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This is an addendum to the paper of the same title published in
ACM Transactions on Graphics, special issue for SIGGRAPH 2019,
by the same authors. The text below assumes that the reader has
the main article at hand.
Recall that when using different polygonal distances at each site,

the Voronoi diagram of a cell VS(p) might have several connected
components, only one of which,Con(p) contains the sitep. We seek
a diagramV ′

S , as close as possible toVS , in whichCon(p) is the only
component of V ′

S(p), that is, Con(p) = V ′
S(p).

In the rest of this section, a component is always a connected
component of a cell of some site.
An intuitive idea to remove a connected component V of VS(p)

is to identify the set Γ′ of the sites of the components immediately
surrounding V and then replacing V by the Voronoi diagram of Γ′

restricted to V . V then acts as a “cutout” letting us see a different
Voronoi diagram through.

In the context of the discrete version of the algorithm (Algo-
rithm 1 in the main text), we prove (Proposition 5) that this is the
correct intuition for reasoning about the growth-model Voronoi di-
agram.
Given a site p ∈ Γ,
• VS(p) is its real Voronoi cell, a subset of the plane R2,
• V

д
S(p) is its Growth-model Voronoi cell,

• DVS(p) is its discrete Voronoi cell, a subset of pixels,
• DV

д
S(p) is its discrete Growth-model Voronoi cell,

• DCon(p) is the connected component of DVS(p) that con-
tains p (note that DCon(p) may be empty).

Proposition 1. The discrete Growth-model Voronoi cell DV д
S(p)

computed by the algorithm is either empty or 4-connected.

Proof. Follows from the algorithm.The cell can be empty if sev-
eral sites live in the same pixel, in which case the one closest to the
pixel center takes the cake. It can also be empty if another site, far
away in the grid, uses a particularly aggressive distance. □

Proposition 2. DCon(p) ⊂ DV
д
S(p).

Proof. Let c be a pixel in DCon(p). So there is a 4-connected
path from p to c . And for each pixel along this path, p is the closest
site, because DCon(p) ⊂ DVS(p). So all the pixels along this path
are assigned to DV д

S(p) by the algorithm. □

For the purpose of building intuition, we prove the following

Proposition 3. If a connected component V of DVS(p), not con-
taining p, is completely surrounded by DCon(q) (p , q) then V dis-
appears in the growth model and makes way for DV д

S(q). In our no-
tation: V ⊂ DV

д
S(q).

Proof. The external boundary ∂V ofV is in DCon(q) ⊂ DV
д
S(q)

(by Proposition 2). ∂V shields its interior from the other sites, which
can not cross ∂V in the growth model, so that DV д

S(q) is free to fill
the area. □

Now, we describe an algorithm which starts with the discrete
Voronoi diagram and attempts to patch it until all Voronoi cells are
connected. What we obtain at each iteration is a mosaic of pieces
of Voronoi diagrams, so it is not a Voronoi diagram, so we call each
such mosaic a “labeling.” A labeling ℓ assigns a site to each pixel:
∀x ∈ Z2, ℓ(x) ∈ Γ. The first labeling, ℓ0, is the discrete Voronoi
diagram: ℓ0(p) = DVS(p), DCon0(p) = DCon(p).

In the labeling ℓi , i ≥ 0, the sea is the union of all the components
that contain their respective site:

seai =
∪
p∈Γ

DConi (p).

An island is a connected component of the complement of the
sea. An island may contain several components assigned to differ-
ent sites, and/or be unbounded.

The neighborhood of a pixel x is the set N (x) of 4 pixels immedi-
ately adjacent to x : up, down, left and right.

The external boundary ∂I of an island I is

∂I =

(∪
x ∈I

N (x)

)
\ I .

Proposition 4. The external boundary of an island I contains only
pixels in the sea. For each pixel x in ∂I assigned to site p, there exists
a 4-connected path from x to p along which all pixels are labeled p
(by definition of the sea).

So, the proposed algorithm iteratively kills all the islands (Defini-
tion 1), in any order. Let j ≥ 0 be the index of the first labeling with-
out island (assuming that such a j exists). We claim that this j-th
labeling is equal to the Growth-model Voronoi diagram: ℓj = DV

д
S ,

thereby establishing an intuitive link between DVS and DV д
S .

The proof is by recurrence. Proposition 2 is the initialization of
the recurrence. It says that

∀p ∈ Γ,DCon0(p) ⊂ DV
д
S(p).
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When we kill an island, the sea components surrounding the is-
land grow a little bit and we show that Proposition 2 is still satis-
fied. When we kill an island, smaller islands may remain, but we
show that eventually, all islands disappear except in some specific
circumstances.
Definition 1. (Killing an island) Let I be an island in labeling ℓi .

We kill I in order to obtain the next labeling ℓi+1. To do so, we gather
the set of conqueror sites K = {ℓi (x) | x ∈ ∂I }. We then replace the
labeling of the pixels in I by the labeling given by the discrete Voronoi
diagram of the conquerors:DVK . Note thatDConi (p) ⊂ DConi+1(p).

Proposition 5 (recurrence). For all labelings ℓi , i ≥ 0, for all
sites p, DConi (p) ⊂ DV

д
S(p). This implies that ℓi = DV

д
S when both

are restricted to seai .

Proof. By recurrence over i . This is true for i = 0. Assume this
is true for a given i ≥ 0. Let I be the island killed in order to obtain
ℓi+1. Let K be the conquerors. Let p be a site in Γ.

In I , DV д
S assigns only labels from K . Indeed if another label q <

K appears in I , that is,DV д
S(q)∩I , ∅, then this pixel labeledq is not

path-connected to the site q, because of the recurrence hypothesis
that DConi (p) ⊂ DV

д
S(p): the external boundary ∂I of I has ℓi -

labels in K (ℓi (∂I) ⊂ K ), and DV
д
S coincides with ℓi over seai =∪

p∈Γ DConi (p). This contradicts Proposition 1.
Let x be a pixel inDConi+1(p). If x ∈ DConi (p) then x ∈ DV

д
S(p)

and we are done. Otherwise, x is in I and there is a 4-connected

path P inside I ∩ DConi+1(p), from x to a pixel on the external
boundary ∂I of I , and from there, a path to p fully labeled with p
in both DConi (p) (Proposition 4) and DV

д
S(p) (by our recurrence

hypothesis).
For each pixel along the path P, p is the closest site (among the

site in K ) and the growth-model algorithm propagates only labels
from K inside I . So p is guaranteed to win all the pixels along P.
In other words, all the pixels along path P are assigned to DV д

S(p)
by the growth-model algorithm. We conclude that DConi+1(p) ⊂
DV

д
S(p) and therefore seai+1 ⊂ DV

д
S . □

From Proposition 5 we can conclude that if we can kill all the
islands, then the resulting labeling is equal to DV д

S . Therefore, this
island-killing algorithm let us intuitively seewhat the growth-model
algorithm is doing. It nicely corresponds to creating amosaic of reg-
ular Voronoi diagrams so that all Voronoi cells become connected.

It might happen, however, that the process of killing an island
results in exactly the same island.This may happen when the labels
inside the island are the same as the set of conquerors. In this case,
the algorithm described here does not terminate and strays away
frommodeling the behavior of the Growth-model Voronoi diagram.
A finer grained island killing may recover the correct behavior, but
the island-killing algorithm as presented above is sufficient to give
us a good understanding of how DV

д
S can be obtained from DVS

without having to follow the very unintuitive front-propagation of
Algorithm 1.


