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Abstract

Many interface formulations, e.g. based on asymptotic thin interphase models or material sur-
face theories, involve higher-order differential operators and discontinuous solution fields. In this
article, we are taking first steps towards a variationally consistent discretization framework that
naturally accommodates these two challenges by synergistically combining recent developments
in isogeometric analysis and cut-cell finite element methods. Its basis is the mixed variational
formulation of the elastic interface problem that provides access to jumps in displacements and
stresses for incorporating general interface conditions. Upon discretization with smooth splines,
derivatives of arbitrary order can be consistently evaluated, while cut-cell meshes enable discon-
tinuous solutions at potentially complex interfaces. We demonstrate via numerical tests for three
specific nontrivial interfaces (two regimes of the Benveniste-Miloh classification of thin layers
and the Gurtin-Murdoch material surface model) that our framework is geometrically flexible and
provides optimal higher-order accuracy in the bulk and at the interface.
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1. Introduction

Interphases and surfaces play an essential role in heterogeneous materials and structures [1–
3]. This role has become even more important with recent advances in surface chemistry [4, 5]
and nanotechnology [6, 7] where it is now possible to create nanoscale-sized high-performance
thin films and coatings with tailor-made properties. Therefore, there exists a broad interest in
advanced modeling and simulation technologies that enable their proactive design. In this context,
the multiscale nature of these materials whose characteristic length scales vary across many orders
of magnitude constitutes a significant challenge. On the one hand, the direct numerical resolution
of thin layers with continuum-based standard finite element or boundary element methods requires
prohibitively fine mesh sizes [8]. On the other hand, molecular dynamics type approaches are often
prohibitively expensive for sample sizes and at scales of engineering interest [9, 10].

Asymptotic models are a classical attempt at circumventing this problem. They replace vol-
umes of thin layers by dimensionally reduced surfaces, along which appropriate jump conditions
of the fields are formulated. We note that the term “interphase” refers to the physical volume of the
layer and the term “interface” to its surface model. In the specific situation of thin interphase lay-
ers, the jump conditions for interface models are typically derived by expanding the fields inside
the layer with respect to the (non-dimensionalized) thickness in a Taylor series that is then trun-
cated to first-order accuracy [11–21]. Benveniste and Miloh [22] proposed a set of more elaborate
second-order models for 2D isotropic elasticity, identifying seven distinct interface regimes.

Based on the work of Gurtin and Murdoch [23–25] and Steigmann and Ogden [26, 27], more
general theories of material surfaces have been developed that incorporate the effect of surface
tension [3, 28, 29]. They can be related to specific regimes of the Benveniste-Miloh classifica-
tion, if the surface tension is neglected and the properties and the thickness of the thin layer are
appropriately chosen [30–33]. Therefore, the methods presented in this paper automatically cover
both classes of problems. We emphasize, however, that our point of departure is the problem of
asymptotically modeling a thin interphase layer, relying on the Benveniste-Miloh derivation via
asymptotic analysis. In this paper, due to the small-strain restrictions of the Benveniste-Miloh
derivation, we focus on linear elasticity only. Extending the current framework to large deforma-
tions requires a change of perspective on a fundamental modeling level. Reworking the derivation
to accommodate large deformations is beyond the scope of the current paper, which focuses on
discretization methods, but will be the subject of future research.

The solutions of general interface models involve non-smooth functions with jump conditions
at arbitrarily complex surfaces that are expressed in terms of higher-order differential operators.
This constitutes a significant challenge for their efficient discretization, as standard C0-continuous
finite element methods are unable to represent strong discontinuities and do not allow higher-
order derivatives. Discretizing higher-order interface models with C0-continuous basis functions
has been shown to work for some test cases [34], but is a variational crime in the sense of Strang
and Fix [35] that can potentially lead to uncontrolled errors in the numerical solution fields. We
emphasize that this statement also holds for higher-orderC0-continuous basis functions on meshes
that are conforming to the interface. In this situation, the C0-continuity does not necessarily con-
stitute a variational crime across the interface, depending on the variational interface formulation
employed, but will always constitute a variational crime in the tangential direction along the inter-
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face. We also note that variational consistency and smoothness of the solution across the interface
are not directly related. To avoid this issue, research on the numerical treatment of interface mod-
els has mainly focused on first order models that do not contain higher-order derivatives [36, 37].
For instance, spring- and membrane-type models for planar and curved three-dimensional inter-
faces have been integrated into the extended finite element method [38–40]. Javili, Steinmann and
collaborators developed a thermodynamically consistent theory for general interfaces that is open
to be discretized with standard C0-continuous finite elements [41, 42].

In this article, we present a variationally consistent framework for the direct discretization of
interface models of general order. It is based on two essential components: (a) higher-order ac-
curate smooth spline basis functions that have been used as finite element basis functions in the
context of isogeometric analysis [43, 44]; (b) cut-cell methods [45, 46] that circumvent the mesh-
ing challenge for complex embedded interfaces; and (c) variational coupling methods [47, 48] that
tie together unfitted finite element meshes along embedded surfaces. This combination constitutes
a natural way to tackle the key challenges stated above. Due to the higher-order smoothness of
spline basis functions, derivatives of arbitrary order can be directly evaluated without affecting the
consistency of the variational formulation. Unfitted meshes can accommodate complex surface ge-
ometries without meshing related obstacles, while variational coupling enables the representation
of weak and strong discontinuities at embedded interfaces.

The main objective of this article is to establish the fundamental components of this con-
cept and to demonstrate its computational efficiency for the discretization of existing higher-order
interface models of thin interphase layers and material surfaces. In Section 2, we review the
Benveniste-Miloh asymptotic model and the classical Steigmann-Ogden material surface model
that involve higher-order derivatives up to fourth order. In Sections 3 and 4, we consolidate our
discretization strategy based on isogeometric cut-cell finite elements and variational interface for-
mulations in mixed and primal form. In Section 5, we demonstrate with the example of a coated
circular inhomogeneity that the proposed discretization framework naturally achieves higher-order
accuracy. In Section 6, we summarize the key points of our framework, including aspects that re-
quire further elaboration, and outline its potential to open up avenues for future theoretical and
computational research.

2. Asymptotic models of thin interphases and theories of material surfaces

In this work, we focus on two classes of higher-order interface models proposed by Benveniste
and Miloh [22] and by Gurtin and Murdoch [23, 24] and Steigmann and Ogden [26, 27]. We
briefly discuss the underlying assumptions of each model class, their interrelation, and provide
specific interface conditions for three specific models.

2.1. Benveniste-Miloh asymptotic models of thin interphases
We consider the isotropic, linearly elastic plane-strain problem shown in Fig. 1a. This problem

involves an inhomogenity embedded in a matrix, separated by a uniform interphase layer, where
the Lamé parameters λ and µ are given for the matrix, interphase and inhomogeneity materials,
indicated by the subscripts M , Γ and I , respectively. The problem is characterized by the dimen-
sionless length scale ε = h/R, where h is the thickness of the layer and R denotes a typical radius
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of curvature of the interphase midplane Γ (see in Fig. 1b). In [22], Benveniste and Miloh assumed
that ε � 1 and that the elastic properties of the matrix and the inhomogeneity are of the same
order of magnitude. Using asymptotic analyses of the fields inside the interphase in terms of ε,
they transferred the thin interphase problem of Fig. 1b into the analogous interface problem of
Fig. 1c, given that appropriate conditions for the fields across the interface Γ are enforced.

Figure 1: The inhomogeneity problem, zoom-in of the interphase, and the corresponding asymptotic interface limit.

The interface conditions depend on the dimensionless length scale ε and the dimensionless
interphase material parameters λΓ and µΓ which characterize the interphase geometry and the
relative elastic response of the interphase, respectively. The latter are defined as:

(λΓ, µΓ) =

(
λI + λM

2
+ µI + µM

)−1

(λΓ, µΓ) . (1)

Benveniste and Miloh then showed that the elastic response of the composite system changes for
different interphase thicknesses. Depending on the integerN involved in the following expression,

εNλΓ = O(1) , εNµΓ = O(1) , (2)

they identified seven distinct interface regimes, which are classified after the characteristic elastic
response of the thin layer: (a) vacuous thin layer, (b) perfect interface, (c) spring type, (d) mem-
brane type, (e) inextensible membrane type, (f) inextensible shell type, and (g) rigid interface. The
conditions across the interface for each of these regimes can be given in terms of jumps in the
normal and tangential components of the tractions, [[σn]] and [[σt]], and in terms of jumps in the
normal and tangential components of the displacements, [[un]] and [[ut]]. Here we define the jump
operator as [[v]] = vI − vM .

We now focus on the membrane type interface and the inextensible shell type interface that are
defined by the following conditions across Γ:
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Membrane type interface (N = 1):

[[un]] = 0 ,

[[ut]] = 0 ,

[[σn]] = −P/R
(
∂ut
∂s

+
un
R

)∣∣∣∣
Γ

,

[[σt]] =
∂

∂s

{
P

(
∂ut
∂s

+
un
R

)}∣∣∣∣
Γ

,

(3)

in which s is the arc length andR(s) is the radius of the curvature of the interface Γ. The subscripts
t and n are the tangential and normal directions as shown in Fig. 1c. The constant P is given by:

P =
4µΓ (λΓ + µΓ)

λΓ + 2µΓ

h . (4)

If we assume a circular inhomogeneity as depicted in Fig. 1a with a constant radius of curvature
R and a polar coordinate system {r, θ} attached to the center of the inhomogeneity, the jump
conditions (3) for the tractions simplify to:

[[σrr]] = − P

R2
(uθ,θ + ur) ,

[[σrθ]] =
P

R2
(uθ,θθ + ur,θ) ,

(5)

where σrr = σn, σrθ = σt, ur = un, uθ = ut, uθ,θ = Ruθ,s, and the subscript “,” indicates
differentiation, e.g. uθ,θ = ∂uθ/∂θ.

Inextensible shell type interface (N = 3):

[[un]] = 0 ,

[[ut]] = 0 ,(
∂ut
∂s

+
un
R

)∣∣∣∣
Γ

= 0 ,

[[σt]] +
∂

∂s
(R[[σn]]) =

1

R

∂

∂s

(
DF (s)

)∣∣∣
Γ

+
∂

∂s

(
R
∂2

∂s2

(
DF (s)

))∣∣∣
Γ
,

(6)

in which

D =
µΓ (λΓ + µΓ)

3 (λΓ + 2µΓ)
h3 ,

F (s) = ut
∂ (R−1)

∂s
− ∂2un

∂s2
− un
R2

,

(7)
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where D is the flexural rigidity. For a circular inhomogeneity with a polar coordinate system, the
jump conditions (6) for the tractions simplify to:

[[σrr]] = − P

R2
(uθ,θ + ur)−

D

R4
(ur,θθθθ − uθ,θθθ) ,

[[σrθ]] =
P

R2
(uθ,θθ + ur,θ)−

D

R4
(ur,θθθ − uθ,θθ) ,

(8)

supplemented by the following inextensibility condition:

uθ,θ = −ur . (9)

It can be seen from (3), (5), (6), (7) and (8) that the interface conditions are governed by higher-
order differential operators (second-order for N = 1 and fourth-order for N = 3). Therefore,
higher-order smoothness is required for the functions that represent the displacements.

Remark 1: The terms membrane type interface and inextensible shell type interface were cho-
sen by Benveniste and Miloh due to the analogy of the strong forms of the resulting interface
conditions with the corresponding membrane and shell theories. In their original paper [22], this
connection is demonstrated in detail. This interpretation offers an additional perspective on the
inner workings of the corresponding interface models.

2.2. Gurtin-Murdoch and Steigmann-Ogden theories of material surfaces
Another class of interface models are based on the material surface theories proposed by Gurtin

and Murdoch [23, 24] and Steigmann and Ogden [26, 27]. In both theories, the interface is a ma-
terial surface that has zero thickness. It is treated as a membrane in the Gurtin-Murdoch (G-M)
theory and as a shell in the Steigmann-Ogden (S-O) theory. The material surface is characterized
by the surface tension σ0, the Lamé parameters µ0 and λ0 (G-M and S-O), and the bending param-
eters ζ0 and χ0 (S-O). All interface parameters have dimensions of force per length in contrast to
the elastic bulk parameters whose dimensions are force per area.

The equilibrium equations and boundary conditions are presented in component form in [31]
and [32, 33] for the Gurtin-Murdoch theory and the Steigmann-Ogden theory, respectively. They
include the standard Navier equations of linear elasticity for the bulk materials and a set of equa-
tions that describe the conditions at the material surface. In both theories, the displacements are
continuous across the surface and the tractions undergo jumps that are described by the surface
equilibrium conditions.

We again assume a circular inhomogeneity as shown in Fig. 1a with a polar coordinate system
{r, θ} attached to its center. The Steigmann-Ogden model prescribes the following set of condi-
tions across the interface between the inhomogeneity and the matrix:
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Steigmann-Ogden model:

[[ur]] = 0 ,

[[uθ]] = 0 ,

[[σrr]] = −R−1σ0 +R−2σ0 (ur,θθ − uθ,θ)−R−2 (λ0 + 2µ0) (uθ,θ + ur)

−R−4 (2χ0 + ζ0) (ur,θθθθ − uθ,θθθ) ,
[[σrθ]] = R−2σ0 (ur,θ − uθ) +R−2 (λ0 + 2µ0) (uθ,θθ + ur,θ)

−R−4 (2χ0 + ζ0) (ur,θθθ − uθ,θθ) .

(10)

The conditions (10) reduce to those for the Gurtin-Murdoch theory if the bending parameters are
neglected, i.e. χ0 = ζ0 = 0.

For a circular inhomogeneity and for the case of vanishing surface tension, the material surface
theories of Gurtin-Murdoch and Steigmann-Ogden can be related to the corresponding regimes by
Benveniste and Miloh [31–33, 49]. For example, the conditions of the membrane type interface
correspond to the interface conditions of the Gurtin-Murdoch model with σ0 = 0, if

2µ0 + λ0 = P =
4µΓ (λΓ + µΓ)

λΓ + 2µΓ

h . (11)

The conditions for the inextensible shell type interface correspond to the interface conditions of the
Steigmann-Ogden model with σ0 = 0, if: i) the parameters µ0, λ0 satisfy (11), ii) the parameters
µΓ, λΓ are such that the inextensibility condition (9) is satisfied, and iii) the parameters χ0, ζ0

satisfy the following equation:

2χ0 + ζ0 = D =
µΓ (λΓ + µΓ)

3 (λΓ + 2µΓ)
h3 . (12)

3. A primer on isogeometric cut-cell finite element technology

In the next step, we consolidate our discretization strategy that is based on isogeometric cut-cell
finite elements [50, 51]. It uses higher-order continuous splines as basis functions, defined over
patches of structured elements that are cut by a boundary or interface. In this section, we outline
the essential technical aspects of B-splines and cut-cell quadrature methods, while variational
interface formulations will be described in Section 4.

3.1. Isogeometric analysis and higher-order continuous basis functions
Isogeometric analysis [43, 44] is an isoparametric finite element method that uses smooth

and higher-order spline basis functions, ubiquitous in computer aided geometric design (CAD)
to represent geometric objects, for the approximation of physics-based solutions fields. While its
original objective has been a better integration of CAD and finite element analysis, it offers signif-
icant additional benefits. Approximations of derivative fields are smooth and their degree can be
adjusted to what is required by the primal variational formulation [52–55]. In this work, we ex-
ploit the higher-order smoothness of splines for discretizing general interface models that involve
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Figure 2: Univariate B-spline patch of polynomial degree p = 3 and knot vector Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}.

(a) h-refinement from four to eight elements. (b) p-refinement from cubic to quartic order.

Figure 3: A univariate B-spline basis and the two refinement options pursued in this work.

higher-order derivatives. We note that we still use the term isogeometric, despite the fact that the
connection between a CAD and an analysis model via splines is absent in our method. Instead,
we use the term isogeometric to highlight that our framework relies on spline finite element basis
functions, which have been promoted significantly in the context of isogeometric analysis over the
last decade. In the following, we outline the construction of smooth B-spline basis functions [56].

3.1.1. Univariate B-splines
A B-spline basis of degree p is formed from a sequence of knots called a knot vector Ξ =

{ξ1, ξ2, . . . , ξn+p+1}, where ξ1 ≤ ξ2 ≤ . . . ≤ ξn+p+1 and ξ ∈ R is called a knot. A repeated knot
in Ξ is said to have multiplicity k. In this case, the smoothness of the B-spline basis is Cp−k at
that location. A univariate B-spline basis function Ni,p(ξ) is defined using a recurrence relation,
starting with piecewise constants (p = 0),

Ni,0 (ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1 ,

0 otherwise .
(13)

For p > 0, basis functions are defined using the Cox-de Boor recursion formula,

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (14)

Figure 2 illustrates a B-spline basis of polynomial degree p = 3, where knots at the beginning
and the end are repeated to make the basis interpolatory. We observe that the parameter space
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e

Figure 4: A cubic bivariate B-spline function.

over which B-spline basis functions are defined can be split into knot spans Ω̂e that we denote as
elements in the following.

B-spline basis functions satisfy a number of beneficial properties: They constitute a partition
of unity, that is, ∀ξ,

∑
iNi,p(ξ) = 1, the support of each B-spline is compact and contained in the

interval [ξi, ξi+p+1], and each B-spline function is point-wise non-negative over the entire domain.
For structured spline meshes, global refinement of the spline basis functions is simple. One can
either increase the number of elements (h-refinement) by inserting more knots in the knot vector
or increase the polynomial degree (p-refinement) by elevating the order of the basis functions.
Figures 3a and 3b illustrate h- and p-refinement of the original cubic B-spline patch, where the
latter maintains the maximum Cp−1-continuity (also sometimes denoted as k-refinement).

The Cox-de Boor formula (14) can be used for point-wise evaluation of the basis function
values. It leads to the construction of a small, lower triangular table of intermediate values. First
order derivatives and higher-order derivatives are also computed with the help of this reccursion. In
particular, these derivatives are computed as a bi- product of this triangular table computation. Let
us note that the evaluation is both efficient (the asymptotic complexity is the same as computing
the values) and numerically stable (due to the use of the B-spline recursion).

3.1.2. Multivariate B-splines
Multivariate B-splines are a tensor-product generalization of univariate B-splines. We use ds

and dp to denote the dimension of the physical and parameter spaces, respectively. Multivariate
B-spline basis functions are generated from dp univariate knot vectors

Ξ` = {ξ`1, ξ`2, ..., ξ`n`+p`+1} , (15)

where ` = 1, . . . , dp, p` indicates the polynomial degree along parametric direction `, and n` is
the associated number of basis functions. The resulting univariate B-spline basis functions in each
direction ` can then be denoted by N `

i`,p`
, from which multivariate basis functions Bi,p(ξ) can be

constructed as

Bi,p (ξ) =
d∏
`=1

N `
i`,p`

(ξ`) . (16)
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Multi-index i = {i1, . . . , idp} denotes the position in the tensor product structure, p = {p1, . . . , pdp}
indicates the polynomial degree, and ξ = {ξ1, . . . , ξdp} are the parametric coordinates in each
parametric direction `. A bivariate B-spline basis function is shown in Fig. 4.

The values and partial derivatives ∂kBi,p(ξ), k = {k1, . . . , kdp} of the multivariate basis
functions are computed using the univariate values ∂k`N `

i`,p`
(ξ`) and the tensor-product structure

of (16).
Moreover, for a given direction w ∈ Rd, ‖w‖ = 1 the directional derivative of order k is given

in terms of partial derivatives

(∇ · w)kBi,p =
∑

k1+···+kd=k

(
k

k1, . . . , kd

)
∂kBi,pw

k , (17)

where
(

k
k1,...,kdp

)
are the multinomial coefficients and the bold multiindex which appears is applied

coordinate-wise. This is a multivariate polynomial in variablesw, which we evaluate with Horner’s
scheme, for ensuring numerical stability. We note that it is straightforward to map directional
derivatives from the parametric to the physical space, since we operate on structured spline meshes
with affine mappings.

3.2. Cut-cell finite element methods
Cut-cell finite element methods approximate the solution of boundary value problems using

non-boundary-fitted meshes [45, 46]. Their primary goal is to alleviate meshing related obstacles
that often appear for geometrically complex domains. In this work, the flexibility of cut-cell
methods with respect to complex geometries is important [57–59], since generating boundary-
fitted spline discretizations of inhomogeneity problems outside of a CAD environment is not a
trivial task. First, cut-cell methods need to be able to evaluate surface and volume integrals in cut
elements [60–64], which we will describe in the following. Second, they need to be able to enforce
interface conditions at embedded surfaces variationally [47, 65–68], which will be the target of the
next section. A further important challenge outside of the scope of this work revolves around the
generation of well-conditioned equation systems despite the presence of small cuts [66, 69, 70].

3.2.1. Robust and automatic quadrature of cut elements
In this work, we integrate cut elements via the approach of composed Gauss quadrature, based

on a hierarchical decomposition of the original element into quadrature sub-cells [71]. Figure 5
illustrates the concept for two element patches that represent a circular inhomogeneity domain and
a surrounding matrix domain. First, we remove all elements and corresponding basis functions
from each patch that have no support in the physical domain. We then subdivide each cut element
into sub-cells that are constructed in the sense of a quadtree. Adaptive decomposition is repeated
until a predefined maximum depth is reached. Each sub-cell is equipped with quadrature points
of the standard Gauss rule. We note that in addition to standard Gauss point weights, a geometric
weight is required that takes into account the quadtree level of each point. All quadrature points
that are located outside the physical domain are discarded.

To clearly distinguish between finite elements and quadrature sub-cells in Fig. 5, finite ele-
ments are plotted in black lines, while quadrature sub-cells are plotted in blue lines. Basis func-
tions for the approximation of the solution fields are still defined exclusively on the black mesh.
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Figure 5: Discretization of the geometry.

Composed Gauss quadrature is robust, automatic and easy to implement, therefore fitting the pur-
pose of the this work. For quadrature in three-dimensional cut elements, composed quadrature
involves a prohibitively large number of quadrature points. In 3D, alternative quadrature schemes
should therefore be considered, for instance based on geometrically accurate reparametrization of
cut elements [61–64] or based on the moment fitting scheme [60, 72].

3.2.2. Quadrature over embedded surfaces
The numerical integration of surface integrals over embedded surfaces can be achieved in-

dependently of the underlying unfitted spline mesh. One option that maintains full geometric
accuracy is to describe the surface via an analytical parametric model, if available, or via a para-
metric spline surface given by a CAD model. Another option is to introduce a sufficiently fine
triangulation of each embedded boundary, where each triangle serves as the basis for generating
independent quadrature points based on standard monomial rules. In this work, we focus on circu-
lar inhomogeneities whose boundary can be described exactly via a parametric model. Integration
points, e.g. based on Gaussian quadrature, can be introduced by splitting the parametric space into
suitable quadrature elements. They can then be mapped forward to the physical space using the
parametric surface mapping, where each quadrature point can be related to a specific element via
its global coordinate. It is important to note that quadrature points must be sufficiently dense such
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that each cut element contains surface quadrature points, including small cut cases.

4. Variational formulations of general material interfaces

In this section, we complement the isogeometric cut-cell finite element technology by varia-
tional formulations that enforce the displacement and traction conditions of an imperfect interface
model of our choice weakly along the embedded surface. We discuss two different formulations,
namely a mixed finite element formulation and an associated primal formulation. In this context,
it is important to note that the cut-cell framework discussed above leaves a finite element space
that is discontinuous across the embedded surface. As a result, both the equilibrium transmission
conditions (tractions) and the compatibility transmission conditions (displacements) have to be
enforced weakly, in the variational formulation. It is worthwhile to note that this procedure is
reminiscent of discontinuous Galerkin (DG) methods. The interested reader may refer to [48] for
a general outline of DG methods, to [73–75] for applications in the context of linear elasticity, and
to [68] for a concise presentation of the analogy of cut-cell and DG methods.

4.1. Mixed weak formulation
Following [48, 68], we start with the 2reduced order form of the linear elasticity problem.

Under the assumption of small strains, it is expressed by the following system of first-order partial
differential equations and associated boundary conditions:

σ = C : ε(u) = C : 1
2
(∇u+∇Tu) in Ωj, j = M, I ,

−divσ = f in Ωj, j = M, I ,

[[u]] = 0 on Γ ,

[[σ]] · n = h(u) on Γ ,

σ · n = tN on ∂ΩN ,

u = uD on ∂ΩD ,

(18)

with the displacement vector u, the stress tensor σ, the fourth order material stiffness tensor C,
and the standard linearized strain tensor ε. We note that a single dot denotes the single contraction
operation, and the colon operator denotes a double contraction. The domains are illustrated in
Fig. 1. The functions uD and tN are prescribed boundary data, given for the Dirichlet and Neumann
parts of the exterior boundary, ∂ΩD and ∂ΩN . At the imperfect interface Γ, the normal vector n
points from the inhomogeneity domain to the matrix domain, as indicated in Fig. 1. Each of the
interface conditions for the interphase models discussed in Section 2 implies a zero displacement
jump, see for instance (18). The particular choice of interphase model, such as (3), (6) or (10),
is therefore specified via the expression for the traction jump condition h(u). We emphasize
that the framework presented here is general in terms of continuity requirements of the solution
fields at the interface. For instance, it is able to accommodate solutions that involve jumps in the
displacements, such as imperfect interface conditions representing interface damage or debonding.

We define a space U that contains all vector functions with square integrable gradients, and
a space Σ that contains all symmetric second order tensor functions with square integrable diver-
gence. We then obtain a mixed weak formulation by multiplying both equations with a suitable
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test function, i.e. τ ∈ Σ for the first line in (18) and v ∈ U for the second line, and subsequent
integration over the domain. From the major symmetry of C and the symmetry of ε(u) it follows
that C : ε(u) = ε(u) : C, and we can thus write the first equation as:∫

ΩM∪ΩI

σ : τ dx =

∫
ΩM∪ΩI

(
C : ε(u)

)
: τ dx =

∫
ΩM∪ΩI

ε(u) : (C : τ) dx . (19)

We use the following integration by parts formula in both equations (see e.g. [76]), where T is
some symmetric second order tensor:∫

Ωj

ε(v) : T dx =

∫
Ωj

(
div(v · T )− v · divT

)
dx =

∫
∂Ωj

v · T · n ds−
∫
Ωj

v · divT dx j = M, I .

(20)

This leads to:

Find u, σ ∈ U × Σ s.t. ∀ v, τ ∈ U × Σ :

∫
ΩM∪ΩI

σ : τ dx = −
∫

ΩM∪ΩI

u · div(C : τ) dx+

∫
∂ΩM

u · (C : τ) · n ds+

∫
∂ΩI

u · (C : τ) · n ds ,∫
ΩM∪ΩI

σ : ε(v) dx−
∫

∂ΩM

(σ · n) · v ds−
∫
∂ΩI

(σ · n) · v ds =

∫
ΩM∪ΩI

f · v dx .

(21)

To facilitate the adoption of the interface conditions, we use of the following classical identity
to rewrite the interface terms:∑

j=M,I

∫
∂Ωj

(T · n) · v ds =

∫
Γ

([[T ]] · n) · {{v}} ds+

∫
Γ

({{T}} · n) · [[v]] ds+

∫
∂Ω

(T · n) · v ds , (22)

where {{·}} denotes the average operator defined as {{v}} = 1
2
(vM + vI) and ∂Ω denotes the bound-

ary of the complete physical domain ΩM ∪ ΩI . Thereby, the mixed weak formulation becomes:

Find u, σ ∈ U × Σ s.t. ∀ v, τ ∈ U × Σ :

∫
ΩM∪ΩI

σ : τ dx = −
∫

ΩM∪ΩI

u · div(C : τ) dx+

∫
Γ

{{u}} · [[C : τ ]] · n ds+

∫
Γ

[[u]] · {{C : τ}} · n ds

+

∫
∂Ω

u · (C : τ) · n ds ,∫
ΩM∪ΩI

σ : ε(v) dx−
∫
Γ

({{σ}} · n) · [[v]] ds−
∫
Γ

([[σ]] · n) · {{v}} ds−
∫
∂Ω

(σ · n) · v ds

=

∫
ΩM∪ΩI

f · v dx .

(23)

The boundary data and the interface conditions must still be incorporated in this weak form to
render it well-posed. We do so differently for the mixed and the primal finite element formulations,
which we introduce next.
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4.2. Mixed finite element formulation
The weak formulation (23) provides direct access to the displacement and traction jumps on

the interface and the tractions and displacements on the domain boundary. A straightforward way
to arrive at a finite element formulation is thus the substitution of the transmission and bound-
ary conditions from (18) and the discretization of the function spaces U and Σ. We also add a
variationally consistent penalty term to the second equation to support the stability of the final
formulation, which leads to:

Find uh, σh ∈ Uh × Σh s.t. ∀ v, τ ∈ Uh × Σh :

∫
ΩM∪ΩI

σh : τ dx = −
∫

ΩM∪ΩI

uh · div(C : τ) dx+

∫
Γ

{{uh}} · [[C : τ ]] · n ds+

∫
∂ΩN

uh · (C : τ) · n ds

+

∫
∂ΩD

uD · (C : τ) · n ds ,∫
ΩM∪ΩI

σh : ε(v) dx−
∫
Γ

h({{uh}}) · {{v}} ds−
∫
Γ

({{σh}} · n) · [[v]] ds+

∫
Γ

α [[uh]] · [[v]] ds

−
∫
∂ΩD

(σh · n) · v ds−
∫

∂ΩN

tN · v ds =

∫
ΩM∪ΩI

f · v dx .

(24)

Our isogeometric cut-cell technology enables us to discretize the different displacement and
stress components with spline basis functions. Therefore, all higher-order derivatives are well-
defined in a variationally consistent sense due to the higher-order smoothness of spline basis func-
tions. We simplify the implementation by using Voigt notation for the representation of the stress
and strain tensors, which also naturally incorporates the symmetry requirement. Furthermore, we
use {{uh}} in our evaluation of the traction jump condition h(u). This becomes viable in an isogeo-
metric framework, where uh and {{uh}} have a sufficient level of continuity due to the higher-order
smoothness of spline basis functions. We note that we assume sufficient smoothness of the inter-
face Γ as well.

4.3. Primal finite element formulation
To reduce the number of degrees of freedom, we can eliminate the auxiliary variable σh. To

this end, we perform reverse integration by parts to the first line of (24), which results in:∫
ΩM∪ΩI

σh : τ dx =

∫
ΩM∪ΩI

ε(uh) : C : τ dx−
∫
Γ

[[uh]] · {{C : τ}} · n ds+

∫
∂ΩD

(uD − uh) · (C : τ) · n ds .

(25)

As σh is eliminated, the associated space Σh is arbitrary. We can choose this space such that
∀ v ∈ Uh∃ τ ∈ Σh : ε(v) = τ . By identifying the test function τ = ε(v) and by subtracting (25)
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from the second line in (24), we obtain:

Find uh ∈ Uh(uD) s.t. ∀ v ∈ Uh(0) :∫
ΩM∪ΩI

ε(uh) : C : ε(v) dx−
∫
Γ

[[uh]] · {{C : ε(v)}} · n ds−
∫
Γ

[[v]] · {{C : ε(uh)}} · n ds

+

∫
Γ

α [[uh]] · [[v]] ds−
∫
Γ

h({{uh}}) · {{v}} ds =

∫
ΩM∪ΩI

f · v dx+

∫
∂ΩN

tN · v ds .

(26)

where we enforce the Dirichlet boundary conditions strongly by introducingUh(uD), a subspace of
Uh consistent with the solution of the strong form, and replace the remaining {{σh}} on the interface
by {{C : ε(uh)}}. These two quantities are generally not identical due to the discrete nature of (24).
Therefore, this replacement is a (variationally consistent) approximation that simplifies (26). As
a result, the finite element formulation (26) is not equivalent to (24). Consistency with the strong
form may be verified by performing reverse integration by parts on the first term, replacement of
uh by u and subsequent substitution of the identities from (18).

Remark 2: The stabilization term that we added to (24) and (26) is intended to stabilize the
discretized variational formulations. According to our numerical experiments, choosing the corre-
sponding free parameter α between 1 and 100 supports accurate solutions and monotone conver-
gence. Despite these observations, the current stabilization technique cannot be proven to guaran-
tee stability in all configurations (i.e. for all boundary data, force functions and discrete function
spaces). A straightforward way to verify this is to consider the primal formulation, where the
appropriate analysis tool to establish stability is a coercivity study. We require:

a(v, v) ≥ c ||v||2 ∀ v ∈ Uh(0) , (27)

where a(·, ·) is the bilinear form associated with (26), c is some constant, and || · || may be any
norm (due to the equivalence of norms in finite dimensional vector spaces). The simplest case
h({{u}}) = 0 corresponds to perfect coupling via Nitsche’s method, for which coercivity has been
studied extensively in the literature [47, 48, 77–79]. The newly added (potentially negative) term
that involves h({{u}}) may spoil these results. Indeed, any v ∈ Uh(0) for which [[v]] = 0 on Γ but
{{v}} 6= 0 could result in a loss of positivity of a(v, v) and hence violate (27). Therefore, finding
an effective and generally robust stabilization of (24) and (26) is still an open question.

5. Numerical tests with a classical benchmark

In this section, we present three numerical tests that demonstrate the accuracy of the isogeo-
metric cut-cell framework in conjunction with the variational interface formulations for the con-
sistent discretization of higher-order interface models. From a geometric viewpoint, we restrict
ourselves to the classical plane-strain configuration of a coated circular inhomogeneity embedded
into an infinite matrix. This problem is of particular interest, as there exists analytical solutions
for asymptotic interphase models and material surface theories. Within this configuration, we con-
sider three different interface models (membrane type, inextensible shell type and Gurtin-Murdoch
models) and two different variational interface formulations (primal and mixed forms).

16



-2

-1

0
1

2

-2

-1

0

1

2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y / R

x / R

(a) Analytical solution.

-2

-1

0
1

2

-2

-1

0

1

2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y / R

x / R

(b) Numerical solution (20× 20 cubic elements).

Figure 6: Membrane type interphase model: dimensionless displacement ux/R.
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(b) Numerical solution (20× 20 cubic elements).

Figure 7: Membrane type interphase model: dimensionless von Mises stress σ/µM .

Our framework is implemented in the C++ library G+Smo1, a general purpose, open-source
library especially designed for isogeometric analysis. It features tensor-product and (truncated)
hierarchical splines of arbitrary degree and dimension as well as a flexible syntax for implementing
elaborate variational formulations (see e.g. [80]).

5.1. Circular inhomogeneity coated with a membrane type interphase layer
We consider a three-phase composite system that involves a circular inhomogeneity, co-centrical

thin interphase layer, and an infinite matrix (the configuration and the following notation follow
Fig. 1). The dimensionless shear modulus of the inhomogeneity is set to µI/µM = 0.5, and the

1Geometry plus Simulation Modules, http://github.com/gismo
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Figure 8: Traction jump [[σrr]] along the interface for the membrane type interphase layer.

dimensionless Lamé parameters λM/µM and λI/µM are 1.5 and 0.5, respectively. The dimen-
sionless elastic properties of the thin interphase layer are µΓ/µM = 262.5 and λΓ/µM = 393.75.
According to the classification of Benveniste and Miloh, this layer can be represented by the
zero-thickness membrane type interface (5) with P/(µMR) = 7.5. The problem is subject to a
normalized far-field horizontal stress σxx/µM = 2. To obtain a numerical solution, we consider
the finite domain [−2R, 2R] × [−2R, 2R], in which the inhomogeneity is centrally located, and
impose Dirichlet boundary conditions at the outer boundaries taken from the analytical solution in
[31, 33].

The composite configuration is discretized with the isogeometric cut-cell framework as illus-
trated in Fig. 5. We first consider a base mesh with 20×20 cubic elements for the complete square
domain. The base mesh is then used to extract unfitted meshes for the matrix and the inhomo-
geneity by removing all elements and associated basis functions that are completely outside the
physical domain. We recall that all cut elements carry basis functions that involve independent
degrees of freedom for the matrix domain and the inhomogeneity domain. Each cut element is
equipped with five levels of quadrature sub-cells. A representative example discretization of the
classical circular inhomogeneity problem is given in Fig. 5.

We first illustrate the accuracy of our method by juxtaposing analytical and numerical fields.
Figures 6 and 7 show the distribution of the dimensionless displacements ux/R and the dimension-
less von Mises stresses σ/µM . The numerical results are obtained with the primal finite element
formulation, discretized with 20× 20 cubic elements. We observe that the displacements are con-
tinuous, while the von Mises stress undergoes jumps, as dictated by the interface model of equation
(5). The close agreement between the analytical and numerical solutions is a first indication of the
higher-order accuracy of the proposed framework.

Figure 8 plots the traction jumps [[σrr]] along the circular interface, enabled by the discontin-
uous cut-cell solution across the embedded interface. Results were obtained with the mixed and
primal finite element formulations discussed in Section 4, discretized with 20 × 20 quadratic and
quintic elements. We see that the results of the quadratic discretization exhibits oscillations along
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Figure 9: Convergence in the L2-norm with quadratic elements.
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Figure 10: Convergence in the L2-norm with cubic elements.

the interface at the given mesh size, where no significant difference can be observed between
the results of the mixed and primal formulations. When we increase the polynomial degree, the
oscillations quickly vanish, indicating a clear advantage of higher-order discretizations for these
models.

In the next step, we consider a series of base meshes with 5 × 5, 7 × 7, 10 × 10, 15 × 15,
and 25 × 25 higher-order elements and polynomial degrees from p = 2 to p = 5. We quantify
the performance of the mixed and primal finite element formulations in terms of the displacement
and stress errors in the L2 norm, when the mesh is refined at a constant polynomial degree. In
addition to the error defined over the matrix and inhomogeneity domains, we also compute a
corresponding error that is defined only at the interface in terms of the displacements and the
stress jumps. Figures 9 through 12 plot the resulting convergence curves for for each polynomial
degree. We observe that we consistently achieve optimal higher-order rates of convergence in
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Figure 11: Convergence in the L2-norm with quartic elements.
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Figure 12: Convergence in the L2-norm with quintic elements.

all cases. The error converges with a comparable rate in the bulk domains and at the interface.
From the stress plots at the interface and the convergence curves, we can conclude that the mixed
and primal formulations provide equivalent solution accuracy. The primal formulation, however,
requires significantly fewer degrees of freedom to achieve the same level of accuracy. We therefore
consider only the primal formulation in the following examples.

In all computations, we use a stabilization parameter α = 100. Following Remark 1 at the end
of Section 4, however, the question of appropriate stabilization is still unclear at this point. We
note that some of the curves indicate superconvergent behavior for the first refinement steps, due
to the comparatively large error for the coarsest meshes. One could presume that given a more
effective stabilization, the large errors in the coarse discretizations and hence the superconvergent
behavior of the convergence curve could also be reduced.
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(b) Numerical solution (20× 20 quintic elements).

Figure 13: Inextensible shell type interphase model: dimensionless displacement ux.
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Figure 14: Inextensible shell type interphase model: dimensionless von Mises stress σ/µM .
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(a) Normal traction component [[σrr]].
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(b) Tangential traction component [[σrθ]].

Figure 15: Traction jumps across the interface for the inextensible shell type interphase model.
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5.2. Circular inhomogeneity coated with an inextensible shell type interphase layer
In the next step, we consider a significantly stiffer interphase layer with elastic properties

µΓ/µM = 2, 625, 000 and λΓ/µM = 3, 937, 500, but otherwise assume the same three-phase
composite system and the same material parameters for the inhomogeneity and the matrix as in
Section 5.1. Following (8), the interphase can be modeled as a zero-thickness inextensible shell
type interface, with P/(µMR) = 75, 000 and D/(µMR3) = 0.625. The system is subjected to a
dimensionless far-field loading σxx/µM = 2, for which an analytical solution exists [32, 33].

To find a numerical solution, we again consider the square domain [−2R, 2R] × [−2R, 2R],
where we find Dirichlet boundary conditions from the analytical solution in [32, 33]. We employ
the same cut-cell discretization procedure as in Section 5.1, but focus on the primal formulation
only. Figures 13 and 14 plot the dimensionless horizontal displacement ux/R and the dimen-
sionless von Mises stress σ/µM , respectively, where the numerical solutions are obtained with a
20 × 20 mesh of quintic elements. Figure 15 plots the corresponding normal traction jump [[σrr]]
and tangential traction jump [[σrθ]] along the circular interface. We observe that the proposed cut-
cell framework yields accurate solutions in all cases, with the numerical and analytical solutions
being indistinguishable from each other.

We again consider a series of base meshes with 5 × 5, 7 × 7, 10 × 10, 15 × 15, and 25 × 25
elements, with a fixed polynomial degree p = 5. Figures 16 and 17 plot the convergence of the
displacement and stress errors in the L2 norm, when the mesh is uniformly refined. In Fig. 16,
the L2 errors are computed over the matrix and inhomogeneity domains. In Fig. 17, the L2 errors
are computed for the displacements and stress jumps at the interface only. We observe the same
characteristic solution behavior as in Section 5.1. The proposed framework achieves higher-order
optimal rates of convergence in the bulk and at the interface. We see superconvergence in the
preasymptotic range that is likely due to larger errors for the coarsest meshes.

5.3. Gurtin-Murdoch model and multiple inhomogeneities
In the next step, we would like to briefly illustrate that our framework also covers the analysis

of interfaces based on material surface theories. To this end, we consider the same composite
configuration, but at the nanoscale, such that the Gurtin-Murdoch conditions represent the interface
behavior between the matrix and the circular inhomogeneity. The Gurtin-Murdoch conditions
follow from the Steigmann-Odgen model (10) with χ0 = ζ0 = 0. We note that the following
material parameters refer to nano-composite materials made from anodic alumina with a radius of
inhomogeneities within 5 and 100 nm. The data related to the surface properties of alumina and the
magnitude of the surface tension are taken from [81] and [82], respectively. The elastic properties
of the inhomogeneity and the matrix are µI = 17.35 GPa, λI = 26.025 GPa and µM = 34.7 GPa,
λM = 52.05 GPa, respectively. The radius of the circular inhomogeities is R = 1 nm. The elastic
properties of the interface are µ0 = −6.2178 N/m and λ0 = 3.48912 N/m and the surface tension
in the interface is assumed to be σ0 = 0.72 N/m. The composite system is subjected to a far-field
horizontal loading of σxx = 10 GPa, for which an analytical solution exists [31, 33].

For our numerical solution, we consider the square domain [−2R, 2R] × [−2R, 2R], finding
Dirichlet boundary conditions from the analytical solution in [31, 33]. We employ the same cut-
cell discretization procedure as in Section 5.1, but focus on the primal formulation only. We
discretize the problem with a base mesh of 20×20 cubic elements. Figures 18 and 19 plot the von
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(b) Relative stress error.

Figure 16: Convergence of the relative error in the L2-norm, evaluated for the matrix and inhomogeneity domains.
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(b) Relative error in stress jump.

Figure 17: Convergence of the relative error in the L2-norm, evaluated for the interface quantities only.

Mises stress over the complete computational domain and the corresponding normal and tangential
traction jumps [[σrr]] and [[σrθ]] along the circular interface. We observe that the proposed cut-cell
framework yields higher-order accurate solutions with respect to the analytical reference in all
cases. Figures 20a and 20b plot the convergence of the stress error in the L2 norm for the matrix
and inhomogeneity domains and for the interface, when the mesh is uniformly refined. The results
confirm higher-order optimal rates of convergence.

Although in the scope of this work, we do not include geometrically complex cases, we would
like to provide a flavor of the geometric flexibility of the cut-cell framework as one of its core ad-
vantages over standard boundary-fitted methods. To this end, we image that we need to extend the
current problem to include two circular inhomogeneities whose radius can be arbitrarily changed
and whose position can arbitrarily moved within the computational domain. In particular, this can
involve a topology change, when the inhomogeneities are starting to overlap, transitioning from
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(b) Numerical solution (20× 20 cubic elements).

Figure 18: Gurtin-Murdoch model: von Mises stress σ.
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(b) Tangential traction component [[σrθ]]

Figure 19: Traction jumps across the Gurtin-Murdoch material surface.

two distinct to one single inhomogeneity domain. It is straightforward to see that the proposed
framework can handle all cases without any further adjustments, whereas standard boundary-fitted
cases require a potentially cumbersome mesh generation step for each configurational change. In
particular, the cut-cell approach enables the accurate representation of the strong discontinuities in
the stress at arbitrary locations within cut elements.

6. Summary, conclusions and outlook

Asymptotic interphase models replace volumes of thin layers by dimensionally reduced sur-
faces, along which appropriate jump conditions of the fields are formulated. They are closely
related to theories of material surfaces that incorporate the effect of surface tension in the analysis
of nanocomposites. Both approaches formulate interface conditions with higher-order derivatives
that lead to solutions with weak and strong discontinuities at the interface, and are therefore exam-
ples of the general class of higher-order interface models. Their numerical treatment constitutes a
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(b) L2 norm for interface jumps only.

Figure 20: Convergence of the stress in the L2-norm for cubic elements.

challenge, as standard C0-continuous finite element methods do not maintain variational consis-
tency when higher-order derivatives are present. In addition, they are unable to represent strong
discontinuities that arbitrarily cut through elements.

In this article, we presented first steps towards a variationally consistent framework that en-
ables the consistent and direct discretization of imperfect interface models of general order. Its
basic idea is the synergistic combination of three components: (a) smooth spline basis functions
to directly evaluate higher-order derivatives of arbitrary order without affecting the variational
consistency, (b) cut-cell finite element technology to accommodate complex interface geometries
without meshing related obstacles, (c) variational coupling to weakly enforce discontinuities dic-
tated by imperfect interface models. In our current work, we focus on interface models that dictate
continuous displacement fields, but the flexibility offered by this computational framework makes
it suitable for models that require strong discontinuities as well. We demonstrated the computa-
tional efficiency of this idea for the classical benchmark of a coated circular inhomogeneity. We
employed three higher-order interface models, namely the membrane type and inextensible shell
type models of the Benveniste-Miloh classification and the classical Gurtin-Murdoch material sur-
face model. We showed for each test case that the proposed framework achieves higher-order
accuracy in terms of solution fields and error convergence, evaluated across the bulk domains and
directly at the interface.

The results presented in this article open up several directions for future work. On the one hand,
we identified several open questions in the context of the proposed framework. One open ques-
tion is the extension of the framework to the large deformation setting, which requires a change
of perspective in the classical asymptotic derivation framework of Benveniste and Miloh that is
based on small-strain assumptions. A second open question is the derivation of better stabiliza-
tion mechanisms that are able to generally ensure the robustness of the proposed framework. A
third open question is the treatment of rough interface surfaces that include deviations from the
perfect geometry, kinks, or holes with free ends. This is particularly interesting for the under-
standing of real coatings that always contain material or geometric imperfections. On the other
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hand, the framework is open to be explored for more complex test cases. This includes of course
its extension to three dimensions, where in particular algorithmic aspects could be improved to
enable computationally efficient computations. This also includes its integration in computational
homogenization procedures, where it enables the computation of effective macroscale properties
when higher-order interface models are used at the microscale [83]. It is also desirable to better
understand the modeling capabilities of imperfect interfaces, for instance by comparing their ac-
curacy with interphase models based on embedded membranes or shells [84–86]. It is our hope
that in a longer-term perspective the proposed framework will help inspire the development of new
higher-order imperfect interface models.
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