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2 Aßenmacher et al.

Abstract Exposure-lag response associations shed light on the duration of

pathogenesis for radiation-induced diseases. To investigate such relations for

lung cancer mortality in the German uranium miners of the Wismut company,

we apply distributed lag non-linear models (DLNMs) which offer a flexible de-

scription of the lagged risk response to protracted radon exposure. Exposure-

lag functions are implemented with B-Splines in Cox models of proportional

hazards. The DLNM approach yielded good agreement of exposure-lag re-

sponse surfaces for the German cohort and for the previously studied cohort

of American Colorado miners. For both cohorts, a minimum lag of about

2 yr for the onset of risk after first exposure explained the data well, but

possibly with large uncertainty. Risk estimates from DLNMs were directly

compared with estimates from both standard radio-epidemiological models

and biologically-based mechanistic models. For age > 45 yr all models pre-

dict decreasing estimates of the Excess Relative Risk (ERR). But at younger

age marked differences appear as DLNMs exhibits ERR peaks, which are not

detected by other models. After comparing exposure responses for biological

processes in mechanistic risk models with exposure responses for hazard ratios

in DLNMs, we propose a typical period of 15 yr for radon-related lung carcino-

genesis. The period covers the onset of radiation-induced inflammation of lung

tissue until cancer death. The DLNM framework provides a view on age-risk
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Exposure-lag response in German uranium miners 3

patterns supplemental to the standard radio-epidemiological approach and to

biologically-based modeling.

Keywords uranium miners · radon exposure · lung cancer mortality ·

distributed lag non-linear models · exposure-lag response surface
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4 Aßenmacher et al.

1 Introduction

Lung cancer is the most frequent cause of death among all cancer diseases

[17]. The predominant risk factor is tobacco smoke followed by anthropogenic

environmental radiation exposure, but a good understanding of the biological

processes leading to lung cancer is still lacking [1]. Epidemiological risk as-

sessment provides a powerful tool to establish statistical associations between

exposure to ionizing radiation and late health effects. Radio-epidemiological

models rely on a comprehensive description of the radiation risk with appro-

priate mathematical functions. In their standard form they apply a response

function to the total radiation exposure, which is modified by various predic-

tor variables, often called effect modifiers (EMs). For acute exposure these

variables include sex, age at exposure and attained age. Risk assessment for

protracted exposure requires a detailed exposure history, which has been esti-

mated for several carcinogenic agents in the German uranium miners cohort of

the Wismut company for the period 1946-1989. Smoking information is only

available for part of the cohort [28]. But for exposure to radon and its short

lived progeny, which constitutes the second most important lung carcinogen,

annual exposures were estimated for each miner from begin to end of em-

ployment. Thereafter, cohort members were subject to a mortality follow-up

until 2003 as end of follow-up for the present study [27]. Overall, the mortality

follow up has been executed until 2013. Lung cancer risks have been studied

extensively in the Wismut cohort with complex radio-epidemiological models

[25,47,49]. Studies on all late health effects are reviewed by Walsh et al. [48].
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Exposure-lag response in German uranium miners 5

Applying the total exposure response with EM adjustment for risk esti-

mation represents the quasi-standard approach in radiation epidemiology. It

is generally accepted by committees BEIR VI [4], BEIR VII [34], UNSCEAR

[45] and ICRP [46] which issue recommendations for radiation protection. On

the other hand, this descriptive approach provides little insight into cancer

etiology. To make progress here, the present study investigates the distribu-

tion of time lags between exposure and outcome. It reflects the duration of

disease development, thereby supporting a biologically-based analysis of ob-

servational cancer data. Until now, only a few radio-epidemiological studies

have addressed this aspect.

In the cohort of Japanese a-bomb survivors, the radiation risk arises from

a single event of acute exposure. For leukemia mortality of a-bomb survivors

Richardson et al. [38] have reported a peak in the Excess Relative Risk (ERR)

10 yr after exposure. A lognormal lag function with only two parameters pro-

vided a good description of the data. For protracted exposure, a lagged re-

sponse cannot be gleaned directly from incidence data but can be uncovered

by disentanglement of the exposure-lag response. Several approaches have been

tested on the cohort of Colorado Plateau uranium miners, which exhibits ex-

posure patterns similar to the Wismut cohort but with additional records for

smoking habits [42]. Pertinent studies are built on the assumption, that ex-

posure in short constant age intervals contributes additively to the radiation

risk albeit with differential weight [6,13,20].
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6 Aßenmacher et al.

Hauptmann et al. [20] analyzed exposure-lag relationships using spline

weight functions. Deviating from the standard radio-epidemiological approach

as described above, they applied a linear risk response to the exposure rate1.

Armstrong [2] and Berhane et al. [6] extended this scheme to accommodate

time-varying exposure.

Gasparrini [12,13] applied a more general framework for the analysis of

exposure-lag response associations in the cohort of Colorado Plateau uranium

miners using distributed lag non-linear models (DLNMs). Such models are con-

structed by a flexible bivariate exposure-lag response surface, which maintains

the linearity of model parameters. Consistent with previous studies [6,20] Gas-

parrini [13] estimated a similar shape for the lag response curve, which was

constructed with quadratic B-splines.

Implemented as a package in R [36], the DLNM framework offers convenient

versatility to describe model non-linearities and distributed lag effects [12]. It

features an algebraic definition of standard errors, confidence intervals and

tests, allows for a flexible use of different functions for each dimension and

provides a well-designed tool for interpreting results.

Zaballa and Eidemüller [51] applied a biologically-based Two Stage Clonal

Expansion (TSCE) model to the Wismut cohort. Their mechanistic analysis

was concerned with biological aspects of lung carcinogenesis such as oncogenic

mutations and the growth dynamics of pre-cancerous lesions. As biological

1 In the standard radio-epidemiological approach exposure response is related to cumu-

lative exposure, whereas exposure response in the DLNM framework is related to exposure

rate.
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Exposure-lag response in German uranium miners 7

target of radon exposure they proposed clonal expansion of initiated cells in-

creased by radiation-induced inflammation. The mechanistic TSCE model is

fully capable of providing risk estimates for comparison with standard risk

models. Thus, to put the results of the TSCE model into perspective, they

applied a modified version of the preferred ERR model from Walsh et al. [47]

as reference.

In the cohort of Colorado miners about 260 lung cancers cases have been

recorded until end of 1982, compared to about 3000 cases in the Wismut cohort

followed up until 2003. As the largest cohort of uranium miners in the world

to date, the Wismut cohort offers a unique opportunity to validate the results

of Gasparrini [13] for the Colorado Plateau uranium miners. With the present

study we examine response functions of the hazard ratio related to both annual

radon exposure and time since exposure. Second, estimates of the ERR from

our preferred DLNM are compared with results from both mechanistic models

and standard radio-epidemiological models applied in the study of Zaballa and

Eidemüller [51]. Our main interest here is to assess the ability of risk models to

represent plausible exposure-lag response associations. Finally, by comparing

results from DLNMs and biologically-based risk models, we speculate on the

duration of development for radon-related lung cancer.
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8 Aßenmacher et al.

2 Materials and Methods

2.1 The Wismut Cohort

In March 2016 we obtained access to the Wismut cohort data set from the Ger-

man Federal Office for Radiation Protection (Bundesamt für Strahlenschutz

(BfS)) by transfer agreement. The full data set comprises 58,987 men who were

formerly employed at the Wismut company in the years from 1946 to 1989.

Radiation exposure was estimated by using a detailed job-exposure matrix

(JEM), which includes information on exposure to radon and its progeny in

WLM, external radiation in units of mSv and long-lived radionuclides (235U,

238U) in units of kBq h/m3. The JEM provides exposure values for each cal-

endar year of employment between 1946-1989, each place of work and each

type of job. More than 900 different jobs and 500 different working places

were evaluated for this purpose. Radon (222Rn) measurements in the Wismut

mines were carried out from 1955 onwards. For the period from 1946-1954,

radon concentrations were estimated retrospectively by an expert group based

on measurements from 1955, taking into account specific mining conditions

in the early period. From 1955-1965 about 57,000 radon gas measurements

were taken in Saxonian underground mines, from 1966-1990 about 140,000

radon progeny measurements were performed. The corresponding numbers for

Thuringian underground mines are about 39,000 radon measurements between

1955-74, and about 160,000 radon progeny measurements from 1975-1990. For

each calendar year and each mining object individual exposure estimates were
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Exposure-lag response in German uranium miners 9

assigned to all cohort members. More details on exposure estimation and un-

certainty assessment are given in the reports of Lehmann et al. [30,31] and of

Küchenhoff et al. [29].

Due to missing values for silica dust exposure 292 members were excluded,

so that 58,695 workers contributed to the present analysis. A miner was con-

sidered at risk from date of first employment until date of death, date of loss

to follow-up or end of follow-up (December 31, 2003). In total, 20,757 deaths

occurred as 35.4% of the full cohort of which 2,996 deaths (5.1%) were at-

tributed to lung cancer. For a more circumstantial description of the Wismut

cohort see ref. [27].

2.2 The Cox model

Theory

For risk assessment we apply an extension of Cox’s model of proportional

hazards to allow for non-linearity and lagged effects in exposure-related co-

variables using the algebraic notation

λ(t, x, z, cal, abe) =λ0(t) · exp [sx(x, t)

+ sz(z, t) + γ cal + δ abe] .

(1)

with sx (radon) and sz (silica dust) as non-linear exposure covariables, calen-

dar time cal (centered around the year 1970) and the age at begin of employ-

ment abe as linear covariables.
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10 Aßenmacher et al.

Inference

Inference in the Cox model is performed via the partial likelihood approach,

using Efron’s method [9] for tie handling, which allows to skip the estimation

of the nuisance parameter λ0(t) to reduce complexity [8]. Risk estimates are

expressed as hazard ratios (HRs). The statistical analysis was performed using

the packages survival [43,44] and dlnm [12] within the statistical software R

[36,40]. The figures were created using the package ggplot2 [50].

2.3 The DLNM framework

As the analysis is based on an approach introduced by Gasparrini and col-

leagues [13–15] we will give a brief summary of the mathematical background

and the inference methods. While Gasparrini et al. [14] are mainly concerned

with time series analysis, Gasparrini [13] applies the methodology to analyze

time-to-event data with the Cox model. Gasparrini et al. [15] focus on the ex-

tension to a penalized framework. Bender et al. [5] use a piecewise exponential

model for a flexible analysis of lagged effects. We start with an introduction

of the simpler distributed lag models (DLMs), which are then extended to

accommodate more complex non-linearities [13].

Distributed lag models (DLMs)

DLMs describe the lag response relationship for a linear effect of exposure,

understood here as annual rates for exposure to radon and its short-lived
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Exposure-lag response in German uranium miners 11

progeny. Gasparrini [13] describes the relation in the following form

s(x, t) =

∫ L

`0

xt−` · w(`) d` (2a)

≈
L∑

`=`0

xt−` · w(`), (2b)

where w(`) is the so-called lag response function.

In Eq. (2a), L − `0 defines the period while exposure has an effect on

outcome. Eq. (2b) is an approximation of the integral (2a). An optimal value

for the minimum lag `0 will be searched in the present study. The maximum

lag L is confined to 40 yr after exposure as in ref. [13], although some cohort

members are followed up for 57 years.

Expressing s(x, t) in matrix notation yields

s(x, t;η) = q>i,t Cη = w>i,t η, (3)

where qi,t = (xi,t−`0 , ..., xi,t−`, ..., xi,t−L)> and C as a transformation of the

lag vector ` with a vector of dimension υ>` defining the basis functions. So Eq.

(3) is the vectorial representation of Eq. (2a) with adjustable parameters η as

coefficients for B-Splines.

Distributed lag non-linear models (DLNMs)

Allowing for non-linearity in x and giving up the assumption of independence

of f(.) and w(.) yields

s(x, t) =

∫ L

`0

f · w(xt−`, `) d` (4a)

≈
L∑

`=`0

f · w(xt−`, `), (4b)
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12 Aßenmacher et al.

where f ·w(xt−`, `) is a truly bivariate function in x and in t. This constitutes

an exposure-lag response surface [13], which is parameterized with a special

tensor product, called cross-basis [2].

By defining2

Ai,t =
(
Ri,t ⊗ 1>υ`

)
�
(
1>υx ⊗C

)
, (5)

the cross-basis function can be written as

s(x, t;η) =
(
1>L−`0+1Ai,t

)
η = w>i,t ηx. (6)

Similar to C in Eq. (3), Ri,t is constructed by transforming qi,t with a vector

of dimension υx. The identifiabilty issues mentioned by Gasparrini [13] do not

apply here as we do not include intercepts in the basis functions for exposure

covariables x and z in sx(x, t) and sz(z, t), respectively.

2.4 Model selection

Model selection is performed with goodness-of-fit measured by the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC).

These two criteria are given as

AIC =− 2 · L(η̂x, η̂z, γ̂, δ̂) + 2 · df (7a)

BIC =− 2 · L(η̂x, η̂z, γ̂, δ̂) + ln(n) · df, (7b)

where n is the number of uncensored events (i.e. lung cancer deaths) and

df is the degree of freedom (or model parameters). Parameters estimates are

2 ⊗ denotes the Kronecker product, while � denotes the Hadamard product
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Exposure-lag response in German uranium miners 13

calculated for B-spline coefficients in the exposure-lag response relations for

radon η̂x and silica dust η̂z, and for adjustment to calendar year γ̂ and age at

begin of exposure δ̂.

In the primary analysis to this study (Master thesis of Matthias Aßen-

macher [3]) some 50 models have been fitted. We chose model selection by

AIC as the method of choice although slight over-fitting can come with it.

On the other hand, BIC selection produced too sparse models, which tend

to overlook important features of the data. In addition, we report results of

LRTs, to support the findings obtained by comparison of AIC vs. BIC, where

possible.

To avoid biologically implausible exposure-lag response surfaces we applied

an additional criterion of wiggliness. In the lag response relationship, curves

with wiggly courses are not accepted. Wiggly curves are defined as having

more than one change in slope from positive to negative or vice versa. The

criterion is motivated by the assumption that protracted exposure of limited

duration causes health effects, which peak after a typical time since exposure

and decline thereafter.

2.5 Descriptive ERR model of Zaballa and Eidemüller

For comparison with the results of our study we apply the descriptive ERR

model of Zaballa and Eidemüller [51]

ERRr = βrD
[
1 + αt1(tsme − 11) + αt2(tsme − 11)2

]
(8)

· exp [−αa(a− 44)− αr(davg − 32.4)]
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14 Aßenmacher et al.

with central ERR coefficient βr for cumulative radon exposure and EMs for

time since median exposure tsme, attained age a and mean exposure rate davg

expressed in working level months per year (WLM/yr). Maximum likelihood

estimates for model parameters are given in Table 4 of Zaballa and Eidemüller

[51]. Note, that for their biologically-based TSCE model no closed analytical

form can be given.
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3 Results

We systematically explored a large number of models to determine our pre-

ferred DLNM. The model design is successively revised by variation of the cross

basis in Eq. (6). Each model is assessed by its goodness-of-fit and biological

plausibility. Suitable adjustments for silica dust and minimum lag `0 for radon

exposure have been examined with simpler DLMs. To limit the number of

test calculations, these adjustments have been retained for the more complex

DLNMs without modification. Results of our investigations are summarized

here, more detailed information is given in the Appendix and in the primary

analysis [3].

3.1 DLMs

DLMs rely on a linear relationship of the response to the annual radon exposure

rate xt−` given in Eq. (2b). For the lag response function wx(`) various forms

have been tested as reported in Appendix A.1. At the onset, the HR depen-

dence on exposure to silica dust has been determined. The exposure-response

function f(zt−`) for silica dust is specified as a linear threshold function, and

the lag-response function wz(`) is chosen as piecewise constant with two cut-

off points. The minimum lag `0 was set to 2 yr. The lag response association

of our preferred DLM L5 is shown in Fig. A2. Table A1 summarizes proper-

ties and goodness-of-fit (including p-values of LRTs) for a selected number of

DLMs.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 Aßenmacher et al.

3.2 DLNMs

The evaluation of DLMs already showed that B-Splines of higher degrees are

not suited for modeling the lag response. Consequently, B-Splines of degrees

five and six are no longer considered [3]. B-Splines of degree one are discarded

a-priori as they possibly oversimplify the true underlying relationship. Con-

cerning the knots and their placement, up to five knots on equally spaced

quantiles of the lag distribution were chosen.

For the characterization of the exposure-response function, B-Splines are

applied as well. In this case, B-Splines of degree two, three and four in com-

bination with zero to five knots at equally spaced quantiles of the exposure

distribution are taken into consideration. The AIC-selected models character-

ize the exposure response well. The 20 AIC-best models all include a B-Spline

of degree two with two knots at 33.3% and the 66.6% quantiles of the exposure

distribution. Within these models, considerable variation was observed for the

lag response, but none of the AIC-best models contains a B-Spline with more

than three knots. Table 1 summarizes the properties and goodness-of-fit for

selected DLNMs, which all apply the same B-Splines of degree two for the

preferred non-linear risk response to annual radon exposure. Compared to the

preferred DLM L5 nearly all models improve the AIC by about hundred points.
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Table 1 Properties and goodness-of-fit for DLNMs NL1 to NL4 with exposure-(rate)-

response f(xt−`) constructed from B-splines of degree 2 with 2 knots at 1.6 WLM/yr and

16.5 WLM/yr, for the lag response wx(`) the knot is placed at 20 yr, df denotes the number

of model parameters, lowest values for AIC and BIC in bold. We also carried out LRTs

where NL2 was tested against NL1 (p < 0.01) and NL4 (p = 0.205). The tests indicate

a superior goodness-of-fit of NL2 compared to NL1, but no superiority compared to NL4

(despite the inclusion of the intercept). NL4 is our preferred model.

Model wx(`) AIC BIC df

NL1 constant 58241.75 58295.79 9

NL2 B-Spline (degree 2, 1 knot, intercept) 58234.52 58360.62 21

NL3 B-Spline (degree 2, 1 knot, right-constrained) 58295.72 58349.77 9

NL4 B-Spline (degree 2, 1 knot) 58232.44 58334.52 17

Minimum lag period

In the primary analysis to this study special attention has been given to the

characterization of the minimum lag period for risk onset [3]. Minimum lag `0

was defined as the time after (first) exposure when the HR exceeds a biolog-

ically plausible threshold of one. Using a heuristic method, some 50 models

have been examined with a minimum lag varying between 0 and 5 yr. Based

on goodness-of-fit, models with a minimum lag between 2 and 3 yr yielded a

good data description. Models with longer minimum lag provided markedly

inferior fits.

We reexamined the estimation of `0 by considering model NL2 which al-

lowed for flexible minimum lags depending on exposure rate as shown in Fig.
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1. In model NL2 the intercept varies weakly with exposure rate and is com-

patible with a 2 yr minimum lag. Model NL4 with a fixed minimum lag at 2 yr

yields a slightly lower AIC than model NL2, but with four intercept-related

parameters less its BIC is considerably lower (Table 1).
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Fig. 1 Lag-response curves for the hazard ratio (HR) of model NL2 for exposure rates of

30 WLM/yr to 200 WLM/yr, model NL2 was used to estimate minimum lags.

Behavior long after exposure

To investigate the behavior long after exposure, the lag-response function in

DLNM NL3 was right-constrained to HR = 1 at time since exposure 40 yr.

Compared to models NL4 and NL2 without right-constraint the information

criteria AIC and BIC were markedly increased, suggesting a significant residual

lung cancer risk more than 40 yr after exposure (Table 1). Figs. A3 and A4

in the Appendix depict lag response curves, exposure response curves and the

complete exposure-lag-response surface of model NL3.
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Preferred DLNM

After assessing DLNMs NL1 - NL4 based on goodness-of fit and biological

plausibility, we choose NL4 as our preferred DLNM. Model NL4 satisfies the

criterion of wiggliness and has an AIC of about 113 points lower than the

preferred DLM L5 (Table 1, Fig. A2 in the Appendix). It contains a cross-

basis with a B-Spline of degree two with two knots for the exposure response

function at 1.6 WLM/yr and 16.5 WLM/yr, and a B-Spline of degree two with

one knot at a lag of 20 years for the lag response. Estimates for the cross-basis

coefficients are given in Table A3 in the Appendix.

3.3 Age-risk patterns of the preferred DLNM

The exposure-lag-response surface is shown in Fig. 2 and selected lag-response

curves and exposure-response curves are depicted in the upper panels of Fig.

3. Peak hazard ratios appear about 15 yr after exposure to any annual radon

exposure rate from 5 WLM/yr to 300 WLM/yr. The lag-response flattens for

time since exposure > 30 yr but does not vanish at the end of the lag period

L = 40 yr.

The exposure response increases sharply below an exposure rate of about

20 WLM/yr and then reverts to a smaller slope until about 200 WLM/yr. For

exposure > 200 WLM/yr a small drop in the exposure response is observed for

time since exposure < 30 yr. But for larger lag times the increase continues. At

very low exposure rates < 5 WLM/yr hazard ratios become smaller than one.
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Such protective effects at low exposure rates have been reported for animal

experiments [21]. However, they are not in the focus of the present study and

may well be attributed to mathematical artifacts of knot placement. Estimates

for confounders age at begin of employment, calendar year and silica dust

exposure for the preferred DLNM NL4 are given in Table A2 and Fig. A5 in

the Appendix.
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Fig. 2 Exposure-lag-response surface for the hazard ratio (HR) of the preferred DLNM NL4,

two solid lines along the surface delineate a lag response curve at exposure 70 WLM/yr and

an exposure response curve at time since exposure 15 yr, at exposure rates < 5 WLM/yr

the HR becomes < 1.
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Fig. 3 Selected lag-response curves of the hazard ratio (HR) for radon exposure rates

between 30 WLM/yr and 200 WLM/yr (left panels) and exposure-response curves of the

HR for time since exposure between 10 yr and 30 yr (right panels) for our preferred DLNM

NL4 (top panels) to model 8 by Gasparrini [13] (bottom panels).

Baseline rates from the preferred DLNM NL4 are displayed in Fig. A6

of the Appendix for age intervals of five years and six calendar year periods

between 1946 - 2003. Baseline rates from both the mechanistic and the de-

scriptive models exhibit an attenuation or even a decrease at old age (results

not shown). Compared to baseline rates from the preferred DLNM NL4 they

possibly provide a more accurate description of the male lung cancer mortality

in Germany but a deeper investigation of baseline rates is beyond the scope

of the present study.
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3.4 Exposure scenarios

To compare risk estimates of our preferred DLNM NL4 with those of the stan-

dard radio-epidemiological ERR model (cited in Eq. 8) and the biologically-

based TSCE model, both from Zaballa and Eidemüller [51], we consider sce-

narios motivated by the distribution of covariables age of death, age at median

exposure, exposure duration, exposure rate and cumulative lifetime exposure

summarized in their Table 5. Birth year 1930 was assumed for a miner with-

out silica exposure, the period of exposure was centered around median age

26 yr in 1956. For the scenario calculations 12.5 WLM/yr was chosen as min-

imal exposure rate, although mean exposure rates of 7 WLM/yr for miners

employed after 1955 and 1.4 WLM/yr for miners employed after 1959 were

markedly lower. However, for such low exposure rates the exposure response

of the preferred DLNM NL4 is burdened with considerable uncertainty and

should not be applied (Figs. 2 and 3).

For a scenario of constant cumulative exposure 100 WLM and 400 WLM

with duration of 4 yr and 8 yr lung cancer mortality was considered for attained

age from 40 - 80 yr, corresponding to calendar years 1970 - 2010. Fig. 4 depicts

estimates for the age dependence of the ERR. Due to the DLNM construction

for Cox regression in Eq. 1, the corresponding ERR = λ(x = d)/λ(x = 0)− 1

= exp[sx(x = d, t)]−1 depends only on exposure rate d and time since exposure

t, whereas dependencies on calendar year cal and age at begin of employment

abe cancel out.
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Fig. 4 Estimates of the ERR depending on attained age for cumulative exposure to 100

WLM at exposure rates 12.5 WLM/yr and 25 WLM/yr (upper panel) and for cumulative

exposure to 400 WLM at exposure rates 50 WLM/yr and 100 WLM/yr (lower panel) at age

of median exposure 26 yr for the preferred DLNM (red), the TSCE model (green) and the

ERR model (blue), shaded areas display 95% CIs of the preferred DLNM (light gray) and

the TSCE model (dark gray).

For a scenario of constant exposure rates 12.5 WLM/yr and 100 WLM/yr

Fig. 5 shows estimates of the ERR for attained age 60 yr in 1990 depending

on radon exposure accumulated by increasing exposure duration up to 12 yr.

Risk dependence on cumulative exposure is considered here to assess the range

of applicability for the linear no-threshold (LNT) paradigm in radiation pro-

tection.
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Fig. 5 Estimates of the ERR depending on cumulative radon exposure for the preferred

DLNM (red), the TSCE model (blue) and the ERR model (green) for scenarios with age

at median exposure 26 yr, attained age 60 yr and constant exposure rates 12.5 WLM/yr

(upper panel), 100 WLM/yr (lower panel) for exposure duration up to 12 yr, shaded areas

display 95% CIs of the preferred DLNM (light gray) and the TSCE model (dark gray), for

the lower exposure rate 12.5 WLM/yr DLNM and TSCE model give the same result.
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4 Discussion

4.1 Comparison with the preferred DLNM for the Colorado cohort

Fig. 3 compares lag-response and exposure-response curves from our preferred

DLNM NL4 with those from the preferred DLNM model 8 for the Colorado

cohort [13]. Exposure-lag response relationships from both studies produced

similar estimates for hazard ratios in the range between 1.2 - 1.3. Despite

missing adjustment for smoking in the Wismut cohort and missing adjustment

for silica dust in the Colorado cohort, estimates from both cohorts agree very

well. Previous studies pointed to sub-multiplicative response of the relative

risk to joint action of radon and smoking with a reduction of the radon risk by

some 20% [32,33]. We observed a similar effect of on average 16% reduction

for interaction between exposure to silica dust and radon.

The shape of the lag response curves exhibits similar features. Estimates

of peak risk between 10-15 yr after exposure are broadly consistent. However,

the lack of evidence of a risk more than 35 yr after radon exposure in the

Colorado cohort may be related to a small number of cases contributing for

large time since exposure. In the Wismut cohort the radon risk persists even

after a time lag of 40 yr, which is biologically more plausible.

The majority of uranium miner studies routinely rely on 5 yr lags for

cumulative exposure (see e.g. refs. [42] for Colorado miners and [28,25,47]

for Wismut miners). Yet Fig. 3 shows, that HRs from DLNMs at 5 yr after

exposure may have already reached half the maximum risk in some cases.
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Application of 5 yr lags could underestimate the risk shortly after first exposure

but risks occurring much later than 5 yr after exposure are still adequately

described.

The non-linear exposure response association to annual radon exposure

rates exhibits break points between 20 WLM/yr (present study) and 50 WLM/yr

(Gasparrini [13]) which mark a change to reduced slope (Fig. 3). The biological

meaning of break points must not be over-interpreted since they are intrin-

sic features in B-Splines. A natural logarithm describes the exposure response

almost equally well [3].

4.2 Comparison with standard radio-epidemiological and biologically-based

risk models

In Fig. 4 all three models predict a decreasing risk at old age but with markedly

different trends. The ERR from the DLNM peaks at about 43 yr as expected

from the lag response curves. The TSCE model does not exhibit a maximum

risk but the risk decays smoothly from a constant plateau. The course of the

risk from the ERR model is dominated by an exponential decay at young

ages, which is mitigated by a time-since-exposure effect at old ages. Whereas

for cumulative exposure 100 WLM all models produce ERR estimates in the

same range, for cumulative exposure 400 WLM the ERR estimates of the

DLNM are significantly lower consistent with results shown in Fig. 5.

While the ERR model includes the LNT assumption in its design, responses

to the cumulative radon exposure in the TSCE model and the DLNM model
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can deviate from linearity if suggested by fits to the data. In DLNMs the HR

is roughly proportional to exp(βD), which for small cumulative exposure D is

approximated by a linear response 1+βD. In Fig. 5 a low exposure rate of 12.5

WLM/yr leads to 150 WLM cumulative exposure at maximum. For cumulative

exposure up to this maximum linearity is supported by all three models. For

higher cumulative exposure up to 1200 WLM, which is caused by an exposure

rate of 100 WLM/yr, the response of the TSCE model shows a clear upward

curvature, which is weakly reflected by the DLNM. This behavior is in line

with findings for the Wismut cohort where non-linearity for ERR models has

been tested by Walsh et al. [47] (see the discussion of their Fig. 1). Statistical

significance of a quadratic term for cumulative exposure disappeared after

adjusting for exposure rate.

An analysis with descriptive Poisson regression models yielded a central

estimate for ERR/100 WLM of 1.06 (95% CI: 0.69; 1.42) [47]. The ERR was

adjusted for EMs median age at exposure centered at 33 yr, time since median

exposure centered at 11 yr, and exposure rate centered at 2.7 WL. Zaballa

and Eidemüller [51] reported a central estimate of 1.28 (95% CI: 0.81; 1.77)

from their ERR model using the same EMs time since median exposure and

exposure-rate. We find a corresponding estimate of 0.25 (95% CI 0.18; 0.31)

for a rate of 32.4 WLM/yr (= 2.7 WL) and time since exposure between

9.5 yr and 12.5 yr from our preferred DLNM. Our estimate is much lower

than estimates from TSCE model and from the descriptive ERR model, which
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assumes a linear-quadratic attenuation effect for time since exposure in the

exponent (Eq. 8).

4.3 Onset and duration of development for radon-related lung cancer

Drawing conclusions on lung cancer etiology from radio-epidemiological mod-

els, which merely rely on statistical associations, has strict limitations [18,39].

As a necessary condition the biological concept of cancer development must

be specified [7]. For radiation-induced carcinogenesis the biologically based

TSCE model provides such a concept and has been successfully applied to a

wide range of radio-epidemiological data sets [41]. By jointly analyzing results

from DLNMs and TSCE models, we can gain some insight into the duration

of development for radon-related lung cancer.

We interpret the latency period tlat as the time span between the appear-

ance of the first malignant cell to the time to death. This interpretation is com-

monly used in biologically-based modeling of lung carcinogenesis [16,33,51].

Latency tlat is not yet accessible by direct measurement and depends strongly

on model assumptions. In the present study the minimum lag (or intercept) l0

is understood as the time period after which first exposure starts to increase

the value for the hazard ratio above one. An estimate for the minimum lag l0

can be gleaned from observational data with some uncertainty. For example,

Heidenreich et al. [22] estimated a minimum lag of 3 yr after exposure for

post-Chernobyl thyroid cancer incidence. According to the mechanistic model

of carcinogenesis for miners cohorts some time passes after first exposure to
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develop the first malignant cell [33,51]. With these assumptions minimum lag

l0 > must always exceed (minimum) latency tlat. But as we argue below both

periods may be rather short.

Minimum lag for the onset of risk

Comprehensive investigations in the present study and in the Colorado study

[13] suggest a minimum lag of 2 yr for onset of the radiation risk. Although the

study of Berhane et al. [6] did not aim to determine the minimum lag period,

their Fig. 3 supports a minimum lag of 2-3 yr by extrapolation of the HR in

the low exposure category.

It is instructive to apply findings from biologically-based modeling of lung

tumor growth for the assessment of results from the observational studies. In

the analysis of Geddes [16] minimal latencies were calculated under the as-

sumption of an exponential tumor growth model, where growth starts with

a single malignant cell. Exponential growth functions have been fitted to tu-

mors with minimal diameter of 1 cm, corresponding to about 109 cells. A

tumor eventually becomes fatal with a size of 10 cm or 1012 cells (Geddes [16],

Table I). Below size 1 cm, growth dynamics is inferred by extrapolation and

may not necessarily be correct, because cancer stem cells develop from small

precursor lesions which do not exhibit the molecular spectrum of a full blown

tumor. For lung adenocarcinoma, atypical adenomatous hyperplasia (AAH)

are considered as putative precursor lesions [35]. Often AAH are converted to

malignancy by a second mutation in a tumor suppressor gene, i.e. TP53. In
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fact, mechanistic models of carcinogenesis for miners cohorts are based on this

assumption [33,51]. AAH are about 5 mm large, when they possibly become

malignant. A back-of-the-envelope calculation suggests an AAH would turn

into a fatal tumor after about 13 doublings. Based on the doubling times of

Geddes [16] (Table II) short latency periods would be conceivable, in partic-

ular, if the carcinogenic effect of radon exposure targets advanced precursor

lesions as in the mechanistic miners models. Applying the lowest estimate for

a doubling time of 29 d pertaining to small (oat) cell carcinoma results in a

latency period of about 1 yr well below the minimum lag of 2 yr. As an impli-

cation, the minimum period for the appearance of a second (or transforming)

oncogenic mutation after first exposure would be also 1 yr.

Hence, simple consideration of tumor growth dynamics confers biological

plausibility to a minimal lag time of about 2 yr, which has been found in

observational studies.

Duration of development for radon-related lung cancer

Analysis of both experimental animal data and miner cohorts with mechanis-

tic TSCE models consistently revealed as the main radon target clonal growth,

which is enhanced by reduced inactivation of initiated cells [11,21,24,33,51].

The growth curves are characterized by linear increase at low exposure rates

which is followed by leveling at high exposure rates. Radiation-induced in-

flammation has been found to increase clonal expansion in animal studies [19].
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Thus, it is plausible to propose inflammation of the lung epithelium as the

underlying mechanism for non-linear behavior of clonal growth [51].

Luebeck et al. [33] estimated a mean latency period of 9 yr from the appear-

ance of the first cancer cell to lung cancer death for all histologic lung cancer

types combined. Geddes [16] (Table IV) reports a mean latency of 11 years

similar to ref. [33]. Results of the present study suggest that onset of radon-

induced lung inflammation shapes the exposure response curves of DLNMs

starting about 2 yr after first exposure with a mean lag of 15 yr. Comparing

the estimates for mean lag and mean latency we speculate that malignant cells

carrying a second oncogenic mutation appear on average about five years after

first exposure.

4.4 Limitations

Since the present study is mainly concerned with radon risk, the influence

of other confounders has not been given the same attention. In particular,

we did not fully characterize the exposure-lag response surface for silica dust

exposure. But we estimate a reduction of the radiation risk of 16% on average.

Smoking information is available for 56% of Wismut miners hired after 1960

[28]. However, these miners were mainly exposed at low exposure rates, which

do not produce a pronounced exposure-lag response. The ERR/WLM was

by a factor of 1.7 higher for non/light smokers compared to moderate/heavy

smokers. Correction for smoking in case-control studies of European miners

cohorts resulted in a moderate reduction of ERR estimates by some 20% [32].
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The impact of exposure uncertainties on risk estimates has not yet been

evaluated for the Wismut cohort but studies for the cohort of French miners

suggest only minor corrections [23].

Based on information criteria for goodness-if-fit, comparison of DLNMs

with ERR and TSCE models of ref. [51] was not possible. A comparison of

absolute values for the AIC and BIC from Cox regression with those from

individual likelihood regression used in ref. [51] is not straightforward even for

identical data sets. In further studies the DLNM framework needs to include

Poisson regression and individual likelihood regression, which are methods of

choice in radiation epidemiology.

For pertinent exposure scenarios a maximum time lag of 40 yr is too short

for the Wismut cohort where miners have been followed up until 57 yr after

first exposure. The maximum lag was chosen to facilitate a direct comparison

with the result for the Colorado cohort from Gasparrini [13] and should be

relieved in future studies.

Information of lung cancer histology is only available for a fraction of Wis-

mut patients. From a case-based analysis Kreuzer et al. [26] conclude that

all cell types were associated with radon exposure, but high radon exposure

tended to increase the proportion of small cell carcinoma and squamous cell

carcinoma at the expense of adenocarcinoma. A recent study on Ontario min-

ers reported highly significant radon-related ERR estimates for small cell

carcinoma and squamous cell carcinoma, for adenocarcinoma the risk was

marginally significant [37]. In Japanese a-bomb survivors the predominant
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histologic types exhibit differential radiation risk for a mixed field of photons

and neutrons [10]. However, for relative risk estimates the trend was reversed.

Adenocarcinoma revealed a stronger dose response than squamous cell carci-

noma and small cell carcinoma.
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5 Conclusion

As a boost for its validity, the DLNM approach yielded compatible exposure-

lag response models for miners cohorts of the German Wismut company and

the Colorado Plateau in the United States. In both cohorts our data driven

approach supported an estimate of about 2 yr for the minimum lag for the on-

set of radiation risk. These findings are biologically plausible and compatible

with results of a tumor growth model. However, uncertainties for the estimate

could not be quantified but might be large due to a lack of direct measure-

ments. Further we believe that the common assumption of a 5 yr minimal

lag for response to radon exposure does not influence risk estimates in miner

studies unless the early onset of risk is the special focus .

After comparing exposure responses for biological processes in mechanistic

risk models with exposure responses for hazard ratios in DLNMs, we surmise

a mean period of 15 yr for radiation-induced lung carcinogenesis in radon-

exposed uranium miners. The period probably covers the onset of radiation-

induced inflammation until cancer death.

To conclude, application of the DLNM framework in radiation epidemi-

ology provides new insight into age-risk patterns and cancer etiology, which

is complementary to results gained from both the standard descriptive ap-

proach and biologically based modeling. We recommend to add it to the radio-

epidemiological toolbox for future investigations.
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A Appendix

A.1 Results of DLM analysis

For all models the maximum time lag L was fixed to 40 yr as in Gasparrini [13]. Each model

is adjusted for age at begin of employment (abe) and the calendar year (cal) (Eq. (1)).

Models L1 and L3 apply constant and piecewise constant functions for wx(`), respec-

tively. Piecewise constant functions possess three cut-off points at time since exposure 10 yr,

20 yr and 30 yr.

Models L2 and L4 correspond to models L1 and L3 albeit with additional adjustment

for silica dust. The corresponding exposure-response f(zt−`) is specified as a linear thresh-

old function. Response to silica exposure is restrained to zero below a threshold of 0.92

mg/m3/yr, above threshold f(zt−`) increases linearly. The threshold value is motivated in

ref. [51] as break point for the capability of silica dust removal. The lag-response wz(`) for

silica dust is defined as a piecewise constant function with two cut-off points at equally

spaced quantiles of the distribution of the lags. There is no evidence of departure from of

multiplicative joint effect for exposure to radon and silica dust. This choice yields an ac-

ceptable flexibility under the condition of not spending too many model parameters df on a

complicated modeling of silica dust. In this way, all models of the present study consume 5

parameters df on controlling for the confounders of silica dust, age at begin of employment

and the calendar year.

Comparing models with adjustment for silica dust L2 and L4 with their counterparts

L1 and L3 without adjustment reveals improvement in the AIC of at least 50 points and

likewise improvements in the BIC (Table A1). These findings justify the inclusion of silica

dust adjustment in the main analysis of the present study. Fig. A1 depicts lag responses

for models L1 to L4 with more pronounced shapes for increasing radon exposure rates. In

terms of goodness-of-fit the introduction of more complex shapes for the lag response yields

moderate improvements (Table A1).
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Fig. A1 Comparison of lag-response curves for the hazard ratio (HR) of DLMs L1 to

L4 for four different radon exposure rates 50 WLM/yr, 100 WLM/yr, 150 WLM/yr and

200 WLM/yr, in models L2 and L4 (red lines) silica dust is a confounder but not in models

L1 and L3 (blue lines), for models L1 and L2 (solid lines) the lag-response is constant, for

models L3 and L4 (dashed lines) the lag-response is piecewise constant with cut-off points

at 10 yr, 20 yr and 30 yr.
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Table A1 Properties and goodness-of-fit for DLMs L1 to L5 with a linear exposure response

f(xt−`) to annual radon exposure rates and varying shapes of lag responses wx(`), for

piecewise constant lag response cut-offs are located 10 yr, 20 yr and 30 yr, df denotes the

number of model parameters, lowest values for AIC and BIC in bold, L5 is the preferred

DLM.

The last column contains the p-values of LRTs where L2 and L3 are tested against L1

and L4 is tested against L2. All p-values are smaller than 0.05 which indicates a superior

goodness-of-fit for more complex models and models controlling for silica dust. Model L5

can not be tested via LRT as it is not nested.

Model wx(`) AIC BIC df silica dust p

L1 constant 58427.86 58445.87 3 no –

L2 constant 58353.14 58389.17 6 yes < 0.01

L3 piecewise constant 58404.23 58440.26 6 no < 0.01

L4 piecewise constant 58350.07 58404.11 9 yes 0.028

L5 B-Spline (degree 2, 1 knot)1 58345.58 58393.62 8 yes –

1 minimum lag `0 set to 2 yr

The next phase of model development was concerned with improvements of the lag

response wx(`) of DLMs. To determine the shape of wx(`) we tested models with B-Splines

of degrees one to six with zero up to five knots on equally spaced quantiles of the weighted

lag distribution. The intercept of the hazard ratio (HR) on the y-axis was determined in the

fits. For most of the curves the intercepting HR was estimated < 1, and the HR exceeded

1 only after a lag of three years. This observation strengthens the argument that no risk

occurs in the early years after exposure. In our models we set the minimum lag to 2 yr.

However, we do not allow hormetic effects in the lag response and fix HRs smaller than one

at early lags to zero. For the preferred DLM L5 the shape of the lag response is shown in Fig.

A2 for various radon exposure rates. Modeled with a quadratic B-spline and one knot, lag
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response curves for model L5 exhibit a maximum at about 9 yr after first exposure followed

by a steady decline. Properties of model L5 are given in Table A1.
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Fig. A2 Lag-response curves for the hazard ratio (HR) of the preferred DLM L5 for five

radon exposure rates between 30 WLM/yr and 200 WLM/yr.
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A.2 DLNM NL3 with right-constrained lag response at 40 yr
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Fig. A3 Selected lag response curves of the hazard ratio (HR) for exposure rates between

30 WLM/yr and 200 WLM/yr (left panel) and exposure response curves for time since

exposure between 10 yr and 30 yr (right panel) for DLNM NL3 with right-constrained lag

response function at 40 yr.
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Fig. A4 The exposure-lag response surface for the hazard ratio (HR) of DLNM NL3 with

right-constrained lag response function at 40 yr.
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A.3 Estimates for confounders age at begin of employment, calendar year

and silica dust exposure for the preferred DLNM NL4
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Fig. A5 Selected lag response curves of the hazard ratio (HR) for exposure rates between

1
mg/m3

yr
and 5

mg/m3

yr
(left panel) and exposure response curves for time since exposure

between 10 yr and 30 yr (right panel) for silica dust for the preferred DLNM NL4.

Table A2 Estimates of cal and abe from DLNM NL4

β exp(β) σβ p-value

cal -0.0101 0.9900 0.0044 0.0233

abe -0.0231 0.9772 0.0048 0.0000
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Table A3 Estimates of cross-basis coefficients for the preferred DLNM NL4

ηx,[i,j] exp(ηx,[i,j]) σηx,[i,j]
p-value

B1Exp ·B1lag -0.0587 0.9430 0.0184 0.0014

B1Exp ·B2lag 0.0835 1.0871 0.0250 0.0008

B1Exp ·B3lag -0.1075 0.8980 0.0381 0.0047

B2Exp ·B1lag 0.0691 1.0715 0.0241 0.0041

B2Exp ·B2lag 0.0456 1.0466 0.0241 0.0590

B2Exp ·B3lag 0.0176 1.0177 0.0251 0.4841

B3Exp ·B1lag 0.3600 1.4333 0.0988 0.0003

B3Exp ·B2lag 0.0698 1.0723 0.0824 0.3970

B3Exp ·B3lag 0.0997 1.1048 0.0756 0.1875

B4Exp ·B1lag 0.1133 1.1199 0.1128 0.3154

B4Exp ·B2lag 0.0901 1.0942 0.1022 0.3784

B4Exp ·B3lag 0.0718 1.0744 0.1001 0.4731
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A.4 Baseline rates λ0 of lung cancer mortality from the preferred DLNM NL4

Calendar years [1976,1985] Calendar years [1986,1995] Calendar years [1996,2003]

Calendar years [1946,1955] Calendar years [1956,1965] Calendar years [1966,1975]

30 40 50 60 70 80 90 30 40 50 60 70 80 90 30 40 50 60 70 80 90

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

Age

Lu
ng

 c
an

ce
r 

ca
se

s 
pe

r 
ye

ar
 in

 1
0.

00
0 

pe
rs

on
s

Fig. A6 Baseline rates of lung cancer mortality from the preferred DLNM NL4 are averaged

among age groups of five years and calculated separately for six calendar periods between

1946 - 2003.
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