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Abstract

Latent variable models provide a powerful framework for describing complex data by capturing its struc-

ture with a combination of more compact unobserved variables. The Bayesian approach to statistical latent

models additionally provides a consistent and principled framework for dealing with uncertainty inherent in

the data described with our model. However, in most Bayesian latent variable models we face the limitation

that the number of unobserved variables has to be specified a priori. With the increasingly larger and more

complex data problems such parametric models fail to make most out of the data available. Any increase

in data passed into the model only affects the accuracy of the inferred posteriors and models fail to adapt

to adequately capture new arising structure. Flexible Bayesian nonparametric models can mitigate such

challenges and allow the learn arbitrarily complex representations given enough data is provided. However,

their applications are restricted to applications in which computational resources are plentiful because of the

exhaustive sampling methods they require for inference.

At the same time we see that in practice despite the large variety of flexible models available, simple

algorithms such as K-means or Viterbi algorithm remain the preferred tool for most real world applications.

This has motivated us in this thesis to borrow the flexibility provided by Bayesian nonparametric models,

but to derive easy to use, scalable techniques which can be applied to large data problems and can be ran

on resource constraint embedded hardware.

We propose nonparametric model-based clustering algorithms nearly as simple as K-means which over-

come most of its challenges and can infer the number of clusters from the data. Their potential is demon-

strated for many different scenarios and applications such as phenotyping Parkinson and Parkisonism related

conditions in an unsupervised way. With few simple steps we derive a related approach for nonparametric

analysis on longitudinal data which converges few orders of magnitude faster than current available sampling

methods. The framework is extended to efficient inference in nonparametric sequential models where exam-

ple applications can be behaviour extraction and DNA sequencing. We demonstrate that our methods could

be easily extended to allow for flexible online learning in a realistic setup using severely limited computa-

tional resources. We develop a system capable of inferring online nonparametric hidden Markov models from

streaming data using only embedded hardware. This allowed us to develop occupancy estimation technology

using only a simple motion sensor.

Keywords: Bayesian nonparametrics, clustering, segmentation, mixture models, hidden Markov models.
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Chapter 1

Introduction

1.1 Motivation

The rapid increase in the capability of automatic data acquisition and storage is providing striking potential

for innovation in science and technology. However, extracting meaningful information from complex, ever-

growing data sources poses new challenges. This motivates the development of automated yet principled

ways to discover structure in data. The key information of interest is often obscured behind redundancy and

noise, therefore designing a plausible and statistical (or mathematical) model becomes challenging. Complex

data models can be expressed in more tractable form if we instead model them using a combination of simpler

components: for example consider the distribution of some data modeled with the joint distribution over an

extended space consisting of both the observed variables and some latent variables. Latent variables describe

some unobserved structure in the data the type of which we define through a set of encoded assumptions

inherent to our model. For example, based on what type of latent variables we assume, latent variable models

can be separated into two classes: discrete and continuous latent models.

Broadly speaking, continuous latent variable models are useful for problems where data lies close to

a manifold of much lower dimensionality. By using continuous latent variables, we can express inherent

unobserved structure (considering it does exist) in the data with significantly fewer latent variables and

therefore these latent variable models play a key role in the statistical formulation of many dimensionality

reduction techniques. Many widely-used pattern recognition techniques can be understood in that framework:

probabilistic principle component analysis (PCA) (Tipping & Bishop, 1999; Roweis, 1998), the Kalman filter

and others. In addition, as Tipping & Bishop (1999) have pointed out, many non-probabilistic methods can

be well understood as a restricted case of a continuous variable model: independent component analysis and

factor analysis for example Spearman (1904) which describe variability among observed, correlated variables.

By contrast, discrete latent variable models assume discreteness in the unobserved space. This discreteness

naturally implies that random draws from this space have a finite probability of repetition which is one reason

why discrete latent models are widely used to express inherent groupings and similarities that underlie the

data. They have played a key role in the probabilistic formulation of clustering techniques. However,

computationally inferring (learning) such models from the data is a lot more challenging than for continuous

latent variable models and in its full generality clustering implies a combinatorial (NP-hard) problem. This

often restricts the application of discrete latent models to applications in which computational resources and

time for inference is plentiful.

In this thesis we will try to approach this problem by analyzing a rigorous framework for inference in
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 1.1: Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data. Cluster
radii are equal and clusters are well-separated, but the data is unequally distributed across clusters: 69% of
the data is in the blue cluster, 29% in the yellow, 2% is orange. K-means fails to find a meaningful solution,
because, unlike MAP-DP, it cannot adapt to different cluster densities, even when the clusters are spherical,
have equal radii and are well-separated.

discrete latent variable models. To allow for more in-depth analysis of the techniques introduced in this

thesis, we will focus only on a few models which are foundational models in the field of machine learning.

This will allow us to make more explicit the benefits of the proposed framework and its specific applications

without having to tackle the full complexity of the overwhelmingly rich class of discrete latent variable models.

However, we note that a lot of the issues we discuss here can be extrapolated to more complex and elaborate

models and therefore this should be viewed as a starting point for future work in this direction.

Optimizing the efficiency of our inference procedures is not enough on its own to handle the steady growth

both in terms of size and complexity of data problems that we find ourselves facing in recent years. The

striking increases in the amount of data available for statistical analysis suggests a need to also change the

statistical models we use. Restrictive assumptions about the structure and the complexity of a model are less

likely to hold and harder to define for such situations This introduces the need for more adaptable Bayesian

nonparametric (BNP) models which can be used to relax such restrictions. We cannot fully appreciate the

advantages that such models bring without first formally specifying the statistical and mathematical problem

of model selection.

Model selection Determining the structure underlying some set of observations often translates to the

problem of learning a mathematical model that can accurately predict those observations. In the case of

probabilistic models, we often specify the particular model and we search through a set of parameter values

in the model, so that the model best explains the observations according to some criteria. This criteria is

designed to indicate the generalization of a model, or how well the model describes the population of the

data rather than just the observed sample. Models that are too simple underfit the data and fail to capture

all of the inherent structure in it; models which are too complex overfit suggesting structure for which there

is insufficient evidence. For example, in the case of clustering an underfitted model would fail to discover all

of the distinct clusters in the data where an overfitted model would suggest more clusters than there actually

are.

A natural way to design models that are resilient to overfitting and directly enable adequate model

selection is to adopt the Bayesian formalism. The Bayesian treatment to probabilistic models views all model
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 1.2: Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data, with
unequal cluster radii and density. The clusters are well-separated. Data is equally distributed across clusters.
Here, unlike MAP-DP, K-means fails to find the correct clustering. Instead, it splits the data into three
equal-volume regions because it is insensitive to the differing cluster density. Different colours indicate the
different clusters.

parameters as random variables. The distributions that specify them are called prior distributions and they

provide additional control over the behaviour of the assumed model. Model selection and model comparison

can be directly performed in Bayesian models by computing the marginal likelihood of the model. Specifically,

in latent variable models the marginal likelihood is computed by taking the complete data likelihood function

and integrating out the latent variables. The model which has the highest marginal likelihood is the model

that best describes the data and provides the optimal fit. There are many other widely techniques for

assessing the quality of fit of a model such as cross-validation, bootstraping, regularization or Bayes factors,

to name a few. However, in the framework of probabilistic models many involve additional ad-hoc (heuristic)

assumptions to the existing model which are not necessarily justified nor well understood. By contrast, the

Bayesian paradigm addresses the specification of the model and the problem of overfitting at the same time

(Bishop, 2013). This often makes Bayesian models more forgiving to differences between the specification of

the model and the observed data.

Now that we have defined the problem of model selection and the Bayesian approach to solving it, we can

go back to specifying what we mean by BNP models in the context of latent variable models. A large class

of probabilistic models (Bayesian and non-Bayesian) can be classed as parametric. Such models require the

specification and choice of the number of model parameters: this is often an effective measure its complexity.

In discrete latent variable models, this usually means that parametric models fix the domain of the latent

variables; for example in clustering this implies fixing the number of clusters that can be found. BNP models

relax this assumption allowing the model to adapt its complexity depending upon the data on which it

is trained . The domain of the latent variables is defined as infinite meaning that the complexity of the

unobserved structure can grow and adapt based on the evidence.

To give some specific examples, one of the most popular discrete latent variable models is the Gaussian

mixture model (GMM) which is formally defined in Chapter 2. The GMM models the complete dataset

with a mixture of Gaussian distributions which can express complex data distributions using a combination

of simple Gaussians. The unobserved variables here indicate which particular Gaussian best describes each

specific point from the data. In the parametric setting the number K of Gaussian distributions forming the

likelihood of the GMM needs to be specified by design and it remains unchanged despite the size or structure
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of the data . The BNP extension of the GMM (which we also define formally in Chapter 2) uses as many

Gaussian distributions as considered sufficient according to the model likelihood. That is, the nonparametric

nature of the model aims to keep it from underfitting and the Bayesian nature of the model makes it resilient

to overfitting (Hjort et al., 2010).

The problem of choosing K in a GMM has also been widely addressed outside of the Bayesian paradigmby

the use of different regularization criteria: Bayesian information criterion (BIC)(Pelleg et al., 2000); mini-

mum description length (MDL)(Bischof et al., 1999); deviance information criterion (DIC)(Gao et al., 2011)

to name a few. Typically a parametric model, like the GMM is fitted for different values of K and a regular-

ization criterion is used to choose the value of K that provides the best overall fit of the model. This means

repeating our inference algorithm multiple times to exhaustively search the space of K and also relying on

additional assumptions about the model which are inherent to the reguralizer but not part of the model

itself1.

Unfortunately, in practice the flexibility and expressive power granted by BNP models (and often also

of parametric models) carries a heavy computational price because they require computationally intensive

inference methods such as Markov chain Monte Carlo sampling techniques (Hastings, 1970; Geman & Geman,

1984; Chib & Greenberg, 1995; Neal, 2000, 2003; Van Gael et al., 2008). This is an emerging problem because

we more and more often face the following situations: problems with large-scale datasets; “embedded”

applications such as Internet of Things (IoT) devices where computation needs to be performed in real-time

and countless applications (for example, digital signal processing; ubiquitous computing ) where computation

needs to be executed on resource-constrained hardware. We are witnessing the end of Moore’s law (Schaller,

1997; Kish, 2002; Colwell, 2013) which has dominated the way we think about computing and computational

algorithms over the last 50 years2. Thus, there is the increasingly pressing need for approaches to inference

that are not only accurate but also use minimal computational effort (Bousquet & Bottou, 2008).

(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 1.3: Clustering solution obtained by K-means and MAP-DP for synthetic elliptical Gaussian data.
All clusters share exactly the same volume and density, but one is rotated relative to the others. There is no
appreciable overlap. K-means fails because the objective function which it attempts to minimize measures
the true clustering solution as worse than the manifestly poor solution shown here.

1We demonstrate many of the disadvantages of regularization techniques applied to GMM and K-means clustering algorithm
in (Raykov et al., 2016c).

2Moore’s law refers to an observation made by Intel co-founder Gordon Moore in 1965. Moore’s law predicts that the number
of transistors per square inch on integrated circuits would double every year into the foreseeable future. In 1975 Gordan Moore
revisited his forecast to doubling every two years. This forecast has been true for decades and has been used as an assurance
for exponential grow in the computational and memory capabilities of all computational hardware.
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Some of the most widely-used machine learning techniques remain deterministic algorithms such as K-

means clustering (Section 2.1) and it can be very helpful to look at the relationship between such techniques

and discrete latent variable models; in particular how such deterministic algorithms can be derived as re-

stricted inference algorithms for probabilistic models. In the case of K-means, we can understand the general

assumptions it places on the data by looking at its relation to the GMM and testing it on synthetic GMM

data: K-means implies shared cluster covariance across all clusters (see Figure 1.2); equal density clusters

(see Figure 1.1); spherical cluster geometry (see Figure 1.3); known, fixed K and lack of robustness to even

trivial outliers (see Figure 1.4). Each of those pitfalls arises from placing certain assumptions on the related

underlying GMM. Similar argument can be made for the BNP extension of K-means -- the DP-means al-

gorithm (Kulis & Jordan, 2011) and its relation to the Dirichlet process mixture model (Section 2.5.4). In

fact K-means, DP-means and many other algorithms can be seen as deterministic algorithms for inference

in latent variable models after applying small variance asymptotics (SVA) assumptions(see Section 3.2).

The reason we consider the probabilistic generalization of such techniques is so that we can revisit some

of the assumptions we place on probabilistic models in our search for efficient, fast and flexible inference

algorithms. We try to rigorously follow the trade-off between flexibility of the inference method and its

computational efficiency(in terms of both computational speed and memory requirements). Towards this end,

we map this trade-off for some of the most popular inference algorithms in the case of widely-used discrete

latent variable models (such as mixture models and hidden Markov models) and their BNP extensions. We

make an attempt to extend the applications for BNP models by proposing an iterative MAP (Maximum a

posteriori) framework for flexible deterministic inference which can process large datasets and can operate

on resource-constraint hardware, while not changing the structure of the underlying model.

Other ubiquitous methods for efficient inference in BNP models rely on variational Bayes (VB) approxi-

mations (Blei & Jordan, 2006; Teh et al., 2007; Broderick et al., 2013b; Foti et al., 2014; Hughes & Sudderth,

2013) which we discuss throughout the chapters of this thesis. Typically, VB methods are a lot harder to

derive than similar iterative MAP algorithms and require additional assumptions about a model in order to

make inference feasible at all.

1.2 Contributions

After more than 50 years, the K-means algorithm remains the preferred clustering tool for most real world

applications (Berkhin, 2006). In this thesis we study algorithms such as K-means from a probabilistic vantage

point: as a restricted (SVA) case of a latent discrete probabilistic model. From this probabilistic view we can

better – and more rigorously – understand the assumptions inherent with widely-used clustering methods

and explore how each of those assumptions influences the flexibility, the simplicity and the usefulness of

the corresponding clustering method. This sets a general framework for us to derive simple model-based

algorithms, which at the cost of just slight departure from existing algorithms inherit greater flexibility and

many useful statistical properties. The resulting contributions in this thesis are listed below:

� We derive a modified version of K-means: collapsed K-means which is as conceptually simple, but is

more robust to changes in initialization of the parameters, and is less likely to converge to a poor local

solution than the original K-means. A novel K-means with reinforcement algorithm is proposed which

overcomes the implicit assumption of K-means that data is shared equally across the K clusters.

� In contrast to methods obtained using SVA assumptions to probability models, we propose an iterative,

greedy MAP algorithm for deriving model-based deterministic methods which are only marginally more
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(a) Generated synthetic data (b) K-means (c) MAP-DP

(d) Generated data (zoomed) (e) K-means (zoomed) (f) MAP-DP (zoomed)

Figure 1.4: Clustering performed by K-means and MAP-DP for spherical, synthetic Gaussian data, with
outliers. All clusters have the same radii and density. There are two outlier groups with two outliers in each
group. K-means fails to find a good solution where MAP-DP succeeds; this is because K-means puts some
of the outliers in a separate cluster, thus inappropriately using up one of the K = 3 clusters. This happens
even if all the clusters are spherical, equal radii and well-separated.

complex than traditional algorithms such as K-means. Some specific applications of greedy MAP

have already been studied in different domains (Bertoletti et al., 2015; Besag, 1986). However, here we

formalize this framework and study its potential applied to different constructions of popular parametric

and BNP discrete latent variable models. We systematically demonstrate the practical and conceptual

advantages of iterative MAP compared to more restrictive SVA methods (Broderick et al., 2013a) for

inference in BNP models.

� We derive deterministic methods for inference in the Dirichlet process mixture model (DPMM): the

MAP-DPMM and the collapsed MAP-DPMM (Raykov et al., 2016c) algorithms which can be used for

both approximate inference or simple nonparametric clustering algorithms which learn the number of

clusters from the data. We evaluate the MAP-DPMM methods on benchmark and synthetic datasets

and further compare them to both standard parametric and nonparametric clustering alternatives. We

demonstrate applications of these novel methods for discovering phenotypes of Parkinson’s disease from

a rich patient dataset and for nonparametric analysis of longitudinal health data.

� We present an intuitive interpretation of the hierarchical Dirichlet process (HDP) motivating some new
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 1.5: Clustering solution obtained by K-means and MAP-DP for synthetic elliptical Gaussian data.
The clusters are trivially well-separated, and even though they have different densities (12% of the data is
blue, 28% yellow cluster, 60% orange) and elliptical cluster geometries, K-means produces a near-perfect
clustering, as with MAP-DP. This shows that K-means can in some instances work when the clusters are not
equal radii with shared densities, but only when the clusters are so well-separated that the clustering can be
trivially performed by eye.

applications for it as a clustering model for the standard clustering problem of data with mixed contin-

uous and categorical data types. The different constructions of the HDP are conceptually contrasted

and a novel deterministic clustering method, MAP-HDP, is proposed which outperforms the existing

SVA alternative.

� Two novel nonparametric algorithms for analysis of sequential data are proposed which we call MAP-

iHMM (Raykov et al., 2015a, 2016b) and dynamic MAP-iHMM. The dynamic MAP-iHMM can be seen

as a nonparametric extension of the classical Viterbi algorithm for inference in hidden Markov models

(HMMs). We demonstrate the applicability of MAP-iHMM and dynamic MAP-iHMM to some synthetic

and real world examples, where MAP methods reach local clustering solutions orders of magnitude

faster than current MCMC methods. Applications include a problem in genomic hybridization and an

automated quality control for the analysis of accelerometer data collected during a walking test using

a smartphone.

� A novel study is performed on the challenging problem of predicting room occupancy head count using a

single passive infrared (PIR) sensor (Raykov et al., 2016a). A state-of-the art system is proposed which

can provide occupancy estimates every 30 seconds; the estimates are typically within +1/-1 individual

of the true number of occupants. We demonstrate how, using MAP-iHMM, the whole system can be

sufficiently optimized to allow it to work and segment data directly onto a highly resource-constrained

microcontroller board. The loss in accuracy of the system when segmentation is done using MAP-iHMM

compared to more expensive MCMC methods is negligible in practice, but this optimization allows the

whole system to be deployed as a self-contained product without the need for expensive supporting

computational hardware.
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(a) Generated synthetic data (b) K-means (c) MAP-DP

Figure 1.6: Clustering solution obtained by K-means and MAP-DP for overlapping, synthetic elliptical
Gaussian data. All clusters have different elliptical covariances, and the data is unequally distributed across
different clusters (30% blue cluster, 5% yellow cluster, 65% orange). The significant overlap is challenging
even for MAP-DP, but it produces a meaningful clustering solution where the only mislabelled points lie
in the overlapping region. K-means does not produce a clustering result which is faithful to the actual
clustering.

1.3 Thesis organization

The main body if this thesis starts in Chapter 2 with a review of some of the relevant fundamental concepts

in probabilistic modeling and pattern recognition related to clustering. The review includes discussion on

Gaussian mixture models from both frequentist and Bayesian perspectives; the most relevant methods used for

inference in mixture models, as well as some challenges that we face depending on the modeling perspective,

construction and inference method. The second part of Chapter 2 reviews the construction and properties of

DPs and the DPMM.

In Chapter 3 we start by revisiting the well known connection between K-means and mixture models.

This connection motivates the construction of a new version of K-means which is related to collapsed mixture

models. Mirroring some of the latest work on SVA, we also derive a novel K-means with reinforcement. In

order to relax some of the restrictive assumptions that SVA clustering algorithms impose, we motivate the

use of iterative MAP methods. This sets the stage for an in-depth exploration of an entire framework of

deterministic methods for inference in DPMMs. We review the most widely-used inference strategies for

DPMMs and introduce MAP-DPMM (see Raykov et al. and Raykov et al.). The practical relevance of the

proposed MAP methods is demonstrated on a problem typically attempted using K-means: discovery of

phenotypes of Parkinson’s disease and parkinsonism. The Chapter concludes with some further applications

of MAP-DPMM as a building block for more complex models.

Chapter 4 reviews in the detail the hierarchical DP (HDP), introduced in Teh et al. for modeling data that

originates in different dependent subsets. We review various constructions and inference methods for HDP

mixtures and propose a novel method for multi-level clustering, MAP-HDP. This is compared against the

few existing deterministic algorithms for inference in HDP mixtures and tested against the SVA algorithm.

HDPs are also used as a building block for the models which appear later in Chapter 5 for sequential data.

As with earlier chapters, in Chapter 5 we review various MCMC and SVA methods for inference in

iHMMs. We introduce a novel MAP method for sequence clustering which takes advantage of dynamic

programming and also propose the novel MAP-iHMM method (see Raykov et al.) as a slower, but sometimes
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more accurate alternative. Where the accuracy of MAP methods is reduced for more complex hierarchical

models, we demonstrate visually that in lower dimensional datasets most of the important states can be

recovered in just a few iterations.

Chapter 6 follows different structure than earlier chapters in order to introduce the reader to the chal-

lenging problem of room occupancy estimation as one of the fundamental tasks of “self-aware environments”.

It starts with some necessary motivation and review of the relevant work for the problem of predicting room

occupancy. We briefly describe our experiments, hypothesis and hardware used for data collection. Once the

problem is formulated from a statistical and engineering perspective, we motivate the need for the iHMMs

as a part of a rigorous approach to solving the problem. Different iHMM inference algorithms are tested

and their effect on the trade-off between accuracy and computational efficiency is assessed. We demonstrate

that using MAP-iHMM, we can deploy a practically useful, self-contained system that can perform all of its

computation and inference on a cheap microcontroller board with limited computational hardware resources

(see Raykov et al.)3.

The final Chapter of this thesis draws some general conclusions and proposes directions for future work.

3A patent application has been submitted on behalf of the company ARM to the US patent office disclosing this system.
The patent is named: “Predicting the number of occupants with a single PIR sensor using behaviour extraction”.
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Chapter 2

Discrete latent variable models and

inference

Mixture models are widely-used discrete latent variable models most often selected for their ability to rep-

resent inherent sub-groups and identify clusters in a rigorous way. This chapter starts by first reviewing

the nonprobabilistic K-means clustering algorithm and its pitfalls. Then it proceeds with discussion of the

Gaussian mixture model (GMM) which can be used to cluster data overcoming a lot of the drawbacks of

K-means. We extend this exposition to include the Bayesian setting of mixture models as well as some

fundamental principles for performing inference in Bayesian probabilistic models. Many of the concepts re-

viewed and presented in this chapter serve as foundation for deriving more complicated models and inference

methods later on. The second part of the chapter focuses on reviewing the definitions, properties and the

various constructions of the Dirichlet process (DP). The DP will serve as a building block for most of the

flexible nonparametric probabilistic models we discuss in later chapters. We conclude the chapter with a

short overview of the main inference algorithms discussed in this thesis and the associations between them.

2.1 The K-means algorithm

K-means was first introduced as a method for vector quantization in communication technology applications

(Lloyd, 1982), yet it is still one of the most widely-used clustering algorithms. For example, in discovering

clinical sub-types of Parkinson’s disease, we observe that most studies have used the K-means algorithm

to find sub-types in patient data (van Rooden et al., 2010). It is also the method of choice in visual bag

of words models in automated image understanding (Fei-Fei & Perona, 2005). Perhaps the major reasons

for the popularity of K-means are conceptual simplicity and computational scalability, in contrast to more

flexible clustering methods.

For the ensuing discussion, we will use the following mathematical notation: let us denote the data as

X = (x1, . . . , xN ) where each of the N data points xi is a D-dimensional vector; denote the cluster assignment

associated to each data point by z1, . . . , zN , where if data point xi belongs to cluster k we write zi = k. The

parameter ε > 0 is a small threshold value to assess when the algorithm has converged on a good solution

and should be stopped (typically ε = 10−6). Using this notation, K-means can be written as in Algorithm

2.1.

To paraphrase this algorithm: it alternates between updating the assignments of data points to clusters

while holding the estimated cluster centroids, µk, fixed, and updating the cluster centroids while holding the
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assignments fixed. It can be shown to find some minimum (not necessarily the global, i.e. smallest of all

possible minima) of the following objective function:

E =
1

2

K∑
k=1

∑
i:zi=k

‖xi − µk‖22 (2.1)

with respect to the set of all cluster assignments z and cluster centroids µ, where 1
2 ‖.‖

2
2 denotes the (square

of the) Euclidean distance (distance measured as the sum of the square of differences of coordinates in each

direction). In fact, the value of E cannot increase on each iteration, so, eventually E will stop changing and

K-means will converge.

Algorithm 2.1: K-means Algorithm 2.2: MAP-GMM (spherical Gaussian)

Input x1, . . . , xN : D-dimensional data

ε > 0: convergence threshold

K: number of clusters

x1, . . . , xN : D-dimensional data

ε > 0: convergence threshold

α: concentration parameter

σ2: spherical cluster variance

σ2
0 : prior centroid variance

Output z1, . . . , zN : cluster assignments

µ1, . . . , µK : cluster centroids

z1, . . . , zN : cluster assignments

µ1, . . . , µK : cluster centroids

π1, . . . , πK : cluster weights

1 Set µk for all k ∈ 1, . . . ,K 1 Set µk and πk for all k ∈ 1, . . . ,K

2 Enew =∞ 2 Enew =∞
3 repeat 3 repeat

4 Eold = Enew 4 Eold = Enew

5 for i ∈ 1, . . . , N 5 for i ∈ 1, . . . , N

6 for k ∈ 1, . . . ,K 6 for k ∈ 1, . . . ,K

7 di,k = 1
2 ‖xi − µk‖

2
2 7 di,k = 1

2σ2 ‖xi − µk‖22 + D
2 lnσ2 − lnπk

8 zi = arg mink∈1,...,K di,k 8 zi = arg mink∈1,...,K+1 di,k

9 for k ∈ 1, . . . ,K 9 for k ∈ 1, . . . ,K

10 µk = 1
Nk

∑
j:zj=k

xj 10 µk =
σ2µ0+σ0

∑
j:zj=k

xj

σ2+σ2
0Nk

πk = Nk+α/K−1
N+α−K

11 Enew =
∑K
k=1

∑
i:zi=k

di,k 11 Enew =
∑K
k=1

∑
i:zi=k

di,k

− log Γ (N + α)−
∑K
k=1 log Γ (Nk + α/K)

12 until Eold − Enew < ε 12 until Eold − Enew < ε

Perhaps unsurprisingly, the simplicity and computational scalability of K-means comes at a high cost.

In particular, the algorithm is based on quite restrictive assumptions about the data, often leading to severe

limitations in accuracy and interpretability:

1. By use of the Euclidean distance K-means treats the data space as isotropic (distances unchanged by

translations and rotations). This means that data points in each cluster are modeled as lying within
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a sphere around the cluster centroid. A sphere has the same radius in each dimension. Furthermore,

as clusters are modeled only by the position of their centroids, K-means implicitly assumes all clusters

have the same radius. When this implicit equal-radius, spherical assumption is violated, K-means can

behave in a non-intuitive way, even when clusters are very clearly identifiable by eye (see Figures 1.2,

1.3).

2. The Euclidean distance entails that the average of the coordinates of data points in a cluster is the

centroid of that cluster. Euclidean space is linear which implies that small changes in the data result

in proportionately small changes to the position of the cluster centroid. This is problematic when there

are outliers, that is, points which are unusually far away from the cluster centroid by comparison to

the rest of the points in that cluster. Such outliers can dramatically impair the results of K-means (see

Figure 1.4).

3. K-means clusters data points purely on their (Euclidean) geometric closeness to the cluster centroid

(algorithm line 9). Therefore, it does not take into account the different densities of each cluster. So,

because K-means implicitly assumes each cluster occupies the same volume in data space, each cluster

must contain the same number of data points. We will show later that even when all other implicit

geometric assumptions of K-means are satisfied, it will fail to learn a correct, or even meaningful,

clustering when there are significant differences in cluster density (see Figure 1.1).

4. The number K of groupings in the data is fixed and assumed known; this is rarely the case in practice.

Thus, K-means is quite inflexible and degrades badly when the assumptions upon which it is based are

even mildly violated by e.g. a tiny number of outliers (see Figure 1.4).

Some of the above limitations of K-means have been addressed in the literature. Regarding outliers, variations

of K-means have been proposed that use more “robust” estimates for the cluster centroids. For example, the

K-medoids algorithm uses the point in each cluster which is most centrally located. By contrast, inK-medians

the median of coordinates of all data points in a cluster is the centroid. However, both approaches are far

more computationally costly than K-means. K-medoids, requires computation of a pairwise similarity matrix

between data points which can be prohibitively expensive for large data sets. In K-medians, the coordinates

of cluster data points in each dimension need to be sorted, which takes much more effort than computing the

mean. Alternatively, by using the Mahalanobis distance, K-means can be adapted to non-spherical clusters

(Sung & Poggio, 1998), but this approach will encounter problematic computational singularities when a

cluster has only one data point assigned.

Banerjee et al. makes use of Bregman divergence to unify some of the centroid-based parametric clustering

approaches (such as standard K-means evaluated using Euclidean distance and modified K-means evaluated

using Mahalanobis distance) as special cases of a more general formulation. The Bregman divergence between

any two vectors x and θ is defined as Dφ (x, θ) = φ (x)−φ (θ)−〈x− θ,∇φ (θ)〉 for a differentiable and strictly

convex function φ : S → R on a closed convex set S ⊆ RD, with 〈.〉 denoting dot product and ∇φ (θ) denoting

the gradient vector of φ evaluated at θ. Then the K-means objective function can be generalized to:

E =
1

2

K∑
k=1

∑
i:zi=k

Dφ (xi, µ̃k) (2.2)

where µ̃k = ∇φ (·) here denotes the expectation parameter of points in cluster k. This more general algorithm

does not restrict the data space to be Euclidean, extending to any data space that can be described with
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Bregman divergence as a measure of distance1. Depending on the data we are dealing with and the geometrical

properties we wish to explore, we can specify an appropriate function φ.

For example, the square Euclidean distance of K-means can be obtained by choosing φ (x) = 〈x, x〉. The

chosen underlying function is strictly convex and differentiable on RD and writing the above definition of

Bregman divergence we get:

Dφ (x, θ) =〈x, x〉 − 〈θ, θ〉 − 〈x− θ, ∇φ (θ)〉

= 〈x, x〉 − 〈θ, θ〉 − 〈x− θ, 2θ〉

= 〈x− θ, x− θ〉 = ‖x− θ‖22

(2.3)

Alternatively, if we choose φ (x) = xTAx for A being the inverse of the covariance matrix we can express the

Mahalanobis distance as Bregman divergence:

Dφ (x, θ) = xTAx− θTAθ − 〈x− θ, ∇φ (θ)〉

= xTAx− θTAθ − 〈x− θ, 2θA〉

=xTAx+ θTAθ − 2xTAθ = (x− θ)T A (x− θ)

(2.4)

therefore the non-spherical variant of K-means from (Sung & Poggio, 1998) can be also seen as a special

case of the general Bregman divergence clustering algorithm optimizing the objective in (2.2). The clustering

problems which we can express using the objective function (2.2) have the useful property that a simple

approximate procedure exists that optimizes the corresponding objective. Furthermore, the Bregman diver-

gence representation is often useful due to its relationship to the exponential family of distributions. Every

regular exponential family distribution2 is associated with a unique Bregman divergence in the following

way: the log-likelihood of the density of an exponential family distribution can be written as the sum of the

negative of a uniquely determined Bregman divergence and a function that does not depend on the distribu-

tion parameters Forster & Warmuth (2002). This defines an important association between the exponential

family distributions and associated Bregman divergences. Somewhat more sophisticated procedures such as

K-medoids cannot necessarily be included in this framework.

Clustering with some K-means alternatives that exploit different distance measures may adequately ad-

dress issues such as non-spherical data (Issue 1) and outliers (Issue 2). However, all algorithms derived to

optimize an objective function of the form of (2.2) will cluster data purely based on its geometric closeness

(Issue 3) and will require fixing K in advance (Issue 4). In addressing the problem of the fixed number of

clusters K, note that it is not possible to choose K simply by clustering with a range of values of K and

choosing the one which minimizes E. This is because K-means is nested : we can always decrease E by

increasing K, even when the true number of clusters is much smaller than K, since, all other things being

equal, K-means tries to create an equal-volume partition of the data space. Therefore, data points find

themselves ever closer to a cluster centroid as K increases. In the extreme case for K = N (the number

of data points), then K-means will assign each data point to its own separate cluster and E = 0, which

obviously has no meaning as a “clustering” of the data.

1Bregman divergence is similar to a metric, but does not satisfy the triangle inequality nor symmetry.
2Distributions from the regular exponential family are exponential family distributions with parameter space being an open

set, i.e. all of the parameters from the parameter space, θ ∈ Θ, and lie on the interior, Θ ≡ interior (Θ).
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2.2 Mixture models

While K-means essentially takes into account only the geometry of the data, mixture models are inherently

probabilistic, that is, they involve fitting a probability density model to the data. The advantage of considering

this probabilistic framework is that it provides a mathematically principled way to understand the algorithm’s

limitations and assumptions, while introducing further flexibility. We assume that the data can be generated

using a probability density of certain form (in this case mixture of Gaussian distributions) and we seek to

learn the best parametrization of that form (see Figure 2.1(b)). Estimating a mixture density model for the

data is a more general problem than the clustering one, as here we do not assume every point necessarily

belongs to one of the underlying clusters. Instead, each observation has a non-zero probability of belonging

to each of the K clusters.

In Gaussian mixture models (Bishop, 2006, page 430) we assume that data points are drawn from a

mixture (a weighted sum) of Gaussian distributions with density p (x) =
∑K
k=1 πkN (x |µk,Σk ), where K is

the fixed number of components, πk > 0 are the weighting coefficients with
∑K
k=1 πk = 1, and µk, Σk are the

parameters of each Gaussian in the mixture. So, to produce a data point xi, the model first draws a cluster

assignment zi = k. The distribution over each zi is known as a categorical distribution with K parameters

πk = p (zi = k). Then, given this assignment, the data point is drawn from a Gaussian with mean µzi and

covariance Σzi .

Under this model, the conditional probability of each data point given its cluster assignment is p (xi |zi = k ) =

N (xi |µk,Σk ), which is just a Gaussian. But an equally important quantity is the probability we get by

reversing this conditioning: the probability of an assignment zi given a data point xi (sometimes called

the responsibility), p (zi = k |xi ). This raises an important point: in the GMM, a data point has a finite

probability of belonging to every cluster, whereas, for K-means each point belongs to only one cluster. This

is because the GMM is not a partition of the data: the assignments zi are treated as random draws from a

distribution.

One of the most widely-used algorithms for estimating the unknowns of a GMM from some data (that is the

variables z, µ, Σ and π) is the Expectation-Maximization (E-M) algorithm. This iterative procedure alternates

between the E (expectation) step and the M (maximization) steps. The E-step uses the responsibilities to

compute the cluster assignments, holding the cluster parameters fixed. The M-step re-computes the cluster

parameters holding the cluster assignments fixed:

E-step: Given the current estimates for the cluster parameters, compute the responsibilities:

γi,k = p (zi = k |xi, π, µ,Σ) =
πkN (xi |µk,Σk )∑K
j=1 πjN (xi |µj ,Σj )

(2.5)

M-step: Compute the parameters that maximize the likelihood of the data set p (X |π, µ,Σ), which is

the probability of all of the data under the GMM (Dempster et al., 1977):

p (X |π, µ,Σ) =

N∏
i=1

K∑
k=1

πkN (xi |µk,Σk ) (2.6)

Maximizing this with respect to each of the parameters can be done in closed form:

Sk =
∑N
i=1 γi,k πk = Sk

N

µk = 1
Sk

∑N
i=1 γi,kxi Σk = 1

Sk

∑N
i=1 γi,k (xi − µk) (xi − µk)

T (2.7)

Each E-M iteration is guaranteed not to decrease the likelihood function p (X |π, µ,Σ). So, as with K-

25



means, convergence is guaranteed, but not necessarily to the global maximum of the likelihood. We can,

alternatively, say that the E-M algorithm attempts to minimize the GMM objective function:

E = −
N∑
i=1

ln

K∑
k=1

πkN (xi |µk,Σk ) (2.8)

When changes in the likelihood are sufficiently small the iteration is stopped. If used as a clustering tool,

E-M for GMM definitely adds to the computational and conceptual complexity of K-means, but resolves

some of the issues discussed earlier (the issues of inherent sphericity 1 and purely geometry based clustering

3 from Section 2.1 ). At the same time, even when assuming that the observed data is generated from a

mixture of Gaussians, there are certain issues with the E-M algorithm for GMM to keep in mind:

1. The convergence of E-M is guaranteed only to a local solution and typically finding the globally optimal

parameters of objective in (2.8) will not be feasible. The quality of this local solution depends upon

careful initialization.

2. The probabilistic nature of the GMM allows us to incorporate uncertainty in the clusters we learn from

the data by estimating probabilities for each assignment variable, rather then just learning some specific

cluster assignment values. However, the uncertainty in the component parameters, π, µ and Σ, is not

explicitly modeled which leads to sensitivity of the model to initialization and poorer performance in

the presence of outliers and potential for overfitting .

3. The minimization of the GMM objective function (2.8) using E-M algorithm can be often lead to a

singularity in the following way: if one of the Gaussian components ‘collapses’ onto a specific data point

(meaning µk → xi and Σk → 0), the objective goes to (minus) infinity, E → −∞. These singularities

of the GMM are considered as an example of the severe overfitting that sometimes occurs in maximum

likelihood methods.

4. The number of Gaussian components K describing the data is assumed fixed and known. Furthermore,

the likelihood p (X |π, µ,Σ) does not allow for adequate model selection for various K, as it will always

tolerate larger K until components start collapsing on single points.

2.3 The Bayesian framework

2.3.1 Bayesian mixture models

A natural way to address many of the issues with GMMs (such as: getting ‘stuck’ at local optima; potential

overfitting; ‘point’ estimates of the parameters π, µ and Σ), is to incorporate an additional level of hierarchy

in the probabilistic graphical model (PGM) therebyadopting the Bayesian modelling framework. Under the

Bayesian paradigm, we specify a prior distribution over each of the unknown model parameters in a PGM.

This allows us to express a posterior distribution over each of the model parameters which incorporates both

information gained from the data and information gained from the prior. By contrast, in Section 2.2 we were

computing only point estimates for the parameters π, µ and Σ. Typically, for each of the prior distributions

we will need to specify some new, corresponding hyperparameters. The values of these parameters can be

either specified to reflect some additional (expert) knowledge about the corresponding quantity, or using other

approaches, some of which we discuss in Appendix A. In practice we often choose the prior distributions over

the parameters in the model to be conjugate to the parameter likelihood. Conjugacy between the prior and
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the likelihood for a random variable guarantees the same mathematical form for the prior and posterior and

simplifies the mathematics.

Gaussian mixtures

Let us first consider a Bayesian treatment of the GMM from Section 2.2. The conjugate prior over the

categorically distributed mixing coefficients (π1, . . . , πK) is the Dirichlet, where in the absence of additional

information it is typically assumed uniform, or π ∼ Dir (α/K, . . . , α/K) for some concentration parameter

α > 0. If we assume the cluster parameters of the Gaussian components are unknown, one quite general

approach is to use a Normal-Inverse-Wishart (NIW) over the joint (µk,Σk) for k = 1, . . . ,K. We can then

write a probabilistic model for generating data (generative model) from this Bayesian GMM:

(µk,Σk) ∼ NIW (m0, c0, b0, a0)

π ∼ Dir (α/K, . . . , α/K)

zi ∼ Categorical (π)

xi ∼ N (µzi ,Σzi)

(2.9)

for k = 1, . . . ,K and i = 1, . . . , N with ′X ∼ F ′ denoting that random variable X has distribution F . We

denote the NIW prior hyperparameters with (m0, c0, b0, a0) where the vector m0 reflects our prior belief for

the means of the cluster components; the positive scalar c0 controls the scale between the covariance in

the Gaussian prior over the cluster means and the covariance matrix drawn from an Inverse-Wishart prior;

b0 is the inverse scale matrix and a0 is a positive scalar parameter denoting the degrees of freedom of the

Inverse-Wishart prior.

In this Bayesian formalism, it is straightforward to construct simpler models that assume fewer un-

known parameters. For example, if we believe that the Gaussian components describing each cluster are

approximately spherical, it can be efficient to assume Σk = σkI (I denoting the identity matrix with same di-

mension as the data) for k = 1, . . . ,K and place a simpler Normal-Inverse-Gamma prior over the parameters,

(µk, σk) ∼ NIG (m0, c0, b0, a0). Alternatively, often we assume that the covariance matrices are known to

simplify the computation, then we place a simple Gaussian prior over only the cluster means, µk ∼ N (µ0, σ0)

for k = 1, . . . ,K.

Exponential family mixtures

The notion of mixture models (Bayesian or not) is not constrained to only Gaussian data and under the same

framework, we can model a large range of data types. In fact, the only major restriction we place on the

mixtures and other probability models discussed in this thesis is the existence of conjugate priors for each

of the model terms. A common and quite flexible family of such conjugate models is to write them in more

general exponential family mixture model form. This is useful because any exponential family distribution

is guaranteed to have another exponential family conjugate prior distribution available in closed form (vice

versa is not always the case). The Gaussian distribution is just one of the exponential family distributions,

therefore we can view the GMM as a special case of the exponential family mixture model:

θk ∼ G0

π ∼Dir (α/K, . . . , α/K)

zi ∼ Categorical (π)

xi ∼ F (θzi)

(2.10)
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where θ1, . . . , θK are the component parameters; π1, . . . , πK are the mixing parameters; F is an exponential

family distribution and G0 is conjugate to F . Given a data point i is associated with component indicated

by the value of zi, the probability density function of F (θzi) is written in the form:

p (xi |θzi ) = exp (〈g (xi) , θzi〉 − ψ (θzi)− h (xi)) (2.11)

where g (.) is the sufficient statistic function, ψ (θzi) = log
∫

exp (〈xi, θzi〉 − h (xi)) dxi is the log partition

function and h (xi) the base measure of the distribution. As the prior over the component parameters G0 is

conjugate to F , we can obtain its probability density function as well in closed form:

p (θ |τ, η ) = exp (〈θ, τ〉 − ηψ (θ)− ψ0 (τ, η)) (2.12)

where (τ, η) are the prior hyperparameters of the prior measure G0. From Bayesian conjugacy, the posterior

p (θk |x, τk, ηk ) will take the same form as the prior where the prior hyperparameters τ and η will be updated

to τk = τ +
∑
j:zj=k

g (xj) and ηk = η +Nk with Nk =
∑
j:zj=k

1.

For example, in the specific case of a GMM with unknown means and covariances, we replace in (2.10) F

with the Gaussian distribution; G0 with the Normal-Inverse-Wishart; component parameters θ with (µ,Σ);

the hyperparameters (τ, η) with (m, c, b, a) and we can recover the model from (2.9). Examples of other

mixture models can be obtained by substituting the relevant expressions from Appendix A.

The Bayesian mixture model can be seen as a more general treatment to mixture modeling as it allows

for more control over the random parameters and it allows for more principled treatment of the model

uncertainty. In the Bayesian GMM for example the model parameters no longer depend only on the data,

but rather reflect a balanced trade-off between our belief about them expressed through (m0, c0, b0, a0) and

the data X we have observed. Furthermore, Bayes rule provides us with principles to integrate out any

nuisance model parameters which are not of explicit interest in the particular problem. This will allow us to

vary the structure of the model, which can potentially be used for: more efficient inference, better parameter

initialization, and better prediction and/or model selection. In fact, according to the Bayesian modeling

paradigm, placing priors over the unknown quantities in the model and integrating over them is always the

“correct” thing to do, unless sufficient information is available to fix the parameters to some particular values.

(a) Graphical model (b) GMM generated data

Figure 2.1: Probabilistic graphical model of the Bayesian mixture model. In the Gaussian case θ = (µ,Σ)
and θ0 = (m0, c0, b0, a0).
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2.3.2 Gibbs sampling

Where the E-M algorithm is the usual choice for inference in the GMM from Section 2.2, inference in complex

Bayesian models is usually performed using Markov chain Monte Carlo (MCMC) methods. Recall that the

E-M algorithm is a maximum likelihood approach and so only guaranteed to find locally optimal fit of the

model to the data. By contrast, the Gibbs sampler, introduced in (Geman & Geman, 1984), is a randomized

algorithm and as with all MCMC methods is asymptotically (that is, after an infinite number of iterations)

guaranteed to find the global posterior distribution of the model. Unfortunately these asymptotic guarantees

are not very useful in practice, as we never have unconstrained computational resources at our disposal and

the Gibbs sampler can take a prohibitively large number of iterations to converge to the posterior distribution.

This is worsened by poor mixing of the sampler when the required posterior consists of few “islands” of states

with high probability surrounded by an “ocean” of small non-zero probability. Gibbs sampling can also be

seen as a specific case of the Metropolis-Hasting (M-H) algorithm, which in its varying forms can better

handle discontinuities in the posterior state space. This thesis does not explore M-H in detail, but we would

direct the reader to (Chib & Greenberg, 1995) for an intuitive presentation.

Each step of the Gibbs sampler involves replacing the value of one of the variables in the model by

a value drawn from the distribution of that variable conditioned on the values of the rest of the vari-

ables in the model. For the Bayesian GMM (2.9), the variables (parameters and latent variables) would

be {z1, ...zN , µ1, ..., µK ,Σ1, ...,ΣK , π1, ..., πK}. Gibbs iterations would involve sampling the mixture com-

ponent parameters µ1, ..., µK and Σ1, ...,ΣK ; the mixture coefficients π1, ..., πK and the cluster indicators

z1, ..., zK given the data x1, ..., xN . At each iteration, holding the rest of the quantities fixed, we will update

each zi by drawing samples from the categorical distribution defined with weights for each category k being:

p (zi = k |µk,Σk, πk, x ) =
πkN (xi |µk,Σk )∑K
j=1 πjN (xi |µj ,Σj )

(2.13)

for k = 1, ...,K. Conditioned on the parameters {µ,Σ, π}, the probability of component assignments is

computed in the same way as in (2.5). Once the indicator variables have been updated, we proceed by

drawing samples now for the component parameters holding the rest of the quantities fixed:

(µk,Σk) ∼ NIW (µ,Σ |mk, ck, ak, bk ) (2.14)

The parameters (mk, ck, bk, ak) of this NIW distribution depend upon the current values of the indicators

and are updated using:

mk = c0m0+Nkx̄k
c0+Nk

ck = c0 +Nk

ak = a0 +Nk

bk = b0 + S + c0Nk
c0+Nk

(x̄k −m0) (x̄k −m0)
T

(2.15)

where x̄k =
∑
i:zi=k

xi

Nk
; Nk denotes the number of observations assigned to cluster k and S =

∑K
i=1 (xi − x̄k) (xi − x̄k)

T

is the sample covariance matrix. Note that while (m0, c0, b0, a0) denote the prior terms of the NIW distri-

bution and should be specified a priori, (mk, ck, bk, ak) are the corresponding posterior terms of the NIW

posterior estimated using the data and the information about the prior. We emphasize the fact that the

values of the parameters (mk, ck, bk, ak) are different for each cluster.

The next step is to sample the mixing coefficients from the following (posterior) Dirichlet distribution:

π ∼ Dir (N1 + α/K, ..., NK + α/K) (2.16)
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The posterior over the mixture weights is a Dirichlet distribution and so keeps the form of its conjugate

prior, as expected. The algorithm iterates between sampling each of the random quantities until convergence,

however note that convergence in MCMC methods has a different meaning. In the case of E-M for GMM, the

complete data likelihood (or equivalently the negative log likelihood (NLL) − ln (p (x, z|µ,Σ, π)) in (2.17))

eventually stops increasing (choosing a small threshold value for these changes in likelihood suffices to stop

the algorithm when the solution is sufficiently accurate). In Gibbs sampling though the likelihood never

converges onto single point solution as it is stochastic. Instead, Gibbs sampling converges onto the required

(by design) stationary posterior distribution. Detecting this type of convergence is a complex, well studied

and yet still unresolved problem. There are a plethora of possible convergence diagnostics, but none of them

provide any theoretical guarantees. Most of them rely on computing at each iteration the complete data

likelihood:

p (x, z|µ,Σ, π) =

N∏
i=1

K∏
k=1

π
δzi,k
k p (xi|µk,Σk)

δzi,k (2.17)

where δzi,k is the Kronecker delta. Then, at convergence the sequence of values of p (x, z|µ,Σ, π) estimated

for consecutive iterations of the sampler should be independent; there should be no correlation between

successive draws of the Gibbs sampler. In practice this can be quite hard to assess as it involves executing

many iterations of the sampler ahead to check for correlations. In this thesis we rely on one of the most

widely-used convergence diagnostics for Gibbs sampling described in (Raftery & Lewis, 1992). We provide

a short outline of Gibbs sampling for the special case of inference in the spherical Bayesian GMM and this

can be found in Chapter 3, Algorithm 3.3.

In the more general exponential family formulation of the mixture model (2.10), the Gibbs sampler

iterates between updates for the indicators z1, . . . , zN , the parameters θ1, . . . , θK and the mixing parameters

π1, . . . , πK . Each zi is updated by sampling from the categorical distribution with weights:

p (zi = k |θk, πk, x ) =
πk exp (〈g (xi) , θk〉 − ψ (θk)− h (xi))∑K
j πj exp (〈g (xi) , θj〉 − ψ (θj)− h (xi))

(2.18)

for each component k = 1, . . . ,K. The component parameters for each k are sampled from the posterior:

θk ∼ G0 (τk, ηk) (2.19)

with τk = τ +
∑
j:zj=k

g (xj) and ηk = η +Nk. The mixture coefficients π in the more general setup are still

updated from the corresponding Dirichlet posterior from (2.16).

2.3.3 Variational Bayes inference

Variational methods provide a ubiquitous and general framework to convert the problem of stochastic infer-

ence to one of deterministic optimization. They have played a key role across many application domains,

however here we will briefly review them in the context of probabilistic modeling with the example of the

GMM. When doing inference in probabilistic models, we are most often interested in the posterior over all

the unknown variables p (Z |x ). More precisely, often we try to evaluate the expectation of the complete

data log-likelihood (the model log-likelihood) with respect to this posterior. However, this marginalization is

rarely tractable, especially in Bayesian models where we have placed a prior distribution over the unknown

quantities in the model (the parameters). We already presented one way to approximate stochastically this
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expectation using MCMC methods (Gibbs sampler Section 2.3.2); VB methods are deterministic. Consider

the distribution q (Z) which approximates the posterior p (Z |x ), the log marginal probability of the data can

then be written as:

ln p (x) = L (q) + KL (q ‖p ) (2.20)

where we use:

L (q) =

∫
q (Z) ln

{
p (x, Z)

q (Z)

}
dZ

KL (q ‖p ) = −
∫
q (Z) ln

{
p (Z |x )

q (Z)

}
dZ

(2.21)

The quantity L (q) can be seen as the lower bound of the posterior p (Z |x ), while KL (q ‖p ) is the Kullback-

Liebler divergence between the approximate q (Z) and the true posterior p (Z |x ). In VB inference we aim

to maximize the lower bound L (q), or equivalently minimize KL (q ‖p ), which implies optimization with

respect to q (Z). If no restrictions are placed on the type of distributions q (Z), the maximum of the lower

bound is obtained when the KL divergence vanishes since q (Z) ≡ p (Z |x ). As this scenario is not tractable,

typically restrictions are placed on the family of distributions q (Z) and the problem becomes one of finding

the member of the restricted family with minimal KL divergence to the posterior of the model. The choice of

restrictions can be somewhat arbitrary, but probably the most common one for inference in Bayesian models

is a factorization assumption, motivated by mean field theory (Parisi, 1988) in physics. That is, we assume

that the q distributions factorize to some M disjoint groups, q (Z) =
∏M
m=1 qm (Zm).

Let us present a particular example, the Bayesian GMM from Section 2.3, where data was modeled with:

(µk,Σk) ∼NIW (m0, c0, b0, a0)

π ∼ Dir (α/K, . . . , α/K)

zi ∼ Categorical (π)

xi ∼ N (µzi ,Σzi)

(2.22)

In this setup Z = {z1, . . . , zN , π1, . . . , πK , µ1, . . . , µK ,Σ1, . . . ,ΣK}, the typical factorization assumption

is that the joint probability over the latent variables and the component parameters factorizes. We as-

sume q (z, π, µ,Σ) = q (z) q (π, µ,Σ) and the corresponding variational distributions take the form: q (z) =∏N
i=1

∏K
k=1 γ

δzi,k
ik for γik being the probability of point i belonging to component k; q (π) = Dir (π |α ) with

K-dimensional parameter α = α1, . . . , αK and q (µk,Σk) = N
(
µk
∣∣mk, c

−1
k Σk

)
W−1 (Σk |bk, ak ) denoting

the Normal-Inverse-Wishart distribution with:

mk = c0m0+Nkx̄k
c0+Nk

ck = c0 +Nk

ak = a0 +Nk

bk = b0 + S + c0Nk
c0+Nk

(x̄k −m0) (x̄k −m0)
T

(2.23)

where x̄k, Nk and S are computed in the same way as in Section 2.3.2. Note that while (m0, c0, b0, a0) denote

the prior terms of the NIW distribution and should be specified a priori, (mk, ck, bk, ak) are the corresponding

posterior terms of the NIW posterior that are estimated using the data and the information from the prior.

The optimization of the variational posterior distribution then involves first updating the indicators from the
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expectation:

E [zik] = exp

E [lnπk] +
E
[
ln
∣∣Σ−1
k

∣∣]
2

−
Eµk,Σ−1

k

[
(xi − µk)

T
Σ−1
k (xi − µk)

]
2

 (2.24)

where we use

Eµk,Σk
[
(xi − µk)

T
Σ−1
k (xi − µk)

]
= Dc−1

k + ak (xi −mk)
T
bk (xi −mk) (2.25)

E
[
ln
∣∣Σ−1
k

∣∣] =

D∑
d=1

ψ

(
ak + 1− d

2

)
+D ln (2) + ln |bk| (2.26)

E [lnπk] = ψ (αk)− ψ (α̂) (2.27)

where α̂ =
∑
k αk and ψ (·) is the digamma function. Then we hold the indicators fixed while updating

the variational posterior of the component parameters π, µ and Σ using the the expressions for q (π) and

q (µk,Σk) from above. We iterate between the two (in E-M fashion) until convergence at a fixed solution is

reached.

2.3.4 Iterated conditional modes

Despite the asymptotic guarantees of the Gibbs sampler, for mixture models it can take rather long to

converge to a good estimate of the posterior. On the other hand, the K-means algorithm makes some

rather restrictive assumptions in addition to those used to define the GMM, which can lead to surprising

behaviour. However, a clustering algorithm almost as simple as K-means can be derived from the GMM,

that overcomes a lot of the pitfalls of K-means while also remaining simple and scaling well. The basic idea

is to use conditional modal point estimates rather than samples from the conditional probabilities as in Gibbs

sampling. This is a simple maximum-a-posteriori (MAP) method that can be used to derive algorithms

which converge to at least locally optimal model fits to the data. Unlike MCMC methods and E-M, such

methods do not provide any information about the uncertainty of the model fit, or the distribution of the

latent variables. The approach is known as iterated conditional modes (ICM) (Besag, 1986), later also called

the maximization-maximization (M-M) algorithm by (Welling & Kurihara, 2006). Consider the GMM from

(2.9) as a starting point, iterative MAP computes for each i ∈ {1, . . . , N} the negative logarithm of each

p (zi = k |µk,Σk, πk, x ) from (2.13):

di,k =
1

2Σk
‖xi − µk‖22 +

D

2
ln Σk − lnπk (2.28)

for k = 1, . . . ,K where we can ignore normalization terms which are independent of k. We update zi such

that:

zi = arg min
k∈{1,...,K}

di,k (2.29)

The algorithm proceeds with updating the model parameters with the values that maximize their correspond-

ing posterior distributions. For each component k we update the cluster means and covariances using the

mode of the NIW posterior:

µk = mk

Σk = bk (ak −D − 1)
(2.30)
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with mk, bk and ak computed as in (2.15). Finally, we update the component weights using the closed form

mode of the Dirichlet posterior from Equation (2.16):

πk =
Nk + α/K − 1

N + α−K
(2.31)

for k ∈ {1, . . . ,K}. The procedure iterates between updating the assignments z, the cluster parameters

(µ,Σ) and the mixing weights π until convergence. Similar to K-means, this iterative MAP inference is

guaranteed to converge to a local clustering solution, but unlike K-means it actually optimizes the complete

negative log-likelihood of the Bayesian GMM, (2.17). That is, at each iteration MAP does not increase

− ln (p (x, z|µ,Σ, π)) and eventually converges to a fixed point clustering solution.

In Algorithm 2.2 we summarize the ICM method applied to the simple GMM with spherical component

covariances. This setup allows us to easily see that spherical MAP introduces only slight modifications to the

K-means algorithm, but we can resolve some of its drawbacks: for example the data is no longer clustered

purely based on its geometric closeness, see Issue 3 from Section 2.1. Distances are now also balanced with

the relative cluster densities reflected through the mixture weight term πk and the σ term allows for explicit

control over component spread.

The fact that ICM optimizes the original likelihood of the probabilistic model enables us to use it (or

equivalently the negative log likelihood) for model selection and predictions. This means that we can compare

the quality of different clustering solutions, produced using ICM applied to the Bayesian GMM, by comparing

the corresponding NLL values (for the Bayesian GMM this involves computing (2.17)). We discuss strategies

for making predictions using ICM in later sections. The execution time of K-means and MAP is comparable

and can be a few orders of magnitude less than with corresponding MCMC methods such as Gibbs.

2.4 Marginalization

The process of collapsing a probabilistic model involves integrating out random variables from the probabilis-

tic model to improve computational efficiency of an associated inference algorithm. Collapsing in Bayesian

inference is only a specific application of a more general technique known as Rao-Blackwellization (Kol-

mogorov, 1950). In this technique we use sufficient statistics of an unknown quantity to improve its statistical

estimators. For example, let p (x, θ) denotes some target distribution on two random variables x ∈ Ω and

θ ∈ Θ and {(xi, θi)}Ni=1 are N independent draws from this joint distribution. Probably the simplest way to

estimate some statistic f (x, θ) is using:

Ep [f (x, θ)] =

∫
Θ

∫
Ω

f (x, θ) p (x, θ) dx dθ

≈ 1

N

N∑
i=1

f (xi, θi) = Ep̃ [f (x, θ)]

(2.32)

where Ep̃ [f (x, θ)] is an estimator of Ep [f (x, θ)] (hence the notation p̃ (·) which is an estimator of the target

distribution). Now, consider that the conditional distribution p (x |θ ) is available in some tractable analytic
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closed form. Then, we can consider the following alternative estimator:

Ep [f (x, θ)] =

∫
Θ

∫
Ω

f (x, θ) p (x |θ ) p (θ) dx dθ

=

∫
Θ

[∫
Ω

f (x, θ) p (x |θ ) dx

]
p (θ) dθ

≈ 1

N

N∑
i=1

∫
Ω

f (x, θi) p (x |θi ) dx = Ep̃ [Ep [f (x, θ) |θ ]]

(2.33)

Both estimator Ep̃ [f (x, θ)] and estimator Ep̃ [Ep [f (x, θ) |θ ]] are unbiased and asymptotically converge to

Ep [f (x, θ)] almost surely as N → ∞. However the conditional estimator Ep̃ [Ep [f (x, θ) |θ ]] can be thought

of as more reliable, because the inherent sample space of Ω is smaller than the original space Ω ×Θ. Proof

that starting from an unbiased estimator, the estimator’s variance can be reduced by conditioning simpler

estimators with respect to some appropriate statistic can be found in (Sudderth, 2006).

Theorem: Rao-Blackwell Let x and θ be dependent random variables and f (x, θ) a scalar statistic.

Consider the marginalized statistic Ex [f (x, θ) |θ ], which is a function solely of θ. The unconditional variance

Varx,θ [f (x, θ)] is then related to the variance of the marginalized statistic as follows:

Varx,θ [f (x, θ)] =Varθ [Ex [f (x, θ) |θ ]] + Eθ [Varx [f (x, θ) |θ ]]

≥ Varθ [Ex [f (x, θ) |θ ]]
(2.34)

From (2.34) it follows that analytic marginalization of some variables from a joint distribution will always

reduce the variance of marginal estimates. Furthermore, it will also follow that integrating over some θ is

most useful when the average variance of x conditional on θ is large. This variance reduction, guaranteed

by the theorem, also generalizes to estimates based on the correlated samples produced by a Gibbs sampler

(Liu et al., 1994).

2.5 The Dirichlet process

In Section 2.3 we introduced Bayesian finite mixture models (and important ideas related to inference in

them) as a flexible probabilistic way to model clustering of observed data. However, finite mixture models

require a fixed number of mixture components K to be chosen. Model selection using the complete data

likelihood of the model is a rigorous approach to tuning the hyperparameters of a Bayesian mixture, but

formally K is not a hyperparameter. In the Bayesian context, this is because K has not been treated as

random. Placing a prior distribution over K or comparing different solutions for the model using different

values of K can be inefficient and often lead to incorrect results in practice. For many applications, an

adequate model should be able to learn the number of components based on the available data, adapting as

more data becomes available. This will be the underlying motivation for constructing the Bayesian infinite

mixture model, i.e. the Dirichlet process mixture model. The infinite mixture model replaces the assumption

that there are a fixed, finite number of mixture components with a one where there is an infinite number of

possible components and for any finite dataset only some unknown finite number of them are represented.

To understand better the construction and the properties of such models we start by introducing here the

DP and some of its most useful properties and constructions.
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2.5.1 Definition

Let (Θ, B) be a measurable space3, with G0 a probability measure4 on the space. Let α be a positive real

number. A Dirichlet process, DP (α,G0), is defined as the distribution of a random probability measure G over

(Θ, B) such that, for any finite measurable partition (A1, ..., AK) of Θ, the random vector (G (A1) , ..., G (AK))

is distributed as a finite dimensional Dirichlet distribution with parameters (αG0 (A1) , ..., αG0 (AK)), i.e.:

G (A1) , ..., G (AK) ∼ Dirichlet (αG0 (A1) , ..., αG0 (AK)) (2.35)

for any A1 ∪ · · · ∪ AK ≡ Θ(i.e. partition of the set into exhaustive and mutually exclusive subsets of the

elements of that set). That is, we say a probability mass function G is a draw from a DP if all of its possible

finite marginal distributions are Dirichlet distributed.

A DP is parametrized by a concentration parameter α > 0 and some base distribution G0 where the

base distribution is the expectation of the DP. For G ∼ DP (α,G0), the base distribution G0 specifies the

expectation of the probability measure G, E [G] = G0. This is straightforward to see if we use (2.35) and we

substitute concentration parameter α = 1, from the properties of the Dirichlet distribution it follows that

E [G (Ak)] = G0 (Ak) for k = 1, . . . ,K. Therefore, G0 effectively specifies where the probability mass of draw

G is distributed on average. Note that G0 can be both continuous or discrete, unlike G which is forced to be

discrete. The parameter α reflects our belief in the base distribution G0, or the concentration of G around G0.

For some fixed G0, as α→ 0 the draw (G (A1) , G (A2) , . . . , G (AK)) will get sparser as (from (2.35)) it would

be drawn from a Dirichlet distribution with diminishing α and the mass will be concentrated on a single

subset Ai, with the rest of Θ having nearly 0 support. As α → ∞ the distribution of (G (A1) , . . . , G (AK))

will get closer to (G0 (A1) , G0 (A2) , . . . , G0 (AK)).

As discussed above, a G drawn from a DP (α,G0) is a probability distribution and we can draw samples

φi from it. We can then discuss the properties and form of such a DP-distributed measure G in terms of

some draws from it φ1, . . . , φN . Due to the discreteness G, each draw φ will take exactly one of some K

values, with the probability of the draws in full generality being categorically distributed. For any partition

(A1, . . . , AK), we use Nk to denote the number of φ’s in Ak, Nk =
∑
i:φi∈Ak 1. Then using the conjugacy

between the Dirichlet and the categorical distributions, we can write the posterior of any finite marginal of

G as:

(G (A1) , . . . , G (AK)) ∼ Dirichlet (αG0 (A1) +N1, . . . , αG0 (AK) +NK) (2.36)

and this will hold for any partition (A1, . . . , AK) of Θ. Using the defining property of a DP (2.35), we can

say that the posterior of the measure G, p (G |φ1, . . . , φN ) is also a DP and we will now derive the posterior

parameters of that DP.

The samples φ from a DP-distributed G have a strong clustering property that they share with all discrete

distributions: draws φ1, . . . , φN have repeated values and we will denote the unique values that they take

with θ1, . . . , θK where usually N � K. It will then be beneficial to choose a partition which places draws

sharing the same value θk in the same subset and further split samples with different values into different

subsets. Formally, choose a partition (A1, . . . , AK , AK+1, . . . , AK+ν) for some integer ν > K such that

Ak = {φi : φi = θk, i ∈ {1, . . . , N}} for k = 1, . . . ,K and AK+1 ∪ · · · ∪ AK+ν = Θ\A1\ . . . \AK . From the

3A measurable space is some pair (Θ, B) consisting of a set B and a σ-algebra Θ of subsets of B. The σ-algebra Θ is a
collection of subsets of B that includes the empty subset, is closed under complement, and is closed under countable unions and
countable intersections.

4A probability measure is a measure which assigns the value 1 to the entire probability space.
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definition of a Dirichlet process and the conjugacy of the Dirichlet and the categorical distributions we have:

(G (A1) , . . . , G (AK+1)) ∼Dirichlet (αG0 (A1) +N1, . . . , αG0 (AK) +NK , αG0 (AK+1) , . . . , αG0 (AK+ν))

∼ Dirichlet (N1, . . . , NK , αG0 (AK+1) , . . . , αG0 (AK+ν))

(2.37)

Since this holds for any partition of the space Θ, this is by definition a DP but with updated concentration

parameter α+N and updated base distribution:

αG0 +
∑N
i=1 δφi

α+N
. (2.38)

Equation (2.36) allows us to compute the predictive likelihood p (φN+1 |φ1, . . . , φN ) =
∫
p (φN+1 |G ) p (G |φ1, . . . , φN ) dG

as follows. If we choose any setAk j Θ with k ∈ {1, . . . ,K, . . . } and let us compute p (φN+1 ∈ Ak |φ1, . . . , φN ).

We integrate out the DP G and find:

p (φN+1 ∈ Ak |φ1, . . . , φN ) =

∫
p (φN+1 ∈ Ak |G ) p (G |φ1, . . . , φN ) dG

=

∫
G (Ak) p (G |φ1, . . . , φN ) dG

= E [G (Ak) |φ1, . . . , φN ]

=
1

α+N

(
αG0 (Ak) +

N∑
i=1

δφi (Ak)

)

=
α

α+N
G0 (Ak) +

K∑
j=1

Nj
α+N

δθj (Ak)

(2.39)

If we let Ak = Θ\ {φ1, . . . , φN}, then we find φN+1 is drawn from the base measure G0 with probability
α

α+N . If we let Ak = {θk} then φN+1 = θk with probability Nk
α+N . This means that with probability Nk

α+N the

new draw will be equal to an existing θk. This argument makes it clear that draws from G cluster together

around the same θk; hence we will often refer to the θk as atoms of the distribution G. We will see that those

predictive probabilities are exactly the same as those defined by the Chinese restaurant process later on in

Section (2.5.2). In fact an important property of this stochastic process is that it defines the distribution of

partitions of samples from a DP-drawn random measure G.

2.5.2 Constructions

Stick-breaking construction

Probability measures G drawn from a DP have the interesting property that they are discrete with probability

one, or any draws from a DP, regardless of the sample space of the base distribution, are discrete by definition.

Therefore, one way to look at discrete probability density G is as a mixture of point masses i.e. G =∑∞
k=1 πkδθk where δθk is the (multidimensional) Dirac delta function centered at θk. If G is a draw from

a DP, G ∼ DP (α,G0), then the θk should be independent and identically distributed draws from the base

distribution G0, θk ∼ G0 for k = 1, 2, . . . . We can think of the point masses as the discrete domain of values

of G and the mixing coefficients πk as the support of each discrete atom, where the the mixing coefficients

sum to 1,
∑∞
k=1 πk = 1. The mixing coefficients should be constructed using a stick-breaking construction

as Sethuraman (1994) showed. Suppose there is a stick with length 1. At each step k, for k = 1, 2, 3, . . . , we

take βk ∼ Beta (1, α) part from what is left of the stick, then πk can be calculated as the length we actually
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at each step:

π1 = β1, π2 = (1− β1)β2, . . . , πk = βk

k−1∏
j=1

(1− βj) , . . . , (2.40)

For the weights π1, . . . , π∞ generated using the stick-breaking process with parameter α we will write π ∼
Stick (α). The stick-breaking constriction is one view of generating draws from a DP using the discreteness

of its mass function (Gershman & Blei, 2012). Note that the density G drawn from a DP is represented as an

infinite sum and so does not have a closed form probability density function, this is one of the problems we have

to overcome when dealing with the DP (Gershman & Blei, 2012). However, the stick-breaking construction

provides us with the steps to accurately generate an unlimited number of mixing coefficients πk in this sum.

The atoms θk can be obtained by sampling from the known base distribution G0. The importance of the

stick-breaking approach for this thesis will come from the fact that using this construction, we will be able to

define tractable inference for the Dirichlet process mixture model (and other BNP models such as HDP and

HDP-HMM from later chapters) that does not require integration over the random DP distributed measure G.

Neal (2003) introduced a slice sampling method for inference in DP mixtures, which asymptotically recovers

the exact DP mixture model posterior over the full parameters space, avoiding any collapsing. Inference

methods for DP mixtures, which are based on the Chinese restaurant process construction will always require

integrating out G. Following up on our discussion on marginalization in probabilistic Bayesian models, the

stick-breaking construction will allow us to derive memory efficient algorithms and will also simplify inference

in non-conjugate DP-based probabilistic models.

Polya urn construction

The Polya urn scheme does not refer to G directly; rather, it refers to draws from G. Thus let φ1, ..., φN be

a sequence of independent and identically distributed random variables drawn from G. That is, the variables

φ1, ..., φN are conditionally independent given G, and hence are exchangeable (their joint distribution is

independent of any ordering). Let us consider the successive conditional distributions of φi given φ1, ..., φN−1,

where G has been integrated out. Blackwell (1947) showed that these conditional distributions have the

following form:

p (φN+1 |φ1, ..., φN , α,G0 ) ∼
N∑
i=1

1

N + α
δφi +

α

N + α
G0 (2.41)

We can interpret this conditional distribution in terms of a simple urn model in which a ball of a distinct

colour is associated with each distinct θi. The balls are drawn with equal probability; when a ball is drawn,

it is placed back in the urn together with another ball of the same color, i.e. the same value θi. In addition,

with probability proportional to α, a new colour ball is created by drawing from G0, and this ball is added

to the urn.

In the Polya urn scheme, we overcome the problem of constructing an infinite mixture of point masses

G, by integrating over G and dealing instead with the successive conditional probabilities of the draws of

G, derived in (Blackwell, 1947). Where the conditional probability of θN given G is an infinite mixture, the

marginal likelihood of θN is available in closed form (2.41). This exploitation of marginalization is widely

used when dealing with Bayesian nonparametric models since the inherently infinite parameter space can be

integrated out and the marginal structure can be used for more efficient inference.
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Chinese restaurant process (CRP)

A closely related stochastic process to the Polya urn scheme is the Chinese restaurant process (CRP). In

fact, the CRP defines the distribution over partitions that is inherent in the partitioning of the elements

θ1, . . . , θN of the Polya urn scheme. Furthermore, this is the partition implied by the data after integrating

out the mixing distribution G from a DPMM - the CRP is a marginal process of the DP.

Recall from above that by partition we mean the usual concept of a set of subsets of some items, where

each item is allowed to belong to exactly one subset. The set of subsets is exhaustive and mutually exclusive.

The subsets are also referred to as clusters. Let us denote a partition of N items as τN . We are going to

denote the number of subsets (clusters) in τN as K and we will index the different subsets in τN with k where

k ∈ {1, ...,K}. Further c1, ..., cK will refer to the different subsets in partition τN . For consistency with the

notation in the rest of the report, we will denote the cardinality of cluster k as Nk = |ck|. Let us consider we

have N items x1, ..., xN , then τN would be some exhaustive and mutually exclusive set of subsets of x1, ..., xN .

For example, if N = 8, a possible partition would be τ8 = {{x1, x2} , {x3, x5, x7} , {x4, x6} , {x8}}. The total

number of subsets in τ8 is K = 4, and c3 refers to the subset of elements {x4, x6} and N3 = 2. Note that

the subsets can instead be constructed using sets of indices i = 1, 2, . . ., so that, e.g. c3 = {4, 6}, which is

the notation we adopt from now on. Furthermore, introducing subset assignment variables z1, . . . , z8, we can

write c3 = {xi : ∀xi |zi = 3, i ∈ {1, . . . , 8}}.
The CRP is a probability distribution on partitions parametrized by concentration parameter α and

number of elements in the partition N . To explain further the behaviour and properties of this distribution

and how is it determined by those parameters, let us show how to construct partitions that are CRP-

distributed. We will start from a one point partition (one subset with one element in it) and will add one

point at a time in the partition, sampling subset assignments for new points from a conditional rule; after

increasing the points in the partition up to N , we will obtain a partition that is a draw from the CRP

for N points. This defining conditional rule depends on previous subset assignments and the concentration

parameter α and is often described using the metaphor of a restaurant, with data points corresponding to

customers and subsets (clusters) corresponding to tables. Customers arrive at the restaurant one at a time.

The first customer is seated alone. Each subsequent customer is either seated at one of the already occupied

tables with probability proportional to the number of customers already seated there, or, with probability

proportional to the parameter α, the customer sits at a new table. An important point to make is that the

tables are to be viewed as unordered and so permutations of tables in the restaurant does not change the

partition. To avoid introducing labels that suggest an ordering, we refer to a table by the subset of customers

sitting at the table. We keep the same notation from above and use k to denote a cluster index and ck to

denote the cluster itself, similarly Nk would denote the number of customers sitting at table ck. With this

metaphor and notation, we write the probabilistic rule characterizing the CRP as follows:

P (customer N + 1 joins table ck) =

 Nk
α+N if ck ∈ τN
α

α+N otherwise
(2.42)

After N customers have arrived, their seating pattern defines a set of clusters and thus a partition. This

partition is random, and thus the CRP is a distribution on partitions. From now on we will denote this as:

τN ∼ CRP (α,N)
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Further, we can compute P (τN ) given that τN is a draw from a CRP by:

P (τN ) =
αK

α(N)

∏
ck∈τN

(Nk − 1)! (2.43)

where α(N) = α (α+ 1) ... (α+N − 1) and we will use this notation for the whole section. This probability

is obtained as a product of the probabilities in (2.42). There are exactly K number of tables in τN and so

customers have sat on a new table K times, explaining the term αK in the expression. The probability of a

customer sitting on an existing table ck is used Nk − 1 times where each time the numerator of the corre-

sponding probability increases, from 1 to Nk − 1. This is how the term
∏
ck∈τN (Nk − 1)! in the probability

of the partition arises. The α(N) is the product of the denominators when multiplying the probabilities from

(2.42), as N = 1 at the start and increases to N − 1 for the last seated customer. Therefore, we can see that

the parameter α controls the rate of increase of the number of subsets in τN as N increases. It is usually

referred to as the concentration parameter because it determines the concentration of customers around the

tables. If we hold the number of customers fixed, as α increases the number of subsets K (tables) in τN

increases.

Figure 2.2: The number of available tables R, which includes both the occupied and the empty (dashed) ones
is infinite, while the number of occupied tables, K, is finite and unknown for any finite number of customers
x1, . . . , xN .

Despite the CRP being specified by a partition of items, an important property of this distribution on

partitions is that it is invariant to the ordering, i.e. only the size of the clusters matters in determining the

probability of the partition, not the identities of the specific items forming the clusters. This is an example

of probabilistic exchangeability and is essential to using the CRP as a constructive mechanism for mixture

models later on. Exchangeability is a natural property for clustering data and many algorithms, including

K-means defined earlier, are invariant to the ordering of the data points.

2.5.3 Pitman-Yor generalization

The Pitman-Yor process (PYP) (Pitman & Yor, 1997) is a generalization of the DP, which has an additional

discount hyper-parameter that gives the PYP more control than the DP over the rate at which new clusters

are created. The expected number of clusters to be created by a DP is approximately α logN which grows

slowly with N (Sammut & Webb, 2011, page 285). So, with more data arriving, the model might create fewer

clusters than we might wish. For many applications we might wish the number of clusters to be able to grow

more quickly. Then the PYP turns out to be useful. It can be shown that the expected number of clusters

in the PYP with discount parameter κ is proportional to Nκ (Pitman & Yor, 1997). In addition, it allows

for more control than the DP over the tails of the partition distribution it implies, i.e. more control over the

support of the smaller clusters. While the distribution that the DP defines over the size of the clusters to
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be created has exponential tails, the PYP allows us to model cluster sizes with power-law tail distribution.

A PYP corresponds to a distribution over a discrete probability distribution G ∼ PY (α, κ,H). The hyper

parameters α > −κ and 0 ≤ κ < 1 control the distribution over the mixing weights π (using same notation as

above). The base distribution G0 is a prior over the parameter space Θ. A draw from PY (α, κ,G0) has the

following representation: G (θ) =
∑∞
k=1 πkδθk . The weights can be obtained with a (modified) stick-breaking

process:

βk ∼ Beta (1− κ, α+ kκ)

πk = βk

k−1∏
j=1

(1− βj)

The parameters are distributed as θk ∼ G0. Then if θ1, ..., θN ∼ G and G ∼ PY (α, λ,G0) we will be

interested in the following conditional (marginal) probabilities:

θN |θ1, ..., θN−1 ∼
K∑
k=1

Nk − κ
α+N − 1

δθk +
α+Kκ

α+N − 1
G0 (2.44)

where Nk counts how many parameter sets θ have been sampled from component k. All of the clustering

algorithms derived in this thesis from the DP mixture model, can be easily extended to Pitman-Yor mixture-

based algorithms that will simply have an additional parameter κ, giving additional control over how quickly

the number of clusters increase with the data.

2.5.4 Dirichlet process mixture models

Infinite mixture models

An intuitive explanation that can help us understand the assumptions inherent in the DP mixture model is to

view it as the limiting process obtained by assuming a Bayesian mixture model with K components and allow-

ingK →∞, also known as the infinite mixture model (Rasmussen, 1999). Recall that in finite mixture models,

the conjugate prior over the mixing coefficients was π1, . . . , πK ∼ Dirichlet (α/K, . . . , α/K) where here for ease

of notation, we consider a simple uniform Dirichlet prior with parameters α1 = · · · = αK = α/K. Therefore, a

priori we place some non-zero support on some fixed K number of components. From conjugacy it follows that

the corresponding posterior of π is also a Dirichlet distribution, with π ∼ Dirichlet (N1 + α/K, ..., NK + α/K).

This means that the πk reflect a trade-off between the number of observations already assigned to a com-

ponent and the prior quantity α/K, where if no observations belong to a group there is still some non-zero

support α/K on that component.

However, if we assume the number of components K → ∞, the prior support on any of those infinitely

many components goes to zero at the limit, α/K → 0 . In other words, there exist support on infinitely many

components, but the probability value of that support is 0 at the limit. Let us denote with K+ the number

of components which are actually represented after observing the data. In the Bayesian finite mixture model

(Section 2.3) by design we always have K+ = K because each component has non-zero prior support α/K.

As K →∞ this is no longer guaranteed.

Unlike K which is the number of components in the ‘latent’ structure of the model, which could also be

infinite, K+ is forced to be finite as we always have a finite amount of data. If we assume that the size of

the data is infinite then asymptotically K+ → K, but for practical purposes when the data is finite, so will

be K+.
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For each of the components represented in the data, the counts Nk of observations assigned to it is

positive. Also the support for πk becomes proportional to Nk for represented components as Nk +α/K → Nk

for K →∞. Consider now the remaining K−K+ non-represented components. There are infinitely many, as

limK→∞K −K+ →∞ each one with 0 probability of having an observation assigned to them. However, let

us now look at the probability of assigning an observation to any of these non-represented components. Due

to the aggregation property of the Dirichlet distribution, the posterior Dirichlet parameter value associated

with all non-represented components lumped together, will be:

K−K+∑
k=1

α

K
=
K −K+

K
α (2.45)

We can see that limK→∞
K−K+

K = 1 for K+ is finite. Then the probability of assigning an observation to

any of the non-represented components is proportional to α, so that only by combining all non-represented

component weights we do get non-zero combined weight πK++1 ∝ α which holds for any finite K+. In

the rest of the thesis we use notation K for both number of population clusters for finite models and the

unknown number of represented components. Furthermore, by clarifying the difference in the meaning of

the concentration parameter α for the Dirichlet distribution and the Dirichlet process, we can think of the

concentration parameter as a prior item count and denote it with N0, having α ≡ N0 in all of the following

figures and expressions throughout the thesis.

CRP mixture model

The CRP provides us with a model for probabilities over partitions, but leaves us short of a model for

generating data points from a mixture. To take the next step, we will derive a model that generates data

points that cluster in partitions which are distributed according to a CRP. To each table ck in the partition τN

(more formally τN = c1∪· · ·∪cK) we assign a parameter vector θk and we make the assumption that the data

points from table ck are generated independently from a common probability distribution with parameters

θk. Then, as is typical for mixture models, let f (xi |θk ) denote the probability density for generating data

point xi from the distribution parametrized by θk. For instance, if we use a Gaussian the probability density

for point xi from cluster ck would be f (xi |θk ) = N (xi |µk,Σk ) with θk = {µk,Σk}. Now that we have a

generating distribution for single observations and with known cluster assignments, we can obtain the overall

likelihood of the data. The overall conditional probability of the data is the product over clusters and over

data points within clusters:

p (x |θ, τN ) =
∏

ck∈τN

∏
i:zi=k

f (xi |θk ) (2.46)

To provide a complete Bayesian probabilistic model, we need to specify a prior over the parameters θ, and

we denote this as G0. Then the model generating the data points is:

τN ∼ CRP (N0, N)

θk ∼ G0 for ck ∈ τN (2.47)

xi ∼ F (θk) for ck ∈ τN , i : zi = k

where F (θk) denotes the distribution defined with probability density function f (x |θk ) and we have used

N0 instead of α for notation of the concentration parameter (prior item count). These linked conditional
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probabilities yield a joint probability distribution on the set of variables (x, θ, τN ) and then Bayesian inference

can be invoked to obtain various posterior probabilities of interest, in particular the probability of the

partitions given the data, which serves as a method of clustering the data. We can also use this construction

to sample data that induces a CRP partition. Consider that F (θk) is Gaussian and we choose the conjugate

Normal-Gamma (NG) prior over all θk (the variables in each dimension of θk, θk,1, . . . , θk,D are independent).

Then if we sample component parameters from the NG prior with m0 = [1, 1], c0 = 1, b0 = [0.5, 0.5] , a0 = 1

and cluster indicators are sampled from a CRP (N0 = 3, N = 600), the data will take the form in Figure 2.3.

As expected, when using a CRP prior, the sizes of the different clusters vary significantly with many small

clusters containing only a few observations in them.

Figure 2.3: Sample from D = 2 CRP probabilistic model containing K = 22 clusters ranging in size from the
biggest cluster Nk = 180 to two clusters with Nk = 2.

2.6 Overview of the relations between inference algorithms

In this chapter we introduced some of the fundamental concepts behind mixture models and how they can

be motivated as a probabilistic way of describing clustered data. These concepts in later chapters serve as

building blocks for deriving a set of novel inference algorithms which can overcome a lot of the practical

challenges posed by current algorithms for inference in discrete latent variable models.

In order to better navigate the reader to how those novel methods are derived in the following chapters,

in Figure 2.4 we organize a chart which explicitly displays the relations between most of the techniques

presented in the thesis. We have used four main criteria to classify those relations:

� Parametric/Nonparametric - inference algorithms based on the parametric and nonparametric version

of the same probabilistic model.
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� Collapsed/Non-collapsed - inference algorithms based on the complete and collapsed construction5 of

the same probabilistic model.

� ICM - iterated conditional models inference algorithms for a given probabilistic model.

� SVA - ‘K-means like’ methods which can be seen as small variance asymptotic inference algorithms for

a given probabilistic model. Small variance asymptotic reasoning is described in more detail later in

Section 3.2.

Figure 2.4: In the white boxes are well known approaches to inference in the Gaussian mixture model and
the Dirichlet process mixtures. The shaded boxes are novel approaches explicitly derived and proposed in
this thesis. Yellow lines point to a nonparametric extension of a parameteric algorithm; dotted lines point
to a collapsed (see the text) version of an algorithm; green lines denote that the algorithm was derived using
iterated conditional modes; red lines denote that the algorithm was derived using small variance asymptotics
assumptions (see the text).

Each of the methods in Figure 2.4 has various trade-offs of flexibility, computational and conceptual

complexity where the following chapters aim to evaluate some of those tradeo-offs. While Figure 2.4 focuses

only on mixture models, similar arguments can be used to derive many other inference algorithms for more

sophisticated latent variable models.

For example, we can extend our reasoning to sequential discrete latent variable models, such as the hidden

Markov model (HMM) discussed in Chapter 5. The methods proposed and discussed in Chapter 5 could be

summarized by a similar association chart in Figure 2.5.

5By collapsed construction of a model we refer to a probabilistic model with marginalized parameters.
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Figure 2.5: In the white boxes are well known approaches to inference in the HMMs and the nonparametric
HMMs. The shaded boxes are novel approaches explicitly derived and proposed in this thesis. MAP-HMM
algorithm is in a yellow box as it can be conceptualy derived based on this thesis but we have not included
in the discussion due to its limited practical value. Yellow lines point to a nonparametric extension of a
parameteric algorithm; dotted lines point to a collapsed (see the text) version of an algorithm; green lines
denote that the algorithm was derived using iterated conditional modes; red lines denote that the algorithm
was derived using small variance asymptotics assumptions (see the text).
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Chapter 3

Simple deterministic inference for

mixture models

3.1 Introduction

In Section 2.1, we reviewed K-means from its original geometric viewpoint. However, it can also be profitably

understood from a probabilistic viewpoint, as a restricted case of the Gaussian mixture model after small

variance asymptotic (SVA) assumptions are applied. This probabilistic framework helps us to more intuitively

understand the inherent assumptions and limitations of K-means. Furthermore it allows us to easily derive

simple adaptations that more accurately treat different data types by starting off with more appropriate

probabilistic models and applying similar SVA assumptions. This framework will allow us to study how

concepts that are well explored in Bayesian inference, such as Rao-Blackwellization, extend to deterministic

clustering techniques.

As discussed in Section 2.1 K-means and SVA algorithms in general suffer from some major drawbacks.

We are interested in keeping the clustering problem nearly as easy to solve as K-means, but at the same

time overcoming those drawbacks. Towards that end, we propose iterative MAP methods in contrast to

SVA procedures and demonstrate their flexibility and computational scalability in many scenarios; we also

attempt to provide an intuition for scenarios in which they fail when compared to MCMC methods and VB

inference. Motivated by infinite mixture models that adapt the number of cluster components to the data,

we have focused this chapter on nonparametric clustering methods derived from DP mixtures which can also

be seen as simplified methods of doing inference in those models. To the best of our knowledge, an in depth

analysis of MAP and SVA methods and how Rao-Blackwellization influences their performance has not been

explored in the domain of parametric models either.

Being able to adequately replace MCMC algorithms in some scenarios with simpler procedures, has the

potential for reducing computational requirements involved in Bayesian modeling by orders of magnitude.

This can significantly broaden the horizon of applications to which such models can be applied. Of course,

this cannot always be done in a meaningful way and one might still want to use a more demanding MCMC

method, but knowing where sampling can be avoided with minimum loss of information is essential in order

to increase the applicability of complex Bayesian models to a wider array of real-world problems.

In this Chapter we propose a novel deterministic clustering algorithm which is more robust to initialization

issues, which we call collapsed K-means, as well as the more rigorous and often more flexible MAP-GMM

alternative. The Chapter proceeds with the motivation for using nonparametric models and then focuses
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on the development of simple, nonparametric clustering algorithms that we call MAP-DPMM (Section 3.8)

and collapsed MAP-DPMM algorithms (Raykov et al., 2015b, 2016c,b). Those methods are compared to

Gibbs sampling (Neal, 2000), VB inference (Blei & Jordan, 2006) and SVA methods applied to DP mixtures

on synthetic and benchmark data where the true clustering of the data is known and performance can be

evaluated objectively. In Section 3.10 we demonstrate the potential for MAP-DPMM algorithms applied to

problems which have so far been addressed with restrictive parametric K-means. The use of a more flexible

and nonparametric approach for such problems has the potential to provide more meaningful insights for the

underlying structure in the data, but at the same time it keeps interpretability and scalability.

3.2 Small variance asymptotics

3.2.1 Probabilistic interpretation of K-means

Despite the substantial differences between mixture models and the K-means algorithm, there exists a well-

established connection between the two, which we describe in detail here. This connection will help us better

understand the assumptions inherent to geometric methods such as K-means. It will also later help us to

derive efficient, fast, greedy inference methods that retain some probabilistic rigour. Let us consider a GMM

where the covariance matrices of the mixture components are spherical, constant and equal, i.e. Σk = σI for

k = 1, ...,K, where I is the identity matrix. This means that (2.5) will become:

γik =
πkN (xi |µk, σI )∑K
j=1 πjN (xi |µj , σI )

=
πk exp

(
− 1

2σ ‖xi − µk‖
2
2

)
∑K
j=1 πj exp

(
− 1

2σ ‖xi − µj‖
2
2

) (3.1)

for some constant σ. The resulting E-M algorithm still cannot increase the negative log likelihood (Equation

(2.8) from Section (2.2)) at each step, but in this case it is minimizing the negative log likelihood with respect

to the component means µk and mixture coefficients πk only, as the covariances are fixed. Let us further

consider the limit σ → 0: as the quantity ‖xi − µk‖22 decreases, the quantity πk exp
(
− 1

2σ ‖xi − µk‖
2
2

)
will

increase and this means that at the limit the quantity in (3.1) will go to 0 most slowly for the xi closest

to the cluster centroid µk. The posterior probability γik will be 0 for all xi except for the xi closest to the

cluster centroid µk for which the corresponding responsibility γik would equal to 1. It follows that at the

limit, the E-step of E-M assigns an observation to its closest cluster centroid, which is the same effect as the

assignment step of K-means. Further, as mentioned above, the Gaussians have fixed covariance matrices,

so the M-step re-estimates only the new mean parameters. Recall that in (2.7) µ1, ..., µK are estimated as

the sample means of the observations assigned to them. Also the mixing weights πk do not influence the

assignment probabilities any more, so we can safely omit this update. Therefore after taking the limit σ → 0

the M-step is equivalent to the update step of K-means.

In summary, we have shown that if we assume fixed, identical covariance matrices across all clusters σI

and take the limit σ → 0, for the GMM, the EM algorithm becomes equivalent to the K-means algorithm

(Bishop, 2006, page 423). This is, more recently, formalized as ‘small variance asymptotics’ (SVA) derivation

of K-means. If we use the Bayesian mixture model as a starting point, these additional assumptions (fixed,

spherical covariances which shrink to the zero matrix) have to be made for the prior parameters in order to

recover the K-means algorithm.
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3.2.2 K-means with reinforcement

If we use different SVA-like assumptions, motivated by the approach taken in (Roychowdhury et al., 2013) (but

there applied to hidden Markov models), we can derive another, novel deterministic clustering method. We

start by assuming a standard Bayesian GMM. Instead of just reducing the diagonal likelihood covariance to

the 0 matrix (as we did in Section (3.2.1)), let us represent the categorical distribution over the latent variables

z1, . . . , zN in the more general exponential family form. In a standard mixture model scenario, we write the

conditional probability of an indicator given the component weights as p (zi |π ) = Categorical (π1, . . . , πK).

However, as the Categorical distribution is a special case of the exponential family, we can consider a more

general form of that conditional by writing it in its exponential family form, with the help of the appropriate

Bregman divergences:

p (zi |π ) = exp (−Dφ (zi, π)) bφ (zi) (3.2)

where Dφ (·) denotes Bregman divergence defined above in Section 2.1. The motivation for explicitly writing

the likelihood of the cluster indicators in that form is to enable us to scale the variance of the distribution

over z. In order for this scaling to lead to a closed form clustering algorithm, we need to assume an additional

dependency (which is not part of the original graphical model from Figure 2.1) between the distribution of the

cluster indicators and the component mixture distribution, in order for their diagonal variances to approach

0 simultaneously. That is, while SVA from Section 3.2 changes the underlying Bayesian GMM structure

only by assuming shrinking covariance, in this framework we modify the underlying GMM such that the

conditional independence of the cluster parameters and cluster indicators no longer holds. The distribution

from Equation (3.2) then is replaced by a scaled one:

p (zi |π ) = exp
(
−ξ̂Dφ (zi, π)

)
bφ̃ (zi) (3.3)

where ξ̂ > 0 is some scale factor and φ̃ = ξ̂φ where the scaled distribution keeps the same expectation

as (3.2). A final step before making an asymptotic argument is to assume that the component’s Gaussian

likelihoods are scaled by ξ for which the equality ξ̂ = λ1ξ holds for some real λ1. This means that when we

take the limit ξ → ∞, this will scale both the distribution of the categorical indicators and the component

likelihoods. After taking ξ → ∞ and removing the constant terms we obtain the objective function of this

new SVA approach:
K∑
k=1

∑
i:zi=k

[
‖xi − µk‖22 +λ1Dφ (zi, πk)

]
(3.4)

which is optimized with respect to (z, µ, π), and where Dφ (zi, πk) � − lnπk. We have displayed in red

the additional terms that are incorporated in this new reinforced K-means, when compared to the original

objective function for K-means (2.1). Optimization with respect to the mixture weights result in the empirical

probability for the cluster weights πk = Nk
N . So, this objective function then can be rewritten as:

K∑
k=1

[ ∑
i:zi=k

‖xi − µk‖22−λ1 ln
Nk
N

]
(3.5)

In order to optimize the modified objective for each observation xi, we compute the K distances to each

of the clusters: ‖xi − µk‖22 for k = 1, . . . ,K. But we also take into account the number of data points in each

component by adjusting the corresponding distance for each cluster k by subtracting the λ1 ln Nk
N term. Each
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observation xi is assigned to the closest cluster where distance is adjusted in this way. The update step of

the cluster means is equivalent to the update step of the original K-means, but in addition to the centroids

we now have to update the counts N1, . . . , NK as well.

In contrast to K-means algorithm, this new SVA approach no longer clusters the data purely based on its

geometric properties. Instead, it also takes into account the number of data points in each cluster. In that

respect the method has greater flexibility, but at the same time, unlike MAP-GMM, this algorithms also does

not optimize the complete data likelihood of the original underlying probabilistic GMM (compare Equation

(2.8) with Equation (3.5)). With the additional ad-hoc dependencies between the likelihood distribution

and the distribution over the indicator variables, SVA algorithms effectively start from a different underlying

’coupled’ probabilistic model which is not explicitly given. This makes those new SVA algorithms even less

principled and more heuristic. While quite simple, to some extent both types of SVA methods sacrifice several

key statistical principals including structural interpretability and the existence of an underlying probabilistic

generative model.

3.2.3 Overview

We demonstrated how, by introducing some simplifying assumptions, deterministic methods such as K-means

can be derived as inference algorithms for some associated mixture model. This is not a consequence that

relies on the E-M algorithm in any way and the same SVA assumptions can be applied directly to the complete

data likelihood of a mixture model to obtain objective functions like the ones in (2.1) and (3.4). If we apply

the most intuitive and trivial way of optimizing each of those objectives (iteratively, one group of variables

at a time), we obtain K-means like clustering methods.

In the case of Bayesian mixture models, we usually apply some additional simplifying assumptions to

relax the effect of the prior and obtain neat, closed form expressions for the updates of the SVA algorithms.

Consider the Gibbs sampler for a Bayesian mixture (see Section 2.3), shrinking the component covariances to

the 0 matrix means that the sample updates from the posterior for each of the model parameters (including

the latent variables) are replaced with deterministic updates. The same deterministic updates can be obtained

if we consider the ICM inference method (see Section 2.3.4) for that Bayesian mixture model and mirror the

SVA assumptions and the additional assumptions relaxing the effect of the prior. We can view ICM as a

simple deterministic algorithm which optimizes the likelihood of a model, but only guaranteeing to reach

a local optima where we can view the Gibbs sampler as a stochastic algorithm that optimizes the model

likelihood, asymptotically to the global optimum. Applying SVA assumptions and relaxing the effect of the

prior, we obtain an even simpler deterministic algorithm which locally optimizes a reduced but degenerate

version of the original model’s likelihood (in the case of GMM, the K-means objective function from 2.1).

Hence, starting from a Bayesian mixture model we can think of the Gibbs sampler as a stochastic optimization

algorithm for the model likelihood. The first simplification is optimizing this likelihood with the ICM method

which does not make any additional model assumptions, but is deterministic and provides only locally-optimal

solutions. Then, by applying further SVA assumptions to the model likelihood (which is also the objective

of the ICM algorithm) we obtain the even simpler K-means like algorithms (see Figure 3.1).

Most of the arguments made for the relationship between Bayesian GMMs, ICM inference and K-means

are also valid for K-means with reinforcement from Section 3.2.2, some ’coupled’ Bayesian GMM model and a

matching ICM method. However, we will not discuss in detail such probabilistic models as ’coupled’ mixture

models are unlikely to be of great interest in practice, as well as the related ICM inference procedure.

The ICM simplification step trades away any information about the uncertainty of the model fit and the-

oretical guarantees of global convergence, in return for significant computational and memory usage gains.
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SVA methods on the other hand trade away model interpretability, and introduce degeneracy into the likeli-

hood prohibiting us from using standard model selection, prediction analysis and out of sample computations.

In addition SVA methods rely on sphericity assumptions about the model as well as equal density compo-

nents (see Section 2.1 for a detailed list). In return, marginal computational efficiency is gained as well as

some conceptual simplicity. For a small increase in the complexity of K-means due to additional term in the

objective function, we obtain the novel K-means with reinforcement algorithm, which can at least handle

differing density across clusters.

Figure 3.1: Relating the ordering of complexity of learning schemes for different Gaussian mixture model
inference algorithms.

3.3 Rao-Blackwellization in mixture models

Above, we established how simple SVA and ICM clustering procedures can be derived from Gibbs sampling

for the Bayesian mixture model. However, often there is more than one way to derive a Gibbs sampler and

the way we do this can seriously affect the mixing time of the sampler and its computational efficiency. One

of the most common strategies for optimizing the performance of a Gibbs sampler (or any MCMC method)

is appropriate use of Rao-Blackwellization (see Section 2.4).

Consider the Gibbs sampler we introduced in Section (2.3.2) for inference in Bayesian mixtures. The

algorithm explicitly samples the component parameters θ and the mixing parameters π despite the fact that

usually we are only explicitly interested in the latent structure in the data which is conveyed by the indicator

variables z1, . . . , zN . In such scenarios, it is common to use Rao-Blackwellization (Section (2.4)) and integrate

over the redundant quantities. The resulting sampler will update only the variables of explicit interest but

from a different predictive posterior distribution which is more complex to compute. For such posterior

predictive distributions to be analytically tractable, we need conjugacy between the prior and the likelihood

of the integrated quantities, in this case θ and π. As we consider only exponential family mixture models,

conjugate prior distributions for θ and π are guaranteed to exist and the resulting compound distribution of

the indicator variables can (nearly always) be obtained analytically.

The practical downside of integrating out random variables from the probability model is that some of

the conditional independence properties among the remaining variables are affected. For example, in a non-

collapsed (complete form) Bayesian GMM, the likelihood of observation xi given zi, θzi and πzi is independent

of the rest of the data; this leads to potential for efficient parallel implementations and the trained model

has a smaller representation in memory. In a collapsed representation of the Bayesian GMM the likelihood

of xi given zi still depends on the rest of the data and so training data needs to be kept for when making

predictions.
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Algorithm 3.1: Block Gibbs

(spherical Gaussian)

Algorithm 3.2: Collapsed Gibbs

(spherical Gaussian)

Input x1, . . . , xN : D-dimensional data

K: number of clusters

α: concentration parameter

σ: spherical cluster variance

σ0: prior centroid variance

µ0: prior centroid variance

x1, . . . , xN : D-dimensional data

K: number of clusters

α: concentration parameter

σ: spherical cluster variance

σ0: prior centroid variance

µ0: prior centroid variance

Output Posterior of indicators:

(z1, . . . , zN )

Posterior of weights:

(π1, . . . , πK)

Posterior of

centroids:(µ1, . . . , µK)

Posterior of indicators: (z1, . . . , zN )

Sample parameters from the

prior

Sample the indicators from the prior

1 µ1, . . . , µK
i.i.d.∼ N (µ0, σ0) z1, . . . , zN ∼ DirMulti

(
1
K , . . . ,

1
K

)
π1, . . . , πK ∼ Dirichlet (α/K, . . . , α/K)

2 Enew =∞ Enew =∞
3 repeat repeat

4 Eold = Enew Eold = Enew

5 for i ∈ 1, . . . , N for i ∈ 1, . . . , N

6 for k ∈ 1, . . . ,K for k ∈ 1, . . . ,K

7 σ̇−ik =
(

1
σ0

+ 1
σN
−i
k

)−1

8 µ̇−ik = σ̇−ik

(
µ0

σ0
+ 1

σ

∑
j:zj=k,j 6=i xj

)
9 π̇−ik = N−ik + α/K

10 di,k = 1
2σ ‖xi − µk‖

2
2 + D

2 lnσ − lnπk di,k =
‖x−µ̇−ik ‖22
2(σ+σ̇−ik )

+ D
2 ln

(
σ + σ̇−ik

)
− ln π̇−ik

11 di,k = exp (−di,k) di,k = exp (−di,k)

12 zi ∼ Categorical
(

di,1∑
k di,k

, . . . ,
di,K∑
k di,k

)
zi ∼ DirMulti

(
di,1∑
k di,k

, . . . ,
di,K∑
k di,k

)
13 for k ∈ 1, . . . ,K

14 σ̇k =
(

1
σ0

+ 1
σNk

)−1

15 µ̇k = σ̇k

(
µ0

σ0
+ 1

σ x̄k

)
16 π̇k = N1+α/K

N+α

17 µk ∼ N (µ̇k, σ̇k)

18 (π1, . . . , πK) ∼ Dirichlet (π̇1, . . . , π̇K)

19 Enew =
∑K
k=1

∑
i:zi=k

di,k Enew =
∑K
k=1

∑
i:zi=k

di,k

20 until (Eold − Enew)→ random until (Eold − Enew)→ random

The collapsed Gibbs for the special case of a Bayesian GMM with spherical covariances is contrasted with

block Gibbs in Algorithm 3.1. Note the differences in the convergence criteria (which we discussed in Section

2.3.2) of the Gibbs sampler (line 20) compared to those from Algorithms 2.1 and 2.2. Unlike the fixed-point

solution of MAP-GMM, there is no well established criteria to assess convergence of the Gibbs sampler.
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We now proceed with a more general summary of collapsed Gibbs for exponential family finite Bayesian

mixture models. Firstly, each zi is sampled from:

p (zi = k |z−i, x ) =

(
N−ik + α/K

)
p (xi |zi = k )∑K

j=1

(
N−ij + α/K

)
p (xi |zi = j )

(3.6)

with z−i = {z1, . . . , zi−1, zi+1, . . . , zN} denoting all of the indicators excluding zi. The likelihood of point i

is computed by integrating out the effect of the component parameters θ from p (xi |θ, zi = k ):

p (xi |zi = k ) =

∫
Θ

p (xi |θk, zi = k ) p (θ) dθ (3.7)

where Θ denotes the domain of the parameters θ. In the exponential family notation used in Section 2.3,

if we ignore terms independent of k the marginal likelihood of point i from cluster k is: p
(
xi
∣∣τ−ik , η−ik

)
∼

exp
[
ψ0 (τk, ηk)− ψ0

(
τ−ik , η−ik

)]
where recall that (τk, ηk) are the hyperparameters of the integrated natural

parameters θ; superscript −i stands for removing the effect of point i when estimating a quantity and ψ0 (·)
is a normalization function automatically determined by the choice of remaining quantities. The form of

p (xi |z ) is strictly defined by the choice of likelihood and prior distribution over the parameters, where a

useful list of choices for p (xi |θ ) and corresponding predictive likelihoods p (xi |z ) can be found in Appendix

(A). We iteratively sample the indicator values using (3.6) for each i.

Figure 3.2: Probabilistic graphical model of the collapsed Bayesian mixture model. In the Gaussian case
θ = {µ,Σ} and θ0 = {m0, c0, b0, a0}. The red arrow denotes collapsing over the marked random variable.

The collapsed Gibbs sampler iterates through a reduced number of random quantities which often leads to

faster mixing and more efficient inference as a result. A single iteration of collapsed Gibbs is computationally

more expensive than for the block sampler (due to the broken parallelism and the more complex marginal

likelihood), however this overhead is often more than compensated for with the reduced number of iterations

to convergence.

Prediction and memory constraints in Rao-Blackwellization

Despite the benefits of Rao-Blackwellization, there are some cases in which its use should be carefully con-

sidered. For example, from an application perspective computational power is often not the only constrained
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resource, but memory “footprint” is also important. Consider the situation where we want to do prediction

and clustering of some future data, using a Bayesian GMM trained on some previous data xtrain1 , . . . , xtrainN .

In the case of the collapsed model, we would need to keep in memory all the training data in addition to all

N of the indicators zi, to be able to make any inference about the test data. For a large amount of training

data N this can be highly inefficient. By contrast, under the non-collapsed Bayesian GMM we can make

predictions about future test points using only the model parameters
{
θtrain1 , . . . , θtrainK

}
and there are only

K of them rather then a multiple of N . More formally, under the non-collapsed (block) representation we

use:

p
(
ztestN+1

∣∣ztrain, θ, xtrain, xtest ) = p
(
ztestN+1

∣∣θ, xtest ) ∝

p
(
xtestN+1 |θ1

)
p (θ1) for ztestN+1 = 1

...
...

p
(
xtestN+1 |θK

)
p (θK) for ztestN+1 = K

(3.8)

for any out-of-sample calculations, where for collapsed mixture model we use the following:

p
(
ztestN+1

∣∣ztrain, θ, xtrain, xtest ) = p
(
ztestN+1

∣∣ztrain, xtrain, xtest ) ∝

p
(
xtestN+1

∣∣zj:zj=k ) for ztestN+1 = 1
...

...

p
(
xtestN+1

∣∣zj:zj=k ) for ztestN+1 = K

(3.9)

3.4 Collapsed K-means and collapsed MAP-GMM

In Section 3.3 we explored how Rao-Blackwellization can be used in probabilistic models, particularly its

ability to improve computational efficiency for sampling methods. In this section we will look at the potential

of collapsed models to lead to useful deterministic clustering algorithms. Mirroring the SVA derivation of

K-means from Section 3.2, we can derive a new collapsed K-means from the collapsed GMM. The resulting

collapsed K-means will sequentially update the assignments z1, . . . , zN , while also keeping the cluster means

µ−ik updated for each k. In collapsed K-means, cluster centroids are re-computed after any assignment

changes, unlike in K-means where centroids are updated in one block after a full sweep through z1, . . . , zN .

Another difference is the way both are initialized: K-means is initialized by setting values for its cluster

centroids µ1, . . . , µk; collapsed K-means is initialized by setting each of the assignments z1, . . . , zN . We

outline collapsed K-means in the Algorithm 3.3.

Let us now consider applying the MAP approach from Section 2.3.4 to a collapsed GMM. The resulting

collapsed MAP-GMM algorithm will be also sequential and we outline it in Algorithm 3.4. In the collapsed

GMM the cluster centroids µ1, . . . , µK and the mixing coefficients π1, . . . , πK have been integrated out.

Therefore the likelihood term (marginal likelihood) in the collapsed model p (xi |zi ) =
∫
p (xi |µ, σ ) p (µ) dµ

takes a more robust form after integrating over the uncertainty around the unknown parameter µ and taking

into account the effect of σ̇−ik (the variance in the posterior of µ); additionally the MAP update of π is

replaced with an update of the posterior hyperparameter π̇. As with the collapsed K-means, MAP-GMM

will avoid the need for initialization of the cluster centroids and also of the mixing weights; instead it will

require initialization of the cluster indicators z1, . . . , zN . In the following section, we evaluate empirically the

performance of collapsed and non-collapsed K-means and MAP-GMM on synthetic data for various scenarios.
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Algorithm 3.3: Collapsed

K-means

Algorithm 3.4: Collapsed MAP-GMM (spherical

Gaussian)

Input x1, . . . , xN : D-dimensional data

ε > 0: convergence threshold

K: number of clusters

x1, . . . , xN : D-dimensional data

ε > 0: convergence threshold

K: number of clusters

α: concentration parameter

σ̂2: spherical cluster variance

σ2
0 : prior centroid variance

Output z1, . . . , zN : cluster assignments z1, . . . , zN : cluster assignments

1 Set zi for all i ∈ 1, . . . , N 1 Set zi for all i ∈ 1, . . . , N

2 Enew =∞ 2 Enew =∞
3 repeat 3 repeat

4 Eold = Enew 4 Eold = Enew

5 for i ∈ 1, . . . , N 5 for i ∈ 1, . . . , N

6 for k ∈ 1, . . . ,K 6 for k ∈ 1, . . . ,K

7 7 σ̇−ik =
(

1
σ0

+ 1
σN
−i
k

)−1

8 µ−ik = 1
N−ik

∑
j:zj=k,j 6=i xj 8 µ̇−ik = σ−ik

(
µ0

σ0
+ 1

σ

∑
j:zj=k,j 6=i xj

)
9 9 π̇k = N−ik + α/K

10 di,k = 1
2

∥∥xi − µ−ik ∥∥2

2
10 di,k =

‖x−µ̇−ik ‖22
2(σ+σ̇−ik )

+ D
2 ln

(
σ + σ̇−ik

)
− ln π̇k

11 zi = arg mink∈1,...,K di,k 11 zi = arg mink∈1,...,K di,k

12 Enew =
∑K
k=1

∑
i:zi=k

di,k 12 Enew =
∑K
k=1

∑
i:zi=k

di,k

− log Γ (N + α)−
∑K
k=1 log Γ (Nk + α/K)

13 until Eold − Enew < ε 13 until Eold − Enew < ε

3.5 Comparison on synthetic data

In this section we evaluate the performance of K-means, collapsed K-means, MAP-GMM and collapsed

MAP-GMM algorithms on six different synthetic Gaussian data sets with N = 4000 points. The data sets

have been generated to demonstrate some of the non-obvious problems with the K-means algorithm.

The true clustering assignments are known so that the performance of the different algorithms can be

objectively assessed. For the purpose of illustration we have generated two-dimensional data with three,

visually separable clusters, to highlight specific problems that arise with K-means. To ensure that the results

are stable and reproducible, we have performed 100 restarts for all of the algorithms. Collapsed K-means and

collapsed MAP-GMM restarts involve a random permutation of the ordering of the data, where K-means

and MAP-GMM are restarted with randomized parameter initializations.

To evaluate algorithm performance we have used normalized mutual information (NMI)1 between the true

and estimated partition of the data (Table 3.1), where we report average NMI scored across the 100 restarts.

The NMI between two random variables is a measure of mutual dependence between them that takes values

1The mutual information of two discrete random variables Z and Z∗ is defined as MI=
∑
z∈Z∗

∑
z∈Z p (z, z∗) log

(
p(z,z∗)
p(z)p(z∗)

)
.

To obtain a more intuitive score taking values between 0 and 1 MI is often normalized and the NMI score used instead.
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Table 3.1: Comparing the clustering performance of K-means, collapsed K-means, MAP-GMM and collapsed
MAP-GMM. Methods are tested on synthetic data generated from a GMM with K = 3, and to assess
clustering performance we evaluate average NMI score and standard deviation in the brackets.

Cluster
geometry

Shared
cluster

geometry?

Shared
cluster

density?

NMI
K-means

NMI
Collapsed
K-means

NMI
MAP-GMM

NMI
Collapsed

MAP-GMM

Spherical No Yes 0.64(0.11) 0.76(0.04) 0.58(0.08) 0.60(0.05)
Spherical Yes No 0.71(0.04) 0.73(0.01) 0.96(0.03) 0.98(0.01)
Spherical Yes Yes 0.49(0.32) 0.76(0.01) 0.48(0.32) 0.92(0.04)
Elliptical No Yes 0.58(0.13) 0.53(0.11) 0.56(0.10) 0.56(0.08)
Elliptical No No 0.95(0.15) 0.98(0.01) 0.95(0.13) 0.99(0.01)
Elliptical No No 0.56(0.02) 0.59(0.1) 0.56(0.02) 0.60(0.02)

Table 3.2: Number of iterations to convergence of K-means, collapsed K-means, MAP-GMM and collapsed
MAP-GMM with standard deviation in the brackets. The computational cost per iteration is not exactly the
same for different algorithms, but it is comparable.

Convergence
K-means

Convergence
Collapsed
K-means

Convergence
MAP-GMM

Convergence
Collapsed

MAP-GMM

17(8.5) 2(0) 21(11.7) 2(0)
48(21.3) 2(0) 9(2.7) 2(0)
7(3.6) 2(0) 7(3.3) 2(0)

28(14.2) 2(0) 30(18) 2(0)
7(4) 2(0) 8(7) 2(0)

33(10) 2(0) 34(11) 2(0)

between 0 and 1 where the higher score means stronger dependence. NMI scores close to 1 indicate good

agreement between the estimated and true clustering of the data.

We also report the average number of iterations to convergence of each algorithm in Table 3.2 as an

indication of the relative computational cost involved, where the iterations include only a single run across

all data and parameters of the corresponding algorithm.

From Table 3.1 we observe that both MAP and SVA methods derived from collapsed models are more

robust to initialization and their performance is influenced less by random restarts. They also converge

significantly faster, although we have to take into account that their iterations are more expensive due

to the coupling introduced by the Rao-Blackwellization (see Figure 3.2). A single iteration of K-means

sweeps through N observations, computing K distances for each; after finishing the full sweep through the

observations all K cluster centroids are updated. At the same time an iteration of the collapsed K-means

involves sweeping through N observations, computing K distances for each and also updating K cluster

means. Using caching we can substantially speed up the updates of the means in the collapsed K-means.

MAP methods handle better violations of the inherent assumption of shared cluster density of K-means

(see from Section 2.1), because they incorporate reinforcement terms. We observe that using the wrong

values for a fixed component covariance may often be worse than simply shrinking its value to the 0 matrix,

as K-means performs slightly better than MAP on elliptical data. However, unlike SVA algorithms, it is

straightforward to extend MAP methods to non-spherical data (with unknown component covariances) using

Bayesian GMM with NIW priors on the component parameters. In fact, such an extension practically always

outperforms K-means (see (Raykov et al., 2016c)).

Despite the tremendous popularity of K-means and the potential of the other techniques presented and
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reviewed in this section, they all suffer from some common drawbacks which occur due to the construction

of the underlying probabilistic model (the GMM). The parametric methods here require fixing the number

of components K a-priori and further keeping K the same unless the method is completely retrained. This

constraint will lead to less robust clustering procedures which are too sensitive to statistical outliers in the

data and which fail to handle even small dissimilarities between the underlying model we assume and the

observed data. We reviewed in detail some existing methods which use regularization to choose K in Chapter

1, but regularization simply does not provide rigorous statistical machinery to handle such issues.

In the next sections we turn to DP mixture models and using SVA and MAP reasoning we derive some

novel, principled and yet more flexible nonparametric clustering algorithms.

3.6 Nonparametric clustering alternatives

In the sections above, we demonstrated how meaningful clustering algorithms can be derived by applying

SVA and MAP inference to collapsed and non-collapsed finite mixture models. Here we will study how

more flexible, infinite mixture models (also known as the Dirichlet process mixture model (DPMM)) can be

designed and in later sections we will focus on the new, nonparametric clustering procedures we can derive

by applying Gibbs inference, SVA inference and iterative MAP inference to the DPMM.

3.6.1 Gibbs sampling for DPMM

Inference for a given probabilistic model using Gibbs sampling consists of an iterative sweep through the

conditionals for each random variable in the model and sampling its value, one at a time or in batches.

In the case of finite mixture models (see Section 2.3.2) typically the conditionals for each random variable

are available in closed form as can be clearly seen in Section 2.3 for any exponential family mixture model.

However, in the DPMM the number of components modeling the data is not fixed, as we take K →∞. This

means we can no longer sample π1, . . . , πK , . . . in a straightforward way. In order to keep the data likelihood

tractable, we often integrate out the infinite dimensional mixing parameters π from the model (Neal, 2000;

Rasmussen, 1999). The integration can be performed analytically as the DP is conjugate to the categorical

likelihood of the indicators and leads to CRP modeling z1, . . . , zN . We proceed by reviewing two widely-

used Gibbs sampling algorithms based on the CRP construction of the DPMM. The two algorithms are very

similar (Algorithm 1 and 3 from (Neal, 2000)) and differ only in their treatment of the component parameters

θ1, . . . , θK . Both samplers integrate over π, but the collapsed CRP-based Gibbs sampler (collapsed Gibbs-

DPMM) in Section 3.6.1 integrates over all component parameters θ as well and the sampler (Gibbs-DPMM)

in Section 3.6.1 explicitly refers to the all represented component parameters θ1, . . . , θK .

CRP-based Gibbs sampler (Gibbs-DPMM)

If we collapse over the mixing parameters in an exponential family DPMM, implicitly we are invoking the

corresponding CRP mixture model from Section 2.5.4:

(z1, . . . , zN ) ∼DirMulti (α) (z1, . . . , zN ) ∼CRP (N0, N)

θk ∼ G0
K→∞ θk ∼ G0

xi ∼ F (θzi) xi ∼ F (θzi)

(3.10)

On the left is the matching generative model for a finite mixture whenever we assume K is finite and fixed.

The Gibbs sampler for the CRP mixture will iterate between updates for the indicator variables z and the
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parameters θ until convergence. For each point i we compute:

p (zi = k |z−i, x, θ ) =


N−ik p(xi|θk )∑K

k=1N
−i
k p(xi|θk )+N0p(xi|τ0,η0 )

for existing k = 1, . . . ,K

N0p(xi|τ0,η0 )∑K
k=1N

−i
k p(xi|θk )+N0p(xi|τ0,η0 )

for new k = K + 1
(3.11)

where p (xi |θk ) and p (xi |τ0, η0 ) are respectively the exponential family likelihood of point i given pa-

rameter θk and the predictive likelihood of point i being drawn from the prior. The predictive likeli-

hood is computed by integrating θ, p (xi |τ0, η0 ) =
∫
p (xi |θ ) p (θ) dθ and the likelihood term p (xi |θk ) =

exp (〈g (xi) , θzi〉 − ψ (θzi)− h (xi)) is computed in the same way as in (2.11) from Section 2.3.2 for finite

mixture models. The motivation behind using p (xi |τ0, η0 ) for unrepresented components is that, a priori,

there are infinitely many unrepresented θ0 from which a point can be sampled (all of which have diminishing

support). Therefore, we can obtain a closed form expression for the probability of a single point under the

prior only by integrating out the infinite dimensional parameter space. When a new value K + 1 is sampled

for an indicator zi, we proceed by sampling a new component parameter θK+1 from the posterior for a single

point cluster; p (θK+1 |τK+1, ηK+1 ) with τK+1 = τ0 + g (x1) and ηK+1 = η0 + 1.

For each k we update component parameter θk from the exponential family posterior given all points

assigned to k:

p (θk |τk, ηk ) = exp (〈θk, τk〉 − ηkψ (θk)− ψ0 (τk, ηk)) (3.12)

with hyperparameters τk and ηk being sufficient statistics of data associated with k: τk = τ0 +
∑
j:zj=k

g (xj)

and ηk = η0 +Nk.

Collapsed CRP-based Gibbs sampler (collapsed Gibbs-DPMM)

From the Rao-Blackwell theorem in Section 2.4, the minimum variance estimation of the cluster indicators of

a DPMM is obtained after marginalizing out the remaining unknown quantities θ from their joint statistic.

The cluster indicators parametrize the partition implicit in the data and so they are going to be the quantity

of explicit interest when we are learning the clustering of the data. The generative model for a collapsed

DPMM is:
(z1, . . . , zN ) ∼ CRP (N0, N)

xi ∼F−i
(
τ−izi , η

−i
zi

) (3.13)

where F−i denotes the marginal likelihood distribution which arises from the Rao-Blackewellization of θ

and
(
τ−ik , η−ik

)
are the posterior hyperparameters for component k computed after removing the effect of

point i on that component. The corresponding collapsed Gibbs-DPMM iterates between updates for each

of the indicators zi while holding the rest of the indicators z−i = z1, . . . , zi−1, zi+1, . . . , zN fixed. For each

observation, we compute:

p (zi = k |z−i, x ) =


N−ik p(xi|τ−ik ,η−ik )∑K

k=1N
−i
k p(xi|τ−ik ,η−ik )+N0p(xi|τ0,η0 )

for existing k = 1, . . . ,K

N0p(xi|τ0,η0 )∑K
k=1N

−i
k p(xi|τ−ik ,η−ik )+N0p(xi|τ0,η0 )

for new k = K + 1
(3.14)

As the component parameters have been integrated out, when a new value K + 1 is chosen, we only need

to increase the number of represented clusters. The sampler iterates through the updates for the different

zi’s until convergence is reached. Examples of posterior predictive densities for different exponential family

likelihoods are presented in Appendix A and those can be directly substituted in both samplers.
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3.7 Deterministic inference for Dirichlet process mixtures

The execution time of MCMC inference for the DPMM is usually larger than MCMC inference for finite

models and this can seriously restrict the practical value of nonparametric mixtures. A widely-used alternative

to MCMC inference in latent variable models is to use deterministic variational Bayes (VB) techniques and

some VB methods for inference in DPMMs are briefly discussed below. Another deterministic method for

inference in DPMMs was described in Daumé III (2007). This approach is based on a combinatorial search

that is guaranteed to find the optimum for objective functions which have a specific computational tractability

property. As the DPMM complete data likelihood does not have this particular tractability property, the

algorithm from Daumé III (2007) is only approximate for the DPMM, and also sample-order dependent. On

the other hand, Dahl et al. (2009) described an algorithm that is guaranteed to find the global optimum in

N (N + 1) computations, but only in the case of univariate product partition models2 with non-overlapping

components. While the CRP mixture model with exponential family components falls in this class of product

partition models, the restrictions that the model should be univariate and underlying components should be

non-overlapping hardly ever holds in practice.

Wang & Dunson (2011) presented another approach for fast inference in DPMMs which discards the

exchangeability assumption of the data partitioning and instead assumes the data is in the correct order-

ing. Then a greedy, repeated “uniform resequencing” is proposed to maximize a pseudo-likelihood that

approximates the DPMM complete data likelihood. However, this method does not have any guarantees for

convergence even to a local optima.

Our novel approach, introduced below, does not make any further assumptions beyond the model struc-

ture, and being derived from the Gibbs sampler does not suffer from sample-order dependency and is guar-

anteed to converge to at least a local optima.

3.7.1 Variational inference for DPMMs

Blei & Jordan (2006) first introduced VB inference for the DPMM (VB-DPMM), but it involves truncating

the variational distribution of the joint DPMM posterior. Later, a related collapsed variational method

was proposed in (Teh et al., 2007) which reduces the inevitable truncation error by working on a reduced-

dimensional parameter space, but collapsed VB methods are based on a sophisticated family of marginal

likelihood bounds for which optimization is challenging. Streaming variational methods (Broderick et al.,

2013b) obtain significant computational speed up by optimizing local variational bounds on batches of data

visiting data points only once, but as a result they can easily become trapped at a poor fixed point. Similarly,

stochastic variational methods (Wang et al., 2011) also allow for a single pass through the data, but sensitivity

to initial conditions increases substantially. Alternatively, methods which learn memoized statistics3 of the

data in a single pass (Hughes & Sudderth, 2013; Hughes et al., 2015a), have recently shown promise.

Here we briefly summarize the benchmark VB inference algorithm for the DPMM introduced in (Blei

& Jordan, 2006) for exponential family data (VB-DPMM for short). Recall that in mean-field variational

methods we aim to optimize the KL divergence with respect to some variational distribution which for the

DP mixture we will denote with q (β, θ, z). In the stick-breaking representation of DP mixtures of exponential

family, β are the stick lengths, θ are the component parameters and z are the cluster indicators. We are

interested in minimizing the KL divergence between the family of distributions q (β, θ, z) and the true posterior

2Product partition models are a class of probability models parametrized by a set partition. Such models imply that items
in different partition components are independent.

3The memoized statistics updates speed up the expensive to compute standard sufficient statistics updates by storing the
repeated sufficient statistics values and returning cached results whenever the same update is needed.
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of the latent variables and the model parameters p (β, θ, z |x, θ0, N0 ):

KL (q (β, θ, z) ‖p (β, θ, z |x, θ0, N0 ) ) = Eq [ln q (β, θ, z)]− Eq [ln p (β, θ, z, x |θ0, N0 )] + ln p (x |θ0, N0 ) (3.15)

where we can safely omit the dependence on the component hyperparameters θ0 and the concentration

parameter N0 as in the whole thesis these are assumed to be fixed quantities. The expectations Eq (·) are all

evaluated with respect to the appropriate variational distribution (e.g. the random variable described by the

corresponding distribution). The minimization of the KL divergence is often cast alternatively (see section

2.3.3) as maximization of a lower bound on the log marginal likelihood:

ln p (x) ≥ Eq [ln p (β, θ, z, x)]− Eq [ln q (β, θ, z)] (3.16)

For the stick-breaking construction of the DPMM this bound can be re-written as:

ln p (x) ≥ Eq [ln p (β)] + Eq [ln p (θ)]

+

N∑
i=1

(Eq [ln p (zi |β )] + Eq [ln p (xi |zi )])

− Eq [ln q (β, θ, z)]

(3.17)

In order to obtain tractable optimization, a restricted family of variational distributions q (β, θ, z) shall

be considered, where in (Blei & Jordan, 2006) fully factorized variational distributions are assumed. Further-

more, we must find a family of distributions which approximates the infinite-dimensional parameters space

expressed in terms of the sequences β = (βk)
∞
k=1 and θ = (θk)

∞
k=1. (Blei & Jordan, 2006) suggested using

truncated variational distributions as the stick-breaking construction refers to possibly infinite number of β

and θ. We model the exact distributions of the infinite dimensional β = (βk)
∞
k=1 and θ = (θk)

∞
k=1 with a

truncated number of L variational distributions where L is finite and fixed. Incorporating this truncation and

the assumption of fully factorized variational distributions, we consider a family of variational distributions

that take the form:

q (β, θ, z) =

L−1∏
k=1

qγk (βk)

L∏
k=1

qτk (θk)

N∏
i=1

qφi (zi) (3.18)

where each qγk (βk) are beta distributions; each qτk (θk) are exponential family distributions with natural pa-

rameters τk; qφi (zi) are categorical distributions and (γ1, . . . , γL−1, τ1 . . . , τL, φ1, . . . , φN ) are the parameters

of the variational distributions which we need to infer (learn the parameter values which maximize the lower

bound in (3.17)).

We proceed now with a short summary of a coordinate ascent algorithm which optimizes the bound in

(3.17) with respect to the variational parameters. Most of the terms can be directly obtained using the fact

that the likelihood is from an exponential family and the model priors are conjugate. From the truncation

assumption made earlier the expectation Eq [ln p (zi |β )] can be re-written as:

Eq [ln p (zi |β )] =

T∑
k=1

q (zi > t)Eq [ln (1− βk)] + q (zi = k)Eq [lnβk] (3.19)
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with
q (zi = k) = φi,k

q (zi > k) =

T∑
j=t+1

φi,k

Eq [lnVk] =Ψ (γi,1)−Ψ (γi,1 + γi,2)

Eq [ln (1− Vk)] =Ψ (γi,2)−Ψ (γi,1 + γi,2)

(3.20)

with Ψ (·) denoting the digamma function. Using this expression for Eq [ln p (zi |β )] and optimizing the rest of

the terms in the bound from (3.17) we get a mean-field coordinate ascent which yields the following updates

for the variational parameters:

γk,1 = 1 +

N∑
i=1

φi,k

γk,2 =α+

N∑
i=1

T∑
j=k+1

φi,j

τk,1 = λ1 +

N∑
i=1

φi,txi

τk,2 = λ2 +

N∑
i=1

φi,k

φi,k ∝ exp (St)

(3.21)

for k indexing the first T components k ∈ {1, . . . , T} and i ∈ {1, . . . , N}; we have used St to denote the

expression:

St = Eq [lnVk] +

k−1∑
i=1

Eq [ln (1− Vi)] + Eq [θk]
T
xn − Eq [ψ (θk)] (3.22)

where recall that ψ (·) denotes the log partition factor determined from the choice of exponential family

distribution we use to model the data. Iterating the updates in (3.21) optimizes the variational bound on

the log marginal probability from (3.17) with respect to the variational parameters. For a more detailed

derivation of the updates in (3.21), we refer the reader to (Blei & Jordan, 2006).

Updating at each iteration the corresponding single parameters amounts to performing coordinate ascent

in the KL divergence. To summarize, in Gibbs sampling the random variables in the model are sampled one

at a time from the corresponding posterior of that variable; when doing iterative MAP inference, the random

variables are updated by taking the values that maximize their corresponding posterior; in mean-field VB

we update some approximate variational parameters by setting their values so that they maximize the lower

bound of the marginal likelihood.

3.7.2 Small variance asymptotics methods for DPMMs

SVA for DPMM

Starting from the CRP-based Gibbs sampler described in Section 3.6.1 with some simplifying assumptions,

Jiang et al. (2013) describes the use of SVA reasoning to arrive at a deterministic inference algorithm for the

exponential family DPMM. Consider the DPMM (3.10), but with a scaled exponential family likelihood F̃
(
θ̃
)

that is parametrized by a scaled natural parameter θ̃ = ξθ and the log-partition function ψ̃
(
θ̃
)

= ξψ
(
θ̃/ξ
)

for

some ξ > 0. Further assume that the prior parameters of the natural parameter are also scaled appropriately,
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such that τ̃ = τ
ξ and η̃ = η

ξ . It is straightforward to see that the conjugate prior of ψ̃ will be also scaled and

so φ̃ = ξφ. Then F̃
(
θ̃
)

has the same mean as F (θ), but with scaled covariance, cov
(
θ̃
)

= cov (θ) /ξ. Let us

also assume that the concentration parameter of the DPN0 is a function of ξ, η and τ , taking the form:

N0 =

(
gφ̃

(
τ

ξ
,
η

ξ

)(
2π

ξ + η

)D/2
ξD

)−1

exp (−ξλ) (3.23)

for some free parameter λ that will replace the concentration parameter in the new formulation; D denotes

dimension of the data and is unrelated to the later Dφ (·). Following (Jiang et al., 2013) we can write out the

Gibbs sampler probabilities in terms of Bregman divergences Dφ (·) after canceling out fφ̃ (xi) terms from

all probabilities:

p (zi = k |z−i, xi, ξ, µ ) =
Nk,−i exp (−ξDφ (xi, µk))

Cxi exp (−ξλ) +
∑K
j=1Nj exp (−ξDφ (xi, µj))

p (zi = K + 1 |z−i, xi, ξ, µ ) =
Cxi exp (−ξλ)

Cxi exp (−ξλ) +
∑K
j=1Nj exp (−ξDφ (xi, µj))

where Cxi approaches a positive, finite constant for a given xi as ξ →∞ and we have used the fact that for a

Bregman divergence, Dξφ (·, ·) = ξDφ (·, ·). Now as we take the limit ξ →∞, the above probabilities will be-

come 0 for all k ∈ {1, . . . ,K + 1} except for k leading to the smallest value from the set
{
{Dφ (xi, µk)}Kk=1 , λ

}
for which the probability approaches 1. That is, the data point xi will be assigned to the nearest cluster with

Bregman divergence at most λ. If the closest mean has a divergence greater than λ, we create a new cluster

containing only xi.

At the limit, the posterior distribution over the cluster parameters for some component k is concentrated

around the sample mean of points assigned to that component , 1
Nk

∑Nk
i=1 xi . The resulting algorithm attempts

to minimize the following objective function with respect to (z, µ):

K∑
k=1

∑
i:zi=k

Dφ (xi, µk) + λK (3.24)

The same objective function was utilized in (Banerjee et al., 2005) in the context of finite mixture models.

Although this algorithm is straightforward, it has various drawbacks in practice. The most troublesome

is that the functional dependency between the concentration parameter and the covariances destroys the

reinforcement (rich-get-richer) property of the DPMM because the counts of assignments to components

Nk,−i no longer influence which component gets assigned to an observed data point. Only the geometry in

the data space matters: a new cluster is created by comparing the parameter λ against the distances between

cluster centers and data points so that the number of clusters is controlled by the geometry alone, and not

by the number of data points already assigned to each cluster. For high-dimensional datasets, it is not clear

how to choose the parameter λ. By contrast, in the DPMM Gibbs sampler, the concentration parameter

N0 controls the rate at which new clusters are produced in a way which is independent of the geometry.

Another problem that arises is that the component likelihood distributions collapse to point mass Dirac delta

distributions. The Dirac delta component likelihoods lead to a degenerate model likelihood which becomes

infinite and causes model selection techniques (such as marginal likelihood comparison) to be meaningless.

For example, we cannot choose parameters such as λ using standard model selection methods (for example

cross-validation).
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SVA for DPMM with reinforcement

(Jiang et al., 2013) mirrors the K-means derivation from GMM and extends it to the exponential family

DPMM. However, in Section 3.2.2 we demonstrated that SVA reasoning can lead to more than one deter-

ministic inference algorithm for a probabilistic model. Herein we mirror the approach from Section 3.2.2 in

the context of the DPMM and derive a nonparametric SVA algorithm with reinforcement. Instead of just

reducing the diagonal likelihood covariance to the 0 matrix, we represent the categorical distribution over

the latent variables z1, . . . , zN in the more general exponential family form. The conditional distribution of

the cluster indicator for point i given the mixture weights is given by:

p (zi |π ) = exp (−Dφ (zi, π)) bφ (zi) (3.25)

where π = (πk)
K
k=1 is the vector of mixture weights. Written in this form now we can also scale the variance

of the categorical distribution over z. Let us replace the distribution (3.25) by a scaled one:

p (zi |π ) = exp
(
−ξ̂Dφ (zi, π)

)
bφ̃ (zi) (3.26)

with φ̃ = ξ̂φ. The scaled distribution in (3.26) will keep the same mean as the distribution in (3.25). We

assume that the likelihood F̃
(
θ̃
)

is scaled with ξ for which the equality ξ̂ = λ1ξ holds for some real λ1 (to

obtain later closed form updates). Now, taking ξ →∞ would result in the appropriate scaling. After taking

the limit and removing the constant terms we obtain the objective function of this new SVA approach:

K∑
k=1

∑
i:zi=k

Dφ (xi, µk) + λ1Dφ (zi, πk) + λK (3.27)

which is optimized with respect to (z, µ, π), and where Dφ (zi, πk) ∝ − lnπk. Optimization with respect to

the mixture weights results in the empirical probability for the cluster weights πk = Nk
N . So, this objective

function then can be rewritten as:

K∑
k=1

∑
i:zi=k

Dφ (xi, µk)− λ1 ln
Nk
N

+ λK (3.28)

The E-M procedure that tries to optimize this objective function computes, for each observation xi, the

K divergences to each of the existing clusters: Dφ (xi, µk) for k = 1, . . . ,K. Then, it takes into account

the number of data points in each component by adjusting the corresponding divergence with subtraction of

term λ1 ln Nk
N (for each k). After computing these adjusted distances, observation xi is assigned to the closest

cluster unless λ is smaller than all of these adjusted distances, in which case a new cluster is created. The

cluster means are updated with the sample mean of observations assigned to each cluster, and in addition

we now have to update the counts N1, . . . , NK .

In contrast to the SVA algorithm proposed by (Jiang et al., 2013), this novel SVA algorithm with rein-

forcement no longer clusters the data purely based on its geometric properties, but also takes into account

the number of data points in each cluster. In that respect this SVA method has greater flexibility, but at

the same time, unlike MAP-DP, we can see that none of the SVA algorithms actually optimize the complete

data likelihood of the original underlying DPMM. Both SVA methods modify to some extent the original

probabilistic model and so, while being quite simple, they sacrifice several key statistical principals including

structural interpretability and the existence of a principled probabilistic generative model.
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The DP-means algorithm

Due to its close relationship to K-means, let us consider a special case of the SVA method from (Jiang et al.,

2013). Consider the case of a DPMM with Gaussian components, then with similar SVA assumptions (Kulis

& Jordan, 2011) derive a non-parametric version of the K-means algorithm, referred to as the DP-means

algorithm. Assume each Gaussian component in a DPMM is spherical with identical covariance Σk = σI,

and the variance parameter σ > 0 is assumed known and hence fixed in the algorithm. To obtain simple,

closed form updates Kulis & Jordan assume a zero mean Gaussian prior with covariance ρI and fixed ρ > 0

over the cluster means. Again a functional dependency between the concentration parameter N0 and the

covariances is assumed, which is N0 =
√

1 + ρ
σ · exp

(
− λ

2σ

)
, for some new parameter λ > 0. The probability

of assigning observation i to cluster k can then be expressed as:

p (zi = k |µk,Σk ) ∝ N−ik exp

(
− 1

2σ
‖xi − µk‖22

)
(3.29)

and the probability for creating a new cluster is:

p (zi = K + 1 |G0 ) ∝ exp

(
− 1

2σ

[
λ+

σ

ρ+ σ
‖xi‖22

])
(3.30)

In the SVA limit σ → 0 the probability over zi = k collapses to 1 when µk has the smallest distance

to xi; or instead, the probability of creating a new cluster becomes 1 when λ is smaller than any of these

distances. A new cluster is created if there are any observed data points for which λ is smaller than the

distance from that data point to any existing component mean vector. If a new component is generated, it

will have µk+1 = xi because in the limit, the covariance of the posterior over µk+1 becomes zero.

The component parameter update stage simplifies to the K-means update, i.e. the means of each compo-

nent are simply replaced by the mean of every observation assigned to that component. This occurs because

by conjugacy the posterior over the component means is multivariate Gaussian and as σ → 0 the likelihood

term dominates over the prior. See in Algorithm 3.5.

3.8 Iterative maximum-a-posteriori inference

Similar to the treatment of finite mixture models, if we start from the DPMM, depending upon whether we

decide to integrate out certain variables or not, we can obtain statistical models with different forms that

will lead to different iterative MAP algorithms. Various constructions of the DPMM have been explored and

in this Section we present two closely related iterative MAP clustering algorithms which are derived from

the CRP mixture model in (3.10) (MAP-DPMM algorithm) and from the collapsed construction of DPMM

(with collapsed component parameters) in (3.13) (collapsed MAP-DPMM algorithm).

3.8.1 Collapsed MAP-DPMM algorithm

In this section we propose a novel DPMM inference algorithm4 based on iteratively updating the cluster

indicators with the values that maximize their posterior (MAP values). The cluster parameters are integrated

out. This algorithm can also be seen as an an “exact” version of the maximization-expectation (M-E)

algorithm presented in (Welling & Kurihara, 2006). It is exact in the following sense: while the M-E algorithm

is a kind of VB and makes a factorization assumption which departs from the underlying probabilistic

4This collapsed MAP-DPMM algorithm has been previously published in Raykov et al. (2015b,a, 2016b,c). In those peer-
reviewed publications we call the collapsed MAP-DPMM algorithm “MAP-DP” for short.
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model, our algorithm is derived directly from the collapsed Gibbs-DPMM. Therefore, our algorithm does

not introduce or require an assumption that the joint distribution over the model parameters and the latent

variables factorizes into independent factors. The essential idea is to use conditional modal point estimates

rather than samples from the conditional probabilities used in Gibbs sampling.

Algorithm 3.5: DP-means Algorithm 3.6: Collapsed MAP-DPMM (spherical

Gaussian)

Input x1, . . . , xN : D-dimensional data

ε > 0: convergence threshold

λ: new cluster threshold

x1, . . . , xN : D-dimensional data

ε > 0: convergence threshold

N0: prior count

σ̂2: spherical cluster variance

σ2
0 : prior centroid variance

µ0: prior centroid location

Output z1, . . . , zN : cluster assignments

µ1, . . . , µK : cluster centroids

K: number of clusters

z1, . . . , zN : cluster assignments

K: number of clusters

1 K = 1, zi = 1 for all

i ∈ 1, . . . , N

1 K = 1, zi = 1 for all i ∈ 1, . . . , N

2 Enew =∞ 2 Enew =∞
3 repeat 3 repeat

4 Eold = Enew 4 Eold = Enew

5 for i ∈ 1, . . . , N 5 for i ∈ 1, . . . , N

6 for k ∈ 1, . . . ,K 6 for k ∈ 1, . . . ,K

7 7 σ̇−ik =
(

1
σ2
0

+ 1
σ̂2N

−i
k

)−1

8 8 µ̇−ik = σ−ik

(
µ0

σ2
0

+ 1
σ̂2

∑
j:zj=k,j 6=i xj

)
9 di,k = 1

2 ‖xi − µk‖
2
2 9 di,k = 1

2(σ̇−ik +σ̂2)

∥∥xi − µ̇−ik ∥∥2

2
+ D

2 ln
(
σ̇−ik + σ̂2

)
10 di,K+1 = λ 10 di,K+1 = 1

2(σ2
0+σ̂2)

‖xi − µ0‖22 + D
2 ln

(
σ2

0 + σ̂2
)

11 zi = arg mink∈1,...,K di,k 11 zi = arg mink∈1,...,K+1

[
di,k − lnN−ik

]
12 if zi = K + 1 12 if zi = K + 1

13 µK+1 = xi 13

14 K = K + 1 14 K = K + 1

15 for k ∈ 1, . . . ,K 15

16 µk = 1
Nk

∑
j:zj=k

xj 16

17 Enew =
∑K
k=1

∑
i:zi=k

di,k 17 Enew =
∑K
k=1

∑
i:zi=k

di,k

−K lnN0 −
∑K
k=1 log Γ (Nk)

18 until Eold − Enew < ε 18 until Eold − Enew < ε

Let us consider the exponential family DPMM described in Equation (3.13). The mixing parameters and

the component parameters are integrated out, so the only random variables left are the indicators z1, . . . , zN .

Under the MAP framework we suggest iterating through each of the cluster indicators zi and updating them

with their respective MAP values. For each point i, we ignore the normalization terms (the terms independent

of k) and compute the negative log of the assignment probabilities from (3.14):
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qi,k =ψ0

τ0 +
∑

j:zj=k,j 6=i

g (xj) , η0 +N−ik

− ψ0

τ0 +
∑
j:zj=k

g (xj) , η0 +Nk

− lnN−ik (3.31)

qi,K+1 =ψ0 (τ0, η0)− ψ0 (τ0 + g (xi) , η0 + 1)− lnN0 (3.32)

where by substituting τ−ik = τ0 +
∑
j:zj=k,j 6=i g (xj); η

−i
k = η0 + N−ik ; τk = τ0 +

∑
j:zj=k

g (xj) and ηk =

η0 + Nk, we get the update for existing clusters qi,k = ψ0

(
τ−ik , η−ik

)
− ψ0 (τk, ηk) − lnN−ik . We have used

the same notation as in Section 3.6.1: g (·) is the sufficient statistics function; (τ0, η0) are prior component

hyperparameters and ψ0 (·) is the log-parition function obtained after integrating out the parameter space.

For each observation xi we compute the above K + 1-dimensional vector qi and select the cluster number

according to the following:

zi = arg min
k∈{1,...,K,K+1}

qi,k

The algorithm proceeds to the next observation xi+1 by updating the cluster component statistics (pos-

terior hyperparameters) to reflect the new value of the cluster assignment zi. To check convergence of the

algorithm we compute the complete data likelihood:

p (x, z|N0) =

(
N∏
i=1

K∏
k=1

p (xi|zi) δzi,k
)
p (z1, . . . , zN ) (3.33)

where δzi,k is the Kronecker delta and p (z1, . . . zN ) is the probability of partitions induced by the CRP

(Pitman & Yor, 1997) also given in (2.43); computationally it is more convenient to evaluate the negative

log of the data likelihood (the NLL), which would lead to equivalent convergence tests. In Appendix A we

have included a table describing the choice for sufficient statistics, base measure, log-partition function and

hyperparameters depending on the choice of data likelihood. For pedagogical purposes, we have provided a

collapsed MAP-DPMM implementation for spherical Gaussian data (Algorithm 3.6).

It is worth pointing out that unlike MCMC approaches, iterative MAP methods do not increase the

negative log of the complete data likelihood at each step and as a result are guaranteed to converge to a fixed

point. Convergence is quickly reached. The main disadvantage with this is that the solution at convergence

is only guaranteed to be a local minima. Multiple restarts using random permutations of the data can be

used to search for improved solutions. However, unlike SVA approaches, with collapsed MAP-DPMM (and

with MAP-DPMM) it is possible to learn all model hyperparameters as we discuss in Appendix E.

3.8.2 The MAP-DPMM algorithm

Consider now we start from the CRP construction of the DPMM from Section 3.6.1 which refers explicitly

to the component parameters. MAP-DPMM then involves iterating through each of the cluster indicators

zi and also through each of the cluster parameters θ (which in collapsed MAP-DPMM were integrated out),

updating them with their respective MAP values at each step. For each point i, we compute for each existing

cluster k and for a new cluster K + 1:
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qi,k =ψ (θk) + h (xi)− 〈g (xi) , θk〉 − lnN−ik (3.34)

qi,K+1 =ψ0 (τ0, η0)− ψ0 (τ0 + g (xi) , η0 + 1)− lnN0 (3.35)

with again g (·) denoting the sufficient statistics function; ψ (·) being the log partition function and h (xi)

being the base measure. For each observation xi we obtain a K + 1-dimensional vector qi and select the

cluster number according to the following:

zi = arg min
k∈{1,...,K,K+1}

qi,k (3.36)

If zi = K + 1 has been chosen, we introduce new set of parameters θK+1, where we simply choose the values

for θK+1 that maximize the posterior of θ given single point xi. Equivalently, we can choose the values for

θK+1 that minimize the negative log posterior of θ given xi which is easier to compute.

After we sweep through the cluster indicators, we proceed to update the component parameters θ. For

k = 1, . . . ,K:

θk = arg min
θk

[ηkψ (θk) + ψ0 (τ k, ηk)− 〈θk, τ k〉] (3.37)

3.8.3 Out-of-sample prediction

The major advantage of the MAP approach compared to SVA is that it will allow us to do out-of-sample

prediction about unseen observations in a neat and rigorous way. To compute the out-of-sample likelihood

for a new observation xN+1 we consider two approaches that differ in how the indicator zN+1 is treated:

1. Mixture predictive density. The unknown indicator zN+1 can be integrated out resulting in a mixture

density:

p (xN+1|N0, z, x) =

K+1∑
k=1

p (zN+1 = k|N0, z,X) p (xN+1|zN+1 = k, . . . ) (3.38)

The assignment density p (zN+1 = k|z,N0, x) here is simply computed using the CRP defining rule

(2.42), therefore probability for an existing cluster is Nk
N0+N and N0

N0+N is the probability for a new

cluster. The second term will be computed differently if we are to use MAP-DPMM or collapsed MAP-

DPMM. For the collapsed MAP-DPMM the second term corresponds to the predictive distribution of

a point xN+1 according to the predictive densities for new and existing cluster:

p (xN+1|zN+1 = k, . . . ) =

p (xN+1|z−i, x, zN+1 = k, τk, ηk) for existing k

p (xN+1|τ, η, zN+1 = K + 1) for new cluster
(3.39)

For the non-collapsed MAP-DPMM the second term will take different form for existing and new cluster

where for existing cluster k we compute the likelihood of point xN+1 given it is from the k-th component

and for a new cluster we compute the same predictive distribution as in the collapsed MAP-DPMM:

p (xN+1|zN+1 = k, . . . ) =

p (xN+1|θk, zN+1 = k) for existing k

p (xN+1|τ, η, zN+1 = K + 1) for new cluster
(3.40)
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2. MAP cluster assignment. We can also use a point estimate for zN+1 by picking the minimum negative

log posterior of the indicator p (zN+1|xN+1, z,N0), equivalently:

zMAP
N+1 = arg min

k∈{1,...,K,K+1}
[− log p (xN+1|zN+1 = k, . . . )− log p (zN+1 = k|N0, z, x)] (3.41)

where p (xN+1|z,X, zN+1 = k) and p (zN+1 = k|N0, z, x) are computed as in the first approach.

The first (marginalization) approach is used in (Blei & Jordan, 2006) and is more ’robust’ as it incorporates

the probability of all cluster components while the second (modal) approach can be useful in cases where

only a point cluster assignment is needed. Even when using the first approach however, the mixture density

is still computed assuming point assignments for the training data z1, . . . , zN . The resulting approximation

error decreases for large sample sizes and for well-separated clusters. This is because ignoring the uncertainty

in the training data assignments has a reduced effect on the estimation of the predictive density.

Furthermore, the predictive density obtained using iterative MAP will be comparable to the one obtained

using the Gibbs sampler inference only when the sufficient statistics N1, . . . NK of the categorical likelihood

for the assignment variables estimated from a Gibbs chain are similar to the ones estimated from the modal

estimates for z1, . . . , zN . Empirically, we have observed this often to be the case. We have noticed that the

predictive density for highly populated cluster components tend to be well approximated by iterative MAP

where the effect of the smaller cluster components diminishes when using only modal estimates for z. Note

that the DPMM usually models data with a lot of inconsistent and small, yet spurious components Miller &

Harrison (2013); those and any consistent components with small effect are likely to be ignored when using

MAP inference as we later show in Section 3.9.2. To summarize, using only modal estimates for the cluster

assignments we are likely to infer correctly only the larger components which have a large effect on the model

likelihood and which will also affect the estimated predictive density accordingly.

3.8.4 Analysis of iterative MAP for DPMM

Despite being derived from the same model (DPMM), both MAP-DPMM and collapsed MAP-DPMM can

produce different clustering results as they imply different treatment for some of the variables in the underlying

model. In Gibbs sampling Rao-Blackwellization of some intermediate random variables can improve the

mixing of the sampler while converging to an equivalent stationary distribution. However, when deriving

MAP algorithms, integrating out random variables from the probabilistic model leads to different clustering

procedures. MAP methods do not have the asymptotic guarantees of MCMC techniques, therefore MAP-

DPMM and collapsed MAP-DPMM could easily tolerate non-equivalent local solution despite starting from

the same model.

For example, let us consider the special case of a DPMM with Gaussian components and follow the

derivation of the corresponding MAP-DPMM and collapsed MAP-DPMM algorithms. To derive collapsed

MAP-DPMM we integrate over both the mixture weights π and the component parameters θ = (µ,Σ)(which

are the means and the covariances for Gaussian data). Therefore, in the new collapsed model each component

is described with a Student-t distribution parametrized by some statistics from the data. Recall that in a

model where the component parameters (µ,Σ) are not integrated, each component is described instead with

a Gaussian distribution, but with random (unknown) parameters. The Student-t distribution has an extra

degree of freedom compared to the Gaussian and it typically places higher probability on values that are

far from the sample mean (values that are in the tails of the distribution). More specifically, we can see

(A.5) in Appendix A that the degrees of freedom ak = a0 +Nk/2 of each Student-t component depend on the
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number of points assigned to that component. As Nk gets larger, the corresponding Student-t component

approaches the behaviour of a Gaussian distribution; for components with smaller Nk (with less observations)

the Student-t differs more and places higher probability in the tails (see Figure 3.3). The result is that

collapsed MAP-DPMM models smaller components with higher uncertainty (components represented with

less observations).

By contrast, to derive the non-collapsed MAP-DPMM we only integrate out the mixture weights π from

the model. Therefore, the represented components are Gaussian with mean µk and covaraince Σk. The

event of a point belonging to a non-represented component however is still modeled with a Student-t with

a0 + 1/2 degrees of freedom. The result is that in MAP-DPMM the event of creating a new component is

modeled with a heavy-tailed distribution5, by comparison to the event of assigning a point to a represented

component. This was not the case for the collapsed MAP-DPMM where both events are modeled with

Student-t distributions; the consequence of this is that non-collapsed MAP-DPMM will be more likely to

create new components than the collapsed one.

If we consider the identical Gibbs sampling scenario, the same argument can be made for each iteration:

a single iteration of the collapsed Gibbs-DPMM is less likely to intiate new components compared to a single

iteration of the non-collapsed Gibbs-DPMM. However, this behaviour is compensated by the additional

sampling step of the component parameters and the sampler converges asymptotically to the same stationary

distribution. This is not the case for iterative MAP inference because it is deterministic, the component

updates in MAP-DPMM are only modal updates and the local optima reached by collapsed MAP-DPMM

and non-collapsed MAP-DPMM can be different.

The robustness gained by integrating over the cluster components comes at the price of changing some of

the conditional independence properties of the graphical model. This can make the algorithm less compact

and more memory demanding. The main difference would be in cases when we would like to store a trained

model on some memory-constrained device. Whereas a representation of the model trained with collapsed

MAP-DPMM involves storing all cluster indicators and all the data, in non-collapsed MAP-DPMM we would

only need to store the cluster indicators and the component parameters, that is 2N variables compare to

N +2K which for N � K can lead to substantial difference in memory requirements. If we decide to use, for

example, the stick-breaking construction of the DPMM where the mixing parameters π are not integrated

out, the minimal representation required to summarize the model would be even more compact with 3K

variables required in the Gaussian data.

3.9 DPMM experiments

3.9.1 UCI experiment

Next, we compare DP-means, MAP-DPMM, collapsed MAP-DPMM, Gibbs-DPMM and collapsed Gibbs-

DPMM on six UCI machine learning repository datasets (Blake & Merz, 1998): Wine; Iris; Breast cancer ;

Soybean; Pima and Vechicle. We assess the performance of the methods using the same NMI measure as in

Section 3.9.2. Class labels in the datasets are treated as cluster numbers6. There is either no or a negligibly

small number of missing values in each of the data sets. The data types vary between datasets and features:

Wine consists of integer and real data; Iris contains real data; Breast cancer consists of integer and categorical

5Distributions with heavier tails place higher probability on events far from the main “body” of the distribution than e.g.
distributions with exponential tails such as the Gaussian.

6We do not assess “Car” and “Balance scale” datasets used in Kulis & Jordan (2011) because they consist of a complete
enumeration of 6 and 4 categorical factors respectively, and it is not meaningful to apply an unsupervised clustering algorithm
to such a setting.
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(a) 1 degree of freedom (b) 2 degrees of freedom (c) 5 degrees of freedom

Figure 3.3: Density of the Student-t distribution with varying degrees of freedom(red line) compared to
standard normal distribution(blue line). The green line shows all previous plots with smaller df.

data; Soybean is categorical data; Pima is real data and Vehicle consists of integer data.

To conduct the experiment we have assumed a DPMM with elliptical Gaussian components with unknown

means and variances in each dimension. Note that more accurate performance may be reached for MAP-

DPMM, collapsed MAP-DPMM and both Gibbs samplers if we carefully pick a different DPMM for each of

the datasets that incorporates some knowledge of the type of data. The same initialization conditions are

used for all of the algorithms except for DP-means where such initialization is not applicable. For Gibbs

sampling we report average NMI score and standard deviation in the brackets, which have been estimated

after burning-in7 first 150 iterations. Convergence for the Gibbs samplers is assessed using Raftery and

Lewis (Raftery & Lewis, 1992) diagnostics. Mirroring Kulis & Jordan (2011), the threshold parameter λ for

DP-means was chosen to give the true number of clusters in each of the datasets.The reported CPU run

times for the compared methods were obtained on Matlab R2013a (8.1.0.604) 64-bit (glnxa64), i7-2600 CPU

with 3.40GHz processor, ubuntu PC.

Wine data

This dataset is formed of 178 data points each with 13 attributes8. The data depicts the outcome of chemical

analysis of wines grown in the same region which are from three different cultivars. The chemical analysis

determines the values of the 13 attributes of each wine and the wines can be classified into three classes

depending on the cultivar. We cluster the data with different algorithms (ignoring the labels for type of cul-

tivar) and use the type of cultivar as a label for the ground truth clustering when evaluating the performance

of the methods.

Iris data

This data consists of 150 instances of iris plants each described with 4 attributes: sepal length (in cm); sepal

width (in cm); petal length (in cm); petal width (in cm). The iris plants can be classified into three different

types of iris plant. We cluster the iris data with different algorithms aiming at correctly distinguishing the

three types of plants and we use the true labels to evaluate the performance of the methods.

7The practice of throwing away the first few iterations of a MCMC run to remove the most highly-correlated samples.
8The attributes in the Wine dataset are: alcohol; malic acid; ash; alcalinity of ash; magnesium; total phenols; flavanoids;

nonflacanoid phenols; proanthocyanins; color intensity; hue; OD280/OD315 of diluted wines; proline.
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Table 3.3: Clustering performance of DPMM inference techniques measured using NMI between estimated
and ground truth labels of the wine dataset from the UCI machine learning repository

Model/Score NMI Iterations to convergence CPU time
(seconds)

Number of clusters

Gibbs-DPMM 0.75 (0.04) 1017 415.7 6
Collapsed Gibbs-DPMM 0.74 (0.04) 907 194.8 5

MAP-DPMM 0.56 7 0.48 2
Collapsed MAP-DPMM 0.52 5 0.92 2

DP-means 0.42 19 ˜ ˜

Table 3.4: Clustering performance of DPMM inference techniques measured using NMI between estimated
and ground truth labels of the iris dataset from the UCI machine learning repository

Model/Score NMI Iterations to convergence CPU time
(seconds)

Number of clusters

Gibbs-DPMM 0.77 (0.03) 1017 69.6 4
Collapsed Gibbs-DPMM 0.72 (0.02) 1118 155.3 4

MAP-DPMM 0.73 5 0.75 2
Collapsed MAP-DPMM 0.75 5 0.52 2

DP-means 0.76 8 ˜ ˜

Breast cancer data

This dataset consists of data for 286 breast cancer patients with 9 attributes recorded for each participant.

The attributes include: age; menopause; tumor size; inv-nodes; node-caps; deg-malig; breast(left or right);

breast-quad (which quadrant is the tumor in); irradiate. The patients can be classified into cases with

recurrent events and cases with no recurrence. We cluster the patient attributes and aim to correctly classify

in an unsupervised way whether a case should belong in the group with recurrence or without.

Soybean data

The original soybean dataset in the UCI repository consists of 307 instances each with 35 attributes of the

soybean plant. The plants can be classified into 19 types, where commonly only 15 of those are used for

classification and clustering experiments. This is because data from the other 4 types is not well represented

in this dataset. In our experiment we follow the same logic and evaluate our methods on the plants from

the 15 well-represented types of soybean. There are 266 such instances of soybean plant. The attributes are

categorical and vary from features related to the weather and conditions in which the plant grows to features

related to the plant’s leaves, stems, fruit-pods among others. Data for the plants is again clustering using

Table 3.5: Clustering performance of DPMM inference techniques measured using NMI between estimated
and ground truth labels of the breast cancer dataset from the UCI machine learning repository

Model/Score NMI Iterations to convergence CPU time
(seconds)

Number of clusters

Gibbs-DPMM 0.61 (0.05) 1499 2760.3 4
Collapsed Gibbs-DPMM 0.73 (0.01) 1023 681.4 2

MAP-DPMM 0.73 5 3.0 2
Collapsed MAP-DPMM 0.75 6 2.1 2

DP-means 0.75 8 ˜ ˜
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Table 3.6: Clustering performance of DPMM inference techniques measured using NMI between estimated
and ground truth labels of the soybean dataset from the UCI machine learning repository

Model/Score NMI Iterations to convergence CPU time
(seconds)

Number of clusters

Gibbs-DPMM 0.33 (0.01) 982 2760 4
Collapsed Gibbs-DPMM 0.52 (0.01) 907 681 2

MAP-DPMM 0.36 3 3 2
Collapsed MAP-DPMM 0.38 5 2 2

DP-means 0.36 14 ˜ ˜

Table 3.7: Clustering performance of DPMM inference techniques measured using NMI between estimated
and ground truth labels of the Pima dataset from the UCI machine learning repository

Model/Score NMI Iterations to convergence CPU time
(seconds)

Number of clusters

Gibbs-DPMM 0.06 (0.01) 1248 1289 4
Collapsed Gibbs-DPMM 0.06 (0.01) 907 1097 2

MAP-DPMM 0.05 10 14 seconds 2
Collapsed MAP-DPMM 0.04 6 3 seconds 2

DP-means 0.03 19 ˜ ˜

different inference algorithms for DPMM and performance is evaluated using the true labels denoting the

soybean type.

Pima data

This dataset consist of 8 attributes of 768 female participants who are aged at least 21 and have Pima Indian

heritage. The 8 features that are included for each patient are: Number of times pregnant; plasma glucose

concentration; diastolic blood pressure; triceps skin fold thickness; 2-hour serum insulin; body mass index;

diabetes pedigree function and age. The participants are classified into two classes depending or whether

they are diagnosed with diabetes or not (class 0 and 1). We cluster the patient’s data aiming to correctly

estimate diabetes diagnosis and then evaluate the different algorithms using the true labels.

Discussion

The study above demonstrates that on four out of six datasets, iterative MAP methods produce comparable

clustering results to the clustering produced using exhaustive Gibbs sampling. At the same time, Gibbs

sampling requires approximately three orders of magnitude more iterations to converge. On all six datasets

the MAP methods perform as well as (often even better than) DP-means algorithms despite the fact that

DP-means has been given the true number of clusters a-priori. DP-means performs well on lower-dimensional

data sets with a small number of clusters. For higher dimensional data it is more often the case that the

different features have different numerical scaling, so the squared Euclidean distance used in DP-means is

often inappropriate.

Consider now a more flexible DPMM with unknown mean and complete covariance. The elliptical model

does not model any correlation between the attributes of the data implying they are independent9. In

Table 3.8 we plot the NMI score evaluated using the new clustering produced using collapsed MAP-DPMM

inference and matching collapsed Gibbs-DPMM for Gaussian DPMM modeling using complete component

9The elliptical Normal-Gamma DPMM is only a special case of the full covariance Normal-Wishart DPMM
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Table 3.8: Clustering performance of collapsed MAP-DPMM and collapsed Gibbs-DPMM sampling infer-
ence applied to Gaussian DPMM with complete covariances. Performance is evaluated using NMI between
estimated and ground truth labels. The algorithms are tested on six UCI datasets. In square brackets is
the number of iteration to convergence for the collapsed MAP-DPMM. In round brackets is the standard
deviation of the NMI score for different samples of the chain simulated from the collapsed Gibbs-DPMM.
The table does not include iterations to convergence for the Gibbs sampler due to the similarity of the figure
with the iterations reported from the earlier sampler in Tables 1.3-1.7

Dataset/Model Collapsed MAP-DPMM Collapsed Gibbs-DPMM

Wine 0.86 [11] 0.72 (0.06)
Iris 0.78 [5] 0.75 (0.06)

Breast cancer 0.76 [8] 0.73 (0.01)
Soybean 0.40 [9] 0.49 (0.00)

Pima 0.07 [17] 0.07 (0.01)

covariance matrices. In principle this full covariance DPMM does not describe the data significantly better

than the simpler elliptical model. Evidence for this is the minimal improvement in the clustering produced

by the Gibbs sampler. However, deterministic MAP algorithms derived from this model are less likely to get

stuck in poor local optima. The clustering performance of the collapsed MAP-DPMM applied to the more

general DPMM is significantly higher, gets close to the performance of the Gibbs sampler and significantly

outperforms the DP-means algorithm.

3.9.2 Synthetic CRP parameter estimation

Next, we will examine the performance of collapsed MAP-DPMM, collapsed Gibbs-DPMM, DP-means and

VB-DPMM (Section 3.7.1) on synthetically generated CRP-partitioned, non-spherical Gaussian data in terms

of estimation error and the computational effort. We generate 100 samples from a two-dimensional DPMM.

The partitioning is sampled from a CRP with fixed concentration parameter N0 = 3 and data size N =

600. Gaussian component parameters are sampled from a Normal-Wishart (NW) prior with parameters

m0 = [2, 3], c0 = 0.5, a0 = 30, B0 =

[
2 1

1 3

]
. This prior ensures a combination of both well-separated

and overlapping clusters. We fit the model with collapsed MAP-DPMM, VB-DPMM and collapsed Gibbs-

DPMM using the ground truth model hyperparameters (which are the NW parameters (m0, c0, a0, B0) and

the concentration parameter N0) used to generate the data. Convergence for the Gibbs sampler is tested

using the Raftery diagnostic with parameter values q = 0.025, r = 0.1, s = 0.95. We use a high convergence

acceptance tolerance of r = 0.1 to obtain less conservative estimates for the number of iterations required.

We use the most likely value from the Gibbs chain after burn-in samples (1/3 of the samples) have been

removed.

Clustering estimation accuracy is again measured using NMI score. The parameter λ for DP-means is set

using a binary search procedure such that the algorithm gives rise to the correct number of partitions (see

Appendix G). This approach again favours DP-means as it is given knowledge of the true number of clusters.

For VB-DPMM we set the truncation limit to ten times the number of clusters in the current CRP sample.

Both the collapsed MAP-DPMM and Gibbs-DPMM achieve similar clustering performance in terms of

NMI whilst VB-DPMM and DP-means have lower scores (Table 3.9). Collapsed MAP-DPMM requires the

smallest number of iterations to converge with collapsed Gibbs-DPMM requiring, on average, 140 times more

iterations and DP-means 1.8 times more. In Figure 3.4(a) the median partitioning is shown in terms of

the partitioning Nk/N and the number of clusters. As expected, when using a CRP prior, the sizes of the
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Table 3.9: Performance of collapsed Gibbs-DPMM, collapsed MAP-DPMM, DP-means and VB-DPMM
inference methods used for clustering synthethic DPMM distributed data. The first row plots average NMI
score and standard deviation (in brackets) across the 100 DPMM samples. The second row reports respec-
tively the average number of iterations to convergence and standard deviation (in brackets). Note that the
NMI score and iterations to convergence reported for the collapsed Gibbs-DPMM here are measured for the
draw of the simulated chain which scores the highest likelihood.

Diagnostic/Model Collapsed Gibbs-DPMM* Collapsed MAP-DPMM DP-means VB-DPMM

NMI score 0.81 (0.1) 0.82 (0.1) 0.68 (0.1) 0.75 (0.1)
Iterations 1395 (651) 10 (3) 18 (7) 45 (18)

different clusters vary significantly with many small clusters containing only a few observations. Collapsed

MAP-DPMM and VB-DPMM fail to identify the smaller clusters whereas the Gibbs sampler is able to do so

to a greater extent. This is a form of underfitting where the algorithm captures the mode of the partitioning

distribution but fails to put enough mass on the tails (the smaller clusters). The NMI scores do not reflect

this effect as the impact of the smaller clusters on the overall measure is minimal. The poorer performance

of the DP-means algorithm can be attributed to the non-spherical nature of the data as well as the lack of

reinforcement effect that leads to underestimation of the larger clusters and overestimation of the smaller

clusters.

To confirm that the performance of DP-means suffers due to the lack of reinforcement effect in its as-

signment criteria we modify the CRP experiment to sample from spherical clusters (Figure 3.4(b)). CRP-

distributed indicators are again sampled 100 times and the collapsed MAP-DPMM algorithm attains NMI

scores of 0.88 (0.1) and DP-means scores NMI 0.73 (0.1). As the clusters are spherical, the lower performance

of the DP-means algorithms is solely explained by the lack of reinforcement effect.

(a) Non-spherical (b) Spherical

Figure 3.4: CRP mixture experiment; distribution of cluster sizes, actual and estimated using different
methods. Cluster number ordered by decreasing size (horizontal axis) vs Nk

N (vertical axis).
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3.10 Example applications of MAP-DPMM algorithms

3.10.1 Sub-typing of parkinsonism and Parkinson’s disease

Parkinsonism is the clinical syndrome defined by the combination of bradykinesia (slowness of movement)

with tremor, rigidity or postural instability. This clinical syndrome is most commonly caused by Parkinson’s

disease (PD), although can be caused by drugs or other conditions such as multi-system atrophy. Because

of the common clinical features shared by these other causes of parkinsonism, the clinical diagnosis of PD in

vivo is only 90% accurate when compared to post-mortem studies. This diagnostic difficulty is compounded

by the fact that PD itself is a heterogeneous condition with a wide variety of clinical phenotypes, likely driven

by different disease processes. These include wide variations in both the motor (movement, such as tremor

and gait) and non-motor symptoms (such as cognition and sleep disorders). While the motor symptoms are

more specific to parkinsonism, many of the non-motor symptoms associated with PD are common in older

patients which makes clustering these symptoms more complex. Despite significant advances, the aetiology

(underlying cause) and pathogenesis (how the disease develops) of this disease remain poorly understood,

and no disease modifying treatment has yet been found.

The diagnosis of PD is therefore likely to be given to some patients with other causes of their symptoms.

Also, even with the correct diagnosis of PD, they are likely to be affected by different disease mechanisms

which may vary in their response to treatments, thus reducing the power of clinical trials. Despite numerous

attempts to classify PD into sub-types using empirical or data-driven approaches (using mainly K-means

cluster analysis), there is no widely accepted consensus on classification.

One approach to identifying PD and its subtypes would be through appropriate clustering techniques

applied to comprehensive datasets representing many of the physiological, genetic and behavioural features

of patients with parkinsonism. We expect that a clustering technique should be able to identify PD subtypes

as distinct from other conditions. In that context, using methods like K-means and finite mixture models

would severely limit our analysis as we would need to fix a-priori the number of sub-types K for which we are

looking. Estimating that K is still an open question in PD research. Potentially, the number of sub-types is

not even fixed, instead, with increasing amounts of clinical data on patients being collected, we might expect

a growing number of variants of the disease to be observed. A natural probabilistic model which incorporates

that assumption is the DP mixture model. Here we make use of collapsed MAP-DPMM as a computationally

convenient alternative to fitting the DP mixture.

We have analyzed the data for 527 patients from the PD data and organizing center (PD-DOC) clinical

reference database, which was developed to facilitate the planning, study design, and statistical analysis

of PD-related data (Kurlan & Murphy, 2007). The subjects consisted of patients referred with suspected

parkinsonism thought to be caused by PD. Each patient was rated by a specialist on a percentage probability

of having PD, with 90-100% considered as probable PD (this variable was not included in the analysis).

This data was collected by several independent clinical centers in the US, and organized by the University

of Rochester, NY. Ethical approval was obtained by the independent ethical review boards of each of the

participating centers. From that database, we use the PostCEPT data.

For each patient with parkinsonism there is a comprehensive set of features collected through various

questionnaires and clinical tests, in total 215 features per patient. The features are of different types such

as yes/no questions, finite ordinal numerical rating scales, and others, each of which can be appropriately

modeled by e.g. Bernoulli (yes/no), binomial (ordinal), categorical (nominal) and Poisson (count) random

variables (see Appendix A). For simplicity and interpretability, we assume the different features are indepen-

dent and use the elliptical model defined in Section 3.8.

73



Table 3.10: Significant features of parkinsonism from the PostCEPT/PD-DOC clinical reference data across
clusters (groups) obtained using collapsed MAP-DPMM with appropriate distributional models for each
feature. Each entry in the table is the probability of PostCEPT parkinsonism patient answering “yes” in
each cluster (group).

Group 1 Group 2 Group 3 Group 4

Resting tremor (present and typical) 0.81 0.91 0.42 0.78
Resting tremor (absent) 0.14 0.06 0.42 0.11

Symptoms in the past week 0.58 0.94 1.00 0.67

Table 3.11: Significant features of parkinsonism from the PostCEPT/PD-DOC clinical reference data across
clusters obtained using collapsed MAP-DPMM with appropriate distributional models for each feature.
Each entry in the table is the mean score of the ordinal data in each row. Lower numbers denote con-
dition closer to healthy. Note that the Hoehn and Yahr stage is re-mapped from {0, 1.0, 1.5, 2, 2.5, 3, 4, 5} to
{0, 1, 2, 3, 4, 5, 6, 7} respectively.

Mean score Scale Group1 Group 2 Group 3 Group 4

Facial expression 0-4 1.42 1.47 0.42 2.33
Tremor at rest (face, lips and chin) 0-4 0.05 0.32 0.23 1.00

Rigidity (right upper extremity) 0-4 0.90 1.30 0.38 2.11
Rigidity (left upper extremity) 0-4 0.62 1.33 0.19 2.00
Rigidity (right lower extremity) 0-4 0.46 0.97 0.04 2.56
Rigidity (left lower extremity) 0-4 0.38 1.06 0.04 2.67

Finger taps (left hand) 0-4 0.65 1.41 0.50 2.33
PD state during exam 1-4 2.65 3.85 4.00 3.00

Modified Hoehn and Yahr stage 0-7 2.46 3.19 1.62 6.33

A common problem that arises in health informatics is missing data. When using K-means this problem

is usually separately addressed prior to clustering by some type of imputation method. However, in the

MAP-DPMM framework, we can simultaneously address the problems of clustering and missing data. In

the probabilistic treatment the missing values are considered as an additional set of random variables and

MAP-DPMM proceeds by updating them at every iteration. As a result, the missing values and cluster

assignments will depend upon each other so that they are consistent with the observed feature data and each

other.

We initialized MAP-DP with 10 randomized permutations of the data and iterated to convergence on each

randomized restart. The results (Tables 3.10 and 3.11) suggest that the PostCEPT data is clustered into 5

groups with 50%, 43%, 5%, 1.6% and 0.4% of the data in each cluster. We then performed a Student’s t-test

at α = 0.01 significance level to identify features that differ significantly between clusters. As with most

hypothesis tests, we should always be cautious when drawing conclusions, particularly considering that not

all of the mathematical assumptions underlying the hypothesis test have necessarily been met. Nevertheless,

this analysis suggest that there are 61 features that differ significantly between the two largest clusters. Note

that if, for example, none of the features were significantly different between clusters, this would call into

question the extent to which the clustering is meaningful at all. We assume that the features differing the

most among clusters are the same features that lead the patient data to cluster. By contrast, features that

have indistinguishable distributions across the different groups should not have significant influence on the

clustering.

We applied the significance test to each pair of clusters excluding the smallest one as it consists of

only 2 patients. Exploring the full set of multilevel correlations occurring between 215 features among 4
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groups would be a challenging task that would change the focus of this work. We therefore concentrate only

on the pairwise-significant features between Groups 1-4, since the hypothesis test has higher power when

comparing larger groups of data. The clustering results suggest many other features not reported here that

differ significantly between the different pairs of clusters that could be further explored. A full list of the

significantly different features, corresponding p-values and effect size in Appendix J. Individual analysis on

Group 5 shows that it consists of 2 patients with advanced parkinsonism who are unlikely to have PD itself

(both were thought to have less than 50% probability of having PD).

Due to the nature of the study and the fact that very little is yet known about the sub-typing of PD,

direct numerical validation of the results is not feasible. The purpose of the study is to learn in a completely

unsupervised way, an interpretable clustering on this comprehensive set of patient data, and then interpret

the resulting clustering by reference to other sub-typing studies.

Our analysis successfully clustered almost all the patients thought to have PD into the 2 largest groups.

Only 4 out of 490 patients (which were thought to have Lewy-body dementia, multi-system atrophy and

essential tremor) were included in these 2 groups, each of which had phenotypes very similar to PD. Because

the unselected population of parkinsonism included a number of patients with phenotypes very different to

PD, it may be that the analysis was therefore unable to distinguish the subtle differences in these cases.

The fact that a few cases were not included in these group could be due to: an extreme phenotype of the

condition; variability in how subjects filled in the self-rated questionnaires (either comparatively under or

over stating symptoms); or that these patients were misclassified by the clinician. The inclusion of patients

thought not to have PD in these two groups could also be explained by the above reasons.

Comparing the two groups of PD patients (Groups 1 & 2), group 1 appears to have less severe symp-

toms across most motor and non-motor measures. Group 2 is consistent with a more aggressive or rapidly

progressive form of PD, with a lower ratio of tremor to rigidity symptoms. van Rooden et al. (2010) com-

bined the conclusions of some of the most prominent, large-scale studies. Of these studies, 5 distinguished

rigidity-dominant and tremor-dominant profiles (Reijnders et al., 2009; Lewis et al., 2005; Liu et al., 2011;

Gasparoli et al., 2002). Our analysis, identifies a two subtype solution most consistent with a less severe

tremor dominant group and more severe non-tremor dominant group most consistent with (Gasparoli et al.,

2002).

These results demonstrate that even with small datasets that are common in studies on parkinsonism

and PD sub-typing, MAP-DPMM is a useful exploratory tool for obtaining insights into the structure of the

data and to formulate useful hypothesis for further research.

Although the clinical heterogeneity of PD is well recognized across studies (Hoehn et al., 1998), comparison

of clinical sub-types is a challenging task. Studies often concentrate on a limited range of more specific clinical

features. For instance, some studies concentrate only on cognitive features or on motor-disorder symptoms

(Yang et al., 2014). In addition, typically the cluster analysis is performed with the K-means algorithm and

fixing K a-priori might seriously distort the analysis.

It is important to note that the clinical data itself in PD (and other neurodegenerative diseases) has inher-

ent inconsistencies between individual cases which make sub-typing by these methods difficult: the clinical

diagnosis of PD is only 90% accurate; medication causes inconsistent variations in the symptoms; clinical

assessments (both self rated and clinician administered) are subjective; delayed diagnosis and the (variable)

slow progression of the disease makes disease duration inconsistent. Therefore, any kind of partitioning of

the data has inherent limitations in how it can be interpreted with respect to the known PD disease process.

It may therefore be more appropriate estimate a DP mixture density from the data instead of focusing on

the modal point estimates for each cluster.
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Our analysis presented here has the additional layer of complexity due to the inclusion of patients with

parkinsonism without a clinical diagnosis of PD. This makes differentiating further subtypes of PD more

difficult as these are likely to be far more subtle than the differences between the different causes of parkin-

sonism.

3.10.2 Application of MAP-DPMM to semiparametric mixed effect models

Hierarchical modeling is commonly used in the analysis of longitudinal health data10. A particular model

that is widely used in practice is the linear mixed effects model :

yi = Xiβi + εi,j (3.42)

βi ∼ P

where yi is the observation vector for individual i ∈ {1, . . . , N}, εi,j ∼ N
(
0, τ−1

σ

)
is the subject-specific

observation noise with τσ the within-subject precision and P the distribution of the random effects βi (Dunson,

2010). Xi are the inputs for the random effects βi and the fixed effect regression parameters are equal to

the mean of the distribution P . The distribution P is commonly specified to be Gaussian for analytical

tractability and computational simplicity. However, the assumption of normality is seldom justified and the

assumptions of symmetry and unimodality are often found to be inappropriate (Dunson, 2010).

Semiparametric mixed effects models have been proposed to relax the normality assumption by placing

a DPMM prior on P (Kleinman & Ibrahim, 1998). However, inference for such models is usually performed

using MCMC requiring large computational resources and careful tuning of algorithmic parameters. This

makes MCMC approaches particularly difficult to implement on large data sets. The increasing availability of

large longitudinal datasets warrants the investigation of computationally efficient inference approaches such

as MAP-DPMM.

We construct the semiparametric mixed effects model, first by placing a DPMM prior on βi in (3.42). As we

are interested explicitly in the component parameters we do not collapse them out and use the non-collapsed

MAP-DPMM. We substitute the random effects βi for the individual data points xi in the MAP-DPMM from

Section 3.8.2. Then further steps are added to update the random effects βi and within-subject precision τσ.

The conditional p (βi|τσ, z = k, µk, Rk) for the random effects βi is:

N
(
βi

∣∣∣(τσXT
i Xi +Rk

)−1 (
τσX

T
i yi +Rkµk

)
,
(
τσX

T
i Xi +Rk

)−1
)

(3.43)

where the conditioning is on the assigned cluster k with mean µk and precision Rk. We place a conjugate

Gamma prior on the within-subject precision τσ ∼ Gamma (aσ2 , bσ2) allowing for the calculation of the

conditional posterior:

p (τσ|B, aσ2 , bσ2) = Gamma

(
τσ

∣∣∣∣∣aσ2 +
N

2
, bσ2 +

1

2

N∑
i=1

(yi −Xiβi)
T

(yi −Xiβi)

)
(3.44)

where B is the collection of all random effects (βi)
N
i=1. The modes of both conditionals needed for hybrid

MAP-DP are easily calculated in addition to the negative log likelihood necessary to check for convergence.

10Longitudinal data tracks the same measurement of an individual at different points in time.
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Table 3.12: Cross-validated, average held-out likelihood for two models.

Cognitive measures Depression + ADL
0.364 3.834

English Longitudinal Survey of Ageing

We apply the semiparametric mixed effects model above to the English longitudinal survey of aging (ELSA),

a large longitudinal survey of older adults aged over 50 in the United Kingdom. ELSA is a large, multi-

purpose health study which follows individuals aged 50 years or older (Netuveli et al., 2006). Health-related

factors collected include clinical, physical, financial and general well-being. Of primary interest is the effect

of the different factors on quality of life (QoL) measured using a compound measure of several health and

socio-economical indicators. The ELSA survey has been conducted in five waves spanning ten years. In this

preliminary study we look at the response of 6,805 individuals across all 5 waves.

We wish to check the hypothesis that measures of cognition such as memory and executive mental func-

tion, as estimated by verbal fluency performance, are useful predictors of QoL and whether they are more

informative than standard measures of depression and activities of daily living (ADL)11 that have been found

to be statistically significant predictors of QoL (Netuveli et al., 2006). We propose to answer these two ques-

tions via selection of two models with different sets of covariates (also known as predictor or explanatory

variables in regression models). The first model includes depression and ADL as inputs whereas the second

model includes measures of cognitive ability, specifically prospective memory12 and verbal fluency. The mod-

els are assessed using 5-fold cross-validation and computing the average held-out likelihood, (3.38) in Section

3.8.3.

Figure 3.5: Identified cluster for the ELSA longitudinal data.

The model that includes ADL and depression as covariates achieves a significantly lower average held-out

likelihood than the competing model containing cognitive measures suggesting that ADL and depression are

more informative predictors of QoL than the cognitive measures we considered (Table 3.12).

11ADL measures assess an individual’s ability to perform basic tasks of everyday life, such as washing and dressing. Measures
of depression include various symptoms related to the severity of the desease.

12By a “prospective memory” measure we mean a measure of an individual’s ability to remember to perform previously
planned actions.
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The average elapsed time for fitting the model (using iterative MAP inference) that uses ADL and

depression as covariates is 11.05 seconds versus 16.29 seconds average elapsed time for fitting the model(again

with iterative MAP) with cognitive measures as covariates. The reported run times for MAP and MCMC

inference were obtained on Matlab R2013a (8.1.0.604) 64-bit (glnxa64), i7-2600 CPU with 3.40GHz processor,

ubuntu PC. For comparison we performed inference using a truncated Gibbs sampler in a DP random effects

model: approximately 100,000 iterations were needed to ensure convergence and this is using less than half

of the data (3,000 individuals). The resulting time to convergence is in excess of five hours making inference

on larger data sets impractical. The rapid inference obtained using extended MAP-DPMM enables a wide

array of diagnostic and validation methods to be exploited, which suggests the approach can be scaled up to

very large datasets.

3.11 Discussion

In this chapter we studied the properties and the potential benefits of simple deterministic inference algorithms

applied to finite and infinite mixture models. Motivated by “folklore” observations in the community and

recent work from (Bishop, 2006; Kulis & Jordan, 2011; Jiang et al., 2013; Broderick et al., 2013a) we view

ubiquitous clustering techniques such as K-means as simplified methods for inference (SVA inference) in

probabilistic models. By formalizing the two separate approaches to SVA reasoning, we fill some existing

gaps in the literature and thereby propose novel SVA clustering algorithms which handle unequally distributed

data more adequately than algorithms such as K-means (Section 3.2.2 and Section 3.7.2). The chapter also

studies how the well-known concept of Rao-Blackwellization can be used to obtain new deterministic inference

(in particular clustering) procedures. For example, we derive a novel collapsed K-means algorithm which

often converges faster than the original non-collapsed K-means.

In contrast to the SVA inference algorithms, we propose and study another framework for deterministic

inference: the iterative MAP method. SVA methods can be seen as a simplified version of iterative MAP

inference which although deterministic, preserves a lot more of the useful properties of the underlying prob-

abilistic model (in this chapter we focus particularly on mixture models). We also examine how the process

of Rao-Blackwellization can be used to derive different deterministic MAP algorithms.

We thoroughly evaluate the benefits of deterministic MAP inference derived from finite and infinite (DP)

mixture models compared to related SVA inference, Gibbs sampling inference and variational Bayes inference.

Iterative MAP methods such as MAP-GMM and MAP-DPMM are, practically, as fast as K-means or DP-

means, but unlike their SVA counterparts they inherit most of the flexibility and the interpretability of the

underlying probabilistic mixture model; MAP-GMM and MAP-DPMM enable model selection and can be

used to cluster non-spherical data. Comparing for example MAP-DPMM and Gibbs-DPMM, we see that

MAP methods can often obtain as good clustering solution as exhaustive Gibbs, while requiring a few orders

less computational effort. By contrast to VB inference methods, iterative MAP does not require additional

factorization assumptions about the joint distribution of the model parameters and latent variables, it easier

to derive and converges faster.

Probabilistic models such as the DPMM have considerable potential, but are often restricted to appli-

cations in which computational resources and time for inference is plentiful. Little effort has been made to

develop simple, fast and principled deterministic inference methods that can extend significantly the practical

value of probabilistic models(in particular mixture models). We believe methods such as MAP-DPMM are a

step forward in this direction and can have many practical applications.
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Chapter 4

Deterministic inference and analysis

of HDP mixtures

4.1 Introduction

In many real world problems data is often not collected as a single batch and instead it arrives segregated

in groups. In natural language processing applications, text data usually is collected from many different

documents and we are interested in learning common topics across all documents (Brett, 2012); in biomedecine

and bioinformatics data often comes from different studies and experiments where we are interested in learning

shared structure across all experiments (Müller et al., 2004; Wang & Wang, 2013); in the problem of sub-

typing parkinsonisms discussed above (Section 3.10.1) patients are often tested in different hospitals and

we are interested in efficiently understanding patients from all hospitals. For such problems it can often be

beneficial to incorporate the various groupings of the data into a model hierarchy, rather then mix up all

datasets and model data as a single batch.

In this chapter, we review existing work that tries to solve this problem to motivate the derivation of

the hierarchical Dirichlet process (HDP)(Teh et al., 2006). We discuss different constructions for the HDP

as presented in (Teh et al., 2006) and some other ways to do inference in HDP mixtures. Mostly, this is

done using different Gibbs samplers, which we review in detail in Section 4.3.3. Such methods restrict the

use of the HDP in practice and little work has been done towards developing scalable deterministic methods

for inference in HDP models. We extend the earlier SVA and iterative MAP algorithms for inference in

HDP mixture models. The potential of our proposed deterministic MAP-HDP algorithm is demonstrated

empirically on synthetic data in Section 4.5 where it is compared to the SVA approach. The section is

concluded with some discussion and review of other approaches to hierarchical clustering and some recent

advances to more complex hierarchical modeling.

4.2 Motivation

A lot of progress has been made in using the DPMM to model inherent partitions in a sequence of ex-

chanageable random variables. However, in recent years there is growing interest in extending the DP to

accommodate dependent collections of exchangeable random variables Salakhutdinov et al. (2013). The prob-

lem we wish to solve is this: if we have j = 1, . . . , J different datasets with exchangeable data but dependence

between different datasets, how do we model the partitioning of the data? Let us start by assuming that
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each dataset is associated with a separate probability measure Gj drawn from a DP and we denote that

DP as DP (N0,j , G0,j). The problem that arises is how to link the different group-specific DPs. A lot of

work focuses on describing a relationship between the different DP parameters N0,j and G0,j Cifarelli &

Regazzini (1978); Müller et al. (2004); Carota & Parmigiani (2002); Muliere & Petrone (1993). For example,

(Cifarelli & Regazzini, 1978) and (Muliere & Petrone, 1993) link group-specific measures on the level of the

hyper-parameters N0,j . This means that the random measures Gj are all drawn from a DP but with different

concentration parameters N0,1, . . . , N0,J . This strategy is strictly limited to learning structure that can be

reflected through a simple change in the hyperparameter space and does not affect the expectation of each

Gj .

A more natural proposal would be to assume that the set specific Gj are all drawn from DPs with the

same base measure having G01 ≡ · · · ≡ G0J ≡ G0 (θ0) with G0 (θ0) being a parametric distribution with

random parameter θ0. However, any arbitrary choice for distribution G0 (θ0) will not solve the problem

stated above. For example if G0 is continuous, atoms of the different Gj ’s will be different with probability 1.

If G0 is a discrete parametric distribution, atoms of the different Gj can be shared, but such an assumption

is overly restrictive as in this case the Gj ’s cannot be used to define infinite mixture models.

4.3 Hierarchical Dirichlet process

In order to force G0 to be discrete, without fixing its atoms and restricting its support Teh et al. suggested

assuming that G0 is itself drawn from a DP, G0 ∼ DP (M0, H) with concentration parameter M0. Although

the proposed structure restricts the draws from G0 to be discrete, G0 can be nonparametric and its base

measure H could itself be a mixture of both discrete and continuous densities. The discreteness of G0 makes

stick-breaking draws easy to construct, and so allows for the atoms of G0 to be shared among the different

data sets. The HDP can be also seen as a specific example of a dependency model for multiple DPs, one

specifically aimed at solving the problem of sharing clusters among related groups of data. The HDP can be

written in the form:
G0 ∼ DP (M0, H)

Gj ∼ DP (N0, G0)
(4.1)

4.3.1 Stick-breaking construction for the HDP

From (4.1), it follows that G0 is DP distributed, hence using the stick-breaking construction from Section

2.5.2 (Chapter 2), we can express G0 as an infinite mixture:

G0 =

∞∑
k=1

βkδθk (·) (4.2)

with β ∼ Stick (M0) and θ1, . . . , θ∞ independent draws from the base measure H. As the group specific Gj

all share discrete base measure G0, they will all have the same atoms as G0 and we can write:

Gj =

∞∑
k=1

πj,kδθk (·) (4.3)

where the weights πj,1, . . . πj,∞ are independent given β.

To express the stick-breaking process defining the local mixing weights π we go back to the formal

definition of the DP (Section 2.5.1). Consider the first K atoms θ1, . . . , θK and define a partition of the base
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measure space Θ into K singleton sets A1, . . . , AK with Ak = {θk} for k ∈ {1, . . . ,K}. Define one more

set to cover the rest of the region Θ, AK+1 = Θ\A1\ . . . \AK . From the definition of the DP the vector

(Gj (A1) , . . . , Gj (AK) , Gj (AK+1)) is distributed as a finite Dirichlet distribution:

(Gj (A1) , . . . , Gj (AK) , Gj (AK+1)) ∼ Dirichlet (N0G0 (A1) , . . . , N0G0 (AK) , N0G0 (AK+1)) (4.4)

As Ak are singleton sets, Gj (Ak) directly specifies the probability mass on atom θk, hence Gj (Ak) = πjk.

Similarly Gj (AK+1) determines the probability of an atom being drawn from set AK+1 and we can write

Gj (AK+1) =
∑∞
l=K+1 πjl (from the agglomerative property of the Dirichlet distribution).

If we follow the same argument for G0, we can also write G0 (Ak) = βk for k = 1, . . . ,K and G0 (AK+1) =∑∞
l=1 βl. We can now substitute Gj and G0 into the expression in (4.4) and write:(

πj,1, . . . , πj,K ,

∞∑
l=K+1

πj,l

)
∼ Dirichlet

(
N0β1, . . . , N0βK , N0

( ∞∑
l=K+1

βl

))
(4.5)

The local weights are Dirichlet distributed around the global weights β with N0 controlling how different

each Gj is from G0. Teh et al. (2006) also showed that (4.5) asymptotically converges to the following

stick-breaking construction:

πj,k = νj,k
∏K−1
l=1 (1− βj,l) , with νj,k ∼ Beta

(
N0βk, N0

(
1−

∑K
l=1 βk

))
(4.6)

The stick-breaking construction of the HDP can be useful for deriving efficient inference algorithms that

do not require integration over the infinite mixing measures (both local and global). In Figure 4.1 we plot

an example draw from an HDP with Gaussian base measure H.

4.3.2 Chinese restaurant franchise

Instead of working directly with the HDP, it can often be easier to use its marginal process called the Chinese

restaurant franchise (CRF) process. In the same way a CRP can be seen as the distribution of the partition

induced by a DP after integrating out the random measure, the partition induced by a HDP after integrating

out G0 and G1, . . . , GJ , is a CRF.

Let us consider the following metaphor as an intuitive description of the CRF stochastic process. Assume

that we have a franchise of J restaurants with a shared menu across the branches. At each table in all of

the restaurants exactly one dish is served and this dish is chosen by the first customer who is seated there.

The served dishes may vary across tables and restaurants but are all from the same menu. In restaurant j,

customer i will be seated at table c with probability proportional to the number of customers already seated

there, Nj,c, and with probability proportional to N0 the customer will be seated at a new table (mirroring

a simple CRP). The customer is served the dish θk associated with his table unless he is the first one to sit

there in which case he chooses a dish. The dish is chosen according to the CRP rule (the top level CRP),

where an already served dish k is chosen with probability proportional to the number of times it has been

served across all restaurants Mk; a new dish from the menu is chosen with probability proportional to M0.

Let us now introduce indicator variables denoting where customers sit and what dish they are served:

zlocalji = c denotes that customer i in restaurant j is sitting at table c; zglobaljc = k denotes that table c in

restaurant j serves dish θk. We use Njc to count the number of people seated at table c in restaurant j

and Mk counts the number of tables c that serve dish θk. We can then express the CRF with the following
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(a) Graphical model (b) Stick breaking construction

Figure 4.1: On the left is the graphical model of the hierarchical Dirichlet process (HDP) with xj denoting
vectors of data in set f . On the right is a plot of the global DP G0 and set specific DPs G1 and G2.

conditionals:

p
(
zlocalj,i = c

)
=


Nj,c

N0+Nj,·
for occupied table

N0

N0+Nj,·
for a new table

(4.7)

with c ∈ {1, . . . , Cj} being one of the represented Cj local clusters in set j, Nj· =
∑Cj
c=1Nj and

p
(
zglobalj,c = k

)
=


Mk

M0+
∑K
j=1Mj

for dish already served

M0

M0+
∑K
j=1Mj

for a new dish from the menu
(4.8)

The table indicators imply a local partitioning of the data in each data set and reflect the effect of the local

CRPs; the dish indicators imply the shared global partitioning across all sets and reflect the global CRP.

The combination of these nested sets of indicators complicates the bookkeeping during Gibbs inference

and Teh et al. (2006) has proposed using modified representations of the HDP to simplify this. For example,

the direct assignment representation bypasses the nested connection of point i from set j to global dish,

zlocalji = c → zglobaljc = k, using direct assignments zij = k indicating the dish assignment for a customer.

Further details can also be found in (Teh et al., 2006) including an augmented representation of the HDP.

4.3.3 Gibbs sampling for HDP mixture models

Teh et al. (2006) introduced three main Gibbs samplers for inference in the HDP mixture model which make

use of different constructions and representations of the HDP prior. All of the three rely on integrating over

the set specific measures G1, . . . , GJ and work directly on the indicators. A slice sampling motivated sampler

that works on the full (non-collapsed) HDP space has been introduced in Van Gael et al. (2008), but it is
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formulated for the application of the HDP to time series (the HDP-HMM) discussed later.

(a) HDP mixture (b) CRF mixture

Figure 4.2: On the left is the graphical model of the HDP mixture model with explicitly written mixing
parameters and corresponding indicators. The random variable β has K dimensions where each of the vectors
πj is associated with a latent variable vj with the same dimensions specifying component assignments for
each element of πj . πj consists of the mixing parameter partitioning set j. On the right we show with red
arrows the random variables that are integrated out in the CRF construction. On the right is a plot of the
global DP G0 and set specific DPs G1 and G2.

CRF-based sampler

The first Gibbs sampler introduced in Teh et al. (2006) is referred to as posterior sampling in the CRF. As with

the CRP-based samplers for the DPMM, in this construction we integrate over the infinite mixing parameters

of both the global DP and the local DPs and model the indicator variables explicitly (see Figure 4.2). The

integration causes a coupling between the indicator variables zlocal and zglobal. For deeper hierarchical

models, such coupling can lead to slower mixing compared to a blocked sampling approach which keeps the

conditional independence properties of the starting probabilistic graphical model. This is not usually the

case for lower level hierarchical models like the DPMM. We have observed that fully collapsing deeper level

latent variable models can introduce complex nesting. As a result the corresponding sampler often gets stuck

in a region with high probability which is weakly connected to the other high probability regions of the state

space. In practice this leads to the sampler becoming dependent (unless we can run it forever) upon the order

in which it processes the data. For example, in the case of sequential data problems, collapsed samplers are

known to mix quite poorly. Block procedures are more likely to escape poor mixing in such cases as they can

jump through bigger regions of the state space in one step by design. However, it does not appear that there
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is a more in depth theoretical exploration of this point in the literature and so far we have mainly empirical

evidence to support such claims.

Consider the following generative HDP mixture model with exponential family likelihood and conjugate

prior over the component parameters:

G0 ∼ DP (M0, H)

Gj ∼ DP (N0, G0)

θk ∼ H

xj,i ∼F
(
θzglobalj,c

∣∣zlocalj,i = c
) (4.9)

where H and F are again conjugate pairs of exponential family distributions. The probability of a point

given the component parameter with which it is associated can be computed in exactly the same way as in

2.11 Chapter 3; similarly, the update for the shared component parameters θk given all points assigned to it

would be unchanged.

Alternatively, the component parameters θ can also be integrated out and p
(
xj,i

∣∣∣θzglobalj,c
, zlocalj,i = c

)
would be replaced with p

(
xj,i

∣∣∣∣τ−jizglobalj,c

, η−ji
zglobalj,c

, zlocalj,i = c

)
as in 3.14 in Chapter 3.

Algorithm 4.1 CRF-based Gibbs sampler for HDP

Input: xj,1, . . . , xj,Nj for all j ∈ {1, . . . , J}: D-dimensional data; N0: prior local count; M0: prior global
count;(τ0, η0): prior component hyperparameters
Output: Posterior of indicators: zlocal and zglobal; Posterior of component parameters:(θ1, . . . , θK)

Initialize zlocalj,i = 1 and zglobalj,1 = 1 for all j ∈ {1, . . . , J} and i ∈ {1, . . . , Cj}
Enew =∞
repeat

For j ∈ {1, . . . J};
For i ∈ {1, . . . , Nj};

For c ∈ {1, . . . Cj}

dj,i,c =

{
N−jij,c p (xj,i |θk ) for existing local c

N0∑K
k=1Mk+M0

∑K
k=1Mkp (xj,i |θk ) +M0p (xj,i |τ0, η0 ) for new c drawn from the global DP

zlocalj,i ∼ Categorical
(

dj,i,1∑
c dj,i,c

, . . . ,
dj,i,Cj+1∑
c dj,i,c

)
If zlocalj,i = Cj + 1

Sample values for zglobalj,c (using the same step as in the box below)
Cj → Cj + 1

For j ∈ {1, . . . J};
For c ∈ {1, . . . , Cj + 1};

For k ∈ {1, . . .K + 1}

qj,c,k =

{
M−jc·k

∏
i:zji=c

p (xji |θk ) for existing component k

M0

∏
i:zji=c

p (xji |τ0, η0 ) for a new component K + 1

zglobaljc ∼ Categorical
(

qj,c,1∑
k qj,c,k

, . . . ,
qj,c,K+1∑
k qj,c,k

)
If zglobaljc = K + 1
θK+1 ∼ H (τ0, η0)
K = K + 1

For k ∈ {1, . . . ,K}
θk ∼ H (τk, ηk)

until (Eold − Enew)→ random

In order to update the local indicators zlocal, for each dataset j we sweep through the observations in
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that data set and update:

p
(
zlocalj,i = c

∣∣∣zlocal−j,i , z
global
j,c

)
∝

N
−ji
j,c p

(
xj,i

∣∣∣θzglobalj,c

)
for previous occupied c

N0∑K
k=1Mk+M0

(∑K
k=1Mkp (xj,i |θk ) +M0p (xj,i |θ0 )

)
for new c

(4.10)

for all i = 1, . . . Nj with Njdenoting number of points in set j. If choose a new local c, we also have to sample

its global indicator zglobalj,c . The global indicators zglobal are updated for each j and c:

p
(
zglobalj,c = k

∣∣∣zglobal−j,c , zlocalj = c
)
∝

M
−jc
k

∏
i:zlocalj,i =c p (xj,i |θk ) for existing k

M0

∏
i:zlocalj,i =c p (xj,i |θ0 ) for new k

(4.11)

where note that to update indicator zglobaljc we compute the joint likelihood of all points associated to c (seated

on table c) from dataset j. This is because a change in the global indicator zglobalj,c changes the component

allocation (this is essentially the top level allocation) of all points from c. The superscript −jc in M−jck

denotes that we are excluding table c from set j when counting Mk. We update the component parameters

θ1, . . . , θK in the same way as in the CRP-based Gibbs sampler where to find the points associated with

component k we take all i and j s.t.
{
zlocalj,i = c ∧ zglobalj,c = k

}
. This representation involves Nj × J local

indicators and
∑J
j=1 Cj global ones. We outline the CRF-based Gibbs sampler in Algorithm 4.1.

Sampling with direct assignment

Integrating out the base measure G0 in the CRF-based samplers introduces dependencies among the group-

specific local indicators. This coupling complicates the inference, increases the required memory and can

often slow down mixing. To mitigate those risks Teh et al. (2006) proposed two alternative Gibbs sampling

procedures relying on alternative representations of the HDP: a posterior sampling scheme with an augmented

representation and a direct assignment representation. The two are nearly equivalent and they use the stick-

breaking construction of G0 to avoid integrating over it. In addition, the direct assignment representation

simplifies the bookkeeping by replacing the pair of local and global indicators with a single set of better-

formulated component indicators. In this thesis we detail only the direct assignment representation, for the

closely related augmented representation we refer readers to Teh et al. (2006).

Instead of inferring zlocal and zglobal, we can introduce a set of indicator variables zj,i which specify the

component assignment of a point i from set j (for all i ∈ {1, . . . , Nj} and j ∈ {1, . . . , J}). Grouping together

the terms associated with each component k, we can compute the new assignment probabilities as:

p
(
zj,i = k

∣∣z−ji, β ) ∝

(
N−jij,k +N0βk

)
p (xj,i |θk ) for existing k

N0βK+1p (xj,i |θ0 ) for new k = K + 1
(4.12)

where now the counts Nj,k denote number of points assigned to component k, Nj,k =
∑
i:zj,i=k

1; β are the

mixing parameters defining the base measure G0. From (4.2) and the definition of DP (see Equation (2.37))

we can write the distribution of the mixing parameters β as:

(β1, . . . , βK , βK+1) ∼ Dirichlet (M1, . . . ,MK ,M0) (4.13)

The counts Mk were computed above using Mk =
∑
c:zglobalj,c =k 1 as they reflect the number of different c

across all datasets assigned to each of the shared components. In the new notation, explicit sampling of the
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indicators zglobal is avoided and instead we derive the relationship between the counts M and the assignments

z. We cannot express M in a deterministic way through z, but we can use the component indicators to define

a distribution over M . That is, in the direct assignment representation zj,i and M are sampled instead in

place of zlocalj,i and zglobalj,c . Recall that in the CRF construction, zlocal and zglobal were updated using (4.7)

and (4.8), hence the counts M would increase every time an observation is assigned to an unused local cluster

in (4.7). This is because M counts the assignments of local clusters to global ones and those are changed

only when the conditional from (4.8) needs to be invoked.

Now let us express the distribution of the component indicators z in terms of zlocal and zglobal:

p (zj,i = k |z−j,i ) =

Cj+1∑
c=1

p
(
zlocalj,i = c

∣∣zlocal−j,i
)
p
(
zglobalj,c = k

∣∣∣zglobal−j,c

)
(4.14)

by marginalizing the intermediate grouping of points in tables c. Using (4.14) we can also compute sepa-

rately the probability of a point being assigned to an existing k through an existing intermediary c and the

probability assignment to k was sampled using a new c:

p (zj,i = k |z−j,i ) ∝

Nj,k for used local cluster

N0βk for unused local cluster
(4.15)

Note that we have omitted any likelihood terms as at this stage we are interested only in the behaviour of

the newly defined CRP.

The counts Mk can be computed using (4.15) by sequentially recording the number of times a new c

would be needed (specific values of c, zlocal and zglobal are not actually needed). The way to do this by

sampling from the Polya urn scheme defined in (4.15) Nj,k times: we start with a single point and use (4.15)

to sample its allocation; we update (4.15) accordingly to include the effect of that point; we add another

point and sample its allocation according to the updated (4.15); each time allocation through an unused c is

chosen (which always occurs with probability N0βk) we add a count to Nj,k as it combines the reinforcement

effect of all c’s already sampled. We repeat this until Nj,k points have been added and we count how many

times allocation to an unused c was chosen. This count can be denoted with Mj,k because in fact using this

definition of Mj,k implies Mk =
∑J
j=1Mj,k. This is a Polya urn scheme1 for sampling the counts Mj,k which

otherwise have a complex posterior distribution. (Van Gael, 2012)2 discusses in more details the equivalents

of the stationary distributions of samplers that treat z and M as random instead of zlocal and zglobal.

Instead of using a Polya urn scheme to compute Mj,k, we can also equivalently sample it directly from

its posterior:

p (Mj,k = m |z,M−j,k, β ) =
Γ (N0βk)

Γ (N0βk +Nj,k)
s (Nj,k,m) (N0βk)

m
(4.16)

which Antoniak (1974) has derived; s (·, ·) denotes unsigned Stirling numbers of first kind and Mj,k is bounded

between 1 and Nj,k. However, the direct approach of sampling the counts using (4.16) can often be challenging

because in practice it is hard to evaluate Stirling numbers for even moderately large Nj,k and m. This is why

use the Polya-urn scheme for updating Mj,k in the later experiments.

The Gibbs sampler for the HDP mixture model which uses the direct assignment construction of the

1(Blackwell, 1947) has shown that Polya urn schemes can be used to generate samples of random variables for which the
posterior is either not available in direct form (for example this is the case for infinite mixture distributions), or it is not efficient
to compute.

2(Van Gael, 2012) gives credit for the Polya urn scheme for sampling the counts Mjk to Emily Fox.
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HDP iterates between: updates for z using (4.12); updates for the counts M ; updates for the mixing weights

β1, . . . , βK+1 using (4.13) and updates of the component parameters θ1, . . . , θK if they have not been inte-

grated out from the corresponding exponential family posterior. We describe this Gibbs sampler in Algorithm

4.2.

Algorithm 4.2 Direct assignment Gibbs sampler for the HDP

Input: xj,1, . . . , xj,Nj : for all j ∈ {1, . . . , J} D-dimensional data; N0: prior local count; M0: prior global
count;(τ0, η0): prior component hyperparameters
Output: Posterior of indicators: z ; Posterior of component parameters:(θ1, . . . , θK)
Initialize zj,i = 1 for all j ∈ {1, . . . , J} and i ∈ {1, . . . , Cj}
Enew =∞
repeat

For j ∈ {1, . . . J};
For i ∈ {1, . . . , Nj};

dj,i,c =

{(
N−jij,c +N0βk

)
p (xj,i |θk ) for existing k

N0βK+1p (xj,i |τ0, η0 ) for new k = K + 1

zji ∼ Categorical
(

dj,i,1∑
k dj,i,k

, . . . ,
dj,i,K+1∑
c dj,i,k

)
If zji = K + 1
θK+1 ∼ H (τ0, η0)
ν ∼ Beta (1,M0)
βK+2 = βK+1 (1− ν)
βK+1 = βK+1ν
K → K + 1

For j ∈ {1, . . . J};
For k ∈ {1, . . .K + 1}

Sample Mj,k using either (4.16) or successively (4.15) as described in the text
For k ∈ {1, . . . ,K}

Compute Mk =
∑J
j=1Mj,k

θk ∼ H (τk, ηk)
β1, . . . , βK , βK+1 ∼ Dirichlet (M1, . . . ,MK ,M0)

until (Eold − Enew)→ random

4.4 Deterministic inference for HDPs

To date, most deterministic methods that have been developed for inference in HDP are different variants

of VB inference methods. Liang et al. (2007) first suggested VB inference for a non-collapsed representation

of the HDP and suggested point estimate approximations for the mixing parameters β. Later Teh et al.

(2007) introduced a VB method derived for the collapsed HDP relying on the CRF construction. However,

this method is based on a sophisticated family of marginal likelihood bounds and so it leads to challenging

optimization and sensitivity to initialization. Wang et al. (2011) introduced an online VB inference method

also based on the CRF construction which is able to efficiently process significantly larger datasets. This

is done by optimizing the variational bound only using random subsets of the data, one at a time. This

scheme replaces the usual coordinate ascent (Wright, 2015) from the traditional VB with the natural gradient

(Amari, 1998) leading to efficient parallelization. Bryant & Sudderth (2012) has presented a more robust

online VB method that relies on the direct assignment representation of the HDP and makes use of split and

merge moves to avoid poor local minima.

Wang et al. (2011) suggested a somewhat different VB approach that builds upon the more typical VB

method (Blei & Jordan, 2006) by adding stochastic Gibbs split and merge moves to avoid the implicit trun-
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cation of the variational distrbution of non-collapsed Bayesian nonparametrics models. While theoretically

convenient, the Gibbs steps can lead to significantly slower mixing. In contrast to streaming (online) VB

methods, Hughes et al. (2015a) recently suggested a VB method that optimizes a mean field objective func-

tion with coordinate descent algorithm in a typical fashion. However, this is done in atypical order where

only some of the variational parameters are updated at a time and data is processed one batch at a time.

This method introduces a novel surrogate likelihood bound that allows the definition of full variational

posteriors over each of the random variables in direct assignment HDP mixtures. Repeated sweeps through

the full data are required, but the whole dataset does not have to be stored in memory as Hughes et al.

(2015a) suggests keeping efficient memoized statistics that summarize previously processed batches. This

method further benefits from efficient split and merge moves that allow the iterations to escape poor local

solutions; scalability and efficient memory representation strongly depend on the number of batches in which

the full dataset has been split.

In this section we discuss in detail some simpler alternatives for scaling up inference in the HDP mixture

model. We first review Jiang et al. (2013) which extends the SVA formalism to the more complex case of

hierarchical clustering. A simple scalable algorithm is derived from the CRF construction of the HDP by

scaling the component variances. In contrast to Jiang et al. (2013) we introduce an iterative MAP approach

for inference in HDP mixtures which overcomes many of the issues implicit to SVA methods for hierarchical

models; in Section 4.5 we empirically evaluate both methods.

4.4.1 SVA inference for HDP mixtures

As with SVA inference for the DPMM, Jiang et al. (2013) have extended the SVA approach for infer-

ence in HDP mixtures and we review its derivation. We will start from the CRF construction of the

HDP and assume an exponential family likelihood F̃
(
θ̃
)

(see (4.9)) which is parametrized by a scaled

natural parameter θ̃ = ξθ and log-partition function ψ̃
(
θ̃
)

= ξψ
(
θ̃/ξ
)

for some ξ > 0. The prior hy-

perparameters τ and η are also scaled giving τ̃ = τ
ξ and η̃ = η

ξ . Finally the concentration parameters

N0 and M0 are replaced with some threshold parameters λ1 and λ2 where we assume the relationship

N0 =

(
gφ̃

(
τ
ξ ,

η
ξ

)(
2π
ξ+η

)D/2
ξD
)−1

exp (−ξλ1) and M0 =

(
gφ̃

(
τ
ξ ,

η
ξ

)(
2π
ξ+η

)D/2
ξD
)−1

exp (−ξλ2). Then

in taking the limit ξ → ∞ of the scaling parameter we can derive a hierarchical clustering procedure that

approximately minimizes the following objective function:

K∑
k=1

J∑
j=1

∑
i:zj,i=k

Dφ (xj,i, µk) + λ1

J∑
j=1

Cj + λ2K (4.17)

with respect to the corresponding indicator variables and component means. In each dataset j points are

clustered around exactly Cj of the overall K centroids; those Cj clusters are local clusters to dataset j. λ1

acts as a local threshold parameter controlling the number Cj available in each dataset and λ2 acts as a

global threshold parameter controlling the number of centroids K that are instantiated (smaller λ1 and λ2

leads to larger Cj and K).

Point updates

For an observation xj,i the resulting SVA algorithm computes K distances Dφ (xj,i, µ1) , . . . , Dφ (xj,i, µK) to

each centroid. For each µk which is not yet used in dataset j, we add a penalty λ1 to that distance. We

compare all of the distances and assign xj,i to the closest centroid µk unless the distance to it is larger than
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the penalty λ1 +λ2. If even the smallest of the k distances is larger than λ1 +λ2, a new centroid centered at

xj,i is created; observation xj,i gets assigned to the new centroid (zj,i = K + 1); the centroid µK+1 is added

to the list of available ones for dataset j, and Cj and K are increased by 1 accordingly. This step is repeated

for all points i in all datasets.

Local updates

Next, for each dataset j we sweep through local clusters c (c = 1, . . . , Cj) and update their association with

centroids µ1, . . . , µK . Essentially the association of local clusters to centroids determines which of the Cj

centroids represented in set j. For each local cluster, we compute the sum of distances between its data point

and centroid µk. This is repeated for all k ∈ {1, . . . ,K} giving us K sums to evaluate. We also evaluate a

K + 1 term which is λ2 added to the sum of all distances of points in local cluster c from their own mean.

To summarize, the K + 1 terms we compare are: ∑
i:zj,i=1

Dφ (xj,i, µ1) , . . . ,
∑

i:zj,i=K

Dφ (xj,i, µK) , λ2 +
∑
x∈Sjc

Dφ (xj,i, x̄j,c)

 (4.18)

with x̄j,k denoting the mean of points associated to c from set j (points in the same local cluster) and Sjc

denoting the set of observations in local cluster c from set j. We choose the smallest of those terms: if it is

one of the first K terms we assign all points from Sjc to the corresponding centroid; if it is the last term we

create a new centroid µK+1 = x̄j,c.

Global updates

The centroids µk are updated by computing the average of all points across all sets which are assigned to

cluster k.

This SVA-HDP algorithm for clustering multiple batches of data has all the drawbacks that the SVA

algorithm from Section (3.7.2) has. By replacing the prior counts N0 and M0 with the thresholds λ1 and λ2

we lose interpretability of the model hyperparameters, we lose control over some of the hyperparameters and

we also assume arbitrary connections in the underlying probabilistic model. When we scale τ and η with

an equal factor ξ and further take the limit ξ → ∞, we effectively shrink all of the component covariaces

to 0 and assume points are spread equally among each of the clusters across all dimensions. In addition,

the reinforcement terms coming from the counts N (lower level DPs) and M (top level DP) have no effect,

therefore data is grouped based on the geometry of the data space alone. This implies the assumption that

clusters are not only inherently spherical but also contain an equal number of observations. The asymptotic

assumptions also make the model likelihood degenerate which prohibit us from using standard model selection

and prediction techniques.

The SVA algorithm for the special case of the Gaussian HDP mixture model was first introduced in Kulis

& Jordan (2011). Kulis & Jordan (2011) called the method the HDP-means algorithm and it can be seen as

a special case of SVA-HDP where the Bregman divergence Dφ (·) is replaced with squared Euclidean distance

‖·‖22 as a measure of closeness of points to their centroids.

In the next section we propose an iterative MAP inference algorithm that mitigates all of those drawbacks

while being as simple and as fast.
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4.4.2 Iterative maximum a-posteriori inference

Based on the different constructions of the HDP mixture model, we can define several different iterative MAP

algorithms for fast inference in the model. Despite all being derived from the same probabilistic graphical

model, those algorithms are likely to tolerate different local optima, to converge at different rates and to have

different memory requirements. In this section we will introduce a MAP-based algorithm derived using the

CRF construction of the underlying HDP which we call MAP-HDP.

This is the same construction used for the SVA approach in Section 4.4.1 therefore we can make direct

comparisons. In Chapter 5 we also introduce a MAP-based method which uses the direct assignment con-

struction of the HDP, however the method in Chapter 5 is used for inference in HDPs for sequential modeling:

the HDP-HMM. We will not discuss in detail the different algorithms which may or may not integrate over

the component parameters θ because a lot of the issues are almost identical to those raised in Chapter 3.

As with the related CRF-based Gibbs sampler from Section 4.3.3, MAP-HDP iterates between updates for

the local indicators zlocal, the global indicators zglobal and the component parameters θ (if they have not been

integrated out). The indicators are updated one at a time with the value maximizing their corresponding

posterior. Those updates can be easily derived using the expressions in (4.10) and (4.11). We summarize the

MAP-HDP in Algorithm 4.3. The proposed method converges to a fixed point local maxima of the complete

data likelihood:

p
(
x, zlocal, zglobal |θ

)
=

J∏
j=1

Nj·∏
i=1

Cj∏
c=1

K∏
k=1

p (xj,i |θk )
δz,k p

(
zlocal, zglobal

)
(4.19)

where for each j, p (xj,i |θk ) is computed in the same way as p (xi |θk ) in earlier chapters and we have used the

shorter notation δz,k = δzlocalji ,cδzglobaljc ,k. The joint distribution over the indicator variables p
(
zlocal, zglobal

)
is the probability of partitions induced by the CRF:

p
(
zlocal, zglobal

)
=
MK+1

0 Γ (M0 + 1)

Γ (M0 +Mj,k)

K∏
k=1

Mk

J∏
j=1

NMj,·
0 Γ (N0 + 1)

Γ (N0 +Nj,·)

K∏
k=1

∏
c:zjc=k

Nj,c!

 (4.20)

where Mj,· =
∑K
k=1Mj,k. Typically, it will be easier to compute the log-likelihood of the expression in

(4.19). An efficient trick to assess convergence in MAP-HDP can also be to compute
∑J
j=1

∑Nj,·
i=1

∑Cj
c=1 dj,i,c+∑J

j=1

∑Cj
c=1

∑K
k=1 qj,c,k from Algorithm 4.3 and stop the algorithm when this sum stops changing.

Out-of-sample prediction

As with Section 3.8.3 for the DPMM we consider two ways of computing out-of-sample likelihoods commonly

used for prediction or model selection:

� Mixture predictive density. If we integrate over the local and global indicators, we obtain the following

predictive mixture density:

p
(
xj,Nj+1

∣∣zlocal, zglobal, θ ) =

Cj+1∑
c=1

p
(
zlocalj,i = c

∣∣zlocal−j,i
)K+1∑
k=1

p
(
zglobalj,c = k

∣∣∣zlocalj,i = c, zglobal−j,c

)
p (xN+1 |θk ) p (θ0)

(4.21)

where we have omitted the conditioning on the training data X; the local assignment probability

p
(
zlocalj,i = c

∣∣zlocal−j,i
)

is computed from the local CRP defined in (4.7) and p
(
zglobalj,c = k

∣∣∣zlocalj,i = c, zglobal−j,c

)
is computed from the global CRP defined in (4.8).
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Algorithm 4.3 MAP-HDP algorithm

Input: xj,1, . . . , xj,Nj : for all j ∈ {1, . . . , J} D-dimensional data; N0: prior local count; M0: prior global
count;(τ0, η0): prior component hyperparameters; ε: convergence threshold;
Output: Local level indicators: zlocal; Top level indicators zglobal; Point estimates for the
parameters:(θ1, . . . , θK)

Initialize zlocalj,i = 1 and zglobalj,1 = 1 for all j ∈ {1, . . . , J} and i ∈ {1, . . . , Nj}
Enew =∞
repeat

For j ∈ {1, . . . J}
For i ∈ {1, . . . , Nj}

For c ∈ {1, . . . Cj}

dj,i,c =

− lnN−jij,c − ln p
(
xj,i

∣∣∣θzglobalj,c

)
for existing c in set j

− ln
(

N0∑K
k=1Mk+M0−K

)
− ln

(∑K
k=1Mkp (xj,i |θk ) +M0p (xj,i |τ0, η0 )

)
for a new c

zlocalji = arg minc∈{1,...,Cj+1} dj,i,c
If zlocalji = Cj + 1

Update values of zglobalj,c (using the same step as in the box below)
Cj → Cj + 1

If zglobalj,c = K + 1
θK+1 = arg maxθ p (θ |τ0 + xj,i, η0 + 1)
K = K + 1

For j ∈ {1, . . . J};
For c ∈ {1, . . . , Cj + 1};

For k ∈ {1, . . .K + 1}

qj,c,k =

{
− lnM−jc·k −

∑
i:zlocalji =c ln p (xji |θk ) for existing component k

− lnM0 −
∑
i:zji=c

ln p (xji |τ0, η0 ) for new k = K + 1

zglobaljc = arg mink∈{1,...,K+1} qj,c,k

If zglobaljc = K + 1
θK+1 = arg maxθ p (θ |τ0 + xi, η0 + 1)
K = K + 1

For k ∈ {1, . . . ,K}
θk = arg maxθ p

(
θ
∣∣∣τ0 +

∑
i,j:zlocalj,i =c,zglobalj,c =k g (xj,i) , η0 +

∑
i,j:zlocalj,i =c,zglobalj,c =k 1

)
until (Eold − Enew) < ε

� MAP cluster assignments. Alternatively, we can use point estimates for the indicator variables zlocalj,Nj+1

and zglobal
j,zlocalj,Nj+1

. We first estimate zlocalj,Nj+1 by choosing the value that minimizes its negative log posterior:

(
zlocalj,Nj+1

)MAP

= arg min
c∈{1,...,Cj+1}

[
− ln p

(
xj,Nj+1

∣∣∣θzglobalj,c

)
− ln p

(
zlocalj,Nj+1 = c

∣∣zlocal−j,i

)]
. (4.22)

Then, we use this value to estimate zglobal
j,zlocalj,Nj+1

by minimizing its negative log posterior conditioned on

the found
(
zlocalj,Nj+1

)MAP

:

(
zglobaljzj,Nj+1

)MAP

= arg min
k∈{1,...,K+1}

[
− ln p

(
xj,Nj+1 |θk

)
− ln p

(
zj,zj,Nj+1

= k

∣∣∣∣(zlocalj,Nj+1

)MAP

, zglobal−j,c

)]
(4.23)

As with the DPMM case in Section 3.8.3, the first approach will be more robust because it incorporates

the effect of all mixture components. The fact that the predictive mixture density is computed only using

point estimates of the indicator variables of the training data leads to an approximation error which does
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Table 4.1: NMI score for MAP and SVA methods for HDP mixtures applied to Gaussian data.

Data set HDP-means MAP-HDP

Spherical 0.81 0.84
Elliptical 0.44 0.77

not arise for out-of-sample predictions in MCMC. This error often leads to underestimated variance in the

predictions. At the same time, the SVA method from Section 4.4.1 does not provide even an approximate

way to compute prediction probabilities of new points. Therefore, despite being extremely scalable and

deterministic, MAP-HDP is model-based and allows for rigorous model selection and prediction.

4.5 Synthetic study

In this section we compare the MAP-HDP and HDP-means algorithm for the case of spherical and elliptical

synthetic Gaussian data. To generate the spherical synthetic data, we start by sampling the component

parameters for 15 Gaussian distributions: the component means are sampled uniformly in [0, 1]2; the com-

ponent covariances are assumed to be fixed at (.01I). We generate 50 datasets by choosing at random 5 of

the 15 Gaussian components and sampling 5 points from each of the chosen components (in Figure 4.3 we

show four of those sets)3. To generate the elliptical data we simply fix the component covariances to be[
10−6, 10−2

]
instead of (.01I).

The parameters for the HDP-means algorithm were set such that the resulting clustering has the correct

number of global and local clusters (as pointed by Kulis & Jordan (2011)). The prior hyperparameters for

the MAP-HDP are set in the same way as we did for the MAP-DP algorithm (see Appendix E). In the case of

the spherical data we derive MAP-HDP from an HDP mixture model with spherical Gaussian components.

For the case of elliptical data, we start from an HDP mixture with elliptical Gaussian components (with a

univariate Normal-Gamma prior placed over each dimension of the component means and variances). If we

wish to maximize MAP-HDP performance typically we should assume a model with full covariances.

In Table 4.1 we display the clustering accuracy of the methods in terms of NMI score between the estimated

and the ground truth component assignments4. On the spherical data the performance of MAP-HDP and

HDP-means is nearly identical. This can be explained by the fact that the data is not just spherical, but also

equally distributed among the different components. Therefore, most of the restrictive assumptions of SVA

algorithms are met in the experimental setup.

In the elliptical case we observe a marked deterioration in the clustering accuracy of HDP-means which is

not the case for MAP-HDP. As for all SVA methods, departure from sphericity cannot be modeled adequately

whereas iterative MAP just needs to be adapted to a more flexible probabilistic graphical model.

It is interesting to see if both HDP-means and MAP-HDP would actually outperform a non-hierarchical

treatment of the same problem. For a fair comparison, consider only the spherical synthetic data. If we use

K-means (with the true K) to cluster a single batch combining all 50 datasets, K-means scores NMI of 0.61;

if we use K-means to cluster each of the datasets separately and take the average NMI, K-means scores an

average NMI of 0.78.

3This setup is identical to the synthetic study in Kulis & Jordan (2011).
4The component assignments for each point are obtained by combining the local and global indicators. If xj,i is associated

with zlocalj,i = c and we have zglobalj,c = k, the component assignment of xj,i is k.
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Figure 4.3: Four different synthetic data sets used for the HDP experiment explained in the text. Points
denoted with the same shape and color across different plots are generated from the same underlying com-
ponent.

4.6 Discussion

We have extended the iterative MAP approach to derive a simple deterministic inference framework for

HDP-based models. We reviewed the different representations of the HDP and proposed an example MAP

algorithm using the CRF contruction of the HDP. The proposed algorithm is contrasted to an SVA inference

algorithm for the HDP and we observe that the many problems inherent to SVA methods also translate to

more complex models such as the HDP. However, we demonstrate that SVA and MAP methods derived from

the HDP benefit from the architecture of the underlying probabilistic model and outperform simpler methods

such as K-means for the problem of modeling local and global structure in groups of related data.

Hierarchical Dirichlet processes play an important role as a building block for more elaborate probabilistic

models. A particularly important example of that is the extension of HDP to sequential modeling which we

discuss in Chapter 5. Efficient scalable methods such as MAP-HDP can be used for such extensions to the

HDP to reduce the substantial computational requirements for inference in such deeply nested models.

Some of the practical models we plan to study in future include:

� The dynamic HDP in (Ren et al., 2008) which extends the HDP to model time evolving data, where

the set specific measures G1, . . . , GJ are no longer assumed to be independent given the shared G0.

Each data set is assumed to be collected at a consecutive point in time and the measure for set j,

Gj , is assumed to be strongly correlated to the previous and next measures Gj−1 and Gj+1where this

relationship is specified using the dynamic DP mixture in (Dunson, 2006).

� HDP with random effects described in (Kim & Smyth, 2006) which uses the HDP to construct a random

effects model for multiple data sets.

� The nested HDP (Paisley et al., 2012) originally proposed for modeling topics from multiple documents

in a tree-like hierarchy.
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Chapter 5

Model-based nonparametric analysis

of sequential data

5.1 Introduction

Sequential data are at the core of many statistical modeling and machine learning problems. For example, text

consists of sequences of words, financial data are often sequences of share prices, speech signals are sequences

of acoustic pressure readings, proteins are sequences of amino acids, DNA are sequences of nucleotides and

accelerometer data is a sequence of acceleration outputs measured at consecutive points in time. Although it

is possible to directly model the relationships between subsequent elements of a time series, e.g. using auto-

regressive or n-gram models, in some cases it is more useful to assume some underlying probabilistic structure

and model it with a hierarchical model. For example, observed accelerometer outputs might correspond to

human physical behaviours and latent variables can be used to allocate the behaviours to the raw data.

In the case of time-independent data, we already demonstrated how latent variable models such as mixture

models can be designed and inferred. An adequate sequential model however, needs to incorporate some serial

dependence between the latent variables. Consider a finite mixture model in which the indicator variables

are assumed to be serially dependent, the resulting sequential model is known as a hidden Markov model

(HMM)(Section 5.2). In mixture models each point (independent of time) is modeled with the same mixture

distribution, but in HMMs the mixture distribution modeling the density of some point t depends on the

indicator associated with time point t − 1. In the parametric setting of the HMM, the indicator for point

t− 1 can take some fixed K values. Therefore, under the HMM any point from the data is modeled with 1 of

K different mixture distributions. The coefficients for all those mixture distributions are written in a K ×K
table called a transition matrix. The component parameters for those mixture distributions are shared across

time so there are only K of them. Such a model is known as a stationary (homogeneous) HMM.

Now consider we want to obtain a nonparametric version of the HMM. We cannot simply relax the

assumption of fixed K and model the data with a collection of different DPMMs as the component parameters

of different DPMMs are different with probability 1. Instead, Beal et al. (2002) proposed to model the

collection of mixtures that form a HMM using a hierarchical Polya urn scheme later formalized by Teh et al.

(2006) as the HDP. Similar to the way in which the DP was used as a nonparametric prior over the mixing

measure to define infinite mixtures, the HDP can be used to describe a nonparametric prior of the HMM

transition parameters in order to define an infinite hidden Markov model (iHMM)(Beal et al., 2002; Teh

et al., 2006).
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Figure 5.1: Graphical model for the Bayesian HMM.

In this chapter we formally define the HMM and focus in particular on its nonparametric extension and

the issues specifically relevant to inference in this BNP discrete latent variable model for sequential data. In

Section 5.4.2 we propose two novel iterative MAP methods for deterministic inference in the iHMM which we

call MAP-iHMM and dynamic MAP-iHMM respectively. MAP-iHMM is derived using the direct assignment

construction of the HDP underlying the transition parameters and it can be derived from the direct assignment

Gibbs sampler for iHMM. Both MAP-iHMM and the direct assignment Gibbs sampler update the hidden

states at each step conditioned on all other states in the Markov chain. This is a consequence of the coupling

introduced when we integrate out the local DPs (see Section 4.3.3). However, typically the state indicator

variables in HMMs are strongly correlated and it is a well known fact that the Gibbs sampler mixes slowly

when there are strong correlations between variables. As a result, in practice methods which update the

whole sequence of state indicators in a block are preferred for sequential models. For parametric HMMs

widely used methods like this are the forward-filtering backward-sampling (FF-BS) and Viterbi algorithms

(both defined in Section 5.2). In the case of BNP extensions of the HMMs these methods are not trivially

extended: Van Gael et al. (2008) has proposed a variant of FF-BS for inference in the iHMM, and the dynamic

MAP-iHMM we propose in Section 5.4.2 can be seen as a nonparametric extension of the Viterbi algorithm.

5.2 Hidden Markov models

The HMM (Rabiner & Juang, 1986) is a ubiquitous probabilistic model for analysis of sequential data. HMMs

have been widely applied across many disciplines such as: speech recognition (Jelinek, 1997; Rabiner & Juang,

1993), natural language modeling (Manning & Schütze, 1999), online handwriting recognition (Nag et al.,

1986), for the analysis of biological sequences such as proteins and DNA (Krogh et al., 1994; Durbin et al.,

1998; Baldi & Brunak, 2001) and also for modeling behavioural patterns of sequential data from a wide array

of sources (Andrade et al., 2006; Toreyin et al., 2008; Chung & Liu, 2008; Gao et al., 2006). Much like mixture

models, the HMM describes the probability distribution over a sequence of observations x1, . . . , xT of some

length T . Every point t is associated with a state indicator zt, for t = 1, . . . , T , and each state indicator points

to one of K possible states (components). Given the indicator variables and the component parameters, the

observations are independent and identically distributed, however the indicator variables are assumed to have

the Markov property. In the case of first order chains, the distribution of the state indicator zt at time t

depends only on the state indicators immediately before it zt−1 and this dependence is characterized by a
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K ×K stochastic (transition) matrix π, where πi,j = p (zt = j |zt−1 = i ). In this work we focus on simple

stationary Markov models where the transition matrix π is independent of time t. Given the state for time

t− 1, observation xt is modeled with a K component mixture distribution with mixture weights defined by

the row of the transition matrix pointed by zt−1, that is πzt−1,1, . . . , πzt−1,K ; each of the K rows specify the

weights for a different mixture model. Each mixture distribution shares the same component parameters

(also called emission parameters) θ1, . . . , θK , which are independent of time (they are homogeneous). More

formally we can write:

p (xt |zt−1 = j, θ ) =

K∑
k=1

πj,kp (xt |θk ) (5.1)

As with previous chapters in this thesis, we will focus on the cases where p (xt |θk ) is of the exponential

family: for example in speech recognition we often use normally distributed components (Martin & Jurafsky,

2000) and in natural language processing we typically use multinomial components. For first order stationary

HMMs we can write the complete data model likelihood for the HMM as:

p (x, z |π, θ ) =

T∏
t=1

p (zt |zt−1 ) p (xt |zt ) =

T∏
t=1

πzt−1,ztp (xt |θzt ) (5.2)

Three inference problems typically occur when modeling data with HMMs:

� Given π, θ and the data x, infer the distribution over the hidden variables z1, . . . , zT . This computational

problem is used in applications such as filtering and smoothing. Typically it is addressed using the

forward algorithm or forward-backward algorithm.

� Given π, θ and the data x, infer the most likely sequence of states associated with the sequence of

observations x1, . . . , xT . This is a common problem in speech recognition, bioinformatics and many

other applications which is usually solved using the Viterbi algorithm (Viterbi, 1967); this most likely

sequence is also known as the Viterbi path.

� Inferring the model parameters π and θ and the distribution of the latent variables z1, . . . , zT using the

sequence of observed data x1, . . . , xT . This is the most general inference task related to HMMs and it is

usually approached with approximate methods such as maximum likelihood estimation. An adaptation

of the E-M algorithm for the HMM is called the Baum-Welch algorithm (Baum et al., 1970), a type of

forward-backward algorithm.

Bayesian analysis of the HMM involves placing priors over the unknown π and θ; p (π) and p (θ). The

graphical model of the Bayesian HMM is displayed in Figure 5.1. Typically we choose a conjugate Dirichlet

prior over each row of the transition matrix: πk,· ∼ Dirichlet (α/K, . . . , α/K) for k = 1, . . . ,K. As with the

case of mixture models, a conjugate prior over the state parameters θ1, . . . , θK is guaranteed to exist in closed

form whenever the emission probabilities are from the exponential family. One simple way to do inference in

the Bayesian HMM is by using collapsed Gibbs sampling schemes (Albert & Chib, 1993; Robert et al., 1993),

summarized in Algorithm 5.1.
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Algorithm 5.1: Collapsed

Gibbs for HMM (spherical

Gaussian)

Algorithm 5.2: Forward-filtering, backward-sampling

(spherical Gaussian)

Input x1, . . . , xT : D-dimensional data

K: number of clusters

α: concentration parameter

σ: spherical cluster variance

σ0: prior centroid variance

µ0: prior centroid variance

x1, . . . , xT : D-dimensional data

K: number of clusters

α: concentration parameter

σ: spherical cluster variance

σ0: prior centroid variance

µ0: prior centroid variance

Output Posterior of indicators:

(z1, . . . , zT )

Posterior of transition matrix: π

Posterior of :(µ1, . . . , µK)

Posterior of indicators: (z1, . . . , zT )

Posterior of transition matrix: π

Posterior of :(µ1, . . . , µK)

Sample parameters from the

prior

Sample parameters from the prior

1 µ1, . . . , µK
i.i.d.∼ N (µ0, σ0) 1 µ1, . . . , µK

i.i.d.∼ N (µ0, σ0)

2 2 (πk,1, . . . , πk,K)
K
k=1 ∼ Dirichlet (α/K, . . . , α/K)

3 z1, . . . , zT ∼
DirMulti

(
1
K , . . . ,

1
K

) 3 z1, . . . , zT ∼ DirMulti
(

1
K , . . . ,

1
K

)
4 repeat 4 repeat

5 5 for k ∈ 1, . . . ,K

6 6 d1,k = 1
2σ ‖x1 − µk‖22 + D

2 lnσ − ln
∑
i πk,i

7 for t ∈ 1, . . . , T 7 for t ∈ 2, . . . , T

8 for k ∈ 1, . . . ,K 8 for k ∈ 1, . . . ,K

9 π̇zt−1,k = N−tzt−1,k
+ α/K; 9

π̇k,zt+1
= N−tk,zt+1

+ α/K;

10 dt,k = 1
2σ ‖xt − µk‖

2
2 + D

2 lnσ− 10 dt,k = 1
2σ ‖xt − µk‖

2
2 + D

2 lnσ−
− ln π̇zt−1,k − ln π̇k,zt+1

− ln
∑
i πk,i + dt−1,zt−1

11 dt,k = exp (−dt,k) 11 dt,k = exp (−dt,k)

12 zt ∼ Categorical
(

dt,1∑
k dt,k

, . . . ,
dt,K∑
k dt,k

)
12 zT ∼ Categorical

(
dT,1∑
k dT,k

, . . . ,
dT,K∑
k dT,k

)
13 13 for t ∈ T − 1, . . . , 1

14 14 for k ∈ 1, . . . ,K

135 15 qk =
dt,k∑K
i=1 dt,i

πzt,zt+1

16 16 zt ∼ Categorical (q1, . . . , qK)

17 for k ∈ 1, . . . ,K 17 for k ∈ 1, . . . ,K

18 σ̇k =
(

1
σ0

+ 1
σNk

)−1

18 σ̇k =
(

1
σ0

+ 1
σNk

)−1

19 µ̇k = σ̇k

(
µ0

σ0
+ 1

σ x̄k

)
19 µ̇k = σ̇k

(
µ0

σ0
+ 1

σ x̄k

)
20 120 (π̇k,1, . . . , π̇k,K) =

(
Nk,1 + α

K , . . . , Nk,K + α
K

)
21 µk ∼ N (µ̇k, σ̇k) 21 µk ∼ N (µ̇k, σ̇k)

22 22 (πk,1, . . . , πk,K) ∼ Dirichlet (π̇k,1, . . . , π̇k,K)

Often, a preferred alternative to the collapsed Gibbs sampler for sequential models is the forward-filtering

backward-sampling algorithm (FF-BS)(Scott, 2002). The FF-BS algortihm does not introduce coupling be-
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tween the samples of the sequence of indicators z1, . . . , zT , so the whole sequence can be sampled in one

block, using efficient recursive updates (performing dynamic optimization1). For time series applications this

can often improve mixing times dramatically (Scott, 2002). We briefly outline FF-BS in Algorithm 5.2. The

underlying recursion in FF-BS is a special case of a more general class of inference algorithms for graphical

models Baum et al. (1970) which have not yet been fully explored.

Despite their widespread use, HMMs tend to suffer from several practical issues: MCMC methods for

inference in HMMs (Scott, 2011) are computationally demanding and are slow to converge; furthermore the

choice of K can be difficult. As with the case of GMMs, regularization heuristics such as AIC and BIC can

be used, but we have discussed in Chapter 1 their pitfalls which also extend to sequential models. In the

next sections we study methods for BNP modeling of sequential data which relax the assumption of fixed K

in a statistically rigorous way.

5.3 Nonparametric Bayesian HMM

Consider the mixture distribution (5.1) that models each observation given state indicators at previous times

in the sequence. In the BNP setting we would wish to relax the assumption of fixed K in (5.1) and model

the probability of the data at any point in time with an infinite mixture. An obvious way to do this would be

place a DP prior over the mixture weights πzt−1,· and the component parameters θ in (5.1) (see Chapter 2).

Assume that we draw a probability measure Gzt−1
∼ DP (N0, G0), we can then write Gzt−1

=
∑∞
k=1 πzt−1,kδθk

with G0 being the conjugate prior over the component parameters of the HMM and zt−1 points to one of

the represented states. In Chapter 2 we established how this notation implies that all component parameters

θ1, . . . , θK , . . . are drawn i.i.d from the base measure H and the weights πzt−1,1, . . . , πzt−1,K , . . . are generated

using a stick-breaking construction. For different t the HMM implies that we need different measures Gzt

for each represented state to incorporate time dynamics into the model. However if we sample different

measures Gk from a DP (N0, G0) the component parameters θ will be different for different Gk. This trivial

setup would not allow for sharing of the state components across time and will end up producing too many

different states and state parameters.

Now consider that G0 is itself a probability measure drawn from a DP: G0 ∼ DP (M0.H) with concentra-

tion parameter M0 and base measure H which is the conjugate prior over the component parameters of the

HMM. We can express the probability measures underlying this nonparametric HMM as:

G0 ∼DP (M0, H)

Gk ∼DP (N0, G0)
(5.3)

where k = 1, . . . ,K and K now denotes the number of represented states; N0 and M0 are local and global

concentration parameters which can be thought as prior counts for the local and global DP respectively.

This is exactly the setup we had in (4.1). There is a different measure Gk associated with each row of the

transition matrix which implies different weights πk,1, . . . , πk,K , πk,K+1 in the transition matrix. However,

the same time the component parameters θ are shared across G1, . . . , GK as their base measure G0 is discrete.

This BNP extension of the HMM was named HDP-HMM in Teh et al. (2006) and the infinite HMM in

Beal et al. (2002). Historically, the infinite extension of the HMM was first introduced in Beal et al. (2002),

but later Teh et al. (2006) formalized the model in a fully Bayesian way with the use of HDPs. The infinite

1Dynamic optimization is an efficient method for solving a complex problem by breaking the problem down into a collection
of simpler sub-problems and solving each of those sub-problems just once, storing their solutions. In inference methods it is
typically implemented through recursive updates of the random variables in the model.
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HMM from Beal et al. (2002) is equivalent to the HDP-HMM with CRF representation of the HDP where

mixing parameters have been integrated out for both global and local DPs. Van Gael (2012) formally proved

this relationship, but to avoid confusion in this thesis we will use both the names ’HDP-HMM’ and ’infinite

HMM’ interchangeably. We will carefully specify any Rao-Blackwellization steps and any differences in the

construction of the model where relevant.

5.3.1 Gibbs sampling methods for the HDP-HMM

Depending on the construction we use for the HDP for the transition mechanism in the HDP-HMM, we can

derive different inference algorithms. In this section we review a Gibbs algorithm using the direct assignment

representation of the HDP-HMM (Teh et al., 2006) and the beam sampling algorithm (Van Gael et al., 2008)

which uses a complete, non-collapsed construction of the HDP-HMM. For completeness we also include a

summary of the CRF-based Gibbs sampler for HDP-HMM which is given in Appendix I.

Direct assignment

The direct assignment representation of the HDP integrates over the local measures Gk underlying the tran-

sition matrix of the HMM. This means that each of the rows of the transition matrix π are Rao-Blackwellized

and we refer explicitly to the state indicators z, the global mixture weights β and the component parameters

θ. Here, β has the same meaning as in Chapter 4 where we express the base measure G0 =
∑∞
k βkδθk and fur-

ther combine the weights of all unrepresented components βK+1, . . . , β∞ into the term βK+1 =
∑∞
k=K+1 βk.

As we showed in Chapter 4, the agglomerative property of the global DP then implies the following posterior

for β:

(β1, . . . , βK , βK+1) ∼ Dirichlet (M1, . . . ,MK ,M0) (5.4)

where Mk can be interpreted as how many times the transition to state k has been drawn from the global

DP.

The counts Mk are updated by sequentially sampling from the Polya urn scheme defining the probability

of successive indicators:

p (zt+1 = k |zj = p ) ∝

Nj,k for an existing transition from p to k

N0βk for a new transition from p to k
(5.5)

where, as in Section 4.3.3, we sample from (5.5) Nj,k times, gradually increasing Nj,k and we keep the count

Mj,k of how many times the transition from the second term has been sampled; we marginalize over all states

that could have created a transition to k: Mk =
∑K
j=1Mj,k. It is straightforward to see that if Nj,k 6= 0 then

Mj,k 6= 0, because at least the first time a transition occurs from state j to state k, it has to be sampled from

the global DP. As with Section 4.3.3 we can also sample Mj,k using the expression in (4.16) from Chapter 4.

For every t = 1, . . . , T we update the state indicators using the posterior:

p (zt = k |x, z−t ) ∝ p (zt = k |z−t, β ) p (xt|zt = k, θk) (5.6)

for each k ∈ {1, . . . ,K,K + 1} where z−t denotes all indicators excluding the one for point t. The component

likelihood term p (xt|zt = k, θk) in (5.6) is from the exponential family and is evaluated in exactly as in earlier

models:

p (xt|zt = k, θk) = exp (〈g (xt) , θk〉 − ψ (θk)− h (xt)) (5.7)
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To compute p (zt = k |z−t, β ) from (5.6) we use the fact that given the global DP mixing weights β,

p (zt = k |z−t ) = p (zt = k |zt−1 ) p (zt+1 |zt = k ). This allows us to write out the state indicator probabilities:

p (zt = k |z−tβ ) ∝



(
N−tzt−1,k

+N0βk

) (N−tk,zt+1
+N0βzt+1

)
N−tk,·+N0

for k ≤ K, zt−1 6= k(
N−tzt−1,k

+N0βk

) (N−tk,zt+1
+1+N0βzt+1

)
N−tk,·+N0+1

for zt−1 = zt+1 = k(
N−tzt−1,k

+N0βk

) (N−tk,zt+1
+N0βzt+1

)
N−tk,·+N0+1

for zt−1 = k 6= zt+1

N0βkβzt+1 for k = K + 1

(5.8)

where we have used the count Nk,· =
∑K
j=1Nk,j to denote the total number of transitions from state k. The

expression for the probability of the current state indicator zt is obtained by computing the product of the

CRPs placed on both transition to zt and transition out of zt. The second factor in this probability might

need to be adapted in the cases when the previous state zt−1 was the same as the current one, zt−1 = zt. This

is because when zt−1 = zt = k, the count Nk,zt+1
must be updated accordingly to account for the transition

that has occurred out of state k. When zt+1 = zt−1 = k additional reinforcement is added and Nk,zt+1
must

be increased by 1, while when zt+1 6= zt−1 = k only the normalization is adapted.

As the component parameters θ and the mixing parameters β have not been integrated out, each time

a new state is created, we need to sample a new θK+1 and update the values of β accordingly. According

to the stick-breaking construction of the global DP, whenever a new component is instantiated we need to

update the value for βK+1 and create a new βK+2 using the stick-breaking process:

ν ∼Beta (1, M0)

βK+2 =βK+1 (1− ν)

βK+1 = βK+1ν

(5.9)

where βK+2 represents the updated weight of the unrepresented states in the top level DP.

(a) Joint Log Likelihood (b) raw data

Figure 5.2: The joint log likelihood of the direct assignment Gibbs sampler and the beam sampler (with
uniform (in yellow) and Beta (in red) distributed auxiliary) for HDP-HMM applied to single dimensional
Gaussian HMM data. On the same machine, using MATLAB implementation, the Gibbs sampler takes
approximately 16 seconds compared to 9 and 4.5 seconds for the beam sampler with Beta and uniform
auxiliary variables, respectively.
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Beam sampling

The direct assignment representation above requires integrating out the local probability measuresG1, . . . , GK

from the complete HDP-HMM. The other well known CRF construction of the HDP requires integrating out

both the probability measures G1, . . . , GK and the top level G0. This means that both the direct assignment

sampler and the CRF-based sampler for the HDP-HMM do not update the transition matrix π explicitly

and we lose some of the conditional independence between the indicator variables. As discussed in Section

5.2 for sequential models, coupling between the indicator variables can lead to a lot less efficient sampling

and prohibit us from exploring efficient recursive updates.

A common problem with BNP models such as the DPMM and the HDP-HMM is that the data likelihood

is not tractable in its complete non-collapsed form as it supports an infinite number of components. To tackle

this problem in the case of DPMMs Walker (2007) proposed a sampling scheme which introduces additional

auxiliary variables to the model. The auxiliary variables by design do not change the probability of the data

given the model (the marginal likelihood), but conditioned on the auxiliary variables the posterior distribution

of the remaining model parameters are simplified. In the slice sampler described in Walker (2007), given

a full draw of the auxiliary variables, the DPMM model parameters can be updated as it is a parametric

Bayesian mixture model. As we re-sample the auxiliary variables, different parametric updates are effectively

obtained for the variables of the model. At the same time the stationary distribution of the sampler from

Walker (2007) converges asymptotically to the unbiased DPMM posterior.

Van Gael et al. (2008) used the same motivation to derive an auxiliary variable sampler for the HDP-HMM

which was named the beam sampler. In BNP sequential models auxiliary variable samplers can be particular

useful as they enable efficient recursive updates as with FF-BS for the parametric HMM. The beam sampler

can be seen as an extension of FF-BS for inference in the nonparametric HDP-HMM2.

The beam sampler from Van Gael et al. (2008) and the slice sampler from Walker (2007) both extend

earlier work from Damlen et al. (1999) and Edwards & Sokal (1988) on Gibbs sampling in non-conjugate or

less tractable probabilistic models. Edwards & Sokal (1988) and later Damlen et al. (1999) proposed various

strategies to sample from hard to compute posterior distributions using auxiliary variables. Such methods

borrow some ideas from rejection sampling (Gilks & Wild, 1992) techniques, but they are a lot easier to

derive and usually do not inherit the notoriously slow convergence often associated with rejection sampling

methods.

We now proceed with a formal description of the beam sampler. The method iteratively samples the

auxiliary variables u1, . . . , uT , state assignments z1, . . . , zT , transition matrix π, the shared DP mixture

weights β1, . . . , βK and component parameters θ1, . . . , θK . The distribution of the auxiliary variables is

chosen by design such that the marginal likelihood of the model (the probability of the data given the model

parameters) remains the same as for the original HDP-HMM. For example Van Gael et al. (2008) proposed

using ut ∼ Uniform
(
0, πzt−1,zt

)
for t = 1, . . . , T as a robust and practical choice for distribution of u. Most of

the values of u1, . . . , uT closer to 0 would lead to more expensive iterations but sometimes faster convergence

and conversely larger u’s imply cheaper iterations, but more iterations to convergence.

An alternative choice for the distribution of u is ut ∼ πzt−1,ztBeta (a, b) which introduces two new

hyperparameters a and b controlling the distribution of the auxiliary variables (Van Gael, 2012). The beta

distributed auxiliary variables will be a particularly useful model assumption to consider when it comes to

efficient iterative MAP inference in the HDP-HMM. As the mode of the beta distribution is available in closed

2Another widely used extension of the FF-BS recursive sampler for HDP-HMM can be found in Fox et al. (2011), which
is obtained by truncating the maximum number of states in the underlying HDP. Effectively, this truncation transforms the
HDP-HMM into a parametric HMM where number of states is fixed to a large value.
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form as long as a > 1 and b > 1, this version of the beam sampler will be a convenient starting point for

our iterative MAP method for HDP-HMM which does not require any Rao-Blackewellization and can take

advantage of efficient recursive updates (Section 5.4.2). The beam sampler iterates between the following

updates:

� For each point t sample the auxiliary variables from ut ∼ Uniform
(
0, πzt−1,zt

)
, or alternatively ut ∼

πzt−1,ztBeta (a, b).

� For each t, compute the posterior of the indicator zt given data up to time t:

qt,k = p
(
zt = k

∣∣∣(xṫ)tṫ=1 , (uṫ)
t
ṫ=1 , π, θ

)
∝p (xt |θk )

∞∑
j=1

I (ut < πj,k) p
(
zt−1 = j

∣∣∣(xṫ)t−1
ṫ=1 , (uṫ)

t−1
ṫ=1 , π, θ

)
,

= p (xt |θk )
∑

j:ut<πj,k

p
(
zt−1 = j

∣∣∣(xṫ)t−1
ṫ=1 , (uṫ)

t−1
ṫ=1 , π, θ

)
(5.10)

for all components k = 1, . . . ,K,K+1 and where we use p (z1 |x1, u1, π, θ ) ∝
∑∞
k′:u1<π1,k′

π1,k′p (x1 |θk )

for the first indicator. We have used the fact that the conditional probability of any ut is p (ut |zt−1, zt, π ) =
I(0<ut<πzt−1,zt)

πzt−1,zt
with I (·) denoting the indicator function3. The sum in the probability in Equation

(5.10) essentially defines a recursive relation between the indicators, i.e. the probability of the indicator

for time point t is defined in terms of the probability of the indicator for time point t−1. Once we have

computed all the probabilities p
(
zt = k

∣∣∣(xṫ)tṫ=1 , (uṫ)
t
ṫ=1 , π, θ

)
for each t we proceed to sampling the

whole trajectory z consisting of values for z1, . . . , zT . We sample zT from p
(
zT

∣∣∣(xṫ)Tṫ=1 , (uṫ)
T
ṫ=1 , π, θ

)
and perform a backward pass where we sample zt given the sample for zt+1 using:

p
(
zt = k

∣∣∣zt+1, (xṫ)
T
ṫ=1 , (uṫ)

T
ṫ=1 , π, θ

)
∝ qt,kp (zt+1 |zt = k, ut+1, π ) ,

=

∞∑
k′=1

I (ut+1 < πk,k′)πk,k′qt,k

=
∑

k′:ut+1<πk,k′

πk,k′qt,k

(5.11)

where the first term qt,k = p
(
zt = k

∣∣∣(xṫ)tṫ=1 , (uṫ)
t
ṫ=1 , π, θ

)
has already been computed using (5.10).

� We sample the transition matrix from the conditional with respect to z and β:(
πk,1, . . . , πk,K ,

∞∑
k′=K+1

πk,k′

)
∼ Dirichlet

(
Nk,1 +N0β1, . . . , Nk,K +N0βK , N0

∞∑
i=K+1

βi

)
(5.12)

� To update the top level mixing parameters β we first compute the counts M1, . . . ,MK in exactly

the same way we did in Section 5.3.1: either using the Polya urn scheme in (5.5) or sampling their

values directly using (4.16). After we have updated the counts, β1, . . . , βK , βK+1 are sampled from the

corresponding Dirichlet posterior:

(β1, . . . , βK , βK+1) ∼ Dirichlet (M1, . . . ,MK ,M0) (5.13)

3The indicator function, also sometimes known as the characteristic function indicates membership of an element to a
particular set. The indicator function I (a < x < b) takes value of 1 whenever x ∈ (a, b) and takes value of 0 whenever x /∈ (a, b).
The indicator function is a generalization of the Kronecker delta we used earlier where for example we can express the Kronecker
delta notation δx,k as I (k ≤ x ≤ k).
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� The component parameters θ1, . . . , θK are independent conditioned on z and x, i.e. we can update the

values for all θ in parallel using the same updates as in previous sections.

Evaluation

We generate data from a Gaussian HMM in order to evaluate the performance of Gibbs and the beam

samplers. The same data is also used in later sections to compare the performance of MCMC methods

with related SVA and iterative MAP algorithms. We use a Gaussian HMM to generate univariate data

with component variance of σ = 0.5. There are four fixed components with mean parameters centered at

µ1 = −4.0, µ2 = −1.0, µ3 = 2.0 and µ4 = 3.0. The transition probabilities are equivalent for each state

assuming 0.97 probability of self-transition and equal probability of transition to any of the remaining three

states. In Figure 5.2 we plot the generated data; we also plot the joint likelihood of the beam sampler with

both types of auxiliary variables we discussed and the joint likelihood of the direct assignment Gibbs sampler.

The aim of this plot is to demonstrate the similar convergence behaviour of both Gibbs and beam samplers.

Taking the segmentation of the samplers which is most likely (maximizes the joint posterior), we evaluate

the NMI between estimated and true state indicators. The direct assignment Gibbs scores NMI of 0.93 and

both beam samplers score NMI of 0.94. Using Matlab R2014b 64-bit on Windows 7 PC with i7-4770S CPU

with up to 3.90GHz processor the Gibbs sampler took approximately 16 seconds to complete 500 iterations,

the beam sampler with the beta distributed auxiliary variables took 9 seconds and the beam sampler with

the uniform auxiliary variables took 4.5 seconds.

State persistence in HDP-HMM

In this section we discuss one serious limitation of the HDP-HMM which is that HDP-HMM inadequately

models the temporal persistence of states (Fox et al., 2011). On one side this is a general problem with HMMs,

found in both classical parametric HMMs and non-parametric HMMs. However, in the non-parametric setting

the problem is worsened because of the tendency for the DP to instantiate too many many components (Miller

& Harrison, 2013). Therefore, in some sequential data problems the Bayesian bias towards simpler models is

insufficient to prevent the HDP-HMM from giving high posterior probability to models with unrealistically

rapid switching between states. In such problems we may want to consider some extensions of the HDP-

HMM with a more flexible emission mechanism. For example, instead of modeling each state with a single

exponential family distribution (as we did above) we can use more complex models such as a mixture of

exponential family distributions, or an autoregressive model (Fox et al., 2009).

We may also want to augment the HDP-HMM to include a parameter for self-transition bias. Fox et al.

(2011) proposed a modified HDP and used it to construct a sticky HDP-HMM which places higher probability

on self-transitions than the original HDP-HMM. Assuming the direct assignment construction the posterior

update for the indicators from 5.8 changes for the case of the sticky HDP-HMM to:

103



p (zt = k |z−t, ε ) ∝



(
N−tzt−1,k

+N0βk

) (N−tk,zt+1
+N0βzt+1

)
N−tk,·+N0+ε

for k ≤ K, zt−1 6= k, zt+1 6= k(
N−tzt−1,k

+N0βk + ε
) (N−tk,zt+1

+N0βzt+1+ε+1
)

N−tk,·+N0+ε+1
for zt−1 = zt+1 = k(

N−tzt−1,k
+N0βk + ε

) (N−tk,zt+1
+N0βzt+1

)
N−tk,·+N0+ε

for zt−1 = k 6= zt+1(
N−tzt−1,k

+N0βk

) (N0βzt+1
+N−tk,zt+1

+ε
)

N−tk,·+N0+ε
for zt−1 6= k, zt+1 = k

N0βkβzt+1 for k = K + 1

(5.14)

where the new term ε now accounts for the newly incorporated self reinforcement effect; higher ε places

higher probability on states being persistent across time. If the parameter ε is fixed, the updates for the

other variables in a sticky HDP-HMM are nearly identical as for the original HDP-HMM.

The same self-reinforced probabilities over the state indicators was independently proposed in Beal et al.

(2002), but Beal et al. (2002) introduced the self-transition parameter ε heuristically and did not formulate

a fully Bayesian probabilistic model. Starting from a sticky HDP-HMM we can trivially extend the iterative

MAP methods we develop in Section 5.4.2 to account for self-transitions. The beam sampler from Section

5.3.1 can be also modified to a state persistent HDP-HMM, by simply incorporating ε to put higher weight

on the event of self-transitions.

5.4 Deterministic methods

MCMC methods for inference in the BNP extension of the HMM can often be prohibitively slow and this has

motivated a lot of work on scaling up inference for the HDP-HMM. Most of the effort in this area has focused

on deriving various VB inference algorithms. For example, Johnson & Willsky (2014) proposed a general

framework for stochastic variational inference (SVI) for Bayesian sequential models in which stochastic gra-

dient descent replaces the coordinate ascent as an optimization algorithm for a variational bound. As a result

the data can be split into smaller batches and we can use a batch of data at a time for each update, leading

to cheaper iterations. Johnson & Willsky (2014) has made a restrictive assumption that these batches of

data are independent sets, where Foti et al. (2014) proposed a more general framework incorporating the de-

pendence across the whole series of data. Both SVI schemes require knowledge of the size of the data a priori

and further we need to store for each observation its variational distribution over the cluster assignments.

This can be quite a restrictive requirement for many streaming applications especially where the memory

of our computational hardware is constrained. Tank et al. (2015) proposed an SVI approach particularly

for streaming applications, but focused on normalized generalized Gamma processes (NGGP) rather than

particular time series models. Overall, streaming SVI methods involve a single sweep through a part of the

data and can often lead to poor local solutions, as discussed for the case of DPMMs in Chapter 3. If we

depart from the streaming setup and assume data can be revisited, Hughes et al. (2015b) proposed a novel

VB bound which allows for processing data a batch at a time (as with (Johnson & Willsky, 2014; Foti et al.,

2014)), but avoiding zero variance point estimates at the top level DP. In addition, Hughes et al. (2015a)

introduced a memoization step which keeps track of additional sufficient statistics of each batch resulting in a

slight memory overhead, but often leading to significantly improved performance. For streaming applications

the methods from Hughes et al. (2015a) and Foti et al. (2014) become comparable.

In contrast to exhaustive MCMC methods and VB methods that rely on factorization and truncation
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assumptions, in this section we focus on simple SVA and iterative MAP methods for efficient inference in

HDP-HMM.

5.4.1 SVA analysis for HDP-HMM

SVA-iHMM

Much as we extended the HDP to model sequential data, the SVA-HDP algorithm from Section 4.4.1 can

be extended to an algorithm for fitting infinite HMMs to a time series. If we start from an HDP-HMM

with exponential family states and we mirror the assumptions described in Section 4.4.1, we can obtain a

deterministic algorithm which minimizes the following objective function:

∑
t:zt=k

Kglobal∑
k=1

Dφ (xt, µk) + λ1

Kglobal∑
j=1

Klocal
j + λ2K

global (5.15)

with respect to state indicators z, expectation parameters µ1, . . . , µKglobal , Kglobal and Klocal
j ; Klocal

j denotes

the number of states for which a transition from state j exists, and Kglobal denotes the total number of

represented states. In this setup λ2 penalizes the creation of new states where λ1 controls how likely new

transitions are between existing states. A simple iterative procedure that minimizes 5.15 can be obtained

trivially by updating the steps of the SVA-HDP from 4.4.1 and we call this algorithm SVA-iHMM. As discussed

in previous sections, this SVA-iHMM algorithm will not allow for standard model selection techniques in

order to choose λ1 and λ2 and as with other SVA methods discussed in earlier chapters SVA-iHMM is purely

geometric.

asymp-iHMM

Mirroring the derivation of K-means with reinforcement from Section 3.2.2 and the SVA algorithm with

reinforcement for inference in DPMM (in Section 3.7.2) we can also derive a SVA method for inference in

HDP-HMM. Roychowdhury et al. (2013) proposed such a method making all of the restrictive assumptions

we already described in Section 3.2.2 and Section 3.7.2. The objective function which this method minimizes

takes the following form:

∑
t:zt=k

Kglobal∑
k=1

Dφ (xt, µk)− λ
T∑
t=2

ln
Nzt−1,zt

Nzt−1,·
+ λ1

Kglobal∑
p=1

Klocal
p + λ2K

global (5.16)

where T is the length of the data and λ is an additional threshold controlling the effect of the reinforcement of

transitions. One easy way to minimize the objective in (5.16) is to mirror other SVA methods and derive an

iterative procedure which looks like K-means or SVA-iHMM but has a few additional terms. However, such

an approach for sequential data will be prone to falling into poor local optima. By contrast Roychowdhury

et al. (2013) proposed to optimize (5.16) with a method which makes use of recursive updates, similar to

FF-BS and beam sampling. Roychowdhury et al. (2013) called this method asymp-iHMM and unlike other

SVA methods discussed in this thesis asymp-iHMM is not derived from any existing sampling methods. To

a large extent, asymp-iHMM introduces additional heuristic assumptions to the standard SVA in order to

allow for recursive inference. The method does not allow for model selection and loses the flexibility of the

underlying HDP-HMM, but unlike SVA-iHMM it does not segment data purely on its geometry. We proceed

with a summary of asymp-iHMM:

� For each each t = 1, . . . , T we complete the updates from 1. and 2. below:
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1. We compute the distance matrix:

dj,k =


‖xt − µk‖22 − λ ln

(
Nj,k
Nj,·

)
using existing transition

‖xt − µk‖22 − λ ln
(

1
Nj,·

)
+ λUj + λ1 using a new transition

‖xt − µk‖22 − λ ln
(

1
T−1

)
+ λ1 to a new state

(5.17)

for all j = 1, . . . ,K and k = 1, . . . ,K where we have used Nj,· =
∑K
k=1Nj,k to denote the total number

of transitions out of state j; Uj is the upper bound of the possible change in a transition probability

from state j that could incur by introducing a new transition to existing state. For k′ ∈ {1, . . . ,K} we

have:

Uj,k′ = (Nj,k′ − 1)

(
ln
Nj,k′

Nj,·
− ln

Nj,k′ − 1

Nj,·

)
(5.18)

and we use the minimum Uj,k′ for the upper bound, Uj = mink′ Uj,k′ . See (Roychowdhury et al., 2013)

for proof.

2. For all k ∈ {1, . . . ,K} we compute the minimum sum of distances needed to reach state k:

qt,k = min
1≤j≤K

[qt−1,j + dj,k] (5.19)

We also compute the cheapest transition dmin = minj,k dj,k and if dmin > λ1 + λ2 we create a new

state. This involves computing:

qt,K+1 = min
1≤j≤K

qt−1,j + λ1 + λ2 (5.20)

and increasing K = K + 1.

� After a full sweep through the observations is done iterating between Step 1. and Step 2. above for

each time point, we again sweep through t = 1, . . . , T and update the indicators:

zt = arg min
k

qt,k (5.21)

� After all indicators z are updated, we proceed with the update step for the state centroids. For each

k = 1, . . . ,K we update the state centroids µk = x̄k with the sample mean of observations assigned to

state k.

Roychowdhury et al. (2013) also proposed an additional step to the algorithm which considers assigning whole

groups of observations to a new state. Similar extra steps aiming at more efficient inference in sequential

models have also been proposed in Hughes et al. (2012) and Hughes et al. (2015b). The additional step from

Roychowdhury et al. (2013) suggests we sweep through all pairs of states (j, k) such that transitions between

state j and state k exists. Then we evaluate how much the objective function in 5.16 would change if all

transitions from j to k are replaced with transitions from state j to a new state. Based on the effect in the

objective function we consider re-assigning a group of the observations in state k to a new state. A detailed

description of that extra move can be found in the Appendices of Roychowdhury et al. (2013).

Evaluation The asymp-iHMM was tested on the same data from Figure 5.2 (synthetic Gaussian HMM

data). It scored an average NMI of 0.54 (using 25 restarts) with 20 iterations to convergence and we plot a
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visual reconstruction produced by asymp-iHMM in Figure 5.3). The method is rather sensitive to the order

in which it processes the time series and to maximize performance we often need to start from the middle of

the time series. This can be a serious drawback, especially when considering online learning applications (see

later, Chapter 6). From 25 restarts of the order in which we process the synthetic set, the best clustering

with asymp-iHMM was NMI of 0.76 and most of the other clusterings scored NMI between 0.50 and 0.60.

This performance was only reached using the additional “block re-assignment” heuristic discussed above.

The MAP methods we propose in the next section have not yet been extended to include a split and merge

step and this is likely to further improve performance. Significant drawbacks of asymp-iHMM are that like

other SVA methods it implicitly assumes that the time series is spherical and it does not allow for standard

model selection techniques in an unsupervised way. Some heuristics are suggested in the appendices of

Roychowdhury et al. (2013), but they often assume we are approximately aware of the true number of

states in the data. Roychowdhury et al. (2013) proposed a way of doing prediction on unseen data using

asymp-iHMM, but this is done for one point at a time.

Figure 5.3: Data reconstruction using the inferred state indicators and state means. The raw data is plotted
in blue. The asymp-iHMM method is used to learn state indicators and the centroids of points in each state.
The red line replaces each data point with its corresponding centroids as inferred. The data is generated
from a single dimensional Gaussian HMM.

5.4.2 Iterative MAP inference for iHMM

Based on the different constructions of the underlying HDP, we can also derive different iterative MAP

algorithms for inference in the HDP-HMM. Using the CRF construction, we can derive a MAP method

closely related to the CRF-based Gibbs sampler for HDP-HMM (Appendix I). However, this method is a

simple adaptation of Algorithm 4.3 to the case of HDP-HMM where the number of sets J is replaced by the

number of represented states K. We point out that while the number of sets J in the HDPs from Chapter 4

was fixed in advance, K changes throughout the iterations of HDP-HMM.

In this section we will derive MAP methods from the direct assignment construction (Section 5.3.1) of

the HDP-HMM and from the auxiliary variable representation (Section 5.3.1).

MAP-iHMM

The MAP-iHMM algorithm (Raykov et al., 2016b) we present here is derived using the direct assignment

representation of the HDP-HMM, therefore it involves iterative updates of the mixing parameters β, the

counts of the top level DP M1, . . . ,MK and the state indicators z.

� The updates for β1, . . . , βK , βK+1 can be obtained by taking the mode of their Dirichlet distributed

posterior (from (5.4)). As long as the top level concentration parameter (prior count) M0 > 1 this
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modal update is available in closed form giving the updates:

βk = Mk−1∑K
j=1Mj+M0−K

for an existing state k = 1, . . . ,K

βK+1 = M0−1∑K
j=1Mj+M0−K

for a new state
(5.22)

For the later steps, we can simplify the expressions if we replace β with β̂ where β̂k = Mk − 1 for

k ∈ {1, . . . ,K} and β̂K+1 = M0 − 1 . This is because we can drop the normalization term, as later,

when optimizing the indicators, they will be independent of the state k.

Analysis of the assumption M0 > 1:

The mode of the Dirichlet distribution is available in convenient closed form only when all of its parameters

are larger than 1. In the posterior of β those parameters are the counts M1, . . . ,MK ,M0. It is natural to

assume that each of the counts for any represented state will be at least 1 and if it is exactly 1 no reinforcement

effect for that state is contributed from the global DP (because this is a spurious state with a single point in it).

The assumption for M0 > 1 in a probabilistic treatment of the HDP-HMM is somewhat of a limitation. This is

because for certain problems small values of M0 imply the correct posterior of interest. For example, in topic

modeling applications and natural language processing, we typically fix the DP concentration parameter at

very small values (Gal & Ghahramani, 2014). However, note that the concentration parameter in all iterative

MAP methods plays a different role, the role of a prior count. Really small values of the concentration

parameters of the underlying DPs might be useful to model really slowly changing dynamics if we use

exhaustive MCMC methods for many thousands of iterations as Gal & Ghahramani (2014) showed, but

using iterative MAP inference for such problems would just result in a poor local fit, independent of whether

we fix the concentration parameter to be smaller or larger than 1.

� To update the counts M1, . . . ,MK we take one of the following two approaches: we can numerically

maximize the posterior of the counts from (4.16); we can use the Polya urn scheme (defined in (5.5)). To

maximize the posterior of M1, . . . ,MK , we evaluate (4.16) substituting every value of m ∈ {1, . . . , Nj,k}.
We choose the value of m which maximizes the expression in (4.16) and this is our MAP value for Mj,k:

MMAP
j,k = arg max p (Mj,k |z, β,Nj,k ). As defined earlier, we use the notation Mk =

∑K
j=kMj,k and

that Mj,k is always in the range between 1 and Nj,k. However, the posterior in (4.16) is hard to

evaluate for more than a few thousand points in the time series so it is far more practical to use the

Polya urn scheme from (5.5) to evaluate the counts M . This means mirroring the estimation step for

M from Section 5.3.1. The stochastic nature of this update will result in minor fluctuations in the joint

likelihood of MAP-iHMM after convergence, however they have very little effect on the MAP solution

of MAP-iHMM and the method is trivially stopped (see Figure (5.4)).

� For each t = 1, . . . , T we compute the negative log probability of the state indicators (using (5.8)) for

each existing state k and for a new state K + 1:

qt,k = − ln p (xt |zt = k, θk )− ln p (zt = k |z−t, β )

qt,K+1 = − ln p (xt |τ0, η0 )− ln (N0βK+1βzt+1)
(5.23)

where again and without losing generality, we can omit the terms independent of k. The probabilities

p (xt |zt = k, θk ), p (xt |τ0, η0 ) and p (zt = k |z−t, β ) are evaluated in the same way as in Section 5.3.1.

For each t, we compute the K + 1-dimensional vector qt and select the state number according to:

zt = arg min
k∈{1,...,K,K+1}

qt,k (5.24)
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� If a new state K+1 is chosen we need to instantiate a new state parameter θ and update β accordingly.

We maximize over the posterior update of β defined in (5.9) and we choose new state parameters

maximizing the posterior distribution of θ with a single observation. The update of β implies that

when the new state K + 1 is chosen, we create βK+2 = βK+1 and update the older value of βK+1 = 0.

� The state parameters θ1, . . . , θK are updated in the same way as in MAP-DPMM and MAP-HDP, using

the mode of their corresponding posterior.

MAP-iHMM converges to a fixed point solution if we use numerical optimization for the update of the counts

M1, . . . ,MK . Often it is more practical to update M1, . . . ,MK stochastically as this solution is more memory

efficient and enables us to process more data. In that case MAP-iHMM does not converge completely and

we observe minor flucations in the joint likelihood even after convergence. Practically, the algorithm still

falls into a local optima and we can still stop the method in a straightforward way once fluctuations in the

objective function (the joint likelihood) fall bellow a certain threshold (see Figure 5.4). This convergence

is easy to asses as the joint likelihood of MAP-iHMM is dominated by updates of z, β and θ and they are

deterministic.

(a) MCMC (b) iterative MAP

Figure 5.4: Joint log likelihood at convergence for MCMC (Beam sampler) and iterative MAP (with stochastic
Polya urn step). Convergence for the MCMC is reached after approximately 300 iterations compared to
approximately 10 iterations for the MAP scheme.

Dynamic MAP-iHMM

Integrating over the transition matrix π and the mixing parameters β introduces couplings between the

indicator variables in an HDP-HMM and prohibits us from using efficient recursion (like those used in FF-BS

for parametric HMMs) to update the posterior over the indicators. The beam sampler from Section 5.3.1

provided a solution for this in the framework of dynamic MCMC inference algorithms for the HDP-HMM.

In this section we use the beam sampler as a starting point to derive a faster and more efficient dynamic

deterministic algorithm for inference in HDP-HMMs: the dynamic MAP-iHMM.

Assume the setup from Section 5.3.1 where we refer to the complete representation of the HDP-HMM

with random quantities z, π, β, and θ and in addition we introduce auxiliary variables u. In order to obtain

a closed-form MAP step for the update of u, we assume the following distribution of the auxiliary variables

ut ∼ πzt−1,ztBeta (a, b). The dynamic MAP-iHMM will iterate between modal updates for z, π, β, θ and u

where the method will also make the same assumptions that MAP-iHMM does for more efficient updates of

β1, . . . , βK , βK+1 and of the counts M . We list each of those updates:

� For each point t, we update ut = πzt−1,zt
a−1
a+b−2 using the mode of the beta distribution.
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� For each point t we first compute the quantities:

qt,k = p (xt |θk )

∞∑
j=1

I (ut < πj,k)
ua−1
t (1− ut)b−1

B (a, b)
p
(
zt−1

∣∣∣(xṫ)tṫ=1 , (uṫ)
t
ṫ=1

)
(5.25)

for all k = 1, . . . ,K,K + 1 where B (a, b) denotes the beta function with B (a, b) = Γ(a)Γ(b)
Γ(a+b) ; θK+1

is estimated using the prior hyperparameters. Once the T × (K + 1) table q has been updated, we

proceed to updating the whole sequence z1, . . . , zT . The last indicator zT is updated using zT =

arg maxk∈{1,...,K+1} qT,k; the remaining zt (for t = 1, . . . , T − 1) are updated consecutively through a

backward pass using:

zt = arg max
k∈{1,...,K+1}

qt,kp (zt+1 |zt = k, ut+1, π )

= arg max
k∈{1,...,K+1}

∑
k′:ut+1<πk,k′

πk,k′qt,k
(5.26)

where qt,k has already been computed using (5.25). Note that the update for zt is recursively defined

through the values chosen for zt+1.

� If a new state K + 1 is chosen we need to instantiate a new state parameter θ and update β as for

MAP-iHMM above.

� For each k ∈ {1, . . . ,K} we update the rows of the transition matrix using:

πk,k′ =


Nk,k′+N0βk′−1∑K

j=1Nk,j+N0βj+N0βK+1−K−1
for represented component k′

N0βK+1−1∑K
j=1Nk,j+N0βj+N0βK+1−K−1

for new k′ = K + 1
(5.27)

for N0βK+1 − 1 > 1 and if N0βK+1 − 1 < 1 update πk,K+1 = 0 ; k′ = 1, . . . ,K denotes the represented

components and the final column of the transition matrix reflects the transitions to a new state.

� To update the top level mixing parameters β, we first compute the counts M1, . . . ,MK as for MAP-

iHMM. Then we update the global mixing parameters β for each k ∈ {1, . . . ,K + 1}:

βk =


Mk−1∑K

j=1Mj+M0−K
for existing k

M0−1∑K
j=1Mj+M0−K

for new k = K + 1
(5.28)

� The state parameters θ1, . . . , θK are updated using the mode of their corresponding posterior.

Evaluation In Table 5.1 we compare the performance of MAP-iHMM and dynamic MAP-iHMM using

NMI. The NMI of the iterative MAP methods is contrasted to the NMI obtained by the corresponding

MCMC method where we use the most likely draw from the corresponding chain. After 25 restarts of

MAP-iHMM and dynamic MAP-iHMM the best solution was obtained using MAP-iHMM which scores an

NMI value of 0.81. By contrast the best solution obtained using dynamic MAP-iHMM scores NMI of 0.66.

However, dynamic MAP-iHMM showed to be more robust to initialization with NMI across the 25 restarts

varying in the range of 0.56–0.66 with mean NMI of 0.61; MAP-iHMM often scores a lot worse with NMI in

the range of 0.43–0.81 and mean NMI of 0.68.

Both MAP methods are significantly faster than the MCMC alternatives. Between the two MAP meth-

ods dynamic MAP-iHMM is faster with an average performance time of 0.08 seconds compared to average
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(a) Dynamic MAP-iHMM (b) MAP-iHMM

Figure 5.5: Data reconstruction using the inferred state indicators and state means. The raw data is plotted
in blue. MAP methods are used to learn state indicators and the centroids of points in each state. The
red line replaces each data point with its corresponding centroids as inferred. For comparison the same
re-construction has been applied using the corresponding MCMC methods to learn states and centroids.

Table 5.1: Infinite HMM estimation performance measured using NMI obtained using iterative MAP and
MCMC methods applied to synthetic Gaussian HMM data. The NMI is measured between the true state
indicators from the generating model and the indicators estimated by the different inference techniques. For
the MAP methods we display the score of the best segmentation produced out of 25 restarts. For MCMC we
display the NMI scored using the most likely draw from the joint posterior distribution from 500 iterations.
In the brackets we report execution time which for iterative MAP, is the time of the single best scoring run
ignoring restarts.

Algorithm NMI score and run time

MAP-iHMM 0.81 (0.26 seconds)
Dynamic

MAP-iHMM
0.66 (0.06 seconds)

Direct assigment
Gibbs sampler

0.93 (16 seconds)

Beam sampler 0.94 (9 seconds)

execution time for MAP-iHMM of 0.27 seconds. The reported times in Table 5.1 are for the particular draw

that scored the highest NMI. The reported run times for MAP and MCMC inference were obtained using

Matlab R2014b 64-bit, i7-4770S CPU with up to 3.90GHz processor, Windows 7 PC.

Visual interpretation of the reconstruction provided by both MAP methods compared to their stochastic

counterparts is shown in Figure 5.5. We have used 1 dimensional data to allow for intuitive visual inter-

pretation of the methods, however as the dimensionality and the size of the data increases the difference in

convergence between MCMC methods and MAP methods becomes a lot more significant.

5.5 Applications

5.5.1 Genomic hybridization and DNA copy number variation

In this study we consider the data assembled from Snijders et al. (2001) for measurement of DNA copy

number across the human genome. The data comprises of 2316 bacterial artificial chromosome (BAC)

clones for measures of DNA copy-number across the human genome. Genomic hybridization (segmentation

analysis of the BAC clones) provides a means to quantitatively measure the copy-number aberrations and

map them directly onto the genomic sequence. Arrays comprised of BAC clones provide reliable copy-number

measurements on individual clones and this makes them potentially useful for clinical applications in medical
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genetics and cancer.

We examine the potential of the MAP-iHMM algorithm for the problem of genomic hybridization. A

common assumption to make is that each of the copy-number regimes are constant and there is some inde-

pendent and stationary noise, also there are known to be a few outliers. We are interested in detecting a

few, large jumps between different copy-number regimes. In practice different regimes of the copy-number

indicate DNA samples from different sources for example differences between the chromosomal complements

of solid tumor and normal tissue.

In Figure 5.6 we plot a reconstruction of the copy-number regimes using MAP-iHMM. We have used

a Gaussian model where in red we plot the mean of the state with which each observation is associated.

By varying N0 and M0 we can model at different granularity the changes in the copy-numbers. To get an

idea of how MAP-iHMM compares to direct assignment Gibbs sampling for this problem we measure NMI

between the MAP-iHMM solution from Figure 5.6 and the best solution obtained with Gibbs4. MAP-iHMM

scored NMI of 0.58 after 24 iterations, where the Gibbs sampler was ran for 2500 iterations in total with

the best solution obtained after 1256 iterations. Despite this, the MAP-iHMM solution departs substantially

from the Gibbs solution, for the problem of genomic hybridization it is the more practical one. Due to the

issues related to state persistence discussed in Section 5.3.1, the HDP-HMM suggests much too complicated

dynamics which is not an accurate representation of the copy-number regimes. MAP-iHMM does not fit the

HDP-HMM exactly and captures only the larger states and the most likely transitions. Therefore in this

problem MAP-iHMM actually leads to a more practical reconstruction. For a more in depth study of the

data set and visual benchmarks of the copy-number regimes, we refer the reader to (Little & Jones, 2011).

Figure 5.6: 2316 BAC clones (blue) for measurement of DNA copy number variation across the human
genome. The red line is the reconstruction obtained using the MAP-iHMM algorithm.

4The best solution provided by the Gibbs sampler is the one that maximizes the empirical posterior, or the joint likelihood
of the model.
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5.5.2 Behaviour extraction from accelerometer data

In this section we demonstrate the potential of MAP-iHMM as an activity recognition tool that uses smart-

phone accelerometer data. The Oxford Parkinson’s Disease Centre (OPDC), University of Oxford, UK have

deployed an Android smartphone app that records data from a variety of smartphone sensors without any

user interaction, i.e. the user puts the smartphone in their pocket and goes about their day-to-day activity

while data from the sensors are passively recorded.

The mobile app consists of 5 “active tests” which require the user to carry out a set of instructions

aimed at detecting characteristic Parkinson’s disease (PD) symptoms such as Parkinsonian gait, tremor and

postural instability. Here we focus on data from the gait test. During the gait test, users press a “Start”

button on the screen and put the smartphone in their pocket, once the smartphone vibrates, users must

walk in a straight line for 20 yards, turn 180 degrees and then walk back. The buzzer goes off again after

30 seconds to indicate the end of the test. The phone captures raw 3-axis accelerometer time series with

sampling rate of 120Hz, see Figure 5.8(a).

Using the same mobile application, but deployed in a clinically-controlled setting Arora et al. (2014)

demonstrated that feature extraction on the collected data, followed by a random forest classifier, is capable

of distinguishing PD patients from healthy controls with an average sensitivity of 98.5% and an average

specificity of 97.5%. This data however, was collected from a smaller number of participants and in a con-

trolled environment. Once participants start doing the gait test in their home, outside, or under uncontrolled

circumstances, the number of biasing behaviours that can affect the gait test accelerometer input can grow

“infinitely” (or it is reasonable to assume so). Therefore, to maximize the performance of the approach in

Arora et al. (2014) or any further classifications methods for diagnosis of PD, we wish to segment unwanted

behaviors from the gait data. That is, to achieve higher accuracy with existing classifiers and understand

better how to extract meaningful features, the data analysis needs to focus on the accelerometer data mainly

from the gait (walking behaviour) ignoring any other behaviours or orientation changes5 in the device. Man-

ually segmenting the relevant parts of the data signal is possible, but costly and highly infeasible considering

the large amounts of data generated by a single subject. For example, a single study can involve analyzing

two or three gait tests per day, from 1000 individuals, for the duration of 60 days: generating 3-dimensional

time series of ∼ 648, 000, 000 observations.

We propose using the efficient and simple MAP-iHMM as a completely unsupervised pre-processing tool

to segment the accelerometer data associated with gait from the rest of the data. Each state of the HDP-

HMM is modeled with a Gaussian distribution with unknown mean and precision therefore assuming NW

prior H over the state parameters. In Figure 5.8(b) we plot the segmentation suggested by the MAP-iHMM

where we have tuned the model in an unsupervised way (see Appendix E). The red points are clustered

together and they mostly match gait data, using hand labels of a specialist for comparison. The exception to

this is the first 1 second of the signal clustered as walking, which in fact is just a vibration of the phone due

to a buzzer indicating the start of each test. In blue the MAP-iHMM has clustered with high accuracy some

of the unwanted behaviour such as long stops, the phone being put on a flat surface (the steady segments)

and orientation changes (the re-ordering in the x-, y- and z-axis). This means that using MAP-iHMM we

can extract raw data describing gait, and filter out data that is unwanted (nearly 100% of the blue clustered

data). By removing possibly an infinite number of biasing behaviours, we significantly simplify the task of

classification algorithms (such as deep neural networks, random forests etc.) to detect PD symptoms from

5By orientation changes we mean rotation of the device with respect to the Earth’s gravitational field. When analyzing
smartphone data, the quality of the conclusions we make about the processed data often depend upon being able to adequately
account for orientation changes.
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gait tests performed on a smartphone device.

Figure 5.7: Distribution of accelerometer output from the gait for different tests.

Despite the great potential of the MAP-iHMM, we have also identified some challenges for it which mainly

result from the model assumptions inherent in the HDP-HMM. MAP-iHMM with simple Gaussian states

often fails to: (a) segment out the buzzer into a different state (or states); (b) handle orientations changes;

(c) segment correctly walking patterns with very different dynamics. One of the major reasons for this is

that the data describing gait rarely follows unimodal Gaussian distribution (see Figure 5.7). Therefore, if we

tune the hyperparameters of the HDP-HMM with Gaussian states in such a way that we segment the buzzer

output, the model suggests breaking down the gait data into multiple different states. A rigorous treatment

to these challenges would be to extending the HDP-HMM to having a multimodal emission mechanism (e.g.

DP mixture of Gaussians) and then incorporating iterative MAP for inference.

(a) Raw accelerometer output (b) Clustered output

Figure 5.8: 3-axis accelerometer output from a 30 seconds walking test for detection and diagnosis of Parkin-
son’s disease. The segmentation of the data allows us to automatically remove most of the unwanted user’s
behaviours and focus only on the walking data in the following feature extraction stage. In red is the actual
part of the data we will be interested at.
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5.6 Discussion

In this chapter we extend the iterative MAP approach for inference in sequential BNP models. In keeping

with earlier chapters we contrasted our MAP methods to SVA algorithms and compared both with related

sampling techniques on synthetically generated data. In this chapter we build on our previous discussion

about the effect that Rao-Blackwellization can have for inference in different BNP models. Where in Chapter

3 we demonstrated mainly positive effects of integrating over component parameters in mixture models, here

we advocate the opposite for sequential problems. Despite the theoretical arguments in favor of collapsed

and non-collapsed model representation, in practice both models (and the related inference methods) have

their advantages and we see that MAP-iHMM can outperform dynamic MAP-iHMM.

Although, we observe a drop in accuracy of iterative MAP for fitting sequential models, this is to be

expected considering the deeper hierarchy of the underlying model. The solution usually obtained with

MAP-iHMM and dynamic MAP-iHMM is unable to capture states and transitions which have small support

under the HDP posterior. However, for long time series the alternative unbiased sampling methods converge

only theoretically to a global solution.

We demonstrated example applications of iterative MAP for detecting DNA copy-number regimes and

as a behaviour segmentation tool for quality control of accelerometer data. The simplicity, scalability and

flexibility of model-based algorithms such as MAP-iHMM and dynamic MAP-iHMM make them extremely

valuable in embedded applications where an initial structuring decision is to be made directly on a data

collection device (like a smartphone). In the next chapter we introduce a novel sensing problem, for which

we reach a sensible modeling solution exactly through the scalability of MAP-iHMM.
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Chapter 6

Occupancy estimation using

nonparametric HMMs

6.1 Introduction

The motivation for using greedy deterministic methods such as the ones discussed above is that there are

many applications that can benefit from BNP models where computational resources are at premium and

intensive MCMC inference limits the use of such models; for example if we want to model data directly onto

some embedded hardware collecting it. In this chapter we study one problem like that and demonstrate how

an application can really benefit from the insights that BNP models such as the infinite HMM can provide.

At the same time for the application it is essential that a lot of the learning and modeling is performed on

a microcontroller board with severely limited specifications, so most of the current state of the art inference

methods are not feasible.

The problem we study is whether we can design a low cost system that can estimate the number of

people in some monitored environment using only data from a single analogue passive infrared (PIR) sensor.

We present some motivation and background of this problem of occupancy estimation in Section 6.1.1. In

Section 6.2 we explain the experimental setup and conditions under which the data for our study has been

collected where Section 6.3 summarizes a simple scalable approach to the problem which relies on basic

feature extraction stage followed by regression stage. Then in Section 6.4 we show how the infinite HMM can

be used to provide more meaningful solution and we quantify the benefits of that through rigorous evaluation

in Section 6.6. In Section 6.7 we study the practical feasibility of the suggested system testing different

inference methods and techniques for the infinite HMM.

6.1.1 Motivation

In contrast to existing occupancy estimation systems, we investigate the potential of using a single low-cost

PIR sensor for counting the number of people inside of its field of view1 and propose a novel system that

relies on a single sensor to monitor a room. We extract motion patterns from the raw sensor data with an

iHMM and use those patterns to infer the number of occupants using basic statistical regression methods.

This system is well-suited to the adaptive setting on active deployment whereby the iHMM readily finds new

motion patterns in the signal as new data arrives.

1The field of view of a sensor is the area of space directly seen from the sensor within its range.
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We demonstrate the system configured to estimate an occupancy count for various time windows ranging

from 30 seconds to 20 minutes. The result of these tests show that this approach can accurately estimate

room occupancy count to within ±1 for time windows of less than 2 minutes. We also explore the challenges

imposed by using a single PIR sensor in terms of the monitored room size, maximum number of distinguishable

occupants, and the restrictions imposed by the sensor’ s range and view angle.

6.1.2 Challenges of human occupancy counting with a single PIR sensor

Our aim is to obtain an accurate online estimate of the number of occupants in an office meeting using data

from a single PIR sensor. The simplicity of the sensor will necessarily create some specific challenges that

must be carefully considered when modeling the data. A PIR sensor outputs the change in temperature of

a passing, heat-emitting object compared to the background temperature of the field of view, therefore we

need to verify the sensitivity of our findings to the choice of a monitored room in which each experiment is

performed. Since the human body is a heat-emitting ’object’, occupants within the monitored environment

can be easily blocked from the field of view of a single sensor by other occupants.

The sensor output staturates at a maximum value of 1.0 (see Section 6.2.1 for details), therefore there

is a limited range of motion that we can actually differentiate with this type of sensor. For example, if two

or more people are sufficiently active and close to the sensor to generate more than the maximum range of

detectable motion, the sensor would be unable to detect the motion patterns of the rest of the occupants.

That is, the occupants occlude each other not only by physically constraining the field of view of the sensor,

but also by exceeding the maximum range of motion that the PIR can measure.

We notice that more occupants would on average generate increasing range of motion as long as we observe

them for long periods of time. Therefore, a simplistic approach to estimate occupancy is to assume that

occupancy count increases with the increase of motion. However, within short observation time windows (e.g.

30 seconds or less) it is likely that the temporally local behaviour of particular individuals will undermine this

assumption. This is why we need to carefully handle such temporally local behaviours to extract properties

of the global behaviour of interest, whether a participant is in the room or not.

6.1.3 Related work

Occupancy counting in an environment is a crucial task in human behaviour sensing and as such it has been

widely studied. Yet, it is typically approached by employing either a occupancy count sensor that covers the

entire area of interest, or keeping a tally of people entering and leaving at all entry and exit points. While the

first approach is generally more accurate, the higher price and energy consumption of these systems makes

them prohibitive for many real-world applications.

1. Person-counting sensors that cover the entire area of interest usually consist of high resolution video,

stereo cameras and thermal imaging devices. A tracking algorithm is used to count human bodies from

the image, for example by using supervised machine learning from dot-annotated images (Lempitsky

& Zisserman, 2010), or using head-detection algorithms from stereo camera images (Van Oosterhout

et al., 2011). Chan & Vasconcelos (2012) used unsupervised machine learning to segment components of

homogeneous motion before applying Bayesian regression, and this approach shows promising improve-

ments for locating and counting people in crowded places from video data. Yang et al. (2003) proposed

a real-time network that does not depend upon object tracking, which makes the scheme much less

computationally prohibitive; the high cost of the data acquisition device still remains an issue though.
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2. Considerable effort has been invested in trying to avoid the need for expensive devices. Most progress

in that direction is obtained by systems that rely on counting at all entry and exit locations of a closed

environment (Hashimoto et al., 1997; Zappi et al., 2007). For example Zappi et al. (2010); Yun & Lee

(2014) placed three PIR sensors in a hallway to identify direction of movement and relative location of

people passing. Agarwal et al. (2010) instead combined PIR sensors with reed switch door sensors for

occupancy counting with the purpose of optimizing the energy consumption of an office building. Wahl

et al. (2012) presented a similar approach, but using only PIR sensors at all entries and exits.

3. Alternative systems use multiple low-price sensors at different locations which are tied through a prob-

abilistic model that combines information from the different outputs (Khan et al., 2014). Dodier et al.

(2006) used a probabilistic belief network to model occupancy based on data from multiple PIR sensors

(4 PIR sensors per room) placed on the walls rather then entry/exit locations. This method assumes

that the number of occupants is constant over time and that the system can be trained on typical

behaviours common for the monitored room. The belief network is calibrated on historical data for the

monitored rooms and does not adapt after the training stage, which makes the system highly depen-

dent on the historical data and sensitive to non-observed behaviour. Lam et al. (2009) used HMMs

to quantify occupancy count from extracted features of multiple types and locations of energy-efficient

sensors. This approach shows average accuracy of 80% in open-plan buildings, where each occupancy

estimate is based on a window of one minute sensor data. The accuracy is measured as the number of

correctly estimated intervals of a minute divided by the total tested time(in terms of number of minute

intervals).

4. Assuming resources are unconstrained, perhaps the most accurate occupancy count can be obtained

from systems that make use of both expensive sensors to monitor larger areas of a building, multiple

motion based sensors monitoring each entrance and exit, historical data of building occupancy, CO2

sensors and smoke detectors etc. (Meyn et al., 2009; Erickson et al., 2009). In the simplified case of

single room monitoring, much research has been directed towards systems with diverse sets of sensors

that are able to infer comprehensive human activity (Kientz et al., 2008; Brooks, 1997), but the focus

of such systems is behaviour modeling rather then occupancy counting, and these systems therefore

have high complexity and cost.

In contrast, we suggest using a single PIR sensor and flexible probabilistic model to model simpler behaviour

that are closely related to the number of attendees.

6.2 Experimental Setup

6.2.1 Collection devices

In this study we attached a single PIR motion sensor (Panasonic NaPiOn series AMN21111) on a printed

circuit board (PCB) to an ARM mbed NUCLEO F401-RE microcontroller board, powered through a USB

cable that connects it to a laptop. The PIR sensor is an analog output sensor as opposed to digital output ones

in NaPiOn series. It is a standard type PIR, 14.5mm tall, lens surface area 9.5mm and 9.8mm mounting hole.

It has 5m detection range, horizontal view of 82o and top (vertical) view of 100o and records approximately

30 single dimensional digital measurements per second (30Hz sampling rate). The PIR is connected to the

12-bit ADC embedded in ST Nucleo-F401-RE microcontroller as shown in Figure 6.1(a). We use the mbed

compiler to read the analog values from the PIR. The mbed compiler uses a function to convert analog values
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(a) Microcontroller board (b) Raw sensor output

Figure 6.1: Fig(a):Raw digital data recorded using the standard digital PIR sensor for 10 seconds.
Fig(b):Image of the data acquisition board consisting of a NUCLEO F401-RE mbed microcontroller board
with a single PIR sensor on a PCB connected to the ADC port of the microcontroller through the Arduino
connector.

to digital in a range from 0.0 to 1.0 where 0.0 represents 0 volt while 1.0 represents voltage drain drain (Vdd).

Analog values between are represented by a floating-point number between 0.0 and 1.0. The board is placed

in the middle of the room, adjacent to the wider wall in rectangular rooms, with the sensor facing the room

interior. The height at which the sensor is positioned varies between 0.70m and 1.00m. The analog data

generated by the sensor is sent to the ADC inside the microcontroller that converts analog data to digital,

which is then transmitted to the laptop through the USB interface for further processing.

Figure 6.2: Example of a monitored room with no occupants inside. The board is placed in a typical position
in the middle of the room at 1m height.

6.2.2 Data collection

The data acquisition board is deployed in 7 different conference rooms (see Figure 6.2) in an office building,

where the rooms vary in dimensions, access to sunlight and maximum occupant capacity. Data has been

collected from randomly chosen real meetings in the ARM Corporation headquarters in Cambridge, UK and

there is variation in the number of individuals and the nature of each meeting. The monitored meetings

involved white board sessions; seated formal meetings; slide presentations; shared conference calls etc. The

board was carefully placed in the middle of the room, in order to maximize the PIR sensor coverage. Upon

the start of each meeting sensor data was recorded where the first and the last five minutes of the recorded

PIR sensor data are removed to account for the system installation and occupants to settling in. Note that

the start and the end of a meeting can be automatically detected from the PIR output with great accuracy

(see Figure 6.3).
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Figure 6.3: We demonstrate the obvious change in the PIR output as soon as a monitored room becomes
occupied. The PIR output is for approximately 30 seconds and the black verical line sinifies the moment
when individuals start entering.

6.2.3 Sensor data description

The analog output of the PIR sensor is converted (by the 12 bit ADC) to real numbers in the range of 0.0000

to 1.0000 with 4 decimal places. The temporal fluctuations in this signal reflect certain movements in the

monitored environment (Figure 6.1(b)). When there is a lot of movement in the room, the PIR analog output

reaches the maximum value, which, in turn, is converted to 1.0 by the ADC. The challenge we are addressing

entails analyzing these fluctuations to infer the number of people occupying the monitored room. The PIR

output for a typical 1 hour meeting comprises a set of approximately 120,000 floating-point numbers.

Figure 6.4 depicts the statistical distribution of the sensor data from different meetings, which ignores

the time ordering of the data. The sharp peak in the distribution at the median value, combined with the

heavy tails and the truncation at the maximum ADC output 1.0 suggest that for longer durations the PIR

data is well described by a mixture of a truncated Laplace distribution2 centered at the median value, and a

Dirac delta distribution centered at 1.

(a) 9 people (b) 2 people (c) 5 people

Figure 6.4: Histogram of raw PIR data from three different meetings with varying number of occupants and
approximately 1 hour duration.

2The Laplace distribution governs the difference between two independent identically distributed exponential random vari-
ables. The probability density function of a Laplace random variable X ∼ L (µ, b) can be written as: p (X = x |µ, b ) =
1
2b

exp
(
− |x−µ|

b

)
where µ is a location parameter estimated with the sample median and b is called diversity or spread param-

eter of the Laplace distribution.
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6.3 Laplace modeling

We showed that the PIR output for long segments of different meetings is well described with a mixture of a

truncated Laplace distribution and a Dirac delta distribution centered at 1.0. Ignoring the delta distribution,

it is then reasonable to model the data from different meetings with different Laplace distributions, xj ∼
L (µj , bj) where xj = xj,1, . . . , xj,Nj denotes the sensor data stream of PIR measurements from meeting j

collated into a single vector, and (µj , bj) are respectively the location and spread parameter of the Laplace.

We estimate µ1, . . . , µJ and b1, . . . , bJ using:

µj = median
(
xj,1, . . . , xj,Nj

)
, bj =

1

Nj

Nj∑
i=1

|xj,i − µj | (6.1)

for j = 1, . . . , J , where J denotes the number of training meetings (in this study J = 53) and Nj denotes

the number of PIR output points for meeting j. In Figure 6.5 we plot each µj and bj against the number of

people that have been present at meeting j. While the location parameters do not vary substantially across

meetings, we observe that meetings with higher occupancy are indeed more likely to have larger spread

(larger values of b), as expected. In addition, we notice that the relationship between the count and the

spread parameter changes quite substantially for meetings with more than about 8 occupants. Examination

of the monitored rooms shows that assuming normal seating patterns 8 occupants are the most that can

fit within the field of view of the standard PIR type sensor without occupants occluding each other. We

believe this is a limitation of the monitored environment and the position of the PIR sensor, rather than our

proposed counting algorithm.

(a) Laplace spread (b) Laplace location

Figure 6.5: Number of occupants for different meetings plotted against the Laplace parameters.

6.3.1 Regression component

The small amount of regression data coupled with the single predictor variables make generalized linear

models3 (GLMs) an appropriate parsimonious choice for modeling the dependence between the Laplace spread

parameter and the occupancy count. We will treat low occupancy meetings with fewer than 8 occupants

separately from the ones with 8 or more occupants, where for most practical purposes we need an unsupervised

way of switching between those two regressions. The easier, but less accurate approach would be stratify at

a hard value of b ∼ 0.09 (which is a specific value estimated from the training data). Alternatively, we can

3A generalized linear model is a simple regression model which assumes that we can predict the expected value of some outcome
variableY (which has some exponential family distribution) in terms of some predictor variables X using: E [Y ] = g−1 (Xβ)
where β are some unknown parameters of the model and g (·) is called a link function, which is usually determined based on
the distribution of Y . The GLMs are largely used in practice because they are simple to use, fast to train, have relatively few
parameters and provide intuitive inside about the relationship between the predictor variables and the outcome.
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use a probabilistic switching mechanism once the estimated b enters an interval of uncertainty between the

different models, or sacrifice some of the accuracy and use a single regression model.

For the data from both more and less occupied meetings multiple types of GLM regression were compared

in terms of mean absolute error 4 (MAE); the best fit for meetings with up to 7 occupants is obtained with

a linear model with Gaussian outputs; for the second strata of high occupancy meetings a log-linear model

with Poisson outputs provides the best fit scoring the lowest MAE of the tried regression models(as for high

occupancy meetings the number of occupants increases exponentially with the spread parameter).

The MAE for the low occupancy strata (less than 8 individuals) is less than 1. This suggests that with

Laplace parameters estimated from the PIR data from an observed meeting, we can identify the number of

occupants to within ±1 individual on average. For the high occupancy strata the count prediction accuracy is

reduced, but some relationship can be captured with MAE of the log-linear model less than ±1.25 individuals.

While there exist much more complex regression models which could be used, for example support vector

regression (Smola & Vapnik, 1997), kernel regression (Fan, 1992), Gaussian process regression (Williams,

1998) or regression based on convolutional neural networks (Bishop, 1995), they require substantial amounts

of memory, computational power and training data. In addition, such methods trade interpretability of

the classifier for empirical accuracy. More specifically, they often have large numbers of parameters and

it is extremely difficult to predict from an analysis of the trained model what the effect on the occupancy

count prediction will be when varying any one of these parameters. For example, support vector regression

requires that all support vectors are held in memory, and requires quadratic programming5 to train the

regression model (Smola & Vapnik, 1997). Similarly, while convolutional neural networks have been used

to solve difficult regression problems to high prediction accuracy (Bitvai & Cohn, 2015; Kang et al., 2014;

Pathak et al., 2015), these require vast amounts of training data and computational power which makes them

generally out of reach of low power embedded microcontroller systems.

By comparison, parameter training in GLMs leads to convex optimization problems which can be opti-

mally solved using simple gradient descent algorithms.

6.3.2 Time window duration

The Laplace spread parameters for each meeting were estimated from all of the PIR data for that meeting,

most often approximately an hour. Therefore, to make a prediction for the occupancy count, we have to wait

the whole duration of the meeting. To be practical, the system needs to be able to work for much shorter

time windows.

We next investigate this by fitting a Laplace distribution to shorter time segments of the raw sensor

data. Instead of estimating parameters from the data for the whole meeting, we estimate the same Laplace

parameters for every 2 minutes time windows, that is we partition each meeting in multiple smaller, non-

overlapping time windows. The problem we will face is that shorter time segments of PIR data are more

conflated with short-term individual behaviour which is not representative of the current number of occupants.

Figure 6.6 shows estimates of the spread parameters evaluated every consecutive 2 minutes of a meeting with

9 occupants present for the entire duration.

Ideally, the Laplace parameters would be almost constant across all time windows, indicating that data

recorded from the same meeting is summarized with the same parameter values. The varying spread of the

raw data from the same meeting is explained by the varying movements of the occupants in that duration.

4MAE is the average difference between the estimated and the true value of an outcome variable.
5Quadratic programming is the mathematical optimization problem of optimizing a quadratic function of several variables

subject to linear constraints on these variables. It has been proven that in general this optimization problem is NP-hard.
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This variation will be due to temporally local and/or individual behaviours which depend upon the precise

nature of the meeting and the motions of the occupants during the window, the effect of which diminishes

over longer time windows.

We address this problem of the Laplace parameters varying during the meeting by clustering the training

data into groups of similar motion patterns and then matching the motion structure discovered onto patterns

of human behaviour we expect to observe. To have a sufficiently flexible grouping of behaviour, and to allow

the number of observed behaviours to grow as more data becomes available, we model these groupings using

the iHMM (see Chapter 5). In this way, instead of using all the PIR data we focus the analysis only on the

clusters that are most universally likely to describe the occupancy count. This approach substantially reduces

the variation in spread parameters over the duration of the meeting, for shorter time windows (Figure 6.6).

(a) 2 minutes windows (b) 30 seconds windows

Figure 6.6: Laplace spread parameters for different time windows of a meeting with 9 occupants. The red
line shows the spread parameter estimated from all the raw PIR sensor data, whereas the blue line shows the
spread parameter estimated from only points in the selected small motion behaviour.

6.4 Extracting behaviour from PIR data

In Figure 6.7 we show the clustering produced with iHMM of 15 seconds PIR signal, where different colors

denote different clusters. The iHMM has been trained on all of the training data which exceeds 53 hours

rather than just on the 15 seconds that are displayed.

Lets assume T denotes the number of PIR recordings from all meetings, using the notation from Section

6.3 this implies T =
∑J
j=1Nj . Then we concatenate the series of vectors x1, . . . ,xJ into univariate time

series x1, . . . , xT ≡ x1,1, . . . , x1,N1
, . . . , xJ,NJ . Every observed PIR output xt with t ∈ {1, . . . , T} is associated

with a hidden variable zt indicating the state of that observation and every represented state k ∈ {1, . . . ,K}
is modeled with a Laplace distribution L (µ, bk) with fixed location parameter µ and cluster specific spread

bk (x1, . . . xT is modeled with HDP-HMM with Laplace distributed components). Conveniently, the Laplace

distribution with fixed location has a conjugate prior. Further we observed similar location parameter values

across different meetings supporting our assumption of fixed µ. The conjugate choice for prior over the spread

parameters bk is the inverse-gamma distribution, bk ∼ InvGamma (ν0, χ0)6.

By fitting an iHMM to the raw PIR data, we aim to group together segments of the time series that are

similar. In this way, observations that are coupled into the same state are more likely to describe the same

physical pattern of movement. Note that typical human behaviours (e.g. walking, sitting down, standing up)

are complex and so are composed of many different types of motion. Without making restrictive assumptions

6The inverse-gamma distribution is the distribution of the reciprocal of a gamma distributed variable. Inverse-gamma random
variable X ∼ InvGamma (ν, χ) has a probability density function: p (X = x |ν, χ ) = χ

Γ(ν)
νx−ν−1 exp

(
−χ
x

)
.
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about the movement described by the recorded PIR signal, we are more likely to group together similar

types of motion rather than composite human behaviours. At the same time obtaining the structure of the

observed motion patterns is key to understanding how the different human behaviours are formed and in

what way those behaviours differ based on the sequence of movements that form them. For our problem of

occupancy counting, mapping sequences of motion patterns into composite behaviours is not the focus of the

problem. However, HMMs have already proven useful for the more difficult problem of tracking the activity

of monitored individuals in different problem domains (Mannini & Sabatini, 2012; Toreyin et al., 2008).

Figure 6.7: Clustering output of the iHMM applied to 15 seconds PIR data. Different colors denote different
clusters (states); the number of the clusters has not be specified a priori, but learned from the data.

We describe the collection of motion patterns that describe small movements as ’small motion behaviour’.

In order to separate parts of the PIR output describing this small motion behaviour, to filter out larger

movements, we examine the PIR recordings from an empty room. More precisely, we examine which states

occur for empty rooms once the iHMM is fitted to whole of the data. Then we identify segments of the

PIR signal, from occupied rooms, that are grouped together under clusters found in non-occupied rooms.

The iHMM groups together motions that are temporally similar, so larger movements would be coupled in

separate groups and we can easily filter them out. Large temporally local fluctuations in the PIR output

reflect some temporally local human behaviour and will bias the occupancy count estimate (unless more

information is available about the nature of these behaviours). In Figure 6.7 the blue and green states are

motions describing the ’small motion behaviour’ and the data belonging to the red cluster is filtered out.

Note that red state groups both data with bigger and smaller PIR output, as points are grouped with respect

to their common spread and time dynamics rather than absolute value. By focusing only on specific states,

we are comparing Laplace parameters estimated from comparable (similar) sequences of PIR data which

will make our estimates of those parameters less variable and more robust to reducing the occupancy count

estimate time window (c.f. Figure 6.6). In the collected training data approximately 70% of all of the training

data groups into small motion behaviour and the remaining 30% of the PIR output is filtered out.

Filtering out undesired motion behaviours and reducing the observation time windows will also help us

exploit a more accurate switching mechanism between the two regression models for more and less occupied

environment when needed. One efficient way we suggest for that switching would be to specify an interval of

uncertainty for b; estimated b falling inside of that interval would imply uncertainty about which regression

model to use. Whenever values for b estimated from the latest PIR output are from the uncertainty region,

we do not choose a regression model but we proceed by estimating another b from the next window. We

repeat that step if needed and based the first value of estimated b and also obtained sequence of values b so

far, we choose with higher certainty the appropriate regression model to output the occupancy count. Using
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this mechanism can cause certain delays in the estimation output, but delays rarely exceed 2, 3 times of

the aimed time window duration (for example delay of 1 minute and 30 seconds instead of the assumed 30

seconds windows for estimation).

6.5 System overview

Figure 6.8: Architecture of a novel occupancy estimation system.

In this section we describe the key stages in our proposed solution to occupancy estimation (Figure 6.8).

The data acquisition process and the statistical nature of the recorded PIR output is discussed in detail in

the experimental setup. We split the training data into different time windows of PIR output to examine

the duration of signal sufficient to accurately estimate number of monitored people. Once data has been

partitioned to smaller time windows, the training data is coupled using iHMM in order to extract physical

behaviour of interest from the raw PIR signal. The behaviour that biases the occupancy estimation is filtered

and we model the remaining data using Laplace distribution. The estimated Laplace parameters describe

well how populated a meeting has been and can be efficiently used in a regression model. Different regression

models are used for more and less occupied meetings to maximize estimation accuracy.

6.6 System evaluation

In this “in-the-wild” study we recorded PIR sensor data from 53 real-life meetings, 37 of those had up to 7

participants, the remaining 16 had more than 7, and the 2 most occupied meetings had 23 and 29 occupants,

all with different meeting durations. The two most occupied meetings are excluded from the analysis, because

the data recorded from such over-populated meeting rooms (considering the size of the conference rooms) is

not meaningful. Indeed, the maximum seating space in the biggest of the monitored rooms is 14 people and

typically exceeding this capacity leads to severely limiting the field of view of the PIR sensor which causes

severe sensor occlusion and irretrievably biased sensor output.

We recorded simply the PIR sensor output and the true number of occupants for each meeting, so the
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Table 6.1: Percentage of time windows across all meetings (with less than 8 people) where the predicted
number of occupants is within ±1 of the true number of occupants. In the square brackets is the percentage
of time windows where the predicted number of occupants is within ±2 of the true number of occupants.

Raw data Small motion behaviour

30 seconds 63% [93%] 80% [96%]
1 minute 80% [93%] 83% [97%]
2 minutes 82% [96%] 85% [99%]
20 minutes 89% [97%] 92% [97%]

study has been highly non-invasive. The data from each meeting is split in small observation windows in order

to track how the accuracy of the occupancy count system changes with the count estimation time window.

Note that if we wish to receive an estimate of the current room occupancy every 30 seconds, naturally the

accuracy of that estimate would be lower than an estimate obtained every 2 minutes or every 20 minutes. For

numerous applications an occupancy count estimation updated only every 20 minutes would not be of great

value so there is an inherent trade-off between accuracy and count estimate time window. We investigated

time windows of 20 minutes, 2 minutes, 1 minute and 30 seconds. Additional investigation showed that

processing windows longer than 20 minutes does not appear to provide a substantial increase in occupancy

count estimation. We still treat low and high occupancy count meetings differently in the analysis due to the

different statistical nature of the data in these different occupancy strata.

6.6.1 Fewer than 8 occupants

In the case of a small numbers of occupants, a linear Gaussian regression model performed best in terms of

MAE and is used to predict the human occupancy count from the spread parameter alone (Figure 6.9). For

shorter estimation time windows, the relationship between occupancy count and PIR data spread becomes

unclear, the effect of which is clear from the numerical prediction accuracy estimates for predictions within

±1 and ±2 (Table 6.1) of the true occupancy count.

After the raw data is segmented with the Laplace iHMM and the data in the states describing large

movements is filtered out, we estimate spread parameters only from the remaining data representing small

motion behaviour. Following the same recipe, Gaussian linear regression is used to predict occupancy count

from the “stabilized” Laplace spreads for different count estimation time windows (Figure 6.10 and second

column of Table 6.1). The resulting overall increase in prediction accuracy confirms the positive effect of

iHMM behaviour segmentation.

Table 6.2: Percentage of time windows across all meetings (with at least 8 people) where the predicted
number of occupants is within ±1 of the true number of occupants. In the square brackets is the percentage
of time windows where the predicted number of occupants is within ±2 of the true number of occupants.

Raw data Small motion behaviour

5 minutes 68% [79%] 59% [86%]
20 minutes 79% [84%] 71% [84%]
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(a) 20 minutes (b) 2 minutes

(c) 1 minute (d) 30 seconds

Figure 6.9: Box plots of Laplace spread parameters estimated from raw PIR data for different meetings with
up to 7 occupants, over different estimation time window durations. Top and bottom edges of each blue box
are 25th and 75th percentiles respectively, the middle red line is the median, red pluses denote outliers.

6.6.2 At least 8 occupants

For larger numbers of occupants which occlude each other, a Poisson log-linear regression model is found to

provide the most accurate predictions (Figure 6.11). The predictive power of the Laplace parameters reduces

significantly in this high occupancy strata due to the reasons discussed above and the error of this approach

for windows smaller than 5 minutes is substantial. In addition, the benefits of behaviour extraction stage

are diminishing and regression on both Laplace parameters evaluated for both the raw data and “stabilized”

Laplace parameters performs almost equally in terms of MAE. The estimation accuracy within ±1 person

and within ±2 can be found in Table 6.2.

6.7 Computational efficiency

6.7.1 Choice of inference algorithm

Practical applications of sophisticated Bayesian probabilistic models have been few largely due to the complex

and computationally demanding inference algorithms involved for learning the parameters of such models. As

a BNP probabilistic model for time series data, the iHMM is no exception and careful consideration is needed

to choose fitting procedures which are tractable for implementation in low-power embedded microcontroller

hardware. The system should be able to execute in a resource constrained embedded environment after

deployment where a microprocessor would take the data from the PIR sensor and run segmentation algorithm

on board. In this study we compare several different iHMM inference algorithms: the beam sampler (Section

5.3.1), direct assignments Gibbs sampler 5.3.1 and iterative maximum a posteriori (MAP) inference Section

5.4.2 and we display their performance in Table 6.3. Note that we are less interested in the quality of fit of

127



(a) 20 minutes (b) 2 minutes

(c) 1 minute (d) 30 seconds

Figure 6.10: Box plots of the “stabilized” spread parameters estimated only from the saddle behaviour
clusters across all meetings with at most 7 occupants.

Table 6.3: Mean absolute error (MAE, interquartile range in brackets) as a measure of occupancy count
prediction accuracy using “stabilized” Laplace parameters from PIR data only for small motion behaviour
clusters. Each column corresponds to iHMM clustering performed using a different inference algorithm. The
last row shows speed comparison in terms of iterations to convergence.

Beam sampler Gibbs sampler Iterative MAP

30 sec. 0.95(0.7) 0.98(0.8) 0.99(0.8)
1 min. 0.87(0.7) 0.89(0.8) 0.91(0.7)
2 min. 0.79(0.6) 0.81(0.7) 0.84(0.7)
20 min. 0.64(0.6) 0.72(0.6) 0.70(0.7)

Iterations 125 100 6

the iHMM to the raw PIR sensor data than the prediction error of the regression component of the system

using estimates of the “stabilized” Laplace parameters obtained using that iHMM, where the parameters

have been estimated using different iHMM inference algorithms. This is because ultimately we care about

accurate human occupancy counting rather than learning the iHMM per se. We report the iterations that

each inference algorithm required to convergence where an iteration consist of a full sweep through the

training data and the model parameters. Computational cost of a single iteration across algorithms is not

equivalent, but for the chosen application is comparable.

Theoretically, both beam and Gibbs sampler inference algorithms are guaranteed to converge on the

optimal iHMM fit eventually. However, the stochastic nature of both samplers makes them highly compu-

tationally demanding and they can easily take two orders of magnitude more iterations to converge than

iterative MAP. At convergence both stochastic algorithms will generally outperform iterative MAP in terms

of iHMM parameter estimate accuracy, but we observe that the improvement due to better iHMM param-

eter estimates does not translate into sufficiently improved occupancy count to justify such large increase
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(a) 20 minutes (b) 5 minutes

(c) 20 minutes (d) 5 minutes

Figure 6.11: Box plots of the spread parameters over all meetings with number of occupants varying between
8 and 14.

in computational effort over iterative MAP. Indeed, iterative MAP is simple enough that it can be used

where computational resources are at a premium, as would be the case for our experimental setup using a

microcontroller board.

In practice, it is most meaningful to train the system before deployment on powerful hardware using the

most accurate approach (e.g. the beam sampler) and then proceed by saving some trained representation of

the iHMM and using iterative MAP method for newly arriving windows of PIR data after deployment.

6.7.2 Resource evaluation

After testing the empirical accuracy of the proposed system and evaluating performance of different iHMM

inference methods for the segmentation stage, we proceed with a feasibility study for potential deployment of

the proposed system. We first train an iHMM on PIR data from 50 collected meetings using beam sampling.

The model parameters consisting of the transition matrix π, component mixing weights β and the Laplace

spreads b are stored in a device’s memory (those take floating point values and for 50 meetings take 11.2 KB

of memory). The system is deployed and a modified MAP-iHMM or equivalently dynamic MAP-iHMM are

used online to segment incoming streams of PIR output (storing only 30 seconds of data at a time). After

each 30 second window, the model parameters are updated accordingly, to incorporate information about the

latest data and prediction of the level of occupancy is made based on some pre-trained regression models.

The feasibility performance of the system after deployment (with iterative MAP method on board) is

tested on two different microcontroller units (MCUs): Nucleo F070-RB and Nucleo F401-RE. They are

equipped respectively with ARM Cortex-M0 and ARM Cortex-M4F CPUs (full specification of the boards

in Table 6.4).
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Table 6.4: Specification of the MCUs. Memory is measured in terms of SRAM size with the flash size is in
the brackets.

Board name CPU Clock (MHz) Memory (KB) Floating point
unit (FPU)

Peripherals

Nucleo F070-RB Cortex-M0 32 16 [128] No ADC, DMA,
TIM3

Nucleo F401-RE Cortex-M4F 84 96 [512] Yes ADC1, DMA2,
TIM2

Table 6.5: Computation time and SRAM memory footprint of the system ran on difference MCUs

Board name Execution time (seconds) Memory Requirement (KB)

Nucleo F070-RB 95 11.9
Nucleo F401-RE 1.15 11.9

Memory usage and real time performance To evaluate computational demand, we use execution time

as a metric, and test how long each MCU takes to calculate the estimated occupancy count, after collecting

30 seconds of data. The significantly slower Nucleo-F070RB takes approximately 95 seconds to execute,

which would not fulfill the requirement for the system to be ready in 30 seconds to receive the new coming

stream of PIR output. The execution time for the higher performance Nucleo F401-RE is reduced to 1.15

seconds due to its faster clock speed and its single-precision FPU which allows to quickly perform floating-

point operations. If we recompile with the floating-point instructions being emulated, the performance of the

Nucleo F401-RE is still acceptable with 9.55 seconds execution time. The memory footprint of the iterative

MAP running on the 30 seconds stream of data is 0.7KB (for both MCUs) and we summarize the results in

Table 6.5.

Power consumption and battery lifetime We estimate the power consumption and battery lifetime

of the MCUs with attached PIR sensor assuming it continiously estimates occupancy using iterative MAP:

the average power consumption of Nucleo F070-RB is 8 mW and the average power consumption of Nucleo

F401-RE is 18.7 mW. Consider now that boards are deployed in a building to run indefinitely, supported

through an external battery connected to the MCUs. We test two type of LiPo(lithium-ion polymer) batteries

– one with large capacity of 2200mAh and one with smaller capacity of 120mAh, both operating at 7.4V.

The results are summarized in Table 6.6. The slower Nucleo F070-RB can function 5 days with 120mAh

battery and 86 days with 2200mAh one, without replacement or charging. The faster board Nucleo F401-RE

on the other hand can function 2 days with 120mAh battery and 36 days with 2200mAh one, which can be

considered quite a feasible performance. All of those figures are obtained assuming we update our estimate

of the occupancy every 30 seconds. If that estimate is updated less often or segmentation is not performed

on every window of PIR data, this would additionally increase the life time of both of the batteries.

Table 6.6: Power consumption and battery lifetime

Board name Average Power
Consumption (mW)

Battery Lifetime of
120mAh LiPo (Days)

Battery Lifetime of
2200mAh LiPo (Days)

Nucleo F070-RB 8 5 86
Nucleo F401-RE 18.7 2 36
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6.8 Future work

Type of the PIR sensor In addition to the standard type PIR sensor, we also used a slight motion type7

PIR (Panasonic NaPiOn AMN 22112 series) in the same experiments in order to validate the developed

models for different PIR. The standard sensor seems to be more promising then the slight motion detector

mostly due to the larger field of view. The slight motion sensor does not cover all of the monitored room

with only 2m range and occupants seated in particular areas of the monitored room cannot be seen by the

sensor. The accuracy of the occupancy count system would benefit from exploring additional types of PIR

sensors with more sensitivity, range and wider field of view. Further, installing a second PIR sensor on the

opposite side of the room and analyzing the output of the two jointly may help to address both the problem

of mutual occlusion of the sensor by the occupants, and the problem of limited field of view.

Position of the sensor The data acquisition board was placed on a table positioned approximately in

the middle of the room next to the wall. The table was part of the chosen office room furniture and as a

result its height varied slightly in the different meeting rooms. The results did not seem to be influenced

by the exact height of the table, but placing the sensor on one particular side of the room led to occupants

occluding each other during more populated meetings (typically with 8 or more people). This problem can

be easily addressed by testing different positions of the PIR sensor; a promising start would be the ceiling

of the room. This would make the installation of the system more challenging, but it is likely to lead to a

consistent improvement of accuracy due to the clear unobstructed view of all the occupants that the sensor

will be afforded in this physical configuration. In addition, PIR sensors installed on the ceiling are likely to

increase the maximum distinguishable occupancy count. The accuracy of the system and its invariance to

sensor location and position can additionally be improved with more training data accounting for different

physical configuration scenarios.

Behaviour modeling In the current implementation, the key assumption made is that small movement

patterns will describe better the number of people in a room, as they are less intentional and are independent

of the nature of the meetings. We expect this assumption to hold in most human counting scenarios in

office environment and no additional information about the nature of the meetings has been incorporated. In

effect, we have sacrificed some of the predictive accuracy to obtain a generally applicable human occupancy

counting system. If we incorporate additional information about the behaviour of the monitored occupants

and the nature of the meeting, this can potentially to improve our prediction. For example, if we assume that

we are monitoring conference meetings with duration of 1 hour starting on the hour, we would immediately

know that major occupancy changes occur only once every hour and we can use the whole hour PIR data to

improve our predictions. Another example would be if we assume occupants enter the monitored environment

through a single gate: in that case we would use the iHMM to segment the event of entry/exit of an occupant

and later try to classify the difference in patterns between entry and exit of an individual.

Limitations The low dimensionality of the PIR sensor makes the system sensitive to occupants occluding

each other from the view of the sensor. Even with optimized positioning, there is a fairly limited number of

occupants that we can expect to monitor with single PIR. To monitor larger spaces, we would need to place

multiple PIR sensors at the different parts of the room, so that all of the area is inside of the field of view

of at least one PIR sensor. With few simple updates, the suggested method can be used to process data

7The slight motion detection type of PIR sensor is lined-up with special detection lenses for slight motion or narrow spot
detection.
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from multiple PIR sensors. The single PIR measurements would be replaced with multivariate ones having

measurements from different sensors in each dimension. We would also add more predictors in the regression

stage to incorporate the information gained from the different PIR sensors. If we want to deploy the system in

hallways, cafeterias or other office facilities, substantial additional training and calibration would be needed.

The behaviour extraction stage simply groups together similar motion behaviours, so we believe it is highly

adaptable to different scenarios. However the assumption of which behaviours are most correlated to the

occupancy count can change with the nature of the monitored activity and should be carefully re-considered

for follow-up applications.

6.9 Discussion

The purpose of this study was to demonstrate the potential of using a single passive infrared (PIR) sensor

for more complex tasks than motion detection. We demonstrate how such a simple sensor combined with

“intelligent” machine learning models exploiting our novel iterative MAP inference algorithm, can be utilized

to solve the more complex problem of counting occupants in a room. While the accuracy of the proposed

system does not yet reach the current state of the art obtainable with stereo cameras and computationally

demanding image processing algorithms (or multi-sensor devices), our approach shows the ability to count

the number of room occupants to within ±1 individual while substantially reducing the hardware costs,

computational power and the need for specialist installation. Applications where accuracy is not critical,

for instance, optimizing energy usage in buildings, can benefit from this cost-effective and easy to deploy

approach. To our knowledge, the system discussed in this report is the first attempt at designing a human

occupancy counting system using a single, low-cost PIR sensor.
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Chapter 7

Conclusion

We conclude this thesis with a summary of the principal contributions presented in earlier chapters and

a discussion on some open research questions which can be explored in future. Throughout the course of

the thesis we have proposed and studied simple deterministic methods for inference in both parametric and

nonparametric latent variable models. We demonstrated how with simple extensions to popular segmentation

and clustering techniques we can overcome most of their drawbacks while still keeping simple and scalable

algorithms. Unlike most of the existing methods for deterministic inference in latent variable models, the

proposed iterative MAP methods protect most of the key features of the probabilistic models, enable out-of-

sample predictions and allow for model selection.

Standard MCMC sampling methods can still outperform the alternative deterministic iterative MAP

methods, but we demonstrate multiple applications where the clustering performance of the two is comparable

and iterative MAP reaches a solution orders of magnitude faster. This makes iterative MAP techniques

extremely practical and they can be used to significantly extend the range of applications of typically ’slow-

to-fit‘ BNP models. Naturally, the computational speed up of the proposed techniques also leads to some

limitations, mainly that iterative MAP converges to a local solution of the assumed model and so it does

not infer its complete posterior distribution. The asymptotic guarantees of MCMC sampling methods are

conditioned on unlimited computational resources and running time therefore not always useful in practice,

however a potential practical drawback of the approximate iterative MAP methods can be poor performance

whenever data consists of highly overlapping clusters or states. In such cases clustering might be inappropriate

and more computationally demanding density estimation might be needed.

7.1 Summary

Vast numbers of practical pattern recognition problems can be completely or at least partially solved using

clustering and the most widely used clustering algorithm in practice remain simple techniques such as the

K-means algorithm. This has motivated us study techniques which are nearly as simple as K-means, but

can overcome most of its drawbacks.

In Chapter 3 we have studied typical clustering problems which are often approached with K-means

and propose simple alternatives: we re-derived a new version of K-means (Section 3.4) that handles better

poor initialization and also converges a lot faster to a good local solution; we also showed how using a new

K-means with reinforcement (Section 3.2.2) we can produce clustering that accounts for the density of the

data clusters; we discuss the more rigorous MAP-GMM (Sections 2.3.4 and 3.4) which unlike ’K-means like‘
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methods enables dealing with non-spherical data and enables standard model selection and out-of-sample

prediction.

In order to deal with clustering problems in which the number of clusters K is unknown or changing, we

proposed novel MAP-DPMM algorithm which is derived by applying iterative MAP inference to DPMMs.

We demonstrated that in terms of clustering performance the proposed MAP-DPMM (Section 3.8.2) and

collapsed MAP-DPMM (Section 3.8.1) can often outperform more computationally demanding inference

methods for DPMMs like Gibbs sampling and VB inference. Furthermore, MAP-DPMM was used as a

building block for more complex probability models such as the linear random mixed effects model (Section

3.10.2).

In Chapter 4 we discussed the benefits of using HDP for clustering problems with multiple variables some of

which are categorical. Efficient iterative MAP scheme was proposed for inference in HDP mixtures (Section

4.4.2) and we demonstrated its superiority compared to the SVA alternative, the HDP-means algorithm.

Chapter 4 also served as an introduction to the more sophisticated models needed in Chapter 5 to construct

BNP models for analysis of sequential data.

In Section 5.4.2 we applied iterative MAP inference to various constrictions of the iHMM to obtain the

novel MAP-iHMM and dynamic MAP-iHMM algorithms. Both algorithms converge orders of magnitude

faster than MCMC methods and overcome the common problem with iHMM of overestimating the number

of states. We also showed that MAP-iHMM can be used as an efficient tool for state recovery of DNA copy

numbers in genomic hybridization and as a pre-processing tool for automated quality control (Section 5.5.2)

of accelerometer data during walking.

Chapter 6 posed the problem of occupancy estimation using single PIR sensor. We developed a robust

and economically valuable solution for this problem using iHMM trained with online iterative MAP method.

It was shown that the accuracy of the system reduces only marginally when we using our MAP method

compare to existing MCMC sampling methods. At the same time with our proposed approach we could

segment incoming streams of data for up to 1.15 seconds, using only the computational power of a microcon-

troller board. The efficiency of MAP-iHMM allowed us to design a self-contained system that runs without

interruptions. The prototype could also dynamically update efficient summaries of the iHMM, on board,

adapting to new data, without the need to keep too large sets of raw data itself.

7.2 Future directions

BNP models have proven extremely useful for defining flexible probabilistic models that can adequately handle

the uncertainty in modern datasets. In recent years, supervised pattern recognition methods have been on

the rise outperforming humans in many sophisticated tasks. For example, deep learning neural networks

are continuously being deployed in practice for well defined learning tasks such as object recognition from

images (Hinton et al., 2006; LeCun et al., 2015; He et al., 2016); reinforcement learning methods coupled with

deep neural network classifiers has made a recent breakthrough by mastering the classical board game of Go

(Silver et al., 2016); random forests methods remain some of the most used pattern recognition techniques

for classification and regression. At the same time high performance techniques like deep learning or random

forest classifiers often trade away any intuitive interpretation of how the algorithms reach to a decision. This

makes them very poor in handling uncertainty and particularly sensitive to model misspecification as recent

work has hinted (Szegedy et al., 2013; Nguyen et al., 2015). For a wide range of data science problems we still

need adequate and scalable ways to model uncertainty which can potentially come from advances in models

and inference techniques for the transparent and flexible BNP latent variable models.
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7.2.1 Unsupervised behaviour modeling

In Section 5.5.2 we demonstrated how MAP-iHMM can be used to automatically segment out some undesired

biasing behaviours from streams of accelerometer data in order to produce better quality gait data and

make better inference about users PD diagnosis and progression. Since MAP-iHMM is based on the simple

iHMM with Gaussian emissions, it clusters separately only behaviours described with different Gaussian

distributions. Similarly in Section 6.4 we used MAP-iHMM this time with Laplace emissions to segment

out biasing motion patterns from streams of PIR sensor data. This step helped us then to focus only on

the sensor data which was more descriptive of the occupancy count. In both cases we used the iHMM to

model changing behavioural patterns of users or occupants in order to later focus only on the bahaviours

most relevant for the problem at hand. However, using simple emission mechanism for the iHMM (Gaussian

distribution or Laplace distribution) we do not take into account the dynamics of the different behaviours.

This is why we struggle to segment behaviours which have very subtle differences, like for example different

walking patterns.

Fox et al. (2009) have proposed more flexible extensions of the infinite HMM can overcome such issues and

can be used to more accurately model accurately human motion data. BNP models such as the nonparametric

switching vector autoregressive models and the nonparametric switching linear dynamical systems Fox et al.

(2009) can potentially enable us to model a very rich set of user behaviours. Deriving efficient MAP methods

for such more flexible extensions of the iHMM would enable us to extend the potential applications for the

simpler MAP-iHMM method. For example, iterative MAP methods based on the nonparametric switching

vector autoregressive model could allow us to automate most of the quality control labor involved in using PD

smarthphone data. In the case of occupancy estimation, more flexible segmentation approach would improve

our overall occupancy estimates and increase the responsiveness of the developed system to the changing

environment.

7.2.2 Real time learning

In many applications it is beneficial to process data as soon as it arrives, on board of a resource constrained

data collection device. For example, in Internet of Things applications small devices are constantly generating

vast amounts of sensor data; this data typically has to be transferred to a cloud and any processing has to be

done using external hardware. However, this data transfer delays the inference process, drains the battery of

the IoT devices and furthermore can often involve transfer of a large amount of redundant data.

If we perform at least some of the processing of the data directly onto the embedded hardware, we can

avoid the need to transfer and interpret redundant data, we could improve the functionality of the devices

and at the same time extend their battery life. In order to discover sufficient structure from the streaming

sensor data which can be used and transferred in a compact way we need flexible models which can adapt

to the changing environment and self-learn Iyer & Ozer (2016). A promising candidate for modeling and

representing IoT sensor data and enriching the IoT applications are BNP models. They have been designed for

exactly the setup of forming self-adapting autonomous systems because they can grow in complexity without

any re-training. Unfortunately the use of BNP models in IoT applications has been somewhat limited by

the prohibitive demanding inference methods commonly used of inference in BNP models. In Chapter 6 we

demonstrated that MAP methods can be a useful alternative which allows us to infer flexible models such as

the iHMM directly on board of an energy constrained microcontroller board. While the occupancy estimation

is interesting problem in its own right, we believe that the proposed modeling framework can be significantly

extended in order to build self-aware more responsive smart environments and buildings.
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7.2.3 Parallel iterative MAP methods

Whether an inference algorithm is ran online on streaming data or offline on large batches of data, modern

big data problems require adequate utilization of the computational hardware available. The most common

way to do so is through some form of parallel computation at either data and/or task level. Parallelism is a

relatively old concept employed for many years, but in recent years it is re-gaining a lot of popularity from

the data science community mainly due to the rapid increase in the capability of data acquisition.

As inference methods for BNP models are not embarrassingly parallel, some considerable effort is required

in order to employ any significant parallelism for their scaling. Towards this end Lovell et al. (2012) and

Williamson et al. (2013) have proposed parallel MCMC methods for inference in DPMM, Bratieres et al.

(2010) has proposed distributed MCMC inference method for the infinite HMM and some considerable efforts

have been made for deriving parallel MCMC inference in other popular BNP models. Nevertheless,, as Gal &

Ghahramani (2014) points out the practical advantages of some of the current methods for parallel inference

are quite limited. Hence parallel MCMC methods can also be quite slow even after employing parallelism

and the existing parallelism schemes do not extend directly to scalable MAP methods.

In Section 5.4.2 we demonstrated one efficient way to employ parallelism for MAP inference in the infinite

HMM, however in future it will be useful to derive related parallel MAP methods for inference in DPMM,

HDP mixtures and other BNP models. A nice consequence of the MAP method proposed in Section 5.4.2

was that in addition to employing parallelism it allowed for inference in non-conjugate iHMM models.
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Appendix A

Hyper parameters updates for

exponential family conjugate pairs

In the generalized MAP-DP algorithm (Algorithm (3.8.1)), the computation of the variables di,k and di,K+1

(Algorithm(3.8.1) lines 8,9) requires the collapsed prior predictive distribution f (x|θ0), and also the collapsed

posterior predictive distribution f
(
x|θ−ik

)
. This predictive distribution requires the updated cluster posterior

hyper parameters θ−ik (algorithm line 7). These updates depend upon the distribution, and the data type,

of each data point xi. When the distribution is from the exponential family, the prior distribution over the

parameters can be chosen to be conjugate: the prior over the parameters of the data distribution and the

posterior have the same form of distribution. This simplifies the hyper parameter updates, and, furthermore,

the form of the prior and posterior predictive distributions is the same and is available in closed form. The

table below lists some possible data types and distributions, their conjugate prior/posterior distribution, the

names given to the hyper parameters and the corresponding name of the predictive distributions. We discuss

each case in more detail in the subsequent sections.

Distribution of

data xi

Data type Conjugate

prior/posterior

Hyper parameters θ Predictive

distribution f (x|θ)

Spherical normal

(known variance)

x ∈ RD Spherical normal
(
µ, σ2

)
Spherical normal

Multivariate

normal (known

covariance)

x ∈ RD Multivariate

normal

(µ,Σ) Multivariate normal

Multivariate

normal

x ∈ RD Normal-Wishart (m, c,B, a) Multivariate

Student-t

Exponential x ∈ R, x ≥ 0 Gamma (α, β) Lomax

Categorical x ∈ {1, 2, . . . D} Dirichlet (α1, . . . , αD) Dirichlet-

multinomial

Binomial x ∈ {0, 1, . . . n} Beta (α, β) Beta-binomial

Poisson x ∈ Z, x ≥ 0 Gamma (α, β) Negative-binomial

Geometric x ∈ Z, x ≥ 0 Beta (α, β) Ratio of beta

functions
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Spherical normal data with known variance

This is the variant of MAP-DP described in Algorithm (3.8.1). When each data point x ∈ RD is assumed to be

spherical Gaussian with known variance σ̂2 shared across dimensions, the conjugate prior distribution of the

Gaussian mean vector parameter µ ∈ RD is also spherical normal with hyper parameters θ0 =
(
µ0, σ

2
0

)
. Then

the posterior distribution for each cluster is also spherical normal with hyper parameters θ−ik =
(
µ−ik , σ−ik

)
.

The hyper parameter updates (Algorithm (3.8.1), line 7) for each cluster are:

σ−ik =

(
1

σ2
0

+
1

σ̂2
N−ik

)−1

(A.1)

µ−ik = σ−ik

µ0

σ2
0

+
1

σ̂2

∑
j:zj=k,j 6=i

xj


The predictive distributions f (x|θ0) and f

(
x
∣∣θ−ik ) are D-dimensional spherical normal distributions,

whose negative logs are:

− ln f (x|θ) =
1

2 (σ2 + σ̂2)
‖x− µ‖22 +

D

2
ln
(
σ2 + σ̂2

)
+
D

2
ln (2π) (A.2)

Note that since the normalization term D
2 ln (2π) is common to both predictive distributions, it can be omitted

when computing di,k and di,K+1 in the algorithm.

Multivariate normal data with known covariance

For data points x ∈ RD assumed to be multivariate Gaussian with known covariance matrix Σ̂, the conjugate

prior distribution of the Gaussian mean vector parameter is also multivariate normal with hyper parameters

θ0 = (µ0,Σ0). The posterior distribution for each cluster is also multivariate normal with hyper parameters

θ−ik =
(
µ−ik ,Σ−ik

)
. The hyper parameter updates are:

Σ−ik =
(

Σ−1
0 + Σ̂−1N−ik

)−1

(A.3)

µ−ik = Σ−ik

Σ−1
0 µ0 + Σ̂−1

∑
j:zj=k,j 6=i

xj


The predictive distributions f (x|θ0) and f

(
x
∣∣θ−ik ) are D-dimensional normal distributions, whose neg-

ative logs are:

− ln f (x|θ) = 1
2 (x− µ)

T
(

Σ + Σ̂
)−1

(x− µ) +
D

2
ln
∣∣∣Σ + Σ̂

∣∣∣+
D

2
ln (2π) (A.4)

Since the normalization term D
2 ln (2π) is common to both predictive distributions, it can be omitted when

computing di,k and di,K+1 in the algorithm.

148



Multivariate Gaussian data

When each data point x ∈ RD is assumed to be multivariate Gaussian with unknown mean vector and

covariance matrix, the conjugate prior distribution of the Gaussian parameters is Normal-Wishart, with

hyper parameters θ0 = (m0, c0, B0, a0). Then, the posterior distribution for each cluster is also Normal-

Wishart, with hyper parameters θ−ik =
(
m−ik , c−ik , B−ik , a−ik

)
. These are updated for each cluster according

to:

m−ik =
c0m0 +N−ik x̄−ik

c0 +N−ik

c−ik =c0 +N−ik

B−ik =

(
B−1

0 + S−ik +
c0N

−i
k

c0 +N−ik

(
x̄−ik −m0

) (
x̄−ik −m0

)T)−1

a−ik =a0 +N−ik

(A.5)

where:

x̄−ik =
1

N−ik

∑
j:zj=k,j 6=i

xj

S−ik =
∑

j:zj=k,j 6=i

(
xi − x̄−ik

) (
xi − x̄−ik

)T
(A.6)

The predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are D-dimensional multivariate Student-t distribu-

tions, whose negative log, written in terms of the parameters (µ,Λ, ν) is:

− ln f (x|θ) =

=
ν +D

2
ln
[
1 + ν−1 (x− µ)

T
Λ (x− µ)

]
− 1

2
ln |Λ|+ ln Γ

(ν
2

)
+
D

2
ln (νπ)− ln Γ

(
ν +D

2

)
(A.7)

where the Student-t parameters (µ,Λ, ν) are given in terms of the Normal-Wishart parameters µ = m,

ν = a −D + 1 and Λ = cν
c+1B. We note that fast incremental updates of all these parameters are possible

when including and then removing a single data point from a cluster, see (Raykov et al., 2014) for further

details.

Exponential data

Given data points x ∈ R, x ≥ 0 assumed to be exponentially-distributed, the conjugate prior over the

exponential rate parameter is the gamma distribution. This gamma distribution has hyper parameters

θ0 = (α, β) (shape, rate). So, the posterior probability of the rate parameter is also gamma, and the cluster

hyper parameter θ−ik =
(
α−ik , β−ik

)
are updated using:

α−ik = α0 +
∑

j:zj=k,j 6=i

xj

β−ik = β0 +N−ik (A.8)

The predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are the so-called Lomax distribution, with negative
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log:

− ln f (x|θ) = − lnα− α lnβ + (α+ 1) ln (x+ β) (A.9)

Categorical data

For categorical data which can take on one of D > 1 possible values, x ∈ {1, 2, . . . D}, the conjugate prior

over the D outcome probability parameters of this distribution are Dirichlet distributed. This Dirichlet

distribution has hyper parameters θ0 = (α0,1, . . . , α0,D). So, the posterior outcome probability parameters

for each cluster are also Dirichlet, and for each cluster the D entries in the cluster hyper parameter θ−ik = α−ik
are updated using:

α−ik,d = α0,d +
∑

j:zj=k,j 6=i

δ (xj , d) for d = 1, . . . , D (A.10)

where δ (x, y) = 1 if x = y and 0 otherwise. The predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are special

cases of the Dirichlet-multinomial distribution, with negative log:

− ln f (x|θ) = − lnαx + ln

D∑
d=1

αd (A.11)

Binomial data

In the case of binomial data where the data can take on x ∈ {0, 1, . . . n} for n > 0, the conjugate prior

over the binomial success probability parameter is beta distributed, with hyper parameters θ0 = (α0, β0). By

conjugacy, the posterior cluster parameters are also beta distributed with hyper parameters θ−ik =
(
α−ik , β−ik

)
,

and are updated according to:

α−ik = α0 +
∑

j:zj=k,j 6=i

xj

β−ik = β0 +N−ik n−
∑

j:zj=k,j 6=i

xj (A.12)

For such binomial data, the predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are beta-binomial, with neg-

ative log:

− ln f (x|θ) = − ln

(
n

x

)
− lnB (x+ α, n− x+ β) + lnB (α, β) (A.13)

where B (·, ·) is the beta function:

B (α, β) =
Γ (α) Γ (β)

Γ (α+ β)
(A.14)

Poisson data

For positive integer Poisson count data x ∈ Z, x ≥ 0, the conjugate prior over the single rate parameter is

the gamma distribution with hyper parameters θ0 = (α0, β0) (shape and rate, respectively). The posterior

cluster parameters are similarly gamma distributed with hyper parameters θ−ik =
(
α−ik , β−ik

)
. The updates
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for these hyper parameters are:

α−ik = α0 +
∑

j:zj=k,j 6=i

xj

β−ik = β0 +N−ik (A.15)

For Poisson count data, the predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) are negative binomial dis-

tributed with negative log:

− ln f (x|θ) = − ln

(
α+ β − 1

β

)
− α ln (1− x)− β lnx (A.16)

Geometric data

In the case of positive integer data x ∈ Z, x ≥ 0 which is assumed to be geometrically-distributed, the

conjugate prior over the single success probability parameter is the beta distribution with hyper parameters

θ0 = (α0, β0). The posterior cluster parameters are similarly beta distributed with hyper parameters θ−ik =(
α−ik , β−ik

)
. The updates for these hyper parameters are:

α−ik = α0 +N−ik

β−ik = β0 +
∑

j:zj=k,j 6=i

xj (A.17)

For geometric data, the predictive distributions f (x|θ0) and f
(
x
∣∣θ−ik ) have negative log:

− ln f (x|θ) = − lnB (α+ 1, β + x) + lnB (α, β) (A.18)

where B (·, ·) is the beta function described above.
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Appendix B

Implementation practicalities

As with all algorithms, implementation details can matter in practice. We discuss a few observations here:

� Empty clusters. In MAP-DP, as with K-means, it is always possible that a cluster ceases to have any

data points assigned to it. In that case, since N−ik = 0, then it will be impossible in future iterations

for data points to be assigned to that cluster label. So, it is reasonable to drop that label and re-

assign the remaining non-empty clusters because the additional empty clusters are merely a wasted

computational overhead. The MAP-DP algorithm (Algorithm (3.4)) can be readily modified to do this;

the most sensible place to do this is immediately after lines 14 or 17.

� Dominating reinforcement on initialization. Collapsing out the cluster parameters causes the cluster

geometry to be very robust, for example, largely insensitive to outliers. However, there is an unwanted

side-effect of this robustness: because MAP-DP (Algorithm (3.8.1)) is initialized with one single large

cluster, the reinforcement (rich-get-richer) effect of the DP can dominate over the geometry to cause

MAP-DP to become trapped in the undesirable configuration where no new clusters can be generated.

(Note that this is a problem for Gibbs sampling as well, but in theory at least, Gibbs can escape local

minima after sufficient iterations, whereas MAP-DP cannot). Overcoming this reinforcement requires

a prior count N0 on the order of the magnitude of N , but this would usually create many spurious

small clusters. To avoid this side-effect, a practical solution removes the reinforcement effect due to

this particular initialization scheme by inserting N−i1 = 1 in between lines 8 and 9 (Algorithm (3.4)),

only on the first iteration.

� Numerical computation of negative log likelihood. Computing the NLL (Algorithm (3.4) line 17) requires

evaluating ln Γ (Nk) terms which are difficult to estimate with high precision for large values of Nk.

As a result the NLL can develop small numerical errors which can cause the NLL to increase slightly

over iterations. A simple practical fix is to replace the convergence test with absolute values, i.e.

|Eold − Enew| < ε in line 18.

B.1 Randomized restarts

As MAP-DP is a completely deterministic algorithm, if applied to the same data set with the same choice

of input parameters, it will always produce the same clustering result. However, since the algorithm is not

guaranteed to find the global maximum of the likelihood (in Equation (3.33)), it is important to attempt

to restart the algorithm from different initial conditions to gain confidence that the MAP-DP clustering
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solution is a good one. Since there are no random quantities at the start of the MAP-DP algorithm, one

viable approach is to perform a random permutation of the order in which the data points are visited by

the algorithm. The quantity E (the negative log of the expression in Equation (3.33)) at convergence can be

compared across many random permutations of the ordering of the data, and the clustering partition with

the lowest E chosen as the best estimate.

B.2 Obtaining cluster centroids

As explained in the introduction, MAP-DP does not explicitly compute estimates of the cluster centroids, but

this is easy to do after convergence if required. The cluster posterior hyper parameters θk can be estimated

using the appropriate Bayesian updating formulae for each data type, given in Appendix A. For example, for

spherical normal data with known variance:

σk =

(
1

σ2
0

+
1

σ̂2
Nk

)−1

(B.1)

µk = σk

(
µ0

σ2
0

+
1

σ̂2

∑
i:zi=k

xi

)

Using these parameters, useful properties of the posterior predictive distribution f (x|θk) can be computed,

for example, in the case of spherical normal data, the posterior predictive distribution is itself normal, with

mode µk. Indeed, this quantity plays an analogous role to the cluster means estimated using K-means.
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Appendix C

Out-of-sample predictions

To make out-of-sample predictions we suggest two approaches to compute the out-of-sample likelihood for a

new observation xN+1, approaches which differ in the way the indicator zN+1 is estimated.

1. Mixture predictive density. The unknown indicator zN+1 can be integrated out resulting in a mixture

density:

p (xN+1|N0, z,X) =

K+1∑
k=1

p (zN+1 = k|N0, z,X) p (xN+1|z,X, zN+1 = k) (C.1)

The assignment probability p (zN+1 = k|zN , N0) is Nk
N0+N for an existing cluster and N0

N0+N for a new

cluster. The second term corresponds to the predictive distribution ofN+1 point p (xN+1|z,X, zN+1 = k) =

f
(
xN+1

∣∣∣θ−(N+1)
k

)
.

2. MAP predictive density. We can also use a point estimate for zN+1 by picking the minimum negative

log posterior of the indicator p (zN+1|xN+1, N0) or equivalently:

zMAP
N+1 = arg min

k∈1,...,K,K+1
[− ln p (xN+1|z,X, zN+1 = k)− ln p (zN+1 = k|N0, z,X)] (C.2)

where p (xN+1|z,X, zN+1 = k) and p (zN+1 = k|N0, z,X) are computed as in the approach above. Once

we have evaluated the MAP assignment for point N + 1, zMAP
N+1 = k∗ we model xN+1 with predictive

density p
(
xN+1|z,X, zMAP

N+1 = k∗
)

= f
(
xN+1

∣∣∣θ−(N+1)
k∗

)
.

The first (marginalization) approach is used in (Blei & Jordan, 2006) and is more robust as it incorporates

the probability mass of all cluster components while the second (modal) approach can be useful in cases

where only a point prediction is needed.
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Appendix D

Missing data

In MAP-DP, we can learn missing data as a natural extension of the algorithm due to its derivation from

Gibbs sampling: MAP-DP can be seen as a simplification of Gibbs sampling where the sampling step is

replaced with maximization. The Gibbs sampler provides us with a general, consistent and natural way of

learning missing values in the data without making further assumptions, as a part of the learning algorithm.

That is, we can treat the missing values from the data as latent variables and sample them iteratively from

the corresponding posterior one at a time, holding the other random quantities fixed. In this framework,

Gibbs sampling remains consistent as its convergence on the target distribution is still ensured. (Note that

this approach is related to the ignorability assumption of (Rubin, 1976) where the missingness mechanism

can be safely ignored in the modeling. Molenberghs et al. have shown that more complex models which

model the missingness mechanism cannot be distinguished from the ignorable model on an empirical basis.)

Coming from that end, we suggest the MAP equivalent of that approach. We treat the missing values from

the data set as latent variables and so update them by maximizing the corresponding posterior distribution

one at a time, holding the other unknown quantities fixed. In MAP-DP, the only random quantity is the

cluster indicators z1, . . . , zN and we learn those with the iterative MAP procedure given the observations

x1, . . . , xN . Consider some of the variables of the M -dimensional x1, . . . , xN are missing, then we will denote

the vectors of missing values from each observations as x∗1, . . . , x
∗
N with x∗i =

(
x∗i,m

)M
m=1

where x∗i,m is empty

if feature m of the observation xi has been observed. MAP-DP for missing data proceeds as follows:

1. For each feature m = 1, . . . ,M , sample all of the missing values x∗1,m, . . . , x
∗
N,m from the likelihood

for that variable given the prior parameters f (xi|θ0,m). Note that we assume independent priors and

that the likelihood for the different variables can take different forms, as in the case study from Section

3.10.1.

2. Combine the sampled missing variables with the observed ones and proceed to update the cluster

indicators z1, . . . , zN , treating all of the variables as known. The indicators z1, . . . , zN are updated

as above, by computing for each point i, the K + 1 quantities di,1, . . . , diK , di,K+1 and computing

zi = arg mink∈1,...,,K+1

[
di,k − lnN−ik

]
.

3. Once all of the indicators z1, . . . , zN are updated, update the missing variables x∗1, . . . , x
∗
N . For each

point i, update x∗i by taking the mode of the corresponding likelihood x∗i,d = arg maxx·,d f
(
x·,d

∣∣θ−izi ).
For the elliptical model we can take the mode of each dimension independently x∗i,d = arg maxx·,d f

(
x·,d

∣∣∣θ−izi,d).

After all x∗1, . . . , x
∗
N are updated, go back to step 2 and update the cluster indicators z1, . . . zN , now

using the observations and the updated missing variables.
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Appendix E

Estimating the model hyper

parameters (θ0, N0)

In Bayesian models, ideally we would like to choose our hyper parameters (θ0, N0) from some additional

information that we have for the data. This could be related to the way data is collected, the nature of the

data or expert knowledge about the particular problem at hand. For instance when there is prior knowledge

about the expected number of clusters, the relation E [K+] = N0 logN could be used to set N0.

In cases where this is not feasible, we have considered the following alternatives:

1. Empirical Bayes (EB). Set the hyper parameters to their corresponding maximum marginal likelihood

values. The maximum marginal likelihood expression for θ0 will be different for the different data types

and will not always be available in closed form. Usually they can be obtained from the parameter

updates in Appendix A by omitting the prior terms. In MAP-DP, the maximum likelihood estimates

for the hyper parameters θ0 coincide with EB estimates as the cluster parameters θ have already been

integrated out. In fact, in the simple case of conjugate exponential family models, the EB estimates

and the maximum likelihood estimates for the model hyper parameters are quite similar. That is why

it is common to use the maximum likelihood estimates as a simple approximation to the EB estimate.

This approach is referred to as parametric EB point estimation (Morris, 1983). Note that using EB to

learn the hyper parameter N0 would not be efficient because there is no closed form expression for the

marginal likelihood (see point 3 below, and Equation (E.1)).

2. Multiple restarts. Run MAP-DP with different starting values for each of the hyper parameters (θ0, N0),

compute the NLL from Equation (3.33) including the C (N0, N) term at convergence, change one of

the hyper parameters holding the rest fixed and then restart MAP-DP with the prior parameter. Set

that hyper parameter to the value resulting in smallest NLL and proceed in the same way for the next

hyper parameter of the model. Bayesian optimization (Snoek et al., 2012) has also been proposed to fit

model hyper parameters but requires the specification of a Gaussian Process and associated priors that

may be challenging in practice. We have therefore not utilized this approach and prefer the simpler

greedy search approach. However in certain cases BO may be more efficient in terms of the number of

MAP-DP runs required.

3. MAP estimate. Place a prior on the hyper parameter of interest and numerically compute the mode of

the posterior. For instance, by using a gamma prior on N0, p (N0) = Gamma (aN0
, bN0

), the posterior
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is proportional to:

p (N0|N,K) ∝ Γ (N0)

Γ (N0 +N)
N
K+aN0

−1
0 exp [−bN0

N0] (E.1)

We can numerically minimize the negative log of this posterior using e.g. Newton’s method. To

ensure the solution is positive we can compute the gradient with respect to lnN0: as Rasmussen notes

p (lnN0|N,K+) is log-concave and therefore has a unique maximum.

4. Cross-validation. By considering a finite set of values for (θ0, N0), choose the value corresponding to

the minimum, average, out-of-sample likelihood across all cross-validation repetitions (see Appendix

C). This approach is taken in (Blei & Jordan, 2006) to compare different inference methods.

We have found the second approach to be the most effective where empirical Bayes can be used to obtain

the values of the hyper parameters at the first run of MAP-DP. For small datasets we recommend using the

cross-validation approach as it can be less prone to overfitting.
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Appendix F

Bregman divergences

The conditional probabilities for the DPMM can be expressed using the general distortion measure known

as Bregman divergence (Banerjee et al., 2005). The Bregman divergence between any two vectors x and θ

is defined as Dφ (x, θ) = φ (x) − φ (θ) − 〈x− θ,∇φ (θ)〉 for the function φ : S → R being differentiable and

being strictly convex on a closed convex set S ⊆ RD. Bregman divergences can be efficiently used to provide

a a compact parameterization of exponential family distributions with their expectation parameter. This

generalizes the result that a group of points are summarized by their mean in Euclidean space to all spaces

that can be described with Bregman divergence as a distortion measure.
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Appendix G

DP-means λ parameter binary search

In our experiments with the DP-means algorithm, it is necessary to have an automatic way of obtaining the

parameter λ for synthetic experiments where we wish to obtain a specific number of clusters Ktarget. We use

a binary search approach where λ is set in a sequence of binary search steps:

1. Initialisation: Set λ to the mid-point of the range
[
L1 = 0, U1 = M2

]
where L1, U1 are respectively

the lower and upper bounds of the range for the first iteration. M2 is the maximal squared Euclidean

distance and is set to M2 =
∑D
d=1 (max (xd)−min (xd))

2
where max (xd), min (xd) are respectively

the upper and lower bounds of the data for dimension d. (The use of the maximal Euclidean distance

originates in the DP-means algorithm step which creates a new cluster when di,k > λ where di,k is the

squared Euclidean distance of data point i to the mean of cluster k.)

2. For iteration i = 1, 2, . . .

(a) Run the DP-means algorithm with λ = 1
2 (Ui + Li) which returns Kobtained,

(b) If Kobtained > Ktarget then there are too many clusters so we will increase λ. We update the lower

bound Li+1 = λ and leave the upper bound unchanged Ui+1 = Ui,

(c) If Kobtained < Ktarget there are too few clusters so we need to decrease λ. We update the upper

bound Ui+1 = λ and leave the lower bound unchanged Li+1 = Li,

(d) Stop when Kobtained = Ktarget.
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Appendix H

Gibbs sampling for DPMM (spherical

Gaussian)
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Algorithm H.1: CRP-based

Gibbs

Algorithm H.2: Fully collapsed CRP-based Gibbs

Input x1, . . . , xN : D-dimensional data

K: number of clusters

N0: prior count

σ: spherical cluster variance

σ0: prior centroid variance

µ0: prior centroid variance

x1, . . . , xN : D-dimensional data

K: number of clusters

N0: prior count

σ: spherical cluster variance

σ0: prior centroid variance

µ0: prior centroid variance

Output Posterior of indicators:

(z1, . . . , zN )

Posterior of

centroids:(µ1, . . . , µK)

Posterior of indicators: (z1, . . . , zN )

1 Initialize zi = 1 for all i ∈ N 1 Initialize zi = 1 for all i ∈ N

2 Enew =∞ 2 Enew =∞
3 repeat 3 repeat

4 Eold = Enew 4 Eold = Enew

5 for i ∈ 1, . . . , N 5 for i ∈ 1, . . . , N

6 for k ∈ 1, . . . ,K 6 for k ∈ 1, . . . ,K

7 7 σ̇−ik =
(

1
σ0

+ 1
σN
−i
k

)−1

8 8 µ̇−ik = σ−ik

(
µ0

σ0
+ 1

σ

∑
j:zj=k,j 6=i xj

)
10 di,k = 1

2σ ‖xi − µk‖
2
2 + D

2 lnσ − lnN−ik 10 di,k =
‖x−µ̇−ik ‖22
2(σ+σ̇−ik )

+ D
2 ln

(
σ + σ̇−ik

)
− lnN−ik

di,K+1 =
‖x−µ0‖22
2(σ+σ0) + D

2 ln (σ + σ0)− lnN0 di,K+1 =
‖x−µ0‖22
2(σ+σ0) + D

2 ln (σ + σ0)− lnN0

11 di,k = exp (−di,k) 11 di,k = exp (−di,k)

12 zi ∼ Categorical
(

di,1∑
k di,k

, . . . ,
di,K+1∑
k di,k

)
12 zi ∼ Categorical

(
di,1∑
k di,k

, . . . ,
di,K∑
k di,k

)
if zi = K + 1 if zi = K + 1

µK+1 ∼ N
(
µ0 + xi,

σσ0

σ+σ0

)
K = K + 1

K = K + 1

13 for k ∈ 1, . . . ,K 13

14 σ̇k =
(

1
σ0

+ 1
σNk

)−1

14

15 µ̇k = σ̇k

(
µ0

σ0
+ 1

σ x̄k

)
15

17 µk ∼ N (µ̇k, σ̇k) 17

19 Enew =
∑K
k=1

∑
i:zi=k

di,k 19 Enew =
∑K
k=1

∑
i:zi=k

di,k

20 until (Eold − Enew)→ random 20 until (Eold − Enew)→ random
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Appendix I

Fully collapsed CRF-based Gibbs

sampler

Similarly to the HDP mixtures and DP mixtures, we can integrate over both global DP measure G0 and the

local DPs G1, . . . , GK model directly the implicit partitioning of the sequence data through the indicator

variables. The fully collapsed HDP-HMM was the original construction presented in (Beal et al., 2002) as

the infinite Hidden Markov model. Complete Gibbs sampler for it can be derived using the CRF-based Gibbs

sampler for HDP, but has been rarely used due to the complex bookkeeping. To our knowledge quantitative

comparison between the direct assignments Gibbs sampler and the CRF-based Gibbs sampler for the HDP-

HMM has not yet been done. When the state parameters θ1, . . . , θK are integrated out, the CRF-based

Gibbs sampler iterates between sampling the local indicators zlocalj,t and the global indicators zglobalj,c . In the

framework of the HMMs, j is the state of point t − 1 with t being the current point; zlocalj,t points to local

cluster c ∈ Cj and zglobalj,c points to the state k to which local cluster c belongs. The local clusters c here are

just transitions that already exist from state j with Cj being the number of states reachable from state j (by

reachable we mean to transitions that have already occurred). The global indicators can re-order the states

corresponding to each c. Similarly to above, the counts Nj,c will denote the number of existing transitions

from state j to the state pointed by zglobalj,c (number of points in local cluster c); the counts Mj,k denote the

number of time transition from state j to state k has been drawn from the global DP, but unlike in the direct

assignment sampler computing the counts of the global DP is easier as we keep explicitly the assignment

variables zglobal, Mj,k =
∑Cj
c=1 δ

(
zglobalj,c , k

)
. For point t and for state j ∈ {1, . . . ,K} that point t− 1 can be

assigned to, compute:

p
(
zlocalj,t = c

∣∣∣zlocal·,t−1 = c∗, zglobal·,c∗
)
∝


N−jtjc p

(
xt

∣∣∣∣θ−tzglobalj,c

)
for existing transition j → c

α∑K
k=1Mk+M0

(∑K
k=1Mkp

(
xt
∣∣θ−tk )

+M0p (xt |θ0 )
)

for new transition from j

(I.1)

where if a new transition is chosen, we need to sample its global assignment zlocalj,Cj+1 using the global

cluster indicator probabilities; zlocal·,t−1 denotes simply the local cluster assignment of point t−1. The predictive

likelihood terms p
(
xt
∣∣θ−tk )

are computed same as in the direct assignment representation and again we also

decide whether to explicitly sample θk or integrated it, as in simpler models.

The probability in Equation (I.1) characterizes the transition mechanism given the global indicators
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zglobal. The global cluster indicators, given the local indicators on the other hand can be updated using:

p
(
zglobalj,c = k

∣∣∣zglobal−j,c , zlocalj = c
)
∝

M
−jc
k

∏
t:zlocalj,t =c p

(
xt
∣∣θ−tk )

for existing state k

M0

∏
t:zj,t=c

p
(
xt
∣∣θ−t0

)
for a new state

(I.2)

where for the update of an global indicator zglobalj,c we compute the joint likelihood of all points assigned to

local cluster c (all points that have transition from j to c). Through the global indicators, we can change

assignment of groups of points to a state at one time, which could lead to more efficient mixing of the MCMC.

However, as mentioned above CRF-based Gibbs complicates the bookkeeping and the interpretability of the

model variables. Furthermore, for applications where both computational power and memory are at premium

(example of which we present in Chapter 6), the set of two indicator variables will imply more memory for

storage and as indicator variables depend on the number of data points rather then just number of clusters

K, their memory footprint will usually be higher then the one of component parameters depending solely on

K.
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Appendix J

PD-DOC experiment

Processed data The total number of patients is 527 and we have considered 215 features per patient. We

have removed repeating questions from the different questioners and we have removed 4 features due to lack

of their full understanding and non-comparability (Those are: MMSE-Building (name or type), Answer: 0-

1(Question #13 (Form 30)); Symptoms in the past week, Answer: Non Fluctuator, Fluctuator (Question #5

(Form16)); Occupation-Current-(Question #16 ( Form 2 ); Year of Birth (Question #21(Form 2))). Cluster

1 consists of 226 patients; Cluster 2 consists of 264 patients; Cluster 3 consists of 26 patients and Cluster 4

consists of 9 patients.

Binomial Features Significant features of Parkinson’s disease from the PostCEPT/PD-DOC clinical

reference data across clusters obtained using MAP-DP with appropriate distributional models for each feature.

Each entry in the table is the mean score of the ordinal data in each row. Lower numbers denote condition

closer to healthy. Note that the Hoehn and Yahr stage is re-mapped from { 0,1.0,1.5,2,2.5,3,4,5 } to {
0,1,2,3,4,5,6,7 } respectively. Each entry in the table is showing the mapping of a significant feature to the

PD-DOC data dictionary. We have sorted the significant features in terms of their corresponding Effect Size

measured by standardized mean difference.

Clinical Fluctuations-offs proportion of waking day-off*: We have possible answers 0=None, 1=1%-25%

of day, 2=26%-50% of day, 3=51%-75% of day, 4=76%-100% of day.

Binary Features Significant features of Parkinson’s disease from the PostCEPT/PD-DOC clinical refer-

ence data across clusters (groups) obtained using MAP-DP with appropriate distributional models for each

feature. Each entry in the table is the probability of PostCEPT Parkinson’s patient answering “yes” in each

cluster (group). Mapping of the presented significant categorical features to the PD-DOC data dictionary

has been provided. We have also include p-values from the t-test comparing Group 1 and Group 2. The odds

ratio is commonly used to measure effect size for binary data. When the odds are higher then 1 , in Group

1 is more likely obtain output answer”Yes”, while when the odds are smaller then 1 Group 2 is more likely

to obtain output answer “No”.

*GDS stands for Geriatric Depression Scale

Categorical Features Distribution of patient respond to PD state during exam. This is another signifi-

cant feature which is in a separate table due to the different type of the data.
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Table J.1: Binomial Data
Feature Scale Gr. 1 Gr. 2 Gr. 3 Gr. 4 Effect Size p-value

Rigidity Neck 0-4 0.44 1.27 0.27 2.13 0.89 0.0000
Rigidity (left upper extremity) 0-4 0.62 1.33 0.19 2.00 0.85 0.0000

Finger Taps (Left hand) 0-4 0.65 1.41 0.50 2.33 0.83 0.0000
Hand Movements (Left hand) 0-4 0.47 1.16 0.23 2.44 0.83 0.0000

Posture 0-4 0.39 1.00 0.19 2.44 0.82 0.0000
Rapid Alternating Movements (Left

hand)
0-4 0.53 1.23 0.38 2.89 0.79 0.0000

Body Bradykinesia 0-4 0.98 1.61 0.77 3.33 0.78 0.0000
Rigidity (left lower extremity) 0-4 0.38 1.06 0.04 2.67 0.77 0.0000

Dressing-ON 0-4 0.50 1.05 0.46 3.00 0.75 0.0000
Handwriting-ON 0-4 0.91 1.73 0.38 3.11 0.75 0.0000

Tremor-ON 0-4 0.93 1.52 0.81 1.33 0.72 0.0000
Cutting Food-ON 0-4 0.32 0.84 0.27 2.78 0.72 0.0000

Salivation-ON 0-4 0.34 0.87 0.54 1.67 0.71 0.0000
Leg Agility (Left leg) 0-4 0.48 1.07 0.35 2.56 0.70 0.0000

Speech-ON 0-4 0.43 1.03 0.23 1.89 0.68 0.0000
Turning in Bed-ON 0-4 0.26 0.71 0.35 2.56 0.67 0.0000

Modified Hoehn and Yahr stage 0-4 2.46 3.19 1.62 6.33 0.66 0.0000
Facial expression 0-4 1.42 1.47 0.42 2.33 0.64 0.0000

Walking-ON 0-4 0.51 0.92 0.69 2.89 0.63 0.0000
Tremor at rest (Left hand) 0-4 0.43 1.00 0.19 0.88 0.61 0.0000

Rigidity (right lower extremity) 0-4 0.46 0.97 0.04 2.56 0.59 0.0000
Speech 0-4 0.50 0.93 0.23 2.22 0.58 0.0000

Clinical Fluctuations-offs proportion of
waking day-off

0-4 0.53 0.14 0.00 1.38 0.57 0.0000

Rapid Alternating Movements (Right
hand)

0-4 0.58 1.05 0.15 2.33 0.57 0.0000

Hand Movements (Right hand) 0-4 0.53 0.97 0.40 2.22 0.57 0.0000
Hygiene-ON 0-4 0.26 0.59 0.12 2.44 0.56 0.0000

Action or Postural Tremor (Left hand) 0-4 0.39 0.79 0.46 1.50 0.56 0.0000
Finger Taps (Right hand) 0-4 0.75 1.20 0.36 2.33 0.53 0.0000

Tremor at rest (face, lips and chin) 0-4 0.05 0.32 0.23 1.00 0.51 0.0000
Leg Agility (Right leg) 0-4 0.46 0.84 0.19 2.44 0.50 0.0000

Rigidity (right upper extremity) 0-4 0.90 1.30 0.38 2.11 0.49 0.0000
Gait 0-4 0.30 0.62 0.23 2.89 0.49 0.0000

Freezing when walking-ON 0-4 0.06 0.29 0.12 1.78 0.41 0.0000
Swallowing-ON 0-4 0.08 0.29 0.19 0.78 0.41 0.0000

Postural Stability 0-4 0.07 0.31 0.19 3.22 0.39 0.0000
Action or Postural Tremor (Right

hand)
0-4 0.41 0.70 0.62 1.38 0.38 0.0000

Tremor at rest (Left foot) 0-4 0.11 0.29 0.00 0.63 0.36 0.0001
Arising from Chair 0-4 0.11 0.33 0.15 3.22 0.35 0.0000

Intellectual Impairment-ON 0-4 0.26 0.49 0.38 2.22 0.35 0.0000
Tremor at rest (Right foot) 0-4 0.70 1.00 0.35 1.11 0.30 0.0009
Motivation/Initiation-ON 0-4 0.27 0.48 0.58 2.22 0.29 0.0006

Tremor at rest (Right foot) 0-4 0.11 0.26 0.00 0.50 0.29 0.0012
MMSE Calculated Total 0-30 29.3 28.9 28.7 23.2 0.23 0.0033

Falling-ON 0-4 0.01 0.09 0.12 1.11 0.22 0.0014
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Table J.2: Binary Data
Feature Gr. 1 Gr. 2 Gr. 3 Gr. 4 Odds ratio p-value

Clinical Fluctuations-offs come one
suddenly

0.04 0.004 0.00 0.00 10.38 0.0049

Clinical Fluctuations-offs predictable 0.43 0.08 0.00 0.33 8.68 0.0000
Resting tremor (absent) 0.14 0.06 0.42 0.11 2.55 0.0068

Gender 0.40 0.29 0.42 0.56 1.63 0.0067
GDS* Have more problems with

memory then most
0.16 0.26 0.19 0.89 0.54 0.0056

GDS* Dropped many activities 0.10 0.19 0.19 0.89 0.47 0.0058
Resting tremor (present and typical) 0.81 0.91 0.42 0.78 0.42 0.0013

Table J.3: Categorical Data
PD state during exam Gr. 1 Gr. 2 Gr. 3 Gr. 4 p-value

Fluctuator-ON during the exam 0.44 0.05 0.00 0.33 0.0000
Fluctuator- Fluctuated during the

exam
0.01 0.004 0.00 0.00 0.0000

Fluctuator-OFF during exam 0.01 0.008 0.00 0.00 0.0000
Non-fluctuator 0.54 0.94 1.00 1.67 0.0000

Poisson Features Age at Baseline is also a significant feature. It has been separated from the other

features as it is Poisson data type and sorting in terms of Effect size might be misleading.

Table J.4:
Feature Gr. 1 Gr. 2 Gr. 3 Gr. 4 Effect Size p-value

Age at BaseLine 60.53 64.38 63.39 73.44 0.39 0.0000

166


	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis organization

	2 Discrete latent variable models and inference  
	2.1 The K-means algorithm
	2.2 Mixture models
	2.3 The Bayesian framework 
	2.3.1 Bayesian mixture models
	2.3.2 Gibbs sampling
	2.3.3 Variational Bayes inference
	2.3.4 Iterated conditional modes 

	2.4 Marginalization 
	2.5 The Dirichlet process 
	2.5.1 Definition
	2.5.2 Constructions
	2.5.3 Pitman-Yor generalization
	2.5.4 Dirichlet process mixture models

	2.6 Overview of the relations between inference algorithms

	3 Simple deterministic inference for mixture models
	3.1 Introduction
	3.2 Small variance asymptotics
	3.2.1 Probabilistic interpretation of K-means
	3.2.2 K-means with reinforcement 
	3.2.3 Overview

	3.3 Rao-Blackwellization in mixture models
	3.4 Collapsed K-means and collapsed MAP-GMM 
	3.5 Comparison on synthetic data
	3.6 Nonparametric clustering alternatives
	3.6.1 Gibbs sampling for DPMM

	3.7 Deterministic inference for Dirichlet process mixtures
	3.7.1 Variational inference for DPMMs 
	3.7.2 Small variance asymptotics methods for DPMMs

	3.8 Iterative maximum-a-posteriori inference
	3.8.1 Collapsed MAP-DPMM algorithm
	3.8.2 The MAP-DPMM algorithm
	3.8.3 Out-of-sample prediction
	3.8.4 Analysis of iterative MAP for DPMM

	3.9 DPMM experiments
	3.9.1 UCI experiment
	3.9.2 Synthetic CRP parameter estimation

	3.10 Example applications of MAP-DPMM algorithms 
	3.10.1 Sub-typing of parkinsonism and Parkinson’s disease
	3.10.2 Application of MAP-DPMM to semiparametric mixed effect models

	3.11 Discussion

	4 Deterministic inference and analysis of HDP mixtures
	4.1 Introduction
	4.2 Motivation
	4.3 Hierarchical Dirichlet process
	4.3.1 Stick-breaking construction for the HDP
	4.3.2 Chinese restaurant franchise
	4.3.3 Gibbs sampling for HDP mixture models 

	4.4 Deterministic inference for HDPs
	4.4.1 SVA inference for HDP mixtures 
	4.4.2 Iterative maximum a-posteriori inference

	4.5 Synthetic study
	4.6 Discussion

	5 Model-based nonparametric analysis of sequential data 
	5.1 Introduction
	5.2 Hidden Markov models 
	5.3 Nonparametric Bayesian HMM
	5.3.1 Gibbs sampling methods for the HDP-HMM

	5.4 Deterministic methods
	5.4.1 SVA analysis for HDP-HMM
	5.4.2 Iterative MAP inference for iHMM 

	5.5 Applications
	5.5.1 Genomic hybridization and DNA copy number variation
	5.5.2 Behaviour extraction from accelerometer data 

	5.6 Discussion

	6 Occupancy estimation using nonparametric HMMs
	6.1 Introduction
	6.1.1 Motivation
	6.1.2 Challenges of human occupancy counting with a single PIR sensor
	6.1.3 Related work

	6.2 Experimental Setup
	6.2.1 Collection devices
	6.2.2 Data collection
	6.2.3 Sensor data description

	6.3 Laplace modeling 
	6.3.1 Regression component
	6.3.2 Time window duration

	6.4 Extracting behaviour from PIR data
	6.5 System overview
	6.6 System evaluation
	6.6.1 Fewer than 8 occupants
	6.6.2 At least 8 occupants

	6.7 Computational efficiency
	6.7.1 Choice of inference algorithm
	6.7.2 Resource evaluation

	6.8 Future work
	6.9 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Future directions
	7.2.1 Unsupervised behaviour modeling 
	7.2.2 Real time learning
	7.2.3 Parallel iterative MAP methods


	A Hyper parameters updates for exponential family conjugate pairs
	B Implementation practicalities
	B.1 Randomized restarts
	B.2 Obtaining cluster centroids

	C Out-of-sample predictions
	D Missing data
	E Estimating the model hyper parameters (0,N0)
	F Bregman divergences
	G DP-means  parameter binary search
	H Gibbs sampling for DPMM (spherical Gaussian) 
	I Fully collapsed CRF-based Gibbs sampler
	J PD-DOC experiment

