
HAL Id: hal-01980399
https://hal.inria.fr/hal-01980399v2

Submitted on 9 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster arbitrary-precision dot product and matrix
multiplication
Fredrik Johansson

To cite this version:
Fredrik Johansson. Faster arbitrary-precision dot product and matrix multiplication. 26th IEEE
Symposium on Computer Arithmetic (ARITH26), Jun 2019, Kyoto, Japan. �hal-01980399v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/200165797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01980399v2
https://hal.archives-ouvertes.fr

Faster arbitrary-precision dot product and matrix
multiplication

Fredrik Johansson
LFANT – Inria Bordeaux

Talence, France
fredrik.johansson@gmail.com

Abstract—We present algorithms for real and complex dot
product and matrix multiplication in arbitrary-precision floating-
point and ball arithmetic. A low-overhead dot product is imple-
mented on the level of GMP limb arrays; it is about twice as fast
as previous code in MPFR and Arb at precision up to several
hundred bits. Up to 128 bits, it is 3-4 times as fast, costing 20-30
cycles per term for floating-point evaluation and 40-50 cycles per
term for balls. We handle large matrix multiplications even more
efficiently via blocks of scaled integer matrices. The new methods
are implemented in Arb and significantly speed up polynomial
operations and linear algebra.

Index Terms—arbitrary-precision arithmetic, ball arithmetic,
dot product, matrix multiplication

I. INTRODUCTION

The dot product and matrix multiplication are core building
blocks for many numerical algorithms. Our goal is to opti-
mize these operations in real and complex arbitrary-precision
arithmetic. We treat both floating-point arithmetic and ball
arithmetic [21] in which errors are tracked rigorously using
midpoint-radius [m±r] intervals. Our implementations are part
of the open source (LGPL) Arb library [14] (http://arblib.org/)
as of version 2.16.

In this work, we only consider CPU-based software arith-
metic using GMP [7] for low-level operations on mantissas
represented by arrays of 32-bit or 64-bit words (limbs). This
is the format used in MPFR [5] as well as Arb. The benefit
is flexibility (we handle mixed precision from few bits to
billions of bits); the drawback is high bookkeeping overhead
and limited vectorization opportunities. In “medium” precision
(up to several hundred bits), arithmetic based on floating-point
vectors (such as double-double and quad-double arithmetic)
offers higher performance on modern hardware with wide
SIMD floating-point units (inluding GPUs) [11], [15], [22].
However, such formats typically give up some flexibility
(having a limited exponent range, usually assuming a fixed
precision for all data).

The MPFR developers recently optimized arithmetic for
same-precision operands up to 191 bits [17]. In this work, we
reach even higher speed without restrictions on the operands
by treating a whole dot product as an atomic operation. This
directly speeds up many “basecase” algorithms expressible
using dot products, such as classical O(N2) polynomial
multiplication and division and O(N3) matrix multiplication.
Section III describes the new dot product algorithm in detail.

For large polynomials and matrices (say, of size N > 50),
reductions to fast polynomial and matrix multiplication are
ultimately more efficient than iterated dot products. Section IV
looks at fast and accurate matrix multiplication via scaled
integer matrices. Section V presents benchmark results and
discusses the combination of small-N and large-N algorithms
for polynomial operations and linear algebra.

II. PRECISION AND ACCURACY GOALS

Throughout this text, p ≥ 2 denotes the output target
precision in bits. For a dot product s =

∑N−1
i=0 xiyi where

xi, yi are floating-point numbers (not required to have the
same precision), we aim to approximate s with error of order
ε ∼ 2−p

∑N−1
i=0 |xiyi|. In a practical sense, this accuracy is

nearly optimal in p-bit arithmetic; up to cancellations that are
unlikely for generic data, uncertainty in the input will typically
exceed ε. Since p is arbitrary, we can set it to (say) twice the
input precision for specific tasks such as residual calculations.
To guarantee an error of 2−ps or even p-bit correct rounding
of s, we may do a fast calculation as above with (say) p+20
bits of precision and fall back to a slower correctly rounded
summation [18] only when the fast dot product fails.

A dot product in ball arithmetic becomes∑N−1
i=0 [mi ± ri][m′i ± r′i] ⊆ [m± r],

m=
∑N−1
i=0 mim

′
i + ε, r ≥ |ε|+

∑N−1
i=0 |mi|r′i+|m′i|ri+rir′i.

We compute m with p-bit precision (resulting in some round-
ing error ε), and we compute a low-precision upper bound
for r that is tight up to rounding errors on r itself. If the input
radii ri, r′i are all zero and the computation of m is exact
(ε = 0), then the output radius r will be zero. If r is large,
we can sometimes automatically reduce the precision without
affecting the accuracy of the output ball.

We require that matrix multiplication give each output entry
with optimal (up to cancellation) accuracy, like the classical
algorithm of evaluating N2 separate dot products. In particular,
for a structured or badly scaled ball matrix like(
[1.23·10100 ± 1080] −1.5 0

1 [2.34± 10−20] [3.45± 10−50]
0 2 [4.56 · 10−100 ± 10−130]

)
,

we preserve small entries and the individual error magnitudes.
Many techniques for fast multiplication sacrifice such informa-
tion. Losing information is sometimes the right tradeoff, but

http://arblib.org/

can lead to disaster (for example, 100-fold slowdown [12])
when the input data is expensive to compute to high accuracy.
Performance concerns aside, preserving entrywise information
reduces the risk of surprises for users.

III. ARBITRARY-PRECISION DOT PRODUCT

The obvious algorithm to evaluate a dot product
∑N−1
i=0 xiyi

performs one multiplication followed by N−1 multiplications
and additions (or fused multiply-add operations) in a loop.
The functions arb_dot, arb_approx_dot, acb_dot and
acb_approx_dot were introduced in Arb 2.15 to replace
most such loops. The function
void arb_dot(arb_t res, const arb_t initial, int sub,

arb_srcptr x, long xstep, arb_srcptr y,
long ystep, long N, long p)

sets res to a ball containing initial + (−1)sub∑N−1
i=0 xi yi

where xi = [mi ± ri], yi = [m′i ± r′i] and initial are balls
of type arb_t given in arrays with strides of xstep and ystep.
The optional initial term (which may be NULL), sub flag
and pointer stride lengths (which may be negative) permit
expressing many common operations in terms of arb_dot
without extra arithmetic operations or data rearrangement.

The approx version is similar but ignores the radii and
computes an ordinary floating-point dot product over the
midpoints, omitting error bound calculations. The acb versions
are the counterparts for complex numbers. All four functions
are based on Algorithm 1, which is explained in detail below.

A. Representation of floating-point numbers

The dot product algorithm is designed around the rep-
resentation of arbitrary-precision floating-point numbers and
midpoint-radius intervals (balls) used in Arb. In the following,
β ∈ {32, 64} is the word (limb) size, and prad = 30 is the
radius precision, which is a constant.

An arb_t contains a midpoint of type arf_t and a radius
of type mag_t. An arf_t holds one of the special values
0,±∞,NaN, or a regular floating-point value

m = (−1)sign · 2e ·
∑n−1
k=0 bk2

β(k−n) (1)

where bk are β-bit mantissa limbs normalized so that 2β−1 ≤
bn−1 ≤ 2β − 1 and b0 6= 0. Thus n is always the minimal
number of limbs needed to represent x, and we have 2e−1 ≤
|m| < 2e. The limbs are stored inline in the arf_t structure
when n ≤ 2 and otherwise in heap-allocated memory. The
exponent e can be arbitrarily large: a single word stores |e| <
2β−2 inline and larger e as a pointer to a GMP integer.

A mag_t holds an unsigned floating-point value 0,+∞, or
r = (b/2prad)2f where 2prad−1 ≤ b < 2prad occupies the low
prad bits of one word. We have 2f−1 ≤ |r| < 2f , and as for
arf_t, the exponent f can be arbitrarily large.

The methods below can be adapted for MPFR with minimal
changes. MPFR variables (mpfr_t) use the same representa-
tion as (1) except that a precision p is stored in the variable,
the number of limbs is always n = dp/βe even if b0 = 0, there
is no n ≤ 2 allocation optimization, the exponent e cannot be
arbitrarily large, and −0 is distinct from +0.

B. Outline of the dot product
We describe the algorithm for initial = 0 and sub = 0. The

general case can be viewed as extending the dot product to
length N + 1, with trivial sign adjustments.

The main observation is that each arithmetic operation on
floating-point numbers of the form (1) has a lot of overhead for
limb manipulations (case distinctions, shifts, masks), particu-
larly during additions and subtractions. The remedy is to use
a fixed-point accumulator for the whole dot product and only
convert to a rounded and normalized floating-point number at
the end. The case distinctions for subtractions are simplified
by using two’s complement arithmetic. Similarly, we use a
fixed-point accumulator for the radius dot product.

We make two passes over the data: the first pass inspects
all terms, looks for exceptional cases, and determines an
appropriate working precision and exponents to use for the
accumulators. The second pass evaluates the dot product.

There are three sources of error: arithmetic error on the
accumulator (tracked with one limb counting ulps), the final
rounding error, and the propagated error from the input balls.
At the end, the three contributions are added to a single
prad-bit floating-point number. The approx version of the dot
product simply omits all these steps.

Except where otherwise noted, all quantities describing
exponents, shift counts (etc.) are single-word (β-bit) signed
integers between MIN = −2β−1 and MAX = 2β−1 − 1, and
all limbs are β-bit unsigned words.

Algorithm 1 Dot product in arbitrary-precision ball arithmetic:
given [mi ± ri], [m′i ± r′i], 0 ≤ i < N and a precision p ≥ 2,
compute [m± r] containing

∑N−1
i=0 [mi ± ri][m′i ± r′i].

1: Setup: check unlikely cases (infinities, NaNs, overflow
and underflow); determine exponent es and number of
limbs ns for the midpoint accumulator; determine expo-
nent erad for the radius accumulator; reduce p if possible.
(See details below.)

2: Initialization: allocate temporary space; initialize accu-
mulator limbs s: sns−1, . . . , s0 ← 0, . . . , 0, one limb
err ← 0 for the ulp error on s0, and a 64-bit integer
srad← 0 as radius accumulator.

3: Evaluation: for each term t = mim
′
i, compute the limbs

of t that overlap with s, shift and add to s (or two’s
complement subtract if t < 0), incrementing err if inexact.
Add scaled upper bound for |mi|r′i+ |m′i|ri+rir′i to srad.

4: Finalization:
1) If sns−1 ≥ 2β−1, negate s (one call to GMP’s

mpn_neg) and set sign← 1, else set sign← 0.
2) m← (−1)sign ·2es · (

∑ns−1
k=0 sk2

β(k−ns)) rounded to
p bits, giving a possible rounding error εround.

3) r ← εround + err · 2es−nsβ + srad · 2erad−prad as a
floating-point number with prad bits (rounded up).

4) Free temporary space and output [m± r].

C. Setup pass
The setup pass in Algorithm 1 uses the following steps:

1) Nnonzero ← 0 (number of nonzero terms).
2) emax ← MIN (upper bound for term exponents).
3) emin ← MAX (lower bound for content).
4) erad ← MIN (upper bound for radius exponents).
5) For 0 ≤ i < N :

a) If any of mi,m
′
i, ri, r

′
i is non-finite or has an expo-

nent outside of ±2β−4 (unlikely), quit Algorithm 1
and use a fallback method.

b) If mi and m′i are both nonzero, with respective
exponents e, e′ and limb counts n, n′:
• Set Nnonzero ← Nnonzero + 1.
• Set emax ← max(emax, e+ e′).
• If p > 2β, emin ← min(emin, e+e

′−β(n+n′)).
c) For each product |mi|r′i, |m′i|ri, rir

′
i that is

nonzero, denote the exponents of the respective
factors by e, e′ and set erad ← max(erad, e+ e′).

6) If emax=erad=MIN, quit Algorithm 1 and output [0±0]
7) (Optimize p.) If emax = MIN, set p← 2. Otherwise:

a) If erad 6= MIN, set p← min(p, emax−erad+prad)
(if the final radius r will be larger than the expected
arithmetic error, we can reduce the precision used
to compute m without affecting the accuracy of the
ball [m± r]).

b) If emin 6= MAX, set p← min(p, emax−emin+prad)
(if all terms fit in a window smaller than p bits,
reducing the precision does not change the result).

c) Set p← max(p, 2).
8) Set padding← 4+bc(N), where bc(ν) = dlog2(ν+1)e

denotes the binary length of ν.
9) Set extend← bc(Nnonzero) + 1.

10) Set ns ← max(2, d(p+ extend + padding)/βe).
11) Set es ← emax + extend.

All terms |mim
′
i| are bounded by 2emax and similarly

all radius terms are bounded by 2erad . The width of the
accumulator is p bits plus extend leading bits and padding
trailing bits, rounded up to a whole number of limbs ns.
The quantity extend guarantees that carries never overflow the
leading limb sns−1, including one bit for two’s complement
negation; it is required to guarantee correctness. The quantity
padding adds a few guard bits to enhance the accuracy of the
dot product; this is an entirely optional tuning parameter.

D. Evaluation

For a midpoint term mim
′
i 6= 0, denote the exponents of

mi,m
′
i by e, e′ and the limb counts by n, n′. The multiply-add

operation uses the following steps.
1) Set shift ← es − (e + e′), shift bits ← shift mod β,

shift limbs← bshift/βc.
2) If shift ≥ βns, set err← err + 1 and go on to the next

term (this term does not overlap with the limbs in s).
3) Set pt ← βns − shift (effective bit precision needed

for this term), and set n′′ ← dpt/βe + 1. If n > n′′

or n′ > n′′, set err ← err + 1. (We read at most n′′

leading limbs from m and m′ since the smaller limbs

es emax

sns−1 sns−2 . . . s0
err

tnt−1 . . . t0

shift pt (discard)

e+ e′ ≤ emax

Fig. 1. The accumulator sns−1, . . . , s0 and the term tnt−1, . . . , t0, prior
to limb alignment. More significant limbs are shown towards the left.

have a negligible contribution to the dot product; in case
of truncation, we increment the error bound by 1 ulp.)

4) Set nt ← min(n, n′′) + min(n′, n′′). The term will be
stored in up to nt + 1 temporary limbs tnt , . . . , t0 pre-
allocated in the initialization of Algorithm 1.

5) Set tnt−1, . . . , t0 to the product of the top min(n, n′′)
limbs of m and the top min(n′, n′′) limbs of m′ (this
is one call to GMP’s mpn_mul). We now have the
situation depicted in Figure 1.

6) (Bit-align the limbs.) If shift bits 6= 0, set tnt
, . . . , t0

to tnt−1, . . . , t0 right-shifted by shift bits bits (this is a
pointer adjustment and one call to mpn_rshift) and
then set nt ← nt + 1.

7) (Strip trailing zero limbs.) While t0 = 0, increment the
pointer to t and set nt ← nt − 1.

It remains to add the aligned limbs of t to the accumulator s.
We have two cases, with v denoting the number of overlapping
limbs between s and t and ds and dt denoting the offsets from
s0 and t0 to the overlapping segment. If shift limbs+nt ≤ ns
(no discarded limbs), set ds ← ns − shift limbs − nt, dt ←
0 and v ← nt. Otherwise, set ds ← 0, dt ← nt − ns +
shift limbs, v ← ns − shift limbs and err ← err + 1. The
addition is now done using the GMP code

cy = mpn_add_n(s + ds, s + ds, t + dt, v);
mpn_add_1(s + ds + v, s + ds + v, shift_limbs, cy);

if mim
′
i > 0, or in case mim

′
i < 0 using mpn_sub_n and

mpn_sub_1 to perform a two’s complement subtraction.
Our code has two more optimizations. If n ≤ 2, n′ ≤ 2,

ns ≤ 3, the limb operations are done using inline code instead
of calling GMP functions, speeding up precision p ≤ 128 (on
64-bit machines). When pt ≥ 25β and min(n, n′)β > 0.9pt,
we compute n′′ leading limbs of the product using the MPFR-
internal function mpfr_mulhigh_n instead of mpn_mul.
This is done with up to 1 ulp error on s0 and is therefore
accompanied by an extra increment of err.

E. Radius operations

For the radius dot product
∑N−1
i=0 |mi|r′i+ |m′i|ri+rir′i, we

convert the midpoints |mi|, |m′i| to upper bounds in the radius
format r = (b/2prad)2e by taking the top prad bits of the top
limb and incrementing; this results in the weakly normalized
mantissa 2prad−1 ≤ b ≤ 2prad . The summation is done with an

accumulator (srad/2prad)2erad where srad is one unsigned 64-
bit integer (1 or 2 limbs). The step to add an upper bound for
(a/2prad)(b/2prad)2e is srad← srad+b(ab)/2prad+erad−ec+1
if erad − e < prad and srad← srad + 1 otherwise.

By construction, erad ≥ e, and due to the 34 free bits
for carry accumulation, srad cannot overflow if N < 232.
(Larger N could be supported by increasing erad, at the cost
of some loss of accuracy.) We use conditionals to skip zero
terms; the radius dot product is therefore evaluated as zero
whenever possible, and if the input balls are exact, no radius
computations are done apart from inspecting the terms.

F. Complex numbers

Arb uses rectangular “balls” [a± r] + [b± s]i to represent
complex numbers. A complex dot product is essentially per-
formed as two length-2N real dot products. This preserves
information about whether real or imaginary parts are exact
or zero, and both parts can be computed with high relative
accuracy when they have different scales. The algorithm could
be adapted in the obvious way for true complex balls (disks).

For terms where both real and imaginary parts have similar
magnitude and high precision, we use the additional optimiza-
tion of avoiding one real multiplication via the formula

(a+ bi)(c+ di) = ac− bd+ i[(a+ b)(c+ d)− ac− bd]. (2)

Since this formula is applied exactly and only for the mid-
points, accuracy is not compromised. The cutoff occurs at the
rather high 128 limbs (8192 bits) since (2) is implemented
using exact products and therefore competes against mulhigh;
an improvement is possible by combining mulhigh with (2).

IV. MATRIX MULTIPLICATION

We consider the problem of multiplying an M × N ball
matrix [A±RA] by an N ×K ball matrix [B ±RB] (where
RA, RB are nonnegative matrices and [±] is interpreted en-
trywise). The classical algorithm can be viewed as computing
MP dot products of length N . For large matrices, it is better to
convert from arbitrary-precision floating-point numbers to in-
tegers [21]. Integer matrices can be multiplied efficiently using
multimodular techniques, working modulo several word-size
primes followed by Chinese remainder theorem reconstruction.
This saves time since computations done over a fixed word
size have less overhead than arbitrary-precision computations.
Moreover, for modest p, the running time essentially scales
as O(p) compared to the O(p2) with dot products, as long
as the cost of the modular reductions and reconstructions
does not dominate. The downside of converting floating-point
numbers to integers is that we either must truncate entries
(losing accuracy) or zero-pad (losing speed).

Our approach to matrix multiplication resembles methods
for fast and accurate polynomial multiplication discussed in
previous work [20], [14]. For polynomial multiplication, Arb
scales the inputs and converts the coefficients to integers, adap-
tively splitting the polynomials into smaller blocks to keep the
height of the integers small. The integer polynomials are then
multiplied using FLINT [10], which selects between classical,

ci,j ← ci,j + 2−ei,s−fj,s

· (
∑

k2
ei,sai,kbk,j2

fj,s)

C ← C + E−1
s ((EsAs)(BsFs))F

−1
s

As

Bs

Row i

(· 2ei,s)

Column j (· 2fj,s)

Es = diag(2ei,s)

Fs = diag(2fi,s)

Fig. 2. Matrix multiplication C = AB using scaled blocks.

Karatsuba and Kronecker algorithms and an asymptotically
fast Schönhage-Strassen FFT. Arb implements other opera-
tions (such as division) via methods such as Newton iteration
that asymptotically reduce to polynomial multiplication.

In this section, we describe an approach to multiply matrices
in Arb following similar principles. We compute [A±RA][B±
RB] using three products AB, |A|RB , RA(|B|+RB) where
we use FLINT integer matrices for the high-precision midpoint
product AB. FLINT in turn uses classical multiplication, the
Strassen algorithm, a multimodular algorithm employing 60-
bit primes, and combinations of these methods. An important
observation for both polynomials and matrices is that fast
algorithms such as Karatsuba, FFT and Strassen multiplication
do not affect accuracy when used on the integer level.

A. Splitting and scaling

The earlier work by van der Hoeven [21] proposed mul-
tiplying arbitrary-precision matrices via integers truncated to
p-bit height, splitting size-N matrices into m2 blocks of size
N/m, where the user selects m to balance speed and accuracy.
Algorithm 2 improves on this idea by using a fully automatic
and adaptive splitting strategy that guarantees near-optimal
entrywise accuracy (like the classical algorithm).

We split A into column submatrices As and B into row
submatrices Bs, where s is some subset of the indices. For
any such As, and for each row index i, let ei,s denote the
unique scaling exponent such that row i of 2ei,sAs consists of
integers of minimal height (ei,s is uniquely determined unless
row i of As is identically zero, in which case we may take
ei,s = 0). Similarly let fj,s be the optimal scaling exponent
for column j of Bs. Then the contribution of As and Bs to
C = AB consists of E−1s ((EsAs)(BsFs))F

−1
s where Es =

diag(2ei,s) scales the rows of As and Fs = diag(2fi,s) scales
the columns of Bs (see Figure 2), and where we may multiply
(EsAs)(BsFs) over the integers.

Crucially, only magnitude variations within rows of As
(columns of Bs) affect the height; the rows of As can have
different magnitude from each other (and similarly for Bs).

We extract indices s by performing a greedy search in
increasing order, appending columns to As and rows to Bs

Algorithm 2 Matrix multiplication using blocks: given ball
matrices [A±RA], [B±RB] and a precision p ≥ 2, compute
[C ±RC] containing [A±RA][B ±RB]

1: [C ±RC]← [0± 0] . Initialize the zero matrix
2: h ← 1.25min(p,max(pA, pB))+192, where pM is the

minimum floating-point precision needed to represent all
entries of M exactly . Height bound tuning parameter

3: S ← {0, . . . , N − 1} where N is the inner dimension
4: while S 6= {} do
5: Extract s ⊆ S such that |EsAs| < 2h and |BsFs| < 2h

6: if size(s) < 30 then . Basecase for short blocks
7: Extend s to min(30, size(S)) indices
8: [C±RC]← [C±RC]+AsBs (using dot products)
9: else

10: T ← (EsAs)(BsFs) . Matrix product over Z
11: [C ±RC]← [C ±RC] + E−1s TF−1s . Ball

addition, with possible rounding error on C added to RC
12: end if
13: S ← S \ s
14: end while
15: Compute R1 = |A|RB and R2 = RA(|B| + RB) by

splitting and scaling into blocks of double as above (but
using floating-point arithmetic with upper bounds instead
of ball arithmetic), and set RC ← RC +R1 +R2

16: Output [C ±RC]

as long as a height bound is satisfied. The tuning parameter
h balances the advantage of using larger blocks against the
disadvantage of using larger zero-padded integers. In the
common case where both A and B are uniformly scaled
and have the same (or smaller) precision as the output, one
block product is sufficient. One optimization is omitted from
the pseudocode: we split the rectangular matrices EsAs and
BsFs into roughly square blocks before carrying out the
multiplications. This reduces memory usage for the temporary
integer matrices and can reduce the heights of the blocks.

We compute the radius products |A|RB and RA(|B|+RB)
(where |A| and |B| are rounded to prad bits) via double
matrices, using a similar block strategy. The double type
has a normal exponent range of −1022 to 1023, so if we set
h = 900 and center EsAs and BsFs on this range, no overflow
or underflow can occur. In practice a single block is sufficient
for most matrices arising in medium precision computations.

B. Improvements

Algorithm 2 turns out to perform reasonably well in practice
when many blocks are used, but it could certainly be improved.
The bound h could be tuned, and the greedy strategy to select
blocks is clearly not always optimal. Going even further, we
could extract non-contiguous submatrices, add an extra inner
scaling matrix GsG

−1
s for the columns of As and rows of

Bs, and combine scaling with permutations. Finding the best
strategy for badly scaled or structured matrices appears to be a
difficult problem. There is some resemblance to the balancing
problem for eigenvalue algorithms [16].

64 128 192 256 384 512 640 768

p

0

100

200

300

400

500

C
y
cl

es
/

te
rm

mpfr mul/mpfr add

arb addmul

arb dot

arb approx dot

Fig. 3. Dot product cost (cycles/term) as a function of the precision p, using
MPFR, simple Arb code (arb_addmul in a loop), and Algorithm 1 in Arb
(both ball and approximate floating-point versions).

Both Algorithm 2 and the analogous algorithm used for
polynomial multiplication in Arb have the disadvantage that
all input bits are used, unlike classical multiplication based
on Algorithm 1 which omits negligible limbs. This important
optimization for non-uniform polynomials (compare [20]) and
matrices should be considered in future work.

C. Complex matrices

We multiply complex matrices using four real matrix mul-
tiplications (A+Bi)(C+Di) = (AC−BD)+ (AD+BC)i
outside of the basecase range for using complex dot products.
An improvement would be to use (2) to multiply the midpoint
matrices when all entries are uniformly scaled; (2) could also
be used for blocks with a splitting and scaling strategy that
considers the real and imaginary parts simultaneously.

V. BENCHMARKS

Except where noted, the following results were obtained
on an Intel i5-4300U CPU using GMP 6.1, MPFR 4.0, MPC
1.1 [4] (the complex extension of MPFR), QD 2.3.22 [11]
(106-bit double-double and 212-bit quad-double arithmetic),
Arb 2.16, and the December 2018 git version of FLINT.

A. Single dot products

Figure 3 and Table I show timings measured in CPU cycles
per term for a dot product of length N = 100 with uniform
p-bit entries. We compare a simple loop using QD arithmetic,
three MPFR versions, a simple Arb loop (addmul denoting
repeated multiply-adds with arb_addmul), and Algorithm 1
in Arb, both for balls (dot denoting arb_dot) and floating-
point numbers (approx denoting arb_approx_dot). Simi-
larly, we include results for complex dot products, comparing
MPC and three Arb methods. The mul/add MPFR version
uses mpfr_mul and mpfr_add, with a preallocated tem-
porary variable; fma denotes multiply-adds with mpfr_fma;
our sum code writes exact products to an array and calls
mpfr_sum [18] to compute the sum (and hence the dot
product) with correct rounding. We make several observations:

TABLE I
CYCLES/TERM TO EVALUATE A DOT PRODUCT (N = 100).

QD MPFR (real) Arb (real)
p mul/add fma sum addmul dot approx

53 74 99 108 169 40 20
106 26 97 156 124 203 49 27
159 140 183 169 257 123 105
212 265 237 208 188 277 133 117
424 350 288 288 374 215 201
848 670 619 597 705 522 499

1696 1435 1675 1667 1823 1471 1451
3392 4059 4800 4741 4875 3906 3880

13568 33529 39546 39401 39275 32476 32467
MPC (complex) Arb (complex)

p mul/add addmul dot approx
53 570 772 166 84

106 885 911 208 112
159 1016 1243 499 419
212 1123 1346 555 478
424 1591 1735 882 775
848 2803 3054 2097 2045

1696 8355 6953 5889 5821
3392 18527 17926 15691 15618

13568 129293 127672 125757 125634

TABLE II
CYCLES/TERM TO EVALUATE A DOT PRODUCT, VARIABLE N .

Arb (real), dot Arb (real), approx
p N=2 N=4 N=8 N=16 N=2 N=4 N=8 N=16

53 89 65 53 44 64 41 31 23
106 98 75 61 53 71 47 37 31
212 215 175 159 143 177 147 136 125
848 614 571 552 535 567 547 522 507

• The biggest improvement is seen for p ≤ 128 (up to two
limbs). The ball dot product is up to 4.2 times faster than
the simple Arb loop (and 2.0 times faster than MPFR);
the approx version is up to 3.7 times faster than MPFR.

• A factor 1.5 to 2.0 speedup persists up to several hundred
bits, and the speed for very large p is close to the optimal
throughput for GMP-based multiplication.

• Ball arithmetic error propagation adds 20 cycles/term
overhead, equivalent to a factor 2.0 when p ≤ 128 and a
negligible factor at higher precision.

• At p = 106, the approx dot product is about as fast as
QD double-double arithmetic, while the ball version is
half as fast; at p = 212, either version is twice as fast as
QD quad-double arithmetic.

• Complex arithmetic costs quite precisely four times more
than real arithmetic. The speedup of our code compared
to MPC is even greater than compared to MPFR.

• A future implementation of a correctly rounded dot
product for MPFR and MPC using Algorithm 1 with
mpfr_sum as a fallback should be able to achieve nearly
the same average speed as the approx Arb version.

For small N , the initialization and finalization overhead in
Algorithm 1 is significant. Table II shows that it nevertheless
performs better than a simple loop already for N = 2 and
quickly converges to the speed measured at N = 100.

1 10 100 1000

1

2

3

4

5

S
p

ee
d

u
p

mul

mullow

divrem

inv series

exp series

sin cos
series

compose
series

revert
series

1 10 100 1000

N

1

2

3

4

5

S
p

ee
d

u
p

mul

solve

inv

det

exp

charpoly

Fig. 4. Speedup of Arb 2.15 over 2.14 for various operations on polynomials
(top) and matrices (bottom), here for p = 64 and complex coefficients.

Algorithm 1 does even better with structured data, for ex-
ample when the balls are exact, with small-integer coefficients,
or with varying magnitudes. As an example of the latter, with
N = 1000, p = 1024, and terms (1/i!) · (π−i), Algorithm 1
takes 0.035 ms while an arb_addmul loop takes 0.33 ms.

B. Basecase polynomial and matrix operations

The new dot product code was added in Arb 2.15 along with
re-tuned cutoffs between small-N and large-N algorithms.
Figure 4 shows the speedup of Arb 2.15 over 2.14 for
operations on polynomials and power series of length N and
matrices of size N , here for p = 64 and complex coefficients.

This shows the benefits of Algorithm 1, even in the presence
of a fast large-N algorithm (the block algorithm for matrix
multiplication was added in Arb 2.14). The speedup typically
grows with N as the dot product gains an increasing advantage
over a simple multiply-add loop, up to the old cutoff point for
switching to a large-N algorithm. To the right of this point, the
dot product then gives a diminishing speedup over the large-N
algorithm up to the new cutoff. Jumps are visible where the
old cutoff was suboptimal. We make some more observations:
• The speedup around N ≈ 10 to 30 is notable since this

certainly is a common size for real-world use.
• Some large-N algorithms like Newton iteration series

inversion and block recursive linear solving use recursive
operations of smaller size, so the improved basecase gives
an extended “tail” speedup into the large-N regime.

• The power series exponential and sine/cosine improve
dramatically. The large-N method uses Newton iteration
which costs several polynomial multiplications, while the
O(N2) basecase method uses the dot product-friendly
recurrence exp(a1x+a2x

2+. . .) = b0+b1x+b2x
2+. . .,

b0 = 1, bk = (
∑k
j=1(jaj)bk−j)/k. The cutoffs have been

increased to N = 750 and N = 1400 (for this p).

TABLE III
TIME (S) TO MULTIPLY SIZE-N MATRICES. (#) IS THE NUMBER OF BLOCKS
AsBs USED BY THE BLOCK ALGORITHM, WHERE GREATER THAN ONE.

Uniform real Pascal Uniform complex
p QD MPFR Arb Arb Arb Arb MPC Arb Arb

dot block dot block dot block
N = 100

53 0.035 0.019 0.0041 0.016 0.021 0.28 0.071 0.017
106 0.011 0.042 0.023 0.011 0.018 0.031 0.40 0.086 0.049
212 0.11 0.11 0.061 0.021 0.063 0.046 0.50 0.23 0.092
848 0.30 0.23 0.089 0.23 0.12 1.2 0.85 0.34

3392 1.7 1.7 0.48 1.7 0.55 7.1 6.1 1.9
N = 300

53 0.96 0.51 0.13 0.37 0.57 (3) 8.1 2.0 0.37
106 0.30 1.2 0.69 0.23 0.47 0.70 (3) 12 2.6 0.87
212 3.0 3.0 2.2 0.34 1.8 1.2 (3) 14 7.5 1.5
848 7.9 6.2 1.2 5.1 2.4 (2) 33 26 4.9

3392 46 47 6.0 44 7.3 200 172 24
N = 1000

53 36 19 3.6 12 20 (10) 313 75 14
106 11 44 25 5.6 14 23 (10) 454 97 22
212 111 110 76 8.2 43 35 (9) 539 342 33
848 293 258 27 122 80 (5) 1230 1074 107

3392 1725 1785 115 1280 226 (2) 7603 6789 457

• The characteristic polynomial (charpoly) does not cur-
rently use matrix multiplication in Arb, so we get the
pure dot product speedup for large N .

• Series composition and reversion use baby-step giant-
steps methods [2], [13] where dot products enter in both
length-N polynomial and size-

√
N matrix multiplications.

C. Large-N matrix multiplication

Table III shows timings to compute A · A where A is
a size-N matrix. We compare two algorithms in Arb (both
over balls): dot is classical multiplication using iterated dot
products, and block is Algorithm 2. The default matrix mul-
tiplication function in Arb 2.16 uses the dot algorithm for
N ≤ 40 to 60 (depending on p) and block for larger N ;
for the sizes of N in the table, block is always the default.
We also time QD, MPFR and MPC classical multiplication
(with two basic optimizations: tiling to improve locality, and
preallocating a temporary inner variable for MPFR and MPC).

We test two kinds of matrices. The uniform A is a matrix
where all entries have similar magnitude. Here, the block
algorithm only uses a single block and has a clear advantage;
at N = 1000, it is 5.3 times as fast as the classical algorithm
when p = 53 and 16 times as fast when p = 3392.

The Pascal matrix A has entries π ·
(
i+j
i

)
which vary in

magnitude between unity and 4N . This is a bad case for
Algorithm 2, requiring many blocks when N is much larger
than p. Conversely, the classical algorithm is faster for this
matrix than for the uniform matrix since Algorithm 1 can
discard many input limbs. In fact, for p ≤ 128 the classical
algorithm is roughly 1.5 times as fast as the block algorithm
for N where Arb uses the block algorithm by default, so the
default cutoffs are not optimal in this case. At higher precision,
the block algorithm does recover the advantage.

TABLE IV
TIME (S) TO SOLVE A SIZE-N REAL LINEAR SYSTEM IN

ARBITRARY-PRECISION ARITHMETIC. * INDICATES THAT THE SLOWER
BUT MORE ACCURATE HANSEN-SMITH ALGORITHM IS USED.

N p Eigen Julia Arb (approx) Arb (ball)
10 53 0.00028 0.000066 0.000021 0.00013*
10 106 0.00029 0.000070 0.000025 0.000040
10 212 0.00033 0.00010 0.000055 0.000074
10 848 0.00043 0.00022 0.00014 0.00016
10 3392 0.0012 0.0010 0.00088 0.00090

100 53 0.051 0.064 0.0069 0.040*
100 106 0.054 0.070 0.0084 0.049*
100 212 0.080 0.10 0.024 0.10*
100 848 0.16 0.22 0.080 0.35*
100 3392 0.71 0.90 0.49 0.50

1000 53 37 301 2.3 13*
1000 106 39 401 3.3 20*
1000 212 64 488 6.6 36*
1000 848 132 947 24 118*
1000 3392 601 2721 153 609*

D. Linear solving, inverse and determinants

Arb contains both approximate floating-point and ball ver-
sions of real and complex triangular solving, LU factoriza-
tion, linear solving and matrix inversion. All algorithms are
block recursive, reducing the work to matrix multiplication
asymptotically for large N and to dot products (in the form
of basecase triangular solving and matrix multiplication) for
small N . Iterative Gaussian elimination is used for N ≤ 7.

In ball (or interval) arithmetic, LU factorization is unstable
and generically loses O(N) digits even for a well-conditioned
matrix. This problem can be fixed with preconditioning [19].
The classical Hansen-Smith algorithm [9] solves AX = B by
first computing an approximate inverse R ≈ A−1 in floating-
point arithmetic and then solving (RA)X = RB in interval
or ball arithmetic. Direct LU-based solving in ball arithmetic
behaves nicely for the preconditioned matrix RA ≈ I .

Arb provides three methods for linear solving in ball
arithmetic: the LU algorithm, the Hansen-Smith algorithm,
and a default method using LU when N ≤ 4 or p > 10N
and Hansen-Smith otherwise. In practice, Hansen-Smith is
typically 3-6 times as slow as the LU algorithm. The default
method thus attempts to give good performance both for well-
conditioned problems (where low precision should be suffi-
cient) and for ill-conditioned problems (where high precision
is required). Similarly, Arb computes determinants using ball
LU factorization for N ≤ 10 or p > 10N and otherwise via
preconditioning using approximate LU factors [19].

Table IV compares speed for solving AX = B with a
uniform well-conditioned A and a vector B. Due to the
new dot product and matrix multiplication, the LU-based
approximate solving in Arb is significantly faster than LU-
based solving with MPFR entries in both the Eigen 3.3.7 C++
library [8] and Julia 1.0 [1]. The verified ball solving in Arb
is also competitive. Julia is extra slow for large N due to
garbage collection, which incidentally makes an even bigger
case for an atomic dot product avoiding temporary operands.

TABLE V
TIME (S) FOR EIGENDECOMPOSITION OF SIZE-N COMPLEX MATRIX

N p Julia Arb (approx) Arb (Rump) Arb (vdHM)
10 128 0.021 0.0036 0.0082 0.0045
10 384 0.043 0.011 0.022 0.013

100 128 8.8 2.5 18.2 2.9
100 384 18.5 8.7 59 9.8

1000 128 > 3·104 2764 2981
1000 384 9358 9877

E. Eigenvalues and eigenvectors

Table V shows timings for computing the eigendecompo-
sition of the matrix with entries ei(jN+k)2 , 0 ≤ j, k < N .
Three methods available in Arb 2.16 are compared. The
approx method is the standard QR algorithm [16] (without
error bounds), with O(N3) complexity. We include as a point
of reference timings for the QR implementation in the Julia
package GenericLinearAlgebra.jl using MPFR arithmetic. The
other two Arb methods compute rigorous enclosures in ball
arithmetic by first finding an approximate eigendecomposition
using the QR algorithm and then performing a verification
using ball matrix multiplications and linear solving. The Rump
method [19] verifies one eigenpair at a time requiring O(N4)
total operations, and the vdHM method [21], [24] verifies all
eigenpairs simultaneously in O(N3) operations.

The kernel operations in the QR algorithm are rotations
(x, y)← (cx+sy, cy−sx), i.e. dot products of length 2, which
we have only improved slightly in this work. A useful future
project would be an arbitrary-precision QR implementation
with block updates to exploit matrix multiplication. Our work
does already speed up the initial reduction to Hessenberg
form in the QR algorthm, and it speeds up both verification
algorithms; we see that the vdHM method only costs a fraction
more than the unverified approx method. The Rump method is
more expensive but gives more precise balls than vdHM; this
can be a good tradeoff in some applications.

VI. CONCLUSION AND PERSPECTIVES

We have demonstrated that optimizing the dot product as an
atomic operation leads to a significant reduction in overhead
for arbitrary-precision arithmetic, immediately speeding up
polynomial and matrix algorithms. The performance is com-
petitive with non-vectorized double-double and quad-double
arithmetic, without the drawbacks of these types. For accurate
large-N matrix multiplication, using scaled integer blocks (in
similar fashion to previous work for polynomial multiplica-
tion) achieves even better performance.

It should be possible to treat the Horner scheme for polyno-
mial evaluation in similar way to the dot product, with similar
speedup. (The dot product is itself useful for polynomial
evaluation, in situations where powers of the argument can
be recycled.) More modest improvements should be possible
for single arithmetic operations in Arb. See also [23].

In addition to the ideas for algorithmic improvements al-
ready noted in this paper, we point out that Arb would benefit

from faster integer matrix multiplication in FLINT. More than
a factor two can be gained with better residue conversion code
and use of BLAS [3], [6]. BLAS could also be used for the
radius matrix multiplications in Arb (we currently use simple
C code since the FLINT multiplications are the bottleneck).

The FLINT matrix code is currently single-threaded, and
because of this, we only benchmark single-core performance.
Arb does have a multithreaded version of classical matrix
multiplication performing dot products in parallel, but this
code is typically not useful due to the superior single-core
efficiency of the block algorithm. Parallelizing the block
algorithm optimally is of course the more interesting problem.

REFERENCES

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh
approach to numerical computing. SIAM review, 59(1):65–98, 2017.

[2] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal
power series. Journal of the ACM, 25(4):581–595, 1978.

[3] J. Doliskani, P. Giorgi, R. Lebreton, and E. Schost. Simultaneous
conversions with the residue number system using linear algebra. ACM
Transactions on Mathematical Software (TOMS), 44(3):27, 2018.

[4] A. Enge, M. Gastineau, P. Théveny, and P. Zimmermann. MPC: a library
for multiprecision complex arithmetic with exact rounding. http://www.
multiprecision.org/mpc/, 2018.

[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct
rounding. ACM Transactions on Mathematical Software, 33(2):13, 2007.

[6] P. Giorgi. Toward high performance matrix multiplication for exact
computation. https://www.lirmm.fr/∼giorgi/seminaire-ljk-14.pdf, 2014.

[7] T. Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library, 6.1.2 edition, 2017.

[8] G. Guennebaud and B. Jacob. Eigen. http://eigen.tuxfamily.org/, 2018.
[9] E. Hansen and R. Smith. Interval arithmetic in matrix computations,

Part II. SIAM Journal on Numerical Analysis, 4(1):1–9, 1967.
[10] W. B. Hart. Fast library for number theory: an introduction. In Int.

Congress on Mathematical Software, pages 88–91. Springer, 2010.
[11] Y. Hida, X. S. Li, and D. H. Bailey. Library for double-double and

quad-double arithmetic. NERSC Division, Lawrence Berkeley National
Laboratory, 2007.

[12] F. Johansson. Arb: a C library for ball arithmetic. ACM Communications
in Computer Algebra, 47(4):166–169, 2013.

[13] F. Johansson. A fast algorithm for reversion of power series. Mathe-
matics of Computation, 84:475–484, 2015.

[14] F. Johansson. Arb: efficient arbitrary-precision midpoint-radius interval
arithmetic. IEEE Transactions on Computers, 66:1281–1292, 2017.

[15] M. Joldes, O. Marty, J.-M. Muller, and V. Popescu. Arithmetic
algorithms for extended precision using floating-point expansions. IEEE
Transactions on Computers, 65(4):1197–1210, 2016.

[16] D. Kressner. Numerical Methods for General and Structured Eigenvalue
Problems. Springer-Verlag, 2005.

[17] V. Lefèvre and P. Zimmermann. Optimized Binary64 and Binary128
arithmetic with GNU MPFR. In 2017 IEEE 24th Symposium on
Computer Arithmetic (ARITH), pages 18–26. IEEE, 2017.

[18] Vincent Lefèvre. Correctly rounded arbitrary-precision floating-point
summation. IEEE Transactions on Computers, 66(12):2111–2124, 2017.

[19] S. M. Rump. Verification methods: Rigorous results using floating-point
arithmetic. Acta Numerica, 19:287–449, 2010.

[20] J. van der Hoeven. Making fast multiplication of polynomials numeri-
cally stable. Technical Report 2008-02, U. Paris-Sud, France, 2008.

[21] J. van der Hoeven. Ball arithmetic. Technical report, HAL, 2009.
[22] J. van der Hoeven and G. Lecerf. Faster FFTs in medium precision. In

2015 IEEE 22nd Symposium on Computer Arithmetic (ARITH), pages
75–82. IEEE, 2015.

[23] J. van der Hoeven and G. Lecerf. Evaluating straight-line programs over
balls. In 2016 IEEE 23rd Symposium on Computer Arithmetic (ARITH),
pages 142–149, 2016.

[24] J. van der Hoeven and B. Mourrain. Efficient certification of numeric so-
lutions to eigenproblems. In International Conference on Mathematical
Aspects of Computer and Information Sciences, pages 81–94. Springer,
2017.

http://www.multiprecision.org/mpc/
http://www.multiprecision.org/mpc/
https://www.lirmm.fr/~giorgi/seminaire-ljk-14.pdf
http://eigen.tuxfamily.org/

	Introduction
	Precision and accuracy goals
	Arbitrary-precision dot product
	Representation of floating-point numbers
	Outline of the dot product
	Setup pass
	Evaluation
	Radius operations
	Complex numbers

	Matrix multiplication
	Splitting and scaling
	Improvements
	Complex matrices

	Benchmarks
	Single dot products
	Basecase polynomial and matrix operations
	Large-N matrix multiplication
	Linear solving, inverse and determinants
	Eigenvalues and eigenvectors

	Conclusion and perspectives
	References

