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Abstract

It has been suggested that pathway analysis can complement single-SNP analysis in exploring genomewide association
data. Pathway analysis incorporates the available biological knowledge of genes and SNPs and is expected to improve the
chances of revealing the underlying genetic architecture of complex traits. Methods for pathway analysis can be classified as
competitive (enrichment) or self-contained (association) according to the hypothesis tested. Although association tests are
statistically more powerful than enrichment tests they can be difficult to calibrate because biases in analysis accumulate
across multiple SNPs or genes. Furthermore, enrichment tests can be more scientifically relevant than association tests, as
they detect pathways with relatively more evidence for association than the remaining genes. Here we show how some well
known association tests can be simply adapted to test for enrichment, and compare their performance to some established
enrichment tests. We propose versions of the Adaptive Rank Truncated Product (ARTP), Tail Strength Measure and Fisher’s
combination of p-values for testing the enrichment null hypothesis. We compare the behaviour of these proposed methods
with the established Hypergeometric Test and Gene-Set Enrichment Analysis (GSEA). The results of the simulation study
show that the modified version of the ARTP method has generally the best performance across the situations considered.
The methods were also applied for finding enriched pathways for body mass index (BMI) and platelet function phenotypes.
The pathway analysis of BMI identified the Vasoactive Intestinal Peptide pathway as significantly associated with BMI. This
pathway has been previously reported as associated with BMI and the risk of obesity. The ARTP method was the method
that identified the largest number of enriched pathways across all tested pathway databases and phenotypes. The
simulation and data application results are in agreement with previous work on association tests and suggests that the
ARTP should be preferred for both enrichment and association testing.
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Introduction

Pathways are groups of biologically related genes that act

together in a specific biological process. Different pathways are

responsible for different outcomes varying in complexity. An

example of a biological pathway is the metabolic Gluconeogen-

esis pathway that is responsible for the generation of glucose.

According to the KEGG database [1] this pathway consists of 65

genes, among them the genes GCK (glycokinase) and GPI

(glucose-6-phosphate isomerase). GCK produces glucose-6-phos-

phate and GPI catalyses the reversible isomerization of glucose-6-

phosphate. Both actions take part in energy pathways like

Gluconeogenesis. Pathways may not work correctly due to a

faulty signal received from one of the participating genes. Faulty

pathways can result in disease; therefore pathway analysis is

potentially important since it can reveal the underlying genetic

structure of a disease. Pathway analysis incorporates the available

biological knowledge of genes and simultaneously tests all

pathway genes for association with a phenotype of interest.

Several authors have discussed how pathway analysis can

complement single-SNP analysis in exploring data from genome-

wide association scans (GWAS) [2,3].

Pathway analysis is currently a popular topic and several

methods have been published both for GWAS and a wider range

of molecular analyses [3–11]. The proposed methods are

distinguished by a number of aspects. Some of the methods

require as their input data the raw genotype data, while other

methods require only summary SNP or gene statistics. The

methods also differ in their test statistics and on the way of

assessing the significance of those statistics.

The methods can also be divided into association and

competitive methods according to the null hypothesis tested

[12]. The self-contained (or association) null hypothesis states that

no pathway genes are associated with the phenotype. Testing the
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self-contained null hypothesis compares the statistics of the genes

within the pathway to the null background. Therefore, association

methods can be used in both pathway analysis and candidate gene

analysis, since only the statistics from a selection of genes is

required [2]. For example, some association tests combine the

pathway gene p-values into a single p-value for the entire pathway,

as done by Fisher’s product method, Truncated Product methods,

and the Tail Strength Measure [11,13,14]. Regression models are

also used to assess the joint significance of all pathway genes [15].

Alternatively, the competitive (or enrichment) null hypothesis is

that the pathway genes are no more associated with the phenotype

than the non-pathway genes. The competitive methods compare

the statistics of the pathway genes with statistics of genes outside

the pathway, to determine whether the pathway is more associated

with the phenotype compared to other pathways. An enriched

pathway can be defined as one whose genes are more strongly

associated with the phenotype than those genes outside the

pathway. Commonly used methods that identify enriched

pathways are the Hypergeometric Test, Gene Set Enrichment

Analysis and the SNP ratio test [3,7,9].

The two null hypotheses are related since by rejecting the

competitive null hypothesis, the self-contained null hypothesis is

also automatically rejected. In other words a pathway that is not

associated cannot be enriched. The two hypotheses are equivalent

only in the case that there are no associated genes outside the

pathway. A method testing the self-contained null hypothesis will

have more power than one testing the competitive null hypothesis,

in that an association method will reject the null hypothesis for

more pathways than a competitive method. The competitive null

hypothesis in contrast makes a stronger statement, in this way

sacrificing some of its power. The relationship and differences

between the two null hypotheses have been discussed in detail by

Goeman and Buhlmann [12].

Fridley et al [11] performed a simulation study examining the

performance of existing and novel association methods for

expression data. The methods considered can be divided into

two categories: the methods that are based on summary gene

statistics and those that perform a joint modeling of all the data for

a given pathway. Among the methods considered, the Fisher

product which combines the gene statistics into a single pathway p-

value was shown to have the greatest power in detecting associated

pathways.

In the context of GWAS, population stratification and/or

cryptic relatedness may introduce some biases across the SNPs of

the GWAS [16,17]. These biases make the calibration of

association methods in GWAS difficult. For example, population

stratification inflates the SNP statistics by an average factor l.

While this is usually ignorably close to 1 for single SNP tests, an

appreciable bias may accumulate across multiple SNPs in a

pathway. Although a Fisher product could be rescaled by an

appropriate power of l, it is unclear in general how other

association tests should be adjusted or calibrated. On the other

hand, competitive methods detect pathway genes with relatively

more evidence for association than the remaining non-pathway

genes. Therefore, testing the competitive null hypothesis is more

pragmatic in GWAS, and can be regarded as providing evidence

for pathways of more biological relevance to the phenotype

studied.

In recent years several methods have been proposed for

pathway analysis that either test the self-contained null hypothesis

or the competitive null hypothesis. A parallel development of the

methods has been observed but there has been little overlap in the

literature. In this paper we examine whether commonly used

association methods can test the competitive null hypothesis by

using an appropriate gene statistic. We propose using the scaled

ranks of the gene p-values as the input data of the association

methods, in order to adapt them to competitive tests. This

approach can be used for any association method. Here we adapt

Fisher’s Method (FM) [11], Tail Strength Measure (TSM) [14]

and Adaptive Rank Truncated Product (ARTP) [6] to test the

competitive null hypothesis. A simulation study was performed to

compare the performance of the adapted association methods with

commonly used competitive methods including the Hypergeo-

metric Test [9] and Gene Set Enrichment Analysis (GSEA) [3].

This is the first time that these competitive tests have been

compared to methods derived from association tests. In particular,

the performance of the ARTP has not been compared to other

pathway analysis methods except FM, and has not yet been widely

applied to real studies. However, the results of our simulation

study show that the adapted version of ARTP method is the most

powerful in detecting enriched pathways.

In addition to the simulation study, the methods were applied to

the data of two GWAS. The first study is a subset of the EPIC-

Norfolk study [18] involving 3552 individuals for whom body mass

index (BMI) was recorded. The second GWAS involves 500

healthy individuals and aims to find the genetic structure of

platelet function which is described by four endpoints (phenotypes)

[19,20]. A detailed description of the two studies is given in the

Methods section. The Reactome, KEGG and Biocarta pathways

were downloaded for the analysis performed. Each pathway

database was tested independently from the other databases for

enrichment with the BMI phenotype of the first study and with the

four phenotypes of the second study. The data application results

concur with the simulation results in that the ARTP method is the

most powerful in detecting enriched pathways. This is in

agreement with the literature on association testing, and suggests

that the ARTP method should be preferred for both association

and enrichment testing.

Methods

Ethics Statement
Platelets GWAS: A cohort of 500 healthy subjects of predom-

inantly Northern European origin was recruited from the National

Health Service Blood and Transplant blood donor clinic in

Cambridge after gaining informed, written consent in accordance

with the Declaration of Helsinki (for details of the cohort see Jones

et al (2007) [19]). The study was approved by the Huntingdon

Research Ethics Committee.

The pathway analysis performed was done anonymously for

both EPIC-Norfolk and Platelets GWAS.

Test Statistics
We propose to use scaled ranks of p-values in association

methods, in order to test the competitive null hypothesis. The

methods described here are Fisher’s method (FM), Hypergeo-

metric Test, Tail Strength Measure (TSM), Gene Set Enrichment

Analysis (GSEA) and Adaptive Rank Truncated Product (ARTP).

This section ends with a description of the simulation study data

and the data of the two GWAS used for testing the performance of

the methods.

The association between a gene and the phenotype is often

represented by the minimum p-value of the SNPs assigned to the

gene, with appropriate adjustment for multiple testing in the gene.

A number of other approaches are possible, but the minimum p-

value has generally good properties and is most often used [21]. In

our simulation we avoid this issue by assuming one SNP per gene,

which will not alter our qualitative conclusions. The p-values of

Comparison of Pathway Analysis Enrichment Methods
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association between the GWAS genes and the phenotype are

denoted by pi,i~1, . . . ,K where K is the total number of genes in

the study. The first step for computing the proposed gene statistic

is to rank the gene p-values from the smallest to the largest. The

statistic of the ith gene is denoted by ri and equals the rank of the

ith gene divided by K. Under the null hypothesis, the gene statistics

ri,i~1, . . . ,K follow a discrete Uniform distribution with support

f1=K,2=K , . . . ,1g.
Fisher’s method. Fisher’s method is a well established

association method that combines the results from multiple

statistical tests. The FM test statistic equals

FM~{2
Xm

i~1

log(ri)~{2 log( P
m

i~1
ri) ð1Þ

where m is the number of genes in the pathway. The FM test

statistic follows a x2 distribution with 2m degrees of freedom when

the gene statistics are independent and follow a continuous

Uniform (0,1) distribution. The significance of the calculated FM

test statistic can be estimated by either referring to the appropriate

x2 distribution or by comparing it to a set of null test statistics

computed with randomized gene labels. The gene labels, which

indicate whether a gene is or is not a member of the tested

pathway, are randomly permuted and the FM test statistic is

calculated based on the permuted gene labels. This procedure is

repeated a large number of times to obtain the null permutation

distribution. We used 1000 replicates. The p-value was then

calculated as

pFMP
~

P1000
b~1 I(FMpermuted,b§FMobserved)z1

1001
ð2Þ

We were specifically interested in whether the x2 distribution was

accurate when the gene statistics had a discrete distribution.

Hypergeometric test. We define a set of significant genes as

those genes with p-values less than a threshold pt. The

Hypergeometric Test as a competitive method tests whether the

pathway of interest contains more significant genes compared to

those outside the pathway than expected by chance. Suppose that

the pathway has x significant genes, then the p-value of

enrichment of the pathway P with m genes is given by

pHT~
XKS

j~x

K{m

KS{j

� �
m

j

� �

K

KS

� � ð3Þ

where KS is the length of the significant genes list. The

Hypergeometric Test assumes that the significant gene list is

random and conditions on a fixed pathway. This is a one-sided test

testing whether the pathway is enriched/over-represented within

the list of most significantly associated genes with the phenotype.

The Hypergeometric Test is a commonly used competitive test

that is incorporated in a number of bioinformatics tools as

discussed by Elbers et al [22].

Tail strength measure. The Tail Strength Measure pro-

posed by Taylor and Tibshirani [14] is a measure of the statistical

significance of the global null hypothesis of no gene effects. An

advantage of the TSM is that it is asymptotically normally

distributed. The TSM can be adapted to test the competitive null

hypothesis by using the proposed gene statistic ri. Firstly the m
pathway gene statistics are ranked from the smallest to the largest

such that r(1)ƒr(2)ƒ . . . ƒr(m). The TSM is then calculated as

TSM(r1,r2, . . . ,rm)~
1

m

Xm

i~1

f1{r(i)
mz1

i
g ð4Þ

TSM calculates the deviation of each gene statistic from its

expected value and large positive values of the TSM indicate

Table 1. Mean type-I error of the methods.

Method Mean Type-I Error

FMc2 0.050

FMP 0.051

Hypergeometricpt~0:05 0.028

Hypergeometricpt~0:01 0.023

Hypergeometricpt~0:005 0.019

HypergeometricKS~2000 0.038

TSMN 0.028

TSME 0.057

TSMP 0.051

GSEA 0.049

ARTP 0.048

ARTPE 0.046

Mean type-I error of the methods across all null scenarios of the simulation
study. TSMN refers to the approximate Normal distribution of the TSM. FMP and
TSMP refer to the permutation procedures for estimating the significance of the
FM and TSM statistic. ARTPE and TSME are the empirical distributions of ARTP
and TSM respectively.
doi:10.1371/journal.pone.0041018.t001

Table 2. Mean power of the methods for the different
pathway sizes.

Method Pathway Size Mean Power

ARTPE 20 0.743

60 0.892

100 0.925

FMx2 20 0.730

60 0.889

100 0.925

GSEA 20 0.639

60 0.826

100 0.867

TSME 20 0.619

60 0.837

100 0.894

HypergeometricKS~2000 20 0.560

60 0.729

100 0.803

The mean power of the methods is computed for all the scenarios for the three
different tested pathway sizes across all other variables.
doi:10.1371/journal.pone.0041018.t002

Comparison of Pathway Analysis Enrichment Methods
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evidence against the global null hypothesis, i.e. evidence that the

pathway contains more significant genes than expected by chance.

One of the advantages of the TSM is that, under the global null

hypothesis, it is normally distributed for large enough m, with

mean zero and variance 1
m

. In practice pathway sizes are not large

enough for validating the normal approximation. We computed

an empirical distribution of TSM for pathways of size m by

randomly selecting m p-values from a Uniform (1=2m,1z1=2m)
distribution, calculating the TSM statistic, and repeating the

procedure 1|105 times. An alternative approach would be to use

a discrete Uniform distribution in simulating the empirical

distribution of the TSM. This would probably be more accurate

than the continuous one but the latter works particularly well as we

show in Results. In addition to the normal and empirical

distributions of the TSM, we also compared the observed measure

with a set of null measures computed with randomized gene labels,

as described above for FM.

Gene set enrichment analysis. Wang et al [3] modified the

widely-used method for microarray data, Gene Set Enrichment

Analysis, to perform a gene-based pathway analysis of GWA data.

GSEA, which is based on a weighted Kolmogorov-Smirnov-like

running sum statistic, tests for over-representation of the pathway

genes within the entire ranked list of genes. We use the negative

logarithm of the gene p-values as the input gene statistics, denoted

by pi. We have chosen this input gene statistic as we found it to

give more numerically stable results than others, especially the

gene p-value itself. The gene statistics are ranked from the largest

to the smallest (with p(i) denoting the ith largest gene statistic). The

weighted Kolmogorov-Smirnov-like running sum statistic is given

by

ES(P)~ max
1ƒiƒK

(
X

Gl[P,lƒi

Dp(l)D
KR

{
X

Gl=[P,lƒi

1

K{m
) ð5Þ

where m is the size of pathway P and KR~
P

Gl[P Dp(l)D. The

significance of the statistic can be estimated by comparing it to a

set of null statistics computed with randomized gene labels.

Adaptive rank truncated product. Yu et al [6] proposed

the Adaptive Rank Truncated Product for performing a gene-

based pathway analysis. Again we assume that statistics of the m

pathway genes are ranked such that r(1)ƒr(2)ƒ . . . ƒr(m). The

original RTP statistic given by

Figure 1. Power of the five methods for different pathway sizes. Plots illustrate the power of the methods when the total number of
associated SNPs equals 100, the proportion of associated SNPs within each pathway is 0.4 and the effect sizes are s2

p~4 and s2
np~1.

doi:10.1371/journal.pone.0041018.g001

Table 3. Power of the methods as the proportion of pathway
SNPs with effects changes.

Proportion
(a) ARTPE x2 FM GSEA TSME HypergeometricKS~2000

40% 0.940 0.909 0.881 0.691 0.659

60% 0.985 0.979 0.970 0.878 0.852

100% 1 1 0.990 0.996 0.985

Power of the methods for a pathway of size 20. 50 genes in total have effects.
The effect size s2

p of the pathway genes is 4 and the effect size s2
np of the rest of

the genes is 1.
doi:10.1371/journal.pone.0041018.t003

Comparison of Pathway Analysis Enrichment Methods
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WJ~
XJ

i~1

log(r(i))~log( P
J

i~1
r(i)) ð6Þ

combines the J smallest gene statistics of the tested pathway. In the

adaptive RTP the truncation point J is chosen such that the p-

value of WJ is minimised. The tested truncation points for a

pathway of size m are all the integer values between 1 and m. The

RTP statistic simplifies to the FM test statistic when the truncation

point J is fixed to m. Simulated data with randomized gene labels

are created for both calculating the significance of each WJ as well

as estimating the appropriate truncation point J. The RTP

statistic

W b
J ~

XJ

i~1

log(rb
(i)), 0ƒbƒB,1ƒJƒm ð7Þ

is calculated for each truncation point J , for both the observed

data-set and each of the B simulated datasets. Then Ge’s

algorithm is used to estimate the p-value

ŝsb
J~

PB
b�~0 I(W b�

J ƒW b
J )

Bz1
0ƒbƒB,1ƒJƒm ð8Þ

for each WJ and for all data. The p-value for the ARTP statistic

MinP0 of the pathway is estimated as

pARTP~

PB
b�~0 I(MinPb

ƒMinP0)

Bz1
ð9Þ

Figure 2. Power of the five methods for different proportions (a) of associated SNPs within a pathway of size 60. Plots illustrate
the power of the methods when the total number of associated SNPs equals 100 (plot (A)) and 200 (plot(B)), the effect sizes are s2

p~4 and s2
np~1 for

both plots.
doi:10.1371/journal.pone.0041018.g002

Table 4. Power of the methods for the different pathway
sizes.

Pathway
size s2

p s2
np ARTPE FMx2 GSEA TSME HypergeometricKS~2000

20 4 2 0.550 0.520 0.370 0.360 0.317

4 1 0.803 0.760 0.620 0.539 0.464

2 1 0.571 0.511 0.460 0.389 0.326

60 4 2 0.851 0.825 0.730 0.713 0.528

4 1 0.974 0.959 0.880 0.868 0.725

2 1 0.857 0.828 0.690 0.707 0.546

100 4 2 0.928 0.915 0.820 0.837 0.690

4 1 0.994 0.980 0.860 0.925 0.804

2 1 0.925 0.901 0.820 0.826 0.674

doi:10.1371/journal.pone.0041018.t004

Comparison of Pathway Analysis Enrichment Methods
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where

MinPb~min1ƒJƒmŝsb
J ð10Þ

Ge’s algorithm [23] is used as suggested by Yu et al [6] for

reducing the multiple-level permutation procedure into a single-

level permutation procedure.

An alternative version for calculating the pathway p-value

creates the simulated data-set using p-values from a continuous

Uniform (1=2m,1z1=2m) distribution instead of using permuted

gene p-values. The ARTP significance based on this empirical

distribution is denoted by ARTPE.

Simulation Study
A simulation study was performed to examine the performance

of the adapted versions of the association methods FM, TSM and

ARTP and of the competitive methods Hypergeometric Test and

GSEA for testing the competitive null hypothesis. The type-I error

and the power of methods were examined under various scenarios.

To estimate the type-I error of the methods, data were created

under the competitive null hypothesis that the pathway is not

enriched. Then, data were created under the alternative hypoth-

esis of enrichment to estimate the power of the methods. In the

simulation study the effects of the following variables were

examined: pathway size, total number of genes with effects, the

variance of the effects of pathway genes, the variance of the effects

of non-pathway genes and the proportion of pathway genes with

effects.

In the simulation study a genotype matrix X of size N|L with

entries 0, 1 and 2 was created. N denotes the total number of

individuals and L the total number of SNPs in the study. The

minor allele frequency (MAF) of each SNP of the study was

randomly selected from a Uniform (0, 0.5) distribution. The

entries 0, 1 and 2 of each column of the genotype matrix X were

sampled with probabilities equal to the genotype frequencies

calculated from the MAF of each SNP under Hardy-Weinberg

equilibrium.

In the subsequent steps of the simulation study, a single-SNP

analysis is performed to test the association of each SNP with the

response variable/phenotype. Each SNP is mapped to a unique

gene so that the simulation regards SNPs and genes as equivalent.

For testing the type-I error of the methods, a number of SNPs

were randomly selected from the L SNPs of the study. Following a

quantitative genetic model, these SNPs were each assigned a

random effect, denoted by b, drawn from a Normal distribution

with mean zero and variance s2. The variance values 1, 2 and 4

were considered. Other SNPs had no effect. The pathway SNPs

were also randomly selected. Selection of the pathway members

and the SNPs with effects were independent steps that could be

done in any order.

In the non-null scenarios the first step was to select the pathway

SNPs. A proportion (a) of pathway SNPs/genes were selected as

having non-zero effect on the response variable. We assume the

effect of pathway genes is stronger than of non-pathway genes by

drawing pathway effects from N(0,s2
p) and non-pathway effects

from N(0,s2
np) with s2

p[½2,4�, s2
np[½1,2� and s2

npvs2
p. The greater

variance of the effects within the pathway represents an

enrichment of association compared to genes outside the pathway,

as in these scenarios the effect sizes of the genes within the

pathway are larger than the non-pathway genes.

For both cases, the last step in constructing the data of the study

is to calculate the response variable y for the N individuals. An

additive SNP model is assumed for each individual, such that the

response of individual j is calculated as:

yj~
XL

i~1

XijbizN(0,1) ð11Þ

where effectively only the SNPs with effects play a role in the value

of y.

For all null and non-null scenarios of the simulation study,

pathway sizes of 20, 60 and 100 SNPs were tested, which is typical

of current databases. The total number of SNPs with effects varied

with 50, 100 and 200 SNPs. The total number of individuals

tested was 100 and the total number of SNPs/genes was 20000.

These numbers are smaller than found in a typical GWAS but

were chosen to achieve power levels in the relevant range of

50%{80%, while allowing the simulation to complete in a

reasonable time. One thousand simulated datasets were created

for each scenario tested, giving standard errors for the estimated

power of v1:6%. All tested scenarios can be found in table S1.

Data Application
Further to the simulation study data, the methods were applied

on the data of two GWAS for finding their enriched pathways.

The phenotype of the first study is BMI which was measured for

3552 individuals living in Norfolk,UK. This GWAS is a subset of

the EPIC-Norfolk study [18], which is part of the European

Prospective Investigation into Cancer and Nutrition (EPIC)

(http://epic.iarc.fr/) study and involves over 30,000 individuals

living in Norfolk, UK.

The second GWAS aims to find the genetic architecture of

platelet function. Platelets play a key role in thrombus formation

during normal hemostatic responses to injury and atherothrom-

botic events. Platelet function as discussed by Jones et al [19,20]

can be measured by the four endpoints (phenotypes): p-selectin

and fibrinogen responses to both ADP and collagen agonists.

These four phenotypes were measured for the 500 individuals

previously described by Jones et al [19,20]. The 500 individuals of

the study were genotyped using the Illumina610 chip. Standard

quality control filters were applied to both SNPs and individuals,

with 480 individuals and 544,078 SNPs retained for analysis.

The following steps were taken before applying the methods to

the data of the two studies. The SNPs of each study were mapped

to genes according to physical distance: a SNP was mapped to the

closest gene whose coding sequence began v10kb from the SNP.

The minimum p-value of all the SNPs mapped to a gene was then

assigned to the gene. As discussed by others [3], larger genes are

more likely to be assigned a smaller p-value. To avoid any biases

because of the gene size, the gene p-values were adjusted using

phenotype label permutations, as follows.

Table 5. Mean power of the methods that have a type-I error
5% across all simulated scenarios.

Method Power

ARTPE 0.846

FMx2 0.840

GSEA 0.768

TSME 0.772

HypergeometricKS~2000 0.687

Mean power of the methods across all simulated scenarios.
doi:10.1371/journal.pone.0041018.t005
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The phenotype labels were permuted and single-SNP analysis

was re-performed. The minimum p-value of all the SNPs mapped

to a gene was assigned to the gene. The adjusted minimum p-value

of the gene is then calculated as

p̂p~

PB
b~0 I(p(b)

ƒp(0))

Bz1
ð12Þ

where p(0) denotes the observed gene p-value and p(b) denotes the

gene p-value at the bth permutation. One thousand permutations

were performed.

Gene sets were downloaded from the Molecular Signatures

Database of Broad Institute (http://www.broadinstitute.org/gsea/

msigdb/index.jsp). The gene-sets of the pathway databases

Reactome [24,25], KEGG [1] and BioCarta (http://www.

biocarta.com/) were tested for enrichment. Each database was

tested independently from the other databases for enrichment with

each one of the five phenotypes of the two GWAS.

Results

Simulation Study
We performed simulations consisting of several null and

alternative scenarios according to the hypothesis under which

the response variable was computed. In the null scenarios the

computed response was calculated using a number of genes with

non-zero effects. The pathway genes were randomly selected from

the full list of genes. The pathway sizes and the number of genes

with non-zero effects as well as the effect size of the genes were

varied. In the alternative scenarios the pathway genes selected

were divided into pathway genes with effects and pathway genes

with no effects. The response was computed including the effects

of the pathway genes and a number of non-pathway genes that

were randomly selected from the remaining list of genes. The

association of the pathway genes with the response was assumed to

be greater than the association of the rest of the genes. Different

proportions of pathway genes with non-zero and zero effects were

examined as well as different sizes of effects.

In the null scenarios the pathway size, the total number of genes

with effects and the variance of the effect size s2 were varied (see

Methods for full details). Table 1 shows the mean type-I error of

the methods among all tested scenarios. The ARTP (using both

permutations and its empirical distribution), GSEA and FM (using

Figure 3. Pairwise scatterplot of power for the five methods across all simulated non-null scenarios.
doi:10.1371/journal.pone.0041018.g003

Table 6. Pathway Analysis of BMI.

Pathway
Name Size ARTPE FMx2 GSEA TSME HypergeometricKS~2000

Biocarta:
VIP Pathway

19 0.028 0.242 0.024 0.523 0.552

Table shows the nominal p-values of all five methods for the Biocarta VIP
pathway. Biocarta VIP pathway has been reported as being significantly
associated with BMI and the risk of obesity.
doi:10.1371/journal.pone.0041018.t006
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both permutation and asymptotic distribution) have an appropri-

ate 5% error. The low type-I error of the TSM shows that the

normal approximation is invalid for the small pathways examined

in the simulation study. On the other hand, the empirical and

permutation distributions of the TSM have a 5% type-I error. The

Hypergeometric Test also has a low type-I error for the three

different p-value thresholds examined, owing to the fact that it

follows a discrete null distribution and an exact 5% rejection rate

may not always exist. An appropriate type-I error of the

Hypergeometric Test was observed when the number of

significant genes was increased to 2000 for all tested scenarios,

which we denote by HypergeometricKS~2000. Based on these

observations we referred only to the asymptotic distribution of the

FM test statistic (FMx2 ) and empirical distributions of TSM

(TSME ) and ARTP (ARTPE ) in the alternative scenarios of the

simulation study.

The power of FMx2 , HypergeometricKS~2000, TSME , GSEA

and ARTPE was examined in non-null scenarios. In the non-null

scenarios, the pathway size, the total number of genes with effects,

the proportion of pathway genes with effects and the size of

pathway and non-pathway effects were varied. Table 2 shows the

mean power of the methods for three different pathway sizes

averaged over the proportion of significant genes in the pathway

and the effect sizes in and out of the pathway. The power of all

methods increases as the pathway size increases, reflecting both

the increased proportion of pathway genes among the fixed total of

associated genes, and the decreased proportion of non-pathway

genes. In addition, figure 1 shows the power of the methods when

the total number of associated SNPs equals 100, the proportion of

associated SNPs within each pathway is 40% and the effect sizes

are s2
p~4 and s2

np~1. ARTP has the greatest power for all

pathway sizes. FM has a lower power than ARTP for smaller

pathways but as the pathway size increases, the power of FM

increases reaching the power of ARTP. GSEA outperforms TSM

for smaller pathways but as the pathway size increases TSM has a

greater power than GSEA. Hypergeometric Test has the lowest

power among all tested pathway sizes.

The power of all the methods increases as the proportion of

pathway genes with effects increases. While keeping the total

number of genes with effects fixed and increasing the proportion of

pathway genes with effects, the number of non-pathway genes with

effects decreases and as a result the power of the methods increases

(Table 3). Table 3 shows how the power of the methods changes as

the proportion (a) of pathway genes with effects increases. The

ARTP has a significantly higher power than the other methods for

small proportions of associated genes within a pathway. FM has a

comparable power with ARTP especially in cases where the

proportion of pathway genes with effects is high as for example in

the case of all the pathway genes having an effect. TSM

outperforms GSEA when all the pathway genes have an effect

on the response while GSEA outperforms TSM when a smaller

proportion of the pathway genes have an effect on the response.

The Hypergeometric Test has the smallest power for all tested

proportions. Figure 2 shows how the power of the methods

changes with a for a pathway of 60 genes while the effect sizes are

s2
p~4 and s2

np~1. The first plot corresponds to a total number of

100 genes with effects (in and out of the pathway) and the second

plot to a total number of 200 genes with effects. As it can be seen,

as a increases the power of the methods increases, and the power

of the five methods is greater in the first plot compared to the

second plot indicating that the methods are more powerful when

the enriched pathways include most of the genes with effects of the

study.

Table 4 shows the dependence of the power on the effect size

variance s2
p of the pathway genes and effect size variance s2

np of the

non-pathway genes. As can be seen from table 4 both the value of

s2
p and the ratio between s2

p and s2
np have an effect on the power of

the methods. The methods attain the highest power when s2
p

equals 4 and s2
np equals 1. The ARTP has the highest power

followed by FM and GSEA. Table 4 also shows that the power of

the methods increases as the pathway size increases.

Table 5 shows the mean power of the methods: FM,

HypergeometricKS~2000, TSME , GSEA and ARTPE across all

simulated scenarios that can be found in the Table S1. As can be

seen from table S1, ARTP has the highest power in most of the

cases and it has the highest mean power across all simulated

scenarios (Table 5). FM is the second most powerful method with

some cases having equal or greater power than ARTP. GSEA and

TSM methods follow. The method with the lowest power in all

tested scenarios is the Hypergeometric Test. Figure 3 displays a

pairwise scatterplot of the five methods across all non-null

simulated scenarios. The points of the scatterplots of ARTP and

FM against the rest of the methods are above the diagonal line

indicating that the ARTP and FM have higher power than the rest

of the methods. The points in the scatterplot of GSEA against

TSM (or vice-versa) fall very close to the diagonal indicating that

the power of the two methods is very similar across all non-null

Table 7. Performance of the methods when applied on the data of the GWAS.

Response KEGG Biocarta Reactome

BMI
FM (

23

31
) ARTP = GSEA (

15

25
) TSM (

44

63
)

25 cm[1ex]Fibrinogen response to ADP
TSM (

29

35
) FM = GSEA (

23

30
) FM (

43

66
)

Fibrinogen response to collagen
FM = TSM (

9

20
) ARTP (

16

34
) ARTP (

29

54
)

P-selectin response to collagen
GSEA (

13

22
) ARTP = FM = TSM (

18

30
) ARTP (

27

52
)

P-selectin response to ADP
GSEA (

17

24
) GSEA (

14

29
) ARTP (

24

46
)

Table shows the method that identifies the largest number of pathways with nominal p-value less than 0.05 for each phenotype and database. The numbers in the
brackets represent the number of enriched pathways identified by the equivalent method divided by the total number of enriched pathways identified by all the tested
methods.
doi:10.1371/journal.pone.0041018.t007
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simulated scenarios (figure 3). Similarly, the power of ARTP is

very close to the power of FM but it is slightly higher.

Data Application
In addition to the simulation study the five methods: FM,

HypergeometricKS~2000, TSME , GSEA and ARTPE were applied

to real data for finding enriched pathways for the phenotypes of

two GWAS. The two studies aim to find the genetic structure of

BMI and platelet function, respectively. Platelet function as

discussed by Jones et al [19,20] is described by four phenotypes:

p-selectin and fibrinogen responses to both collagen and ADP

agonists. A gene-based pathway analysis was performed on the five

phenotypes: BMI, p-selectin response to ADP, p-selectin response

to collagen, fibrinogen response to ADP and fibrinogen response

to collagen (see Methods for full details). The pathways of

Reactome, KEGG and Biocarta databases were downloaded.

Each database was tested independently for enrichment with each

one of the five phenotypes. Tables S2 and S3 show the pathways

identified as enriched by the five methods for both BMI and

platelets GWA data. The pathways given in the tables have been

identified by at least one of the methods as enriched (i.e. with a

nominal p-value less than 0.05).

The pathway analysis of the BMI phenotype replicated the

main result of the pathway analysis performed by Liu et al [26], in

which the Vasoactive Intestinal Peptide (VIP) pathway was

identified as significantly associated with BMI and the risk of

obesity. The ARTP and GSEA identified the VIP Biocarta

pathway as being significantly associated with BMI whereas the

other methods did not (table 6 and table S2).

Table 7 shows the method that identified the largest number of

enriched pathways for each database and phenotype. The

fractions in the brackets represent the number of enriched

pathways identified by the corresponding method divided by the

total number of enriched pathways identified by the five methods.

ARTP is the method that appears in most of the table cells. ARTP

is the method that identified the largest number of associated

pathways with a nominal p-value less than 0.05 in most of the

cases. ARTP is followed by FM and GSEA. TSM appears less

often in the table and the Hypergeometric Test does not appear at

all. No pathways with a p-value less than the corresponding

Bonferroni correction p-value have been identified by the methods

ARTP, FM, GSEA and TSM. On average ARTP followed by FM

performed better than the other methods. This conclusion is

derived from looking at the total number of p-values less than 0.05

which suggests that there are enriched pathways amongst them.

ARTP method has the greatest overall power than the other

methods, even if it has not identified any individual pathways

contributing to the gain of this power.

Discussion

We performed a simulation study to compare the performance

of methods that test the competitive null hypothesis. Two

commonly used competitive methods, Hypergeometric Test and

GSEA, and adapted versions of the association methods FM, TSM

and ARTP were examined. This is the first time that these

association methods have been considered for competitive testing,

allowing a wider comparison of competitive methods than has

previously been possible.

We propose using the scaled ranks of the gene p-values as gene

statistics used by association methods for testing the competitive

null hypothesis. This novel feature enables the use of analytic and/

or empirical distributions of the association test statistics, and the

simulation study showed that these distributions have the correct

type-I error rate. The proposed gene statistics follow a discrete

Uniform distribution between 1 over the total number of genes in

the study and 1, and deviation from uniformity implies enrichment

of the pathway. The use of the scaled ranks as the input gene

statistics provides a direct comparison between the pathway and

non-pathway genes. While an indirect comparison could be

performed by simply evaluating the association statistics under

gene-label permutations, our approach allows rapid assessment of

significance using analytic or empirical distributions. The scaled

ranks do not depend on the underlying distribution of the gene p-

values, and hence on any bias contained therein, and do not

depend on how the gene-level association is derived from single-

SNP tests. Extensive literature exists on methods for summarizing

gene-level association. The power of these methods depends on

the LD between the SNPs in the gene as well as on their allele

frequencies and effect sizes [21,27]. We avoided this issue by

assuming one SNP per gene, but our results will hold qualitatively

for any well calibrated gene-level test. In other words, as the

methods tested here use gene statistics as their input statistics, as

long as the gene statistics have been adjusted to take both LD and

gene size into consideration, those factors should not play a role in

the results of the pathway analysis. If there are systematic

differences in LD and/or effect size between pathway and non-

pathway genes, then more powerful methods could be developed

to exploit such differences, and this is a promising direction for

future work.

It was observed that the Hypergeometric Test can have a lower

rejection rate than the nominal significance rate. This conservative

property results from the discrete null distribution of the test, and

is more profound when the sample size is small [28], in our case

with small pathways. The appropriate type-I error of 5% was

found by fixing the number of significant genes to KS~2000 for

all tested null scenarios. Other approaches such as mid p-value

introduced by Lancaster [29] are available to ensure a correct

type-I error of the Hypergeometric Test. Despite this aspect,

which can reduce power, and the need to pre-specify a significance

threshold (or to consider multiple thresholds with an appropriate

penalty), the Hypergeometric Test is very commonly used as an

enrichment test. In our simulation study, the non-null scenarios

tested involve simulated pathways with genes with relatively larger

effects than the ones outside the pathways. Non-null scenarios in

which enriched pathways have an overabundance of significant

genes with the same effects as the non-pathway genes were not

explicitly tested here. However we expect the same general

conclusions to apply since the net result is again an increase in

total variance of effect sizes within the pathway.

The results of the simulation study suggest that the ARTP can

and should be used as a more powerful test of enrichment. Our

simulation results also agree with the findings of Tintle et al [9]

who showed that the Hypergeometric Test is less powerful than

the GSEA. In addition they showed that the GSEA is less powerful

than the SUMSTAT method which is conceptually equivalent to

the FM tested here. Furthermore, our results agree with the

findings of Fridley et al [11] who showed that FM is the most

powerful method compared to TSM and other methods for testing

the association null hypothesis. However neither group of authors

considered the ARTP, which we have shown to be more powerful

than FM when adapted to enrichment testing. This result concurs

with those of Yu et al [6] who compared ARTP to FM but not to

other methods such as TSM and GSEA.

In addition to the simulation study, the methods were applied to

the data of two GWAS. The pathway analysis of BMI replicated

the main result of the pathway analysis performed by Liu et al [26]

that identified the VIP pathway as significantly associated with
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BMI. In our data however, the result was only replicated using the

ARTP and GSEA methods. In addition, a gene-based pathway

analysis was performed on the GWAS that aims to find the genetic

structure of platelet function. The results by applying the methods

on the four endpoints (phenotypes) that describe platelet function

concur with the simulation results that ARTP is the more powerful

method. The ARTP was the method that identified the largest

number of enriched pathways for most of the tested phenotypes

and pathway databases.

The adapted version of ARTP was shown to be the most

powerful for detecting enriched pathways. The ARTP is an

extension of the RTP statistic, which considers the J best gene

statistics of every tested pathway. The use of Ge’s algorithm with

ARTP has the advantage that a single level of permutation is

needed for estimating the best J for each pathway and the p-value

of enrichment between the pathway and the phenotype. We were

surprised that the TSM and GSEA did not have comparable

power to the ARTP. Conceptually the tests are similar, looking for

a deviation from uniformity in the p-value distribution, in

scenarios in which the deviation tends to lie in the tail. The

TSM has the advantage of a known asymptotic distribution.

However, despite its theoretical appeal it appears to have inferior

power to alternative methods considered by us and other authors.

The FM statistic equals the RTP statistic when J is the total

number of genes, as discussed by Dudbridge and Koeleman [13].

It has been shown that ARTP has better power than FM in

realistic scenarios of association testing. Combining all the above,

we recommend the ARTP as the most powerful method for testing

both association and enrichment null hypotheses.

Supporting Information

Table S1 Type-I error rates and power of the methods
for the various scenarios tested in the simulation study.

(XLS)

Table S2 Pathways identified as enriched by the five
methods for BMI phenotype.

(XLS)

Table S3 Pathways identified as enriched by the five
methods for the four endpoints of platelet function.

(XLS)
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