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Abstract
Recent developments in the statistical analysis of genome-wide studies are reviewed. Genome-wide analyses are becoming increasingly

common in areas such as scans for disease-associated markers and gene expression profiling. The data generated by these studies present

new problems for statistical analysis, owing to the large number of hypothesis tests, comparatively small sample size and modest

number of true gene effects. In this review, strategies are described for optimising the genotyping cost by discarding promising genes at an

earlier stage, saving resources for the genes that show a trend of association. In addition, there is a review of new methods of analysis

that combine evidence across genes to increase sensitivity to multiple true associations in the presence of many non-associated genes.

Some methods achieve this by including only the most significant results, whereas others model the overall distribution of results as a

mixture of distributions from true and null effects. Because genes are correlated even when having no effect, permutation testing is often

necessary to estimate the overall significance, but this can be very time consuming. Efficiency can be improved by fitting a parametric

distribution to permutation replicates, which can be re-used in subsequent analyses. Methods are also available to generate random draws

from the permutation distribution. The review also includes discussion of new error measures that give a more reasonable interpretation

of genome-wide studies, together with improved sensitivity. The false discovery rate allows a controlled proportion of positive results

to be false, while detecting more true positives; and the local false discovery rate and false-positive report probability give clarity on whether

or not a statistically significant test represents a real discovery.
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Introduction

Recent technological advances allow the rapid generation of

vast quantities of molecular biological data.1,2 At the same

time, the sequencing of the human genome and subsequent

efforts to catalogue the variation within it3 have created

opportunities for testing thousands of sequence variations for

association with disease, behavioural traits and physiological

markers. Such applications are appealing because of the relative

lack of success, to date, of positional cloning strategies that

start with family-based linkage mapping,4 most likely due to

insufficient sample sizes to detect genes of modest effect.5

The whole-genome association scan is an increasingly feasible

study design in which the genotyped markers are sufficiently

closely spaced to detect linkage disequilibrium (LD) with

all aetiological variants, and well-powered sample sizes are

more attainable.6 Some initial studies have been performed in

special populations7,8 and in small samples of outbred popu-

lations;9,10 genome-wide admixture scans are imminent11,12

and, ultimately, routine scans will be performed for common

diseases in large cohorts of outbred populations.13

Array experiments measuring large numbers of transcrip-

tion or expression levels are another form of genome-wide

analysis that have become widespread.14 Although the effect

sizes expected in these studies are large by comparison with

disease association studies, the sample sizes are constrained by

cost to be relatively small, so that both types of study

encounter problems of statistical power (Table 1). Expression

levels can be regarded as quantitative traits under genetic

control, so that both kinds of large-scale exploration can

occur in genome scans for loci influencing expression levels,15

or phenome scans demarking the influence of genetic

pathways.16,17

The analysis of large exploratory studies creates new pro-

blems for methodology and interpretation. Primarily, there is

the multiple testing problem, whereby the chance of an

exceptional result increases with the number of tests per-

formed, even when there is no true association. To alleviate

this problem, two broad strategies have emerged: first, to

devise more sensitive tests, so that the penalty for multiple

testing is less severe; and, secondly, to propose different

measures of experimental error for which the interpretation of
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multiple testing is less serious. Furthermore, genome-wide

analysis creates problems of computational and cost efficiencies

on account of the large volume of data to be generated and

analysed.

Here, some recent work addressing these problems is

reviewed. For the study design, work is summarised that

minimises the cost of a study, while maintaining its power. For

the analysis, methods are reviewed for improving sensitivity

in the presence of multiple gene effects, by combining

evidence across tests, and some methods for reducing the

computational burden of permutation tests are discussed. The

review concludes with a discussion of alternative error

measures including false discovery rates.

This review is mainly concerned with a whole-genome

association scan, using single nucleotide polymorphisms

(SNPs), for a dichotomous disease status. It will be clear,

however, that many of the methods apply in other situations,

in particular to array expression studies. Although there are

important differences between these two applications —

including the number of expected true associations, sample

size and effect size (Table 1) — their common exploratory

character suggests that further advances may arise from cross-

application of ideas between these areas. For this reason, some

methods developed for expression studies are reviewed; there

is also a discussion on whether they may be suitable for genetic

association scans. The objects of inference used will be

‘genes’18, with the understanding that, in this context, this can

mean SNPs, whole genes, haplotype blocks, transcript levels

or other features.

Study design

Large samples of unrelated individuals have become the design

of choice for genome-wide association scans, because earlier

concerns about population stratification have been largely

allayed by empirical methods.19 Estimates of the total sample

size are in the order of thousands.20 Because the majority

of genes are not associated with disease, it is uneconomical

to genotype the whole sample for all genes. Sequential study

designs, in particular a two-stage block design, have been

proposed for reducing the total cost of a genome-wide

experiment, which remains the main limiting factor prevent-

ing large-scale application. In a two-stage design, all of the

genes are typed in a subset of the sample, with only the genes

showing a trend of association being taken forward for geno-

typing in the remainder. This directs resources towards true

associations at an earlier stage, so that the available sample

size is larger for genes with true effects.

The design parameters for a two-stage study include the

total cost, total sample size, size of the first and second

sub-samples and rejection criterion at the end of the first

stage. Studies with only two stages are considered, although

more could be performed. Some of these parameters are

constrained in advance, with the others then chosen to

optimise some objective. One approach is to consider the

genotyping cost as fixed and then find parameters that give the

most power.21,22 A general rule of thumb, considering a

number of disease models and correlation structures between

markers, is to allocate 75 per cent of resources to the first

stage and then carry the most promising 10 per cent of

markers to the second.22 Here, the sample size is a function

of the genotype unit cost and the number of markers,

within the overall cost constraint.

It is more likely that the sample size is fixed (say, to provide

sufficient power to detect a single association) and the goal

is to minimise costs while achieving power close to that of

the one-stage design.23 In many situations, the cost can be

halved while keeping power within 1 per cent of the one-stage

design; thus, the total sample size can be calculated to achieve

a certain power (say 81 per cent) in the one-stage design and

parameters then optimised for a two-stage design. Considering

a range of genetic models, a general guideline is to set the

sample size of the first stage to have 97 per cent power for

individual tests and carry forward all markers with nominal

p-values less than 0.15. The sample size for the first stage

cannot be calculated without knowledge of the true effects,

however, so a more practical approach is to consider the ranks

of test statistics of the true effects.24 Here, it is shown that

similar information to the one-stage design is obtained by

genotyping all markers on 50 per cent of the sample and then

genotyping the 10 per cent most promising on the remainder,

resulting in a decrease of about 45 per cent in the number of

genotypes. Again, the total sample size can be calculated for a

one-stage design; this last guideline is currently the most

practical available and applies over a wide range of genetic

models and correlation structures between markers.

Table 1. Determinants of power in genome-wide association and expression studies.

Genetic association study Gene expression study

Number of genes tested High High

Number k of true effects Few; 1 , k , 50 Moderate; k ..1

Sample size Large; thousands Small; tens

Gene effect size Low; odds ratio ,2 High; log fold-change .2
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An application of this strategy has been reported in

which the primary constraint is the quantity of DNA available

for study subjects.25 About 44 per cent of the sample had

sufficient DNA to be typed for all markers, with the

remaining 56 per cent used for the second stage. An important

feature of this study is that the test statistics are calculated over

the full sample, with adjustment made for the interim test.

This is in contrast to the simpler approach used in the

simulation studies,21,23 in which test statistics were calculated

separately for the two stages and their p-values combined

into an overall significance. Analysing both stages at once25

makes more efficient use of information and will be the

more powerful method for computing significance in the

whole sample.

Formal sequential designs have also been proposed for

genetic association studies.26 These can result in substantial

cost savings, on average, but have yet to become widely

adopted, owing mainly to logistical difficulties. For example,

the stopping criteria must be applied to each gene separately,

but genotypes are often obtained in bulk in array format,

which makes it difficult to apply sequential designs efficiently

across many genes. The two-stage designs are a compromise

solution using frequentist inference, which also avoid the

uncertainty in actual sample size that occurs with sequential

inference. Future studies may introduce further design

variables. For example, different genotyping technologies may

be used in the two stages, with different unit costs, perhaps

using DNA pooling.27 Optimal study designs can be derived

for these conditions following current principles.

Analysis methods for multiple
associations

Many analysis methods are available for genetic data, but a first

pass through a genome-wide scan may normally consist

of single-locus tests for trend, perhaps additionally with

two-locus interaction tests.28 Several methods are now

available that exploit the important feature that the majority of

tested genes are not associated, but there are a small number of

true, but weak, associations to be found. These methods are

useful both for establishing statistical significance more strongly

than single-locus tests, and for informally suggesting sets of

genes for follow-up study.

In the traditional hypothesis-testing framework, each gene

is tested individually and then a stepwise adjustment procedure

is applied both to control the family-wise type-1 error rate

(FWER) and to declare individual genes associated.29 This

approach, related to the Bonferroni correction, achieves strong

control of the FWER, which is the probability of at least one

false positive being within the desired rate when there are

any number of true positives. This is generally considered to

be too conservative for genome-wide studies, however,

because we can tolerate a small number of false positives if

most true positives are detected. More preferable is weak

control of FWER, which ensures that the probability of at

least one false positive is within the desired rate only when

there are no true positives. This is desirable, because we must

defend against the possibility of there being no true associ-

ations in the sample, but it allows us to tolerate some false

positives if some true positives are present.

A joint test of multiple genes can maintain weak control of

FWER and should reveal greater evidence for association

from a set of genes, although perhaps with less specificity for

individual genes. This argument motivates the partial sum

statistics,30 which are formed by obtaining test statistics (typi-

cally x2 tests from a contingency table) for each individual

gene and then forming the sum of the K largest statistics,

where K is a fixed number called the length. The significance

of the sum can be assessed by a permutation test and an overall

significance estimated over a range of lengths.

A more flexible alternative to the sum statistic is the trun-

cated product of p-values. Here, the product is formed of all

the p-values lower than a preset threshold,31 or the K smallest

p-values.32 When the individual tests have the same distri-

bution, the rank truncated product has equivalent power to

the sum statistic, but is more balanced when the tests have

different distributions. This will occur, for example, when

conducting haplotype-based tests on regions of different sizes,

leading to tests with different degrees of freedom. Analytic

distributions are known for independent tests, which have

been used in simulation studies to show improved power

for combined evidence methods compared with traditional

corrections.31,32 The present authors prefer the truncated

product to the sum statistic on account of its balanced com-

bination of different test, and also prefer to truncate on rank

rather than threshold because the number of true gene effects

is fixed across studies, whereas their p-values are random.32

The length K should be close to the actual number of true

associations, but this is generally unknown. A range of lengths

could be tested, with the most significant length used to select

genes for follow-up analysis; but there is no formal basis for

this strategy, and simulation studies show that it is capable of

grossly over- or under-estimating the number of true associ-

ations.33 A judicious choice of a fixed length, say K , 20 for a

genome-wide association scan, is generally advisable provided

that the tests are reasonably independent. When there is strong

dependency between tests, such as in single-marker analysis

of a dense genome-wide scan, then the variable-length

approach can be used to establish statistical significance, but

not to estimate the number of follow-up genes. Informally,

genes would be followed up in rank order of significance;

and if the prior power is high, this will tend to identify the

true associations.32 In fact, formal adjustments based on the

closure principle are available for individual tests, which allow

strong control of FWER,34 but the primary use of truncated

products is to show that the strongest associations indeed

arise from true effects.
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In working with the summary p-value rather than the

complete data, some information is lost, and a single analysis

of the data may be more efficient. A natural approach is to

estimate all gene effects together in regression model. On the

genome-wide scale, a fixed-effects regression is impractical,

requiring estimation of many more parameters than there

are observations. Therefore, several methods proposed for

microarrays regard a gene as having a random effect, and

model the distribution of gene effects by parametric forms that

can be estimated. A simple model is to assume a normally

distributed effect around zero,35 although this may lack power

when most genes have no effect. The model can be extended

by assuming that the effect variability comes from small and

stronger effects, with inference based only on the stronger

effects.36 Another alternative is a mixture of a zero-centred

normal and a point mass at zero37 or, more generally, a mix-

ture of three normals with respectively positive, zero and

negative means.38 Here, the zero-centred distribution is

regarded as the null distribution, which allows for small non-

zero effects to be regarded as uninteresting if there is sufficient

evidence for stronger effects.

These approaches reduce the dimensionality of the infer-

ence while modelling the complete data, rather than sum-

marising each gene before combining evidence. These

methods offer promise for genome-wide association scans, an

important open question being the precision in estimating the

random effects distribution when the number and size of

true associations are small. For example, a method for testing

whether the overall distribution of p-values is uniform39 has

very little power compared with the Bonferroni correction

when the number of true effects is small (authors’ unpublished

data). Another important issue is the choice of random effects

distribution: current methods assume hierarchical or mixture

normal distributions, but experimental geneticists have

favoured gamma distributions.40,41 A useful feature of the

mixture distribution models is that they generate maximum-

likelihood probabilities of membership to each of the mixture

components, for each gene, which can be interpreted

informally as posterior probabilities of association allowing

individual genes to be selected for follow-up study.

Permutation testing

When the assumptions underlying analytical distributions are

not met, permutation tests are a popular method for com-

puting significance levels. In a genome-wide association study,

the problem is that genotypes are correlated due to LD;

indeed, the correlations are necessary for the design to be

successful. The standard procedure is to reassign trait values

among study subjects, while keeping their genotypes fixed,

thereby preserving the correlation structure across the multiple

genes and realising the exchangeability conditions for a valid

test.42 When performing thousands of tests on thousands of

subjects, however, a permutation procedure using thousands of

replicates becomes extremely time-consuming, with possible

running times of days or weeks. Therefore, more efficient

approaches to permutation testing have recently been

proposed.

The accuracy of the permutation test can be improved by

noting that the minimum p-value, sum statistic and truncated

product can all be regarded as the extreme value of a large

number of observations.33 Therefore, they should follow the

extreme value distribution43 and by fitting the parameters

of the distribution to the values observed in permutation

replicates, more accurate significance levels are obtained.

Equivalently, fewer replicates are needed to reach a given

accuracy. The efficiency gain depends upon a number of

factors, including the true significance level and the number of

tests, and it is difficult to compute standard errors for the

empirical p-values. Nevertheless, this approach has the

advantage of being generally applicable and, importantly, the

fitted distribution can be re-used in subsequent tests of the

same genes in the same population. This will be useful for

studies based on a standard genome-wide marker panel,3

leading to substantial time savings over the long term.

A complementary approach is to reduce the computation

within each replicate. Lin44 considered score statistics from

regression models, showing that it is sufficient to multiply

the score contributions of each subject by a normal random

deviate to generate a realisation from the null distribution.

Alternatively, Seaman and Müller-Mysock45 suggest sampling

directly from the multivariate distribution for all the genes.

The distribution can be estimated by considering the score test

from a regression model that includes all the genes as predic-

tors. This estimation may be difficult when the number of

genes exceeds the number of subjects for which the procedure

may need to be applied piecewise to subsets of genes. The

approach of Lin also requires the sample size to exceed the

number of genes, but preliminary results suggest that it would

be more robust than that of Seaman and Müller-Mysock when

applied across the whole genome.44 Both of these approaches

require the analysis to be expressed as a score statistic from

a regression model, which can be done in most situations

but may require additional work by the user. Currently, Lin’s

method seems better suited to genome-wide analysis, whereas

that of Seaman and Müller-Mysock is more applicable and

efficient in smaller-scale candidate gene studies.46

A further approach is to assume that the sampled markers

are representative of an ‘effective number’ of independent

tests.47–50 After estimating this number — for example, from

the singular-valued decomposition of the genotype correlation

matrix50 — asymptotic formulae can be applied. There is

no formal basis for this approach, however, and studies based

on real data indicate that the results are not always accurate;51

indeed, there may be no such effective number after all.33

This approach is not recommended; however, if it is used, all

significant results should be confirmed by a permutation test.
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False discovery rates

Another perspective on the multiple testing problem is that

the family-wise error rate is not the most appropriate

measure, and that other measures should be used that have

better sensitivity and specificity in genome-wide studies.

Although weak control of FWER for the overall significance

has been advocated, some error control for the single tests is

also desirable. Here, two prominent alternatives are discussed:

false discovery rates (FDRs)52,53 and posterior error rates.54,55

The original FDR by Benjamini and Hochberg52 is the

expected proportion of false positives among all positive

results, with the proportion defined as zero if there are no

positives. That is, if R is the number of positive results in a

study and V is the number of these that are false — that is, do

not arise from true gene effects — then:

FDR ¼ EðV=RjR . 0ÞPrðR . 0Þ:
Subsequently, Storey and colleagues53,56 have argued that

the choice of the appropriate rate depends on how many

positive results there are, and, furthermore, that the rate is only

meaningful when there is at least one positive. This motivates

the positive FDR (pFDR), defined as the expected proportion

of false positives among all positive results, conditional on

at least one positive at a given significance level:56

pFDR ¼ EðV=RjR . 0Þ:
Rather than setting a fixed pFDR rate to control, Storey

and colleagues suggest giving a value to each test that indicates

what pFDR would result from declaring that test significant.

The follow-up tests can then be chosen based on joint con-

sideration of the number of tests selected and the pFDR

associated with them. Formally, the q-value associated with an

individual test is defined as the minimum pFDR achieved

when declaring all tests significant at the level of the test’s p-

value. A q-value can be estimated for each test in a genome-

wide experiment and follow-up tests selected from those with

the lowest q-values. This last stage is somewhat informal and

may be driven by logistic and financial constraints.

A difficulty with FDR methods is that they control an

expected proportion, whereas an investigator will be more

concerned with the actual proportion of false positives

within a study. Some insight is gained by considering the

variation in within-study false discovery proportion or false

discovery variance. Let i be an integer with p(i) the i-th

smallest p-value from a set of m tests. If the i most signifi-

cant tests are declared positive, then mp(i) estimates the

maximum number of false positives. The associated variance

is mp(i)(1 2 p(i)) (because the truth of a positive test is a

binomial outcome) and the coefficient of variation is
ffiffiffiffiffiffiffiffiffi
12pðiÞ
pðiÞ

q
for the within-study false discovery proportion. This is

greatest when p(i) is small, so, for a fixed set of p-values, this

coefficient of variation is greatest when the fewest tests are

declared significant. This will occur when a low error rate is

set, or when there are few true associations, or when the

power is low. In genome-wide association scans, the number

of true associations is expected to be small by comparison

with the number of tests, so that the false discovery

variance is relatively high in relation to the target rate,

and the FDR approach may not be reliable for controlling

the error rate within studies. In gene expression exper-

iments, however, the number of true associations is

somewhat higher and FDR methods are more appropriate

for those studies.

Korn et al. study the within-study proportion of false

discoveries and give procedures that keep the number (or

proportion) of false discoveries within an upper bound with

given probability.57 The attraction of this approach is that

one can limit the number of false positives with reasonable

confidence, with the main disadvantage being increased

computation. It is uncertain how the false discovery

proportion behaves when it falls outside the upper bound and,

although this approach is attractive, further operating

characteristics may be needed before it becomes more

widely used.

A further difficulty with FDR is that it says little about

the individual tests. The most significant tests are most likely

to be the true positives, but FDR and q-values ignore this in

favour of averaging the error rate across all significant tests.

Efron and colleagues58,59 propose the local FDR as the

posterior probability that a null hypothesis is true, given

an observed statistic. The local FDR is calculated as

p0f 0ðT Þ
p0f 0ðT Þ þ ð12 p0Þf 1ðT Þ ;

where p0 is the prior probability that the null hypothesis is
true, T is a test statistic and f0 and f1 are the probability

densities of T under the null and alternative hypotheses,

respectively. p0 and f1 may be unknown but could be esti-

mated from the data.58,60,61 Note, however, that when the

true value of p0 is near one, as is likely in disease association
scans, empirical estimates of p0 may be greater than one,
which leads to a downward bias if these estimates are

truncated at one. Thus, it is better to fix a prior estimate of

p0 from genomic considerations such as the number

of expected disease genes (O(101)) and the number of genes

in the genome (O(104)).62

Both the local FDR and the q-value are calculated for

individual tests. The q-value should be preferred if all positive

tests will be followed up with roughly equal priority, which

may be the case for a moderately powered study in which true

and false positives are not well separated. The local FDR is

preferable if decisions to follow up positive tests are taken on a

case by case basis, because it is a property of single tests rather

than the whole set of positive tests. This applies if there are

a few very strong associations, together with some moderate
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ones, or if additional sources of evidence, such as biological

plausibility, are taken into account, together with the statistical

association.

A related quantity is the false-positive report probability

(FPRP).55,63 This is the posterior probability that a null

hypothesis is true, given a statistic at least as extreme as that

observed. It is calculated as

p0F0ðT Þ
p0F0ðT Þ þ ð12 p0ÞF1ðT Þ

where now F0 and F1 are the cumulative distributions. For

known p0 and F1 and large number of multiple tests, the

FPRP is the same as the q-value,56 the main difference being

one of context. FPRP is intended to be applied across multiple

studies and calculated from prior models, whereas q-values are

motivated by the within-study FDR and are usually estimated

from data. FPRP is also mathematically complementary to the

positive predictive value of a discriminant,64 again differing in

context. Because FPRP is a property of a range of test stat-

istics, it is appropriate for setting guidelines for the reporting

of significant results, based on assumed models for p0 and F1.

This means that results can continue to be reported according

to their p-values, but with modified thresholds of significance.

A known proportion of reported results will then be false;

however, for assessment of specific tests for follow-up, the local

FDR is more relevant to investigators.

Posterior error rates such as local FDR and FPRP are

gaining support because informed proposals can now be made

for the prior probability of the null being true, based on

genomic considerations.55,62Which of the various measures to

use depends on the context. Some of the determining factors

are summarised in Table 2.

Concluding remarks

Several aspects of the analysis of genome-wide studies have

been discussed, including study design, analysis method and

error control, all of which bear on the likelihood of

successfully identifying gene effects. There are some key

aspects that have not been considered here, including

selection and grouping of markers to be tested, population

choice and data quality control. To some extent, these issues

are specific to the type of study; this review has focused

on the more general statistical issues that apply to most

studies.

The field will continue to develop rapidly as more

studies are completed and there is much scope for new

methodology. In particular, combinations of the current

methods may prove to be fruitful — for example,

including combined evidence tests within a two-stage

design. There is no best method for all studies, because

of their differing properties and aims, but this review has

identified some of the questions that should guide the

choice of analysis method. Another important area for

development, which has not been discussed here, will be

the incorporation of evidence from several sources,

including association studies, gene ontology annotation,

information from model organisms and structural bio-

informatics, to give a holistic appraisal of the effects of

genetic variation.

Table 2. Comparison of different error rates and analysis methods. ‘Error control’ indicates whether a method provides some measure

of error: (1) type-I error; (2) posterior probability of association; (3) expected proportion of false discoveries in a series of tests. ‘Appro-

priate for’ indicates whether, in the view of the authors, a method is suitable for genome-wide association or expression studies, based on

the factors in Table 1.

Error control for Appropriate for

Whole study Single test Association study Expression study

Family wise error, strong Yes (1) Yes (1) No No

Family wise error, weak Yes (1) No Yes Yes

Minimum p-value Yes (1) Yes (1) Somewhat No

Truncated p-value product Yes (1) No Yes Possibly

Random gene effects model Yes (1) Yes (2) Possibly Yes

False discovery rate Yes (3) No No Yes

Q-value Yes (3) Some (3) No Yes

Local false discovery rate Yes (2) Yes (2) Yes Yes

False-positive report probability Yes (3) Some (3) Yes Yes
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