular, the list of cast ballots, the secret key of
the talliers, and public credentials of registered voters. It
returns the sequence of indices J for ballots in BB.cast
that can be tallied. So we have BB.tally = BB.cast[J ].

• Tally(BB) returns the outcome of tallying ballots from
BB.tally.

Figure 1 formally defines the above algorithms for the
OnePad voting scheme described in subsection II-A. The
Setup generates a key pair and stores it on the bulletin board.
Register computes a private and public credential for a given
voter id, and stores them on the bulletin board. Vote returns
the sum of the vote and the private credential, in a cyclic group
determined by the number of candidates. Tally relies on the
secret key to decrypt private credentials and unmask the vote.

A voting scheme V defined as above is used in our pri-
vacy experiment, formally defined in Figure 2, that models
its execution in a given environment, where an adversary
A may call the algorithms in a certain order, with certain
parameters, corrupt parties and obtain associated private data,
etc. This experiment is specified via oracles that may enforce
restrictions on the interaction of A with V . The restrictions are
justified by assumptions about the voting infrastructure (we
call them platform assumptions) or voter behavior (we call
them election assumptions). Together with the specification
of V , these assumptions will be parameters for the voting
experiment. Finally, the oracles also allow us to control the
voting experiment in order to avoid trivial attacks.

A voting scheme may assume several voting devices, e.g. a
mobile phone and a browser. Furthermore, various voting cre-
dentials, like passwords and cryptographic keys, may be used
on each device. We will use selection functions, introduced in
notation paragraph of this section, to specify scenarios where
some of the devices and credentials are trusted, while others
are under the control of the adversary. A platform assumption
for V is a pair of selection functions (γ, µ), where γ specifies
what part of private credentials may leak to the adversary, and

µ specifies what part of honest ballots may be modified by the
adversary. Consider, for example, a ballot that is a vector of 2
elements b = (b1, b2). When µ = > the adversary may modify
b at will, while µ = ⊥ does not allow any modification and
µ = {i} (i ∈ {1, 2}) allows modification of bi only. The effect
of platform assumptions is captured in oracles from Figure 2:
• Credential leakage in Oreg: a part of the private cre-

dential BB.privc[id], selected by γ, is returned to the
adversary at registration time.

• Ballot modification in Ocast following Ovote: the ad-
versary obtains a ballot b created by an honest voter, and
submits a possibly different ballot b′. Such a corruption
attempt will succeed only if µ(b′) = µ(b), i.e. at most
µ(b) is modified by the adversary.

A voting scheme may also assume a certain behavior from
honest voters with respect to the voting procedure. An election
assumption for V is a pair of predicates (Φv,Φc) specifying
when voting and respectively voter corruption are possible.
Formally, a predicate Φ ∈ {Φc,Φv} takes as inputs a voter id
and a bulletin board BB.

Example 1. The following forbids re-voting and unregistered
voters (Φv) and forbids corruption after vote (Φc):

Φv(id,BB) = | BB.vote[id] | < 1 & id ∈ BB.reg
Φc(id,BB) = | BB.vote[id] | < 1

The set of oracles and privacy experiment for the execution
of a voting scheme V , with platform and election assumptions
Ψ = (γ, µ,Φv,Φc), are defined in Figure 2, which we explain
in the following. The adversaryA is modeled by a probabilistic
polynomial time (ppt) algorithm provided with a set of oracles.
Real vs Ideal world execution: As in [8], [9], [16], [52], we
model vote privacy as the inability of A to distinguish between
two runs of the voting experiment: one where A interacts
with a real execution of the voting scheme and one where
A interacts with an idealized execution. A uniform randomly
drawn index β ∈ {0, 1} determines the case we are in: β = 0
the real world, and β = 1 the ideal world. Intuitively, the real
world models a normal adversarial execution of the voting
scheme, whereas the ideal world models an execution where,
for honest voters: (i) ballots returned to the adversary contain
votes that may be arbitrarily distinct from the ones in the real
world (the adversary is free to choose them, e.g. they can be
constant or randomly drawn) and (ii) the outcome of the tally is
perfect, i.e. even if the adversary managed to modify the vote
in a cast ballot, it is the original unmodified vote that is part of
the outcome. Then, being able to distinguish the real execution
from the ideal (i.e. returning the correct guess β′ = β), means
that A is able to exploit a (real world) weakness in the voting
scheme: at the cryptographic level of the ballot, at the protocol
level defined in oracles, or a combination of both.
Voter registration: oracle Oreg(id) registers voters with a
given id. Fresh credentials are created for id and stored on the
bulletin board. A can obtain the public credentials from the
bulletin board via the Oboard() oracle. A also obtains parts
of the private credential as specified by the leakage function.



Expbpriv,β
A,V,Ψ(λ, ρ)

1 : BB0
vote,BB0

cast ← empty ; corr← empty ;

2 : BB← Setup(ρ) ; β′ ← AO(1λ) ; return β′

Oracle Oreg(id)

1 : BB← Register(1λ, id,BB) ; return γ(BB.privc[id])

Oracle Ovote(id, v0, v1)

1 : if Φv(id,BB) and id /∈ corr then

2 : b0 ← Vote(v0, id,BB) ; b1 ← Vote(v1, id,BB)

3 : BB.vote[id]← BB.vote[id] + bβ

4 : BB0
vote[id]← BB0

vote[id] + b0

5 : return bβ

Oracle Ocorr(id)

1 : if Φc(id,BB) then

2 : corr← corr + id; return BB.privc[id]

Oracle Ocast(id, i, b′)

1 : b← BB.vote[id, i] ; b0 ← BB0
vote[id, i]

2 : if id ∈ corr or µ(b′) = µ(b) then

3 : BB.cast← BB.cast + (id, b′)

4 : if id /∈ corr then BB0
cast ← BB0

cast + (id, b0)

5 : else BB0
cast ← BB0

cast + (id, b′)

Oracle Otally()

1 : J ← Valid(BB)

2 : (id1, b1), . . . , (idn, bn)← BB.cast[J ]
3 : (id1, b

0
1), . . . , (idn, b

0
n)← BB0

cast[J ]
4 : for i = 1 . . . n

5 : if idi /∈ corr & β = 1 then b′i ← b0i else b
′
i ← bi

6 : BB.tally← (id1, b
′
1), . . . , (idn, b

′
n) ;

7 : return (J , Tally(BB))

Oracle Oboard()

1 : return BB.public

Fig. 2. Privacy experiment for a scheme V with adversary A and oracles O = {Oreg,Ocorr,Oboard,Ovote,Ocast, Otally}. Platform and election
assumptions are represented by Ψ = (γ, µ,Φv,Φc).

Voter corruption: oracle Ocorr(id) allows corruption of reg-
istered voters. It reveals to A the private credentials of the
corresponding voter. The election assumption Φc may prevent
corruption in some cases, for instance after voting. We call
uncorrupted registered voters honest.
Voting: oracle Ovote(id, v0, v1) invokes the voting procedure
for honest voters. We construct two ballots: b0 encoding v0,
i.e. the real vote, and b1 encoding v1, i.e. the ideal vote;
A obtains bβ , where β is the challenge bit in the privacy
experiment. The ballot bβ is also stored in BB.vote. To be
able to perform the ideal tally, which requires the perfect voter
ballots, the experiment also stores b0 on BB0

vote. The election
assumption Φv may prevent the execution of Ovote in some
cases, for example when id is corrupted or has already voted.
For corrupted voters, A can construct the ballots itself, because
it has the private credentials.

The Ovote oracle models the construction of the ballot in a
trusted environment, before being passed on to the untrusted
platform controlled by the adversary: for OnePad, it models
the voter or the mobile device that computes the masked vote;
for Helios, it models the voting device that encrypts the chosen
vote and posts it to the bulletin board. The Ocast oracle
models the part of the voting process that is controlled by
the attacker, and which may affect the ballots constructed with
Ovote: the ballot casting application, the network, the bulletin
board, etc. For OnePad, the device where the voter inputs the
shifted vote is also modeled by Ocast, because it is assumed
corrupted.
Ballot casting: oracle Ocast(id, i, b′) casts a ballot on the
bulletin board. A may construct the ballot b′ by manipulation

of previously created ballots. If the corresponding voter is hon-
est, the index i specifies which of the previously constructed
honest ballots is replaced by b′; the platform assumption may
protect some parts of this honestly constructed ballot, so the
oracle ensures that A cannot modify them. For dishonest
voters, the Ocast operation is the same, except there is no
restriction on the cast ballots: A has the private credentials,
fully controls the platform, and can cast any ballot. To be
able to perform the ideal tally, for honest voters we copy the
original, unaltered ballot from BB0

vote to BB0
cast.

Tally outcome: oracle Otally() outputs the result of tallying
the cast ballots, ensuring that the ideal world (β = 1) gets a
perfect tally.
Privacy experiment and adversary: Expbpriv,β

A,V,Ψ(λ, ρ), with β ∈
{0, 1}, is the privacy experiment described above. λ is the
security parameter, ρ are parameters required by V and Ψ
are platform and election assumptions. BB is a bulletin board
following the structure defined by the voting scheme V; it is
empty at the beginning and filled with keys, credentials and
ballots during the execution of the experiment.

Definition 1. A voting scheme V with platform and election
assumptions Ψ satisfies vote privacy with bound ζ for a class
of adversaries C if no adversaryA ∈ C can distinguish between
the games Expbpriv,0

A,V,Ψ(λ, ρ) and Expbpriv,1
A,V,Ψ(λ, ρ) from Figure 2

with advantage more than ζ(λ). That is, for any election
parameters ρ, and Advbpriv

A,V,Ψ(λ, ρ) defined by

∣∣∣∣Pr
[

Expbpriv,β
A,V,Ψ(λ, ρ) = β | β←$ {0, 1}

]
− 1

2

∣∣∣∣



we have Advbpriv
A,V,Ψ(λ, ρ) < ζ(λ)

C. Attacks

We describe how our definition captures three attacks
against voting schemes: the attack of Cortier and Smyth based
on ballot copy [21], a variant of this attack by Rønne [47]
based on the observation that ballot weeding is not sufficient
to counter the attack of [21], and a new attack against the
OnePad scheme of Figure 1. The attacks of [21], [47] are
against the Helios voting scheme [1]. For brevity, we show
how our definition captures them for a simplified version of the
scheme. The new attack we describe against OnePad implies
in particular that the scheme of [3] and Prêt à Voter [14], [49]
do not satisfy our proposed privacy definition when the voting
platform is compromised. They may satisfy weaker notions of
privacy, for instance when the voting platform is honest but
curious. We stress the novelty of our definition: among the
three attacks, only the first one can be captured with previous
definitions.

1) Attacks violating the definition: Consider a scheme
where the Setup creates a key pair (pk, sk) for an encryption
scheme, Vote computes Encpk(v) and Tally considers the cast
ciphertexts, decrypts them and outputs the result. For this
scheme, we consider the platform assumption (⊥,>), meaning
that the private credentials are not leaked - in fact, there are no
private credentials for this scheme - but the adversary can cast
any ballot (for example, the adversary may control the channel
or the server that uploads the ballot to the bulletin board). The
election assumption (Φv,Φc) does not allow revoting, as in
Example 1, but may allow corruption after vote.

The attack of [21] assumes one corrupted voter, but we note
that it is not necessary to control the voter, being sufficient
to control the voting platform. The intuition of the attack is
as follows: assume two registered voters id1, id2 that attempt
to cast their ballots b1 and b2; the attacker discards b2 and,
instead, submits a copy of b1 in the name of id2 to the bulletin
board. The outcome of the election will then contain two
identical votes, which reveal the choice of id1.

Example 2 (attack of [21] against Helios). Formally, for two
different votes v1, v2, A does:

Oreg(id1) ; Oreg(id2) ;
b← Ovote(id1, v1, v1) ; Ovote(id2, v2, v2) ;
Ocast(id1, 1, b) ; Ocast(id2, 1, b)

We then have:

BB.cast = ( id1,Encpk(v1) ) , ( id2,Encpk(v1) )

BB0
cast = ( id1,Encpk(v1) ) , ( id2,Encpk(v2) )

When β = 0, Otally() returns {v1, v1}. When β = 1,
Otally() returns {v1, v2}. Therefore A can determine β with
probability 1.

For the next example, we strengthen the scheme by con-
sidering non-malleable encryption, ensuring that A cannot
construct a ballot b′1 encoding the same vote as b1, and ballot
weeding, ensuring two copies of b1 cannot be accepted in

tally. The strengthened scheme satisfies the privacy definition
of [21], however, as observed by [47], it suffers from the same
type of attacks when the attacker controls parts of the voting
infrastructure. Indeed, if the attacker controls the ballot casting
application or the bulletin board, it can claim that ballot casting
was not successful. The voter may then try a second attempt
with the same vote v1. So the attacker obtains two different
ballots b1, b′1 containing both v1: one can be cast for id1, and
the other for id2, so we derive the same attack as above.

Our definition captures such an attack as follows: (i) we
consider a weaker election assumption Φv that allows multiple
calls to the Ovote oracle for the same id - this corresponds
to a voter being allowed to revote if he believes his ballot did
not make it to the bulletin board; (ii) the Ocast oracle allows
the adversary to exploit the list of ballots created with Ovote;
some can be cast for the id corresponding to the same voter,
others can be copied and cast for a different id.

Example 3 (attack of [47] against Helios with weeding).
Adversary A registers the same voters as in Example 2. The
other oracle queries are:

b1 ← Ovote(id1, v1, v1); b′1 ← Ovote(id1, v1, v1);
Ovote(id2, v2, v2);Ocast(id1, 1, b1); Ocast(id2, 1, b

′
1)

As in Example 2, the outcome of the tally for these ballots will
allow A to detect β with probability 1.

Next we present an attack against schemes where the ballot
is of the form v⊕mw, for some secret w that may associated to
each voter - like in OnePad - or to each voter-candidate pair -
like in Prêt-à-Voter with general permutations; a permutation π
can be represented by a list of shifts w1, . . . , wm, one for each
candidate. Again, the platform assumption is (⊥,>): leakage
⊥ means that private credentials used for computing the vote
shift are not revealed to A, unless the voter is corrupted; ballot
modification > means A controls the device where the voter
inputs the shifted vote and may arbitrarily modify it before
casting. Assume there are m candidates and let v1, v2 ∈ Zm
with v1 6= v2.

Intuitively, the attack works as follows: A exploits an
algebraic property of a ballot b = v ⊕m w, namely that
b′ = b⊕ r = (v ⊕ r)⊕m w represents a valid ballot encoding
a vote for v ⊕m r. A can substitute b with b′ during ballot
casting, so the output of the tally will then contain v ⊕m r,
instead of v as it should. We show, in the next section, that
appropriately chosen values of r allow A to derive the vote of
both the targeted voter and of a second voter whose machine
A does not even have to control.

Example 4 (new attack on OnePad and PaV). Adversary
A registers two voters id1, id2; it does not corrupt any. It
modifies the ballot b of id1 to cast b ⊕m r instead, for some
r ∈ Z∗m. Formally, A does:

Oreg(id1); Oreg(id2);
b1 ← Ovote(id1, v1, v1); b2 ← Ovote(id2, v2, v2);
Ocast(id1, 1, b1 ⊕m r); Ocast(id2, 1, b2)



From definitions and the algebraic properties of ⊕m, we have
the following cast ballots to be tallied:

BB.cast = (id1, (v1 ⊕m r)⊕ w1) , (id2, v2 ⊕m w2 );

BB0
cast = (id1, v1 ⊕m w1 ) , (id2, v ⊕m w2 )

When β = 0, Otally() returns {v1 ⊕m r, v2}. When β = 1,
Otally() returns {v1, v2}. Since r 6= 0, A can determine β
with probability 1.

Note that the attack of Example 4 does not affect the ballot
of id2; we can assume A does not control the associated
device.

2) Concrete attacks: We show how attacks discovered with
the formal definition can be exploited in a concrete execution
of the voting scheme, allowing to extract information about
private votes when they follow a particular distribution. As-
sume there are two honest voters id1, id2 and 4 candidates,
represented by elements of Z4. For illustration, we consider
that the votes v1 (of id1) and v2 (of id2) follow the distribution

p0 =
1

2
p1 =

1

2
p2 = 0 p3 = 0

where pi represents the probability of a vote for candidate
i. The exploits can also be performed for more general
distributions where p2, p3 > 0. This reflects the realistic
situation where some candidates are expected to finish with
very low scores. The goal of A is to find out how one, or both,
of the honest voters voted. On an ideal system where A sees
only a permutation of {v1, v2} as outcome, A can win with
probability 3

4 . Indeed, with probability 1
2 both honest voters

vote for the same candidate and, trivially, the attacker knows
their choice, or (again with probability 1

2 ) both voters make
different choices (either v1 votes 0 and v2 votes 1, or v1 votes
1 and v2 votes 0), and the attacker has probability 1

2 to guess
their choices correctly.

For the concrete voting schemes that we consider, we derive
from Examples 2–4 that A can win with probability 1, rather
than probability 3

4 .
Helios. Following the steps of Example 2 or 3, A obtains
{v1, v1} as outcome of the election, so it can derive the vote
of id1 with probability 1—even without assuming a particular
vote distribution. Note that A derives no information about
the vote of id2. The attack requires that A is able to drop and
replace the ballot of id2.

OnePad. Following the steps of Example 4, with r = 1, A
obtains

{ρ1, ρ2} = {v1 ⊕4 1, v2}

as outcome of the election. According to the vote distribution
assumption, we have that

(v1, v2) ∈ {0, 1} × {0, 1} & p2 = 0 & p3 = 0.

Hence A can make the following case analysis:
• case {ρ1, ρ2} = {2, ρ} for some ρ ∈ {0, 1}: as p2 = 0,

the vote for 2 must be the modified one, i.e. v1⊕4 1 = 2,
and therefore (v1, v2) = (1, ρ).

• case {ρ1, ρ2} = {1, 1}: we have that (v1⊕41, v2) = (1, 1)
and hence (v1, v2) = (0, 1).

• case {ρ1, ρ2} = {0, 1}: as {v1 ⊕4 1, v2} = {0, 1}, we
either have that (v1, v2) = (3, 1) or (v1, v2) = (0, 0); as
p3 = 0 it must be that (v1, v2) = (0, 0).

• other cases are not possible, as p2 = p3 = 0.
Note that, with probability 1, A learns how both id1 and id2

voted, while it has to control only the device of id1.
PaV with general permutations. Following the steps of

Example 4, with r = 2, A obtains {ρ1, ρ2} = {v, v2}
as outcome of the election, with v = v1 ⊕4 2. Given the
above assumption about the distribution of votes, we have
v1 ∈ {0, 1}, and therefore v ∈ {2, 3}, so A can deduce that
v2 = {ρ1, ρ2} ∩ {0, 1}.

Note that A learns how id2 voted, and no information about
the vote of id1, although A does not control the device of id2

but the device of id1.
In conclusion, the attacker controlling the voting device can

attack vote privacy in [3], [14], [49] by corrupting a ballot
before sending it to election servers. This will determine an
algebraic relation in the outcome that can be exploited to
derive information about the private vote.

3) Additional remarks on our definition: For our attacker
model, there are two types of “attacks” against voting schemes
that, by design, are tolerated by our definition: ballot blocking
and ballot malleability. A ballot blocking attack prevents a
proportion of ballots from being cast, in order to reduce the
anonymity of the remaining votes in the outcome. For exam-
ple, if there are two voters and one of them is blocked, this
will reveal the vote of the remaining voter. In our definition,
a blocked ballot in a real execution of the protocol (i.e. a call
to Ovote(id, _, _) not followed by a call to Ocast(id, _, _))
will be mirrored by a blocked ballot in the ideal execution, so
ballot blocking alone is not sufficient for distinguishing real
from ideal executions.

We make this choice for the following reasons. On one
hand, this attack is not realistic, because anyone can publicly
observe that a significant proportion of ballots does not reach
the bulletin board, and the attack would be countered. On
the other hand, there is no voting scheme that can prevent
such an attack, whereas there are schemes that still provide
a meaningful security guarantee in this setting - we need a
definition that can evaluate them.

Ballot malleability happens when the adversary is able to
transform a ballot into a different valid ballot, without neces-
sarily affecting the underlying vote, and cast it for the same
voter that created the ballot. This source of malleability, e.g.
when it changes the ballot but not the vote it contains, does not
necessarily lead to an attack. For example, in some schemes
ballots rely on rerandomiseable cryptography for encryption,
signing, or both, like in the BeleniosRF scheme [13]. Ballot
malleability does not necessarily affect vote privacy, and is a
priori tolerated by our definition - as long as A is not able to
change the underlying vote, or to cast the rerandomised ballot
for a different voter; both of these features do indeed lead to
attacks, as shown above.



III. PROVABLE PRIVACY WITH CRYPTOGRAPHIC TOKENS

The attacks of Section II-C show that in order to obtain
provable privacy for schemes based on a one time pad we need
mechanisms to ensure that the padded vote is not modified
before being cast on the bulletin board. One option is to rely on
verifiability, which itself relies on several assumptions, some
of them technical - e.g. appropriate verification devices and
trustworthy bulletin board - some of them social - e.g. voters
do check their ballots. Another option, that we explore in the
rest of the paper, is to use cryptographic tokens attesting to
the tallying authorities that the cast ballots have not been
compromised. We first consider such tokens at an abstract
level, in terms of the security properties that they provide,
and then discuss in section IV what cryptographic primitives
can be used for instantiation.

A. The TokPad voting scheme (Fig. 3)

We consider a scenario where the voter has access to two
devices. The first device, that we call browser, is used for
sending the ballot to the bulletin board. The second device,
that we call token, is used for authenticating the ballot. The
goal is to guarantee privacy even if the browser or the token are
compromised, but not both. The voter has a pair of credentials
(w, k). The credential w is used as a one time pad for masking
the vote v, like in the OnePad scheme. We have p = v⊕m w,
where m is the number of candidates. The credential k is
used by the token for computing a tag t = Tok(p, k), which
is an authentication code for p. The voting ballot that will be
sent by the browser to the bulletin board is the pair (p, t).
Ballot validation (algorithm Valid called before Tally) ensures
that only ballots with verified tags are tallied. We consider
a simple tally procedure where talliers decrypt the ciphertexts
Encpk(w) in order to get w and reverse the one-time pad to get
v. The proof of privacy, however, holds for any tally procedure
whose input/output behavior is the same as the simple tally.
Indeed, we can use re-encryption mixes or homomorphic tally
in order to distribute trust, as we show in Section IV.

Formally, the syntax and security requirement for the cryp-
tographic tokens (definitions 2 and 3) are similar to message
authentication codes [4]. Particular to our application is the
number of token instances that the adversary can see before
having to forge a token: it is the number of voting attempts
using the same token device. We can assume that this number
is small for honest voters, and indeed equal to 1 when revoting
is not allowed. This improves the security guarantees that
can be derived for TokPad, especially for some cryptographic
instances that we discuss in Section IV, whose aim is to keep
the tag length as short as allowed by security requirements.

Definition 2. A cryptographic token is defined by a parameter
space P , a message space M, a key space K, a tag space T
and three algorithms TKGen : P 7→ K, Tok :M×K 7→ T and
Ver : T ×M×K 7→ {true, false} such that, for any ρ ∈ P and
k ← TKGen(ρ), we have ∀m ∈ M. Ver(Tok(m, k),m, k) =
true.

Definition 3. Given a cryptographic token T = (TKGen,Tok,
Ver) and an adversary A, let Forgetsec,n

A,T (1λ) be the event that
Exptsec,n
A,T (1λ) from Fig. 4 returns true. We define the advantage

of A making at most n token queries, as

Advtsec,n
A,T (1λ) = Pr

[
Forgetsec,n

A,T (1λ)
]
.

B. Proof of privacy

The following theorem shows that TokPad satisfies vote
privacy under certain platform and election assumptions. The
case (γ, µ) = (⊥,>) models the scenario of a malicious
browser and honest token: the credential for the one-time pad
and the token key are not leaked, while the adversary has full
influence over what ballot to cast to the bulletin board. The
case (γ, µ) = ({2}, {2}) models the scenario of an honest
browser and malicious token: the token key is leaked and
the adversary can provide any tag for the ballot, but it does
not have the credential for and cannot modify the one-time
pad sent to the bulletin board. We use election assumptions
(Φv,Φc) from Example 1 for Theorem 1 showing privacy of
TokPad. Below, we sketch the main ideas and steps of the
proof, which is fully formalized and machine-checked [54]
in EasyCrypt.

For an encryption scheme Enc and an adversary A, we
denote by Advind-cpa

A,Enc (1λ) the advantage of A in the chosen
plaintext indistinguishability experiment that defines the secu-
rity of Enc: it quantifies the success of A in distinguishing
Enc(m0, pk) from Enc(m1, pk), for any m0,m1 chosen by
A [28], [40]. We say that Enc is ind-cpa secure if, for any
ppt adversary A, we have Advind-cpa

A,Enc (1λ) < ζ(λ), for some
negligible function ζ.

Theorem 1. Let V be the TokPad voting scheme using an
encryption scheme Enc and a cryptographic token T. Assume
that
• Advind-cpa

A,Enc (1λ) is bounded by ζenc for any ppt adversary
A ;

• Advtsec,1
A,T (1λ) is bounded by ζtok for any ppt adversary

A.
Then, for any ppt adversary A, any set of eligible voters I
and any number of candidates m:

1) Dishonest browser1 : with platform assumptions Ψ =
(⊥,>,Φv,Φc), we have

Advbpriv
A,V,Ψ(λ, I,m) ≤ 2 ∗ |I| ∗ ( ζenc(λ) + ζtok(λ) )

2) Dishonest token2: with platform assumptions Ψ =
({2}, {2},Φv,Φc), we have

Advbpriv
A,V,Ψ(λ, I,m) ≤ 2 ∗ |I| ∗ ζenc(λ)

We sketch the proof for the case of a dishonest browser, the
case of a dishonest token being similar, with the difference
that ballot integrity does not depend on a cryptographic
assumption, but is ensured by the honest browser. Let A be

1Lemma dish_browser in file TokpadProof_DishonestBrowser.ec from [54]
2 Lemma dish_token in file TokpadProof_DishonestToken.ec from [54]



Setup(1λ, (nc, I))

BB.(nc, I)← (nc, I)
BB.(pk, sk)← KGen(1λ)

BB.(reg, vote, cast, tally)← empty ;

return BB

Vote(v, id,BB)

m← BB.nc ; (w, k)← BB.privc[id]

p← v ⊕m w ; t← Tok(p, k)

return (p, t)

BB.public: pk, pubc, nc,
reg, I, vote
cast, tally

BB.private: sk, privc

Register(1λ, id,BB)

if id ∈ BB.I r BB.reg then

(m, pk)← BB.(nc, pk)

w←$Zm; k ← TKGen(1λ) ; c← Encpk(w)

BB.privc[id]← (w, k) ; BB.pubc[id]← c

BB.reg← BB.reg + id

return BB

Tally(BB)

vL← empty ; (sk,m)← BB.(sk, nc)

for (id, p, t) in BB.tally

c← BB.pubc[id];w ← Decsk(c);

v ← p	m w; vL← vL + v

return vL

Valid(BB)

(sk,m)← BB.(sk, nc)

J , idL← empty

for (idi, pi, ti) ∈ BB.cast do

(_, k)← BB.privc[idi]

if idi /∈ idL ∧ Ver(ti, pi, k)

then J ← J + i

idL← idL + idi

return J

Fig. 3. Algorithms defining the TokPad voting scheme with encryption scheme (KGen,Enc,Dec) and token (TKGen,Tok,Ver)

Oracle Otok(p)

t← Tok(p, k) ; Q← Q+ (t, p)

return t

Oracle Over(t, p)

Q← Q+ (t, p)

return Ver(t, p, k)

Exptsec,n
A,T (1λ)

k ← TKGen(1λ) ; Q← empty ; (t, p)← AO

return Ver(t, p, k) & |Q| ≤ n & (t, p) /∈ Q

Fig. 4. Token security game with n token queries for adversary A and oracles O = {Otok,Over}

a ppt adversary for the experiment Expbpriv,β
A,V (λ) of Fig. 2.

Let BB.cast = (id1, b1), . . . , (idn, bn) be the list of ballots
present on the bulletin board after the ballot casting phase. We
define a partition of these ballots into honest, compromised and
respectively corrupted: BB.cast = BBhon ] BBcomp ] BBcorr,
where, for (id, b) ∈ BBcast, we have
• (id, b) ∈ BBhon iff id /∈ corr and b was created by a call

to Ovote(id, v0, v1). So we have b = BBvote[id, i], where
i = 1 because revoting is not allowed.

• (id, b) ∈ BBcomp iff id /∈ corr and b is different from the
ballot created with Ovote(id, v0, v1). So we have b 6=
BBvote[id, 1].

• (id, b) ∈ BBcorr iff id ∈ corr.
Denote by BadA the event that one of the ballots com-

promised by A passes the validity test, i.e. ∃j. (idj , bj) ∈
BBcomp & j ∈ Valid(BB). In the first part of the proof,
relying on the token security assumption, we bound the
probability of the BadA event. This allows us to assume
¬BadA for the second part of the proof, where we reduce vote
indistinguishability to the security of the encryption scheme.
Formally, consider the advantage of A conditioned on ¬BadA:

Advbpriv
A,V,Ψ,¬Bad(λ, I,m) =∣∣∣Pr

[
Expbpriv,β
A,V,Ψ(λ, ρ) = β | β←$ {0, 1},¬BadA

]
− 1

2

∣∣∣
We have:
Claim 1: Pr[BadA ] ≤ 2 ∗ |I| ∗ ζtok(λ)
Claim 2: Advbpriv

A,V,Ψ,¬Bad(λ, I,m) ≤ 2 ∗ |I| ∗ ζenc(λ)
The desired result follows from

Advbpriv
A,V,Ψ(λ, I,m) ≤ Pr[BadA ] + Advbpriv

A,V,Ψ,¬Bad(λ, I,m)

Proof sketch of Claim 1: Relying on A, we construct an ad-
versary B in the token security experiment Exptsec

B,T. B samples
a voter id←$ I. If BadA is true, with some probability, as in
equation (?) below, an honest ballot for the sampled id will be
compromised by A. This ballot allows B to break the security
of the token for the corresponding key kid. B implements the
oracle calls for A as in the experiment Expbpriv,β

A,V,Ψ(λ), with the
following difference:

• the token key kid for id is not chosen by B, but is the
secret key in the token security experiment Exptsec,n

B,T ; note
that B does not have this key.

• to create an honest ballot for id, B needs to compute
Tok(p, kid), for some p. For this, it relies on the Otok(p)
oracle provided by Exptsec,n

B,T .

Note that: (i) B adds at most polynomial time overhead to
the complexity of A, thus it is a ppt adversary; (ii) at most one
honest ballot is allowed for each voter, thus B makes at most
one token query in the Exptsec,n

B,T security game. Therefore B
is in the class of token adversaries from the assumptions of
the theorem and we have Pr

[
Forgetsec,1

B,T (1λ)
]
≤ ζtok(λ).

For each id ∈ I, let BadidA be the event that a ballot
from the corresponding voter is a witness for BadA, i.e. it
is compromised and it passes the validity test. We can show
that:

(?) Pr[BadA ] = Pr

[ ∨
id∈I

BadidA

]
≤ |I|∗Pr

[
BadidA | id←$ I

]



Furthermore, for B constructed as above, we can show that:

(??) Pr
[

Forgetsec,1
B,T (1λ)

]
=

1

2
∗ Pr

[
BadidA | id←$ I

]
From (?), (??) and Pr

[
Forgetsec,1

B,T (1λ)
]
≤ ζtok(λ), we

deduce Claim 1.
Proof sketch of Claim 2: Let b1, . . . , bn be the set of valid

ballots cast by A for honest voters. Since we have ¬BadA,
each bi was constructed by an oracle call Ovote(idi, vi0, v

i
1).

Therefore, the outcome of Otally() for these ballots should be
v1

0 , . . . , v
n
0 , and we can compute this output directly, without

using the private credentials w1, . . . , wn for decrypting the
one-time pad, by storing internally the votes provided in
Ovote. We do this in a modified vote privacy experiment that
we annotate with bpriv1. We have

(•) Advbpriv
A,V,Ψ,¬Bad(1λ, I,m) = Adv

bpriv1
A,V,Ψ,¬Bad(1λ, I,m)

Note that the tally outcome for honest voters in bpriv1 is
determined by arguments to Ovote and is independent of the
private voter credentials. Next we rely on the security assump-
tion for Enc to also make the public credentials independent
of the private credentials. We transform bpriv1 into bpriv2 as
follows:
• for every private credential wi ∈ Zm, sample a fresh

random xi ∈ Zm;
• replace every public credential Encpk(wi) with the fresh

ciphertext Encpk(xi).
Relying on a hybrid argument and the security assumption

on Enc, we can show:

(••) Adv
bpriv1
A,V,Ψ,¬Bad(1λ, I,m) ≤

Adv
bpriv2
A,V,Ψ,¬Bad(1λ, I,m) + 2 ∗ |I| ∗ ζenc(λ)

where the coefficient |I| comes from the fact that, in the
worst case, we may need one hybrid game per voter to make
the reduction to ind-cpa security. Let (w1 ⊕ v1

β ,Tok(w1 ⊕
v1
β , k1)), . . . , (wm ⊕ vmβ ,Tok(wm ⊕ vmβ , km)) be the set of

ballots created with Ovote in bpriv2; the ballots b1, . . . , bn
that are cast for honest voters are a subset of these ballots.
By construction of bpriv2, each wi is sampled uniformly and
is only used once in the experiment, for the computation of
wi ⊕ viβ . Therefore, wi acts as a one-time pad that hides viβ ,
and we can deduce:

Adv
bpriv2
A,V,Ψ,¬Bad(1λ, I,m) = 0

Together with (•) and (••), we conclude Claim 2.

IV. VOTING SYSTEM FROM TOKPAD

An instance of TokPad is determined by the choice of the
encryption scheme for credentials and of cryptographic tokens
for ballot authentication. Together with the number of eligible
voters, they will determine the security guarantees that can be
derived from Theorem 1. For tokens, we review two standard
constructions that can be instantiated with any choice for the
size of the tag space. A larger size provides better security,
and it can be used when communication channels can be

established between token and browser. A smaller size can
also be used when the only available channel is the voter.

In addition to ind-cpa security, in order to ensure vote
privacy even when some talliers are dishonest, the encryption
scheme needs to allow:

• ballot anonymization by re-encryption mixnets or by
homomorphic aggregation of ballots.

• distributed decryption by a shared secret key.

We can use classic voting-friendly schemes like ElGamal
or Paillier to support re-encryption mixnets and distributed
decryption. In order to support homomorphic aggregation of
ballots we propose a technique that allows to derive, given
one-time pads and credentials encrypted with an additively
homomorphic scheme, ciphertexts containing an appropriate
encoding of votes.

A. Cryptographic primitives for tokens

PRP-based mac [4], [27]. Assume F : T × K 7→ T is a
function from a pseudorandom permutation family with key
generation algorithm G. Then we let:

• the message and tag space for the token be equal to T
• TKGen be defined by G
• Tok(m, k) be defined by F(m, k)
• Ver(t,m, k) be true iff F(m, k) = t.

Seeking constructions for F that allow flexibility in choos-
ing the size of tags from the space T , we can rely on format-
preserving encryption [5], [10] to choose any suitable domain
for T :

Lemma 1 ( [5], [10] ). For any finite domain T , there is a
key space K and a pseudorandom permutation family with
functions F : T × K 7→ T .

Thus, the probability of distinguishing any such function
F from a random permutation is bounded by a negligible
function ζ, for any ppt adversary. The following lemma
shows that pseudorandomness of F implies security for the
associated token:

Lemma 2 ( [4], [27] ). For any ppt adversary A against a
prp-based token T, we have

Pr
[

Forgetsec,n
A,T (λ)

]
≤ ζ(λ) +

1

(|T | − n)

where ζ bounds the probability for a ppt adversary to distin-
guish the underlying prp from a random permutation.

The second term in the sum represents the probability for
A to guess a valid tag from the remaining options after having
made n token queries.

Hash-based mac [12], [33], [55]. For a prime q and any
a, b,m ∈ Zq , define the function ha,b(m) = a ·m+ b mod q.
Then, using ha,b(·) in the same way as F(·, k) above, we can
define a token with message and tag space Zq and key space
Zq × Zq .



Lemma 3 ( [55] ). For any adversary A against a hash-based
token T with tag space T , we have

Pr
[

Forgetsec,1
A,T (1λ)

]
≤ 1

|T | − 1
.

The advantage of a hash-based mac is that it is a simple
algebraic operation and can be easily verified. The disadvan-
tage is that it can be used at most once, but this is sufficient
for TokPad.

From Theorem 1 (for the case of a dishonest browser) and
Lemma 2 (resp. Lemma 3), we derive the following Corollary,
where Lemma 1 allows us to choose any suitable value for the
size of the tag space in the case of a prp-based token:

Corollary 1. The TokPad scheme using an ind-cpa secure
encryption scheme and a (prp, resp. hash)-based token with
tag space T satisfies privacy with bound 2∗nv∗(ζ(λ)+ 1

|T |−1 ),
where nv is the number of eligible voters and ζ is a negligible
function.

Assuming, for example, that token tags are 8 letter words
built from 64 alphanumeric characters, we obtain |T | = 648 =
248. If there are a maximum of 100 million voters, so nv <
227, we derive from Corollary 1 that TokPad satisfies privacy
with bound ζ(λ)+ 1

220−1 < 0.001 ·10−4. If we have 1 million
voters, so nv < 220, and we use 6 letter words, so |T | = 236,
the bound is smaller than 0.002·10−2. Note that these bounds,
in particular the coefficient nv , are for the worst case where the
adversary attacks privacy by attempting to massively corrupt
tokens. In that case, from the token security assumption, a
large proportion of the corresponding corrupted tags would be
invalid. That can be considered enough corruption evidence in
order to cancel the election, as for coercion evidence in [30].

B. Encryption scheme and homomorphic tally

To ensure privacy in case of dishonest talliers voting
schemes rely on distribution of the secret key [17], [22], [46],
combined with mixnets [1], [15], [38], [49] or homomorphic
tallying [18], [19], [22], [36] to anonymize ballots. ElGamal
[25] or Paillier [45] are examples of schemes typically used in
this context, that we can also adopt in TokPad. Homomorphic
tallying, however, requires a special encoding of encrypted
votes in order to exploit the additive homomorphism of the
encryption scheme. The initial ballot data in TokPad is a one-
time pad of votes, hidden from voting devices, so we need
an additional transformation to compute the necessary vote
encoding. We propose a solution that can be applied to any
homomorphic encryption scheme, that allows us to compute
the vote encoding from available public data.

Consider Enc0 to be an additively homomorphic ind-cpa
secure encryption scheme, e.g. exponential ElGamal [25] or
Paillier [45], with message space Zq , for a prime q, key space
denoted by K0 and ciphertext space denoted by C0. Note that,
from z ∈ Zq and c = Enc′pk(x), we can compute Enc′pk(x∗z).
Denote by cz this operation, and by c1 ? c2 the operation that
allows to obtain Enc′pk(x1+x2) from c1 = Enc′pk(x1) and c2 =
Enc′pk(x2). Assume there are m candidates, represented by

elements of Zm. Let L be a number greater than the number of
eligible voters. For each ` ∈ Zm, a vote for ` will be encoded
by an element in {L`, L`−m}. All algebraic operations in the
following are implicitly modulo q.

Vote encoding. For any α, `, r ∈ Zq , we let

EncodeL(α, `) = αL`

DecodeL(r, `) = (r mod L`+1 − r mod L`)/L`

A vote for v is usually encoded as EncodeL(1, v). To
achieve our transformation, we will consider EncodeL(1, v −
m) to be an encoding of v as well. Then, α votes for v are
represented by EncodeL(α1, v) +EncodeL(α2, v − m), with
α = α1 + α2. The following lemma shows how additive
operations on encodings translate to respective operations on
the underlying votes.

Lemma 4. Let α1, . . . , αk, `1, . . . , `k, L ∈ Zq be such that
α1 + . . . + αk < L and `1 < . . . < `k. Then, for any j ∈
{1, . . . , k}, we have

EncodeL(α1, `) + EncodeL(α2, `) = EncodeL(α1 + α2, `)
DecodeL(Σki=1EncodeL(αi, i), `j) = αj

Proof. For any α1, α2, we have directly from definition
EncodeL(α1, `) + EncodeL(α2, `) = α1L

` + α2L
` =

EncodeL(α1 + α2, `).
Let r = Σki=1EncodeL(αi, i) = α1L

`1 + . . . + αkL
`k and

consider any j ∈ {1, . . . , k}. From the assumptions of the
Lemma, we can deduce that

α1L
`1 + . . .+ αjL

`j < L`j+1

α1L
`1 + . . .+ αj−1L

`j−1 < L`j

Therefore, for any j ∈ {1, . . . , k}, we have

r mod L`j+1 = α1L
`1 + . . .+ αj−1L

`j−1 + αjL
`j

r mod L`j = α1L
`1 + . . .+ αj−1L

`j−1

So we can conclude that, for any j ∈ {1, . . . , k}, we have
DecodeL(r, `j) = αj .

For tallying, we will apply Lemma 4, where
• (`1, . . . , `k) will be the levels (0, . . . ,m − 1, 0 −
m, . . . , (m − 1) −m) at which votes are encoded: each
vote v is encoded either at level v or at level v − m
(modulo q).

• α1, . . . , αk will be the number of votes encoded at each
level `1, . . . , `k.

• q will be the order of the additive group Zq , that underlies
Enc′

Since L is chosen to be greater than the number of eligible
voters (and there is at most one vote per voter), we will have
α1 + . . . + αk < L. In order to have `1 < . . . < `k, it is
sufficient to choose q such that 2m < q (typically q is a large
prime easily satisfying this constraint).

The goal in the following is to come up with an encryption
scheme for credentials w in TokPad that allows to publicly
obtain encrypted encodings of votes v from the shifted vote
v ⊕m w.



Encryption scheme. We define the encryption scheme Enc
with message space Zm, key space K0 and ciphertext space
Zq × C0 as follows

Encpk(x) = (L−x · r mod q , Enc′pk(r−1)) , r←$Z∗q

Decryption can be performed by first decrypting the inner
ciphertext, removing r from the first component, and com-
puting the discrete logarithm of L−x, since x comes from
a small set Zm. However, we do not perform decryption of
credentials directly, but, from v⊕mw and Encpk(w) we com-
pute Enc′pk(EncodeL(1, v)). Tallying can then be performed
relying on the homomorphic properties of Enc′/Dec′ and
Encode/Decode (Lemma 4).

Encryption switching. For a ∈ Zm and c = (c1, c2) a
ciphertext constructed with Enc, we let Switch(a, c) = ca·c12 .

Lemma 5. For any m ∈ N, any v, w ∈ Zm, we have

Switch(v ⊕m w,Encpk(w)) = Enc′(EncodeL(1, v′))

for some v′ ∈ {v, v −m}.

Proof. Let Encpk(w) = (c1, c2). From definitions, we have
Switch(v⊕mw, c) = cL

v⊕mw·c1
2 = Enc′pk(r−1)L

v⊕mw·L−w·r =
Enc′pk(Lv⊕mw−w) = Enc′pk(EncodeL(1, v ⊕m w − w)), for
some r ∈ Zq . Since v, w ∈ Zm, we deduce v ⊕m w − w ∈
{v, v −m}, and we can conclude.

As consequence of ind-cpa security for Enc′, we have:

Lemma 6. Enc is ind-cpa secure.

Proof sketch. By contradiction, assume A is a successful
adversary against Enc. We construct an adversary A′ against
Enc′, by simulating the ind-cpa game for A. Assume A
requests a challenge ciphertext for a pair (m0,m1) ∈ Z2

m, in
order to distinguish Encpk(m0) from Encpk(m1). Let r0←$Zq
and let r1 be such that L−m1 = L−m0 · r0 · r1. The pair
(r−1

0 , r−1
1 ) ∈ Z2

q is sent by A′ to its ind-cpa challenger;
it obtains Enc′pk(r−1

β ) in return; it returns Encpk(mβ) =

[ L−m0 · r0,Enc′pk(r−1
β ) ] to A; it obtains β′ from A and

outputs β′ as its own guess. Then the advantage of A′ in
distinguishing Enc′pk(r−1

0 ) from Enc′pk(r−1
1 ) is the same as the

advantage of A in distinguishing Encpk(m0) from Encpk(m1),
so we contradict the ind-cpa security of Enc′.

Corollary 2 (Homomorphic tally). For any BB obtained by
interacting with oraclesO in Figure 3 and any parameters L, q
chosen as above, we have Result(Tally(BB)) = Tallyhom(BB),
where Result gathers the votes for each candidate in a vector
of dimension m and Tallyhom(BB) is defined by:

sk← BB.sk ; m← BB.nc ; cR ← Enc′pk(0)
for (id, p, t) in BB.tally

c← BB.pubc[id] ; c′ ← Switch(p, c) ; cR ← cR ? c
′ ;

R← Dec′sk(cR) ;
for i = 0 . . .m− 1

ri ← DecodeL(R, i) + DecodeL(R, i−m)
return (r0, . . . , rm−1)

From ind-cpa security of Enc, Theorem 1 (for the case of a
dishonest browser), results in subsection IV-A and Corollary 2,
we deduce:

Corollary 3. The TokPad scheme with Tallyhom used as tally
function, Enc defined as above, and a (prp or hash)-based
token, satisfies privacy with bound 2 ∗ nv ∗ (ζ(1λ) + 1

|T |−1 ),
where nv is the number of voters, T is the tag space and ζ a
negligible function.

C. Deployment, verifiability and open questions

We sketch possible deployment choices as well as veri-
fiability steps that should be considered in order to ensure
vote integrity in TokPad. In-depth study of both is left for
future work. Recall that end-to-end verifiability can be split
into individual verifiability, ensuring that ballots are cast as
intended, and universal verifiability, ensuring that ballots are
tallied as cast [2], [42].

To get individual verifiability we need: browser verification,
to ensure the ballot (p, t) seen in the browser by the voter is the
same as the one cast on the bulletin board; token verification,
to ensure that the tag value t provided by the token is indeed
Tok(p, k); credential verification, to ensure that the private
credentials (w, k) received by the voter correspond to the ones
used for tally and ballot validation. Browser verification could
be performed relying on a separate device, e.g. the token, to
check the state of the bulletin board. If the token function is a
simple algebraic operation, e.g. the hash-based token presented
in subsection IV-A, token verification could be done directly
by the voter. Otherwise, it is a more general open problem.
An alternative could be to use a signing scheme, where the
public key could be used for token verification. The challenge
then would be to transfer the signature from the token to
the browser, as it would be too long to be copied by the
voter. To verify the credential w, we can adapt the Benaloh
challenge approach [6]. The voter could challenge the system
to verifiably decrypt the public credential on the bulletin board.
The voter would then need to obtain another credential, created
dynamically or beforehand. We can use a similar approach to
verify the key k, but a fresh key would need to be loaded on
the token device if the voter has chosen to challenge it.

For universal verifiability, we need to consider ballot vali-
dation and ballot tally. For each voter id, a public counterpart
of the corresponding token key kid would allow talliers
to output zero-knowledge proofs attesting that ballots are
correctly validated. For tally verifiability, we can rely on
standard zero-knowledge proofs. Furthermore, most operations
of our homomorphic tally are based only on public data, thus
minimizing the number of required proofs. We also need to
ensure that the additional information revealed for verifiability
does not compromise privacy. Formal proofs are future work,
but we expect strategies similar to those used to prove privacy
of Helios [16] to work.

One may also be interested in a stronger notion of privacy,
receipt-freeness, where the adversary cannot learn the contents
of a ballot even with cooperation from the corresponding voter.



In TokPad, for any votes v, v′ and credential w, there exists
w′ such that v⊕mw = v′⊕mw′. Therefore, even if the voter
reveals v and w to the adversary, there is no way of verifying
that the ballot does encode a vote for v. This holds under
the assumption that voters cannot verify their credentials;
otherwise, voters could delegate verification abilities to the
adversary, who could then be convinced that w is the correct
credential. This creates an additional challenge if we want to
achieve both verifiability and receipt-freeness.

A foremost deployment issue, and open question, is secure
generation and distribution of the private credential w. Like in
other systems [3], [14], [35], we can rely on an out of band
channel or a separate trusted device. The browser should be
deployed on a device that can communicate with the bulletin
board. The token could be deployed on a restricted device, like
hardware tokens typically used for banking, or on a general
purpose device like a mobile phone. In order to control access
to the bulletin board, to authenticate voters and to load the
secret key on the token device, we can have on top of TokPad
an infrastructure based on passwords and signatures like in
Helios and Belenios [1], [13].

There are a few open questions related to the security and
usability of secret keys. The tally key sk can be distributed
among a set of talliers, if we assume the underlying ho-
momorphic scheme allows it. For the token key, we need a
distributed token verification algorithm, and secure distributed
protocols for generating the key and loading it on the token
device. Estimating the (in)security of reusing the same token
key across several elections or protocols is another problem
that would arise from practice. If the election allows several
voter choices, several different credentials could be used to
mask each choice. All of them could possibly be authenticated
by a single token tag. Extending TokPad for this scenario and
other, more expressive, election settings is another direction
for future work.

V. RELATED WORK

Voting schemes for untrusted devices. In addition to
schemes based on a one-time pad [3], [14], [49], already
reviewed in subsection II-A, we have:

Pretty Good Democracy [34] relies on paper sheets that
contain codes for each candidate and a confirmation code
that voters will receive back from the system in order to
get assurance that their ballot reached the bulletin board.
Tallying relies on encrypted tables, plaintext equivalence tests
and re-encryption mixes in order to decrypt the corresponding
confirmation code for the received ballot and transform the
encrypted codes into corresponding encrypted votes.

The Norwegian voting protocol [26], [35] considers con-
firmation codes that are different for each candidate (this
improves verifiability, perhaps at the price of receipt-freeness),
and it proposes more efficient ways of computing the codes:
[35] is based on exponentiation and secret sharing of private
exponents; [26] is based on strong proxy oblivious transfer.
The drawback is that the voting platform learns the vote; only
integrity is ensured when the machine is untrusted.

Du-vote [31] is a remote voting scheme that aims to
achieve privacy and verifiability on untrusted voting plat-
forms. It relies on dynamic electronic codes, hardware tokens
and orchestration of probabilistic checks and zero-knowledge
proofs to ensure that no party can cheat. Furthermore, it crops
ciphertexts to introduce the voter in the loop without loosing
usability. Still, the scheme is rather complex and it’s security
has not been formally proved. Indeed, [41] shows that under
certain assumptions there are attacks against both privacy and
verifiability.

Models and proofs for vote privacy. Our result is the first
machine-checked proof of privacy in presence of dishonest
voting platforms. There are lines of both symbolic [21], [23]
and computational [7]–[9], [16], [52] models for vote privacy
assuming an honest voting platform. The formalism that is
closest to ours is the one of [16]: they have a game-based
model of privacy and a complete EasyCrypt proof that privacy
holds for many variants of Helios.

We show that privacy in OnePad is violated when voters do
not verify their ballots. A similar problem is studied in [20],
showing that the classical privacy definition of [7] is violated
in absence of individual verifiability [18], [43]. To counter
this problem (and also the problem of a dishonest voting
device), [20] restricts the privacy definition so that privacy
guarantees hold only when all voters have verified their ballot.
Our definition covers more general settings, where privacy can
be studied and guaranteed independently from verifiability.

To capture the case of a dishonest voting platform, the
ballot secrecy definition of [51] allows the adversary to
control the bulletin board, similarly to our Ocast oracle. Our
definition allows however more flexibility by taking platform
assumptions into account. The indistinguishability experiment
of [51] does not follow the real versus ideal world approach
that we do. Instead, following the style of [7], it requires
indistinguishability of two different executions of the scheme
- left versus right - that differ following adversary’s inputs to
Ovote and the challenge ballots it obtains as output. This type
of definition requires restrictions on the considered executions,
in order to ensure that the left and right worlds cannot
be trivially distinguished from the outcome of the election.
Specifically, [51] requires that the tallied bulletin board BB be
balanced, i.e. for any vote v, the number of distinct challenge
ballots contained in BB that encode a vote for v should be the
same in the left execution as in the right execution. Because
of this restriction, [51] fails to capture the attack of [47]
against Helios (we do capture it in Example 3 of Section II-C).
The reason is that the attack requires two different challenge
ballots b, b′ created by two calls to Ovote(id, v0, v1) to be
present on BB, which would then not satisfy the balanced
condition. On the other hand, for certain tallying methods (as
noted in [8] for left versus right indistinguishability notions
[7]) and certain schemes, the definition of [51] is too strong,
resulting in trivial attacks against the definition, that do not
imply real attacks against the scheme. For example, if the
scheme allows a (challenge) ballot b to be transformed into
a different valid ballot b′, the definition would be violated,



because b′ would not be covered by the restriction to a
balanced BB. This would prevent, on one hand, to capture
meaningful attacks on OnePad and, on the other hand, to prove
privacy for schemes with malleable ballots, such as TokPad
with rerandomizable tokens, or the BeleniosRF scheme [13],
which relies on rerandomizable ciphertexts to achieve privacy
and receipt-freeness.

VI. CONCLUSION

Our definition specifies ideal properties of privacy-
preserving voting schemes on untrusted devices. On one hand,
it poses the strong requirement that honest votes should not
be modified before tally: this is motivated by our attacks in
subsection II-C, showing that private votes can be extracted
from a compromised tally. On the other hand, the specification
does not prevent ballot dropping: this is motivated by the
observation that no current scheme prevents this, and that
methods external to the scheme could be used to detect
and counteract such attacks. These and other features of our
definition can be adjusted to account for new schemes and
voting contexts, e.g. when there is an assumption on the
vote distribution that counteracts our attacks, or when ballot
delivery can be ensured with high probability.

Our attacks exploit algebraic properties resulting from
masking votes in a cyclic group. Other ways of masking
votes, for example based on precomputed codes [34], may
be less vulnerable to such attacks, but they rely on additional
infrastructure and trust assumptions. To be a scheme usable
in practice, TokPad has to address verifiability and usability
questions of section V. It is, at the moment, a first step towards
a voter-friendly, provably-secure, verifiable voting scheme
with minimal trust assumptions on untrusted platforms.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program
(grant agreements No 645865-SPOOC).

REFERENCES

[1] Ben Adida. Helios: Web-based open-audit voting. In 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose, CA, USA, pages
335–348, 2008.

[2] Ben Adida and C. Andrew Neff. Ballot casting assurance. In
USENIX/ACCURATE Electronic Voting Technology Workshop, EVT’06,
2006.

[3] Michael Backes, Martin Gagné, and Malte Skoruppa. Using mobile
device communication to strengthen e-voting protocols. In Sadeghi and
Foresti [50], pages 237–242.

[4] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the
cipher block chaining message authentication code. J. Comput. Syst.
Sci., 61(3):362–399, 2000.

[5] Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers.
Format-preserving encryption. In Selected Areas in Cryptography, SAC
2009, pages 295–312, 2009.

[6] Josh Benaloh. Ballot casting assurance via voter-initiated poll station
auditing. In USENIX/ACCURATE Electronic Voting Technology Work-
shop, EVT’07, 2007.

[7] Josh Daniel Cohen Benaloh. Verifiable Secret-ballot Elections. PhD
thesis, Yale University, New Haven, CT, USA, 1987. AAI8809191.

[8] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. SoK: A comprehensive analysis of game-based ballot
privacy definitions. In IEEE Symposium on Security and Privacy, pages
499–516. IEEE Computer Society, 2015.

[9] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to
prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to
Helios. In Advances in Cryptology - ASIACRYPT 2012, pages 626–643,
2012.

[10] John Black and Phillip Rogaway. Ciphers with arbitrary finite domains.
In Topics in Cryptology - CT-RSA, pages 114–130, 2002.

[11] Craig Burton, Chris Culnane, James Heather, Thea Peacock, Peter Y. A.
Ryan, Steve Schneider, Sriramkrishnan Srinivasan, Vanessa Teague,
Roland Wen, and Zhe Xia. A supervised verifiable voting protocol
for the victorian electoral commission. In Manuel J. Kripp, Melanie
Volkamer, and Rüdiger Grimm, editors, 5th International Conference
on Electronic Voting 2012, (EVOTE 2012), Bregenz, Austria, volume
205 of LNI, pages 81–94. GI, 2012.

[12] Larry Carter and Mark N. Wegman. Universal classes of hash functions.
J. Comput. Syst. Sci., 18(2):143–154, 1979.

[13] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David
Galindo. BeleniosRF: A non-interactive receipt-free electronic voting
scheme. In ACM SIGSAC Conference on Computer and Communications
Security, pages 1614–1625, 2016.

[14] David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical
voter-verifiable election scheme. In Computer Security - ESORICS 2005,
10th European Symposium on Research in Computer Security, Milan,
Italy, September 12-14, 2005, Proceedings, pages 118–139, 2005.

[15] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:
Toward a secure voting system. In 2008 IEEE Symposium on Security
and Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA,
pages 354–368, 2008.

[16] Véronique Cortier, Constantin Cătălin Drăgan, François Dupressoir,
Benedikt Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-
checked proofs of privacy for electronic voting protocols. In IEEE
Symposium on Security and Privacy, pages 993–1008, 2017.

[17] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-
abachène. Distributed ElGamal à la Pedersen: Application to Helios. In
Sadeghi and Foresti [50], pages 131–142.

[18] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-
abachène. Election verifiability for Helios under weaker trust assump-
tions. In Computer Security - ESORICS 2014 - 19th European Sympo-
sium on Research in Computer Security, Wroclaw, Poland, September
7-11, 2014. Proceedings, Part II, pages 327–344, 2014.

[19] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-
abachene. Election verifiability for Helios under weaker trust assump-
tions. In European Symposium on Research in Computer Security, pages
327–344. Springer International Publishing, 2014.

[20] Véronique Cortier and Joseph Lallemand. Voting: You can’t have privacy
without individual verifiability. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 53–66.
ACM, 2018.

[21] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. Journal of Computer Security, 21(1):89–148,
2013.

[22] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure
and optimally efficient multi-authority election scheme. Transactions on
Emerging Telecommunications Technologies, 8(5):481–490, 1997.

[23] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-
type properties of electronic voting protocols. Journal of Computer
Security, 17(4):435–487, 2009.

[24] Easycrypt: Computer-aided cryptographic proofs. https://www.
easycrypt.info/.

[25] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings, pages 10–18, 1984.

[26] Kristian Gjøsteen. The norwegian internet voting protocol. In E-Voting
and Identity - VoteID 2011, volume 7187 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2011.

[27] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the crypto-
graphic applications of random functions. In Proceedings of CRYPTO

https://www.easycrypt.info/
https://www.easycrypt.info/


84 on Advances in Cryptology, pages 276–288, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

[28] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 28(2):270 – 299, 1984.

[29] Laurent Grégoire. Comment mon ordinateur a voté à ma place, 2012.
http://tnerual.eriogerg.free.fr/autovote.pdf.

[30] Gurchetan S. Grewal, Mark Dermot Ryan, Sergiu Bursuc, and Peter
Y. A. Ryan. Caveat coercitor: Coercion-evidence in electronic voting.
In IEEE Symposium on Security and Privacy, SP 2013, pages 367–381.
IEEE Computer Society, 2013.

[31] Gurchetan S. Grewal, Mark Dermot Ryan, Liqun Chen, and Michael R.
Clarkson. Du-vote: Remote electronic voting with untrusted computers.
In IEEE Computer Security Foundations Symposium, CSF 2015, pages
155–169. IEEE Computer Society, 2015.

[32] Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors.
Computer Security - ESORICS 2010, 15th European Symposium on
Research in Computer Security, Athens, Greece, volume 6345 of Lecture
Notes in Computer Science. Springer, 2010.

[33] Shai Halevi and Hugo Krawczyk. MMH: software message authen-
tication in the gbit/second rates. In Eli Biham, editor, Fast Software
Encryption, FSE ’97, Haifa, Israel, volume 1267 of Lecture Notes in
Computer Science, pages 172–189. Springer, 1997.

[34] James Heather, Peter Y. A. Ryan, and Vanessa Teague. Pretty good
democracy for more expressive voting schemes. In Gritzalis et al. [32],
pages 405–423.

[35] Sven Heiberg, Helger Lipmaa, and Filip van Laenen. On e-vote integrity
in the case of malicious voter computers. In Gritzalis et al. [32], pages
373–388.

[36] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on
homomorphic encryption. In Advances in Cryptology - EUROCRYPT
2000, pages 539–556. Springer, 2000.

[37] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix
nets robust for electronic voting by randomized partial checking. In
Proceedings of the 11th USENIX Security Symposium, San Francisco,
CA, USA, August 5-9, 2002, pages 339–353, 2002.

[38] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant
electronic elections. In Proceedings of the 2005 ACM Workshop on
Privacy in the Electronic Society, WPES 2005, Alexandria, VA, USA,
November 7, 2005, pages 61–70, 2005.

[39] Fatih Karayumak, Maina M. Olembo, Michaela Kauer, and Melanie
Volkamer. Usability analysis of helios - an open source verifiable
remote electronic voting system. In Proc. Electronic Voting Technology
Workshop / Workshop on Trustworthy Elections (EVT/WOTE’11), 2011.

[40] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. CRC Press, 2014.

[41] Steve Kremer and Peter B. Rønne. To du or not to du: A security
analysis of du-vote. In IEEE European Symposium on Security and
Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016,
pages 473–486. IEEE, 2016.

[42] Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in
electronic voting protocols. In Gritzalis et al. [32], pages 389–404.

[43] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability:
definition and relationship to verifiability. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, October 4-8, 2010, pages 526–535. ACM, 2010.

[44] C. Andrew Neff. A verifiable secret shuffle and its application to e-
voting. In CCS 2001, ACM Conference on Computer and Communica-
tions Security, pages 116–125, 2001.

[45] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Jacques Stern, editor, Advances in Cryptology -
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 223–238. Springer, 1999.

[46] Torben P. Pedersen. A threshold cryptosystem without a trusted party
(extended abstract). In Advances in Cryptology - EUROCRYPT ’91,
pages 522–526, 1991.

[47] Peter B. Rønne. Private communication.
[48] Peter Y. A. Ryan, David Bismark, James Heather, Steve Schneider, and

Zhe Xia. Prêt à voter: a voter-verifiable voting system. IEEE Trans.
Information Forensics and Security, 4(4):662–673, 2009.

[49] Peter Y. A. Ryan and Steve A. Schneider. Prêt à voter with re-encryption
mixes. In ESORICS 2006, 11th European Symposium on Research in
Computer Security, pages 313–326, 2006.

[50] Ahmad-Reza Sadeghi and Sara Foresti, editors. Proceedings of the 12th
annual ACM Workshop on Privacy in the Electronic Society, WPES
2013, Berlin, Germany. ACM, 2013.

[51] Ben Smyth. A foundation for secret, verifiable elections. IACR
Cryptology ePrint Archive, 2018:225, 2018.

[52] Ben Smyth and David Bernhard. Ballot secrecy and ballot independence
coincide. In Computer Security - ESORICS 2013 - 18th European
Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings, pages 463–480, 2013.

[53] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat,
Harri Hursti, Margaret MacAlpine, and J. Alex Halderman. Security
analysis of the estonian internet voting system. In Gail-Joon Ahn, Moti
Yung, and Ninghui Li, editors, Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, pages 703–715. ACM, 2014.

[54] Easycrypt code for privacy of TokPad. https://gitlab.com/ec-evoting/
tokpad.

[55] Mark N. Wegman and Larry Carter. New hash functions and their use
in authentication and set equality. J. Comput. Syst. Sci., 22(3):265–279,
1981.

http://tnerual.eriogerg.free.fr/autovote.pdf
https://gitlab.com/ec-evoting/tokpad
https://gitlab.com/ec-evoting/tokpad

