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In this supplemental material we provide derivations for the spec-
trum and spectrum of variance of the phasor sinewave in the bi-lobe
case as well as for the spectrum of variance in the two bilobes case.

1 FOURIER TRANSFORM OF A PERIODIZED NOISE
In order to simplify the analysis of the phasor sinewave, we will
restrict ourself to the study of periodic instances of this noise. Indeed,
any sparse-convolution noise can easily be restricted to periodic
function by sampling kernels in a periodic space. This makes the
instantaneous phase of the phasor noise periodic, and hence the
phasor noise itself periodic. Lets call T0 the period and define ω0 as
1
T0 . The spectral content of the non-periodic noise can be studied
by making T0 tend towards infinity. In one dimension, the periodic
noise can be written has :

P(x) =
+∞∑

k=−∞

PT (x + kT0) =

((
+∞∑

k=−∞

δkT0

)
~ PT

)
(x)

where ~ is the convolution product and defining PT as:

PT (x) = B(x)P(x)
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provided that B verifies the partition of unity property:
+∞∑

k=−∞

B(x + kT0) = 1.

With this reformulation, the Fourier transform Fx [] of the periodic
noise is :

Fx [P(x)] (ω) = ω0

+∞∑
k=−∞

Fx [B(x)P(x)](kω0) δkω0 (ω)

assuming that B(.) P(.) is an integrable function — implying its
Fourier transform is well defined. This assumption is verified if B is
also integrable. Thus a good candidate for B is an univariate cardinal
B-spline Bn , see e.g. https://en.wikipedia.org/wiki/B-spline.

The amplitude of the deltas in Fx [P(x)] is defined by the spectrum
of Fx [B(x)P(x)] which is derived in the next section. Note that the
choice of a specific function B does not impact the final result (see
section 4 for the proof when B-spline are used).

In higher dimensions, the summation variable k in previous equa-
tions is replaced by a vector.

For the sake of clarity, lets define FB [] has :

FB [f (x)] (ω) = Fx [B(x)f (x)] (ω)

2 DERIVATION FOR THE BILOBE PHASOR SINEWAVE
The paper introduces phasor noise and phasor sinewave using sine
waves and the phasor addition for the bilobe case. In this supple-
mental we rely on complex notations (see section 3.1 of the paper)
from the start to simplify (and homogenize) the derivations.

2.1 Complex notation
Lets define the bilobe complex Gabor noise as :

Gu(x) =
∑
j
aj (x)ei(x−xj )·u

= eixu
∑
j
aj (x)e−ixj ·u

= eixu
∑
j
aj (x)eiφ j

where ∥u∥ defines the main frequency of the noise, u/∥u∥ defines
the direction of anisotropy and φ j = −xj ·u. Contrary to the paper’s
notations, here we include the main frequency F in the direction of
anisotropy u for the sake of following derivations’ clarity.
The previous factorisation allows to reveal the phasor field pre-

sented in section 3.1.1 of the paper. It also provides an alternative
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way to derive formulas obtained from the phasor addition (equa-
tion (6) and (7) of the paper). Indeed, we have :∑

j
aj (x)eiφ j = I (x)eiφ(x)

where the phase field φ is defined as:

φ(x) = Arg (
∑
j
aj (x)eiφ j )

and the intensity field I is defined as:

I (x) = ∥
∑
j
aj (x)eiφ j ∥

The Phasor noise is defined by :

ϕ(x) = Arg (Gu(x)) = x · u + φ(x)

and the Phasor Sinewave P can be defined by the four following
equivalent definitions :

P(x) = sin(ϕ(x))

=
Im(Gu(x))
∥Gu(x)∥

= Im(eiϕ(x))

=
1
2i
(eiϕ(x) − e−iϕ(x))

Using the last formula, we obtain:

P(x) =
1
2i

(
ei(x·u+φ(x)) − e−i(x·u+φ(x))

)
=

1
2i
eix·ueiφ(x) −

1
2i
e−ix·ue−iφ(x)

2.2 Spectrum of P
In this section, we derive formulas of section 3.1.2 of the paper. We
now look at the Fourier transform of B(x)P(x) to verify that the
main frequency of the original noise are preserved. The spectrum
of B(x)P(x) is, by linearity of the Fourier transform :

FB [P(x)] (ω) =
1
2i
FB [e

ix·ueiφ(x)] (ω) −
1
2i
FB [e

−ix·ue−iφ(x)] (ω)

By applying the convolution theorem to the first term, we obtain :

FB [e
ix·ueiφ(x))] (ω) =

(
Fx [e

ix·u]~ FB [e
iφ(x)]

)
(ω)

=
(
δ

(
. −

u
2π

)
~ FB [e

iφ(x)]
)
(ω)

= FB [e
iφ(x)]

(
ω −

u
2π

)
By applying similar derivation to the second term, we obtain :

FB [P(x)] (ω) =
1
2i
FB [e

iφ(x)]
(
ω −

u
2π

)
−

1
2i
FB [e

−iφ(x)]
(
ω +

u
2π

)
Therefore the main frequencies are preserved as the two lobes

are centered on the same main frequencies as the original Gabor
noise.
Lets take a look at one of the two term of the Fourier transform

of the Phasor Sinewave, we have:

FB [e
iφ(x)] = FB [cos (φ(x))] + iFB [sin (φ(x))]

Fig. 1. Visualizing abs (sinφ((x))) and abs (cosφ((x))) as well as their
Fourier transforms. Both have rapidly decreasing frequency content. The
singularities are visible in the fields.

and

sin (φ(x)) =
∑
j aj (x) sinφ j

I (x)
and cos (φ(x)) =

∑
j aj (x) cosφ j

I (x)

noting I (x) = ∥
∑
j aj (x)eiφ j ∥ which is also equal to ∥Gu(x)∥. Pre-

vious equalities can be rewritten as :

sin (φ(x)) =
sign (S(x))√
1 + T−2(x)

and cos (φ(x)) =
sign (C(x))√
1 + T 2(x)

with

S(x) =
∑
j
aj (x) sinφ j

C(x) =
∑
j
aj (x) cosφ j

T(x) =

∑
j aj (x) sinφ j∑
j aj (x) cosφ j

Finally, we note that in the one dimensional case, we have :

FB [cos (φ(x))](ω) = Fx [
B(x) sign (C(x))√

1 + T 2(x)
](ω)

which is the Fourier transform of an integrable smooth function.
Indeed, the denominator 1 + T 2 is in the range [1,+∞[, and the dis-
continuities of sign (C(x)) correspond to the cases where B(x)/(1+
T 2(x)) tend toward 0. This is true for any degree of B-spline, there-
fore we can choose B such that the product is both of class C1 and
that f (1) is bounded, hence we have :

∃M such that FB [cos (φ(x))](ω) ≤ Mω−1

thanks to the relationship between smoothness and decay of the
Fourier transform. Therefore, when ω tends towards ±∞, the func-
tion FB [cos (φ(x))](ω) is rapidly decreasing.
In 2D and 3D, cos (φ(x)) and sin (φ(x)) are smooth everywhere

except in a few singular points — this is where the phasor field
exhibits singularities. There, only directional derivatives are defined.
However, we can verify numerically that the shape of the Fourier
transform remains a lobe, see Figure 1.
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2.3 Spectrum of variance of P
In this section, we derive formulas of section 3.1.3 of the paper.
We will now take a look at the spectrum of variance of the Phasor
Sinewave (i.e. the spectrum of P2) in order to show the absence of
contrast fluctuations (no central lobe).

We use the same approach as for the spectrum of the noise itself:

P2(x) =
+∞∑

k=−∞

B(x + kT0)P
2(x + kT0) =

((
+∞∑

k=−∞

δkT0

)
~ B P2

)
(x)

Lets first take a look at the development of the formula of P2 :

P2(x) = −
1
4

(
ei(x·u+φ(x) − e−i(x·u+φ(x)

)2
=

1
2
−
1
4
e2ix·ue2iφ(x) −

1
4
e−2ix·ue−2iφ(x)

Noting that the two non-constant terms are the same as for P
with exponential arguments varying twice as rapidly, we obtain :

FB [P
2(x)]((ω)) =

1
2
δ0(ω)

−
1
4
FB [e

2iφ(x)]
(
ω −

u
π

)
−
1
4
FB [e

−2iφ(x)]
(
ω +

u
π

)
Therefore we can observe the absence of a central lobe and the

presence of two lobes at twice the frequencies of the original noise.
Note that the central lobe is replaced by a Dirac corresponding to
the average value of the variance (which is non-zero).
Finally, we can note that the suppression of the main source of

low frequency in the spectrum of variance (eg the removal of the
local loss of contrast) comes from the fact that the real signal/noise
is defined as the substraction (or sum if we take the real part) of
two complex exponential which are conjugate of one another multi-
plied by a constant value. This sufficient condition opens alternative
directions to define the phase function ϕ.

3 TWO BILOBE PHASOR SINWAVE
In this section, we provide an alternative point of view on discussion
of section 3.2.1 of the paper. We will now study the Phasor sinwave
defined from the interactions between two complex bilobe Gabor
noises Guk and Gum . In this case the Phasor noise is defined as :

ϕ(x) = Arg (Gs (x))

with

Gs (x) = (Guk + Gum )(x)

The Phasor Sinwave is defined as :

P(x) = Im(eiϕ(x))

=
1
2i
(eiϕ(x) − e−iϕ(x))

=
Im(Gs (x))
|Gs (x)|

uk

um

un

uo

2uk

2um

2un

2uo

Fig. 2. From left to right, spectrum and spectrum of variance of a phasor
sinewave defined by the summation of two complex Gabor noise. Frequency
vectors uk and um of the two Gabor noises are displayed in orange. Alter-
native basis (un , uo ) is displayed in teal.

3.1 Alternative basis
We will first express Gs in the basis defined by :

un =
1
2
(um + uk )

and

uo =
1
2
(um − uk )

and shown in Figure 2. If we substract un respectively to uk and
um we obtain:

uk − un =
1
2
(uk − um ) = uo

and

um − un =
1
2
(um − uk ) = −uo

This property allows to perform the following factorisation :

Gs (x) =
∑
j
aj (x)ei(x−xj )·uk +

∑
l

al (x)e
i(x−xl )·um

= eix·un
©­«
∑
j
aj (x)ei(−x·uo−xj ·uk ) +

∑
l

al (x)e
i(x·uo−xl ·um )ª®¬

= eix·un
©­«
∑
j
aj (x)ei(−x·uo−φ̃ j ) +

∑
l

al (x)e
i(x·uo−φ̃l )ª®¬

=: eix·unΣo (x)

where a unit complex number with linearly varying argument in the
direction un is modulated by a complex noise Σo of main direction
uo . Note that contrary to the bilobe case, we still have complex
exponential with argument function of x that cannot be complately
factorised (e−ix·uo and eix·uo ).
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3.2 Spectrum of variance
First, lets verify the integrability of the periodized noise P2 over a
period. We have :

P2(x) =
1

Gs (x)Gs (x)

(
1
2i
(Gs (x) − Gs (x))

)2
=

1
4

1
Gs (x)Gs (x)

(
G2
s (x) − 2Gs (x)Gs (x) + Gs

2
(x)

)
=

1
2
−
1
4
G2
s (x) + Gs

2
(x)

Gs (x)Gs (x)

=
1
2
−
1
4

(
Gs (x)

Gs (x)
+

Gs (x)
Gs (x)

)
=

1
2

(
1 − Re(

Gs (x)

Gs (x)
)

)
and we have

Re(
Gs

Gs
) =

Re2(Gs ) − Im2(Gs )

Re2(Gs ) + Im2(Gs )

=
1

1 + Im2(Gs )

Re2(Gs )

−
1

1 + Re2(Gs )
Im2(Gs )

which is bounded as the denominators are contained in the interval
[1,+∞], the Fourier transformed of the periodized version of the
squared phasor noise is well defined since B P2 is integrable.

From previous derivations, we also have :

P2(x) =
1
2
−
1
4
G2
s (x) + Gs

2
(x)

Gs (x)Gs (x)

and

Gs (x)Gs (x) = Re2(Σo (x)) + Im2(Σo (x)) = |Σo (x)|2

G2
s (x) = ei2x·un (Σo (x))2

Gs
2
(x) = e−i2x·un (Σo (x))2

then

P2(x) =
1
2
−
1
4
ei2x·un (Σo (x))2 + e−i2x·un (Σo (x))2

|Σo (x)|2

=
1
2
−
1
4
(ei2x·un

(Σo (x))2

|Σo (x)|2
+ e−i2x·un

(Σo (x))2

|Σo (x)|2
)

Applying the Convolution theorem to FB [P
2(x)], we obtain :

FB [P
2(x)] (ω) =

1
2
δ0 (ω)

+
1
4
δ un

π
~ FB [

(Σo (x))2

|Σo (x)|2
] (ω)

+
1
4
δ− un

π
~ FB [

(Σo (x))2

|Σo (x)|2
] (ω)

or equivalently :

FB [P
2(x)] (ω) =

1
2
δ0 (ω)

+
1
4
FB [

(Σo (x))2

|Σo (x)|2
]

(
ω +

u
π

)
+
1
4
FB [

(Σo (x))2

|Σo (x)|2
]

(
ω −

u
π

)
First, (Σo (x))2

|Σo (x) |2
is a noise with anistropy along the direction uo ,

hence its Fourier transform is stretched in this direction. Secondly,
formula for FB [P2(x)] (ω) shows that two such shapes are translated
by 1

π un in the frequency domain, hence if the line passing by 1
π un

with direction uo does not come too close (relatively to the bandwith
of the Gabor noises) to the origin of the frequency domain then no
low frequency are present in the spectrum of variance (see Figure 2).

4 INVARIANCE TO THE DEGREE OF B-SPLINE USED IN
THE ANALYSIS

We now demonstrate that the choice of the B-spline degree used
for windowing does not have any impact on our Fourier transform.
The univariate cardinal B-spline are defined by:

B0 : x → rect(
x

T0
)

Bn =
1
T0

B0 ~ Bn−1

with T0 the period of the noise (see section 1). Their Fourier trans-
forms are:

Fx [B0](ω) = T0Fx [rect(x)](T0ω)
= T0 sinc(T0ω)

and
Fx [Bn ](ω) = T0 sincn (T0ω).

Lets define an arbitrary periodic function by its Fourier serie:

f (x) =
+∞∑

k=−∞

cke
2iπkxT0

Then, we have :

Fx [Bn (x)f (x)](ω) =

(
Fx [Bn (x)]~ Fx [

+∞∑
k=−∞

cke
2iπkxT0 ]

)
(ω)

=

(
Fx [Bn (x)]~

+∞∑
k=−∞

ckδ (ω − kω0)

)
(ω)

=

+∞∑
k=−∞

ckFx [Bn (x)](ω − kω0)

=

+∞∑
k=−∞

ckT0 sincn (T0(ω − kω0))

hence, we obtain the coefficient of the Fourier transform of f :

Fx [B
n (x)f (x)](kω0) = ck = Fx [f (x)](kω0)
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