
HAL Id: hal-02120117
https://hal.archives-ouvertes.fr/hal-02120117

Submitted on 17 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Look and Feel What and How Recurrent Self-Organizing
Maps Learn

Jérémy Fix, Hervé Frezza-Buet

To cite this version:
Jérémy Fix, Hervé Frezza-Buet. Look and Feel What and How Recurrent Self-Organizing Maps Learn.
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization,
WSOM 19, 976, pp.3-12, 2020, Advances in Intelligent Systems and Computing, 978-3-030-19641-7.
�10.1007/978-3-030-19642-4_1�. �hal-02120117�

https://hal.archives-ouvertes.fr/hal-02120117
https://hal.archives-ouvertes.fr

Look and feel what and how
recurrent self-organizing maps learn

Jérémy Fix and Hervé Frezza-Buet

LORIA, CNRS, CentraleSupélec, Université Paris-Saclay, F-57000 Metz, France,
{jeremy.fix, herve.frezza-buet}@centralesupelec.fr

Abstract. This paper introduces representations and measurements for
revealing the inner self-organization that occurs in a 1D recurrent self-
organizing map. Experiments show the incredible richness and robustness
of an extremely simple architecture when it extracts hidden states of the
HMM that feeds it with ambiguous and noisy inputs.

Keywords: recurrent self-organizing map, sequence processing, hidden
markov models

1 Introduction

Self-organizing maps (SOMs) or Kohonen maps, introduced in [9], is a particular
topographically organized vector quantization algorithm. It computes a mapping
from a high dimensional space to a usually one or two dimensional regular grid
with the specificity that close positions in the regular grid are associated with
close positions in the original high dimensional space. We have a pretty good
understanding of what a SOM is doing. Even if there is no energy function asso-
ciated with the Kohonen learning rule which could formally state what Kohonen
maps do actually capture (some authors actually suggested some alternative
formulations derived from an energy function, see for example [6]), we can still
pretty much see Kohonen maps as a K-means with a topology i.e. capturing the
distribution of input samples in a topographically organized fashion. As soon
as we experiment with, for example, 2D-Kohonen maps with two dimensional
input samples, we quickly face the nice unfolding of the map sometimes trapped
in some kind of local minima where there remains some twist in the map. While
our understanding of Kohonen SOMs is pretty clear, the things become more
complicated when we turn to recurrent SOMs.

Recurrent SOMs are a natural extension of SOMs when dealing with serial
inputs in order to “find structure in time” (J. Elman). This extension follows
the same principle introduced for supervised multi-layer perceptrons by [7,3] of
feeding back a context computed from the previous time step. These recurrent
SOMs are built by extending the prototype vector with an extra component
which encapsulates some information about the past. There are indeed various
proposals about the information memorized from the past, e.g. keeping only the
location of the previous best matching unit [4] or the matching over the whole

2 J. Fix and H. Frezza-Buet

map[11]. An overview of recurrent SOMs is provided in [5]. Cellular and biolog-
ically inspired architectures have been proposed as well [8]. When the question
of understanding how recurrent SOMs work comes to the front, there are some
theoretical results that bring some answers. However, as any theoretical study,
they are necessarily limited in the questions they can address. For example, [10]
studied the behavior of recurrent SOMs by analyzing its dynamics in the absence
of inputs. As for usual SOMs for which mathematical investigations do not cover
the whole field yet [2], these theoretical results bring only a partial answer and
there is still room for experimental investigation. Despite numerous works, how
the recurrent SOMs deal with serial inputs and what they actually learn is not
obvious: “The internal model representation of structures is unclear” [5]. We
indeed lack the clear representations that we possess for understanding SOMs.

In order to tackle this issue, we focus in this paper on the simplest recur-
rent SOM where the temporal context is only the position of the best matching
unit (BMU) within the map at the previous iteration (which bears resemblance
to the SOM-SD of [4]). This simplicity comes with the ability to design spe-
cific visualizations to investigate the behavior of the map. As we shall see in
the experiments, despite this simplicity, there is still an interesting richness of
dynamics. In particular, we will investigate and visualize the behavior of this
simple recurrent SOM when inputs are provided sequentially by different hid-
den Markov models. These will illustrate the behavior of the recurrent SOM
in the presence of ambiguous observations, long-term dependencies, changing
dynamics, noise in the observations and noise in the transitions.

2 Methods

2.1 Algorithm

Let us consider a stream of inputs ξt ∈ X available at each successive time step
t. Here, let us use X = [0, 1]. Let us consider a topological set M where unit
(sometimes called neuron) positions lie. We use a 1D map in this paper, thus
M = [0, 1] is considered with a topology induced by the Euclidean distance. The
map is made of N units, each unit is denoted by an index i ∈ I ⊂ M. Indexes
are equally spread over M, i.e. I = {0, 1/(N − 1), 2/(N − 1) · · · , 1}.

For the sake of introducing notations for our recurrent algorithm, let us start
by rephrasing the self-organizing map algorithm (SOM). Each unit i is equipped
with an input weight wi ∈ X also referred to as a prototype. When ξt is presented
to the map, all the units compute a matching value µi = µ (wi − ξt), where
µ (d) = max (1− |d|/ρµ, 0) is a linear decreasing function that reaches 0 for the
distance value ρµ

1. The best matching unit (BMU) i? can be computed here
from µi as i? = argmaxi µi. It could have been computed directly as the unit
for which |wi − ξt| is minimal, as usual SOM formulation do, but the current
formulation involving µi allows for the forthcoming extension to recurrent SOM.
Once i? is determined consecutively to the submission of ξt, the prototypes in

1 A more classical Gaussian function could have be used as well.

Look and feel what and how recurrent self organizing maps learn 3

the neighborhood of i? have to be updated. The strength of that update for any
wi is αh (i− i?), with α ∈ [0, 1] and h (d) = max (1− |d|/ρh, 0). Let us stress
here that the width ρh of the learning kernel is kept constant, as opposed to usual
SOM and recursive SOM implementations where it continuously decreases.

The recurrence is added to our formulation of SOM by using context weights
ci ∈ M. They are trained in the same way as wi, except that they are fed with
it−1? instead of ξt. A context matching distribution µ′i = µ

(
ci − it−1?

)
is computed

as we did for µi. The BMU needs to be determined from both matchings. To

do so, each unit computes a global matching µ′′i =
µi+µ

′
i

2 , such as the BMU

is determined as i? = argmaxi µ
′′
i. The overline of µ′′ indicates a low pass

spatial filtering with a gaussian kernel of standard deviation σk. Moreover, the
selection of the BMU is done by randomly sampling in the set of possible BMUs.
These two elements improve the algorithm in our settings where observations are
drawn from a discrete set. The whole process studied in this paper can then be
formalized into algorithm 1. For all the experiments, we used N = 500 units, a
neighbour kernel width ρh = 0.05, a learning rate α = 0.1, a matching sensitivity
ρµ = 0.4 and a Gaussian convolution kernel standard deviation σk = 0.0125.

Algorithm 1 Architecture update at time t.

1: Get ξt, compute ∀i ∈ I, µi = µ
(
wi − ξt

)
, µ′i = µ

(
ci − it−1

?

)
2: ∀i ∈ I, µ′′i = (µi + µ′i)/2
3: it? ∈ argmaxi µ

′′
i // µ′′ = µ′′ ∗ k, i? is taken randomly in argmax.

4: ∀i ∈ I
{
wt

i = wt−1
i +αh (i− i?) .

(
wt−1

i − ξt
)

cti = ct−1
i +αh (i− i?) .

(
ct−1
i − it−1

?

)

In our experiments, the inputs in X that are provided at each time step
are generated from a Hidden Markov Model (HMM). The HMM has a finite
set S = {s0, s1, · · ·} of states. Each state is an integer (i.e. S ⊂ N). At each
time step, a state transition is performed according to a transition matrix. In
the current state st, the observation is sampled from the conditional probability
P (ξ | st), defined by the observation matrix of the HMM. Different states of the
HMM may provide a similar observation. In this case, the recursive architecture
is expected to make the difference between such states in spite of the observation
ambiguity. In other words, the current BMU it? value is expected to represent the
actual st even if several other states could have provided the current input ξt.

2.2 Representations

Algorithm 1 can be executed with any dimension for M without loss of gener-
ality. Nevertheless, we use 1D maps (M = [0, 1]) for the sake of visualization.
Weights wi are in X = [0, 1] as well. They can be represented as a gray scaled
value, from black (0) to white (1). In the bottom left part of figure 1, the back-
ground of the chart is made of wti , with t in abscissa and i in ordinate. On this

4 J. Fix and H. Frezza-Buet

chart, red curves are also plotted. This is done when the HMM is determin-
istic (and thus cycling through its states, visiting s0, s1, · · · , sp−1, s0, s1, · · ·). If
the state sequence that is repeated throughout the experiment has a length p
(p = 10 in experiment of figure 1), p red curves are plotted on the chart. For
0 ≤ k < p, the kth red curve links the points {(t, it?) | t mod p = k}. The curves
show the evolution of the BMU position corresponding to each of the p states
throughout learning. From left to right in that chart in figure 1, some red curves
are initially overlaid before getting progressively distant. Such red curves splits
show a bifurcation since the map allocates a new place onM for representing a
newly detected HMM state. This allocation has a topography since the evolution
is a split and then a progressive spatial differentiation of the state positions.

Let us take another benefit from using 1D maps and introduce an original
representation of both w and c weights. This representation is referred to as a
protograph in this paper. It consists of a circular chart (see three of them on top
left in figure 1). The gray almost-closed circle representsM = [0, 1]. At time step
t, one can plot on the circle the two weights related to it?. First weight, related to
the input, is w (it?), which is a value in X to which a gray level is associated. This
is plotted as a gray dot with the corresponding gray value, placed on the circle
at position it?. The second weight to be represented for it? is c (it?), related to the
recurrent context, which is a position in M and thus a position on the circle.
c (it?) is represented with an arrow, starting from position c (it?) on the circle and
pointing at it? on the circle, where the dot representing w (it?) is actually located.
This makes a dot-arrow pair for it?. The full protograph at time t plots the dot-
arrow pairs (w (i?), c (i?)) for the 50 last steps. The third protograph in figure 1
seems to contain only 10 dot-arrow pairs since many of the 50 ones are identical
to others. This last protograph corresponds to an organized map, it reveals the
number of states visited by the HMM (number of dots), where they are encoded
in the map (dot positions), which observation each state provides (dot colors),
and the state sequence driven by the HMM transitions (follow the arrows from
one state to another). Making movies from the succession of such protographs
unveils the dynamics of the organization of spatio-temporal representations in
the map. The splits and separation mentioned for the red curves is then visible
as a split of one dot into two dots that slide afterwards away one from the other.
Movies of the experiments are available online2.

2.3 Evaluation

The representations presented so far enables to unveil the inner dynamics of
a single run. Nevertheless, the ability of the architecture to encode the hidden
states of the HMM providing the inputs needs to be measured quantitatively
from several runs (a thousand in our experiments). At time step t, let us store the
dataset Dt =

{(
it−99? , st−99

)
, · · · ,

(
it−1? , st−1

)
, (it?, s

t)
}

that is a 100-sized sliding
window containing the last observed BMU position / HMM state pairs. If the
map encodes the HMM states with a dedicated BMU position, each observed

2 http://www.metz.supelec.fr/~fix_jer/recsom1D

http://www.metz.supelec.fr/~fix_jer/recsom1D

Look and feel what and how recurrent self organizing maps learn 5

BMU position must be paired with a single state. In this case, Dt can be viewed
as a set of samples of a function from M to S. To check this property for the
map at time t, a supervised learning process is performed from Dt, that is viewed
here as an input/output pairs container. As S ⊂ N, this is a multi-class learning
problem. A basic bi-class decision stump is used in this paper (i.e. a threshold
on map position values makes the decision), adapted to the multi-class problem
thanks to a one-versus-one scheme. Let us denote by χt the classification error
rate obtained on Dt (i.e. the empirical risk). The value χt is null when one can
recover the state of the HMM from the position of the BMUs collected during the
100 steps. It is higher when a small contiguous region of the map is associated
with several HMM states.

In our experiment, χt is computed every 100 steps in a run. As previously
said, 1000 runs are performed in order to compute statistics about the evolution
of χt as the map gets organized. At each time step t, only the best 90% of the
1000 χt are kept. The evolution curve, as reported in the right of figure 1, plots
the upper and lower bounds of these 900 values, as well as their average. There
are indeed less than 10% of the runs for which the map does not properly self-
organize. A deeper investigation of this phenomenon is required, but it is out
of the scope of the present paper, which is focused on the dynamic of the self-
organization when it occurs. This is why the corresponding runs are removed
from the performance computation.

3 Results

As mentioned in section 2.1, the serial inputs ξt are observations provided by
the successive states of a HMM. Let us use a comprehensive notation for the
HMMs used in our experiments. Observations are in X = [0, 1] as previously
stated and 6 specific input values are represented by a letter (A = 0, B = 0.2, C =
0.4, D = 0.6, E = 0.8, F = 1). The HMM denoted by AABFCFE is then a 7-state
HMM for which s0 provides observation A, s1 provides A as well, s2 provides B, ...
s6 provides E. The states are visited from s0 to s6 periodically. In this particular
HMM, (s0, s1), as well as (s3, s5) are ambiguous since they provide the same
observation (A and F) as an input to the recurrent SOM. When a state provides
an observation uniformly sampled in [0, 1], it is denoted by ∗. The notation
ABCD

σ
EF means that values for both s2 and s3 are altered by an additive normal

noise with standard deviation σ. Last, the notation ABC
∣∣p
qDEF means that the

HMM is made of two periodical HMMs ABC and DEF, with random transitions
from any of the state of ABC to any of the state of DEF with a probability p.
Random transitions from DEF to ABC occurs similarly with a probability q.

3.1 Ambiguous observations

In order to test the ability of the recurrent SOM to deal with ambiguous ob-
servations, we consider the HMM ABCEFEDCB, i.e. a HMM with 10 states and 6
observations. There are 8 states which provide an observation that is ambiguous

6 J. Fix and H. Frezza-Buet

160 170 180 190 200
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

25 50 75 100 125 150 175
0.0

0.2

0.4

0.6

0.8

1.0

460 470 480 490 500
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

4950 4960 4970 4980 4990
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

4950 4960 4970 4980 4990
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000

step

0.0

0.1

0.2

0.3

0.4

0.5
decision stump risk

Fig. 1. Observations from ABCDEFEDCB. The protographs are recorded at t =
200, 500, 5000.

(the state cannot be identified given only the current observation). The recurrent
SOM receives observations during 5000 time steps, i.e. 500 presentations of the
full sequence. A single run is depicted on the left of figure 1. The SOM initially
captures the individual observations, irrespective of their context (at t = 200,
approximately 6 units are the BMUs), and then, ambiguous observation begin
electing their own BMUs and the recurrent prototypes begin to reflect the con-
text of the observations. This splitting of the winning positions ultimately leads
to one distinct BMU for each state of the HMM and, at t = 5000, the structure
of the HMM can be uncovered from the weights (w (i?) , c (i?)) as displayed in
the respective protograph. Red curves show how the 6 areas in the map insen-
sitive to the context split to build the expected appropriate 10 areas. Running
the same experiment for 1000 runs indicates that the ability of the algorithm to
identify the structure of the HMM is statistically significant (right of figure 1).
The observations produced by this HMM could be easily disambiguated, taking
into account the observation of the previous time step. In the next experiment,
we study longer term dependencies.

3.2 Long term dependencies

In the second experiment, the algorithm receives observations from the HMM
AAAAAAAF. This experiment seeks to test if the algorithm can capture long-term
dependencies. Indeed, this HMM produces exactly the same observation A for a
fixed number of steps before outputting F which seeds the ambiguity of A. The
experiment is run for 5000 steps, i.e. 625 repetitions of the full sequence. The
results of a single run are displayed on the left of figure 2. Initially, the SOM
captures the two observations A and F independently of the context (see the plot
of the prototypes on the top left of the figure). Then, we observe several units
specializing to the observation of A in a context dependent manner. The logic
of the propagation of the context can be appreciated from the split of the red
curves. The first state producing a A to be clearly identified is the one associated
with the unit with the smallest position (the node shown in back on the first

Look and feel what and how recurrent self organizing maps learn 7

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

965 970 975 980 985 990 995 1000
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

4960 4965 4970 4975 4980 4985 4990 4995
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

4960 4965 4970 4975 4980 4985 4990 4995
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000

step

0.0

0.1

0.2

0.3

0.4

0.5
decision stump risk

Fig. 2. Observations from AAAAAAAF. The protographs are recorded at t =
40, 1000, 5000.

protograph around position 0.3). This is the simplest to be identified because it
is the state just after the one outputting F. Then, the dependence on the context
propagates through all the previous steps. The c (i?) weights are continuous over
M, as for usual weights in SOMs. In the specific run of figure 2, when we consider
the black dots counterclockwise, the arrow origins c (i?) progress clockwise, i.e.
c (i?) is a monotonously decreasing function. Running this experiment on 1000
independent trials reveals that the algorithm is able to capture the structure of
this HMM (see figure 2, right).

3.3 Adapting to a changing dynamics

In this third experiment, the algorithm receives observations from the HMM
ABCDEFEDCB for the 10000 first steps and then from the HMM ABCBAFEDEF for
the last 10000 steps. The prototypes obtained at t = 10000 and t = 20000 as well
as the evolution of the observation weights and winner locations are displayed
on the left of figure 3 for a single run. The algorithm successfully recovers the
structure of the two HMM. Analyzing the red curves at the time the second
HMM is presented is illuminating. One can note there is a reuse of the previously
learned prototypes and some adaptation of the prototypes. Indeed, there was a
single BMU responsive for a F (white node on the first protograph) for the first
sequence which splits and two BMUs are now responsive for a F for the second
sequence, which makes sense given the second HMM has two different states
producing the observation F. The same comment holds for the BMUs when the
observation A is produced by the HMM. On the contrary, while two BMUs had
observation prototypes w close to a C and D during the first training period, only
one BMU is remaining for each C and D after learning with the second HMM.

The performance of the algorithm ran for 1000 independent trials is shown on
the right of figure 3. Similarly to the first experiment, it takes around 5000 steps
to learn the sequence. At the time the HMM is changed, there is a degradation
in the performances that quickly drops.

8 J. Fix and H. Frezza-Buet

9960 9970 9980 9990 10000
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

19950 19960 19970 19980 19990
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0

0.2

0.4

0.6

0.8

1.0

19950 19960 19970 19980 19990
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000 12500 15000 17500 20000

step

0.0

0.1

0.2

0.3

0.4

0.5
decision stump risk

Fig. 3. Observations from ABCDEFEDCB for the first 10000 steps and then from
ABCBAFEDEF.The protographs are recorded at t = 10000, 20000.

3.4 Noisy observations

We now perform an experiment to test the robustness of the algorithm in
the presence of noise in the observations. This experiment involves the HMM

BCDEDC
0.05

, i.e. each observation is perturbed with a normal noise of standard
deviation 0.05. Given that the unperturbed observations are separated by 0.2,
a normal noise of standard deviation 0.05 leads to slightly overlapping observa-
tions. On the left of figure 4, one can recognize the 6 states identified by the
algorithm. The blur in the representation of the prototypes comes from the fact
that the circles arranged along the ring are displayed with a transparency pro-
portional to the winning frequency of the displayed BMU. Given the observations
are noisy, there is jitter in the location of the BMUs but still, the elected BMUs
for each state of the HMM remains in a compact set. The sequence B, C, D, E, D, C
tends to elicit BMUs in positions around 0.5, 0.65, 0.1, 0.35, 0.2 and 0.8. Run-
ning the experiment on 1000 runs, the performance χt decreases almost down to
0.0 as shown on the right of figure 4. This confirms that the locations that are
BMUs for a given HMM state are indeed compact sets. Finally, while the absence
of noise and the linear neighborhood function kept the BMUs confined within
the map in the previous experiments, the presence of noise in this experiment
ultimately leads to populate all the map; all the positions within the map tend
to be recruited to encode the HMM.

3.5 Perturbed by a noise state

In the last experiment, we consider a challenging HMM ABCDEFEDCB
∣∣p
q∗ , with

p = 0.03 and q = 0.1. This HMM is based on the sequence ABCDEFEDCB. There
is a probability p for the HMM to jump from any of the states ABCDEFEDCB to
the state we denote ∗ which emits a uniformly distributed observation. There
is also a probability q to jump from the state ∗ back to one of the states in

Look and feel what and how recurrent self organizing maps learn 9

19998 19999 20000 20001 20002 20003
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0

0.2

0.4

0.6

0.8

1.0

19998 19999 20000 20001 20002 20003
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000 12500 15000 17500 20000
0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000 12500 15000 17500 20000

step

0.0

0.1

0.2

0.3

0.4

0.5
decision stump risk

Fig. 4. Observations from BCDEDC
0.05

. The protograph is recorded at t = 20000.

ABCDEFEDCB. The clean sequence of observations from ABCDEFEDCB is therefore
regularly corrupted with a uniform noise. This challenging HMM can mimic for
example a temporal disruption of sensors. With p = 0.03, there is a probability
(1 − p)9 = 0.76 to completely unroll the sequence ABCDEFEDCB when starting
from A. When the HMM is in the state ∗, it stays in this state for 1

q = 10 steps
in average. The results of a single run are displayed on the left of figure 5. The
structure of the HMM, without the noisy state, can be recognized from the plot
of the prototypes on the top of the figure (if we omit the BMUs just before i = 0.2
and just after i = 0.8). It should be noted that the structure of the algorithm does
not allow it to capture the noisy state and the latter is therefore filtered by the
algorithm. Running the experiment for 1000 runs indicates that the ability of the
algorithm to capture the structure of the clean HMM is statistically significant,
as shown on the right of figure 5. For computing the statistics on figure 5, the
samples labelled with ∗ are removed from the dataset Dt. However, this still
does not lead to a perfect classification. Indeed, when the HMM is back from
the noisy state ∗, it sometimes requires two successive observations to identify
in which state the HMM is. This explains why χt is not null.

4 Conclusion

This paper presents an empirical approach of recurrent self-organizing maps by
introducing original representations and performance measurements. The exper-
iments show how spatio-temporal structure gets organized internally to retrieve
the hidden states of the external process that provides the observations. An area
of the map associated with an observation splits into close areas when obser-
vation ambiguity is detected, and then areas get progressively separated onto
the map. Unveiling the emergence of such a complex and continuous behavior,
from both the SOM-like nature of the process and a simple re-entrance, is the
main result of this paper. Such a simple architecture also shows robustness to

10 J. Fix and H. Frezza-Buet

49950 49960 49970 49980 49990
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000 30000 40000 50000
0.0

0.2

0.4

0.6

0.8

1.0

49950 49960 49970 49980 49990
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000 30000 40000 50000
0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000 30000 40000 50000

step

0.0

0.1

0.2

0.3

0.4

0.5
decision stump risk

Fig. 5. Observations from ABCDEFEDCB
∣∣p
q∗ . The protograph is recorded at t = 20000.

temporal and spatial damages in the input series, as well as the ability to deal
with deep time dependencies while the recurrence only propagates previous step
context. Forthcoming work will consist in using such recurrent maps in more
integrated multi-map architecture, as started in [1].

Acknowledgement: This work is supported by the European Interreg Grande
Région / Région Grand-Est project GRONE.

References

1. Baheux, D., Fix, J., Frezza-Buet, H.: Towards an effective multi-map self organizing
recurrent neural network. In: ESANN. pp. 201–206 (2014)

2. Cottrell, M., Fort, J., Pags, G.: Theoretical aspects of the SOM algorithm. Neuro-
computing 21(1), 119 – 138 (1998)

3. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
4. Hagenbuchner, M., Sperduti, R., Tsoi, A.C., Member, S.: A self-organizing map

for adaptive processing of structured data. IEEE Trans. Neural Netw. 14, 491–505
(2003)

5. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing
network models. Neural Netw. 17(8-9), 1061 – 1085 (2004)

6. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.)
Kohonen Maps, pp. 303 – 315. Elsevier Science B.V. (1999)

7. Jordan, M.I.: Serial order: A parallel distributed processing approach. Tech. Rep.
8604, Institute for Cognitive Science, University of California, San Diego (1996)

8. Khouzam, B., Frezza-Buet, H.: Distributed recurrent self-organization for tracking
the state of non-stationary partially observable dynamical systems. Biologically
Inspired Cognitive Architectures 3, 87–104 (2013)

9. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybern. 43(1), 59–69 (1982)

10. Tiňo, P., Farkaš, I., van Mourik, J.: Dynamics and topographic organization of
recursive self-organizing maps. Neural Computation 18(10), 2529–2567 (2006)

11. Voegtlin, T.: Recursive self-organizing maps. Neural Netw. 15(8–9), 979–991 (2002)

	Look and feel what and how recurrent self-organizing maps learn

