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Abstract

Tuberculosis control efforts are hampered by a mismatch in diagnostic technology: modern optimal diagnostic tests are
least available in poor areas where they are needed most. Lack of adequate early diagnostics and MDR detection is a critical
problem in control efforts. The Microscopic Observation Drug Susceptibility (MODS) assay uses visual recognition of
cording patterns from Mycobacterium tuberculosis (MTB) to diagnose tuberculosis infection and drug susceptibility directly
from a sputum sample in 7–10 days with a low cost. An important limitation that laboratories in the developing world face
in MODS implementation is the presence of permanent technical staff with expertise in reading MODS. We developed a
pattern recognition algorithm to automatically interpret MODS results from digital images. The algorithm using image
processing, feature extraction and pattern recognition determined geometrical and illumination features used in an object-
model and a photo-model to classify TB-positive images. 765 MODS digital photos were processed. The single-object model
identified MTB (96.9% sensitivity and 96.3% specificity) and was able to discriminate non-tuberculous mycobacteria with a
high specificity (97.1% M. avium, 99.1% M. chelonae, and 93.8% M. kansasii). The photo model identified TB-positive samples
with 99.1% sensitivity and 99.7% specificity. This algorithm is a valuable tool that will enable automatic remote diagnosis
using Internet or cellphone telephony. The use of this algorithm and its further implementation in a telediagnostics
platform will contribute to both faster TB detection and MDR TB determination leading to an earlier initiation of appropriate
treatment.
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Introduction

Tuberculosis (TB) is a contagious airborne disease caused by the

bacteria Mycobacterium tuberculosis (MTB). TB is widespread and

deadly, and causes the highest number of deaths worldwide. An

estimated of 8.7 million of new cases of TB and 1.4 million deaths

occurs per year [1]. One third of the global population has latent

TB infection, meaning that they are infected with M. tuberculosis

but are not sick with the disease. Five to ten percent of infected

people will eventually develop active TB disease in their lifetime

[2].

In recent years, drug-resistant TB has emerged, largely due to

delays in treatment, gaps in treatment protocol, and ineffective or

delayed drug-susceptibility testing [3]. Multi-drug resistant tuber-

culosis (MDR-TB) is defined by the resistance of the bacillus to the

most powerful TB drugs, isoniazid and rifampin, while extensively

drug-resistant TB (XDR-TB) is also resistant to some second line

drugs [4,5]. World Health Organization estimated in the Global

Tuberculosis Report 2012 that 3.7% (2.1–5.2%) of new cases of

TB and 20% (13–26%) of previously treated cases have MDR-TB.

XDR-TB was reported by 84 countries, and the proportion of

MDR-TB cases with XDR-TB was approximately 9.0% [1]. In

2011 the World Health Organization endorsed a new phenotypic

technique for TB diagnosis and drug susceptibility testing,

Microscopic Observation of Drug Susceptibility (MODS), which

is based on visual identification of a microscopic cording pattern

characteristic of M. tuberculosis colonies during growth in a liquid

phase [6,7]. MODS use sputum samples to detect the presence of

tuberculosis and MDR-TB accurately and with high sensitivity

and specificity. The average time to detection of TB and MDR-

TB is seven days [8].

A typical TB cord in a positive MODS culture, exhibits certain

morphological and illumination characteristics. A TB positive cord
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has a particular length and width, and its shape is usually sinuous

with a smooth border. Given that a TB cord has a circular

transversal section, the light that passes through the diameter

shows a high-transmitted brightness, while the light that passes

through the border, gets refracted resulting in a lower brightness.

Despite the advantages of MODS and its potential to intensify

and accelerate the global fight against TB, it still requires staff

specifically trained to read the culture plates, which do not yet

exist in remote laboratories lacking financial and technical

resources, in the settings where most TB occurs. It is therefore

important to improve TB and MDR TB detection using alternate

sensitive approaches [9].

Because MODS involves the visual diagnosis of MTB, we

hypothesized that computerized pattern recognition on digital

images of MODS cultures could be used in the automatic

detection of MTB growth.

Several studies on automated diagnostics of tuberculosis using

pattern recognition yielded good results. Previous works analyzed

sputum smears stained with auramine. Images were obtained by

fluorescent microscopy and different algorithms and classifiers

were used, including neural networks [10] and support vector

machines, Gaussian mixture models and Bayesian decision theory

[11]. These diagnostic methods reached up to 100% sensitivity

and sensitivity per sample. Other studies analyzed sputum smear

with Ziehl-Neelsen staining microscopy. Detection algorithms used

Bayesian segmentation and Gaussian classifiers [12,13], obtaining

sensitivities and specificities above 95% for the classification of TB

positive smears. All of these studies showed that pattern

recognition has been applied successfully in the diagnosis of TB.

However, to date there is no automated recognition for use with

MODS culture.

Here we describe a method for automating MODS diagnosis

using computer vision algorithm based on available techniques to

the problem of detecting tuberculosis and MDR from MODS

digital microscopy images. This computer algorithm will contrib-

ute with the global efforts to fight against tuberculosis.

Materials and Methods

Microscopic observation drug susceptibility (MODS)
assay

The microscopic observation drug susceptibility (MODS) assay

is a method based on microscopic examination of liquid media to

detect characteristic cording growth patterns of MTB. When

compared with current phenotypic methods for TB detection and

susceptibility testing, MODS has proven to be more sensitive,

faster, and cheaper, and is performed directly on sputum samples.

The incorporation of TB drugs into the culture medium allows for

the determination of antimicrobial sensitivity to rifampin and

isoniazid. MODS uses liquid culture media in 24-well plates

inoculated with decontaminated sputum, incubated at 37uC.

Observations are made every other day in a light inverted

microscope to detect cording colonies as evidence of TB positivity.

TB colonies go through three visually distinct stages of growth

(Figure 1). In average, in the first 5–6 days, small ‘comma’-shaped

objects start to appear. Most characteristically, after 7 to 10 days in

MODS culture, clusters of bacteria with a cording pattern appear.

After 10 days, the cording colonies begin to aggregate to form

clusters or conglomerates. The cording pattern of colonies at 7–10

days is specific for MTB, and is the basis of MODS diagnosis [7,8].

Laboratory experts in MODS identify five discriminating visual

features: a distinct length and thickness, a distinct refraction of

light showing a higher brightness along the central axis of the cord,

unique extremities with sharp-appearing ends, and an overall

sinusoidal form [7]. MODS diagnosis is currently performed based

on the manual human observation of these qualitative character-

istics. However, each of these characteristics can be mathemati-

cally defined, and thus lend themselves to automated analysis.

Samples and image digitalization
765 digital photos from 7–10 days MODS cultures were

analyzed. Of these, 320 were from cultures positive for MTB, 109

were from cultures growing non-tuberculous mycobacteria (NTM)

(42 Mycobacterium kansasii, 31 Mycobacterium avium, 36 Mycobacterium

chelonae) and 336 were from cultures negative for mycobacteria.

From these photos, a total of 5832 objects were selected (2445

MTB cords, 307 M. kansasii, 320 M. avium, and 312 M. chelonae,

and 2448 objects from cultures negative for mycobacteria). The

MTB objects and the non-tuberculous mycobacteria objects were

identified and selected from all the photos, by two MODS experts.

Every positive object identified was included. The non-mycobac-

teria objects obtained from the cultures negative for mycobacteria

corresponded to a random sample of all the objects identified in

the corresponding photos. Objects and photos were classified and

randomly matched into a training set (2446 objects, 328 photos)

and testing set (2447 objects, 328 photos). All samples were

provided anonymously.

MODS culture photos were obtained using an inverted light

microscope (NIKON Eclipse TS100-F with an infinity correction

optical system) with 100X magnification (10X objective and 10X

eyepiece) and a CCD (charge-coupled device) digital camera

(Olympus C-3030) with 3.34 Megapixel resolution attached to the

Figure 1. Temporal variation of the morphological characteristics of MTB cords in MODS culture observed at 100X total
magnification. (A) Day 3 of culture; (B) Day 10 of culture; (C) Day 15 of culture. Cords observed at day 10 are highly specific for MTB.
doi:10.1371/journal.pone.0082809.g001
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photo port. Images were captured with the digital camera set to its

maximum optical zoom (3X). Typical images of the cording

colonies of MTB and the mycobacterial non-cording colonies of

NTM are shown in Figure 2.

Image processing
To identify objects in a digital image of a MODS culture, for

further analysis and pattern recognition, a 10-steps image

processing was applied sequentially. A flowchart of the image

processing is shown in Figure 3:

Conversion to gray scale and preliminary processing.
To reduce the variability of color and intensity due to the multiple

orientations of the objects (in particular the mycobacteria cords)

with reference to the light source, all images were converted to a

gray-scale according to the standard NTSC values. The 256 gray-

scale levels from the digital images were transformed to a

proportional scale between 0 and 1. The original red-green-blue

(RGB) photographs were transformed by the NTSC standard,

which is based on an optimal human perception [14]:

I = 0.2989*Red + 0.5870*Green + 0.1140*Blue

The image obtained after this process is called ‘‘Gray scale

image’’.

Global binarization. To filter the objects from the

background, images were binarized by transforming them from

gray scale into black and white. The binarization method used the

Otsu algorithm [15] which calculates a global threshold value

based on all the pixels of the image. Each pixel was transformed

into either black or white.

Border smoothing. To enhance the objects contours, the

edges of digital objects were softened by the application of a third-

order median filter [16,17]. With this treatment, pixels that caused

irregularities (‘noise’ pixels) in the continuity of the borders were

removed by maintaining no more than four "noise" pixels in the 8-

pixel-neighborhood (the eight immediate neighbor pixels of each

pixel).

Exclusion of boundary objects. The objects that crossed

the external border of the image were excluded to prevent

inaccuracy in the analysis of pattern recognition. These objects

were selected by identifying pixels that intersected with the

external boundaries of the image.

Image closing. To further reduce the noise along the borders

of the objects, their contours were modified and smoothed by

dilatation followed by erosion morphological operators [18].

Holes filtering. Removal of the white regions inside the black

binarized objects (called white sub-objects), was made by labeling

the sub-objects followed by a black recoloring.

Area filtering. Used as a first filter, objects exhibiting extreme

values of area were removed. The 95% confidence interval (CI) of

the area from 1200 objects corresponding to MTB cords was first

estimated. Objects with an area not included within the 95% CI

were eliminated. The image obtained after this process is called

‘‘cleaned image’’.

Skeletonization. A forestation-based algorithm [19,20] was

used to shrink the objects, obtaining an approximation of its

overall shape and retaining its major topological features. This

digital path was called the ‘‘skeleton’’. The image obtained after

this process is called ‘‘SKL image’’.

Identification of object borders. In order to identify the

border of the objects, a Sobel’s gradient operator was applied. This

operator uses vertical and horizontal masks to extract all the pixels

in the border of an object. The image obtained after this process is

called ‘‘Borders image’’.

Image recoloring. To facilitate further visual analysis, a tri-

color system was adopted by using a re-coloring script. The

background was colored gray; the border was colored black, and

the interior of the object white. The image obtained after this

process is called ‘‘Tri-colored image’’. Figure 4 shows a detailed

example of the image treatment and the selection of objects in a

digital image of a MODS culture.

Features extraction and pattern recognition
The length, shape, thickness, brightness-distribution, and

circularity of each object were estimated among other parameters

detailed below:

Length of the object. The length of the object was calculated

from characteristics of its skeleton. The skeleton of an object is

Figure 2. Digital photos of MODS cultures. Corresponding to: (A, B) Mycobacterium tuberculosis; (C) Objects from sediment and detritus of a
mycobacterium negative sample; (D) Mycobacterium kansasii; (E) Mycobacterium avium; (F) Mycobacterium chelonae.
doi:10.1371/journal.pone.0082809.g002
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composed by its trunk and branches. To identify the parts of the

skeleton, each pixel was classified with respect to its 8-pixel

neighborhood. Three critical types of points along the skeleton

were identified allowing differentiating the trunk and its branches:

end-points, branch-points, and inner-points (Figure 5a). End-

points on the skeleton were identified as pixels in the SKL image

with only one black pixel in its neighborhood. Starting at one end-

point, pixels with at least three black pixels in their neighborhood

(branch-points) were identified. Pixels with only two black pixels in

their neighborhood were classified as inner-points, which are part

of the trunk or the branches. To distinguish the trunk and

branches, the skeleton was transformed into a completely weighted

undirected graph. In this, a ‘‘vertex’’ is defined as an end-point or

branch-point. In the graph, each vertex is linked with its ‘‘neighbor

vertex’’ by following the digital path from one vertex to the other

vertex along the skeleton using an ‘‘arc’’. This was labeled with the

digital length between these vertices. The trunk was defined as the

longest path between two end-points along the skeleton, and its

length is the diameter of the weighted undirected graph. A branch

was defined as the shortest path between one branch-point in the

skeleton and one end-point outside the trunk (Figure 5b).

To extract the border of the object from the gray background, a

vertical line was drawn upward from a skeleton end-point. Along

this line, the first black pixel with at least one neighbor of the

background color was chosen as the first border point. From this

point, clockwise iterations were performed to find the path of black

pixels, which form a continuous and closed-edge loop around the

object.

To extend the trunk until the border of the object, the trunk was

linked from each end-point to its nearest ‘‘skeleton-end’’. A

skeleton-end is a tip of the object, and was located from an end-

point, by the following process:

From an end-point, we draw a transversal line (perpendicular to

the trunk) until intersects the border and dividing it in two

fragments. We select the fragment with the shortest border and

select the point that divided the border of this fragment in equal

lengths. From this point, we draw 16 equiangular radial

transversal lines (randomly oriented). The segments that connected

the original point with the intersection with the border were

defined, and we selected the segment with the minimal length,

provided that it was completely included in the object. Using this

segment, we repeated all the process described above. This process

stopped when the segment with minimal length obtained from a

point ‘i’ is greater than the length of the segment obtained from

the point ‘i-1’.

The extended trunk plus all the branches define the ‘complete

skeleton’. The length of the object was defined as the number of

pixels included in the extended trunk (Figure 5c). For each object,

we calculated the number of tips of the complete skeleton as an

indicator of the smoothness of the digitalized object.

Thickness of the object. Points every three pixels were

selected in the extended trunk (Figure 5d). From these points,

transversal segments were drawn perpendicularly to the extended

trunk, until intersects the border of the object (Figure 5e). The

length of each transversal segment in an object was calculated, and

from them some parameters were defined: ‘‘width’’ (mean of these

lengths), ‘‘SD-width’’ (standard deviation of these lengths) and

‘‘max-width’’ (maximum value of these lengths). With these,

features, three new parameters were defined, after normalizing

their values by the length of the extended trunk: rel-width, rel-SD-

width, and rel-max-width respectively.

Figure 3. Flowchart of the image processing algorithm. The original photo (in yellow), is processed by the ‘image processing algorithm’ (in
green). The numbers inside the green boxes correspond to the steps described in the manuscript. Five images are obtained: Gray scale image, SKL
image, Borders image, Cleaned image and finally the Tri-colored image, which is built using the Cleaned image and Borders image.
doi:10.1371/journal.pone.0082809.g003
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Brightness distribution of the object. The spatial

variation of the brightness in the object as a result of light

refraction was measured within each transversal segment. For each

pixel in a segment, the difference of the pixel brightness in gray

scale and the minimum brightness in this segment was calculated.

If this difference was above certain cutoff of expected variation, the

pixel was selected. The increase in the percentage of brightness,

compared with the mean brightness of the photograph, was

analyzed using different cutoffs: 8%, 10%, 12%, 15%, 18%, 20%

and 22% and were recorded in parameters with suffix ‘‘refr’’

(‘‘refr8’’ for cutoff 8%, as example). The number of pixels in a

segment that met this condition was normalized by the total

number of pixels included in this segment. After considering all the

segments within each object, the maximum (max-Nrefr), minimum

(min-Nrefr), average (mean-Nrefr) and standard deviation (SD-

Nrefr) of the normalized values were calculated for each object.

Circularity of the object. The circularity parameter was

calculated for each object as 4p times its area divided by the

square of its perimeter. The perimeter was calculated as the length

of the border of the object, which was measured as the number of

pixels included in it. In a perfect circle, this parameter will be

equal to 1. A higher value of this parameter represents a lower

circularity, as occurs in a cording-shaped object of a TB MODS

culture.

Shape of the object. The shape of an object was estimated as

the shape of its skeleton. Three different methods were used to

measure the shape:

Linear fitting: The linearity of the skeleton was estimated by

constructing the regression line fitting the pixels contained in it

(Figure 5f, red line). Two parameters were calculated: The mean

(parameter ‘‘mean-for’’) and the standard deviation (parameter

‘‘SD-for’’) of the squared Euclidean distance between the pixels of

the extended trunk and the fitted line.

Curvature: The discrete points of the extended trunk were fitted

into a continuous non-linear function using a Gaussian fit. The

curvature value of each point was estimated by the Fourier’s Fast

transformation (FFT).

Wave analysis: Along the extended trunk, and using the

curvature values obtained, a wave was defined as a set of pixels

between two points of minimum curvature (#0.2) ‘‘A’’ and ‘‘B’’,

which undergo a change of curvature (.0.4) when moving from A

to B (Figure 5f, in green). The degree of sinuosity was estimated as

the number of waves in the extended trunk and the size of each

wave (in pixels). The number of waves, the size and curvature of

each wave (defined as the maximum curvature value in the wave)

was estimated. A complete flowchart of the process of features

extraction is shown in Figure 6.

Figure 4. Steps of image processing of a MODS-culture photo. (A) Original photo. (B) Conversion to gray scale, obtaining the ‘Gray scale
image’. (C) Global binarization, transforming all the pixels in black (0) or white (1). (D) Black-white inversion. (E) Border smoothing, to reduce the
‘noise’. The yellow rectangle in figures D (before) and E (after) shows the changes produced by this process. (F) Exclusion of boundary objects,
deleting the objects in the border of the photo. The green rectangle in figures E (before) and F (after) shows the changes produced by this process.
(G) Holes Filtering, removing black objects inside white objects. The blue rectangle in figures F (before) and G (after) shows the changes produced by
this process. (H) Area filtering, dropping the outsider values in the distribution of area values, obtaining the ‘Cleaned image’. (I) Skeletonization,
obtaining the ‘SKL values’. (J) Identification of object borders, obtaining the ‘Borders image’. (K) Image recoloring: The black pixels in figure H are
converted to gray, and this picture is superposed by the figure J, giving the ‘Tri-colored image’. Figures (B), (I) and (K) are used for the features
extraction process.
doi:10.1371/journal.pone.0082809.g004
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Model building and statistical analysis
Object-models. A training set (N = 2446 objects) and a testing

set (N = 2447 objects) were analyzed to build and evaluate the best

object-model to predict TB-positive objects. A total of 2446 objects

(1222 TB-positive and 1224 TB-negative) were analyzed. Each

digital object was classified according to the features described

above. The variability of each feature was expressed as a

distribution, and a comparison was performed between the groups

of TB-positive and TB-negative in a univariate analysis. A T-test

was used to compare the means and a simple logistic regression

Figure 5. Morphological characteristics of a Mycobacterium tuberculosis cord from a TB-positive MODS culture. The process performed
to obtain the main features of a M. tuberculosis cord includes the following steps: (A) Skeleton of the object, (in purple an example of end-points, in
red branch-points, and in green inner-points); (B) Identification of the trunk (gray) and its branches (bold black); (C) Extension of the skeleton. The
extension of the trunk (in red) from each end-point of the trunk to its nearest tip of the object (enclosed in purple), and the border of the object (bold
black); (D) The extended trunk of the object divided by equally-spaced segments (in red, on the gray skeleton); (E) Transversal division of the object
by segments (in cyan) perpendicular to and equally spaced along the extended trunk; (F) The ‘‘linearization’’ of the extended trunk (red line) and
waves recognition (one wave is enclosed in green as example).
doi:10.1371/journal.pone.0082809.g005

Figure 6. Flowchart of the features extraction algorithm. The SKL image, the Tri-colored image and the Gray scale image are used as input in
different steps of the process (in orange) to extract the features. From this process 53 features are obtained for the statistical analysis.
doi:10.1371/journal.pone.0082809.g006
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was used to model the binary response variable (presence or

absence of TB) having each feature as the predictor covariate.

Features that were significantly associated with TB classification in

the univariate analysis were considered for a multiple regression

analysis. Features that were highly correlated (Pearson or

Spearman rho over 0.75) were dropped. The feature with the

highest odds ratio in the univariate analysis was selected and

included in the multiple regression analysis and the correlated

variable was dropped.

The probability of a positive TB cord was modeled in a multiple

logistic regression. A saturated model including all the covariates

was first calculated. Covariates with the least significance were

removed one at a time, while nested models were compared with

the likelihood ratio test. The best object-model with the fewest

covariates was obtained. Alternatively, we built a best multiple

object-model with the step-wise method by adding one covariate at

a time starting with the most significant. Nested models were

compared with the likelihood ratio test. In every case, outliers were

detected using the test of Hadi, and interactions between features

were tested. We demonstrated that both approaches converged

into a best multiple model.

The sensitivity and specificity of the best object-model was

calculated. Positive objects were used to estimate the sensitivity,

and negative objects were used to estimate specificity. Several

cutoffs for the probability of TB positive were evaluated, and the

best object-model was chosen as the one that maximized the

Youden’s J-index ( J = sensitivity+specificity-1) [21]. The area

under the Receiving-Operator-Curve (ROC), estimated the

accuracy of the model as a diagnostic test.

Alternatively the best object-model was used to classify the 2447

objects of the testing set (1223 TB-positive and 1224 TB-negative

objects). A sensitivity and specificity was estimated after classifying

all objects on this set.

Four object-models were constructed for different sets of objects

selected by a skilled technician: constructed from ‘TB cords’

(N = 1100) versus ‘non-cording-objects’ (N = 1078) from TB-

positive cultures (object-model-1); constructed from ‘TB cords’

(N = 1222) from TB-positive cultures versus ‘TB-negative objects’

(‘sediment/detritus’)(N = 1224) from TB-negative cultures (object-

model-2); constructed from ‘TB cords’ (N = 1228) from TB-

positive cultures versus ‘sediment/detritus’ (N = 650) from TB-

negative cultures and ‘non-cording-objects’ (N = 667) from TB-

positive cultures (object-model-3); constructed from ‘TB cords’

(N = 1228) from TB-positive cultures versus ‘sediment/detritus’

(N = 309) from TB-negative cultures, ‘non-cording-objects’

(N = 309) from TB-positive cultures, and NTM (M. kansasii

(N = 307), M. avium (N = 320), M. chelonae (N = 312)) (object-

model-4).

Photo-model. A total of 652 photos (330 TB-positive and 322

TB-negative) from MODS cultures were analyzed to build the best

photo-model. Each digital photo was assigned a set of covariates,

which were quantified into a numerical variable for analysis.

From each photo, objects were selected, and the four object-

models were applied on all of them. For each photo and for each

object-model the eight best objects with the highest probability-

score were selected. All these probability scores were used as

predictors to classify a TB-positive photo. Additionally, the mean

object-probability score was calculated for the best-two, best-three,

best-four, best-five, best-six, best-seven, and best-eight objects for

each photo and for each object-model.

For each photo the total number of objects identified during the

image processing step was obtained, along with the mean and

standard deviation of the complete photo brightness. The total

number of TB-positive objects (cords) was calculated for each

photo.

All these covariates were used as predictors in a multiple logistic

regression to model the probability of being a TB-positive or TB-

negative photo. Features that were not significant in a univariate

analysis, or were highly correlated (over 0.75), were not included.

Similarly as in the construction of the best object-model, the best

photo-model was obtained by selecting the best multiple logistic

regression in a step-forward approximation (adding covariates

starting from the most significant) and a step-backward approx-

imation (removing the least significant covariates from the

saturated model). In all cases the likelihood ratio test was used

to compare nested models. The two approaches converged into a

best photo-model.

The sensitivity and specificity of the best photo-model was

calculated after modeling the probability of being a TB-positive or

TB-negative photo. The best photo-model was chosen as the one

that maximized the Youden’s index. The area under the

Receiving-Operator-Curve (ROC) determined the accuracy of

the best photo-model as a diagnostic test.

A dictionary of the main variables tested is found in Table 1. All

the statistical analyses were performed with a 5% significance level

using the software Stata 11.

Results

The best object-model to classify cords was the object-model 2,

considering the eight features shown in Table 2. Object-model 2

showed the best biological significance because it included the

features observed by the TB experts.

This model was able to identify MTB objects with 96.89%

sensitivity and 96.32% specificity in the testing set. The area under

the ROC curve was 0.989, and the Youden’s index was 0.93. The

variability of the outcome explained by the model was 82%

(pseudo-R2). The combinations of sensitivity/specificity for the

best object-model are shown in Figure 7A. At the object-level,

specificity in discrimination of MTB cords from M. avium objects

was 97.06%, 99.14% for M. chelonae, and 93.75% for M. kansasii.

The univariate and multiple analyses and the significant

covariates involved in the logistic regression of the best photo-

model are summarized in Table 3.

The best photo-model was able to identify MTB photos of

MODS cultures with 99.1% sensitivity and 99.7% specificity in the

testing set in 15 seconds in average per photo in a P4 2GHz CPU.

The area under the ROC curve was 0.999, and the Youden’s

index was 0.99. The variability of the outcome explained by the

model was 98.0% (pseudo-R2). The combinations of sensitivity/

specificity for the best photo-model are shown in Figure 7B.

The features included in the best photo-model were the

variability of brightness of the photo, number of total objects in

the photo, number of positive objects identified according to the

object-model-2 (variant 1), number of positive objects identified

according to the object-model-2 (variant 2), and the average score

of the six best objects identified by object-model-2. The univariate

and multiple analyses and the significant covariates involved in the

logistic regression of the best object-models variants are summa-

rized in Table 4.

At the photo-level, the cross-reactions of the algorithm with

other mycobacteria digital microscopic photos were null. We

analyzed 41 M. Kansasii samples, 43 M. chelonae, 30 M. avium and 72

M. bovis. No false positive for TB were observed.
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Discussion

Just as humans can be trained to recognize characteristic MTB

growth in MODS, we hypothesized that computerized image

analysis algorithms could be developed to distinguish positive from

non-positive MODS cultures. This study reports for the first time a

computer algorithm to diagnose tuberculosis, and by virtue of

identifiable growth in the presence of drug, multi-drug resistance

by analyzing digital images of a MODS culture. This algorithm is

based on the recognition of morphological characteristics from

objects of a digital image captured with an inverted microscope,

and is able to correctly recognize MTB cords and differentiate

NTM with a high sensitivity and specificity.

In the image processing and the pattern recognition compo-

nents described in this study, we have included ad-hoc quantifi-

cation of specific features of the objects in order to resemble the

human procedure followed to classify a TB cord. The use of

multiple logistic regression for classification allowed us to sense the

behavior of each predictor (both their adjusted and unadjusted

effects), their potential interactions and confounding. The most

important features in the recognition of a TB positive MODS

culture were geometrical and illumination type characteristics.

These highly specific features of TB cording colonies appearing

between 7–10 days of culture are the basis of MODS. This study

confirms that the predictors of the best object-model that correctly

classified MTB cords, were the same features considered in the

standard manual-visual inspection. These include the length,

width, shape, and the presence of a refraction pattern associated

with a higher brightness in the axis of the cord. Interestingly, there

were other parameters that appeared to be significantly associated

with a positive culture that had not been previously recognized or

consciously used as a discriminatory characteristic. These features

have likely never been considered before because human visual

Table 1. Dictionary of variables.

Name of variable Description

Width Mean width of the object

Length Length of the object

rel_width Mean width of the object normalized by the length of the main skeleton of the object

SD_width Standard deviation of the width of the object

Mean-Nrefr15 Average of the number of pixels along the transversal segment to the skeleton that had brightness 15% higher than the
average bright of the photograph normalized by the total number of pixels of the particular transversal segment.

bimedia Mean of the brightness values of the pixels in all the transversal segments of an object

Num-tips Number of tips of the complete skeleton.

Mean-for Mean of the squared Euclidean distance between the pixels of the extended trunk and the fitted line.

SD-for Standard deviation of the squared Euclidean distance between the pixels of the extended trunk and the fitted line.

perimeter/length Ratio perimeter:length of the object.

max-width Maximum width of an object.

SD-photo Standard deviation of the brightness of all the pixels within a photograph.

Num-obj Total number of valid objects in the photograph

numposi_object-model-2.1 Number of positive objects detected in a photograph according to the statistical model object-model-2.1 (model under the
database of positive cords vs. detritus).

numposi_object-model-2.2 Number of positive objects detected in a photograph according to the statistical model object-model-2.2 (model under the
database of positive cords vs. detritus).

Mean-2.1_6 Average of the top six highest probabilities of objects from the analyzed photograph.

doi:10.1371/journal.pone.0082809.t001

Table 2. Univariate analysis of the main features relevant to the prediction of TB positive objects.

Morphological Features Features (unit) Mean
Standard
Deviation Minimum value Maximum value

Width of object rel_width (pix.) 11.85 3.48 3.10 39.61

SD_width (pix.) 4.16 1.70 1.33 26.79

Ilumination of object Mean-Nrefr15 (prop.) 74.67 3.77 59.27 84.51

bimedia (brightness units) 51.64 2.61 43.94 62.67

Form and length of object Num-tips (non-dimensional) 8.52 4.31 3 28

perimeter/length(prop.) 2.23 0.15 1.97 3.84

max-width (pix.) 23.56 6.28 11.70 79.19

SD-for (pix.) 8.54 4.36 0.99 35.85

(pix.): pixels; (prop.): proportion. The statistics shown were estimated from 1223 positive cords.
doi:10.1371/journal.pone.0082809.t002
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recognition is a complex process not usually broken down into its

constituent elements.

The microbiological quality of the MODS culture, and

therefore the integrity of the objects in the digital photo are

important and affect the accuracy of both a manual and an

automatic classification. Sputum samples need to undergo a prior

decontamination process in order to kill most of the common

commensal organisms that grow in the oral cavity which

contaminate the sputum. Inadequate decontamination can result

in contamination of the culture, which masks any evidence of TB

cords. In these cases the sample needs to be processed again In

some situations, an excess of non-specific detritus and sediment-

type objects may appear. The algorithm was trained to filter out

these objects, but excessive contamination does increase the

probability of finding a false positive TB object.

Our algorithm was developed for the identification of individual

cords, which represents an intrinsic limitation of the methodology

used, due the necessity of excluding overlapping objects for the

analysis, reducing the capability of positive cords detection.

Another limitation is the skeleton-based method for features

extraction. The generation of medial axis is vulnerable to noise and

the smoothness of the medial axis branches is subject to the

smoothness of the boundary, which is in turn based on the

resolution and quality of the images[22]. We selected and analyzed

1000 random photos, and summit the skeleton obtained to the

qualitative opinion of a MODS expert. The overall opinion was that

the skeleton showed to be a good representation of the shape of the

object, retaining its main characteristics. This is reinforced by the

reproducibility of our method and the high levels of specificity and

sensitivity obtained by the algorithm in TB cords recognition.

Not only the quality of the microbiological culture is important,

but the quality of the microscope and the digitalization system too.

The sensitivity and specificity reported in this study correspond to

digital images obtained from the microscope and digitalization

system described above. Although the algorithm used global

binarization, which is sensitive to the brightness distribution, the

Nikon microscope used in this study, as well as other good

commercial brands with adequate optics, produce images with a

uniformly distributed brightness that are correctly processed.

In a recent study, we developed a prototype of a cheap ad-hoc

inverted and digital microscope for TB diagnostics with MODS [23].

This cheap and simple system produced images of enough quality

that a human technician could correctly classify them. In order to

bring down its price, we used as its illumination system a single $1

dichroic lamp. The limitation of this system is that the images are

produced with a non-uniformly distributed brightness. The center of

the images has more intense brightness. For the human technician

this is not a problem, but in this scenario the algorithm looses

Figure 7. Sensitivity and specificity of the best model to diagnose Mycobacterium tuberculosis from a MODS culture digital image. (A)
Sensitivity and specificity for different probability cutoffs for the best object-model to classify M. tuberculosis cords; (B) Sensitivity and specificity for
different probability cutoffs for the best photo-model to classify M. tuberculosis positive MODS culture images.
doi:10.1371/journal.pone.0082809.g007

Table 3. Relevance of features from the best photo model in a univariate and multiple variable logistic regression.

Model Overall R2 Features
Odds Ratio (R2, P-value):
Simple logistic regression

Odds Ratio (P-value): Multiple logistic
regression

Photo Model 0.98 SD-photo 1.21 (0.29, ,0.001) 0.73 (0.006)

Num-obj 1.01 (0.01, 0.011) 0.74 (0.001)

numposi_object-model-2.1 1.68 (0.58, ,0.001) 2.72 (0.003)

numposi_object-model-2.2 1.25 (0.37, ,0.001) 1.84 (,0.001)

Mean-2.1_6 1.70x105 (0.61, ,0.001) 1.18x109 (,0.001)

doi:10.1371/journal.pone.0082809.t003
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sensitivity to classify TB cords. To solve this problem, we found that

the use of a local adaptive binarization approach using the Niblack

algorithm corrects this limitation and is appropriate for images with

non-uniformly brightness distribution (data not shown). This change

enabled the algorithm to detect TB cords, but required 7 more

seconds of computing calculation. This time trade may very well be

justified to enable the use of the detection algorithm while keeping

the price of an ad-hoc microscope low.

Pattern recognition software like the one presented here could

be used in a 100% automatic platform for high throughput TB

diagnostics. In a recent study, we developed an automated MODS

plate reader to screen each of the 24 wells of a MODS culture

plate [24]. The system is able to capture digital photos that cover

the complete surface of every well. These images are transmitted

to a controlling PC computer, where the pattern recognition

algorithm could analyze photos in real time and produce a fully

automated reading of a complete MODS culture plate.

In a previous study, we demonstrated that the transmission of

MODS digital images using cellphone telephony resulted in a

simple way to diagnose TB remotely by a human technician [25].

It is possible that the MODS pattern recognition algorithm be

used to remotely diagnose tuberculosis and detect multidrug

resistance from transmitted digital images.

The inclusion of the area filter that eliminates objects out of the

95% confidence interval of the area of MTB cords was important

in order to speed the calculation. Although the sensitivity is

sacrificed with the use of this filter, we believe that 99.1%

sensitivity is appropriate for the trade of improving the time of

calculation. In addition, a reduction of MTB negative objects to be

included in the pattern recognition process increases the specific-

ity, because it is less likely to misclassify a negative object.

However, further refinements to the algorithm could be conceived

by screening a larger sample of objects, provided that better

computing capacities are available.

Although in MTB microbiological laboratories where MODS is

performed, the technicians might be qualified in MODS reading,

it is important to highlight, that the use of the TB-MODS remote

diagnostics is not expected to be mandatory for every sample. It is

possible that less experienced technicians may have doubts

assessing problematic samples, in which case a remote aid to

interpreting a MODS culture would be useful.

Conclusion: For the first time, a MODS pattern recognition

algorithm has been developed. Combining geometric and

illumination features enables a sensitive and specific identification

of MTB and discrimination of MTB from NTMs in MODS

cultures. The availability of this algorithm will facilitate MODS

reading strengthening the efforts for TB control.
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