
HAL Id: hal-02116133
https://hal.inria.fr/hal-02116133

Submitted on 30 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Processing Fuzzy Relational Queries Using Fuzzy Views
Emmanuel Doumard, Olivier Pivert, Grégory Smits, Virginie Thion

To cite this version:
Emmanuel Doumard, Olivier Pivert, Grégory Smits, Virginie Thion. Processing Fuzzy Relational
Queries Using Fuzzy Views. IEEE International Conference on Fuzzy Systems, Jun 2019, New-Orleans,
United States. �hal-02116133�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/200172939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02116133
https://hal.archives-ouvertes.fr

Processing Fuzzy Relational Queries
Using Fuzzy Views

Emmanuel Doumard, Olivier Pivert, Grégory Smits, and Virginie Thion

Univ Rennes, IRISA - UMR 6074, F-22305 Lannion, France
Email: {olivier.pivert,gregory.smits,virginie.thion}@irisa.fr

Abstract—This paper proposes two original approaches to the
processing of fuzzy queries in a relational database context. The
general idea is to use views, either materialized or not. In the first
case, materialized views are used to store the satisfaction degrees
related to user-defined fuzzy predicates, instead of calculating
them at runtime by means of user functions embedded in the
query (which induces an important overhead). In the second case,
abstract views are used to efficiently access the tuples that belong
to the α-cut of the query result, by means of a derived Boolean
selection condition.

I. INTRODUCTION

The idea of making database management systems more
flexible by switching from Boolean logic to fuzzy logic for
interpreting queries is already quite old, as the first work on
this topic dates back to the mid 70’s. Indeed, the first paper
considering fuzzy relational queries was authored by V. Tahani
— then a Ph.D. student supervised by L.A. Zadeh — in 1977
[16]. Since that time, a great amount of work has of course
been done, both for defining highly expressive fuzzy query
languages (see for instance [12], [5], [1], [14]) and for devising
efficient processing techniques suitable for such queries (see
e.g. [4], [6], [17], [15]). As a matter of fact, it is of prime
importance to have available efficient evaluation algorithms so
that the gain in terms of expressiveness be not counterbalanced
by a severe performance degradation. So far, fuzzy query
processing relies on a technique first introduced by Bosc and
Pivert in [2], called derivation, whose basic principle is to
compute a Boolean query from the fuzzy one to be evaluated.
The derived Boolean query, which corresponds to the desired
α-cut of the fuzzy query to be evaluated (or a superset thereof),
can then be efficiently processed by a regular DBMS, and the
satisfaction degree of each answer can be computed either by
means of an external program or by a call to user functions
in the derived query (which proves rather costful). In the
present paper, we introduce an alternative processing strategy,
based on the use of fuzzy views. Two variants are studied: one
where the views are materialized, the other where they are
kept abstract.

The remainder of the paper is organized as follows. In
Section II, we recall some useful notions about fuzzy rela-
tional queries and their evaluation. We also provide a brief
survey of related work. Sections III and IV are devoted to
the description of the two approaches involving materialized
and abstract views respectively. In Section V, we present an

experimentation aimed to compare the performances of the
two solutions described before. The experimental results are
discussed and the pros and cons of each method are pointed
out. Finally, Section VI recalls the main contributions of the
paper and outlines perspectives for future research.

II. CONTEXT AND RELATED WORK

In this section, we recall some useful notions concerning
fuzzy queries in a relational database context, with a par-
ticular focus on the SQLf language [5] which constitutes
the framework considered in this work. We first deal with
syntactic aspects, then we briefly discuss query-processing-
related issues.

A. Refresher about Fuzzy Relational Queries

Dealing with fuzzy queries in a relational database context
first implies to extend the classical notion of a relation into
that of a fuzzy relation. A fuzzy relation is associated with a
fuzzy concept ψ and is simply a relation where every tuple is
assigned a membership degree in the unit interval, that reflects
the extent to which the tuple satisfies ψ. The operations from
the relational algebra can be extended to fuzzy relations along
two lines: first, by considering fuzzy relations as fuzzy sets;
second by introducing gradual predicates in the appropriate
operations (selections and joins especially). The definitions
of the extended relational operators can be found in [1]. As
an illustration, we give the definition of the fuzzy selection
operator hereafter:

µselect(r, ϕ)(t) = >(µr(t), µϕ(t))

where r denote a fuzzy relation, ϕ is a fuzzy predicate and >
is a triangular norm (most usually, min is used).

Relational algebra is obviously too abstruse for non-experts
to use, this is why no commercial DBMS offers it as a query
language. More user-oriented languages (based on relational
algebra) had to be defined, and the most famous one is of
course SQL, in which queries are expressed by means of
“blocks” involving clauses such as select, from, where, etc. The
language called SQLf, whose initial version was presented in
[5], extends SQL so as to support fuzzy queries. The general
principle consists in introducing gradual predicates wherever
it makes sense. The three clauses select, from and where of the
base block of SQL are kept in SQLf and the from clause re-
mains unchanged (except when fuzzy joins are used, in which

case the join condition involves a fuzzy comparison operator).
The principal differences concern mainly two points:
• the filtering of the result, which can be achieved through

a number of desired answers (k), a minimal level of
satisfaction (α), or both, and

• the nature of the authorized conditions as mentioned
previously.

Therefore, the SQLf base block is expressed as:

select [distinct] [k | α | k, α] attributes
from relations where fuzzy-cond

where fuzzy-cond may involve both Boolean and fuzzy pred-
icates. From a conceptual point of view, this expression is
interpreted as:
• the fuzzy selection (by fuzzy-cond) of the Cartesian

product of the relations appearing in the from clause,
• a projection over the attributes of the select clause (du-

plicates are kept by default, and if distinct is specified
the maximal degree among the duplicates is retained),

• the filtering of the result (top k elements and/or those
whose score is over the threshold α).

Besides, SQLf also preserves (and extends) the constructs
specific to SQL, e.g. nesting operators, relation partitioning,
etc., see [14] for more detail. In the following, we only
consider single-block Selection-Projection-Join SQLf queries.

Any fuzzy querying system must provide users with a
convenient way to define the fuzzy terms that they wish to
include in their queries. In practice, the membership function
associated with a fuzzy set F is often chosen to be of a
trapezoidal shape. Then, F may be expressed by a quadruplet
(a, b, c, d) where core(F) = [b, c] and support(F) = (a, d).
In a previous work [15], we described a graphical interface
aimed at helping the user express his/her fuzzy queries.

B. About Fuzzy Query Processing: Related Work

Fuzzy query processing [8], [12], [9], [3] raises several
issues, among which the main two ones are listed hereafter:
• it is not possible to directly use classical indexes for

evaluating fuzzy selection conditions;
• an extra step devoted to the computation of the degrees

and the filtering of the result is needed, which induces an
additional cost.

Then, implementing a fuzzy querying system can be done
according to three main types of architectures [17]:
• loose coupling: the new features are integrated through a

software layer on top of the RDBMS. The main advantage
of this type of architecture lies in its portability, which
allows connecting to any RDBMS. Its disadvantages
include scalability and performance.

• mild coupling: the new features can be integrated through
stored procedures using either a procedural language for
relational databases such as Oracle PL/SQL, or through
calls to external functions. With this type of solution,
the data are handled only using tools internal to the

RDBMS, which entails better performances. Above all,
fuzzy queries are directly submitted to the DBMS.

• tight coupling: the new features are incorporated into the
RDBMS inner core. This solution, which is of course
the most efficient in terms of query evaluation, implies
to entirely rewrite the query engine (including the parser
and query optimizer), which is a quite heavy task.

In [15], we presented an implementation at the junction
between mild coupling and tight coupling where i) the mem-
bership functions corresponding to the user-specified fuzzy
predicates are defined as stored procedures and ii) the gradual
connectives (fuzzy conjunction, disjunction, and quantifiers)
are implemented in C and integrated in the query processing
engine of the RDBMS PostgreSQL.

Since commercial RDBMSs are not able to natively interpret
fuzzy queries, some previous works (see [2], [6]) suggested
to perform a derivation step in order to generate a regular
Boolean query used to prefilter the relation (or Cartesian
product of relations) concerned. The idea is to restrict the
degree computation phase only to those tuples that belong
to the α-cut of the result of the fuzzy query (assuming that
α is a qualitative threshold specified by the user; 0+ is used
by default). With this type of evaluation strategy, fuzzy query
processing involves three steps:

1) derivation of a Boolean query from the fuzzy one, using
the threshold α and the membership functions of the
fuzzy predicates involved in the where clause;

2) processing of the derived query, which produces a clas-
sical relation;

3) computation of the satisfaction degree attached to each
tuple (followed by a tuple filtering step if necessary1),
which yields the fuzzy relation that constitutes the final
result.

In terms of performances, the interest of using a mild coupling
architecture lies in the fact that the resulting fuzzy relation is
directly computed during the tuple selection phase (no external
program needs to be called to perform step 3).

In the following, we present an original fuzzy query pro-
cessing strategy relying on the use of fuzzy views. The use
of fuzzy views has already been advocated in the literature
to evaluate fuzzy queries, see [7], [10], [11], [13]. However,
in all of these works, the fuzzy views considered correspond
either to predicates of a predefined expert vocabulary —
whereas we consider end-user-defined fuzzy terms — or to
previously executed queries. Consequently, these approaches
need to perform an approximate rewriting of the user query
in terms of the views available, and there is no guarantee of
completeness/relevance of the set of answers obtained.

1This filtering step is necessary when the where clause of the fuzzy query
involves connectives such as means (or trade-off operators in general). Then,
the derivation process is said to be weak, which means that a superset of
the actual α-cut may be returned by the derived query (instead of the exact
α-cut).

III. AN APPROACH BASED ON MATERIALIZED VIEWS

We first discuss the concept of view in a database context,
then we present an approach exploiting materialized views in
a fuzzy querying context.

A. General Principle

In a database context, a view is a virtual table derived from
the relations present in the database by means of a query. A
set of views on a database can thus be seen as an abstraction
of the actual schema (considered at the physical level) and
provides a logical schema representing the links between the
data in a more interpretable way.

As such, views cannot be used to precompute query results.
A view is built from a query, but this query is executed
only when needed. It is kept in memory, and the name of
the view constitutes an alias of the query that will be used
when this view is called by another query, through a rewriting
mechanism.

On the other hand, materialized views are views whose
underlying query is executed, and whose results are stored in a
table. Materialized views are thus treated as regular tables by
the system, and one may access their data in the same way as
one does for base tables. The query that was used to generate
the view is still saved in memory, which makes it possible to
update the view according to the changes that have been made
to the underlying relations.

In the context considered here, i.e., that of fuzzy querying,
the first idea we advocate is to use (fuzzy) materialized views
for optimizing query processing. The general idea is to use
views to store the satisfaction degrees associated with the
tuples, instead of using functions to calculate them — which
is problematic for query optimization, due to some restrictions
in the optimizers of the current commercial DBMSs: the use
of functions prevents the DBMS to use indexes and forces
the DBMS to scan the entire tables. In order to illustrate our
proposals, we will use a database describing flights and air-
ports, involving the relations Flights (Fid, depDate, depTime,
arrTime, depA, arrA) and Airport (Aid, attendance, city, area).
An example of content is given in Table I.

TABLE I
RELATIONS FLIGHTS AND AIRPORTS FROM DATABASE DB

Flights
Fid depDate depTime arrTime depA arrA
1 02-18-2011 12:15 16:32 CDG BEY
2 03-22-2012 14:17 22:22 JFK CDG
3 05-11-2014 4:12 10:14 TLS YUL

Airports
Aid attendance city area
CDG 2500 Roissy 13 000
JFK 7000 New York 16 000
TLS 1800 Toulouse 7500
YUL 2200 Montreal 25 000
BEY 1900 Beyrouth 12 000

Let DB be a database made of the relations R1, . . . , Rn.
We denote by Ri(Ai1 , . . . , Airi

) a relation, att(Ri) =

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 2,000 4,000 6,000
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

µearly(depTime) µbusy(attendance) µlarge(area ∗ 10−4)

Fig. 1. Membership functions of the terms early, busy, and large

TABLE II
VIEWS ASSOCIATED WITH DB (MODEL 3)

Vearly
Fid mu
1 0.2
2 0
3 1

Vbusy
Aid mu
CDG 0.5
JFK 1
TLS 0
YUL 0.1
BEY 0

Vlarge
Aid mu
CDG 0.3
JFK 0.6
TLS 0
YUL 1
BEY 0.2

{Ai1 , . . . , Airi
} the set of its attributes, and key(Ri) ⊆

att(Ri) the subset of attributes constituting its primary key.
We denote by IR the set of tuples of R. For a tuple t ∈ R,
t[A] where A ⊆ att(R), is t limited to its values on A.

A fuzzy predicate Pk is represented by a triple (Ri, Aj , µk)
where Ri is the relation concerned by the predicate, Aj ∈
att(Ri) is the attribute of Ri to which the predicate applies,
and µk is the membership function associated with Pk. In
the following, we denote these components respectively by
Pk.R, Pk.A, and Pk.µ. Let F = {P1, . . . , Pm} be the
set of fuzzy terms defined by the current user. We denote
by F(Ri) = {(Ri, A, µ) ∈ F} the set of fuzzy terms
applying to an attribute from relation Ri. We have of course
∀i ∈ [1..n], F(Ri) ⊆ F .

The database DBpers obtained when converting DB into a
model involving materialized degrees is defined by:

DBpers = (R1, . . . , Rn, VP1
, . . . , VPm

)

where {P1, . . . , Pm} = F and each view VPi contains the
satisfaction degrees related to the fuzzy term Pi. Each view
VPi

is built as follows:
• key(VPi

) = key(R) where R is the table to which Pi

applies;
• att(VPi

) = key(R) ∪ {mu}.
Hence, the schema of VPi

is the set key(R) ∪ mu and its
extension is:

IVPi
= {〈t[key(R)], Pi.µ(t[Pi.A])〉 | t ∈ R}.

Example 1. Let us consider the database introduced above and
the fuzzy terms early, large and busy (cf. Figure 1) associated
respectively with the attributes Flights.depTime, Airports.area,
and Airports.attendance. We get:

DBpers = (Flights, Airports, Vearly, Vbusy, Vlarge).

The three views are represented in Table II.

B. Query Processing Strategy

We now deal with fuzzy query processing in the context of a
database built according to the principles suggested above. The
fuzzy query language we consider is SQLf [5], [14] limited to
single block projection-selection-join queries. More precisely,
the fuzzy queries considered are of the form:

select [α;] A from R where C

where α is a threshold corresponding to the minimal satisfac-
tion degree authorized by the user (by default, α = 0+), A is
a set of attributes, R is a set of joined relations, and C is a
fuzzy condition that may take one of the following forms:
• A1 θA2, where A1 and A2 are attributes, and θ is a fuzzy

comparison operator;
• A θ val, where A is an attribute, val ∈ dom(A), and θ

is a fuzzy comparison operator;
• A is P , where A is an attribute and P is a fuzzy predicate;
• agg(C1, . . . , Cp) where every Ci is a fuzzy condition

and agg is a fuzzy connective.
Let QDB be a query of the form defined above, addressed to
the database DB. The idea is to evaluate QDB by means of a
query deriv(QDB, α), derived from QDB and sent to DBpers.
In the following, we use two example queries denoted by Q1

and Q2 (cf. listings 1 and 2). Query Q1 is a simple selection-
projection query while Q2 also includes a join. In Q1, α is
not specified, thus its value is 0+, whereas in Q2, α = 0.5 is
specified.
1 SELECT Fid, depDate, depTime, arrTime
2 FROM Flights WHERE depTime IS early

Listing 1. Query Q1

Query Q1 returns the flights whose departure time is con-
sidered “early” by the user, according to his/her definition of
the fuzzy term early.
1 SELECT 0.5; Fid, depDate, depTime, arrTime, name, city
2 FROM Flights JOIN Airports
3 ON (Flights.depA=Airports.name)
4 WHERE depTime IS early AND area IS large

Listing 2. Query Q2

Query Q2 returns the flights whose departure time is con-
sidered “early” and that leave from an airport whose area
is considered “large” by the user, with a global satisfaction
degree at least equal to 0.5.

The query deriv(QDB , DBpers) has the following form:

select [α;] A, mu from compl(R) where deriv(C, α)

where mu is the expression used to compute the final degree
attached to an answer and compl(R) is defined as follows:

compl(R) = {R ./key(R) Γ |R ∈ R ∧
Γ ∈ {VPi

| Pi ∈ F(Q) ∩ F(R)}
For instance, query Q1 is rewritten into:
1 SELECT Fid, depDate, depTime, arrTime, V_early.mu
2 FROM Flights NATURAL JOIN V_early
3 WHERE V_early.mu > 0
4 ORDER BY V_early.mu DESC

Listing 3. Rewriting of query Q1 (FMV approach)

As to query Q2, it is rewritten into:
1 SELECT Fid, depDate, depTime, arrTime, Aid, city,
2 least(V_early.mu, V_large.mu) AS degree
3 FROM Flights JOIN Airports
4 ON (Flights.depA = Airports.Aid)
5 NATURAL JOIN V_early NATURAL JOIN V_large
6 WHERE V_early.mu > 0.5 AND V_large.mu > 0.5
7 ORDER BY degree DESC

Listing 4. Rewriting of query Q2 (FMV approach)

IV. AN APPROACH BASED ON ABSTRACT VIEWS

In this second approach, the views are not materialized
anymore, they just correspond to named queries memorized
in the DBMS. For instance, the view F early associated with
the fuzzy term early is defined as
1 create view V_early AS

2 SELECT Fid, depDate, depTime, arrTime,
3 depA, arrA, f_early(depTime) AS mu
4 FROM Flights
5 WHERE depTime between 0 AND 14.

Listing 5. Rewriting of query Q1 (FAV approach)

where f early is a user function that encodes the membership
function of the fuzzy predicate early. In this view definition,
the where clause is used to restrict the search to those tuples
that somewhat satisfies the predicate (i.e., that have a depTime
value in the support of the fuzzy term early).

The query deriv(QDB , DBpers) is now as follows:

select [α;] A, mu from R′ where deriv(C, α)

where mu is the expression used to compute the final degree
attached to an answer and R′ is defined as:

R′ = {Ri ∈ R | F(Q) ∩ F(Ri) = ∅} ∪
{VRi

|Ri ∈ R ∧ F(Q) ∩ F(Ri) 6= ∅}

For instance, query Q1 is rewritten into:
1 SELECT Fid, depDate, depTime, arrTime,
2 f_early(depTime) AS mu
3 FROM V_early
4 ORDER BY mu DESC

Listing 6. Rewriting of query Q1 (FAV approach)

Here, deriv(C, α) corresponds to true since the initial fuzzy
query does not involve any user-defined threshold (α is equal
to the default value 0+).

As to query Q2, it is rewritten into:
1 SELECT Fid, depDate, depTime, arrTime, Aid, city,
2 least(early(depTime), large(area)) AS mu
3 FROM V_early JOIN V_large
4 ON (V_early.depA = V_large.Aid)
5 WHERE (V_early.depTime between 2 AND 11)
6 AND (V_large.area > 1.5)
7 ORDER BY mu DESC

Listing 7. Rewriting of query Q2 (FAV approach)

Here, [2, 11] (resp. [1.5,+∞)) corresponds to the 0.5-cut of
the fuzzy term early (resp. large).

Remark 1. In order to avoid unnecessary joins between views
defined on the same base table, a solution consists in creating
the views at runtime. Then a fuzzy view can be associated
with a conjunction of fuzzy criteria on the same table.

V. EXPERIMENTAL COMPARISON

In this section, we discuss the results of some experimenta-
tions that we carried out, aimed to compare the two approaches
with each other on the one hand, and with a classical function-
based derivation strategy on the other hand. Two criteria will
be used to compare the solutions: i) the query processing time;
ii) the size of the personalized database DBpers.

In order to compare the approaches, we used excerpts of a
real-world database describing the domestic flights in the USA
between 1987 and 1989 2. This database was managed using
the RDBMS PostgreSQL 9.43.

In order to assess the performances of the different strate-
gies, we built a set of eight queries. The first six have different
levels of complexity — depending on the number of fuzzy
terms (from one to five) and relations (one or two) involved
— but they all use a threshold equal to 0+. The last two use a
threshold value equal to 0.5. As an example, we give the most
complex one hereafter, which returns the long distance flights
that leave early, arrive early, and whose departure airport is
located in the North-East of the US:
1 SELECT 0.5; id_flight
2 FROM Flights JOIN Airports
3 ON Flights.origin = Airports.iata
4 WHERE distance IS long
5 AND depTime IS early_dep AND arrTime IS early_arr
6 AND latitude IS north AND longitude IS east

Listing 8. Query 6: two relations, five fuzzy terms

In the function-based (mild coupling) approach described in
[15] and implemented in the PostgreSQLf prototype, this query
would be expressed as follows:
1 SELECT 0.5; id_flight, get_mu() AS degree
2 FROM Flights JOIN Airports
3 ON Flights.origin = Airports.iata
4 WHERE distance ∼= long && depTime ∼= early_dep
5 && arrTime ∼= early_arr
6 ORDER BY degree DESC

Listing 9. Query 6 in the function-based approach

Here, long, early dep and early arr are user-functions called
in the where clause, which prevents the DBMS from using
indexes, thus makes the query costly to execute (sequential
scans are performed).

Four DB sizes were considered, as well as three vocabu-
laries. Their characteristics are given in Table III. The results
obtained for a sample of four queries are represented in Table
IV. The main conclusions are the following:
• as expected, there is an important increase in the size of

the database when materialized views are used. The ratio
|DBpers|
|DB| varies between 4.25 (for the smallest vocabulary)

and 7.12 (for the largest vocabulary). Of course, no such
overhead exists with abstract views.

• creating/updating the materialized views takes a sig-
nificant amount of time (between 16 and 40 seconds)
whereas creating abstract views is immediate.

• in terms of query processing time, there is no clear
winner between these two approaches. The somewhat

2http://stat-computing.org/dataexpo/2009/
3We used a laptop with a 3.1 GHz Intel Core i7 and 16GB of RAM.

TABLE III
DATABASES (TOP) AND VOCABULARIES (BOTTOM) USED

Database Nb of tuples Size in bytes
flights 150k 150,000 20,013,056
flights 200k 200,000 27,254,784
flights 250k 250,000 34,111,488
flights 300k 300,000 40,853,504

Vocabulary Nb of atributes Nb of terms
voc flights sm 8 35
voc flights med 12 51
voc flights lar 17 73

disappointing behavior of the materialized-view-based
approach comes from the fact that it is necessary to
perform a join between a materialized view and the
corresponding base table for each fuzzy condition in the
query.

Table V shows the processing times obtained with a mild
coupling strategy (using the prototype PostgreSQLf described
in [15]). As can be seen, it is clearly outperformed by both
view-based approaches.

Finally, it appears that using materialized views is not an
interesting solution as they induce an important increase in
terms of storage space and do not yield significantly better
query processing times than abstract views. Let us not forget
either that materialized views are problematic from a DB
update perspective, since every modification of the data in
a base table makes it necessary to recalculate the associated
fuzzy views. On the other hand, the approach based on abstract
views appears to be a promising solution: it is more efficient
than a mild coupling approach such as PostgreSQLf [15] and
does not induce any extra cost in terms of data storage. It is
all the more interesting as it is completely portable: its use
does not require to modify the underlying DBMS, but only
implies to add a simple software layer on top of it.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have defined a new approach to the
processing of fuzzy relational queries (of the type projection-
selection-join), based on the used of fuzzy views. These views
can be materialized or not. In the first case, the idea is to store
in the database itself the degrees reflecting the satisfaction of
the user-defined fuzzy predicates by the tuples from the tables
concerned. In the second case, the views are kept abstract and
are used to efficiently access the tuples that belong to the α-cut
of the query result, by means of a derived Boolean selection
condition.

The experiments that we have performed on a real-world
database have shown the pros and cons of each approach. It
appears that materialized views induce an important increase
in storage space, which makes it rather unrealistic to use in
practice. On the other end, the solution based on abstract views
— which does not have this drawback — yields performances
significantly better than the state-of-the-art approach based
on a mild coupling strategy, and has the advantage of being
completely portable.

TABLE IV
EXPERIMENTAL RESULTS: MATERIALIZED VIEWS (TOP) AND ABSTRACT VIEWS (BOTTOM)

Vocabulary Database Size of DBpers Time to build DBpers Time Q1 Time Q2 Time Q3 Time Q4

voc flights sm flights 150k 87,212,032 16.3 s 128.5 ms 117.7 ms 68.6 ms 87.6 ms
flights 200k 117,342,208 19.5 s 136.6 ms 133.6 ms 108.5 ms 128.5 ms
flights 250k 144,941,056 24.3 s.2 199.4 ms 219.7 ms 149.0 ms 151.4 ms
flights 300k 177,094,656 30.7 s 234.5 ms 236.1 ms 174.6 ms 205.3 ms

voc flights med flights 150k 113909760 17.6 s 126.9 ms 124.4 ms 74.4 ms 93.8 ms
flights 200k 153,190,400 23.9 s 152.4 ms 128.9 ms 106.8 ms 137.5 ms
flights 250k 189,407,232 28.1 s 198.3 ms 212.1 ms 148.1 ms 155.0 ms
flights 300k 232,759,296 35.3 s 234.9 ms 236.3 ms 175.3 ms 211.0 ms

voc flights lar flights 150k 139,689,984 19.9 s 128.8 ms 123.0 ms 65.5 ms 85.9 ms
flights 200k 193,290,240 25.9s 193.8 ms 181.8 ms 108.4 ms 138.1 ms
flights 250k 240,271,360 32.9 s 237.4 ms 231.5 ms 144.3 ms 154.5 ms
flights 300k 291,176,448 40.4 s 260.7 ms 258.0 ms 171.3 ms 209.3 ms

Database Time Q1 Time Q2 Time Q3 Time Q4

flights 150k 118.0 ms 169.7 ms 138.5 ms 50.3 ms
flights 200k 199.0 ms 219.0 ms 191.3 ms 76.6 ms
flights 250k 238.7 ms 229.5 ms 185.8 ms 80.5 ms
flights 300k 257.5 ms 375.0 ms 276.7 ms 123.8 ms

TABLE V
EXPERIMENTAL RESULTS WITH A MILD COUPLING STRATEGY

Database Time Q1 Time Q2 Time Q3 Time Q4

flights 150k 569.6ms 512.9 ms 519.6 ms 536.5 ms
flights 200k 729.3 ms 705.2 ms 716.5 ms 723.3 ms
flights 250k 781.2 ms 913.5 ms 910.2 ms 912.3 ms
flights 300k 946.4 ms 1103.8 ms 1109.5 ms 1147.3 ms

A perspective is to study the way materialized views could
be exploited, along with some statistics maintained by com-
mercial DBMSs, in order to efficiently process fuzzy queries
involving a quantitative threshold (instead of a qualitative one
as considered here), in the spirit of top-k queries.

REFERENCES

[1] P. Bosc, B. Buckles, F. Petry, and O. Pivert. Fuzzy databases. In
J. Bezdek, D. Dubois, and H. Prade, editors, Fuzzy Sets in Approximate
Reasoning and Information Systems, The Handbook of Fuzzy Sets
Series, pages 403–468. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1999.

[2] P. Bosc and O. Pivert. Some algorithms for evaluating fuzzy relational
queries. In B. Bouchon-Meunier and R. Yager, editors, Lecture Notes in
Computer Science 521 (Proc. of IPMU’90), pages 431–442. Springer-
Verlag, 1991.

[3] P. Bosc and O. Pivert. On the evaluation of simple fuzzy relational
queries: principles and measures. In R. Lowen and M. Roubens,
editors, Fuzzy logic – State of the Art, pages 355–364. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1993.

[4] P. Bosc and O. Pivert. On the efficiency of the alpha-cut distribution
method to evaluate simple fuzzy relational queries. In B. Bouchon-
Meunier, R. Yager, and L. Zadeh, editors, Advances in Fuzzy Systems
— Applications and Theory Vol. 4: Fuzzy Logic and Soft Computing,
pages 251–260. World Scientific Publishing, Singapore, 1995.

[5] P. Bosc and O. Pivert. SQLf: a relational database language for fuzzy
querying. IEEE Trans. on Fuzzy Systems, 3:1–17, 1995.

[6] P. Bosc and O. Pivert. SQLf query functionality on top of a regular
relational database management system. In O. Pons, M. Vila, and
J. Kacprzyk, editors, Knowledge Management in Fuzzy Databases, pages
171–190. Physica-Verlag, Heidelberg, Germany, 2000.

[7] P. Buche and S. Loiseau. Using contextual fuzzy views to query
imprecise data. In T. J. M. Bench-Capon, G. Soda, and A. M. Tjoa,
editors, Database and Expert Systems Applications, 10th International
Conference, DEXA ’99, Florence, Italy, August 30 - September 3, 1999,
Proceedings, volume 1677 of Lecture Notes in Computer Science, pages
460–472. Springer, 1999.

[8] J. Galindo, J. M. Medina, O. Pons, and J. C. Cubero. A server for fuzzy
SQL queries. In Proc. of FQAS’98, pages 164–174, 1998.

[9] M. Goncalves and L. Tineo. SQLf3: An extension of SQLf with SQL
features. In Proc. of FUZZ-IEEE’01, pages 477–480, 2001.

[10] A. HadjAli and O. Pivert. Towards fuzzy query answering using fuzzy
views - A graded-subsumption-based approach. In A. An, S. Matwin,
Z. W. Ras, and D. Slezak, editors, Foundations of Intelligent Systems,
17th International Symposium, ISMIS 2008, Toronto, Canada, May 20-
23, 2008, Proceedings, volume 4994 of Lecture Notes in Computer
Science, pages 268–277. Springer, 2008.

[11] H. Jaudoin and O. Pivert. Rewriting fuzzy queries using imprecise views.
In J. Eder, M. Bieliková, and A. M. Tjoa, editors, Advances in Databases
and Information Systems - 15th International Conference, ADBIS 2011,
Vienna, Austria, September 20-23, 2011. Proceedings, volume 6909 of
Lecture Notes in Computer Science, pages 257–270. Springer, 2011.

[12] J. Kacprzyk and S. Zadrożny. FQUERY for ACCESS: fuzzy querying
for a Windows-based DBMS. In P. Bosc and J. Kacprzyk, editors,
Fuzziness in Database Management Systems, pages 415–433. Physica
Verlag, 1995.

[13] W. Labbadi and J. Akaichi. Answering conjunctive fuzzy query using
views: efficient algorithm to return the best k-tuples pervasive healthcare
application. IJMEI, 7(4):293–312, 2015.

[14] O. Pivert and P. Bosc. Fuzzy Preference Queries to Relational
Databases. Imperial College Press, London, UK, 2012.

[15] G. Smits, O. Pivert, and T. Girault. Towards reconciling expressivity,
efficiency and user-friendliness in database flexible querying. In Proc. of
the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’13),,
2013.

[16] V. Tahani. A conceptual framework for fuzzy query processing — a
step toward very intelligent database systems. Information Processing
and Management, 13(5):289–303, 1977.

[17] A. Urrutia, L. Tineo, and C. Gonzalez. FSQL and SQLf: Towards
a standard in fuzzy databases. In J. Galindo, editor, Handbook of
Research on Fuzzy Information Processing in Databases, pages 270–
298. Information Science Reference, Hershey, PA, USA, 2008.

