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Abstract

This paper presents an efficient algebraic preconditioner to speed up the convergence of Fast Multipole
accelerated Boundary Element Methods (FM-BEMs) in the context of time-harmonic 3D wave propagation
problems and in particular the case of highly non-uniform discretizations. Such configurations are produced
by a recently-developed anisotropic mesh adaptation procedure that is independent of partial differential
equation and integral equation. The new preconditioning methodology exploits a complement between fast
BEMs by using two nested GMRES algorithms and rapid matrix-vector calculations. The fast inner iterations
are evaluated by a coarse hierarchical matrix (H-matrix) representation of the BEM system. These inner
iterations produce a preconditioner for FM-BEM solvers. It drastically reduces the number of outer GMRES
iterations. Numerical experiments demonstrate significant speedups over non-preconditioned solvers for
complex geometries and meshes specifically adapted to capture anisotropic features of a solution, including
discontinuities arising from corners and edges.

Keywords: Boundary Element Method, Fast Multipole Method, Anisotropic meshes, Preconditioning,
Hierarchical matrices

1. Introduction

This paper is concerned with the efficient numerical solution of 3D wave propagation problems in large-
scale unbounded domains. The accurate numerical modeling of acoustic, elastodynamic or electromagnetic
problems is a challenging task. It is also a timely research field due to the variety of possible applica-
tions, e.g., seismology, non-destructive testing, noise reduction, radar stealth, etc. We focus on an exterior
Helmholtz problem for clarity, but the extension to other wave propagation problems (e.g., elastodynamics
and electromagnetism) is straightforward. Let Ω ⊂ R3 be a closed bounded domain with boundary Γ and let
Ω+ := R3\Ω denote the exterior scattering domain. Given an incident plane wave ui(x) = eikd·x,x ∈ R3 of
wavelength λ (wavenumber k := 2π/λ) and direction d, the total field u = ui +us (where us is the scattered
field) in the exterior domain satisfies the time-harmonic acoustic wave equation given by

∇2u+ k2u = 0 in Ω+. (1a)

We impose a sound-soft boundary condition as

u = 0 on Γ, (1b)

together with a Sommerfeld radiation condition on the scattered field us = u− ui given as

lim
r→∞

(
∂us

∂r
− ikus

)
= 0, r = |x|. (1c)

Numerical methodologies to solve this system fall into two main categories: those obtained by domain
methods requiring discretization of the entire physical domain of interest (e.g., finite difference [36], finite
element [23, 41, 43, 32], finite volume and spectral methods [45]), and boundary methods [46, 49, 33]
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requiring discretization of a reduced dimension such as the obstacle surface for an exterior scattering problem.
Domain methods require a discretization of the exterior domain Ω+ that leads to large but sparse algebraic
systems. These systems are not well-suited to unbounded domains since the computational domain must
be artificially truncated, leading to additional computational difficulties [22, 8, 53, 55]. In addition, the
radiation condition (1c) must be approximated. A more suitable alternative is to recast the system (1)
as a boundary integral equation (BIE). This subsequently leads to discretizations only on Γ which can be
provided by a boundary element method (BEM). Where applicable, these methods are very efficient due
to exact representations of both the boundary as well as radiation conditions at infinity. For a comparison
between boundary element and finite element methods see, e.g., [40].

There exist various boundary integral equations to model acoustic wave scattering, with different advan-
tages and drawbacks. We consider in this work the simplest approach. We will show that our methodology
is nevertheless independent of the BIE considered. The solution u for an obstacle surface Γ can be sought
as a boundary integral representation in the form of a single-layer potential operator S given by [24]

u(x) = Sq(x) =

∫
Γ

Φk(x,y)q(y)ds(y), x /∈ Γ, x ∈ Ω+, (2a)

where the fundamental solution of the 3D Helmholtz equation is given by

Φk(x,y) =
eik|x−y|

4π|x− y|
, x 6= y, k ∈ R+.

Expressing the unknown density q as q = −∂u/∂n (or, for geometries of no thickness, the jump [∂u/∂n]Γ
across Γ) in the direction of the outer unit normal vector n to Γ, one can derive [24, 61] a corresponding
BIE for (2a) as

− ui =

∫
Γ

Φk(x,y)q(y)ds(y), x ∈ Γ. (2b)

Clearly many realistic applications in acoustics (and other wave propagation problems) may also require
Neumann or Robin boundary conditions. The methodology presented in this work can be straightforwardly
extended to these cases. For the sake of simplicity, and without lose of generality, we restrict our simulations
to the Dirichlet case.

A number of factors determine the effectiveness of a BEM applied for the solution of a general boundary
integral equation. These include the choice of integral equation, their subsequent numerical resolution and
the adopted discretization strategy [57]. Standard implementations of BEM lead to dense and (possibly)
non-symmetric linear systems whose solutions become prohibitively expensive for large-scale problems. This
is particularly true for obstacles that are large relative to the wavelength and for problems employing highly
non-uniform discretizations. The storage of such systems is of the order O(N2), where N is the number of
degrees of freedom corresponding to the discretization of the obstacle boundary (e.g., the number of nodes
in the mesh). The computational complexity of solving such a dense system using a direct method like a
Gaussian elimination is O(N3), whereas resolution via an iterative method like GMRES is O(NiterN

2) if
Niter is the number of iterations. Many approaches have been proposed to speedup the iterative resolution of
these dense systems [31, 30, 13, 12], among which Fast Multipole Methods (FMMs) have enjoyed considerable
success in mechanical engineering problems [18, 62, 14, 48] by enabling a fast evaluation of the matrix-vector
product required by the iterative solver. Initially developed for N-body simulations, the FMM has since been
extended to oscillatory kernels [27, 37, 54] and thus expanded its efficacy to many applications. An algebraic
alternative designed for dense systems is based on the concept of hierarchical matrices (H-matrices) [7]. The
principle of H-matrices is to partition the initial dense linear system and reduce it to a data-sparse one by
finding sub-blocks in the matrix that can be accurately approximated by low-rank matrices. The efficiency of
hierarchical matrices relies on the possibility to approximate, under certain conditions, the underlying kernel
function by low-rank matrices. The approach has been shown to be very efficient for asymptotically smooth
kernels (e.g., the Laplace kernel) and relatively efficient in a large frequency range for oscillatory kernels such
as Helmholtz or elastodynamic kernels [25, 19, 39]. These two approaches have advantages and drawbacks
in the context of the acceleration of BEMs. On the one hand, H-matrix based BEMs (H-BEM) are very
easy to implement and have the advantage to be an algebraic approach. Most of the computational time of
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H-BEMs is spent to evaluate the data-sparse approximation of the BEM matrix, the cost of a matrix-vector
is then very cheap. On the other hand, Fast Multipole accelerated BEMs (FM-BEMs) have been shown to
have an optimal complexity in terms of computational times and memory requirements for wave propagation
problems. The counterpart is a more involved implementation effort. In the following, our fast BEM solver
is based on the FM-BEM for wave propagation problems.

Appropriate mesh adaptations can further improve the computational efficiency of the FM-BEM (par-
ticularly for complex geometries) by accommodating anisotropic features of a solution (e.g., some elastic
materials) as well as discontinuities near geometric singularities (e.g., corners and edges). These behaviors
are difficult to capture and ultimately diminish the regularity of the boundary solution and subsequent
performance of a BEM. The underlying principle of a refinement algorithm relies on a transformation of
an initial mesh into an improved one according to error estimates calculated at each step. The ultimate
goal is a reduction in the number of degrees of freedom required to resolve a solution within a desired level
of accuracy. Adaptation is particularly important for scattering obstacles that contain geometric singu-
larities leading to rapid variations of surface solutions. If an extensive literature exists for volume-based
methods [1, 34], relatively little research attention has been paid to error estimators and mesh adaptation
techniques in the BEM community. In general, most adaptation techniques for BEMs have centered on
isotropic techniques [29, 5, 9, 44] that improve performance but do not always recover optimal convergence
rates for 3D problems with anisotropic features [4]. In this work, we employ a recently introduced anisotropic
mesh adaptation (AMA) strategy using a metric-based error estimator whose effectiveness in recovering con-
vergence order was first demonstrated for volumetric (finite element) methods [51, 52] and only recently
for first-order BEMs [20]. The methodology is independent of discretization technique as well as the choice
of partial differential equation (PDE) and integral equation formulation, iteratively constructing meshes
refined in size, shape and orientation according to an “optimal” metric relying on a reconstructed Hessian
of the boundary solution. The resulting adaptation is anisotropic in nature and accommodates geometric
complexities that include engineering detail.

Since we are interested in large-scale scattering problems requiring iterative solutions, it is important to
note that anisotropically (and even isotropically) adapted meshes worsen the conditioning of the overall FM-
BEM system [35]. This leads to an increase in the number of iterations and thus overall computational time
required to resolve the system. Even with the accelerations provided by the FMM, global solution times can
still be prohibitively expensive, necessitating the use of preconditioning techniques to improve convergence
of an applied iterative method. This is already an active area of research for uniform meshes [21, 63].
We are interested here primarily by algebraic preconditioners which can be generally applied to a wide
variety of problems as opposed to analytic preconditioners, which tend to be very efficient but problem
specific [47, 2, 26, 56]. This is motivated by the fact that FM-BEMs have been successfully applied to a wide
variety of wave propagation problems, and the fact that the anisotropic mesh adaptation procedure used
herein is independent of PDE and integral representation. Traditional algebraic preconditioning approaches
such as incomplete LU, Sparse Approximative Inverse [17, 16], multi-grid methods [15] and nested GMRES
algorithms [21] have been applied to acoustic, electromagnetic or elastodynamic FM-BEMs. Since to reduce
memory requirements, the FM-BEM does not provide access to the full system but only close interactions,
these algebraic preconditioners have shown moderate efficiency. They probably do not contain enough
information on the physics of the underlying continuous operator.

Our objective in this paper is to maintain the optimal complexity of the FM-BEM in terms of memory
requirements and computational costs while complementing it with an algebraic preconditioner constructed
from the complete BEM system. We are particulary interested in non-uniform meshes constructed by an
anisotropic mesh adaptation procedure that is independent of the PDE and integral representation. In this
context, our approach effectively utilizes the complementarities of the FM-BEM and the H-BEM to treat
geometries modeled by non-uniform meshes. It is based on a nested sequence of GMRES iterations. Our
methodology is presented as follows: in Section 2 we summarize the Boundary Element Method and its
multi-level Fast Multipole-acceleration; in Section 3 we present the nested GMRES implementation using
hierarchical matrices and consider some verification examples; and, finally, we demonstrate in Section 4 the
efficacy of the iterative solver applied to anisotropic meshes through a variety of numerical experiments on
an infinitely thin planar screen and a more complex F-15 aircraft.
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2. Adaptive fast multipole-accelerated boundary element methods

We begin by presenting an adaptive FM-BEM for 3D wave propagation problems. Sections 2.1 and 2.2
summarize the general-order triangular Boundary Element formulation and subsequent multi-level Fast Mul-
tipole acceleration. Section 2.3 summarizes the mesh adaptation algorithm utilized to generate anisotropic
meshes tailored to solutions of scattering problems on complex domains.

2.1. Boundary element methods

The numerical solution of the boundary integral equation (2b), known as the Boundary Element
Method [10], is obtained by discretization of the surface Γ into NE finite (boundary) elements. Impor-
tantly in the BEM, each element Ee must be analytically described. Each physical element Ee on the
approximate boundary is mapped onto a reference element ∆e in the (ξ1, ξ2)-plane via

ξ ∈ ∆e → y(ξ) ∈ Ee, 1 ≤ e ≤ Ne.

The boundary of the geometry is parametrically represented by using a number of d nodes and shape
functions vek, per element. We use as nodes yk all the vertices for a P0 or P1 mesh (d = 3) and all vertices
plus midpoints for a P2 mesh (d = 6) such that the geometry is approximated by

y(ξ) ≈
d∑
k=1

ykvek(ξ).

The shape functions are related to the canonical basis (v̂k)1≤k≤d defined on the reference element ∆e by
vek(y(ξ)) = v̂k(ξ).

Then, each unknown field q is also approximated on the element Ee with interpolation functions (wi(y))1≤i≤N :
wi(yj) = δij for 1 ≤ i, j ≤ N by

q(y) ≈
d′∑
k=1

qkwek(y),

where qk denotes the approximation of the nodal value of q(yk). For isoparametric elements such as P1

and P2, d = d′, the shape functions serve as interpolation functions as well, and the N interpolation points
coincide with the nodes previously defined. For a P0 mesh, d′ = 1, the N interpolation points correspond to
the centers of elements and we use piecewise constant interpolation functions.

To discretize the boundary integral equation (2b), we employ the collocation approach. It consists in
enforcing the equation at a finite number of collocation points x. To have a solvable discrete problem, one
has to choose N collocation points. The N interpolation points thus defined also serve as collocation points,
i.e., (xi)1≤i≤N = (yj)1≤j≤N . In addition, a standard Gaussian quadrature formula is used to evaluate the
integral in (2b). This discretization process transforms (2b) into a square complex-valued linear system of
size N of the form

Aq = b, (3)

where the (N)-vector q collects the degrees of freedom (DOFs) while the (N)-vector b arises from the imposed
incident wave field. Assembling the full dense matrix A requires the computation of all element integrals for
each collocation point, thus requiring an O(N2) computational time and memory. If an iterative method
is used, each GMRES iteration requires one evaluation of Aq for a given q, a task requiring a computing
time of order O(N2). To lower this O(N2) complexity, prohibitive for large BEM models, fast BEM solution
techniques such as the Fast Multipole Method (FMM) must be employed.

2.2. Fast multipole-accelerated boundary element methods for wave propagation

The goal of the FMM is to accelerate the evaluation of the matrix-vector product Aq for a given q, required
at each iteration of an iterative solver applied to the BEM-discretized equations. Moreover, the governing
BEM matrix is never explicitly formed, which leads to a storage requirement well below O(N2). Substantial
savings in both computational time and memory requirements are thus achieved. In general terms, the FMM
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exploits a reformulation of the fundamental solution in terms of products of functions of x and of y, so that
(unlike in the traditional BEM) integrations with respect to y can be reused when the collocation point x is
changed. On decomposing the position vector r = y − x into r = (y − y0) + r0 − (x− x0), where x0 and
y0 are two poles and r0 = y0 − x0, and invoking a well-known plane wave decomposition, the Helmholtz
fundamental solution is written as [27]:

Φk(x,y) = lim
L→+∞

∫
ŝ∈S

eikŝ.(y−y0)GL(ŝ; r0; k)e−ikŝ.(x−x0)dŝ, (4)

where S is the unit sphere of R3 and the transfer function GL(ŝ; r0; k) is defined in terms of Legendre

polynomials Pp and spherical Hankel functions of the first kind h
(1)
p by:

GL(ŝ; r0; k) =
ik

16π2

∑
0≤p≤L

(2p+ 1)iph(1)
p (k|r0|)Pp

(
cos(ŝ, r0)

)
. (5)

It can be shown that expression (4) is valid only for well-separated sets of collocation and integration points
clustered around poles x0 and y0 [27].

In the single-level FMM, a 3D cubic grid of linear spacing d embedding the whole boundary Γ is then
introduced to drive the computation. The FMM basically consists in using decomposition (4), with the poles
x0 and y0 being chosen as the cell centres of the cells Cx and Cy, whenever x and y belong to non-adjacent
cubic cells. The treatment of such Fast Multipole (FM) contributions exploits the plane wave decomposi-
tion (4) of the fundamental solution, truncated at a finite L and in a manner suggested by its multiplicative
form. When x and y belong to adjacent cells, traditional BEM evaluation methods are employed. To im-
prove further the computational efficiency of the FM-BEM, standard (i.e., non-FMM) calculations must be
confined to the smallest possible spatial regions while retaining the advantage of clustering the computation
of influence terms into non-adjacent large groups whenever possible. This is achieved by recursively sub-
dividing cubic cells into eight smaller cubic cells. New pairs of non-adjacent smaller cells, to which plane
wave expansions are applicable, are thus obtained from the subdivision of pairs of adjacent cells. The cell-
subdivision approach is systematized by means of an octree structure of cells. At each level `, the linear cell
size is denoted d`. The level ` = 0, composed of only one cubic cell containing the whole surface Γ, is the tree
root. The subdivision process is further repeated until the finest level ` = ¯̀, implicitly defined by a preset

subdivision-stopping criterion (d
¯̀ ≥ dmin), is reached. Level-¯̀ cells are usually termed leaf cells. This is

the essence of the multi-level FMM, whose theoretical complexity is O(N logN) per GMRES iteration both
for computational time and memory requirements. More details on the implementation of the FM-BEM for
waves can be found, e.g., in [18] where the method has been successfully employed in elastodynamics.

2.3. Anisotropic mesh adaptation for fast multipole-accelerated boundary element methods
The influence of the mesh discretization on the accuracy of a numerical solution still poses a challenge

to the BEM community [9, 5, 20]. Anisotropic features of a solution (e.g., some elastic materials) as well as
discontinuities near geometric singularities (e.g., corners and edges) are difficult to capture and ultimately
diminish the regularity of the boundary solution and subsequent performance of a BEM. This is particularly
true when uniform meshes are employed as singularities will degrade the convergence order. To this end,
iterative mesh refinement schemes have been proposed to transform an initial mesh into an improved one
according to error estimates calculated at each step, with the goal of reducing the number of degrees of
freedom required to resolve a solution within a desired level of accuracy. Most work to date for BEMs has
been confined to isotropic techniques based on a posteriori error analysis from which error indicators can be
derived, see e.g., [5, 9] for wave propagation problems. These indicators steer refinement by systematically
marking and subdividing only elements where the error is above a specified threshold—a process known as
Dörfler marking. Not only is this process unable to produce anisotropic discretizations, it is also heavily
reliant on discretization strategy and model [28] (e.g., often requiring the more computationally expensive
Galerkin approach). Finally, this strategy is not optimal for high-order discretizations [9].

We employ here a truly anisotropic metric-based boundary mesh adaptation recently introduced [20].
It does not use a Dörfler marking but rather generates a sequence of non-nested meshes. This is a non-
linear process that is solved iteratively. At each iteration, it seeks a new mesh that minimizes the L2 linear
interpolation error on the exact solution u.
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A convenient framework to generate anisotropic meshes is that of Riemannian metric spaces. A Rieman-
nian metric space is defined by a metric tensor M(x), i.e., is a smoothly varying function of the physical
variable x. A surface mesh, associated with a Riemannian metric space M = (M(x))x∈Γ, is a triangulation
of the surface. Each mesh vertex x has an assigned value M(x) which dictates the size and orientation of
adjacent elements. By generating a unit mesh in the corresponding Riemannian metric space, we obtain
an anisotropic mesh refined in Euclidean space according to the metric M. This is the fundamental idea
of metric-based mesh adaptation. Since the existence of a conforming unit mesh in which each triangle is
perfectly unit with respect to a given Riemannian metric space is not guaranteed in general, the constraint
must be relaxed somewhat. In practice, we seek a quasi-unit mesh with respect to M which is a mesh com-
posed of quasi-unit triangles. A triangle, which is defined by its edges {ei}i=1,3, is quasi-unit with respect
to M if

1√
2
||ei||M, 1 ≤ i ≤ 3 and |K|M =

√
3

4
.

The principle of our adaptive mesh strategy is then to minimize the error coming from the linear inter-
polation of the (unknown) exact solution. The discrete optimization problem reads:

Find the surface mesh T optN with N nodes, minimizing the discrete interpolation error ||u−Πhu||Lp(Γh),
(6)

where Γh is the discrete support representing Γ and Πhu is the linear interpolant of u on the mesh T optN . This
problem is generally intractable practically and would require some simplifications. The originality of our
approach is to replace the discrete interpolation error with its continuous equivalent. Using the mathematical
tools defined on the continuous mesh space instead of the discrete one, the optimization problem is simplified.
In the continuous mesh setting [52], we need to introduce the complexity N of a mesh. It is the continuous
counterpart of the number of vertices and it governs the size of the meshes, i.e.,

N :=

∫
Γ

d(x)dx,

where d = (h1h2)−1 is the density and (hi)i=1,2 are the local sizes along the principal directions of the
metric. The global optimization problem becomes to find the optimal continuous mesh M∗ minimizing the
continuous interpolation error eRs(M) in the Lp norm:

Given a complexity N , find M∗ = argminM

(∫
Γ

(
eRs(M)(x)

)p
dx
)1/p

. (7)

We have shown [20] that the solution to (7) is given by

M = N

(∫
Γ

det(|Rs(H)|) 1
3

)−1

det(|Rs(H)|)− 1
6 |Rs(H)|, (8)

where Rs is a restriction operator for surfaces and H is the Hessian of the solution. The mesh generated by
this metric minimizes the L2- interpolation error.

The above results are valid for the linear interpolant Πhu of the exact solution u. However, neither Πhu
or u are known. Only the approximation of u obtained by the FM-BEM is at hand. In order to relate the
interpolation error to the approximation error, we consider a reconstruction operator Rh which is applied to
the numerical approximation uh. This operator can be a recovery process, a hierarchical basis, or an operator
connected to an a posteriori estimate. There are numerous techniques in the literature to approximate or
“recover” the Hessian (see, e.g., [58, 64]). From a practical point of view, we only need to recover a pointwise
3D Hessian at the nodes of the current surface mesh. The method we employ here is based on a local
quadratic recovery and uses the boundary solution only, see [20] for more details.

With the minimizing mesh in hand, one repeats the process for larger complexities until some ad-hoc stop-
ping criterion is achieved. More precisely, given a user-prescribed sequence of complexity N = [N1, ...,Nk],
we seek the sequence of corresponding optimal meshes T = [T1, ..., Tk]. This process is non-linear, i.e., both
the mesh and the solution have to be converged. The following iterative algorithm is used to generate Ti:
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Start from the mesh T 0
i = T 0

i−1 (or from the initial uniform mesh T0 at iteration 0).
for all k = 0 : niter do

Compute the approximation uh on the mesh T ki with the iterative FM-BEM solver (software COFFEE).
Compute the recovered Hessian from uh and deduce Metric (8), with complexity Ni.
From (8), a new quasi-unit mesh T k+1

i of complexity Ni is generated with Feflo.a [50].
end for

The proposed strategy constructs adapted meshes that have been shown to recover optimal convergence
rates for domains with corners and edges [20]. The main advantage of this strategy is to provide man-
ageable system sizes for a desired accuracy (to achieve the same with a uniform mesh, one may require a
discretization exceeding memory capabilities) to the FM-BEM solver. Importantly, the computation of the
metric and subsequent generation of the mesh itself is a rather inexpensive calculation, negligible relative
to the corresponding FM-BEM solution time (usually less than 5% of the overall computational cost). It
is additionally independent of the PDE and integral equation formulation and hence can be applied to a
wide variety of wave propagation problems. Figure 1 illustrates a corner portion of the three iterations of
meshes generated for the planar screen geometry considered in Section 4.1. One can observe clear refinement
at the edges. Unfortunately, such heavily non-uniform discretizations (note the stretched elements next to
regular elements) lead to poorer conditioning of the FM-BEM system [35], further motivating the need for
an efficient iterative solver.

Figure 1: An example of the first, third and fifth iterations (in the mesh adaptation process) employed in the anisotropic screen
meshes considered in Section 4.1. The complexities input for each case were N = 350, 1400 and 5600, respectively.

3. A nested GMRES-based preconditioner for adapted FM-BEM

Section 3.1 briefly discusses the theory, construction and deployment of an H-matrix representation of
the BEM system for wave problems. It is subsequently incorporated into a nested GMRES iterative solver
described in Section 3.2. Section 3.3 provides several validating examples of the implementation of both the
FM-BEM solver and the preconditioner constructed by H-matrix representations.

3.1. Principles of the H-matrix representation of the BEM system for wave propagation

Hierarchical matrices or H-matrices have been introduced by Hackbusch [38] to compute a data-sparse
representation of some special dense matrices (e.g., matrices resulting from the discretization of non-local
operators). The principle of H-matrices is (1) to partition the matrix into blocks and (2) to perform low-rank
approximations of the blocks of the matrix which are known a priori (via an admissibility condition) to be
accurately approximated by low-rank decompositions. With these two ingredients it is possible to define fast
iterative and direct solvers for matrices having a hierarchical representation. Using low-rank representations,
the memory requirements and costs of a matrix-vector product are reduced.

The key component of hierarchical matrices is the recursive block subdivision. The first step prior to
the partition of the matrix is a partitioning based on the geometry of the set of row and column indices of
the system A. The objective is to permute the indices in the matrix in order to reflect the physical distance
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and hence interaction between degrees of freedom. Consecutive indicies should correspond to DOFs that
interact at close range. A binary tree TI is used to drive the clustering where each node of the tree defines a
subset of indices σ ⊂ I and each subset corresponds to a part in the partition of the domain. For each node
we determine the box enclosing all the points in the cloud and subdivide it into 2 boxes, along the largest
dimension. The subdivision is stopped when a minimum number of DOFs per box is reached (Nleaf).

After the clustering of the unknowns is performed, a block cluster representation TI×I of the matrix A
is defined by going through the cluster tree TI . Each node of TI×I contains a pair (σ, τ) of indices of TI
and defines a block of A. This uniform partition defines a block structure of the matrix with a full pattern
but is not optimal. As a matter of fact, some parts of the matrix A can be accurately approximated by
a low-rank matrix at a higher level (i.e. for larger clusters). Such blocks are said to be admissible. A
hierarchical representation P ⊂ TI×I that uses the cluster tree TI and the existence of admissible blocks
is more appropriate. Starting from the initial matrix, each block is recursively subdivided until it is either
admissible or the leaf level is achieved. For complex 3D geometries, an admissibility condition based on the
geometry and the interaction distance between points is used to determine a priori the admissible blocks.
In summary, the blocks of the partition can be of three types: at the leaf level a block can be either an
admissible block or a non-admissible block, at a non-leaf level a block can be either an admissible block or
an H-matrix (i.e a block that will be subsequently hierarchically subdivided).
H-matrix representations have been derived for some specific problems and will not result in efficient

algorithms for all equations or matrices. The crucial point is to know a priori (1) if savings will be obtained
when trying to approximate admissible blocks with a sum of separated variable functions and (2) which
blocks are admissible since the explicit computation of the rank of all the blocks would be too expensive. In
the case of asymptotically smooth kernels G(x,y), it is proved that under some a priori condition on the
distance between x and y, the kernel is a degenerate function. More precisely, the admissibility condition is
given by

max(diam X,diam Y ) ≤ η dist(X,Y ), (9)

where diam X (resp. diam Y ) is the diameter of a block domain X (resp. Y ), dist(X,Y ) = inf{‖x−y‖,x ∈
X,y ∈ Y } is the Euclidean distance between the domains X and Y and η > 0 is the admissibility constant
of the method (fixed to η = 3 in the following sections). After discretization, this property is reformulated
as the efficient approximation of blocks of the matrix by low-rank matrices. The Laplace Green’s function is
an example of an asymptotically smooth kernel for which H-matrix representations have been shown to be
very efficient. The Helmholtz Green’s functions are not asymptotically smooth but oscillatory. It has been
shown in [11] that even though the method is less optimal in that case, substantial memory savings are still
achieved with a complexity level lower than O

(
N3/2 logN

)
in practice.

Once theH-matrix representation of a matrix is computed, it is easy to derive anH-matrix based iterative
solver. The only operation required is an efficient matrix-vector product. It is performed hierarchically by
going through the block cluster tree. At the leaf level, there are two possibilities. If the block does not admit a
low-rank approximation (non-admissible block), then the standard matrix-vector product is used. Otherwise,
the block is marked as admissible such that a low-rank approximation (via adaptive cross approximation with
stopping tolerance εACA corresponding to the accuracy of the low-rank representation) has been computed.
The cost of this part of the matrix-vector product is then reduced. The interested reader is referred to [19]
for full details concering the H-matrix construction for oscillatory Helmholtz kernels.

3.2. A preconditioned adapted FM-BEM solver

The objective of this work is to use the complementary aspects of the fast multipole method andH-matrix
representations of the system. Our overall aim is to reduce total computational cost of the adaptive FM-BEM.
Since the FM-BEM solvers have been shown to have an optimal complexity for wave propagation problems,
our goal is to supplement the FM-BEM with a preconditioning provided by the H-matrix representation of
the BEM system. The goal is to solve the right preconditioned FM-BEM system (3), i.e., find M such that

AM−1Mq = b.

By doing so, we will solve
AM−1y = b and Mq = y
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with the goal of improving the conditioning of A. The best preconditioner is of course M = A but the
cost of evaluating M−1 would be equivalent to solving the initial system. Instead, we want to use an
approximation of A. In this work, we study the efficiency of the use of an H-matrix approximation of the
BEM system to precondition the FM-BEM system in the context of anisotropic meshes. Since we only need
a coarse approximation of M−1, we will use a two level GMRES. The inner GMRES is used to calculate the
preconditioner while the outer GMRES solves the corresponding preconditioned system.

A flexible GMRES [59] allows the preconditioner to change at every iteration, hence permitting the use of
nested “inner-outer iterations” which can invoke an iterative method itself as the preconditioner (e.g., another
GMRES). Since the subsequent matrix-vector product is very cheap, an H-matrix based calculation is an
ideal candidate for these inner iterations: it is algebraically formed and thus general, all the while respecting
the integrity of the BEM system. Algorithm 1 summarizes the nested GMRES implementation employing
such a preconditioner applied to system (3). The principle difference from the standard GMRES is found
in line 3. Instead of the application of a fixed preconditioner M (e.g., right-preconditioning zj = M−1vj),
we solve Aqj = vj approximately by a given iterative method—in this case, GMRES using (coarse) H-
matrix representations. This inner solve step preconditions the outer solve whose matrix-vector products
are facilitated by the FMM.

Algorithm 1 Nested GMRES for preconditioning fast BEMs

1: r0 = b− (Aq0)FMM, β = ‖r0‖2 =⇒ v1 = r0/β // evaluate the initial residual with FM-BEM

2: for j = 1, 2, . . . until convergence do // outer GMRES iterations with FM-BEM system

3: Solve AHmatzj := vj // inner GMRES with H-mat to define preconditioner

4: w := (Azj)FMM // FMM approximation

5: for i = 1 to j do // Construction of the Krylov subspace

6: hi,j := zi ·w
7: w := w − hi,jzi
8: end for
9: hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10: yj = arg miny ‖βe1 −H(1 : j + 1, 1: j)y‖2 // Hij = hij , solve minimization pb. to find the update

11: qj = q0 + [z1, z2, . . . , zj ]yj // updated solution

12: end for

Figure 2: The nested GMRES employing fast-multipole approximations preconditioned by a GMRES sequence of coarse H-
matrix approximations.

The brief diagram of Figure 3 summarizes the full solver. Initial coarse meshes are constructed to have
a density of approximately dλ = 5 collocation points per wavelength, leading to a small initial calculation of
the boundary solution. The adaptive sequence computes the Hessian and corresponding metric, ultimately
generating a quasi-unit mesh within this space. An FM-BEM is then applied to this new mesh to rapidly
produce a solution for the next iteration. The metric calculation and mesh generation are very cheap—the
complexity of our solver is dominated by the FM-BEM. Hence any improvement in computational cost is
felt by every iteration of the adaptive mesh procedure.

3.3. Implementation details and validations of the preconditioner strategy

All the aforementioned algorithms have been implemented in the FORTRAN language and within the
in-house accelerated boundary element software for elastodynamics and acoustics known as COFFEE. Nu-
merical experiments were conducted on a high-performance computer equipped with four multicore Intel
Xeon E7-4820 processors for a total of 32 cores. All anisotropic meshes in Section 4 are constructed by
the metric-based adaptation procedure (Section 2.3) using Metrix and Feflo.a software packages from the
Gamma3 team at INRIA Saclay [50, 51, 52].

As a verification of the FM-BEM code (whose FMM-speedups for piecewise linear elements have already
been demonstrated in [20, 18]), we consider diffraction by a sphere of radius R of an incident field with
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Input of an initial coarse mesh T0 and solution

Computation of optimal metric Mi and generation of a new mesh TiStep i

Resolution by preconditioned FM-BEM
for Each solver iteration do

Computation of preconditioner with H-matrices
Matrix-vector product via FMM on preconditioned vector

end for

Resolution by FM-BEM

for Each solver iteration do
Matrix-vector product via FMM

end for

Output of the final adapted mesh and solution

Figure 3: Summary of the adaptive FM-BEM solver with preconditioning.

direction d = (−1, 0, 0)T and a non-dimensional wavenumber kR = 10 for a sequence of uniformly-refined
discretizations employing P0,P1 and curved P2 elements. The FM-BEM system is solved by using the
simplest preconditioner, i.e., the right-diagonally preconditioned GMRES [60] algorithm which scales all the
diagonal entries of the system matrix to 1. We hence solve the system (3) as

AM−1y = b, q = M−1y (10)

for a preconditioner M defined as

Mij =

{
Aij , if i = j,

0, if i 6= j.
(11)

Figure 4 reports the L2-norm of the error, between the approximated surface density qN and the analytical
density q for the integral equation on the boundary of a sphere for a fixed number of elements NE using P0,
P1 and P2 interpolations and given by (∫

∂Ω
(q − qN )2dx

)1/2(∫
∂Ω
q2dx

)1/2 .

There is little error analysis for 3D collocation BEM solvers but there exist some empirical studies, see, e.g. [3].
As this is a case of a smooth geometry, one readily appreciates the recovery of the expected behaviour of the
L2 convergence order in all three cases.

We fix the GMRES tolerance to 10−4, which is a common choice in the BEM community. It has
also been shown to produce the expected convergence rates in terms of errors between the discrete and
exact physical solution, in problems of interest in this work [20]. Since (11) is a simple preconditioning
technique commonly used for single-layer operators, we henceforth refer to solutions using this diagonal-
preconditioner as the original (“regular”) “FM-BEM” and to solutions using the preconditioning nested
GMRES—implemented with H-matrix representations—as “preconditioned FM-BEM” (denoted by “prec

10



Figure 4: Diffraction by a uniformly discretized sphere: convergence results of the computed density on the boundary for
kR = 10 for discretizations with P0,P1 and curved P2 elements.

FM-BEM” in plots). To verify the preconditioner implementation, we again consider the unit sphere with
an incident field of direction d = (−1, 0, 0)T , but for non-dimensional wavenumbers kR = 17, 24, 30 and
43. We uniformly discretize the surface for each wavenumber using P1 elements (with a density dλ of
approximately 15 collocation points per wavelength) to obtain a corresponding series of meshes ranging in
size from N ≈ 30 000 to N ≈ 180 000 vertices. Figure 5 presents an illustrative discretization as well as
the solution (real part and complex amplitude) for the case of kR = 43. For each discretization, H-matrix
representations are calculated with a coarse resolution of εACA = 10−1, admissibility condition (9) with η = 3
and a minimum block size stopping criterion Nleaf = 100. These parameters are chosen empirically through
a series of numerical experiments, a version of which is presented in this section for uniformly discretized
planar screens and later for anisotropically discretized planar screens. Each case is iteratively resolved either
by a (right) diagonal-preconditioned FM-BEM (11) (“FM-BEM”) or the nested H-matrix preconditioned
FM-BEM (“prec FM-BEM”), with the (outer) GMRES tolerance fixed to 10−4 (500 maximum iterations)
and the inner tolerance of the nested GMRES fixed to 10−1 (10 maximum inner iterations).

Figure 5: Diffraction by a uniformly discretized sphere: a portion of the mesh; the real part of the boundary solution; and the
complex amplitude of the boundary solution for kR = 43 (N ≈ 178 000).

Defining the computational setup time for the FM-BEM system and H-matrix representations (for an

approximation tolerance ε = εACA) as tFMM
setup and tHmat,ε

setup , respectively, the corresponding setup (precompu-
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tation) times are given for FM-BEM and preconditioned FM-BEM respectively as

tsetup = tFMM
setup ,

tprec
setup = tFMM

setup + tHmat,ε
setup .

(12)

The left plot of Figure 6 presents the corresponding times for each discretization and non-dimensional
wavenumber of the sphere example. The addition of an H-matrix construction for the nested preconditioner
results in a slightly longer precomputation time. Although the complexity of constructing the H-matrix
representation is generally higher than the FMM complexity, it can be shown [7, 19] that the growth in
complexity is bounded as O(N3/2 logN). This property is also verified in the figure where we have addition-

ally plotted the setup time tHmat,ε
setup . The right plot gives corresponding costs of a single (outer) iteration of

FM-BEM and preconditioned FM-BEM defined as

titer = tFMM
iter ,

tprec
iter = tFMM

iter +NHmat
iter tHmat

iter ,
(13)

where NHmat
iter is the number of iterations of the inner sequence of GMRES facilitated by H-matrix repre-

sentations. One similarly observes that the single iteration times are longer for the nested GMRES since
they include FMM matrix-vector computations as well as inner H-matrix computations (which are them-
selves rather cheap and are applied a maximum of ten times an outer iteration). The maximum numerical
rank among all admissible blocks in the H-matrix representation is provided in parentheses and grows with
complexity as expected.

Figure 6: Diffraction by a uniformly discretized sphere: setup times (tsetup, t
prec
setup) and single iteration times (titer, t

prec
iter ) applied

to meshes of fixed density dλ = 15. The maximum numerical rank along all admissible blocks in the H-matrix representation
is given in parentheses.

We then report in Table 1 the global time-to-solution given for each case by

tglobal = Nitert
FMM
iter + tFMM

setup ,

tprec
global = Nprec

iter

(
tFMM
iter +NHmat

iter tHmat
iter

)
+ tFMM

setup + tHmat,ε
setup .

(14)

In spite of these marginal increases in setup and single iteration times, it is significantly less for the precondi-
tioned FM-BEM owing to the significant reduction in the number of overall (outer GMRES) iterations Nprec

iter

when resolving the FM-BEM system. Defining the corresponding speedup S of preconditioned FM-BEM
versus FM-BEM,

S =
tglobal − tprec

global

tglobal
× 100,
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one already observes during the verification the larger than 50% speedup in computation time when employ-
ing the preconditioned solver for uniformly discretized spheres. The computational gains are demonstrated
in Section 4 to be even more significant for the anisotropically-discretized meshes and higher-order numerical
quadratures that are of interest.

N kR Niter tglobal Nprec
iter tprec

global S

27 870 17 84 9m56s 23 4m14s 57%
54 117 24 89 25m32s 22 10m05s 61%
87 615 30 115 59m00s 32 26m36s 55%

178 472 43 209 188m09s 58 84m09s 55%

Table 1: Diffraction by a uniformly discretized sphere: number of solver iterations and global solution times (including setup)
for meshes of fixed density dλ = 15.

Geometric singularities and the subsequent discontinuous behavior of the corresponding boundary so-
lution can lead to a significant performance loss in a BEM. An infinitely thin planar screen presents a
challenging example in this context: it has sharp and thin geometric features that encourage, like many
realistic configurations, a mesh adaptivity suitable to capture the behavior of the wave propagation around
these geometric singularities. This is a case of particular interest in Section 4.1 and so in this spirit we
consider a series of verifying numerical examples for scattering of plane waves of direction d = (1, 0, 0)T by
a uniformly discretized screen of characteristic length, i.e., edge length L.

Figure 7: Diffraction by a uniformly discretized screen: a portion of the mesh; the real part of the boundary solution; and the
complex amplitude of the boundary solution for kL = 43 (N ≈ 30 000).

As in for the sphere, we consider the screen uniformly discretized by piecewise-linear elements as seen in
Figure 7, which presents an illustrative discretization as well as a solution (real part and complex amplitude)
for the case of kL = 43. A density dλ of approximately 15 collocation points per wavelength is chosen to
obtain a corresponding series of meshes ranging in size from N ≈ 300 000 to N ≈ 500 000 vertices. The
corresponding setup and single-iteration times are presented in Figure 8. Again we can observe that the
addition of an H-matrix construction for the nested preconditioning results in a slightly longer precomputa-
tion time due to the H-matrix representation, but is coherent with theoretical complexity. Similarly again,
the iteration times are longer as well since they include an FMM matrix-vector computation as well as inner
H-matrix computations (the numerical rank of the largest approximated admissible block is included in
parentheses). The global time-to-solution given in Table 2, however, is significantly less for the precondi-
tioned FM-BEM solver owing to the significant reduction in the number of overall (outer) GMRES iterations
Nprec

iter when resolving the FM-BEM system, enabling more than 50% reduction in the global computation
time.

We now consider the efficacy of the nested GMRES-based preconditioner with respect to the parameters
most important to its additional computational time, i.e., that of the construction of the H-matrix repre-
sentation. In order to optimize performance, a balance must be struck between precomputational cost and
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Figure 8: Diffraction by a uniformly discretized screen: setup times (tsetup, t
prec
setup) and single iteration times (titer, t

prec
iter ) applied

to meshes of fixed density dλ = 15. The maximum numerical rank along all admissible blocks in the H-matrix representation
is given in parentheses.

N kL Niter tglobal Nprec
iter tprec

global S

31365 43 45 6m56s 15 3m54s 45%
55224 85 45 12m44s 13 5m55s 54%

124497 128 48 29m06s 13 12m01s 59%
220888 171 51 65m20s 13 28m48s 56%
495774 256 56 159m30s 13 70m16s 56%

Table 2: Diffraction by a uniformly discretized screen: number of solver iterations and global solution times (including setup)
for meshes of fixed density dλ = 15.
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the number of iterations during which the corresponding matrix-vector product is applied. Similar studies
are presented for anisotropic discretizations of the screen in Section 4.1. For each uniform discretization we
solve the resulting system via FM-BEM and the preconditioned FM-BEM system for various non-dimensional
wavenumbers and various accuracies for the low-rank approximations in the H-matrix representation. For a
fixed non-dimensional wavenumber kL = 50 and low-rank approximation tolerances of

εACA =
[
10−1, 2 · 10−1, 5 · 10−1

]
,

Figure 9 presents setup and single iteration times for a series of meshes ranging in size from N ≈ 30 000
to N ≈ 200 000 (these are no longer of fixed density). These parameters are of interest because they are
very coarse approximations and are relatively quick to precompute. One can observe similar performance for
each tolerance εACA, with the finest tolerance εACA having the shortest single iteration time of the resulting
nested GMRES iterative solver.

Figure 9: Diffraction by a uniformly discretized screen: setup times (tsetup, t
prec
setup) and single iteration times (titer, t

prec
iter ) for

non-dimensional wavenumber kL = 50 and different H-matrix approximation tolerances εACA. The maximum numerical rank
along all admissible blocks in the H-matrix representation is given in parentheses.

Fixing εACA = 10−1, we consider construction times and subsequent speedups for varying non-dimensional
wavenumbers

kL = [25, 50, 100].

It is known that the H-matrix representations in their current form are not optimized for very high non-
dimensional wavenumbers [19]. Table 3, which presents speedups over unpreconditioned FM-BEM, indicates
however that this possibly is not the case when employing a coarse approximation only as a preconditioner;
indeed, one can appreciate the significant speedups in all three cases, including for increasing wave numbers.

kL = 25 kL = 50 kL = 100
N Nprec

iter S Nprec
iter S Nprec

iter S
31 365 15 36% 16 48% 15 49%
55 224 13 39% 14 51% 14 51%

124 497 14 33% 13 44% 13 45%
220 888 14 31% 13 39% 13 39%

Table 3: Diffraction by a uniformly discretized screen: number of solver iterations and global solution times (including setup)
for non-dimensional wavenumbers kL = 25, 50 and 100.
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Remark 3.1. The experiments above have employed modest numbers of Gaussian quadrature points to
perform the numerical integrations of triangles required to construct the BEM system. For adapted meshes
containing highly stretched, flat and anisotropic elements, this can be cumbersome as there may not be an
adequate distribution of points, ultimately leading to poorer convergence of the iterative system. A larger
number (13 points) of quadrature points may need to be used and are, in fact, required to maintain the
properties of using higher-order element discretizations in a BEM. The rest of the experiments in this paper,
unless otherwise noted, utilize a higher order of Gaussian numerical quadrature. This may increase certain
computational costs but will reduce the number of iterations. Furthermore, as demonstrated in Table 4 for
the above sphere and screen examples, the speedup obtained by the preconditioned FM-BEM may be even
greater for more accurate quadrature routines.

N Niter tglobal Nprec
iter tprec

global S

27 870 55 17m52s 11 6m34s 63%
54 117 58 54m22s 12 19m45s 64%
87 615 76 129m18s 18 50m29s 61%

178 472 137 355m58s 35 130m47s 63%

N Niter tglobal Nprec
iter tprec

global S

31 365 30 17m15s 3 7m12s 58%
55 224 30 28m00s 3 9m16s 67%

124 497 32 50m30s 3 16m53s 67%
220 888 33 128m16s 3 40m15s 69%

Table 4: Number of solver iterations and global solution times (including setup) for discretizations of fixed density dλ = 15 for
the sphere (top) and screen (bottom) using 13 Gaussian quadrature points in integrations over triangles.

4. Efficiency of the preconditioner in the presence of an anisotropic mesh

The sound-soft boundary condition (1b), when compared to other kinds of boundary conditions, gives
rise to more severe singularities in the boundary solution when considering scattering by obstacles with
corners or edges. This suggests the use of an anisotropic mesh adaptation precedure to account for the
loss of regularity of the corresponding boundary solutions and hence order of convergence. Unfortunately,
both isotropically and anisotropically adapted meshes worsen the conditioning of the overall BEM system,
leading to an increase in the number of iterations and thus overall computational time required to iteratively
resolve the solution [35]. This naturally motivates the use of an effective preconditioner to accommodate the
subsequent increase in computational cost. Furthermore, our anisotropic mesh adaptation procedure is itself
iterative and requires several FM-BEM solves; hence any decrease in computational time is felt multifold.
In what follows, we consider the efficacy of the H-matrix based nested GMRES preconditioning on such
adapted meshes constructed for problems of scattering by a planar screen and a more complex F-15 aircraft.

4.1. Diffraction by a screen

For the thin planar screen example of Section 3.3, the usage of an adaptation algorithm and, in particular
an anisotropic one, is prudent: it is well known (see, e.g., [42]) that at the edge of a screen, the jump behaves
as [

∂u

∂n

]
∼ (kr)−0.5 as kr → 0, (15)

where r is the distance from the edge. At the corner of the screen, this singularity is more severe, and has
been shown [6] to take the form [

∂u

∂n

]
∼ (kr)−0.704 as kr → 0.

16



Owing to the singular behavior, the approximated solution on a sequence of uniformly refined meshes should
yield a sub-optimal convergence rate. Hence planar screens are an excellent example of the capabilities of an
(iterative) adapted mesh strategy, an example of which is given in Figure 1 for a corner of the screens used
in the subsequent experiments. One observes in these images highly stretched and anisotropic elements near
the corners and edges. These ultimately degrade the performance of an iterative solver, and hence it is of
great interest to study preconditioning in this context.

Figure 10: Diffraction by an anisotropically discretized screen: setup times (tsetup, t
prec
setup) and single iteration times (titer, t

prec
iter )

for non-dimensional wavenumber kL = 10 and different H-matrix approximation tolerances εACA. The maximum numerical
rank along all admissible blocks in the H-matrix representation is given in parentheses.

Figure 10 presents the setup time and single iteration times for three levels of accuracy in H-matrix
representations, i.e.

εACA =
[
10−1, 2 · 10−1, 5 · 10−1

]
,

for a sequence of anisotropic meshes constructed with the mesh adaptation procedure for an incident plane
wave of non-dimensional wavenumber kL = 10. There are expected slight increases in both setup time and
iteration time for each choice of εACA. We observe each of these cases is almost identical in cost (since they
are very similar in the maximum low rank approximation), and so we adopt henceforth εACA = 10−1 in
order to remain consistent with parameters found for uniform discretizations.

In addition, we report in Table 5 the characteristics of the anisotropic meshes, i.e., maximum and min-
imum length size together with anisotropic ratios. If we define γK to be the ratio of the maximum edge
length to minimum edge length in a triangle K, then we define the anisotropic ratio γ of a mesh TN as

γmax = max
K∈TN

γK , γmean =
1

#TN

∑
K∈TN

γK ,

where one can observe that the more anisotropic the mesh, the larger the value of γK . It should be noted that
these experiments are conducted on several meshes of a single adaptation sequence (i.e., as discretization
increases so does the level of anisotropy).
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ε = 10−1 ε = 2 · 10−1 ε = 5 · 10−1

N Min length Max length γmean γmax Nprec
iter S Nprec

iter S Nprec
iter S

107 8.63 · 10−2 1.64 · 10−1 1.80 · 100 1.90 · 100 3 60% 3 58% 3 62%
705 9.53 · 10−3 1.82 · 10−1 1.29 · 101 1.91 · 101 3 58% 3 58% 3 58%

1 535 2.14 · 10−3 1.71 · 10−1 5.35 · 101 7.98 · 101 3 57% 3 56% 3 57%
3 370 5.01 · 10−4 1.52 · 10−1 1.88 · 102 3.04 · 102 3 45% 3 45% 4 40%

Table 5: Diffraction by an anisotropically discretized screen: number of solver iterations and speedups for non-dimensional
wavenumber kL = 10 and varying accuracies εACA.

Figure 11 indicates setup times and single iteration times for the cases of kL = 50, 100 and 200, respec-
tively. Each case carries a different series of meshes which are refined according to the mesh adaptation
procedure for their respective wavelengths. Again, we observe slight increases in setup time, but the iter-
ation time increases with level of anisotropy and size of the grid. Table 6 shows that, although with the
more marginal increases in computation time, the method achieves even more significant speedups than that
of a uniform discretization: on the order of 70% in most cases. This demonstrates the effectiveness of the
preconditioned FM-BEM solver. One additionally observes a smaller speedup for finer (and more anisotropic
discretizations). This is due to the non-optimality of the H-matrix representation for non-uniform discretiza-
tions. For example, the stopping criterion Nleaf (minimal box size in the subdivision) must be tweaked to
accommodate highly stretched elements.

kL = 50

N Min length Max length γmean γmax Niter tglobal Nprec
iter tprec

global S

2 221 1.57 · 10−2 3.52 · 10−2 2.16 · 100 2.24 · 100 19 0m59s 3 0m18s 69%
8 156 1.81 · 10−3 5.56 · 10−2 2.13 · 101 3.08 · 101 28 4m15s 3 1m14s 71%

18 840 2.18 · 10−4 6.33 · 10−2 1.54 · 102 2.91 · 102 34 12m21s 3 4m40s 62%

kL = 100

N Min length Max length γmean γmax Niter tglobal Nprec
iter tprec

global S

8 549 7.42 · 10−3 1.84 · 10−2 2.38 · 100 2.48 · 100 22 5m15s 3 1m16s 76%
33 087 6.85 · 10−4 2.73 · 10−2 2.17 · 101 3.98 · 101 31 19m56s 4 5m53s 71%
76 666 3.86 · 10−5 2.75 · 10−2 2.12 · 102 7.13 · 102 37 57m46s 3 23m05s 60%

kL = 200

N Min length Max length γmean γmax Niter tglobal Nprec
iter tprec

global S

34 241 3.33 · 10−3 9.31 · 10−3 2.56 · 100 2.80 · 100 25 29m37s 3 6m34s 78%
134 701 2.69 · 10−4 1.54 · 10−2 2.78 · 101 5.75 · 101 34 99m01s 3 26m48s 73%
312 687 1.72 · 10−5 1.21 · 10−2 1.82 · 102 7.05 · 102 39 266m27s 4 121m40s 54%

Table 6: Diffraction by an anisotropically discretized screen: number of solver iterations and global solution times (including
setup) for non-dimensional wavenumbers kL = 50, 100 and 200.

Finally, it is important to recall that we have used in all examples a simple diagonal-preconditioner even
in the solutions denoted “FM-BEM”. The solutions corresponding to the nested GMRES implemented with
H-matrix representations are denoted “prec FM-BEM”. In Table 7 we report also the number of iterations
and solution times for the diffraction by an anisotropically discretized screen with kL = 50. These results
illustrate the already important improvement of the conditioning due to the diagonal preconditioner, leading
to an even better behaviour of our nested GMRES preconditioner.
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Figure 11: Diffraction by an anisotropically discretized screen: setup times (tsetup, t
prec
setup) and single iteration times (titer, t

prec
iter )

for non-dimensional wavenumbers kL = 50, 100 and 200. The maximum numerical rank along all admissible blocks in the H-
matrix representation is given in parentheses.
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N Niter (no diag prec) tglobal (no diag prec) Niter tglobal Nprec
iter tprec

global

2 221 26 1m23s 19 0m59s 3 0m18s
8 156 62 8m57s 28 4m15s 3 1m14s

18 840 124 38m37s 34 12m21s 3 4m40s

Table 7: Diffraction by an anisotropically discretized screen: number of solver iterations and global solution times (including
setup) for non-dimensional wavenumbers kL = 50 utilizing no preconditioner, a diagonal-preconditioner and the nested GMRES
preconditioner.

4.2. Diffraction by an F-15 aircraft

We revisit the geometry of the unarmed F-15 aircraft (of characteristic length L in the longest direction)
previously considered by the mesh adaptation algorithm in [20] for an incident plane wave with direction
d = (1/2, 1, 0)T and non-dimensional wavenumber kL = 114. A series of adapted meshes are considered from
a sequence of 15 that are generated (specifically, the third, sixth and ninth). Each mesh is an increasingly
anisotropic discretization by piecewise-linear elements as seen in Figure 12, which presents an illustrative
discretization of the anisotropic adaptation on a portion of the wing as well as the boundary solution (real
part and complex amplitude). We see the high directionality of the diffracted waves with different patterns
for the front and back of the aircraft, and most of the resulting anisotropy in the meshes are reached in areas
where the diffracted waves have low regularity.

Figure 12: Diffraction by an F-15 aircraft: a portion of the adapted mesh where a wing meets the body; the real part of the
boundary solution; and the complex amplitude of the boundary solution for kL = 114 (N ≈ 25 000).

The corresponding setup and single-iteration times are presented in Figure 13. Again we can observe
that the addition of an H-matrix construction for the nested preconditioning results in a slightly longer
precomputation time due to the H-matrix representation. Similarly again, the single iteration times are
longer as well since they include an FMM matrix-vector computation as well as innerH-matrix computations.
The largest approximated admissible low-rank block is included in parentheses. The global time-to-solution
given in Table 8, however, is significantly less for the preconditioned FM-BEM solver owing to the significant
reduction in the number of overall (outer) GMRES iterations when resolving the FM-BEM system, enabling
up to more than 80% reduction in global computation time, significantly better performance than the uniform
discretizations treated in Section 3.3.

Remark 4.1. As discussed in Remark 3.1, a number of 13 points was used to perform numerical integration
for the experiments in this section. For the sake of consistency, we can also consider the parameters of [20]
where three points are used for non-singular integration over a triangle. The resulting linear system requires
significantly more iterations to resolve as seen in Table 9 due to the stretching of elements. Indeed, even in
this case, speedups up to 80% are achieved when employing the preconditioned FM-BEM.
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Figure 13: Diffraction by an anisotropically discretized F-15 aircraft: setup times (tsetup, t
prec
setup) and single iteration times

(titer, t
prec
iter ) for non-dimensional wavenumber kL = 114. The maximum numerical rank along all admissible blocks in the

H-matrix representation is given in parentheses.

N Min length Max length γmean γmax Niter tglobal Nprec
iter tprec

global S

10 562 2.96 · 10−3 9.51 · 10−1 2.03 · 102 3.21 · 102 210 59m06s 18 10m19s 83%
15 687 1.97 · 10−3 8.23 · 10−1 3.22 · 102 4.18 · 102 180 66m48s 21 18m23s 73%
25 428 9.75 · 10−4 1.14 · 10−0 7.44 · 102 1.17 · 103 180 97m41s 25 38m22s 61%

Table 8: Diffraction by an F-15 aircraft: number of solver iterations and global solution times (including setup) for non-
dimensional wavenumber kL = 114.

5. Conclusions and outlook

We have presented a nested GMRES-based adaptive fast BEM to model 3D wave propagation problems.
It relies on an inner GMRES sequence of coarse and very fastH-matrix approximated matrix-vector products
to precondition the Fast Multipole accelerated Boundary Element system used in the outer GMRES. We
have demonstrated a reduction in the (outer) GMRES iterations and hence the subsequent invocations of the
more expensive FM-based matrix-vector product, resulting in significant global time-to-solution speedups
versus conventionally-preconditioned GMRES methods. In particular, we have studied the preconditioned
solver applied to the problem of diffraction by an infinitely thin planar screen and an F-15 aircraft, both
for uniform and highly non-uniform discretizations. The algorithm has been shown to provide significant
speedups for most configurations including up to 80% for some anisotropic meshes.

Efficient construction and application of the H-matrix representations in general is still very much a work
in progress for wave propagation. The current implementation is promising and is already useful to improve
the cost of a mesh adaptation procedure. Further work will involve adapting the H-matrix construction
specifically for highly anisotropic meshes including those with curved elements. An obvious first step would
be to alter the distance function for partitioning based on the anisotropy of the mesh—this information can
be provided by a metric that is derived from the adaptation procedure. And, finally, the methodology herein
can be extended for double- and combined-layer formulations of the boundary integral equations, as well as
extended for more complex physics such as elastodynamics problems; both the H-matrix approximation and
the anisotropic mesh procedure are independent of choice of PDE and integral equation.
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N Min length Max length γmean γmax Niter tglobal Nprec
iter tprec

global S
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25 428 9.75 · 10−4 1.14 · 10−0 7.44 · 102 1.17 · 103 726 169m49s 76 79m27s 53%

Table 9: Diffraction by an F-15 aircraft: number of solver iterations and global solution times (including setup) for kL = 114
using 3 Gaussian quadrature points in regular integrations over triangles. The number of iterations reported here is slightly
larger than those reported in [20]; this is due to the latter use of an initial guess which is not employed in this experiment.
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[11] S. Börm, L. Grasedyck, and W. Hackbusch, Hierarchical matrices, tech. rep., Max Planck Insti-
tute for Mathematics in the Sciences, 01 2003.

[12] O. Bruno, C. Geuzaine, J. Monro, and F. Reitich, Prescribed error tolerances within fixed
computational times for scattering problems of arbitrarily high frequency: the convex case, Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362
(2004), pp. 629–645.

[13] O. Bruno and L. Kunyansky, A fast, high-order algorithm for the solution of surface scattering
problems: basic implementation, tests, and applications, Journal of Computational Physics, 169 (2001),
pp. 80–110.

22



[14] Y. Cao, L. Wen, J. Xiao, and Y. Liu, A fast directional BEM for large-scale acoustic problems based
on the Burton–Miller formulation, Engineering Analysis with Boundary Elements, 50 (2015), pp. 47–58.

[15] B. Carpentieri, A matrix-free two-grid preconditioner for solving boundary integral equations in elec-
tromagnetism, Computing, 77 (2006), pp. 275–296.

[16] B. Carpentieri, I. Duff, L. Giraud, and G. Sylvand, Combining fast multipole techniques and an
approximate inverse preconditioner for large electromagnetism calculations, SIAM Journal on Scientific
Computing, 27 (2005), pp. 774–792.

[17] B. Carpentieri, I. S. Duff, and L. Giraud, Sparse pattern selection strategies for robust frobenius-
norm minimization preconditioners in electromagnetism, Numerical Linear Algebra with Applications,
7 (2000), pp. 667–685.

[18] S. Chaillat, M. Bonnet, and J.-F. Semblat, A multi-level fast multipole BEM for 3-D elastody-
namics in the frequency domain, Computer Methods in Applied Mechanics and Engineering, 197 (2008),
pp. 4233 – 4249.

[19] S. Chaillat, L. Desiderio, and P. Ciarlet, Theory and implementation of H-matrix based itera-
tive and direct solvers for Helmholtz and elastodynamic oscillatory kernels, Journal of Computational
Physics, 351 (2017), pp. 165–186.

[20] S. Chaillat, S. P. Groth, and A. Loseille, Metric-based anisotropic mesh adaptation for 3D
acoustic boundary element methods, Journal of Computational Physics, 372 (2018), pp. 473 – 499.

[21] S. Chaillat, J.-F. Semblat, and M. Bonnet, A preconditioned 3-D multi-region fast multipole
solver for seismic wave propagation in complex geometries, Communications in Computational Physics,
11 (2012), pp. 594–609.

[22] R. Clayton and B. Engquist, Absorbing boundary conditions for acoustic and elastic wave equations,
Bulletin of the seismological society of America, 67 (1977), pp. 1529–1540.

[23] G. Cohen and S. Pernet, Finite element and discontinuous Galerkin methods for transient wave
equations, Springer, 2017.

[24] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, 1983.

[25] P. Coulier, S. François, G. Lombaert, and G. Degrande, Application of hierarchical matrices
to boundary element methods for elastodynamics based on Green’s functions for a horizontally layered
halfspace, Engineering Analysis with Boundary Elements, 37 (2013), pp. 1745–1758.

[26] M. Darbas, E. Darrigrand, and Y. Lafranche, Combining analytic preconditioner and fast multi-
pole method for the 3-D Helmholtz equation, Journal of Computational Physics, 236 (2013), pp. 289–316.

[27] E. Darve, The fast multipole method: Numerical implementation, Journal of Computational Physics,
160 (2000), pp. 195 – 240.

[28] C. Erath, S. Funken, P. Goldenits, and D. Praetorius, Simple error estimators for the galerkin
BEM for some hypersingular integral equation in 2D, Applicable Analysis, 92 (2013), pp. 1194–1216.

[29] M. Feischl, M. Karkulik, J. Melenk, and D. Praetorius, Quasi-optimal convergence rate for
an adaptive boundary element method, SIAM Journal on Numerical Analysis, 51 (2013), pp. 1327–1348.

[30] M. Ganesh and S. Hawkins, A fast high order algorithm for multiple scattering from large
sound-hard three dimensional configurations, Journal of Computational and Applied Mathematics,
(doi:10.1016/j.cam.2018.10.053).

[31] M. Ganesh and S. C. Hawkins, A spectrally accurate algorithm for electromagnetic scattering in
three dimensions, Numerical Algorithms, 43 (2006), pp. 25–60.

23



[32] M. Ganesh and C. Morgenstern, High-order FEM domain decomposition models for high-frequency
wave propagation in heterogeneous media, Computers & Mathematics with Applications, 75 (2018),
pp. 1961–1972.
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