
HAL Id: hal-02106047
https://hal.inria.fr/hal-02106047

Submitted on 22 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Video Motion Stylization by 2D Rigidification
Johanna Delanoy, Adrien Bousseau, Aaron Hertzmann

To cite this version:
Johanna Delanoy, Adrien Bousseau, Aaron Hertzmann. Video Motion Stylization by 2D Rigidification.
Expressive 2019 - 8th ACM/ Eurographics Proceedings of the Symposium, May 2019, Genoa, Italy.
�hal-02106047�

https://hal.inria.fr/hal-02106047
https://hal.archives-ouvertes.fr


The 8th ACM/EG Expressive Symposium EXPRESSIVE 2019
C. Kaplan, A. Forbes, and S. DiVerdi (Editors)

Video Motion Stylization by 2D Rigidification

Johanna Delanoy 1, Adrien Bousseau1 and Aaron Hertzmann2

1Inria Sophia Antipolis - Méditerranée, Université Côte d’Azur
2Adobe Research

(a) Input optical flow (b) Rigidified optical flow (c) Stylized video

Figure 1: Our method takes as input a video and its optical flow (a). We segment the video and optimize its pixel trajectories to produce
a new video that exhibits piecewise-rigid motion (b). The resulting rigidified video can be stylized with existing algorithms (c) to produce
animations where the style elements (brush strokes, paper texture) produce a strong sense of 2D motion.

Abstract
This paper introduces a video stylization method that increases the apparent rigidity of motion. Existing stylization methods
often retain the 3D motion of the original video, making the result look like a 3D scene covered in paint rather than a 2D
painting of a scene. In contrast, traditional hand-drawn animations often exhibit simplified in-plane motion, such as in the case
of cut-out animations where the animator moves pieces of paper from frame to frame. Inspired by this technique, we propose
to modify a video such that its content undergoes 2D rigid transforms. To achieve this goal, our approach applies motion
segmentation and optimization to best approximate the input optical flow with piecewise-rigid transforms, and re-renders the
video such that its content follows the simplified motion. The output of our method is a new video and its optical flow, which
can be fed to any existing video stylization algorithm.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Motion processing;

1. Introduction

The goal of video stylization is to give a video the look of having
been created with an artistic medium, such as oil painting or
watercolor. Past research in non-photorealistic animation has
worked hard to ensure “temporal coherence”, generally taken to
mean avoiding flickering artifacts, while also following optical flow
[HE04, Lit97, HP00, BCK∗13, BNTS07, OH12, SED16, RDB18].
We believe that some of the most recent methods have become too
successful at it: too much temporal coherence creates the uncanny
and unappealing effect of a 3D world covered in paint, rather
than of a painting of a 3D world (e.g. [SED16, RDB18]). Some
previous works have injected noise into animation in the quest
for a more hand-made look [FLJ∗14, KP11, FJS∗17]. Our work

explores a different avenue – inspired by traditional cut-out and
multi-plane animation – to create motion that looks hand-drawn,
rather than being too faithful to the input.

We complement existing methods by introducing motion rigid-
ification, which consists of deforming a video so that its motion
becomes as piecewise-rigid as possible in image space. When ad-
vected along our modified optical flow, style elements undergo 2D
rigid transforms and uniform scaling rather than tracking 3D tra-
jectories. We enforce similarity (rotation, translation, and scaling)
rather than strict rigidity, since scaling is necessary to model ob-
jects that move away or toward the observer. The resulting stylized
videos exhibit a very “2D look;” this look is reminiscent of tradi-
tional cut-out animations like Charlie and Lola and Village of Id-
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iots where objects are animated by moving their parts rigidly from
frame to frame, and by replacing the parts when they deform sig-
nificantly.

Our approach is inspired by the work of Breslav et al. [BSM∗07],
who hypothesize that, since style elements are traditionally drawn
in 2D, they should move in 2D to preserve their hand-drawn appear-
ance. However, their approach was limited to a very specific type
of texture-mapped 3D rendering. In addition, while their method
changes the motion of the stylization texture, it keeps the under-
lying object unchanged, which yields motion discrepancies at sil-
houettes. We build on their approach and generalize it to arbitrary
videos and to any stylization algorithm that takes an optical flow as
input.

Our solution includes three main components:

• A motion segmentation algorithm that decomposes a video into
near-rigid pieces. Users can control the segmentation with scrib-
bles, for instance to capture motions that are subtle yet contribute
to the intended story.
• A motion optimization algorithm that warps pixel trajectories

such that they form as-rigid-as-possible segments while deviat-
ing as-little-as-possible from the original trajectories.
• A video re-rendering algorithm that synthesizes a video whose

motion conforms with prescribed pixel trajectories. The output
of our method is thus a new video aligned with its rigidified op-
tical flow, which can be used as input to any video stylization
method.

We demonstrate the effectiveness of our method by rigidifying
videos with complex motions (animals, humans, natural scenes),
which we subsequently stylize with a recent by-example style
transfer algorithm [GEB16, RDB18].

2. Related work

Video stylization has been an active topic in Non-Photorealistic
Rendering for more than two decades [Lit97, Mei96], as surveyed
by Bénard et al. [BBT11], Kyprianidis et al. [KCWI13], and Rosin
and Collomosse [RC13]. We first discuss the main approaches to
stylize videos, before discussing related methods on motion esti-
mation and processing.

Video stylization. The earliest methods for stylized animation tar-
geted oil painting, where individual brush strokes are clearly visi-
ble [Mei96, Lit97]. The most common strategy to produce such a
style consists in distributing brush strokes to cover the first frame of
the animation, moving the strokes to the next frame using optical
flow, and removing or adding strokes to avoid overlaps and gaps
[Lit97, HP00, HE04]. These approaches have later been extended
to styles like watercolor by advecting [BNTS07] or filtering [KP11]
a stylization texture from frame-to-frame. Recent methods employ
by-example texture synthesis to handle an even wider range of
styles [BCK∗13, BBRF14, SED16, FJS∗17, RDB18]. These meth-
ods cast the synthesis as a global optimization that strives to repro-
duce the appearance of an exemplar while maintaining temporal
coherence along optical flow. However, enforcing temporal coher-
ence too strictly results in rather artificial results, which motivated
Fišer et al. [FLJ∗14, FJS∗17] to inject randomness in the synthesis

to mimic the temporal noise of traditional animations. Our work is
largely complementary to all these methods, since our goal is not
to improve how the stylization follows the video motion, but rather
to modify that motion to look more hand-drawn.

Our approach follows the idea of Breslav et al. [BSM∗07], who
stylizes 3D animations using 2D patterns that approximate object
motion with similarity transforms. Their main idea and results are
highly inspirational, but the specific approach they took has numer-
ous limitations. In particular, their method only applies to textured
3D models, with predefined texture segmentation. In addition, their
method does not modify the motion of the underlying 3D objects,
resulting in visible sliding of the patterns along silhouettes where
the input and modified motion differ significantly. Our approach ad-
dresses these limitations to produce rigidified videos that are com-
patible with a large body of existing video stylization methods.

Our approach is inspired by the 2D motion produced by tra-
ditional animation techniques, such as paper cut-out. Barnes et
al. [BJS∗08] described an animation system dedicated to this tech-
nique, where users animate characters made of one or several rigid
parts. Each part is rendered with a constant texture, which mim-
ics traditional animations where the same piece of paper is moved
from frame to frame. In contrast, we designed our method to best
preserve the original appearance of the input video, including tem-
poral variations of texture and shading within each rigid piece. We
leave the choice of abstracting away such variations to the subse-
quent stylization algorithms that can be applied on our output.

Motion estimation and processing. While we aim at simplify-
ing motion in a video, several methods aim at magnifying motion
[LTF∗05, WRS∗12, WRDF13]. In particular, our method follows
the main processing steps of Liu et al. [LTF∗05] – motion segmen-
tation, motion modification, and video re-rendering. However, our
implementation of the two first steps differs. For motion segmenta-
tion, Liu et al. group correlated trajectories, while we group pixels
that follow the same similarity transforms. For motion modifica-
tion, Liu et al. simply apply a scaling factor on the motion vec-
tors, while we optimize for new trajectories that are as-rigid-as-
possible while staying close to the input. Closer to our applica-
tion domain, Collomosse et al. [CRH05], Lee et al. [LYKL12] and
Wang et al. [WDAC06] magnify motion in videos to reproduce the
classical “squash and stretch” effects of cartoon animations, while
Dvorožňák et al. [DLKS18] transfer these effects from a hand-
drawn exemplar. Finally, local rigidity has been used as a regular-
izer in optical and scene flow computation [VSR13, YL15], which
is complementary to our goal of modifying the video to achieve
rigid motion.

3. Overview

Given a video and its optical flow, our goal is to generate a new
video and optical flow such that

• The new video is composed of large segments that follow simi-
larity transforms from frame to frame,

• The pixel trajectories in the new video are close to the pixel tra-
jectories in the original video,

• The new video and its optical flow are well aligned.
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Figure 2: Overview of our method. Given an input video and its optical flow (a), we first employ interactive segmentation to decompose the
video into parts that approximately move rigidly (b). We then optimize pixel trajectories such that they remain close to the input trajectories,
while being as rigid as possible (c, magnified for visualization). The optimized trajectories are then used to re-render the video and its optical
flow (d), which can serve as input to any existing stylization algorithm (e).

We address these objectives as three separate computational steps
— motion segmentation, trajectory optimization, and video re-
rendering (Figure 2).

We first cast motion segmentation as a labeling problem, where
pixels of a frame receive the same label if their optical flow is
approximated well by the same similarity transforms (Section 4).
Our formulation includes spatial and temporal smoothness terms to
favor the emergence of large segments that move coherently dur-
ing multiple frames. Since the number and shape of the segments
greatly impact the outcome of our method, we provide artistic con-
trol on this step by means of user scribbles.

However, while the similarity transforms found for each segment
only introduce subtle deviations from the original optical flow, ac-
cumulating these deviations over multiple frames would yield sig-
nificant drift of the video content. We address this issue in a second
step, where we track pixels along extended sequences and optimize
the resulting trajectories to best satisfy the local rigid motion while
minimizing global drift (Section 5).

Our last step consists in warping the video according to the dis-
placement of the optimized trajectories. Note that, unlike conven-
tional methods that estimate optical flow from a given video, this
step entails generating a new video that follows the given flow.
Once re-rendered, our rigidified video is ready to be processed by
any existing video stylization algorithm.

4. Motion segmentation

The first step of our method takes as input a video and its opti-
cal flow and segments it into parts such that, for each frame of
the video, the optical flow within each part is well approximated
by a similarity transform. A similarity transform S is composed of
a rotation matrix R, a translation vector t, and a uniform scaling
s. We formulate this segmentation as a labeling problem, where
each label ` ∈ L is associated with a series of similarity transforms
over all frames, {St

` = (Rt
`, t

t
`,s

t
`)}t∈(1...T ). The output of this step

is a spatio-temporal label map, which assigns each pixel of each
frame to one of the labels, each of which has an associated similar-
ity transform (Figure 2b). We use a fixed number of labels, specified
by the user scribbles (Section 4.2).

Since the optical flow of real-world videos is often inaccurate
at objects boundaries, we achieve more precise segmentations by
complementing the per-frame motion models with a color model
for each segment. We use a Gaussian Mixture Model (GMM) with
5 Gaussians to represent the color distribution of a label over
all frames, with scale, mean and variance parameters denoted as
(α

g
` ,µ

g
` ,σ

g
` )g∈(1...5).

We first discuss how to evaluate the quality of a given configura-
tion of unknowns, before explaining how we find high-quality con-
figurations using an optimization algorithm that iterates between
assigning pixels to labels, and updating the motion and color pa-
rameters of each label given their assigned pixels. While we de-
scribe our algorithm in terms of pixels, we detail at the end of Sec-
tion 4.3 how we accelerate the optimization by working on super-
pixels.

4.1. Energy formulation

In what follows, we denote It∈T the input video frames and ft the
optical flow from frame t to the next. Each pixel i in frame t has an
initial position ut

i , such that ut+1
i = ut

i + ft
i .

We define the quality of a given labeling L with an energy com-
posed of two terms. The first term measures how well the similarity
transforms and Gaussian Mixture Model of a label approximate the
optical flow and color of pixels assigned to that label. For a given
pixel i, frame t and label `, we express the term as

Efit(u
t
i , `) =

∣∣∣∣(ut
i + ft

i)− (Rt
`s

t
`u

t
i + tt

`)
∣∣∣∣2

−wcolor log
(
∑
g

α
g
`G(It(ui),µ

g
` ,σ

g
` )
)
, (1)
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where G denotes the normal distribution and wcolor balances the
contribution of the motion and color models.

The second term encourages large, uniform segments by penal-
izing the assignment of different labels to neighboring pixels that
share similar colors and motion

Esmooth(ui,u j, `i, ` j) =

δ(`i 6= ` j)

[
exp

(
−Dc(i, j)

2βc

)
+ exp

(
−

D f (i, j)
2β f

)]
, (2)

where Dc(i, j) =
∣∣∣∣I(ui)− I(u j)

∣∣∣∣2 measure the color difference

and D f (i, j) =
∣∣∣∣fi− f j

∣∣∣∣2 the optical flow difference between pix-
els i and j. The indicator function δ(`i 6= `i) equals 1 when the
labels `i and ` j differ, 0 otherwise, and the exponential decreases
quickly as the color and motion differences increase. We follow
Rother et al. [RKB04] to compute the weights βc and β f as the
average color and optical flow differences of the video, computed
over all pixel neighborhoods. In practice, we evaluate Esmooth on
a spatio-temporal neighborhood to also encourage temporal coher-
ence of the segmentation, as detailed in Section 4.3.

We balance these two terms with dedicated weights to obtain the
energy of a given labeling L over the entire video sequence

Esegment(L) = ∑
i

∑
t

wfitEfit(u
t
i , `

t
i)

+ ∑
j∈N t

i

wsmoothEsmooth(u
t
i ,u j, `

t
i , ` j), (3)

where `t
i denotes the label assigned to pixel i in frame t, and N t

i
denotes its spatio-temporal neighborhood.

4.2. User guidance

The energy formulation outlined above solely measures the quality
of a segmentation based on geometric criteria (fitness and smooth-
ness). However, the quality of a segmentation also often depends on
artistic goals. For example, users may want to approximate back-
ground objects with a single segment, yet decompose a foreground
object in several pieces to better capture subtle motions. Similarly,
users may choose to segment each leg of an animal separately to
prevent one of the legs to appear “fixed” to the body, even if that
leg only moves slightly. In addition, the segmentation algorithm
can be sensitive to errors in the optical flow or to low-contrast ob-
ject boundaries. We enable user control and correction by incor-
porating scribbles in our segmentation algorithm. Each scribble is
assigned a color that represents a label, such that pixels scribbled
with the same color should end up in the same segment, while pix-
els scribbled with a different color should be in separate segments.
We achieve this behavior by over-writing the fitting term on scrib-
bled pixels

Efit scribble(u
t
i , `) = wscribbleδ(` 6= `s) (4)

with `s the label of the scribble. The weight wscribble balances the
strength of the user annotations against the other terms of the opti-
mization.

The different scribble colors implicitly define the set of labels

L considered by the optimization. We also experimented with au-
tomatic segmentation and a variable number of labels, using a so-
called label cost to encourage the use of as few labels as possible
[DOIB12]. However, we achieved our best results with user guid-
ance. In practice, we only require users to provide scribbles in a
few keyframes of their choice, and we propagate these scribbles
over the entire video by tracking the scribbled pixels until they get
occluded.

4.3. Optimization

The energy we defined depends on two sets of variables – the
assignment of pixels to labels, `t

i , and the similarity transforms
and Gaussian Mixture Models associated to each label, parame-
terized by St

` and (α
g
` ,µ

g
` ,σ

g
` ) respectively. We solve for values

of these variables that approximately minimize Esegment(L) using
the PEARL algorithm, which is a general optimization method for
multi-model fitting [IB12, DOIB12]. In a nutshell, the algorithm al-
ternates between assigning observations to labels using a fixed set
of models, and updating the model parameters of each label to best
fit the observations assigned to it (Algorithm 1). At each iteration,
the assignment of labels is performed using the α-expansion algo-
rithm†. We performed 3 such iterations for all results, which was
sufficient to converge in our experiments. The main challenge in
applying PEARL in our context is to properly initialize and update
the model parameters to capture the complex motion of real-world
objects over multiple frames.

Algorithm 1 PEARL algorithm [DOIB12] applied to our motion
segmentation problem.

1: Initialize similarity transforms and GMMs for the set of label
candidates L

2: Run α-expansion to compute the optimal labeling L according
to Esegment(L) (Equation 3), using fixed label candidates L

3: Update the similarity transforms and GMMs of the label candi-
dates L to best fit the optical flow and color distribution within
each segment of L

4: Goto 2

Initializing the motion and color models. Since each scribble
color corresponds to a unique label, we initialize the Gaussian Mix-
ture Model and similarity transforms of each label from its scrib-
bled pixels tracked along the video. Given a set of such scrib-
bled trajectories, we use the least-squares formulation described by
Breslav et al. [BSM∗07] to fit a similarity transform on the op-
tical flow displacements within each frame, and use the OpenCV
[Bra00] implementation of Gaussian Mixture Models to fit a color
distribution on the colors gathered from all frames. Finally, when
the trajectories of the scribbled pixels start after the first frame of
the video, or end before the last frame, we initialize the similarity
transforms of the missing frames with the transforms obtained at
the closest frames.

† Code for multi-label segmentation available at https://vision.
cs.uwaterloo.ca/code
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Updating the motion and color models. Each labeling iteration
of the PEARL algorithm forms segments by assigning pixels to la-
bels. Our goal is then to use the optical flow and color values of
each segment to update the motion and color models of the corre-
sponding label. However, a given label may only occur in a subset
of the video frames; while each label needs a color and motion
model in every frame to be used as candidates for the next label-
ing iteration. Our solution is to extend the segment to other frames
by tracking each of its pixel along the forward and backward op-
tical flows. We then update the model parameters using the same
least-squares and GMM fitting as for the initialization. Finally, in
the event where all pixel trajectories of a segment end before reach-
ing some of the frames, we update the similarity transforms of such
frames with the transforms obtained at the closest frames.

Implementation details. In practice, we accelerate the evaluation
of Esegment(L) by computing the labeling on a graph of superpixels
rather than on the pixel grid. As a downside, working with super-
pixels reduces temporal coherence of the segmentation since su-
perpixels are computed in each frame independently. We use the
average color and optical flow values over superpixels to compute
the color and motion difference terms Dc and D f , and consider two
superpixels to be spatial neighbors if they share a boundary, and
temporal neighbors if they are connected by at least one optical
flow vector. We also introduce a weight on the term Esmooth for
temporal neighbors according to the number of optical flow con-

nections they share, wtemporal(i, j) =
∑p∈Si ∑q∈S j

δf(p,q)

min(|Si|,|S j|) , with Si and
S j neighboring superpixels and δf(p,q) equals 1 when pixel p and
q are connected by the optical flow, 0 otherwise. Finally, we con-
sider that a superpixel is covered by a scribble if 25% of its pixels
are covered by that scribble.

Our implementation is based on the Flownet 2.0 optical flow al-
gorithm [IMS∗17] and on SEEDS superpixels [VdBBR∗12]. We
detect occlusions by checking the consistency of the forward and
the backward flow, as described by Sundaram et al. [SBK10]
(Equation 5 in their paper).

5. Trajectory optimization

Our segmentation algorithm recovers one similarity transform per
segment, per frame. However, applying these transforms in se-
quence results in significant drift, as approximation errors accu-
mulate from frame to frame. The second step of our approach is to
optimize pixel trajectories over the video to best reproduce the sim-
ilarity transforms found at each frame, while keeping pixels close to
their original trajectories. As an additional benefit, balancing rigid-
ity of the output with fidelity to the input offers a continuum of
solutions, ranging from the original video all the way to a highly
rigidified video.

Our approach starts by tracking pixels along the video optical
flow to create their trajectories. We adopt a greedy scheme where
we start a trajectory for every pixel of the first frame, and then for
every pixel of subsequent frames that is not traversed by any ex-
isting trajectory. We repeat this process in reverse order, starting
from the last frame and progressing towards the first. These two
passes over the video provides us with a large set of, occasionally

redundant, trajectories. We then order the trajectories by length and
select them one by one until all pixels of the video are traversed
by at least one trajectory. We end up with N trajectories Ui=1···N ,
each tracking a pixel ui over a continuous subset of the frames, i.e.
Ui = (ut−m

i , ...,ut
i , ...,u

t+n
i ). We next optimize for new trajectories

Ûi according to two energy terms.

The first term measures the deviation of each trajectory from the
similarity transforms of the segments it traverses, similar in spirit
to as-rigid-as-possible energies used for image and surface defor-
mation [SMW06, SA07]

Erigid(Ûi) = ∑
t

∣∣∣∣∣∣ût+1
i − (Rt

`s
t
`û

t
i + tt

`)
∣∣∣∣∣∣2 (5)

where the sum runs over all frames of the trajectory, and we use the
shorthand `= `t

i for clarity.

The second term measures the deviation of each trajectory from
its original position

Eanchor(Ûi) = ∑
t

∣∣∣∣ût
i−ut

i
∣∣∣∣2 . (6)

Combining the two terms gives an energy over all trajectories

Etrajectories(Û) = ∑
i=1···N

wrigidErigid(Ûi)

+ wanchorEanchor(Ûi). (7)

After optimization, we generate the output optical flow f̂t
i by

splatting the vector (ût+1
i − ût

i) for each pixel along each optimized
trajectory. Similarly, we generate a warping field wt

i by splatting the
vector (ut

i − ût
i), which we will use to render a new video aligned

with the optimized optical flow (Section 6). Since the optimized
trajectories may not traverse all pixels of the output, we diffuse the
splatted values to empty pixels.

Implementation details. Equation 7 corresponds to a linear least-
squares energy, which we minimize by solving the corresponding
sparse linear system using Eigen [GJ∗10]. Like with the segmen-
tation, we speed-up computation and improve robustness to noise
by performing the above optimization over superpixels rather than
pixels, where we select trajectories such that each superpixel is tra-
versed by at least one trajectory. However, since this strategy results
in a much sparser set of trajectories, diffusing the splatted optical
flow and warp vectors produces blurry vector fields. We address
this issue by first generating a new segmentation L̂, where we as-
sign to each superpixel the most frequent label among the trajec-
tories traversing that superpixel. We then use this segmentation to
stop the diffusion at borders between superpixels of different la-
bels. Note that L̂ is only a proxy for the segmentation of the output
video, since the superpixels are computed on the input rather than
on the unknown output. Nevertheless, we found that this approxi-
mation improves results compared to using the input segmentation,
or no segmentation at all.

6. Rendering

We are now equipped with a rigidified optical flow f̂t
i , along with

a warping field wt
i that indicates how to distort the input frames
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Figure 3: Example scribbles and motion segmentation for each sequence in our results.
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Figure 4: Advecting a checkerboard texture along the video quickly reveals distortions due to non-rigid motion (middle row). Our method
better preserves the shape of the checkerboard pattern (bottom row). See our supplemental materials for animated versions of this visualiza-
tion.

to align them with the new flow. Specifically, we render each new
frame Ît by looking up, for each pixel ût

i , the color of pixel ût
i +wt

i
in the original frame It .

7. Results

We applied our approach on videos with varied motion, including
deformable animals and characters (walking cheetah, talking man,
walking woman, dancing girl), fluids (waves), and out-of-plane mo-
tion (camera rotating around a mountain or following a street). Fig-
ure 3 shows one frame for each of these sequences, along with user
scribbles and the resulting motion segmentation.

Our results demonstrate several different effects, which were
produced as a function of the input video and the user scribbles
that we provided. For example, we assigned the jaw of the talking
man to a different segment than the remaining of his face, which
results in a cut-out motion similar to how Canadians are animated
in South Park. We also purposely separated the legs of the cheetah
from its body to achieve a puppet-like animation, or the head of the

dancing girl from her torso for a similar effect. Our method also ap-
plies to non-articulated objects, such the depth layers of the moun-
tain sequence, or the ground and walls of the walking sequence. In
such cases, our method approximates rigid out-of-plane motions by
2D translations and scaling, as is traditionally done in multi-plane
cell animation. Finally, the wave sequence illustrates an extreme
case of non-rigid motion. Our method approximates the complex
motion as a series of simple ones, which results in visible discon-
tinuities at motion borders. These discontinuities can be attenuated
by reducing the weight wrigid in Equation 7.

Figure 4 visualizes the rigidity of an output video by showing
how a checkerboard texture evolves as it is advected along its op-
tical flow. Note how the squares of the checkerboard retain their
shape in successive frames, while they quickly distort when ad-
vected along the original video, revealing the 3D shape of the un-
derlying objects. The only distortions that remain visible in our re-
sults occur at disocclusions, where our implementation of texture
advection stretches the texture to cover the gaps.
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citydancewavesmountainswalkingtalking mancheetah

Figure 5: We use neural style transfer [GEB16, RDB18] to render videos in various styles. We only transferred the luminance for the waves
sequence.

We strongly encourage readers to look at our accompanying
videos to judge the effect of our method during animation. In par-
ticular, while we provide the intermediate warped videos as sup-
plemental material, the benefit of our approach is best appreciated
on side-by-side comparisons between stylizations of original se-
quences and stylizations of our rigidified versions. For stylization,
we use the method by Ruder et al.‡ [RDB18], which incorporates
temporal coherence constraints to the successful neural style trans-
fer algorithm of Gatys et al. [GEB16]. We used this approach to
transfer the style of famous painters, as illustrated in Figure 5.

Limitations. Our focus in this work is on the style of motion,
rather than on automated video analysis. Our method is sensitive
to errors in the input optical flow, which can impact the motion
segmentation and optimization. We used extra scribbles to both in-
dicate the desired style and to correct such errors. The optical flow
and segmentation algorithms also produce ragged object bound-
aries, which creates artifacts in the warped video. However, these
artifacts are largely hidden in the final stylized result. Given the
dizzying pace of advances in computer vision at present, we be-
lieve that it should be easy to considerably improve these aspects
of our method.

The term Eanchor of our trajectory optimization typically results
in a warping field of small magnitude, which makes our simple im-
age warp sufficient in most cases. Nevertheless, stretching or fold-
over artifacts can occur in areas where two segments move in oppo-
site directions by several pixels, as shown in Figure 6. A potential
solution to this limitation would be to assign a depth order to each
segment and in-paint holes that appear between segments or along
image borders using texture synthesis, as done by Liu et al. for mo-
tion magnification [LTF∗05].

Parameter settings and timings. All our videos have a resolution
of around 800× 450 pixels, which we segmented into 5600 su-
perpixels, each covering around 60 pixels. We kept all parameters
fixed for our tests. In particular, we used wcolor = 0.01 to balance
the color and optical flow terms of the segmentation, wfit = 80,

‡ https://github.com/manuelruder/artistic-videos
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Figure 6: Our simple image warp can produce stretching (left) or
fold-over artifacts (right) in the presence of strong displacement
between neighboring segments. User-provided depth ordering and
in-painting would be needed to handle such cases.

wsmooth = 15, wscribble = 10000 to treat scribbles as hard con-
straints, wanchor = 1e− 6 and wrigid = 1 to achieve a near rigid
output. We also experimented with smaller values of wrigid, but the
resulting effects were too small to be noticeable.

Table 7 details the time spent for each step of our method, for
each of our results on a desktop computer equipped with an Intel
Xeon E5-2630 CPU (20 cores) and 48GB of memory . The most
expensive part is the motion segmentation, which takes around 4
seconds per frame on average. Significant time is also spent on
diffusing the optical flow and warp vectors to all pixels (around
2 seconds par frame), which could be greatly accelerated by using
a GPU solver.

8. Conclusion

Despite decades of research in non-photorealistic rendering, mo-
tion stylization has received significantly less attention than appear-
ance stylization. As a result, while stylization algorithms can now
make individual frames look much like paintings, stylized videos
often move too realistically compared to traditional hand-drawn an-
imations. Often, they make the world appear covered in paint. Un-
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Sequence # frames # scribbled keyframes # labels segmentation (s) optimization (s) diffusion (s)
cheetah 230 6 6 1050 57 529
talking 280 7 4 842 45 375
walk 250 4 8 1375 108 866

mountains 200 1 2 423 26 319
dance 200 10 6 937 33 649
waves 180 4 3 589 40 549
street 220 5 9 1438 38 361

Table 1: Timings for some of our results. The computational cost of the segmentation is roughly linear with the number of frames and labels,
while the remaining steps are linear with the number of frames. Motion segmentation dominates the cost, followed by the diffusion of optical
flow and warping vectors.

fortunately, there are very few reference points in traditional anima-
tion to inspire innovative algorithms. Most hand-painted and hand-
drawn animations use very simple strategies for creating motion,
such as redrawing every frame, or moving paper cut-outs. Hence,
to some extent, every non-photorealistic animation algorithm cre-
ates a new style of motion.

In this spirit, our goal in this paper is to explore a new style of
motion, based on identifying problems with existing motion styles,
and taking inspiration from the traditional cut-out animation style
as well as from the seminal work by Breslav et al. [BSM∗07]. Our
output videos produce a strong sense of 2D motion, as if individual
parts were moved around in the image plane. Since our method
outputs a new video and its optical flow, it is compatible with any
existing stylization algorithm.

Our method employs motion segmentation to decompose the
video into near-rigid parts, and we found that different segmen-
tations of the same video can result in very different stylizations,
which motivated us to provide user control on this step. In the fu-
ture, we believe that a combination of better computer vision algo-
rithms and new design principles inspired by real-world animations
could help automate motion simplification.
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