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Abstract

Gene copy number variants (CNVs), which consist of gene deletions and amplifications 

contribute to the great diversity in the Plasmodium falciparum genome. CNVs may influence 

the expression of genes and hence may affect important parasite phenotypes such as virulence, 

drug resistance, persistence and transmissibility. The hypothesis underlying the studies in this 

thesis is that CNVs may be important for adaptation of the parasite to its variable 

environments. To investigate this hypothesis, a population wide survey o f CNVs in 183 fresh 

field isolates from four populations with different transmission intensities was conducted. To 

detect CNVs, comparative genome hybridization was performed using a 70mer microarray. 

This is the first large scale survey for CNVs in natural populations of parasites. A total o f 98 

different CNVs, consisting of 225 genes, were identified. Various systematic aspects that 

could affect detection of CNVs were explored and the population of origin of the isolate was 

found to be the only factor that affects CNV detection. Some of these CNVs showed high 

differentiation in frequency between populations suggestive of the action of directional 

selection. Other CNVs showed no or low differentiation in frequencies between populations, 

indicative of action of neutral evolutionary processes. Validation of the CNVs identified using 

microarrays was done using whole genome sequencing. Very low concordance was observed 

between the CNVs identified by the two technologies. These differences may be attributed to 

technical and analytic differences between the two technologies. Furthermore, the effect of 

CNVs on gene expression levels was analysed. A number of CNVs were found to be 

significantly associated (positively or negatively) with the expression levels of genes located 

inside and also outside the CNVs.
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1 Chapter 1: Introduction

1.1 Background

Malaria is a disease caused by a protozoan parasite, Plasmodium, and transmitted by infected 

female mosquitoes of the genus Anopheles to the human host during blood feeding. The 

species of Plasmodium that infect humans include P. falciparum, P. vivax, P. malariae, P. 

knowlesi and two P. ovale subspecies, i.e., P. ovale curtisi and P. ovale wallikeri. P. 

falciparum causes the most severe form of the disease in tropical regions. The parasite’s life 

cycle involves both the mosquito vector and the human host. The parasite exists in both sexual 

and asexual forms and is known to undergo morphological and metabolic changes throughout 

its life cycle. The parasite genome is approximately 23Mbp in size, with nucleotide content of 

80% AT. It is comprised of 14 chromosomes with approximately 5300 genes covering about 

half of the genome length (Gardner et al. 2002).

1.1.1 Malaria epidemiology

Malaria continues to be a leading contributor to the global burden of disease in developing

countries (Snow et al. 2005, Noor et al. 2014). According to WHO report 2013, an estimated

198 million malaria cases occurred in 2013, with 90% of the 584 000 deaths occurring in Sub-

Saharan Africa (WHO 2014). It is also estimated that 57% of the population in Africa is

resident in regions with at least moderate to high malaria transmission (Figure 1) (Noor et al.

2014). Nonetheless, there is evidence, in some regions, of a decline in prevalence of parasite

positive individuals over the period 1990 to 2010 (Figure 1) (Noor et al. 2014, Murray et al.

2012, WHO 2014). Some of this has been attributed to interventions including the distribution

of insecticide-treated bed nets, the replacement of antimalarial drugs to which P. falciparum

has developed resistance (e.g., sulfadoxine-pyrimethamine) with effective artemisinin
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combination therapy, and better access to treatment (O'Meara et al. 2008, Phillips-Howard et 

al. 2003, Barnes et al. 2005).
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Figure 1.1. The distribution of predicted Plasmodium falciparum parasite rates (/yPR) in 
Africa in 2000 and 2010.
P. falciparum parasite rates (PfPR) predicted from data obtained from surveys of the 
prevalence of P. falciparum infections standardized to the 2-10 years age group in the year A) 
2000 and B) 2010. Darker shades represent regions with high parasite prevalence. Image 
reproduced from Noor et al. 2014 under the terms of the Creative Commons Attribution 
License.

However, in some regions the decline was observed before the introduction of interventions: 

thus the drivers of this decline are poorly understood (Okiro et al. 2010). Despite this general 

decline in malaria, there is ongoing high disease prevalence in many regions (Noor 2014), 

emergence of resistance to the mainstay drug, artemisinin, in the Greater Mekong Subregion 

(Mok et al. 2011, Miotto et al. 2013, Takala-Harrison et al. 2013, Dondorp et al. 2009, Noedl 

et al. 2008), and widespread insecticide resistance in vector populations (Corbel et al. 2012). 

Thus there is still a great need for additional tools for prevention and treatment in order to 

further decrease the burden of malaria.
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1.1.2 Genetic diversity of Plasmodium falciparum

The malaria parasite is highly genetically diverse. This characteristic is thought to enable the 

parasite to survive in its changing environment, including escaping from specific antigenic 

immune responses and resisting antimalarial drug treatment (Volkman et al. 2007, Jeffares et 

al. 2007, Anderson, Patel and Ferdig 2009, Soulama et al. 2011, Mackinnon and Marsh 2010).

The forms of variation in the genome range from large structural variations to single 

nucleotide changes. The structural variations include chromosomal size polymorphisms, gene 

copy number variation (CNVs), inversions and translocations. Other forms of variation 

include small insertions and deletions (indels) and single nucleotide polymorphism (SNPs) 

(Volkman et al. 2007, Kidgell et al. 2006). Genomic variation arises as a result of mutations 

that occur spontaneously or are caused by mutagens e.g., reactive oxygen species (Branzei and 

Foiani 2008). Spontaneous mutations may be caused by errors during DNA replication that 

remain uncorrected and also failure in DNA repair mechanisms to restore a damaged DNA 

strand to its original state. Genetic diversity is also generated by genetic recombination that 

allows exchange of genetic segments affecting phenotype. In P. falciparum, recombination 

hotspots have been identified and are characterized by AT-rich repeats, a 12bp G/C-rich motif 

with 3bp repeat (Jiang et al. 2011) and occur mostly at chromosome ends (Mu et al. 2005).

The rate of recombination is influenced by the diversity of parasite populations and malaria 

transmission intensities (Mu et al. 2010). These different types of genomic variation in a 

population are shaped by selection pressures, population isolation, genetic drift and migration 

(Mackinnon and Marsh 2010). Genetic drift is related to the effective population size. 

Populations with small effective population sizes experience more genetic drift compared to 

those with large sizes. The increase in the number of variants in a population is limited by the 

carrying capacity of the population.
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A number of genomic variants have been linked to parasite phenotypes that are crucial for

survival and spread, and which also contribute to disease pathogenesis. First, genetic

variability in antigens expressed on the surface of the merozoite and on the infected red cell

surface are thought to allow the parasite to evade host immune responses by expressing novel

antigenic types (Amambua-Ngwa et al. 2012, Tetteh et al. 2009, Bull et al. 1998, Wright and

Rayner 2014). Second, erythrocyte invasion, a key determinant of parasite replication rate, is

known to involve multiple parasite ligands that are polymorphic in nature. Third, the parasite

adhesion phenotype that results in obstruction of blood capillaries and prevent clearance of

parasite by the spleen, is caused by a family of highly polymorphic genes referred to as var

genes encoding P. falciparum erythrocyte membrane protein 1 (PfEMPl) (Scherf, Lopez-

Rubio and Riviere 2008). PfEMPl mediates adhesion of infected erythrocytes to endothelial

cells (cytoadherence) (Su et al. 1995) and uninfected erythrocytes (rosetting) and is also

thought to be involved in adhesion of infected erythrocytes to platelets forming clumps

(platelet-mediated clumping) (Rowe et al. 2009). Two other variant surface antigens, RIFINS

and STEVOR are thought to be linked to the adherent phenotype (Niang et al. 2014). Fourth,

production of gametocytes, the asexual forms of the parasite, a key determinant o f malaria

transmission has been shown to be lost, in some studies, during long term in vitro adaptation

of some parasite lines and has been associated with a large deletion on chromosome 9

(Robinson et al. 2011, Cheeseman et al. 2009, Kidgell et al. 2006, Jiang et al. 2008b,

Mackinnon et al. 2009, Mok et al. 2011, Bozdech et al. 2003a, Ribacke et al. 2007, Nair et al.

2008, Pologe and Ravetch 1988, Wellems et al. 1987, Nair et al. 2010, Day et al. 1993).

Lastly, antimalarial drug resistance has been associated with increased copy number in

genomic regions containing three genes (multi drug resistance 1 {pfmdrl), GTP

cyclohydrolase 1 igchl) and falcipain-2) and also SNPs in Kelch 13 gene, chloroquine

resistance transporter gene and dihydrofolate reductase (dhfr) gene (Van Tyne et al. 2011,
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Ariey et al. 2014, Miotto et al. 2013, Plowe, Kublin and Doumbo 1998, Singh and Rosenthal 

2004, Fidock et al. 2000). From these studies, it is evident that the understanding of malaria 

parasite genetic diversity is crucial since it offers insight into genomic loci that affect 

important parasite phenotypes and hence are potential targets for vaccines, therapeutics and 

tools for monitoring of drug resistance.

1,1,3 Gene copy num ber variation as a source of genetic diversity in P. falciparum

The recent interest in CNVs in malaria parasites is driven by increasing evidence of their role

in adaptation, evolution and disease in a number of organisms (Anderson et al. 2009,

Henrichsen, Chaignat and Reymond 2009, Tam et al. 2009, Kirov et al. 2012, Craddock et al.

2010, Angstadt et al. 2013, Palli et al. 2013) and the advances in technologies that enable

high-throughput genome-wide scans of CNVs (Mackinnon et al. 2009, Kidgell et al. 2006,

Ribacke et al. 2007, Cheeseman et al. 2009, Jiang et al. 2008b). In P. falciparum, CNVs have

been identified in long- and short-term cultured lines (Mackinnon et al. 2009, Ribacke et al.

2007, Mok et al. 2011, Carret et al. 2005, Kidgell et al. 2006, Jiang et al. 2008a, Cheeseman et

al. 2009, Dharia et al. 2009, Samarakoon et al. 201 la, Samarakoon et al. 201 lb, Bozdech,

Mok and Gupta 2013) and also in fresh clinical isolates (Robinson et al. 2011, Ribacke et al.

2007). From these CNV studies, it is estimated that between 0.3% -1%  of the parasite’s

genome is subject to variation in gene copy number (Anderson et al. 2009), a fraction of the

genome larger than that represented by SNPs (Volkman et al. 2007, Miotto et al. 2013). This

implies potential significant effects on phenotypic variability. These CNV studies employed

different platforms, parasite strains and CNVs calling strategies (detailed expiation in section

1.2.1.3.1) and hence, as observed (Table 1), their results are expected to vary in the number

and genomic location of CNVs. Furthermore, a number of CNVs have been found to typically

arise during culture adaptation of parasite lines, thus introducing a further source of variation
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in CNVs reported so far (Nair et al. 2010, Mackinnon et al. 2009). None of these studies has, 

on large scale, examined CNVs in natural populations of parasites (Appendix 1.1). Thus there 

is a need for large scale exploration of CNVs in fresh clinical isolates to determine the extent 

of these variants in the genome and their potential role in adaptive evolution of natural 

populations of parasites.

Table 1.1. A summary of published genome wide studies of CNVs in P. falciparum

Platform Type No. of
CNV
genes

No. of
isolates
studied

CNV detection 
analysis method

References

M icroarrays Spotted arrays 
(70mer)

144 1 Difference <50% of 
total intensity

(Bozdech et al. 
2003a)

82 9 limma (B-statistics) (Ribacke et al. 
2007)

324 5 1.5 fold difference (Mackinnon et 
al. 2009)

138 6 R-GADA (Mok et al. 
2011)

Aflymetrix 177 7 % Signal reduction (Carret et al.
arrays 2005)
(25mer) 149 14 MOID algorithm (Kidgell et al. 

2006)
390 4 Partek Genomic suite 

v6.3
(Jiang et al. 
2008b)

186 16 Threshold set at 
absolute log2 ratio > 1

(Cheeseman et 
al. 2009)

-156 4 MOID algorithm (Dharia et al. 
2009)

NimbleGen
arrays

537 37 Nexus Copy Number 
3.0 software

(Samarakoon 
et al. 2011a)

Next
generation

Illumina 7 5 Read depth analysis & 
Paired end mapping

(Robinson et 
al. 2011)

sequencing
Roche 454 7 2 Read depth analysis (Samarakoon 

et al. 2011a)
Illumina >100 5 Read depth analysis 

using 3 tools
(Sepulveda et 
al. 2013)

R-GADA: Genome Alteration Detection Analysis in R. MOID: Match-Only Integral 
Distribution. Limma: Linear Models for Microarray Analysis

Page 20 of 191



1.2 Methods for detecting CNVs in P. falciparum

CNV detection molecular methods have rapidly evolved in the last decade enabling whole 

genome scans to the resolution level of single nucleotides. The methods are discussed below.

1.2.1 Whole genome/chromosome scan for CNVs

1.2.1.1 Pulse field gradient gel electrophoresis (PFGE)

The early evidence for structural variation in P. falciparum was the detection of chromosome 

size polymorphism in isolates using pulse field gradient (PFG) gel electrophoresis currently 

referred to as pulse field gel electrophoresis (PFGE) (Corcoran et al. 1986, Kemp et al. 1985, 

Van der Ploeg et al. 1985). Variation in chromosome lengths could be as a result of 

loss/addition of whole genes leading to change in the number of gene copies (CNVs) in the 

parasite genome. PFGE involves fractionation of chromosomal DNA in a 1.5% -2% agarose 

gel with a voltage applied across the gel that is constantly changing in direction (Schwartz and 

Cantor 1984) . This enables separation of the chromosomes based on their length ranging from 

30 kilobases to 3000 kilobases. Chromosome sizes were estimated by comparison with known 

yeast chromosome molecular weight sizes.

1.2.1.2 Optical mapping

Optical mapping involves the development of ordered restriction maps of DNA fragments (Cai

et al. 1995). The restriction map of the whole genome of P. falciparum was generated in 1999

by Lai and colleagues and provided a scaffold of the entire genome onto which contigs could

be aligned (Lai et al. 1999). The starting material of the assay was either chromosomal DNA

separated using pulse field gel electrophoresis (PFGE) or randomly fragmented DNA (250bp-

3000kbp) mounted on a surface together with a sizing standard (Lai et al. 1999, Jing et al.
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1999). The mounted DNA was then digested with restriction enzymes o f choice (BamRl and 

Nhel used) to generate fragments that are stained with a fluorescent reagent that intercalates 

into DNA. The image was acquired using microscopy, processed and the maps constructed. 

The restriction maps were assembled to form restriction maps/contigs that were then mapped 

onto the available whole genome optical map. To detect CNVs, the full genome/contig 

restriction maps of test genomes were compared to a reference map which was generated in 

silico using available complete genome sequence (Riley et al. 2011). Riley and colleagues 

generated full maps of four cultured P. falciparum strains and were able to detect deletions, 

duplications and inversions with sizes ranging from 3.5kb to 78kb (Riley et al. 2011).

1.2.1.3 Microarrays

Completion of sequencing of the P. falciparum genome of strain 3D7 in 2002 (Gardner et al. 

2002) facilitated the development of oligonucleotide arrays that have been used to perform 

comparative genome hybridization (CGH) (Bozdech et al. 2003a). CGH involves comparison 

of hybridization o f a labelled test DNA and a reference DNA on a glass slide spotted with 

oligonucleotides. The first published array used to detect CNVs in P. falciparum was a 25- 

mer affymetrix array with 298,752 probes targeting approximately 5,179 genes (Kidgell et al. 

2006, Carret et al. 2005). The major limitation of this array was the large quantity of DNA 

required for the experiment (15 pg) which would not be suitable to assay small quantities of 

genomic DNA (gDNA) obtained from clinical samples. However, this problem has now been 

overcome by the development of whole genome amplification methods that end at the log 

linear phase of amplification thus maintain the relative abundance of genomic content and also 

minimize PCR errors (Petalidis et al. 2003, Carret et al. 2005, Mackinnon et al. 2009).
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Carret and others tested various whole genome amplification methods including multiple 

displacement amplification (MDA) and ligation-mediated PCR (LMP), to overcome this 

problem (Carret et al. 2005). LMP involves attachment of adapter sequence to fragmented 

gDNA and using a primer complementary to the adapter for amplification. MDA, which uses 

random hexamers, had PCR products that were more similar to the non-amplified gDNA as 

compared to LMP products. The CGH intensity signal of genes were observed to be similar 

between the hybridization experiments of MDA products and non-amplified gDNA.

A second 70-mer array developed by Bozdech and others containing 10,680 probes targeting 

5,343 P. falciparum genes, has been used on both non-amplified and randomly amplified 

gDNA samples to detect CNVs in both cultured and fresh clinical samples (Ribacke et al. 

2007, Bozdech et al. 2003a, Mackinnon et al. 2009, Mok et al. 2011, Hu et al. 2007) . Two 

additional studies have used a higher resolution array than the aforementioned two, the 

Affymetrix PFSANGER GeneChip, a 25mer tiling array with about 2.5 million probes 

spanning exons, coding regions, intron/exon junction and intergenic regions. Both studies used 

10-12 pg of non-amplified DNA (Cheeseman et al. 2009, Jiang et al. 2008b).

The main advantages of microarrays are that the assay is cheaper compared to sequencing, the 

arrays can easily be updated for new probes, and less nucleic material is used, especially when 

amplification of gDNA is performed, compared to earlier technologies. The main drawbacks 

of the use of microarray technology in CNV detection include inability to detect rare variants 

in mixed parasite populations, the ability to assay only genomic regions that have been 

previously characterised, that correct mapping of variants in multi-gene families is impossible, 

that the presence of unknown polymorphisms in genes targeted by the probes affects the
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hybridization results and that the boundaries of CNVs cannot be precisely mapped if probes 

are non-overlapping.

1.2.1.3.1 CNVs detection analysis methods for microarray data

A number of CNV detection tools for CGH data are available and differ by the type of array 

platform, input data (log2 intensity ratios or absolute intensity values), the statistical models 

used, detection thresholds applied, ability to detect CNV boundaries, ploidy of genome and the 

way in which the reference genome is used. Some of the tools available that are applicable to 

my study, i.e., compatible with CGH data from two colour arrays (log2 intensity ratio 

calculated against intensity for a reference genome), haploid genome analysis and that are 

freely available will be highlighted.

In an ideal two colour array CGH experiment, the presence of similar copies of a gene 

between the test and reference samples are indicated by log2 intensity ratio, i.e., the difference 

between log2 hybridization signal intensities of a test and reference sample. In the case of a 2- 

fold difference in gene copy number, the log2 intensity ratio is ideally 1 or -1. However, due to 

noise in microarray data, there is uncertainty in the thresholds on which gene copy number 

values can be assigned.

One of the methods used for identifying CNVs in P. falciparum has been to apply thresholds

on the log2 intensities ratios and the minimum number of consecutive probes that meet a set

threshold (Cheeseman et al. 2009). The second method involves identifying array probes that

statistically significantly differ in hybridization between isolates using B-statistics in limma

package in R (Smyth 2004) then applying cut-offs on the number of consecutive probes and

the direction of change (Ribacke et al. 2007). Other tools developed are based on segmentation
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analysis (Pique-Regi, Caceres and Gonzalez 2010, Olshen et al. 2004) and the Smith- 

Waterman algorithm (Price et al. 2005).

In segmentation analysis, the log2 intensity ratio along a chromosome is partitioned into 

segments of equal copy number. The first segmentation algorithm developed for arrays is 

Circular Binary Segmentation (CBS) (Olshen et al. 2004). CBS recursively detects the points 

of change of copy number (start and end of segments) along a chromosome and statistically 

tests whether the means of segments (the mean of log2 intensity ratio of probes within the 

segments) bordering each other differ. A package was later developed in R known as 

DNACopy that uses CBS to detect CNVs (Venkatraman and Olshen 2007). A second 

algorithm, Genome Alteration Detection Algorithm (GADA), also available in R, represents 

log2 intensity ratio along a chromosome as piecewise constant (PWC) vector then uses 

Bayesian learning to identify change-points and segment means along a chromosome (Pique- 

Regi et al. 2010). It then tests for significance of the change-points using t-statistics based on 

the segment means and variance. GADA’s performance was found to be faster than CBS and 

as accurate as CBS (Pique-Regi et al. 2010).

1.2.1.4 Next Generation Sequencing (NGS)

The exploration of CNVs in the parasite genome to single nucleotide resolution has been made 

possible by next generation sequencing (NGS). Whole genome and exome sequencing of 

single-end or paired-end reads has been extensively used to identify CNVs in various 

organisms (Mills et al. 201 la, Yalcin et al. 2011, Zichner et al. 2013). NGS has led to an 

increased accuracy of detecting the breakpoint junctions of CNVs thus making inference of 

mechanisms of CNV formation possible (Carvalho et al. 2013, Hermetz et al. 2014). Another
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major advantage of sequencing over microarrays is its ability to explore a number of genomic 

variants without prior knowledge of the sequence.

1.2.1.4.1 Sequence data analysis tools for CNVs detection

The process of CNV detection from genome sequence date requires initial mapping of reads to 

a reference genome followed by either read depth analysis (normalized depth of coverage 

correlates with copy number), paired end mapping (distance between paired reads that are 

longer/shorter than expected), split-read analysis (reads that span CNVs breakpoint and appear 

to map on two locations on the reference genome) (Karakoc et al. 2012), or a combination of 

these approaches (Zhang et al. 2011). A summary of these analyses methods is illustrated in 

Figure 1.2. In addition, fine mapping of CNV boundaries can be achieved by assembly of the 

short reads, followed by mapping o f contigs to the reference (Le Scouamec and Gribble 2012). 

One of the challenges observed in these analyses methods is that when used on the same set of 

samples, some CNVs can be identified by one method and not the others (Alkan et al. 2009, 

Mills etal. 2011a).

CNV detection using read depth analysis involves calculation of read depth in non­

overlapping window sizes in a chromosome, normalisation and application of statistical 

methods to identifying regions that have excessive or reduced coverage. Ideally, the depth of 

read coverage of a region is proportional to copy number. However, there exist factors other 

than copy number that affect sequence coverage. These include GC content and the ability of a 

region to be uniquely mapped (Quail et al. 2012, Ross et al. 2013). The regions with very low 

and very high GC-content have lower coverage compared to regions with intermediate GC 

content. Most of the CNV calling algorithms correct for these two effects and also perform 

normalisation of read depth across samples. These tools use a variety o f statistical models and
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segmentation analysis methods (Miller et al. 2011, Xie and Tammi 2009, Chiang et al. 2009, 

Abyzov et al. 2011, Xi et al. 2011, Ivakhno et al. 2010, Magi et al. 2011).

SV classes Read pair Read depth Split read Assembly

Deletion Contig/
scaffold
Assemble

Novel
sequence Not applicable

Contig/
scaffold

Interspersed
duplication

Contig/
scaffold

Tandem
duplication

Assemble Contig/
r r ;  scaffold

Nature Reviews | Genetics

Figure 1.2. An illustration of the approaches used to detect CNVs using next generation 
sequencing.
CNVs, referred to as structural variation (SV) in the image, can be identified from reads pairs 
that map to the reference at distances shorter/longer than expected read length (first column), 
variation of normalized read depth at a locus compared to the expected (second column), reads 
that map to two locations may span a CNV breakpoint junction (third column) and lastly 
mapping of contigs generated from de novo assembly of reads may identify structural 
variations in the genome (fourth column) Image reproduced from Alkan, Coe and Eichler 
2011 with permission from Nature Publishing Group.

1,2.1,4.2 Challenges of using short read sequence data to detect CNVs

The short reads obtained from NGS present computational challenges during alignment of the

reads to a genome characterized by regions with repetitive sequences, of which P. falciparum

is one (Treangen and Salzberg 2012, Gardner et al. 2002). The reads that map to the repetitive

regions cannot be mapped uniquely and can either be filtered off, assigned to one of the
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possible genomic locations at random or excluded. This still poses limitations on the 

downstream analysis since not all regions in the genome can be assayed, and in the instance of 

random alignment of non-unique reads, copy number estimates are inaccurate.

1.2.2 Targeted loci CNV detection

Laboratory methods for CNV identification at pre-decided (“targeted”) gene loci have been 

used to validate results from whole genome scans and also to map CNV breakpoints. These 

methods are described below.

1.2.2.1 Southern Blot

Southern blot is a technique developed to identify a specific DNA sequence in a mixture of 

DNA fragments (Southern 1975). The fragmented DNA is separated by size in an agarose gel 

then denatured to later enable hybridization of a labelled probe of sequence similar to the 

region of interest. The denatured DNA is transferred from the gel to a membrane where 

hybridization of the labelled probe is performed, and the hybridization results imaged. 

Increased copy number is observed when there is increased signal in the blot. No signal 

indicates a deletion in the test sample compared to the control. The principle was applied to 

the development of microarrays.

1.2.2.2 Fluorescent in situ hybridization (FISH)

FISH is a method developed in the early 1980’s used to detect specific DNA sequence in 

chromosomes in fixed cells (Langer-Safer, Levine and Ward 1982). A labelled probe, with 

sequence complementary to the region of interest, i.e., a CNV region, was generated and 

hybridized to fixed cells which were then visualized using a microscope (Ribacke et al. 2007).
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Both southern blot and FISH are low-throughput, labour-intensive and require a large quantity 

of DNA, and hence are mostly used in small-scale studies.

1.2.2.3 Long range PCR

Long range PCR amplification of the large genomic regions (up to 40kbp) containing CNVs 

has been useful for precise mapping of breakpoint junctions of CNVs through sequencing of 

the PCR products (Carvalho et al. 2013, Winchester et al. 2008). CNVs are identified through 

differences in the size of PCR products in the test and reference samples. The major challenge 

of this method is that prior knowledge of the sequence in the region of interest is required in 

order to design primers.

1.2.2.4 Quantitative real time PCR (qPCR)

Real time PCR has almost completely replaced the methods described above owing to its 

application in high-throughput assays, its less laborious nature and the low quantities of DNA 

template required (Ribacke et al. 2007). To detect CNVs, primers against the regions of 

interest are designed and amplified by PCR in a quantitative assay using an endogenous gene 

(existing as single copy) as a control in order to normalize for variation in input gDNA 

quantity and PCR inhibitors in the samples. Two methods can be used to calculate copy 

number -  the comparative Ct method (in which it is assumed that the efficiency of 

amplification of the test and endogenous genes are similar) or the relative standard curve 

method in which two standard curve generated for a single copy gene and a target gene and 

used to calculate the fold difference in quantity of copies between a test sample and a 

calibrator sample (assumed to contain a single copy of the gene of interest).
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1.3 Mechanisms of CNV formation

The generation of gene copy number changes requires structural changes in the chromosome 

that enable joining of two separate DNA regions. Processes involved in joining these regions 

have been inferred from the DNA sequence at the point of joining, i.e. the CNV’s breakpoint 

junction of the once separate regions (Hastings et al. 2009, Liu et al. 2012, Gu, Zhang and 

Lupski 2008). Investigations on the characteristics of the breakpoint junction have revealed 

that some are found in low copy repeat regions (LCRs) characterized by long stretches of 

sequence homology (>50bp), while others are present in regions of short sequence homology 

of 2bp-15bp (microhomology) (Gu et al. 2008, Liu et al. 2012, Hastings et al. 2009). These 

findings led to the proposition that CNVs may arise through homologous recombination at 

regions with extensive sequence homology enabled by DNA repair mechanisms. Second, short 

homology regions (microhomology) may be subject to template switches during replication 

thereby leading to CNV formation. These two broad mechanisms are further discussed below.

1.3.1 Homologous recombination

In eukaryotes, homologous recombination (HR) underlies DNA repair o f double stranded 

breaks and nicks (Cahill, Connor and Carney 2006). HR also enables exchange o f genetic 

material during meiosis leading to new combinations of DNA sequences (Amunugama and 

Fishel 2012). In a diploid organism, a successful repair event involves the use of alleles to 

repair a broken strand, restoring it to its original sequence. Crossover between non-alleles, a 

process known as non-allelic homologous recombination (NAHR), has been identified as one 

o f mechanisms that generates structural changes in the genome (Gu et al. 2008, Hastings et al. 

2009, Liu et al. 2012). NAHR is seen during repair of double stranded DNA breaks when 

unequal crossover occurs between non-homologous repeat regions. NAHR also occurs during
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repair of collapsed replication forks due to a nick in the template DNA strand, a process 

termed break-induced replication (BIR). In this case, the exposed broken strand may bind to a 

non-homologous region with high sequence similarity. These processes may lead to deletions, 

duplications or inversions of genomic segments. The models of CNV formation by NAHR are 

illustrated below (Figure 1.3).

A) B)

A. Non-allelic homologous recombination

(i) By unequal crossing-over 
a b c  b d

a b b d

(ii) By break-induced replication

a b c  b d

a b

Duplication 
a b c  b c b d

and deletion 

a b d a b
Duplication 

b c b d

Figure 1.3. Models of CNVs formation through non-allelic homologous recombination 
(NAHR)
A) NAHR could occur through homologous recombination between non-allelic repeats 
regions, during meiosis or repair of double stranded DNA breaks resulting in deletions or 
duplications or B) during repair of collapsed DNA replication fork by a process called break- 
induced replication (BIR). Image reproduced from Hastings et al. 2009 with permission from 
Nature Publishing Group.

The malaria parasite DNA is exposed to damage by reactive oxygen and nitrogen species

released during host immune defence (Nathan and Shiloh 2000) and heme metabolism. Errors

during DNA replication also contribute to alteration of DNA sequence. The parasite, in its

haploid state in the human host, uses homologous recombination as one of the mechanisms to

repair double stranded DNA breaks, utilizing regions with high sequence similarity (mostly

segmental duplications) of the genome (Kirkman, Lawrence and Deitsch 2014). NAHR can

also occur when the parasite is in its diploid state in the mosquito. NAHR may be involved in
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CNV generation in P. falciparum as for other eukaryotes since the parasite uses homologous 

recombination to repair double stranded DNA breaks (Samarakoon et al. 201 lb). This is 

supported by the observed association of CNVs with segmental duplications (SDs) and repeat 

regions reported in P. falciparum (Cheeseman et al. 2009). Segmental duplications are 

segments of DNA in the genome, greater than lkb, that exhibit high sequence similarity.

1,3.1.1 Non-homologous recombination (microhomology mediated mechanisms)

The presence of microhomology in some CNV breakpoint junctions has been reported in the 

human genome (Conrad et al. 2010a, Carvalho et al. 2009). There exist DNA repair pathways 

that do not require extensive sequence homology. Instead, they use short sequences of 

homology termed microhomology (l-25bp) or no homology and therefore increase the 

chances of genetic alterations (Symington and Gautier 2011). These mechanisms include non- 

homologous end joining (NHEJ) also referred to as canonical-NHEJ (C-NHEJ) and 

microhomology mediated end joining (MMEJ) sometimes referred to as altemative-NHEJ 

(Symington and Gautier 2011, Fattah et al. 2010). In eukaryotes, C-NHEJ involves binding of 

Ku heterodimer to broken ends, recruiting a protein kinase (DNA PKcs) and forming a 

complex that leads to further recruitment of other proteins (Artemis, LIGIV, XLF and 

XRCC4) that facilitate ligation of the two ends. Chromosomal rearrangements occur as a 

result of joining of two strands that are from different genomic regions. MMEJ differs from C- 

NHEJ in the proteins that bind to the broken ends of DNA. The proteins involved in C-NHEJ 

have not been identified in Plasmodium. Instead, it is thought that the malaria parasite uses 

altemative-non homologous end joining (a-NHEJ) in addition to HR to repair DNA (Kirkman 

et al. 2014). The model of NHEJ is illustrated below (Figure 1.4).
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1.3.2 Replicative mechanisms

The presence of microhomology at breakpoint junctions does not only provide evidence for 

NHEJ but also the involvement of DNA replication in chromosomal rearrangements (Lee, 

Carvalho and Lupski 2007, Zhang et al. 2009, Hastings et al. 2009). From studies in 

Escherichia coli and the human genome, it is proposed that template switching within a 

replication fork results in structural changes in the genome. The presence of short lengths of 

homology in the exposed lagging strand in a replication fork may result in formation of 

secondary structures that prevent replication of certain segments leading to deletion of 

sequences (Hastings et al. 2009). Deletions observed in regions that occur between two sites 

with sequence similarity and a length between them the size of an Okazaki (short fragments 

newly synthesized in the lagging template strand in a replication fork) fragment supports the 

proposition of slippage/template switch in DNA replication within the same replication fork 

(Figure 1.5) (Albertini et al. 1982, Hastings et al. 2009).

In some instances, formation of secondary structures may block continuation of synthesis of 

the lagging strand resulting in the exposed 3’ end annealing to a different exposed single 

strand with short sequence similarity on a different replication fork (Zhang et al. 2009, 

Carvalho et al. 2013, Gu et al. 2008). This results in duplications, deletions or inversion of 

distant genomic regions, a mechanism referred to as Fork stalling and template switching 

(FoSTeS) (Figure 1.5).

A third replicative mechanism known as microhomology mediated break-induced replication 

(MMBIR) is proposed to occur when an exposed single stranded end from a collapsed 

replication fork (due to a nick in DNA template) anneals to any other single strand with
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Figure 1.4. Model for formation of CNVs by non-homologous end joining (NHEJ).
Double stranded breaks in the genome at region c is repaired by binding of the proteins 
involved in NHEJ to the exposed ends (c). This is followed by resection and ligation of broken 
ends. A deletion of region c is observed as a result of the exposed ends ligation to other 
exposed ends (b) with sequence similarity. Image reproduced from Hastings et al. 2009 with 
permission from Nature Publishing Group.

In P. falciparum, DNA secondary structures have been shown to associate with recombination 

sites of var genes (Sander et al. 2014). The secondary structures are thought to promote 

recombination during replication of DNA generating diversity of var genes that encode 

PfEMPl. PfEMPl is a protein important for sequestration of the parasite to host endothelial 

cells and under antigenic variation to evade host immunity.
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Figure 1.5. Models of CNVs formation by replicative mechanisms mediated by 
microhomology
Microhomology mediated mechanisms of CNV formation that occur during DNA replication 
include A) replication slippage as a result of secondary structure formed due to presence of 
regions of single stranded DNA with sequence similarity within a replication fork, B) fork 
stalling and template switching (FoSTeS) caused by formation of hairpins that hinder the 
progress of a replication fork resulting in invasion of the exposed single stranded DNA to 
another replication fork with short sequence similarity and finally C) MMBIR is proposed to 
occur in collapsed replication forks due its encounter of a nick in the DNA template. Image 
reproduced from Hastings et al. 2009 with permission from Nature Publishing Group.
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1.4 Functional impact of CNVs

The impact of CNVs on phenotypic variation has been observed in a number of organisms 

(Henrichsen et al. 2009, Craddock et al. 2010, Hou et al. 2012, Anderson et al. 2009, Chen et 

al. 2012). This has been evaluated by studying the association between gene copy number and 

gene expression levels and also through associations of copy number with important 

phenotypes. Gene expression variation is commonly used as a proxy for phenotypic variation.

1,4,1,1 CNVs and gene expression

CNVs may affect gene expression levels through altering gene dosage, introducing changes in 

regions that regulate gene expression, and possibly by modifying the chromatin environment 

of a gene (Kleinjan and van Heyningen 2005). Studies on the effect o f CNVs on gene 

expression levels in P. falciparum have revealed that certain CNVs influence the transcript 

levels of the genes within the CNV regions and also outside these regions (Mackinnon et al. 

2009, Gonzales et al. 2008). Gene copy number has been shown in P. falciparum to both 

positively and negatively correlate with gene transcription levels suggesting a second 

mfechanism in addition to the direct dosage effect (Mackinnon et al. 2009, Gonzales et al. 

2008). One example of this is an amplification of a region in chromosome 5 containing the 

multidrug resistant gene 1 (mdrl) that has been identified as a ‘hotspot’ for gene expression 

regulation through gene expression quantitative trait loci (eQTL) analysis of the progeny of 

HB3 and Dd2 genetic cross (Gonzales et al. 2008). This region has been shown to associate 

with transcription levels o f269 genes. It was observed that an increase in copy number in 

progeny that inherited multiple copies from Dd2 resulted in subsequent increase in transcript 

levels of 85% of the 269 genes and decrease in transcript levels of 15% of the genes (Gonzales 

et al. 2008). Locus-specific studies on GTP cyclohydrolase 1 gene (gchl) amplification also 

report an increase in gchl expression with increased copy number, gchl amplification has
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been indirectly associated with antifolate resistance in geographic regions that historically use 

antifolates as antimalarial drugs (Nair et al. 2008).

1.4.1.2 Influence of CNVs on phenotypic variation and parasite adaptation

Directional selection on P. falciparum parasites bearing CNVs associated with certain 

phenotypes has been explored in several studies as discussed below.

1.4.1.2.1 Drug resistance

Some of the CNVs associated with malaria treatment failure include the amplification of a 

locus in chromosome 5 containing the multidrug resistance gene (mdrl) (Gadalla et al. 2011, 

Lim et al. 2009) and a region in chromosome 12 containing the GTP cyclohydrolase {gchl) 

gene (Nair et al. 2008). Increased copy number of the region containing mdrl has been linked 

to resistance to mefloquine, halofantrine and artemisinin whereas reduced copy number is 

associated with chloroquine resistance (Sidhu et al. 2006, Price et al. 2004). Amplification of 

gchl, encoding an enzyme involved in the folate synthesis pathway, has been strongly 

associated with a mutation on dihydrofolate reductase (<dhfr-164L) and marginally associated 

with mutations on dihydropteroate synthase (dhps-A436S and dhps A581G)) (Nair et al. 2008, 

Robinson et al. 2011). DHFR and DHPS are enzymes that act downstream of GCH1 in the 

folate biosynthesis pathway and form targets of antifolate drugs. These mutations has been 

linked to resistance to antifolate malaria drugs and found at high frequency in Thailand 

(Sirawarapom et al. 1997, Nair et al. 2008, Plowe et al. 1998). The gchl amplification has also 

been observed to exist at a higher frequency in Thailand, a region with historical use of 

antifolates as first-line treatment, with higher selection of resistant parasites than a second 

region, Laos, where antifolates were second-line treatment at the same period (Nair et al.
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2008). It is thought that increased gchl copy number acts a compensatory mechanism for 

altered function of DHFR and DHPS enzymes as a result of the mutations (Kidgell et al. 

2006).

1.4.1.2.2 Host immunity

Host immunity is thought to be one of the factors involved in selection of parasites bearing a 

deletion at the C-terminal of reticulocyte binding protein homolog 2b (PfRh2b) located in 

chromosome 13 (Ahouidi et al. 2010). The deleted region is thought to facilitate binding and 

erythrocyte invasion of the parasite. This polymorphism has been shown to exist at a higher 

frequency in Senegal, Tanzania and Malaysia as compared to Thailand and Brazil (Ahouidi et 

al. 2010). The difference in frequency is speculated to be as a result o f difference in 

polymorphisms on the host erythrocyte receptors and origin of the deletion in Africa and its 

spread to the rest of the world. It was also observed that antibodies against the C-terminal 

existed in Senegal and Tanzania and increased with age, though the increase was not 

statistically significant. These antibodies are thought to bind to the C-terminal and possibly 

block sialic-acid independent erythrocyte invasion. Therefore, the deletion may be a 

mechanism by which the parasite evades host immunity, thus potentially explaining its 

existence at non-trivial frequencies (Ahouidi et al. 2010, Reiling et al. 2010). This evidence is 

inconclusive since the presence of the antibodies was not tested in the regions with low 

deletion frequencies (Thailand and Brazil). Furthermore, deletions in both homologs (Rh2a 

and Rh2b) have been observed in clinical isolates in other studies (Robinson et al. 2011). 

RH2a and RH2b proteins are involved in erythrocyte invasion through the sialic acid 

independent pathway (Sahar et al. 2011).
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1.4.1.2.3 Adaptation to in vitro environments

Parasites bearing CNVs associated with cell invasion, cytoadherence, and gametogenesis 

among others, have been reported to be selected during in vitro culture propagation. These 

CNVs include large subtelomeric deletions in chromosome 2 and 9 (resulting in loss of a 

number of genes) that have been associated with loss of cytoadherence and loss of both 

cytoadherence and gametogenesis phenotypes respectively (Ribacke et al. 2007, Shirley et al. 

1990, Biggs, Kemp and Brown 1989, Mackinnon et al. 2009, Kemp et al. 1992). Other CNVs 

observed to arise in vitro include an inversion of a region containing a gene encoding ring- 

infected erythrocyte surface antigen (RESA) coupled with a deletion upstream of the same 

gene observed in knobless parasites that do not express the resa gene (Pologe, de Bruin and 

Ravetch 1990). RESA is one of the proteins exported to the erythrocyte surface and thought 

to be involved in blocking additional merozoite invasion of an already infected erythrocyte, 

decreasing deformability of infected host erythrocytes containing the early ring stage of the 

parasite and also protecting the parasite during episodes of high fever of the host (Mills et al. 

2007, Pei et al. 2007). Another important variant observed in cultured parasites is a deletion of 

skeleton binding protein 1 gene (pfsbpl) (Cheeseman et al. 2009), known to be involved in 

erythrocyte membrane protein 1 (PfEMPl) trafficking to the infected red blood cell surface 

(iRBC) (Maier et al. 2007). These gene copy number changes have not been observed in 

clinical samples and therefore may be involved in an otherwise costly mechanism that is 

important to the parasite for maintaining itself in a host.

In culture, the action of immunity and the need for sexual reproduction is diminished and thus

selection for parasites with high growth rates may occur (Ribacke et al. 2007). High growth

rates of parasites in culture have been linked to increased copy number of the gene encoding

reticulocyte-binding protein 1 (RH1) (Ribacke et al. 2007). This CNV has only been seen in
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some culture-adapted parasites and not in fresh clinical isolates and may be a relief of fitness 

cost associated with host immunity or host receptor polymorphisms(Nair et al. 2010, Stubbs et 

al. 2005). RH1 protein is involved in the sialic acid-dependent invasion of the merozoite into 

the host erythrocyte hence the gene amplification is thought to promote the parasite's rate of 

growth in culture.

Drug selection in the laboratory has led to generation of parasite lines resistant to certain 

drugs. Some of the drug resistance traits have been associated with gene copy number 

differences between the resistant and sensitive strains. These include amplification of the 

region containing pfmdrl (Sidhu et al. 2006, Price et al. 2004, Jiang et al. 2008a), which has 

also been reported in clinical isolates, increased copy number offalcipain-2 and falcipain-3 

genes seen in parasite lines resistant to a drug that inhibits cysteine protease (Singh and 

Rosenthal 2004), and deletion of 15 genes (PF3D7 1000900 to PF3D7_1002100) in 

chromosome 10 in parasites bearing mutations in chloroquine-resistant transporter gene (pfcrt) 

exhibiting different drug resistance profiles (Jiang et al. 2008a). Another deletion of 23 genes 

in chromosome 14 was observed in two Dd2 clones selected for fosmidomycin resistance and 

not in the wild type parasite (Dharia et al. 2009). One of the genes deleted is Deoxy-D- 

xylulose 5-phosphate reductoisomerase (pfdxr) which encodes an enzyme involved in the 

isoprenoid synthesis in P. falciparum that is under inhibition by the drug. An amplification of 

dihydrofolate reductase {dhfr) gene was observed in parasites subjected to increased doses of 

pyrimethamine leading to development of resistance (Thaithong et al. 2001). Knowing 

whether CNVs directly cause or are in linkage with causal mutations of drug resistance will be 

useful in monitoring drug resistance and would also offer insight into improving treatments.
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Overall, adaptation of parasites to laboratory culture has been shown to generate non-natural 

gene copy number changes, as seen by considerable lack of overlap in CNVs genes identified 

in fresh clinical and laboratory adapted strains in published studies. Therefore the studies of 

CNVs so far, most o f which have been performed on culture adapted isolates, might not be 

informative for understanding the role of CNVs in natural populations. There is thus a need for 

large scale exploration of CNVs in fresh field isolates to determine the extent of these variants 

in the genome and their potential role in adaptive evolution of the natural population of 

parasites.

1,5 The role of CNVs in P. falciparum

The evidence, so far, points to the contribution of CNVs to the dynamic structure of the 

genome that enables the parasite to adapt to its changing environment. First, the high 

abundance of repeat regions and monomeric A/T tracts in the genome (Gardner et al. 2002, 

Samarakoon et al. 201 lb) increases the chances of recombination events that lead to CNV 

formation that may constantly change the genome structure. The breakpoints of two CNVs, 

i.e., amplification of mdrl and gchl have been observed to consist of monomeric A/T tracts 

(Nair et al. 2007, Nair et al. 2008). Additional evidence for the contribution of CNVs to the 

dynamic genome structure is the observation of CNV regions with multiple copy number 

states, e.g., the number of copies of gchl has been found to vary from 1-11 copies in a 

population (Nair et al. 2008). Differences in CNVs observed between parasite parent lines and 

the progeny lines further illustrates the contribution of CNVs to the dynamic state o f the 

parasite’s genome (Samarakoon et al. 201 la). The growing evidence for the potential adaptive 

relevance of the CNV in the parasite warrants an investigation of the CNVs in nature and their 

potential adaptive role.
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1.6 Scope of the thesis

Most studies of CNVs in P. falciparum have been on a small scale and performed in short­

term or long-term cultured parasite lines which are not representative of natural populations. 

One of the reasons for the small number of clinical isolates previously studied is the low 

quantities of genetic material that are available for the assays: this issue has now been solved 

by use of whole genome amplification techniques. Furthermore, there has been growing 

evidence for the importance and impact of CNVs on disease and evolution in various 

organisms, simultaneous with remarkable improvements in technologies that facilitate high- 

throughput genome-wide scans for CNVs, thereby setting the stage for large-scale studies of 

CNVs in P. falciparum.

In this thesis, it is hypothesised that CNVs are important for the adaptation of the parasite to 

its variable environment. My goal is to establish the distribution of the CNVs in the parasite 

genome, determine frequency of CNVs in three P. falciparum populations in Eastern Africa, 

using microarrays, and identify the CNVs that may be under selection. Some of the differences 

among the three populations include variation in malaria transmission intensity (Noor et al. 

2014, Okiro et al. 2010), antimalarial drug use (Amin et al. 2007), host genetics (Piel et al. 

2010) and vector populations (Mwangangi et al. 2013). Apart from CNV identification, 

validation of the CNVs using a different technology, i.e., sequencing was performed. In 

addition, the influence of CNV on gene expression was investigated. The overall aim of this 

thesis is to identify and characterise CNVs in natural populations of parasites and determine 

whether they are involved in adaptation.

The methodology is described in Chapter 2. Chapter 3 presents results of a genome-wide 

screen for CNVs in four spatially and temporally separated populations of P. falciparum under
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different transmission intensities using microarrays with a view to identifying the CNVs under 

selection. Described in this chapter is the analytic approach of identifying CNVs using 

microarrays, including an investigation of the effects of various parameter settings on CNV 

detectability in order to select the settings that best define CNVs from microarray data. In 

addition, a number of systematic effects relating to experimental design that affect CNV 

detection were explored in order to help isolate the effects of population differences -  the 

main focus of the study - from methodological effects. The distribution of the CNVs in the 

genome is shown and the frequency of each in the populations determined. A number of 

functional gene groups were found to be enriched in the CNV gene list. Using population 

genetics analysis, CNVs with frequencies that appear to be highly differentiated between 

populations and potentially under selection were reported.

Chapter 4 focuses on confirmation of the CNVs detected using microarrays by whole genome 

sequencing of 22 of the 183 samples using PGM Ion Torrent machine. A summary of the 

sequence data output including quality and read coverage is given first. Read depth analysis is 

then used to detect CNVs which involves mapping of reads to a reference genome followed by 

the use of a CNV calling tool that identifies regions that differ in sequence coverage from 

normal. CNVs were detected in different target genomic regions in an effort to understand the 

effect of various aspects of the P. falciparum genome, e.g., low complexity regions, which 

may affect CNV detection. Some correspondence between microarrays and sequencing was 

observed. The chapter mostly highlights the challenges in using whole genome sequence data 

for CNV detection.
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In Chapter 5, the effect o f CNVs on expression of genes within the CNVs and those outside 

the CNV regions was investigated with a view to understanding the functional impact of 

CNVs in P. falciparum.

In Chapter 6, the main findings was summarised and their implications for future research in 

malaria parasite biology discussed with a view to design tools that are useful for the ultimate 

control of this disease.
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Chapter 2 

M aterials and Methods
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2 Chapter 2: Materials and methods

2.1 Population study of CNVs by microarrays

2.1.1 Study population

Patients with malaria attending healthcare facilities in three Eastern Africa regions were 

recruited for the study. Malaria positivity was determined by microscopy. The study 

populations include North Eastern Sudan (Gedaref, Kassab, Medani) and two populations, 

Kisumu (at western Kenya) and Kilifi (at the coast of Kenya with low, high and moderate 

malaria transmission intensities, respectively (Noor et al. 2014, Okiro et al. 2010). The study 

participants in Kilifi were recruited at two time points; (1994-1996) a period with higher 

transmission intensity and 2010 a period with lower transmission intensity (O’Meara et al. 

2008). The participants from Kisumu and Sudan were recruited in 2008 and 2007 

respectively. The populations also differ in antimalarial drug used (Amin et al. 2007), vector 

populations (Mwangangi et al. 2013) and host genetics (Piel et al. 2010). Ethical approval for 

the study was obtained from the Kenyan National Ethical Review Committee (SSC 1292). 

Written consent was obtained from parents/guardians of the study participants if  they were 

below 14 years, or the participants themselves otherwise.

2.1.2 Sample processing

For samples used for Comparative Genome Hybridization (CGH) by microarray, 2-5 ml of

blood was drawn by venepuncture from patients into sterile heparinised tubes (BD) and

placed at 4-8°C before further processing within 12 hours. To minimize contaminating human

host genetic material, whole blood obtained from individuals was centrifuged at 440 x g for 5

minutes and plasma and buffy coat removed. An aliquot of the infected red blood cell pellet

(iRBCs), between 30 pi- 200 pi, of each sample, was stored at -80°C for CGH after washing
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the pellet in IX Phosphate Buffered Saline (PBS) (Oxoid). For some of the samples collected 

from Sudan, the buffy coat was not removed prior to washing and storing.For samples used for 

DNA sequencing, the buffy coat was returned to the tube with the remaining iRBCs pellet 

onto which 5ml of incomplete culture medium was added, mixed and then layered on top o f 3 

ml of sterile Lymphoprep (Axis-Shield Pos AS) contained in a separate 15ml tube in order to 

separate PBMCs for other studies. The incomplete culture medium was made up of 500ml of 

RPMI 1640 (Gibco), 18.75ml of IM HEPES buffer (Gibco), 5ml of 2mM L-glutamine 

(Gibco), 1.25ml of lOmg/ml gentamicin (Gibco), 5ml of 20% glucose (Gibco), 3 ml of 1M 

NaOH. The tube was centrifuged at a speed of 440 x g for 20 min. The layer containing 

peripheral blood mononuclear cells (PBMCs) was removed. Granulocytes were then removed 

from the remaining iRBCs pellet by Plasmion (Bellon) flotation. An aliquot of 100-200 pi of 

these white cell-depleted iRBCs, to be used for whole genome sequencing, was stored in 1ml 

of glycerolyte (42.25% glycerol, 0.1M Sodium Acetate, 4mM KC1, NaFhPCU pH 6.8 (Sigma- 

Adrich)) in cryovials (Thermo Fisher Scientific Inc.) in liquid nitrogen.

The reference parasite line used in CGH, a Kilifi laboratory adapted line, originated from a 

malaria patient at the Kilifi District Hospital (Mackinnon et al. 2009). The parasite line was 

maintained in vitro at 2% hematocrit in complete medium made up of incomplete medium, 

human red cells (O cells) and 10% human serum. The culture medium in the flasks was 

changed every other day and gassed with a gas mixture (BOC) containing 3% carbon dioxide, 

1% oxygen and 96% nitrogen.

2.1.3 Genomic DNA extraction

Genomic DNA was isolated from Kilifi samples by lysis of 30 pi- 200 pi of iRBCs using

saponin. The iRBCs were resuspended in IX PBS to a final volume of 1 ml followed by
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addition of 1 ml of 0.1% of saponin (Sigma) dissolved in IX PBS to obtain a final 

concentration of 0.05% saponin (Sigma).The resuspension was incubated for 3 minutes at 

room temperature and centrifuged for 10 minutes at a speed of 1440 x g. The pellet was 

washed with 3 ml cold IX PBS. Protein digestion and further lysis of the pellet was performed 

by incubation in 75ul Proteinase K (20 mg/ml) (Applied Biosystems) and 425 pi lysis buffer 

(containing 80mM EDTA (Sigma-Aldrich) at pH 8.0, 40mM Tris-HCl (Sigma) at pH 8.0 and 

2% SDS (Sigma)) for 1 hour at 37°C. Finally, separation of DNA from proteins was achieved 

by adding 500 pi of phenol chloroform (Invitrogen) to the lysed material and centrifugation at 

11714xgto separate the aqueous layer containing nucleic acid from the inorganic material. 

Genomic DNA (gDNA) was precipitated from the aqueous mixture using 500 pi isopropanol 

(Sigma-Aldrich) and 0.1 X the total volume (aqueous mixture and isopropanol) of 3M sodium 

acetate (Ambion) at -20 °C overnight. The precipitate was washed with 700 pi 75% ethanol 

(Sigma-Aldrich), dried and resuspended in 20 pi IX TE buffer (Invitrogen). Sudan and 

Kisumu DNA samples were extracted from 100 pi blood pellet using the automated ABI 

PRISM 6100 Nucleic Acid PrepStation (Applied Biosystems) as described in the 

manufacturer’s protocol. The extracted DNA was eluted in 100 pi BloodPrep DNA Elution 

solution 2 (Applied Biosystems). The presence and integrity o f extracted gDNA was 

confirmed using a 1% agarose (Promega) gel electrophoresis.

2,1,4 Multiplicity of infection

The number of distinct parasite clones per isolate was determined by genotyping of P.

falciparum merozoite surface antigen 2 {msp2) using a method developed by Liljander and

others (Liljander et al. 2009). The procedure involves a nested PCR reaction with the primary

PCR amplification of block 3 of msp2 followed by a secondary PCR with fluorescent primers

targeting the msp2 allelic types FC27 and IC. Fragment analysis of the PCR product was
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performed using capillary electrophoresis and the results analyzed using GeneMapper® 

Software version 4.0 (Applied Biosystems). One microliter of the DNA sample, extracted 

using different methods (described in section 2.1.3), was used in the PCR. The samples 

assayed had different parasite DNA quantities per microliter hence could lead to bias in the 

estimation of MOI.

2,1,5 Comparative genomic hybridization (CGH)

2.1.5.1 Microarray design

The microarray used for the study consisted of 70mer oligonucleotides (probes) spotted on a 

glass slide (Bozdech et al. 2003b). The design and printing o f the array was done at Assoc. 

Prof. Zbynek Bozdech’s laboratory, a collaborator, at Nanyang Technological University in 

Singapore. The probes on the array were designed using the available complete P. falciparum 

genome sequence of 3D7 parasite line (Gardner et al. 2002) to target conserved regions of 

approximately 5400 genes with an average of 2 probes per gene (Bozdech et al. 2003b). The 

CGH experiment was carried out in a microarray facility established in the KEMRI-Wellcome 

Trust Research Programme laboratories in Kilifi, Kenya.

2.1.5.2 Whole genome amplification

The CGH experiment was performed on 183 samples, with 8 of these samples with duplicate 

experiments. To increase the amount of DNA available for hybridization to the array, whole 

genome amplification using random nonamers was performed (Petalidis et al. 2003). The 

samples were randomized during amplification and hybridization experiments to minimize 

experimental variability. The whole genome PCR amplification involved three steps. First, 

random priming was performed on lOOng of gDNA (gDNA quantity measured using
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Nanodrop 2000 (Thermo Scientific)) using random nonamers (SMART-Random) consisting 

of 9 random nucleotides with a 23 bp sequence tag (5’-

AAGCAGTGGTATCAACGCAGAGTNNNNNNNNN-3 ’), obtained from Eurofins MWG, at 

95°C for 6 min. The second step, PCR extension of the randomly primed regions, involved 

addition of 2.5 units of Klenow fragment (5U/pl) (3 '—>5' exo-) (New England Biolabs), 1 pi 

of 3X dilution of aa-dUTP/dNTP mix (consisting of 34 pi of lOOmM dATP, 17 pi each of 

lOOmM dCTP, dGTP, dTTP (New England Biolabs), 17 pi of lOOmM amino acyl dUTP 

(aadUTP) (Biotium) and 11.3 pi o f distilled water), 1 pi NEBuffer 2 (New England Biolabs) 

and 2.5 pi ddfbO. The Klenow fragment is a large fragment of DNA polymerase 1 that lacks 

the 3’-5’ exonuclease activity hence facilitates incorporation of aadUTP that enables coupling 

of the Cy3 and Cy5 fluorescent dyes used for DNA labelling (GE Amersham). The 

thermocycling conditions for the Klenow mixture were; 25°C for 10 min, 37°C for 60 min and 

75°C for 20 min. The last step involved a lOOpl PCR amplification reaction containing 10 

units of DNA Taq Polymerase (5U/pl) (New England Biolabs), 6 pi of lOOnM primer 

(SMART-Amplification) complementary to the tag sequence in the random primer (5’- 

AAGCAGTGGTATCAACGCAGAGT-3 ’) (MWG), 10X Buffer, 1.5 pi of aa-dUTPs/dNTP 

mix and 2.5 pi of the Klenow mixture product. The PCR amplification ended at the linear 

phase, after 19 cycles, to maintain the relative abundance of DNA. The thermocycling 

conditions for this step are shown below (Table 2.1).

The PCR product was purified using QIAquick PCR Purification Kits (Qiagen). The 

purification procedure was provided with the kit and it involved addition of 500 pi of PB 

binding buffer to the PCR product then transferred to the spin column. This was followed by 

centrifugation at 15026 x g for 1 min and the flow-through discarded. 750 pi of PE buffer was 

added to the column, centrifuged for 1 minute and flow through discarded. Additional 1 min

Page 50 o f 191



Table 2.1. Thermocycling conditions for PCR amplification of Klenow reaction product

Tem perature Time Number of cycles
95°C 5 min 1
60°C 1 min 1
68°C 10 min 1
95°C 30 sec I
60°C 30 sec 1r 1968°C 5min J
72°C 5 min i
4°C Hold

centrifugation was performed to remove any remaining PE buffer. The column was then 

placed on a clean 1.5ml tube and 14 pi of Elution buffer added and incubated for 5 minutes. 

The spin column was spun for 1 minute to recover the purified PCR product. The DNA was 

then quantified using the Nanodrop 2000 (Thermo Scientific) and run on a 1% agarose gel. 

The size of the PCR product ranged between 100-200bp (Figure 2.1).

1 2 3 4 5 6 8 9 10 11 12 L

# * * Imi tout * * In #  tot tomtto * i  *

■3000 bp 

.1000 bp 

'500 bp

-100 bp

Figure 2.1. Size of amplified DNA using random nonamers
Image of 1% agarose gel containing PCR products from 12 samples (1-12) and sizes indicated 
by ladder (GeneRuler DNA Ladder Mix (Thermo Scientific) run in 2 wells (L). As 
expected,the majority of amplified fragments were between lOObp and 200bp.
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2.1.5.3 Dye labeling

Cyanine dyes, Cy3 and Cy5 dyes, (GE Amersham) were coupled to reference and test DNA 

samples respectively. Dye coupling involved mixing of 10 pi of the purified PCR product, 

with a concentration of at least 3 pg, 2 pi of 0.5M NaHCCb (Sigma) and 2 pi each of Cy3 and

Cy5 dye, containing 3076 pmol of reactive dye, resuspended in DMSO4 (Sigma). This was 

incubated at room temperature, in the dark, for 4 hours followed by removal of the uncoupled 

dye using the QIAquick PCR Purification Kit (Qiagen). The purification procedure was 

similar to that described in section 2.1.5.2 with changes in the volume of PB buffer added to 

700 pi and Elution Buffer of 12 pi. The concentration of the purified labelled material was 

determined using the ‘microarray’ mode on Nanodrop 2000 (Thermo Scientific). The labelled 

material was stored at -20°C awaiting hybridization.

2,1,5,4 Hybridization of sample and reference DNA

The printed slides were hydrated using vapour from 2X saline-sodium citrate (SSC) buffer 

(Sigma-Aldrich) for 20 sec and dried on a heated block at 100°C. This was followed by UV 

crosslinking at an energy level of 80,000 microjoules per cm2 in a HL-2000 HybriLinker™ 

System (UVP) for 1 min. The slides were then fully immersed in blocking buffer for 45 

minutes at 42°C under rotation to reduce non-specific binding to the glass slide. The blocking 

buffer contained 1% bovine serum albumin (PAA), 5X SSC buffer (Sigma-Aldrich) and 0.1% 

SDS (Sigma). The slides were then washed with distilled water and dried on a benchtop rotor 

with slide holders. The microarray chamber known as HX3 mixer (Nimblegen) was assembled 

on each slide, using a slide alignment tool, ready for sample loading.
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Prior to loading the samples, a hybridization master mix, containing 3 pi of 20X SSC buffer, 

0.45 pi of 10% SDS and 0.5 pi of 1M HEPES per sample, was prepared. A volume containing 

2 pg of Cy3 labeled product, 2 pg of Cy5 labeled product and 3.95 pi of the hybridization mix 

was combined and topped up, with distilled water, to a final volume of 20 pi. This procedure 

was carried out in the dark. The tube containing the mixture was placed on a heating block at 

100°C for 5 min, to denature DNA, and allowed to cool at room temperature for 5 min. The 

mix was then loaded to the assembled slides and placed in a MAUI 12-bay hybridization 

station (BioMicro Systems) overnight (at least 12 hours) at 65°C.

The hybridized slides were washed twice in an ArraylT wash bucket with slide holder. The 

first wash was in a solution containing 15ml of 20X SSC buffer, 1.5ml of 10% SDS and 

510ml of distilled water with magnetic stirring. The second wash solution contained 1.5 ml 

20X SSC buffer and 520 ml of distilled water. The slides were then dried by centrifugation.

All these procedures were performed in the dark since the dyes are photosensitive.

2,1,5,5 Image acquisition

The slides were scanned by the GenePix 4000B Microarray Scanner (Molecular Devices) 

using GenePix Pro 4.0 software (Molecular Devices) at optimal wavelengths ranging from 

600-690 nm for the Cy5 dye and 350-420 nm for the Cy3 dye and at a resolution of 10 pm.

The images were saved as TIFF files (Figure 2.2). Using GenePix Pro 4.0, a GenePix Array 

List (GAL) file, containing the sizes, positions and probe identifiers of the spots on the array, 

was overlaid on the images. By visual inspection of the images, poor quality spots and regions 

were marked as bad. The results were saved as GenePix Results (GPR) files.
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2.1.6 Microarray data analysis

2.1.6.1 Pre-processing of microarray data

Analysis of the microarray data was performed using the linear models for microarray analysis 

(ilimma) package (Smyth 2005) in R. The GPR files were imported into R. The quality o f the 

data was assessed using the flag values associated with each spot. Spots with flag values of 

less than zero, i.e., -100, -75 and -50 indicated as ‘bad’, ‘absent’ and ‘not found’ respectively 

were considered of poor quality. The GenePix 4.0 software flagged a spot as ‘bad’, if by 

manual inspection, it was marked of poor quality, ‘absent’ when the GAL file lacked a probe 

identifier associated with the spot or the identifier was indicated as ‘empty’ and lastly ‘not 

found’ if the spot had less than 6 pixels, or its size greatly differed from that in the GAL file.

Spots with the above flag values were weighted as zero and were not included in further 

analyses. To remove any experimental variation, the background intensity was subtracted from 

the foreground by a method known as ‘normexp’ in limma (Ritchie et al. 2007). The method 

uses a normal plus exponential convolution model where the normal distribution reflects the 

background intensities and the exponential distribution reflects the signal intensities. The 

background intensity was calculated from regions outside each spot while the foreground 

intensity was determined from within each spot. Normalization of the data within the array 

was performed using “robustspline” (Smyth and Speed 2003) in limma. This involves, for 

each array, normalization of log2 intensity ratios with respect to the overall intensity values in 

each array. This normalization minimizes the bias in log2 intensity ratios observed at low 

intensities. After this, between-array normalization was performed using the “quantile” 

method which standardizes the intensity means and inter-quartile ranges across arrays.
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3 mm

Figure 2.2. Image of a hybridized array
Image of a single array obtained using GenePix 4000B Microarray Scanner. The array 
contains 16 blocks with red, green and yellow spots. The yellow spots indicate equal 
hybridization of the test and reference to the oligos. The red spots indicate oligos with higher 
amounts of hybridization of the test DNA (Cy5 dye (red)) than the reference DNA (Cy3 dye 
(green)). The green spots indicate oligos with higher amount of hybridization of the reference 
DNA (Cy3 dye (green)) than the test DNA (Cy5 dye (red)).

2,1,6.2 Detection of gene copy number variation using R-GADA

To identify genomic regions that vary in copy number using microarray data, a R package 

called Genome Alteration Detection Analysis (GADA) was used (Pique-Regi et al. 2010). The 

input to this program is normalised microarray log2 intensity data and location of the probes 

and the output is the location and supporting statistics for contiguous segments of genome that
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differ in log2 intensity (amplitude) from their flanking segments. The program includes two 

steps; segmentation analysis and backward elimination. The first step involves the conversion 

of the normalized log2 intensity ratios into piecewise constant vectors. It then employs a sparse 

Bayesian learning (SBL) model to identify the possible breakpoints and the segment average 

log2 intensity ratio (amplitude). The learning is controlled by the array noise level that is 

automatically generated from the data and a second sparseness hyperparameter, aAlpha (aa) 

that is manually set and controls the number of segments generated. When aAlpha is set at a 

high value, the expected number of segments a priori is fewer that when aAlpha is low. In the 

second step, backward elimination, a statistical analysis, t-statistic, is calculated for each 

breakpoint detected based on the mean and variance of the segments. Breakpoints with low 

statistical significance, i.e., with t-statistic less than the set T, are removed. Also included in 

this step is the filtering of segments based on the minimum number of probes within the 

segment. Thus the stringency on CNV detection can be applied by altering T, aAlpha and 

amplitude (magnitude of difference in signal between the putative CNV and its neighbouring 

genes) parameters in the GADA package. It can further be altered by defining the proportion 

o f probes per gene and genes per CNV required to define a CNV.

2.1.7 Statistical analysis

2.1.7.1 Systematic effects of CNVs detection

Once the CNVs were ‘called’, other study-specific systematic effects on their prevalence were 

analysed using mixed effects logistic regression models. The possible effects of population of 

origin, multiplicity of infection (MOI), haemoglobin, age of participant and parasitaemia (5 

fixed effects), experimental batch, isolate (sample) and CNV on the probability o f determining 

the presence or absence of a CNV (dependent variable) were explored. The model was fitted
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to each CNV separately using the ‘glmer’ command with the family as ‘binomial’ in linear 

mixed-effects models using the lme4 package in R. Because of the large number of levels in 

isolate and CNV, these factors, together with batch, were fit as random effects. Least squares 

means were calculated for each level of the fixed effects from the fitted models using the 

Ismeans package in R.

2.1.7.2 Functional gene set enrichment analysis of CNVs

Gene set enrichment analysis was performed on the list of genes identified to be copy number 

variable. The functional gene sets were obtained from Malaria Parasite Metabolic Pathways 

website: http://mpmp.huii.ac.il/. The hypergeometric test was used to identify functional 

groups of genes that were enriched. Hypergeometric test calculates the probability of overlap 

between two gene lists, i.e., genes detected as CNV and those in a functional gene group. The 

‘phyper’ function in the stats package in R was used. Functional groups with p-values of less 

than 0.05 were classified as statistically significantly enriched.

2.1.7.3 Population genetics analysis

The frequency of each CNV in each of the four populations was calculated. To characterize 

the between to within population variability in CNV frequencies, Weir and Cockerham F- 

statistics (F st) were calculated for each CNV using hierfstat as implemented in R (Goudet 

2005).
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2.2 Confirmation of CNVs by whole genome sequencing using the Personal Genome 

Machine (PGM™) Ion Torrent

2.2.1 Samples

Twenty-two out of the 183 samples with CGH data were selected for whole genome 

sequencing. These set o f samples had all the 98 CNVs reported in chapter 3 among them. An 

aliquot of iRBCs in glycerolyte stored in liquid nitrogen, described in section 2.1.2, was used 

for whole genome sequencing.

2.2.2 Genomic DNA extraction

Genomic DNA extraction was performed in two batches. The first batch of 9 samples were 

centrifuged and then the glycerolyte was removed. Then gDNA extraction procedure using the 

saponin lysis method described in section 2.1.3 was used. The second batch were processed 

using the procedure described in section 2.2.4. The presence of DNA after extraction was 

confirmed by 1% agarose gel electrophoresis and the quantity of DNA was measured using a 

Qubit® 3.0 Fluorometer. The DNA quantities ranged between 4-25 ng/pl in a volume of 20pl.

2.2.3 Quantification of the proportions of human and parasite DNA using real time 

PCR

The SYBR green method using primers (below) against parasite DNA and human DNA was 

used to quantify the amount of DNA from each organism in each of the samples. The parasite 

primer set targeted the fructose-bisphosphate aldolase gene (PF3D7_1444800) using the 

forward and reverse primer sequences below. The primer set was used as an endogenous 

control in qPCR by Salanti and colleagues (Salanti et al. 2003).
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PF3D7 1444800 forward primer: 5’-TGTACCACCAGCCTTACCAG-3’ 

PF3D7 1444800 reverse primer: 5’-TTCCTTGCCATGTGTTCAAT-3’

A commercially available human DNA primer targeting the beta hemoglobin gene: HUMAN 

hbb- Hs HBB l SG QuantiTect Primer Assay (Qiagen) was used to amplify human DNA. 

The qPCR assay was performed in 15 pi reaction with 7.5 pi SYBR Green Master Mix 

(Applied Biosystems), forward and reverse primers each at a concentration of 500nM, 1 pi (2- 

40ng) of DNA template and 5 pi DNAse free water. The cycling conditions for qPCR 

amplification on a 7500 Real-Time PCR System (Applied Biosystems) are listed in Table 2.2.

Table 2.2. Thermocycling conditions for qPCR assay for human and parasite DNA 

quantification

Stage Tem perature Time (min) Cycles
Holding 50°C 2.00 1
Holding 95°C 10.00 1

95°C 0.01 " L 45
Cycling 60°C 1.00 J
Melt Curve 95°C 0.15 1

60°C 1.00 1

The standard curve method (Applied Biosystems, User bulletin #2) was used to quantify the 

parasite and human DNA quantities in each sample. The standards were generated from pure 

parasite and human DNA extracted from a lab adapted parasite line and peripheral blood 

mononuclear cells (PBMCs) respectively. The standards consisted of 10-fold serial dilution of 

the DNA with the highest concentration at 50 ng/pl and the lowest at 0.005 ng/pl. The DNA 

quantities were measured using Qubit® 3.0 Fluorometer. The five human and parasite 

standards were included in each plate of the qPCR assays. The parasite and human DNA 

quantities for each sample were interpolated from the standard curves (Figure 2.3). The
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fraction of human and parasite DNA in the first 9 samples ranged from 5-71% (Table 2.3). 

This is comparable to the estimate obtained from next-generation DNA sequencing in most of 

the samples (Table 2.3).
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Figure 2.3. Quantification of parasite and human DNA using the standard curve method.
Plot (from 7500 Real-Time PCR software) of the relationship between C t  (threshold cycle) 
value of each well on the Y axis and the quantity of DNA (ng) in the well. The two standard 
curves, human (upper line) and parasite (lower line), generated from the qPCR measurements 
of the standards (red points), are shown. The samples assayed are indicated in green. The 
quantities of DNA in the standards are known and that of the samples are interpolated from the 
standard curves. The human and parasite standard curves have slopes of -3.38 and -3.31 which 
correspond to amplification efficiencies of 97.5% and 100.4%, respectively (calculated by the 
7500 Real-Time PCR software). The R2 values were 0.99 in both cases. The efficiencies, 
slopes and R values were calculated by the 7500 Real-Time PCR software.

2.2.4 Human DNA depletion by DNase treatm ent

In the first batch of 9 samples parasite DNA consisted of, on average, 37% and 54% of the 

total DNA content as determined by sequencing and qPCR respectively (Table 2.3). As this is 

wasteful of sequencing power, a protocol was developed to further minimize the amount of 

human DNA present in the additional 13 samples to be sequenced. This protocol was based on 

the principle that storage of iRBCs in glycerolyte preserves the integrity of RBCs but not 

PBMCs (Farrugia et al. 1993). If PBMCs, but not iRBCs, are lysed upon thawing, addition of 

DNase to the cells in glycerolyte would be expected to lead to digestion of human DNA but 

not parasite DNA.
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Table 2.3. Proportion of parasite DNA in samples determined by qPCR and also

obtained from whole genome sequence data.

Sample
Identifier

Parasitaemia 
par/p 1 (by 
microscopy)

Proportion of 
parasite DNA in 
sample by qPCR

Proportion of parasite 
sequences in 
sequencing output

pfl299 270,000 0.62 0.58
pfl349 74,000 0.55 0.45
pfl624 460,000 0.71 0.54
pf10676 280,000 0.43 0.42
pf10760 200,000 0.60 0.27
pfl 0814 6,600 0.05 0.13
pfl0836 910,000 0.79 0.63
pfl 0724 290,000 NA 0.22
pfGO 13 NA NA 0.05
Mean 600000 0.54 0.37

NA (first column) - No data on parasitemia due to unreadable microscopy slide of sample 
pfG013 .NA (second column) - Failed qPCR reaction. May be due to presence of PCR 
inhibitors The proportion of parasite sequences in sequencing output was calculated from the 
total sequence reads that mapped to 3D7 (as described in section 2.2.6) divided by the total 
sequence reads obtained for each sample.

The 13 samples stored in glycerolyte were centrifuged at 2156 x g for 3 min and glycerolyte 

removed. To the samples, 10X DNase buffer (Ambion) and 6 pi (12 units) of DNase 

(Ambion) enzyme were added and incubated at 37°C for 30 minutes. The enzyme was 

inactivated by 2 min incubation, at room temperature, with addition of EDTA at a final 

concentration of 15mM. The samples were resuspended in 2.5mM EDTA in 1 X PBS to a 

volume of 1 ml. gDNA extraction was undertaken as described in section 2.1.3 using the 

saponin lysis method. The percent of parasite DNA sequences after whole genome sequencing 

ranged between 5 and 98% in the 13 samples (Table 2.4). Unfortunately, no controls were 

tested in the human DNA depletion experiment to assess its success. However, the observation 

of comparable proportions of parasite DNA between blood samples from Sudan (pfM007 and 

pfM004) and Kisumu (pfK007, pfK020, pfK071) that were not subjected to prior removal of
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white blood cells (section 2.1.2) and Kilifi samples (pfl212, p fl0770, pfl 590, p f l0820 and 

pfl 0495) that had white blood cells removed (section 2.1.2) is promising.

Table 2.4. Proportion of parasite DNA sequences in whole genome sequence data of 

samples after DNase treatm ent

Sample
identifier

Proportion of parasite 
DNA sequences in 
sequence output

pfl 212 0.93
pfl 0770 0.62
pfl 590 0.18
pfl 895 0.98
pfK007 0.90
pfK020 0.94
pfK071 0.43
pfM004 0.70
pfM007 0.96
pfK065 0.05
pfl 0820 0.87
pfl0578 0.08
pfl 0495 0.98

2,2.5 L ibrary preparation of gDNA for sequencing

Library preparation of gDNA was performed using the Ion Xpress™ Plus Fragment Library 

Kit (Part No. 441269) according to the Ion Torrent protocol. 20 ng -100 ng of gDNA was 

fragmented using Ion Shear™ Plus reagents (Part No. 441248) to a median fragment size of 

between 200-300bp. The fragmented product size was assessed using Agilent Bioanalyzer™ 

2100 (Agilent Technologies, Inc) (Figure 2.4A). Adapters were ligated to the fragmented 

DNA, nick repaired and purified using Agencourt AMPure beads (Beckman Coulter). The 

target fragment size of approximately 330bp was selected for using E-Gel SizeSelect™ 2% 

agarose gel (Life technologies). Five cycles of PCR amplification of the size-selected DNA 

was performed (Figure 2.4B).
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Figure 2.4. Distribution of DNA fragment sizes
Graphs from Agilent Bioanalyzer™ 2100 showing the distribution of fragment sizes A) after 
enzymatic shearing of gDNA of sample loaded on well 11 and read as sample 11 by the 
machine (pfl 299) B) after size selection of fragmented DNA, for a 200bp library, and 5 cycles 
of PCR amplification of sample loaded on well 1 (pfl 299). The fluorescence units (FU) on the 
y axis represents the quantity of DNA fragments and the sizes of the fragments, in base pairs 
(bp) are shown on the x axis. The peaks at 35bp and 10380 are the sizing marker peak.

The quantity of the amplified product for use in emulsion PCR on the Ion One Touch 

Instrument (Life Technologies) was assessed using Ion Library Quantitation Kit on the 7500
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real time PCR machine (Applied Biosystems). A volume of the amplified products that 

corresponded to a concentration of 13pM of molecules were taken to emulsion PCR step. 

Emulsion PCR involves clonal amplification of individual DNA templates on magnetic beads 

in droplets formed in water-oil emulsion. The Ion PGM OneTouch Two Template Kit (Part 

No. 4480974) was used in the emulsion PCR. After the PCR, the percentage of templated ion 

spheres was assessed using Ion Sphere Quality Control Kit in order avoid sequencing of 

samples with insufficient templated Ion Sphere Particles or samples with multiple templates 

per Ion Sphere Particle. Enrichment of Ion Spheres with templates was then carried out on the 

Ion OneTouch ES. The enriched templated spheres were loaded onto an Ion 318 Chip (Part 

No. 4469497) with a capacity of up to 2 Gbp and sequenced. Signal processing and base 

calling was performed in the Ion Torrent Server. Trimming of 3’ end of reads based on base 

quality was turned off during base calling. The raw files in Standard Flowgram Format (SFF 

files) were converted to FastQ files using a plugin known as FastQCreator in the Torrent 

Server. The FastQ files were then exported for analysis.

2.2.6 Sequence data analysis

2.2.6.1 Mapping of reads to reference genome

The sequence reads contained in the FastQ files were mapped to a reference genome using the 

Burrows Wheeler Aligner (BWA) (Li and Durbin 2010). The reference genome used was 3D7 

version 3, available from GeneDB (Logan-Klumpler et al. 2012). The BWA-MEM option 

suitable for mapping of reads greater than 70bp was used and output to files in Sequence 

Alignment/Map (SAM) format. These files were converted to compressed binary versions 

(BAM format) using SAMtools (Li et al. 2009). Alignments with low alignment quality
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scores, i.e., less than 30 ,and reads mapping to multiple locations in the genome together with 

non-mapped reads were excluded from further analysis using SAMtools (Li et al. 2009).

2.2.6.2 CNV detection using sequence data

To detect CNVs in the sequence data, Copy Number estimation by Mixture Of PoissonS 

(cn.MOPS), in R, was used (Klambauer et al. 2012). Using cn.MOPS package, the BAM files 

were imported in R from which the read coverage across non-overlapping genomic windows 

was calculated. Normalization of read counts across all samples was performed using the 

‘quantile’ method to correct for differences in sequencing depth of the samples. To identify 

CNVs, cn.mops employs a mixture of Poisson distributionsmodel at each window across the 

samples. The model assumes that the read coverage for a specific copy number across samples 

has a Poisson distribution and in instances of presence of different copy numbers, the model is 

a mixture of Poisson distributions. An initial CNV call is made when there exists variation in 

coverage across the samples, e.g., a log2 fold difference of less than -0.8 (loss) or greater than 

0.8 (gain) between sample and the mean normalized coverage in the window. A second CNV 

call is made when consecutive initial calls along a chromosome are joined by segmentation 

analysis using the ‘fastseg’ method and called as a single CNV.

2.3 Transcriptome profiling using microarrays

Transcription profiling experiment was performed by Rono, M., Nyonda, M., Ngoi, J., Simam, 

J., Mackinnon, M. J. (unpublished). Below are the procedures that were undertaken in 

generation o f transcriptome data.
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2.3.1 RNA extraction

An aliquot of blood sample processed as described in section 2.1.2 was used for transcription 

profiling. Prior to storage, each fresh blood aliquot, 200 pi-1000 pi was subjected to 

laboratory culture to obtain parasites at all the 48 hr asexual stages, i.e., ring, trophozoite and 

schizont stages. Seven aliquots, of equal volume, were obtained from culture at an interval of 

10 hours each and the iRBCs pellet stored in TRI Reagent® (Sigma-Aldrich) at -80°C. I was 

involved in the culture of some of the parasites and set up of the sample database. To extract 

RNA from blood, the stored aliquot was thawed and TRI Reagent® (Sigma-Aldrich) was 

added to a total volume of lOOOpl and mixed. 240pl of Chloroform (VWR) was then added 

mixed and centrifuged at 2000 x g for 10 minutes at 4°C. The aqueous layer containing nucleic 

acid was separated, 500pl of Isopropanol (Sigma-Aldrich) added to it and stored at -20°C 

overnight to enable precipitation of the nucleic acids. The sample was spun at a speed of 

12000 x g for 1 hr at 4°C and the supernatant removed. The pellet was then washed with 500pl 

of ice-cold 75% Ethanol (Sigma-Aldrich) and dried. The pellet was resuspended in 20pl o f 

RNAsecure (Invitrogen) and incubated at 60°C for 10 minutes. The RNA quality and quantity 

was assessed by Nanodrop and 1% Agarose gel.

2,3.2 cDNA synthesis, amplification and hybridisation

First, reverse transcription reaction was performed on 500ng of RNA. To a volume of RNA 

containing 500ng, 2 pi o f a mixture of primers containing SMART-dT (MWG), SMART- 

Random (section 2.5.1.2), SMART-TS (MWG) at concentrations of 25pM, 25pM and 50pM 

respectively was added and the total reaction volume made up to 8 pi by adding distilled 

water. The primer sequences for SMART-dT and SMART-TS are shown below. The reaction 

mix was incubated at 65°C for 5 minutes and at 4°C for 10 minutes. Secondly, cDNA
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synthesis was carried out using the Superscript II Reverse Transciptase kit (Life 

technologies). It involved making a reaction mixture containing 4 pi of 5X First-Strand, 2 pi 

of lOOmM DTT, 2 pi of 3mM dNTPs, 1 pi of 40U/ pi RNAse OUT (Invitrogen) and 2 pi 

distilled water to the first reaction. The mixture was mixed and incubated at room temperature 

for 2 minutes. 1 pi of 200U/pl Superscript II (Invitrogen) was added then incubated at 42°C 

for 50 minutes and then 70°C for 15 minutes. The third step involved amplification of the 

cDNA, a method similar to the amplification step of gDNA (section 2.1.5.2). 2 pi 5U/pl Taq 

polymerase ( New England Biolabs), 10 pi 10X Taq thermopol buffer (New England Biolabs), 

1.5pl aa-dUTP/dNTP mix (described in section 2.1.5.2 ), 6pl SMART-amplification primer 

(section 2.5.1.2), 5pi of cDNA synthesis product and 75.5 pi of ddFbO were mixed and placed 

in a thermocycler under the following conditions below (Table 2.5).

SMART TS primer sequence: 5’-AAGCAGTGGTATCAACGCAGAGTACGCGGG - 3’ 

SMART dT primer sequence: 5’-AAGCAGTGGTATCAACGCAGAGTACTTTTTTTTTTT 

TTTTTTTTTTTTTTTTTTT AGCN-3 ’

Table 2.5. Thermocycling conditions for PCR amplification of cDNA

Temperature Time Number of cycles

95°C 5 min 1

60°C 1 min 1
68°C 10 min 1
95°C 30 sec 1
60°C 30 sec Su .  22
68 °C 5min J 1
72 °C 5 min 1
4°C Hold

The reference parasite line used for hybridisation was an isolate similar to that of CGH 

experiment; Kilifi isolate adapted to lab culture, ‘P 4 \ The amplified product used as reference
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for microarrays was prepared by pooling, at equal concentrations, the RNA from different 

lifecycle stages of the reference parasite line prior to cDNA synthesis and amplification.

The amplified product was purified, labelled with dyes and hybridized using the procedure 

described in section 2.1.5.2, section 2.1.5.3 and section 2.1.5.4 respectively. The image 

acquisition and microarray data pre-processing was performed as described in sections 2.1.5.5 

and 2.1.6.1, respectively.

2,3,3 Statistical analysis

The effect of CNVs on the expression of genes located within them was assessed by 

performing a Pearson correlation between the mean CGH ratio per gene and ‘Mean’ 

expression data obtained from Rono, M., Nyonda, M., Simam, J., Mwongeli, J., Mok, S., 

Marsh, K., Bozdech, Z. and Mackinnon, M J .  (unpublished work). The p-value for assessing 

significant differences from the expected correlation of zero under the null hypothesis of no 

relationship between gene copy number and expression levels was calculated using the cor. test 

function in R.

To investigate whether the correlation obtained from the analysis may have been by chance, a 

permutation test was performed. 100 random permutations of the expression data o f each gene 

were generated and the correlation between mean CGH ratio of each gene and each of the 100 

randomized expression data per gene was calculated. A test for significant differences 

between the distribution of observed correlations and distribution of correlations from the 

permuted data was applied using the Kolmogorov-Smimov test implemented in the ks.test 

function in R.
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To analyse the relationship between gene expression (of genes in the whole genome) and the 

CNVs detected, a linear regression model was applied using the Im function in R. The mean 

log2 expression ratio of each gene was the dependent variable while the copy number state 

(fitted as a fixed effect factor with levels for loss, gain or normal) was the independent 

variable. The significance of the difference in gene expression between samples with a gene 

copy number difference and those without was assessed from the p-value of the regression 

coefficient from the same model.
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Chapter 3

Population-wide survey of gene copy number variation in Plasmodium falciparum 

isolates from Africa
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3 Chapter 3: Population-wide survey of gene copy number variation in P. falciparum 

isolates from Africa

3.1 Introduction

Genome-wide scans for gene copy number variants (CNVs) in P. falciparum have led to the 

discovery that CNVs contribute to up to 1% of the genetic differences between parasite 

genomes (Anderson et al. 2009). CNVs have been linked to differences in gene expression 

among parasite strains (Mackinnon et al. 2009, Gonzales et al. 2008, Nair et al. 2008) and 

have also been associated with important phenotypes including drug resistance (Nair et al. 

2008, Price et al. 2004, Dharia et al. 2009), erythrocyte invasion (Jiang et al. 2008b), 

cytoadherence and gametogenesis (Shirley et al. 1990, Biggs et al. 1989, Kemp et al. 1992). 

However, most of these surveys have taken place in laboratory-cultured isolates and only a 

small fraction of parasite isolates studied so far are direct from infected individuals. Certain 

CNVs are known to arise in vitro (Nair et al. 2010) and for this reason parasites subjected to in 

vitro culture for long periods of time are not a good representation of naturally occurring 

CNVs. The main goal of this study was to investigate the potential adaptive role of CNVs in 

nature through the largest CNV survey to date of natural populations of parasites.

A genome wide survey o f CNVs in 183 parasite isolates from three populations in Eastern 

Africa with different malaria transmission intensities was conducted. The CNVs were detected 

by comparative genomic hybridization using a 70mer oligonucleotide microarray. First, the 

microarray data were subjected to normalisation and quality screening to remove effects of 

technical variation. This was followed by CNV calling using Genomic Alteration Detection 

Analysis (GADA) package in R. In order to choose suitable thresholds that would maximize 

the number and accuracy of CNVs detected, a range of parameters for quality filtering and
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CNV calling and their impact on CNV detection were explored. In addition, to rule out any 

possible systematic bias, including sample and patient characteristics, other than population 

effects on the chances of detecting a CNV, a mixed effects logistic regression model was used 

to examine these potential influences on CNV detection. A summary o f the CNVs identified 

including their genomic locations, gene content, sizes and frequencies in each populations was 

generated. Furthermore, population differentiation in CNV frequencies was determined, using 

Weir and Cockerham’s F st estimates, to identify those CNVs that show strong differentiation 

between populations indicative of directional selection. Lastly, functional enrichment of gene 

groups in the genes located within the CNVs was investigated.

3.2 Methods

3.2,1 Experimental strategy

Comparative genomic hybridization (CGH) was performed in order to detect CNVs (described 

in section 2.1). DNA extracted from infected blood of 183 patients was amplified using random 

nonamers and competitively hybridized on an oligonucleotide array against a common 

reference genome. The reference parasite line originated from a patient resident in Kilifi, 

Kenya, and had undergone adaptation to in vitro culture (Mackinnon et al. 2009). The parasite 

line was in culture for approximately 100 cycles. Randomization of the samples was carried out 

during whole genome amplification and microarray hybridization to minimize any 

experimental bias. The 70mer oligonucleotide array used contained probes targeting 

approximately 5500 genes (Bozdech et al. 2003b). Each gene was targeted by, on average, 2 

probes. The microarray data were pre-processed using linear models for microarray data limma 

in R (Smyth 2005) and CNVs were identified using GADA (Pique-Regi et al. 2010). The 

experimental design is illustrated below.
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Genomic DNA extraction of 183 samples

Whole genome amplification and 
labeling

Competitive hybridisation of test and 
reference sample on a 70mer array

Quality assessment of microarray data

Normalisation and background 
correction using limma

Segmentation analysis using GADA

CNVs definition

Figure 3.1. Overview of the process of CNV detection using microarrays.
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3.2.2 Sample populations

A total of 183 P. falciparum isolates were obtained from individuals living in three 

geographical regions in Eastern Africa, i.e., Kilifi and Kisumu in Kenya and in Sudan, that 

differ in malaria transmission intensity (Noor et al. 2014, Okiro et al. 2010). The samples from 

Kilifi were obtained at two time points: 1994-1996, a period with higher transmission 

intensity, and 2010 when transmission intensity was lower (O'Meara et al. 2008). These two 

Kilifi populations will be referred to as “Kilifi pre-malaria decline” and “Kilifi post-malaria 

decline” respectively. Characteristics of each population are shown in Table 3.1. The age of 

the malaria patients significantly differed among the four populations (p-value < 0.05 by 

Mann-Whitney-Wilcoxon Test). Its effect on CNV prevalence is investigated in section 3.3.5.

Table 3.1. Characteristics of the four sample populations.

Population Kisumu Kilifi
Pre-malaria
decline

Kilifi
Post-malaria
decline

Sudan

M alaria transmission 
intensity

High Moderate Low Low

Number of samples 49 33 49 52

Year of sample collection 2008 1994-1996 2010 2007
Median age in months 
(range)

36
(6-72)

30
(11-37)

53.5
(14-147)

84
(12-612)

logio median 5.3 4.7 5.1 5.1
parasitaemia (par/pi) (4.9-5.8) (4.0-5.8) (2.5-6.1) (4.4-5.8)
(range)
Median haemoglobin in 9.9 9.4 10.6 9.6
g/dl (range) (5.2-15.2) (5.3-13.2) (3.4-12.1) (3.2-12.9)

Median number of clones 2 2 2 2
(range) (1-6) (1-7) (1-5) (1-5)
Monoclonal infections
(percentage) 10.2 33.3 18.4 26.9
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3.2.3 Quality control of microarray data

Quality o f hybridisation of the spots on the microarray was measured by the consistency in red 

intensity (test sample) and green intensity (reference sample) across a spot. The correlation 

between red and green fluorescence intensity of each pixel in a spot was determined by the 

image acquisition software, GenePix. From this, the square o f the correlation coefficient, 

termed ‘Rgn R2’, with values between 0 and 1, was used as an indicator of its quality, with 

values of less than 0.6 flagged as ‘bad’. In addition, microarray spots were also automatically 

and manually flagged as bad by visual inspection using the GenePix software (described in 

Chapter 2.1.6). Poor quality spots were assigned a weight of 0 and good quality spots given a 

weight of 1.

Furthermore, data from probes in the microarray targeting highly polymorphic gene families 

including variant surface antigens (vars, rifins and stevors) and also genes with known SNPs 

located within the probe sequences based on all SNPs data available in PlasmoDB version 9.1 

(SNPs information available for 37 isolates) were excluded. These polymorphic probes 

constituted 17% of probes on the microarray. The presence of 7 mismatches was found to lead 

to, on average, a reduction of 64% of the microarray hybridisation intensity (Bozdech et al. 

2003b) which could be called as a CNV. Probes targeting more than one gene location (6% of 

the total number of probes) were filtered out.

3.2.4 Pre-processing of microarray data

The total red and green fluorescence intensity of a spot, i.e., the foreground intensity, 

correlates with the amount of hybridization of the test sample and the reference sample 

respectively. Included in spot intensity measurement is signal from non-specific hybridization
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known as background signal estimated from regions surrounding the spots by the GenePix 

software. The background intensity was subtracted from the foreground intensity using linear 

models for microarray data limma package in R (Smyth 2005). To further minimize technical 

variation as a result of poor hybridization in part of a slide due to a bubble or poor printing, 

within array normalisation of microarray data was performed using limma (Smyth 2005). 

Technical variation between arrays due to, for example, differences in printing quality and dye 

concentrations was adjusted for using the ‘quantile’ normalisation method in limma. Detailed 

explanation of these analysis methods are in section 2.1.6

3.2.5 CNV detection using Genome Alteration Detection Analysis (GADA)

To detect CNVs, Genome Alteration Detection Analysis (GADA) package in R was used 

(Pique-Regi et al. 2010). This performs segmentation analysis to detect adjacent regions in the 

genome that differ in gene copy number. The input to GADA is the normalised log2 intensity 

ratios for each probe ordered by genomic position. The output is a list of chromosomal 

segments which differ in their average log2 intensity ratios from those in adjacent regions 

(Figure 3.2). CNV calling is restricted by certain parameter threshold settings including the 

amplitude (A) of segment (the average log2 intensity ratios of probes in a segments), T value 

(the t-statistic above which breakpoints are excluded) and aAlpha (aa) (a measure of the 

degree of segmentation). These are described in detail in chapter 2 section 2.1.6.2.

3.2.6 CNV definition

For the remainder of the analyses, the cut-offs at the segmentation analysis step in GADA 

were set at T= 3.5 and aa=0.2, a low stringency, on the basis that prior knowledge of the 

expected degree of segmentation was unavailable and also to maximize on the number of
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a3 a4

probes

Figure 3.2. CNV detection using GADA
An illustration of CNV detection using GADA. The log2 intensity ratio of probes (+ sign) 
ordered by genomic positions. The segments detected by GADA are indicated by horizontal 
lines. The amplitudes (A) of these segments indicated by log2 intensity ratio of cl, c2 and c3. 
The breakpoints of the segments indicated by probes al, a2, a3 and a4. Image reproduced from 
Pique-Regi et al. 2010.

CNVs identified. The stringency was increased by defining a segment to be copy number 

variable if it contained a minimum of two consecutive probes with an absolute average log2 

intensity ratio greater than 1, i.e., a two-fold increase or reduction in copy number. Due to 

measurement error in the data, the boundaries, i.e. the start and end of segments identified by 

GADA, may not be precise and thus appear to vary among isolates thus making it difficult to 

distinguish artefactual from real (Figure 3.3). Therefore, segments that overlapped in genomic 

position among samples, but had different start or end genomic locations, were considered to 

be the same CNV (Figure 3.3). Lastly, CNVs that appeared in less than 2% of the isolates 

studied were excluded from further analysis to allow for the possibility that they were 

artefactual. Each CNV was assigned a unique identifier that included the chromosome 

number, e.g., cnvl3_473, indicates that the CNV is on chromosome 13 and has unique number 

identifier 473.
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Figure 3.3. A schematic representation of the definition of CNVs breakpoints

3.2.7 Analysis of systematic effects on CNV detection

In order to determine whether there was systematic bias in the probability of detecting CNVs 

that may distort comparisons of CNV frequencies between populations, The effects of 

multiplicity of infection (MOI), parasitaemia, patient characteristics (age and haemoglobin), in 

addition to population, were analysed using generalized linear mixed effects model under a 

binomial model in the lme4 package in R. The aforementioned factors were classified as fixed 

effects. Three further effects - experimental batch, sample and individual CNV - were also 

included in the model as random effects. The response variable was binary, i.e., 

presence/absence of a CNV. Least-squares means were estimated from the fitted model for 

each category of the fixed effects using the Ismeans package in R. The overall effect of each 

factor was determined using ANOVA.

3.2.8 Assessing reproducibility of microarrays

Included in the set of samples for this CNV survey were 8 isolates that had been independently 

assayed twice. The 8 isolates were randomly chosen. To assess reproducibility of the
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microarray in identification of CNVs, the correlation between duplicates of the log2 intensity 

ratios of only the probes falling inside the detected CNVs was calculated for each o f the 8 

pairs. Also calculated was Cohen’s kappa value that measures the agreement between two 

replicates.

3.2.9 Gene set enrichment analysis of CNVs

Gene set enrichment analysis was performed on the list of genes identified to be copy number 

variable. The functional gene sets were obtained from Malaria Parasite Metabolic Pathways 

website: http://mpmp.huii.ac.il/. The hypergeometric test was used to identify functional 

groups of genes that were enriched. The ‘phyper’ function in the stats package in R was used. 

Functional groups with p-values of less than 0.05 were classified as statistically significantly 

enriched.

3.2.10 Population genetics analysis

The frequency o f each CNV in each of the four populations was calculated. To characterize 

the between to within population variability in CNV frequencies, Weir and Cockerham F- 

statistics (F st)  were calculated for each CNV using hierfstat as implemented in R (Goudet 

2005).

3.3 Results

3.3.1 Quality of microarray data

A large proportion, 87%, of the microarray data was of good quality (Figure 3.4A). The 

majority of the spots had weights of 1 and Rgn R2 values greater than 0.7. The proportion of
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data finally retained for further analysis after applying quality filters described in section 3.2.3 

was greater than 65% in most arrays (Figure 3.4B).

A) B)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coefficient of determination (Rgn R2)
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Proportion of data retained (percentage)

Figure 3.4. Summary of quality of microarray data
A) Histogram showing the distribution of Rgn R2 and the weights (1, blue; 0, red) of spots in 
the array data generated from 183 samples. Rgn R2 value of 0 and weight of 0 indicate the 
worst quality and 1 is the best quality data from a microarray spot. B) Distribution of the 
proportions of arrays ( in percentage), y-axis, with the proportion (percentage), x-axis, of 
microarray data retained for further analysis after quality filtering and removal of probes 
targeting highly polymorphic gene families including variant surface antigens, and probes with 
known SNPs within their sequences.

3,3,2 Background correction and normalisation of m icroarray data

Technical variation among the arrays was minimized as follows. Firstly, the foreground 

fluorescence intensity values that are used for calculation of the log2 intensity ratios were 

corrected for background noise (Figure 3.5A vs. 3.5B). Secondly, bias in log2 intensity ratios 

(M) (M = log2 (Red intensity (test sample)/Green Intensity (reference)) observed at low 

average intensity values (A) (A= 1/2 log2 (Red*Green intensities) observed within an array 

was removed (Figure 3.5C vs. 3.5D) and lastly, between array normalisation was not 

necessary because it did not have major effect on the distribution of intensities between the
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arrays after the data was corrected for background noise and within array normalisation 

performed (Figure 3.5E vs. 3.5F).

Array

Average log2 intensities Average log2 intensities

E) F)
CM

O

1 3 5 7 9 11 13 15 17 19

o

1 3 5 7 9 11 13 15 17 19

Array Array

Figure 3.5. Pre-processing of m icroarray data.
Box plots of average log2 intensity values of a subset of 20 arrays of A) raw data B) 
background corrected data. Plot of relationship between log2 ratio (M) (Y axis) and average 
log2 intensity (A) (X axis) of a single array C) before within array normalisation D) after 
within array normalisation using the ‘robustspline’ method. Boxplot of the average intensity 
ratios (M) E) before between array normalisation and F) after within array normalisation using 
the ‘quantile’ method. The log2 intensity ratio (M) is calculated from the equation M = log2 

(Red intensity/Green intensity). Average log2 intensity (A) is calculated as A = 1/2 log2 

(Red*Green intensities), i.e., the geometric mean of the red and green intensities.
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3.3.3 CNV detection using Genome Alteration Detection Analysis (GADA)

An example of a CNV segments generated in chromosome 13 using GADA in one of the 

samples is illustrated below (Figure 3.6). The number of probes within each segment and the 

amplitudes of the segments was different from the consecutive segment. Later, the effects of 

different cut-offs on the number of probes and amplitude size in defining a CNV were 

examined. In this study, the stringency in ‘calling’ CNVs at both the pre-input stage and at the 

GADA analysis stage was altered. At the pre-input stage, the threshold quality control filter, 

Rgn R2, was varied and found that this parameter did not greatly affect the number of 

segments detected by GADA regardless of the chosen amplitude, A (Figure 3.7A). At the 

GADA analysis stage, increasing the absolute amplitude cut-off (Figure 3.7A) and the value of 

‘T’ leads to fewer segments identified (Figure 3.7B).

By contrast, increasing aa (degree of segmentation) results in a decrease in the number 

segments detected (Figure 3.7B). Additionally, the cut-off can be set at the minimum number 

of probes within a segment for it to be considered as a CNV. Thus, as expected, the use of less 

stringent parameters results in more ‘noisy’ CNV ‘calls’. On the other hand, use of high 

stringency parameters causes some CNVs to be missed. Thus there is an optimal stringency 

which ought to be determined.

3.3.4 Reproducibility

High correlation was observed between duplicates of the log2 intensity ratios of only the 

probes falling inside the detected CNVs with values ranging from 0.46 to 0.91 across 

duplicates (Figure 3.8). The highly correlated log2 intensity ratios were greater than 1 or less 

than -1 in both duplicates of a sample (Figure 3.8). Due to less accurate identification of CNV
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Figure 3.6. Segmentation using GADA on a region on chromosome 13 (CNV: cnvl3_473)
Illustration of segmentation on a region on chromosome 13 in a single isolate (pf10882). Each 
point is a log2 intensity ratio of a given probe. A cut-off of a minimum of 2 consecutive probes 
in a segment was set. The probes are ordered according to genomic location. On the X-axis are 
the genes targeted by the probes. The genes that appear more than once are targeted by more 
than one probe. The red horizontal lines are the CNV segments detected by GADA with their 
amplitudes indicated on the Y axis, delineated by blue dashed lines. This CNV was assigned 
the name “cnvl3_473” which indicates that it is a CNV on chromosome 13 and has unique 
identifier 473.

breakpoints, some probes within CNVs (red points) that had log2 ratios between 0, 1 and -1 

were observed (Figure 3.8). The reproducibility of CNV detection was assessed using Cohen’s 

kappa statistic. The kappa values for the replicate pairs ranged between 0.1-0.5 (Table 3.2).

Poor concordance was observed in the CNVs detected between some replicate pairs (Kappa 

value <0.20). Fair (kappa value 0.21-0.40) and moderate (kappa value 0.41-0.60) concordance 

was observed in other replicate pairs. The eight isolates had multiple parasite clones. The low 

concordance observed may be as a result of noise in microarrays that contribute to uncertainty 

in the threshold for calling a CNV. A threshold of log2 ratio of 1 would miss calling some of 

the segments that have values close to 1, e.g., 0.9 that may be true CNVs.

[Amplitude

Page 83 of 191



A)

</)
■*->c0>
ETO0»
V)

c>
J Q
Ezs

oooto

ooo
CM

O

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Absolute amplitude
B)

2 0 -

o  1 0 -

10 15
T value

aAlpha

— D 2 1.6

—̂ 0 3 1.6

— 0 4 1.7

— 0 5 1 S

0.6 1.9

0.7 FH2

— OS — 2.1

I— 1OS ■— 2.2

1 — 2 3-

1.1 — 2.4

1.2 — 2 6

1.3 — 2 ?

1.4 — 2.7

Figure 3.7. Effect of different stringency measures on CNV calling
A) The relationship between total number of segments called (y-axis) against average intensity 
values of the segments (x-axis) of 183 arrays. The different coloured lines represent different 
quality filters (Rgn R2) on the data input to GADA. B) The effect of a combination of all the 
possible GADA settings of T (range from 1 to 17) and aa (range from 0.2 to 2.7) on the 
number of segments identified, with absolute amplitude A >0.8 and a minimum of 2 probes 
within the segment, of a single array.
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Table 3.2. Table showing the kappa value of each replicate pair of samples.

Sample kappa value

0.29

0.49
0.35

0.49

0.27

0.21

8 0.10

Sample 1 r=0.46 Sample 2 r=0.57 Sample 3 r=0.84 Sample 4 r=Q.71
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Figure 3.8. Reproducibility of m icroarray data and CNV detection
A) Plots showing the correlation between technical duplicates of 8 samples of log2 ratios for 
only the microarray probes within the total CNVs detected (red and black points) (352 out of 
approximately 8800 probes in the array). The correlation coefficient is indicated by the value 
‘r’. The red points are the log2 ratios of the probes within the CNVs identified in each 
individual sample and the black points are the log2 ratios of non-CNVs microarray probes.
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3.3.5 Systematic effects on CNV detection probabilities

The only strong effect on the prevalence of CNV was population (p value < 0.001 by 

ANOVA). Specifically, across all CNVs, the prevalence of CNVs was lower in the Kilifi 

populations (1 and 2) than in Kisumu and Sudan (populations 3 and 4 respectively) (Figure 

3.9). The lack of significance of the other factors, i.e., MOI, parasitaemia, haemoglobin and 

patient’s age, on prevalence of CNVs (p value >0.05 by ANOVA) is reassuring because only 

the factor of interest, i.e., population, had significant effect on CNV detection probabilities. 

The presence of multiple genotypes (MOI) in an infection is a common phenomenon in P. 

falciparum infections and tends to vary with age (Ntoumi et al. 1995) and malaria 

transmission intensity (Konate et al. 1999). MOI may interfere with the average intensity in a 

given probe if a CNV is present in the sample and thereby mask its detection. The number of 

clones detected in the isolates ranged from 1 to 7 with the distribution of MOI varying in the 

four populations. The analysis here showed that MOI did not have an effect on the 

detectability of CNVs (p value > 0.05 by ANOVA).

V a r ia b le

A g e

H em o g lo b in

MOI

P a r a s ite m ia

P o p u la tio n

Hemoglobin Parasitemia Population

N  CD
m io m o  
t t  i n  cm  i n  
w  in

Variables

Figure 3.9. Systematic effects on CNV prevalence.
Least-squares means are indicated by points, with upper and lower 95% confidence limits 
represented by whiskers. Population 1 is Kilifi pre-malaria decline, population 2 is Kilifi Post­
malaria decline, population 3 is Kisumu and population 4 is Sudan.
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3.3.6 CNVs detected in field isolates

3.3.6.1 General characteristics of CNVs

A total of 98 different CNVs with minor allele frequency (MAF) greater than 2.2% (i.e., 

occurring in 4 or more isolates) were detected among the 183 field isolates studied. 34 of 

these were deletions and 64 were amplifications in gene copy number. These CNVs were 

distributed throughout the 14 chromosomes of the genome (Figure 3.10A). The number of 

CNVs per sample ranged from 1 to 20 with an average at 8 CNVs per isolate (Figure 3.10B). 

The majority of CNVs contained less than 3 genes within each, with the largest CNV on 

chromosome 9 consisting of approximately 20 genes (Figure 3 .10C). The estimated CNV 

lengths were between 400bp and 90kb (Figure 3.10D).

3.3.7 Population genetics of CNVs

Most CNVs were observed at low frequencies in the population studied with majority of the 

CNVs occurring in less than 10% of the isolates (Figure 3.11 A). To assess levels of population 

differentiation of CNVs frequencies, Weir and Cockerham F-statistics (F st)  for each CNV 

were calculated for pairs of populations using the hierfstat package in R (Goudet 2005). The 

average estimates of F st are a sign of the background levels of population differences that are 

expected to arise through neutral processes including drift and population isolation and affect 

all loci in the genome to a similar manner (Anderson et al. 2005, Beaumont and Balding 2004, 

Akey et al. 2002). The average F st estimates across all CNVs ranged between 0.02 and 0.11 

across the 6 pairwise population comparisons (Figure 3.1 IB). The greatest difference was 

exhibited by the comparison of Kilifi Pre-malaria decline and Sudan followed by Kilifi Pre­

malaria decline and Kisumu (Figure 3.1 IB). The Kisumu vs. Sudan comparison showed the 

least average F st.
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Outliers from these average F s t  estimates are CNVs that show unexpectedly low or high 

population differentiation thus potentially indicating that they are maintained by balancing and 

directional selection forces, respectively, that are locus specific (Figure 3.1 IB). These 

differences in CNV frequencies between populations may have arisen as a consequence of
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Figure 3.10. General properties of CNVs detected using microarrays.
A) A chromosome map showing the location of the CNVs in the 14 chromosomes of P. 
falciparum  genome (deletions in blue and amplifications in red (MAF>2%). White vertical 
bars represent regions that are not targeted by the microarray probes. Black vertical bars are 
locations of centromeres. The distribution of the B) length of the CNVs (in kilobase pairs) C) 
number of genes per CNV and D) number of CNVs detected in each of the 183 samples in the 
four populations studied. Within each box, the horizontal line represents the median number 
of CNVs per sample, top and bottom boundaries show the 75th percentile and 25th percentile 
values respectively. The end of the whiskers show the minimum and maximum number of 
CNVs per sample and the data points above and below the end of the whiskers show the 
outliers.
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local adaptation to population-specific selection pressures. The high differentiation may also 

be as a result of population bottlenecks, e.g., change in antimalarial use, vector populations 

among others and migration that leads to introduction on new variants to a population. These 

CNVs were classified into three groups, discussed below, based on the populations affected.
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CNV frequency
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Figure 3.11. F st estimates obtained from pairwise population comparisons
A) The distribution of CNV frequencies in the study population B) Boxplot showing the 
distribution of F s t  estimates of each CNV obtained from six pairwise population comparisons, 
i.e., Kilifi Post and Kisumu, Kilifi Post and Sudan, Kilifi Post and Kilifi Pre, Kilifi Pre and 
Kisumu, Kilifi Pre and Sudan and Kisumu and Sudan. The horizontal line within each box 
represents the median F s t  estimates. The top and bottom boundaries of the box shows the 75th 
percentile and 25th percentile respectively. The end of the whiskers show the extreme values 
(minimum and maximum values) and the data points above and below the end of the whiskers 
show the outliers.
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In the first category are four CNVs with the greatest population differentiation observed, i.e., 

top 7% in F s t  estimates, in the comparison between the two Kilifi populations and Sudan and 

between Kisumu and Kilifi Pre-malaria decline populations. These CNVs occur at lower 

frequencies in the Kilifi populations than in Sudan and Kisumu (Figure 3.12). These 4 CNVs 

show great variance in CNV frequencies between populations and thus are likely to indicate 

differential directional selection between populations or population bottlenecks. One weakness 

of the evidence of high differentiation is the small sample size of Kilifi Pre compared to the 

other populations that may affect the chance of CNV detection. They include three 

amplifications on chromosome 5, 12, and 9 and a deletion on chromosome 13. The 

frequencies of each of these CNVs were found to statistically significantly different in at least 

one of the populations at 95% confidence level using binomial test (prop.test function in R). 

The genes located within these CNVs and their functions are indicated in table 3.3.

Table 3.3. Genes and gene functions of CNVs that exhibit the greatest population 

differentiation

CNV No. of Gene ID Putative function
identifier genes in 

CNV
cnv5 101 3 PF3D7 0507900 Unknown

PF3D7 0508000 Exposed to host immunity 
(Sanders et al. 2005)

PF3D7 0508100 gene expression regulation 
(Cui et al. 2008)

cnvl2 413 1 PF3D7 1248600 Unknown
cnvl3_478 3 PF3D7 1348800, 

PF3D7 1348900, 
PF3D7 1349000

Unknown

cnv9_242 2 PF3D7 0908000 DNA repair
(Nishino and Morikawa 2002)

PF3D7 0908100 Unknown
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Figure 3.12. Population frequencies of CNVs with top 4 highest F st values
Barplot showing CNV frequencies in the four populations of 4 CNVs A) cnv5_101 on 
chromosome 5 consisting of PF3D7 0507900 - PF3D7 0508100 b) cnvl2_413 consisting of 
PF3D7 1248600 on chromosome 12 c) cnvl3_478 on chromosome 13 containing 
PF3D7 1348800- PF3D7_1348900and d) cnv9_242 on chromosome 9 consisting of 
PF3D7 0908000 and PF3D7 0908100PF3D7 0908100.

A  second set of CNVs appear to be under positive selection in the Kilifi populations ( F s t  

>0.20) as compared to Kisumu or Sudan. They comprise deletions on chromosome 6 and 11 

and amplifications on chromosome 3, 9 and 12 (Figure 3.13). The frequencies of each of these 

CNVs were found to be statistically significantly different in at least one of the populations. 

The genes found in these regions are shown in table 3.4.

A third set are CNVs that appear to be under purifying selection in one of the four populations 

(Figure 3.14). Seven CNVs were not detected in the Kilifi pre-malaria population but found to 

exist in the other three populations (Figure 3.14). The CNV frequencies were found to be
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Table 3.4. Genes and gene functions of CNVs that appear to be under positive selection

in Kilifi populations

CNV No. of genes Gene ID Putative function
identifier in CNV
cnv9 254 3 PF3D7 0925400 Gametocytogenesis (Li and Baker 1997)

PF3D7 0925500 protection from reactive oxygen species 
(Nickel et al. 2006, Kehr et al. 2010)

PF3D7 0925700 Transcriptional regulation (Cui and 
Miao 2010)

cnv3_051 1 PF3D7 0315200 ookinete motility and infectivity 
(Dessens et al. 1999, Templeton, 
Kaslow and Fidock 2000)

cnvl2_388 3 PF3D7_1229400 modulation of host immunity (Augustijn 
et al. 2007)

PF3D7 1229500 Protein trafficking (Mbengue et al. 
2015)

PF3D7 1229300 Unknown
cnv6 129 4 PF3D7 0606200 Protein degradation

PF3D7 0606500 RNA splicing
PF3D7 0606300 Unknown
PF3D7 0606400 Unknown

cnvll_354 PF3D 7J 148700 Exported to erythrocyte (Sargeant et al. 
2006)

P F 3 D 7 J148800 Exported to erythrocyte (Sargeant et al. 
2006)

statistically significantly different in at least one of the populations at 95% confidence level. 

The genes that were located in these CNVs and their functions are listed in table 3.5. The 

amplification of PF3D7 1149000 was at a lower frequency in Kisumu (high transmission) 

compared to the low transmission populations (Kilifi post-malaria decline and Sudan) and also 

in Kilifi pre-malaria decline compared to the low transmission period (Kilifi Post-malaria 

decline). A large deletion on chromosome 9, previously observed in laboratory adapted lines 

(Mackinnon et al. 2009, Cheeseman et al. 2009, Kidgell et al. 2006, Ribacke et al. 2007) and 

linked to loss of cytoadherence (Kemp et al. 1992, Trenholme et al. 2000) and gametocyte 

production (Day et al. 1993) was observed in 24 out of 183 isolates from all the populations
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except the Kilifi pre-malaria decline population. A CNV on chromosome 7 (PF3D7 0710100

and PF3D7 0710200PF3D7 0710200) was found to be absent in Sudan only.
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Figure 3.13: Population frequencies of CNVs showing signs of selection in Kilifi 
population
Barplots showing frequencies of CNV A) cnv9_254 on chromosome 9 containing 
PF3D7 0925400PF3D7 0925400 - PF3D7 0925700PF3D7 0925700 B) cnv3_051 on 
chromosome 3 containing PF3D7 0315200 C) cnvl2_388 on chromosome 12 containing 
PF3D7 1229300 - PF3D7 1229500 D) cnv6 129 on chromosome 6 containing 
PF3D7 0606200 - PF3D7 0606500 and E) cnvl 1 354 on chromosome 11 containing 
PF3D7 1148700- PF3D7_1148900.
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Table 3.5. Genes and gene functions of CNVs that appear to be under purifying selection

in one of the four populations

CNV
identifier

No. of 
genes in 
CNV

Gene ID Putative function

cnv7_169 2 PF3D7 0710100, 
PF3D7 0710200 Unknown

cnv9_269 18 PF3D7 0935400 Gametocytogenesis(Eksi et al. 2012)
PF3D7_0935500 Gametocyte stage (Silvestrini et al. 2010)
PF3D7_0935600 Gametocytogenesis (Gardiner et al. 2005)
PF3D7 0935700 Unknown
PF3D7 0935800 Cytoadherence (Trenholme et al. 2000)
PF3D7 0935900 Protein trafficking (Dixon et al. 2011)
PF3D7_0936000 Exported protein (Spielmann et al. 2006b)
PF3D7 0936100 Located at host-parasite interface (Spielmann 

et al. 2006a)
PF3D7 0936400 Exported protein (Spielmann et al. 2006b)
PF3D7 0936500 Host cell adhesion (Nacer et al. 2015)
PF3D7 0936200, 
PF3D7 0936600, 
PF3D7 0936800, 
PF3D7 0936900, 
PF3D7 0937000, 
PF3D7 0937100

PHIST gene family (Sargeant et al. 2006)

PF3D7 0936700, 
PF3D7 0937200

lysophospholipase

cnvl4_573 2 PF3D7 1460700 A ribosomal subunit
PF3D7 1460800 Unknown

cnvl4_564 2 PF3D7 1452700, 
PF3D7 1452800

Unknown

cnvl4_549 3 PF3D7_1438800 Unknown
PF3D7 1438900 Antioxidative activity (Nickel et al. 2006)
PF3D7 1439000 Copper transporter (Choveaux, Przyborski and 

Goldring 2012)
cnv4_076 3 PF3D7 0409500, 

PF3D7 0409700
Unknown

PF3D7 0409600 DNA replication (Voss et al. 2002)
cnv3_036 3 PF3D7 0301600, 

PF3D7 0301700, 
PF3D7 0301800

Exported proteins (Sargeant et al. 2006)

cnv ll 355 1 PF3D7 1149000 iRBCs remodelling (Glenister et al. 2009)
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gure 3.14. Frequencies of CNVs showing signs of purifying selection in single populations
irplots of frequencies of CNV A) cnv7_169 containing PF3D7_0710100- PF3D7_0710200 B) cnv9_269 containing PF3D7 0935400 - 
r3D7_0937200 C) cnvl4_573 containing PF3D7_1460700- PF3D 7J460800 D) cnvl4_564 containing PF3D7J452700- PF3D7_1452800 E) 
vl4_549 containing PF3D7_1438800- PF3D 7J439000 F) cnv4_076 containing PF3D7_0409500 - PF3D7_0409700 G) cnv3_036 containing 
r3D7_0301600 - PF3D7_0301800 and H) cnvl 1_355 containing PF3D7_1149000.
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3.3.8 Comparison with published literature

There was considerable overlap of CNVs identified in our study with already published CNVs 

from genome-wide scans of P. falciparum. Out of the 225 genes located within the 98 CNVs 

detected, 20% of these genes (50 genes in 25 CNVs) have been previously identified to be 

copy number variable (Figure 3.10 and Appendix 3.1). These include a CNV on chromosome 

11 containing an amplification of three adjacent genes (PF3D71148700PF3D7 1148700- 

PF3D7 1149000) identified in four other studies (Jiang et al. 2008b, Sepulveda et al. 2013, 

Samarakoon et al. 2011a, Cheeseman et al. 2009). and PF3D7_0423500, identified herein 

have also been previously identified (Samarakoon et al. 201 la). These genes encode three 

proteins thought to be exported to the erythrocyte surface including a gene belonging to the 

PHISTc gene family. A deletion of a second PHISTc gene (PF3D7 0202100) on chromosome 

2 was also detected in three other studies (Cheeseman et al. 2009, Mackinnon et al. 2009, 

Carret et al. 2005). Two genes within a CNV, PF3D7_0423400 and are thought to play a role 

in erythrocyte invasion and anchoring o f the cytoskeleton to the inner membrane (Bullen et al. 

2009) respectively. An additional copy number variable gene PF3D7 0424400 also known as 

SURFIN 4.2 has been reported (Samarakoon et al. 201 la, Jiang et al. 2008b, Kidgell et al. 

2006). The gene product was found to be exposed at the surface of an infected erythrocyte and 

merozoite hence is thought to be under selection by host immunity or involved in merozoite 

invasion (Winter et al. 2005, Chan, Fowkes and Beeson 2014).

Evidence of deletion of one or two members of the cytoadherence linked asexual gene i.e. clag

3.1 and clag 3.2 (Robinson et al. 2011) has been previously reported. In this study a deletion of 

clag 3.1 was detected. A clag 3 hybrid, made up of the clag 3.2 sequence at 5’ UTR and the
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clag 3.1 sequence at the 3’UTR, has also been observed (Iriko et al. 2008). The clag gene 

family is thought to be involved in erythrocyte invasion (Kaneko et al. 2005) and 

cytoadherence (Trenholme et al. 2000) of the infected erythrocyte. Recently, clag 3.1 has been 

implicated in transport of solutes across the infected erythrocyte membrane (Nguitragool et al. 

2011).

Interestingly, a large deletion was observed on the right arm of chromosome 9 in field isolates, 

a phenomenon that has previously been observed only in laboratory adapted isolates 

(Mackinnon et al. 2009, Shirley et al. 1990, Kemp et al. 1992, Cheeseman et al. 2009, Ribacke 

et al. 2007, Kidgell et al. 2006) and thought to arise due to reduced selection pressures, e.g. 

host immunity, antimalarial drugs and the need for sexual reproduction, in vitro.

3.3.8.1 Novel CNVs

Seventy-five potentially novel CNVs out of the 98 CNVs detected (Appendix 3.2) were found. 

These included a gene rad51 (PF3D7_1107400) coding for protein involved in homologous 

recombination during DNA repair and recombination events that may lead to DNA 

rearrangements that enable antigenic variation (PF3D7_1107400) (Bhattacharyya et al. 2005). 

Interestingly, the rad51 human homolog has been found to be amplified in cancer cells 

(Mathews et al. 2011). Two additional genes adjacent to rad51, identified to vary in copy 

number, are thought to play a role in regulation of stimulation of translation (PF3D7_1107300) 

(Ochoa, Llinas and Singh 2011, Martineau et al. 2008) and protein folding (PF3D7_1107500). 

A number of novel CNVs containing genes with unknown functions were also detected 

(Appendix 3.2).
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3,3,9 Functional gene set enrichment of CNVs

Enrichment of 15 out of 205 functional categories (obtained from the Malaria Parasite 

Metabolic Pathways website: h t t p : / / m p m p . h u i i . a c . i l / ) of genes in the list of genes located 

within CNVs were found (Table 3.3). The groups that showed statistically significant 

enrichment (p-value < 0. 05), using the hypergeometric test, included genes coding for 

proteins that are exported to the surface of infected erythrocytes and may be exposed to 

selection pressure from the host immunity. These include PHISTs, Maurer cleft proteins and 

genes encoding proteins exported to the infected erythrocyte and classified as
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Table 3.6. Functional gene categories showing significant enrichment

Gene set No. of No. of genes P value
genes in present in a 

________________________gene set CNV_________________
Maurer’s clefts proteins 98 14 4.00E-05
Exported PHISTs 51 9 9.66E-05
Glycolysis 27 5 0.001266
ER to Golgi translocation and quality control 13 3 0.002385
Asparagine and Aspartate metabolism 8 2 0.004747
Rab proteins in intracellular traffic 16 3 0.005435
Pentose Phosphate Cycle 9 2 0.006877
Thioredoxin glutaredoxin and peroxiredoxin 18 3 0.008491
Cotranslational.cleavage of.N terminal. 10 2 0.009489
Methionine residues and N terminal acetylation
Exported ‘Immunoreactive’ proteins 
(Crompton et al. 2010)

19 3 0.010368

Methionine and polyamine metabolism 20 3 0.012494
Tubulin and microtubules 20 3 0.012494
Utilization of phospholipids 42 5 0.012508
Anaphase promoting complex ubiquitin ligase 11 2 0.012603
Double strand break repair and homologous 
recombination

11 2 0.012603

Mitochondrial electron flow 21 3 0.01488
Mitochondrial antioxidant system 12 2 0.016232
Compartmentation of redox metabolism 24 3 0.023685

f Histone chaperones 36 4 0.024691
Lipoic acid metabolism 6 1 0.028841
Skpl Cullin.F box biquitin ligase 15 2 0.030278
Dolichol metabolism 7 1 0.039148
Ubiquinone metabolism 7 1 0.039148
Initiation of translation 41 4 0.040707
Biogenesis of cytochrome oxidase 17 2 0.042259

‘immunoreactive’ by Crompton and colleagues after probing 1,200 P. falciparum antigens for 

antibody reactivity using protein arrays (Crompton et al. 2010). This suggests that varying 

gene copy number is one of the different strategies the parasite uses to escape host immunity. 

Increased copy number would facilitate immune escape by increasing the chances of
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mutations which could lead to increased antigenic diversity. Alternatively, some of these 

genes exposed to host immunity may be selected for sequence variability, and detected as 

CNVs but are not real CNVs because of the effect of sequence polymorphism on 

hybridisation. Significant enrichment was also observed for genes involved in key functional 

processes including glycolysis, DNA repair, transcriptional and translation regulation, 

intracellular trafficking and antioxidative processes.

3,4 Discussion

The results of this study confirm the high prevalence of CNVs in the P. falciparum genome 

and are consistent with earlier work (Mackinnon et al. 2009, Cheeseman et al. 2009, Kidgell et 

al. 2006, Ribacke et al. 2007, Mok et al. 2011, Dharia et al. 2009). On average 8 CNVs were 

observed per isolate and approximately 4.5 % of the genes in the genome were identified to be 

copy number variable. 20% of the CNV genes identified in this study have been previously 

reported in other studies. The results further highlight their high prevalence in natural 

population, something not previously studied. The CNVs found in nature appear to be 

distributed throughout the genome, contrary to some findings that CNVs tend to occur at the 

subtelomeric regions (Cheeseman et al. 2009, Jiang et al. 2008b). This discrepancy is most 

likely explained by exclusion from analysis in this study of probes targeting genes encoding 

variant surface antigens, mostly located in the subtelomeric regions and highly polymorphic, 

because of their reduced hybridization to the microarray and hence propensity to generate 

false CNV ‘calls’.

The CNVs identified here are mostly small in size (average of 7.4 kilobase pairs and 2 genes)

with the exception of a chromosome 9 deletion covering about 18 consecutive genes. This

may indicate that large-sized CNVs could be at a selective disadvantage because of the cost
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associated with the DNA replication of the extra copies and likely impact on epigenetics due 

to the large structural changes that they may cause. The amplifications outnumbered deletions 

at a ratio of 1.9:1. This deficit in deletions supports the idea that CNVs are adaptive since 

purifying selection would act to remove deletions which, if important to function, are expected 

to be deleterious.

The enrichment of key parasite functional gene groups within the CNVs, e.g., DNA 

replication, gametogenesis, cytoadherence, transport and DNA repair reflects the potential 

impact o f CNVs on the survival of the parasite. Importantly, the observation of enrichment of 

CNV genes belonging to groups with environmental responsiveness functions, such as those 

that are exposed to host immunity and may be involved in immune escape and also those that 

respond to oxidative stress arising from glycolysis, could reflect an adaptive role of CNVs to 

the environment. None of the P. falciparum published CNV studies to date have investigated 

the functional enrichment of genes with CNVs. Further analysis of the functional impact of 

these CNVs is assessed in Chapter 5 by investigating the influence of CNVs on gene 

transcriptional levels.

Overall, low population frequencies of CNVs with most occurring in less than 10% of the 183 

field isolates studied was observed. The abundance of low frequency CNVs may suggest that 

some variants may be favoured in a fraction of host or vector conditions, e.g., host red cell 

polymorphism and co-infection, offering short term adaptation that enabled the parasite to 

survive and transmit to the next host, after which they revert back to normal copy when the 

environmental pressure ceases to exist.
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Applying population differentiation analysis by calculating F st estimates of CNV frequencies, 

CNVs that may be under selection pressure in the populations were identified. Among the 

CNVs that were found to be potentially adaptive (F st estimates of greater than 0.20) were 

genes that encode proteins involved in gene expression regulation (Cui et al. 2008), 

gametogenesis (Dessens et al. 1999, Templeton et al. 2000, Li and Baker 1997), protection 

from reactive oxygen species (Kehr et al. 2010, Nickel et al. 2006) and some exposed to host 

immunity (Sanders et al. 2005, Sargeant et al. 2006). The high F st observed between 

populations could be reflective of the differences in environmental selection between 

populations including vector populations, antimalarial drug used, ethnicity, host genetics and 

climatic conditions. The background levels of differentiation between populations, which may 

be due to neutral processes, were further established. Some of the CNVs are likely to exist in 

the population under no selective pressure. These variants may be present in the population 

until they become advantageous to the parasite when environmental conditions change. By 

having a flexible genome that allows for the random generation of genetic variation including 

CNVs, the parasite is able to adapt to current conditions and also even future changes in 

environmental conditions.

This study has some limitations. First, though high stringency was applied on calling CNVs by 

filtering out probes targeting highly polymorphic genes, probes with known SNPs within the 

probe sequences, poorly hybridizing probes and low frequency CNVs, the presence of 

additional sequence variation in field isolates, not able to be ruled out using these filters, is 

likely. The presence of sequence polymorphism is expected to cause false positives in CNV 

calls using microarray data. Second, the array could only assay genes present in the 3D7 

parasite line since the array probes were designed against the complete 3D7 genome. Any 

gene that is absent in 3D7 could not be assayed by the array. Lastly, microarray data provides
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low resolution of CNV breakpoints and hence the genes located at the start and the end of a 

CNV may be incorrectly called.

This study shows that CNVs contribute to genetic variation in the genome of the parasite in 

nature. It also provides evidence of the adaptive role of specific CNVs under current selection 

pressures in the populations. Population differences in specific CNV frequencies may be due 

to differences in environmental conditions including a change in the dominant vector species 

and feeding behaviour reported in Kilifi during the period of 1990-2010 (Mwangangi et al. 

2013), differences in antimalarial drug used and differences in host immunity.
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Chapter 4

Confirmation of CNVs detected using m icroarray by whole genome sequencing
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4 Chapter 4: Confirmation of CNVs detected using microarray by whole genome 
sequencing

4.1 Introduction

Next generation sequencing has, in theory, the potential for high resolution identification and 

characterization of CNVs. It may also facilitate understanding of mechanisms of CNV 

formation through more accurate identification of CNV boundaries (Carvalho et al. 2009, 

Dittwald et al. 2013, Samarakoon et al. 201 lb) and in the detection of translocation events to 

new positions in the genome (Ma et al. 2013). However, comparisons between CNVs 

detected using sequencing vs. microarrays have shown some discrepancies (Retterer et al. 

2014, Sepulveda et al. 2013). Methodology for detecting CNVs in NGS data has not yet 

stabilised with many new methods for analysis being published in recent years (Zhao et al. 

2013, Yoon et al. 2009, Xie and Tammi 2009, Miller et al. 2011, Abyzov et al. 2011, Magi et 

al. 2011, Boeva et al. 2012, Alkan, Coe and Eichler 2011). One of the strategies for detection 

of CNVs from sequencing data is based on the assumption that read depth in a genomic region 

correlates with genome copy number. However, certain biases including GC content and 

uniqueness (the number of times a sequence appears in the entire genome) of a region affect 

read depth thus making estimation of copy number from read-depth analysis problematic. Of 

particular relevance to P. falciparum are the long stretches of A and T nucleotides in its 

genome which pose a challenge to CNV identification for both the above reasons.

In P. falciparum, most studies of CNVs have used DNA microarrays to detect CNVs. Three 

recent studies, however, have used next-generation sequencing to detect CNVs in P. 

falciparum (Sepulveda et al. 2013, Robinson et al. 2011, Samarakoon et al. 201 lb). Robinson 

and colleagues reported 7 CNV genes in 5 clinical samples using read depth and paired end 

analysis of Illumina sequence data. Using 7 publicly available whole genome sequence data,
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i.e., 2 samples from Robinson and others and 5 laboratory lines, Sepulveda and others tested a 

CNV detection method they had developed against two other published tools. A third study 

identified 5 CNVs in 5 laboratory lines using read depth analysis on 454 sequence data 

(Samarakoon et al. 201 lb) .

In Chapter 3, it was described that 98 different CNVs, containing a total of 225 genes, were 

identified in 183 field isolates using microarrays. In this chapter, whole genome sequencing of 

a subset of 22 of these isolates was performed with the aim of comparing the results of 

detection using sequencing vs. microarrays and confirming some of the CNVs. Analysis of 

sequence data involved mapping the sequence reads to a reference genome, calculating and 

normalising for read coverage, followed by identification of CNVs using the Copy Number 

estimation using the Mixture Of PoissonS (cn.MOPS) package in R (Klambauer et al. 2012).

4,2 Methods

4.2.1 L ibrary preparation

Whole genome sequencing of 22 out of the 183 P. falciparum clinical isolates was performed

using the Personal Genome Machine (PGM) Ion Torrent sequencing platform at the KEMRI-

Wellcome Trust Research Programme laboratories in Kilifi, Kenya. These samples were

selected based on the CNVs identified. All the 98 CNVs (identified in chapter 3) were

represented in these samples sequenced. Ion Torrent 200bp library preparation involved

enzymatic fragmentation of gDNA, ligation of adaptors to the fragments, selection of

fragments of appropriate size, PCR amplification (5 cycles), clonal amplification o f fragments

(emulsion PCR) and finally performing the sequence run on an Ion Torrent 318 chip which

has a capacity of up to 2Gbp (Chapter 2, section 2.2). To achieve successful runs, several

quality control steps in the library preparation were undertaken including assessment of
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fragment size and quantification of the proportion of templated ion spheres after emulsion 

PCR. Human DNA quantification of the samples was assessed prior to sequencing using 

quantitative real time PCR (qPCR). A summary of the experimental procedure is shown below 

(Figure 4.1).

4.2.2 Sequence data processing for CNV detection

4.2.2.1 Quality assessment and read mapping of sequence data

The sequence data were obtained from the Ion Torrent Suite software in FastQ format and the 

quality was assessed using FastQC software

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The sequence reads were

mapped to a reference genome from the 3D7 parasite line (Version 3) available at GeneDB

(Logan-Klumpler et al. 2012). The mapping was performed using the Burrows-Wheeler

Aligner (BWA) (Li and Durbin 2009) with the BWA-MEM option. This option is suitable for

mapping reads longer than 70bp, and was implemented with the ‘-M ’ option for marking

secondary read alignments (reads mapping to more than one location). Non-mapped reads,

PCR duplicates and reads with mapping quality of below 30, i.e., non-uniquely mapped reads,

were filtered out using SAMtools (Li et al. 2009). Filtering of reads mapping to more than one

location would lead to exclusion from analysis of genes that are amplified in reference genome

(3D7) but exist in different copy number state in the test genome..To minimize mapping errors

that may result in bias in read coverage and hence accuracy of identification of CNVs, I

performed analyses that targeted different sets of specific regions of the genome. First, I

filtered out genes that are known to be highly variable including the variant surface antigens

(VSAs) iyar, rifins and stevors) (Gardner et al. 2002, Cheng et al. 1998) and low complexity

noncoding regions, i.e., intergenic regions and introns: this targeted genome is referred to as

the ‘exome’. The second target genome was the ‘probome’, which consisted of the regions
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targeted by the probes in the microarray used for the CGH experiment described in Chapter 3 

(Bozdech et al. 2003b). Third, all the genes in the genome, including their introns 

weretargeted, filtering out the VS As. This was referred to as ‘genes’. Fourth, the whole

GeneExons Probe regions

Genomic DNA extraction

Comparison with microarray results

Whole genome excluding VSAs

Quality assessment of sequence data

P. falciparum infected blood depleted of white blood cells

Sequencing of 200bp library using a 318 
chip on the PGM Ion Torrent machine

Mapping of sequence reads to a reference 3D7 
version 3 using BWA (Li and Durbin 2009)

Quality filter of duplicate reads, non-mapped reads and reads 
with multiple alignment hits using SAMtools (Li et al. 2009)

CNV detection using cnMOPS software on targeted subsets 
of the genome shown below (Klambauer et al. 2012)

Library Preparation
• gDNA fragmentation for 200bp library
• PCR amplification (5 cycles)
• Emulsion PCR

Figure 4.1. Overview of the process of CNV detection using whole genome sequencing
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genome (genic and non-coding regions) was targeted with VSAs filtered out for comparison 

(the ‘genome’).

GC content and presence of repetitive sequence/non-unique regions have been previously 

reported to affect the read mapping in genomes known to be AT rich and also with repetitive 

regions (Quail et al. 2012, Ross et al. 2013). To examine these issues prior to the main 

analysis to detect CNVs, uniqueness and GC content were calculated using a function in the 

ReadDepth software (Miller et al. 2011). For this, the reference genome was split into lOObp 

sequences which were then mapped back to the reference genome. The number of times a 

sequence, if found in the genome, was calculated and then normalised to give a ‘uniqueness’ 

score of between 0 and 1 such that a score of 0 indicated a lOObp sequence that occurs more 

than four times in the genome and that of 1 indicated a sequence that appears only once. The 

GC content (the proportion of the G and C nucleotides) in the lOObp windows was also 

calculated using the same software.

4,2,2,2 Copy number estimation and segmentation

Read depth in the targeted regions was calculated in lOObp non-overlapping windows and

normalised across the samples using the ‘quantile’ method in cn.MOPS package in R

(Klambauer et al. 2012). The method adjusts the distribution of read depth in the samples such

that they are similar. To identify CNVs, cn.MOPS applies a mixture of Poisson models at each

window across the samples. The model assumes that the read coverage for a specific copy

number across samples has a Poisson distribution and, in the case of there being different copy

numbers among the samples, the model assumes a mixture of Poissons with different means.

In this analysis, a copy number difference was considered by cn.MOPS to be present when the

normalised read depth for a sample in a lOObp sequence window showed a fold-difference
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from the mean read depth of all the samples for that window corresponding to a log2 value of 

greater than 0.8 (> 1.7-fold, i.e., a gain) or less than -0.8 (<0.6-fold, i.e., a loss). Thus the 

outputs of cn.MOPS were the segments identified to be copy number variable in each of the 

samples, their estimated copy number, their fold difference and their location in the genome. 

For subsequent analyses, the cut-off of defining a CNV was set at a minimum of 50% of the 

gene length called as CNV in ‘gene’, ‘genome’ and ‘exome’ methods and a cut-off of a 

minimum of 50% of the probes identified to be copy number variable in ‘CGH (GADA)’, 

‘CGH (cn.MOPS)’ and ‘probome’ methods.

To ensure a fair comparison between CNVs identified in sequence and CGH data, cn.MOPS 

was also applied to log2 intensity ratio data from microarrays. The normalized log2 ratios were 

transformed to a scale similar to read depth by calculating the base 2 antilog of the log2 ratio 

and multiplying the result by 30 (average sequence coverage) (designated ‘CGH (cn.MOPS)’). 

Finally, for comparison with the results from Chapter 3, the CGH data were reanalysed for 

CNVs using GADA, as in Chapter 3, except that the log2 ratio cut-off of 0.8/-0.8 was used 

instead of 1/-1 so as to be comparable to the analyses here using cn.MOPS. This analysis was 

designated ‘CGH (GADA)’.

To evaluate the consistency between CNV calling using sequence and CGH data, for each 

CNV genes, the positive and negative predictive value (PPV and NPV) of each of the methods 

was calculated using CGH (GADA) as the ‘gold standard’. PPV gives the proportion of CNVs 

detected in a method that are also detected in CGH (GADA). The NPV gives the proportion of 

CNVs not identified in a method that are not detected in CGH (GADA). The values of the two 

measures range between 0 and 1. A PPV of 1 indicates that all samples identified to have a 

specific CNV gene in one method were also identified to have the same CNV gene in CGH
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(GADA) and 0 indicates that none of the samples identified to have a specific CNV gene in 

one method had CNVs detected in CGH (GADA). A NPV of 1 indicates that all samples 

without a CNV in one method did not have the CNV detected in CGH (GADA) and 0 

indicates that all the samples without a CNV gene in one method had the CNV detected in 

CGH (GADA). PPV and NPV were used instead of sensitivity and specificity because they 

take into account the prevalence of the CNVs.

4.3 Results

4.3.1 Sequence quality

The majority of sequenced bases were of good quality with Phred quality scores of greater

than 20, i.e., a 1 in 100 probability that a base is incorrectly called. The mean read length

ranged between 160bp and 235bp in the 22 samples. The average genome coverage differed in

the samples sequenced. The genome coverage ranged between 7.8 - 47.7 in the 18 samples

analysed and from 1.6 - 5.1 in the four samples excluded from analysis (Table 4.1).

The quality of the bases decreased with increasing sequence read length above 200bp (Figure

4.2A), a characteristic commonly observed with most sequencing platforms. This

phenomenon is thought to be due to some templates on the bead lagging behind or ahead in

sequence of other templates on the bead as a result o f lack of complete extension or leftover

nucleotides in the well (Bragg et al. 2013, Salipante et al. 2014, Margulies et al. 2005). The

average nucleotide content observed was 20% GC which is similar to the expected value in P.

falciparum based on Sanger sequencing (Gardner et al. 2002) (Figure 4.2B) and the proportion

of the nucleotide content varied greatly after the 250bp position. Four samples with the lowest

average sequence coverage, due to presence of high proportion of human DNA sequences

relative to parasite sequences, of up to 95% (Table 2.3 and 2.4), were excluded from further

analysis. A summary of the sequence output for each of the samples is shown in Table 4.1
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Figure 4.2. Plots of quality scores and nucleotide content of sequenced reads
A) Boxplots of quality scores (y-axis) by position in read (x-axis) in a samples. Yellows boxes 
show the inter-quartile range, 25th -75th, the red line-median, upper and lower whiskers are the 
10th and 90th values and the blue line-mean. The poor quality bases are in red, good quality 
bases are in green and moderate quality in orange background. B) Mean proportion of each 
nucleotide (y-axis) by position in sequence reads (x-axis) in a sample.
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able 4.1 Summary statistics of whole genome sequence data of 22 P. falciparum  field isolates

Sample
Identifier

Population 
o f origin

Number of 
reads

Mean read 
length (bp)

Number of 
reads
mapped to 
3D7

Final read 
count after 
filter

Percent o f genome with coverage values 0, >0- 
<=5, >5-<=10, >10-=<20 and >20

=0 =<5
>0

>5
<=10

>10
=<20

>20

pf!299 Kilifi Pre 5,814,179 192 3,343,322 2,634,034 8.4 11.7 10.1 17.4 52.4
pfl624 Kilifi Pre 4,768,102 181 2,584,197 1,903,046 12.0 15.3 11.7 24.0 37.0
pfl349 Kilifi Pre 6,117,359 200 2,752,578 2,172,391 10.0 13.2 11.1 20.7 45.0
pfl0676 Kilifi Post 6,516,576 195 2,726,767 2,158,002 10.8 16.0 12.3 21.8 38.1
pfl0724 Kilifi Post 7,212,289 235 1,579,785 1,199,707 10.8 19.8 17.2 37.2 14.9
pf!0836 Kilifi Post 4,221,534 204 2,642,321 1,882,187 9.0 15.6 12.0 19.4 44.0
pfl0760 Kilifi Post 4,469,713 206 1,192,910 984,949 14.2 27.0 25.5 31.0 2.3
pfl212 Kilifi Pre 6,151,974 188 5,715,908 4,868,604 9.4 12.4 7.9 11.0 59.3
pfl0770 Kilifi Post 7,325,789 190 4,558,838 3,776,892 10.9 15.2 9.4 12.0 52.5
pfl590 Kilifi Pre 6,966,753 205 1,239,892 972,995 17.2 27.3 19.8 31.5 4.2
pfl895 Kilifi Pre 7,282,318 178 7,112,587 6,151,059 8.3 5.9 4.9 8.9 71.9
pfK007 Kisumu 6,673,824 183 6,021,604 5,068,212 7.6 11.6 8.3 12.0 60.5
pfK020 Kisumu 6,161,420 160 5,761,970 4,647,383 8.5 12.0 9.8 15.7 54.0
pfK071 Kisumu 6,661,003 189 2,882,086 2,365,500 13.7 22.1 10.3 12.4 41.5
pfM004 Sudan 6,674,924 204 4,651,427 3,953,732 8.8 6.8 6.0 11.7 66.7
pfM007 Sudan 6,718,825 192 6,430,355 5,428,351 9.9 7.9 5.2 8.8 6.8
pfl0814 Kilifi Post 6,620,382 190 883,916 672,578 24.5 36.5 22.4 15.6 1.0
pfK065 Kisumu 6,699,194 200 332,760 209,049 35.3 61.5 3.2 0 0
pfG013 Sudan 6,716,879 162 366,073 237,561 3.5 61.5 3.3 0 0
pfl0820 Kilifi Post 4,593,168 199 4,267,905 3,501,088 21.7 15.0 6.7 9.2 47.4
pfl0578 Kilifi Post 5,690,616 233 496,494 375,707 55.5 36.0 5.1 2.0 1.5
pfl0495 Kilifi Post 4,369,272 225 5,387.450 4,184,087 22.9 14.4 6.4 8.6 47.6
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4.3.2 Challenges in mapping of whole genome sequence data of P. falciparum

As in previous studies (Quail et al. 2012, Ross et al. 2013), GC content in a region was found 

to positively affect read coverage at GC content below 50% (Figure 4.3A). This effect has 

been linked to the PCR amplification step during sequencing (Quail et al. 2012): in this study, 

5 rounds of amplification per sample were performed. Low sequence complexity also affects 

the ability o f reads to unambiguously map to the reference thus biasing read coverage 

estimates in these regions (Treangen and Salzberg 2012). In this study, low or no coverage in 

non-unique regions was observed since the reads that aligned to multiple locations on the 

genome were filtered out (Figure 4.3B).
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Figure 4.3. Effect of GC content and uniqueness of a region on sequence coverage
The relationships between A) GC content and coverage, and B) uniqueness and coverage 
calculated in lOObp non-overlapping windows. A uniqueness value of 1 indicates a lOObp 
sequence window that is not similar to any other region in the genome while a value of 0 
represents a lOObp sequence that appears more than four times in different locations in the 
genome.
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4.3.2.1 Normalisation of read depth across the samples

The read depth was normalised across the samples by applying the ‘quantile’ method in 

cn.MOPS package in R (Klambauer et al. 2012). Quantile normalisation adjusts the 

distribution of read depth such that they are similar among the samples. Normalisation 

minimized the variation in read coverage that is due to the differences in number of reads 

sequenced among the samples (Figure 4.4A vs 4.4B).
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Figure 4.4. Normalisation of read coverage across samples
A) The raw coverage of 18 samples across a region in chromosome 1. The coverage of the 
sample with the highest overall coverage indicated by the red line and the coverage of the 
sample with the lowest overall coverage indicated in green. B) Normalised coverage of the 
same region on chromosome 1.
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4.3.2.2 CNV detection using cn.MOPS

Genomic regions that vary in copy number were identified using cn.MOPS. The example 

illustrated in Figure 4.5 shows the normalised read coverage (black lines), the CNV segments 

detected (pink bars) in 11 out of the 18 samples and their genomic positions in the ‘genes’ 

method. The length and location of the CNV segments detected varied across the 11 samples 

(Figure 4.5). Only three samples had CNV segments spanning a whole gene. Most of the 

samples contained CNV segments that spanned very small portions of genes, and may be 

noise or short repeat regions located within genes. For this reason, a cut-off on the minimum 

length of CNV segments within a gene for it to be called a CNV was later applied.
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Figure 4.5. CNV calling using cn.MOPS
A region on chromosome 8 identified to contain CNV regions in the ‘genes’ method. The line 
plot shows the normalized read depth of the 18 samples. The CNV segments identified by 
cn.MOPS in 11 samples are shown by the pink horizontal bars. The three genes located in this 
region are shown by grey rectangles.
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Overall, the total number and length of the CNV segments varied across the six methods 

(sequencing and CGH) and 18 samples (Appendix 4.1 A-F). The ‘genome’ had the highest 

number of segments owing to the inclusion of intergenic regions in the analysis (Appendix 

4.1C). The ‘probome’ had the lowest number of segments among the sequence methods since 

only regions targeted by probes, ~ 10000 regions of 70bp width, were analysed (Appendix 

4. ID). The number of CNV segments detected in the CGH data was higher when using the 

GADA method than cn.MOPS due to the inability of cn.MOPS to analyse data of probes with 

missing values in any one sample whereas GADA could analyse data of the same probes 

ignoring the sample with missing values (Appendix 4. IF vs. 4. IE). The number o f probes 

analysed by GADA was 9615 whereas 4749 probes were analysed using cn.MOPS. The 

majority of the CNV segments were observed to be shorter than 500bp in the ‘exome’, ‘genes’ 

and ‘genome’ methods (Appendix 4.1A-C). The ‘probome’, ‘CGH (GADA)’, and ‘CGH 

(cn.MOPS)’ had most of the CNV segments above lOOObp (Appendix 4.1 D-F).

4,3.3 Gene copy number variation definition

The genes that lie in the CNV segments were identified and found to differ in number between 

the samples in a method and also between the 6 analysis methods (Appendix 4.2).The fraction 

of the gene lengths detected to be copy variable were calculated for each of the methods 

(Appendix 4.2). In the sequence-based methods, the majority of the genes had less than 20% 

of the gene length identified to be copy number variable except in the case of the ‘probome’ 

which had a majority greater than 80% (Appendix 4.2 A-D). The majority of CNV genes 

identified in CGH data had a copy number difference in at least 80% of the probes (Appendix 

4.2E-F). For subsequent analysis, a CNV gene was defined as those with greater than 50% of 

their gene length/probes within identified CNV segments.
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There were differences between the sequence and the probe based methods. First, a number of 

lOObp windows per gene were assessed sequence methods (‘exome’, ‘genes’ and ‘genome’) 

whereas on average two 70bp windows per gene were assessed in CGH data and ‘probome’ 

methods. Second, the total number of genes assayed by the two methods varied. A total of 

5179 genes per genome were assayed in sequence methods (‘exome’, ‘genes’ and ‘genome’) 

whereas 5031genes were assayed in CGH methods (‘GADA’, ‘probome’) and 3121 genes in 

‘CGH (cn.MOPS)’.

4.3.4 CNVs detected by next-generation sequencing

The CNV genes identified in both sequence and microarray data , defining CNV genes as 

those with greater than 50% of gene length/probes in a gene identified to be copy number 

variable, are distributed throughout the parasite’s genome (Figure 4.6). There was poor 

overlap in the CNV genes identified from the sequence and microarray methods (Figure 4.6). 

The reason for the higher number of CNV genes detected in CGH data using GADA than in 

Chapter 3 is that low stringency was used in CNV definition in this analysis. The number of 

different genes showing copy number gain, loss or both gain and loss ranged from 191 to 828 

in the six methods (Figure 4.7A). Many CNV genes identified were exclusive to each method 

with approximately 300 CNV genes shared between any two methods (Figure 4.7B). The 

CNV genes identified using the three sequence methods, ‘exome’, ‘genes’ and ‘genome’, were 

significantly shorter (p-value < 0.0001 using t-test) than those identified in CGH data and the 

‘probome’ method (Figure 4.7C). The length of the CNV genes identified on CGH data using 

the two methods (‘cn.MOPS’ and ‘GADA’) were statistically similar (p-value=0.37 using t- 

test). Also, the CNV genes length identified using ‘probome’ method was statistically similar 

to ‘GADA’ method (p-value 0.05).
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Figure 4.6. Genomic location of CNVs identified in CGH and sequence data in 18 
isolates.
The location of CNV genes are shown as coloured vertical bars. The CNVs detected by CGH 
(GADA) method in green, CGH (cn,MOPS) in maroon, ‘exome’ in blue, ‘genes’ in red, 
‘probome’ in magenta and ‘genome’ in orange. The regions targeted by the microarray probes, 
the exons and the full genome are shown in grey in the top, middle and bottom row of each 
chromosome, respectively. Regions excluded from the analysis are shown in black.
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Figure 4.7. The number and length of CNV genes detected by five methods using 
cn.MOPS.
A) Barplot showing the number of CNV genes in six methods and the proportions of genes 
with increased copy number (gain) in grey and decreased copy number (loss) in pink and CNV 
genes with both gain and loss in green. B) Barplot showing the number of CNV genes 
exclusively detected in a single method, or detected in two or more methods. C) Boxplot 
showing the distribution of the length of CNV genes in the six methods.

4.3.4.1 Comparison between CNV genes identified in m icroarray and sequence data

The PPV and NPV of each method in detecting a CNV gene identified in CGH (GADA) were 

determined across the 18 samples. These calculations were based on less than 100 CNV genes 

because less than 100 CNV genes were detected by both CGH (GADA) and either one of the 

methods. Less than 10 CNV genes in each of the methods had a PPV of 1, i.e., all samples
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with the CNV in a method also had the CNV detected using CGH (GADA) (Figure 4.8 A, B, 

C, D and E). However, the majority of the CNV genes detected by each of the methods had 

low PPV of 0 and high NPV of 1. The low PPV indicates that the CNVs identified in one of 

the five methods were not identified in the same samples in CGH (GADA) (Figure 4.8 A, B,

C, D and E). High NPV observed shows that CNV genes that were not identified in a method 

were also not detected in CGH (GADA) (Figure 4.8 F, G, H, I and J). CGH (cn.MOPS) was 

found to have a higher proportion of genes with high PPV than the other methods indicating 

that CNV genes that were detected in this method were also detected in CGH (GADA) (Figure 

4.8H).

4.3.5 CNVs detected by both microarrays and sequencing

Examples of CNV genes identified in the same samples in both CGH (GADA) and sequence 

methods are listed below (Table 4.2). Some of the genes are involved in regulation of gene 

expression (PF3D7_0925700, PF3D7 1105000). One gene encodes proteins that form part of 

the 60S ribosomal subunit of the ribosome (PF3D7 1351400). Two genes are involved in 

gametogenesis, PF3D7_1038400 (Scherf et al. 1992) and PF3D7_0935400 (Eksi et al. 2012).

4.3.6 CNVs exclusively detected in sequence data or microarray data

One of the CNVs detected in sequence data and not in CGH data of the 18 sequenced samples 

was an amplification of three consecutive genes in chromosome 12 (Figure 4.9A). However, 

this amplification was observed in one sample of the 183 samples with CGH data that was not 

sequenced (Figure 4.8B). One of the genes in this CNV, PF3D7 1224000, known as GTP 

cyclohydrolase 1 (gchl) has been previous reported to be amplified in field populations of P. 

falciparum (Nair et al. 2008, Mackinnon et al. 2009, Robinson et al. 2011) as well as in culture
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(Kidgell et al. 2006, Jiang et al. 2008b). The presence of up to 11 copies of the gchl identified 

in field isolates (Nair et al. 2008) is consistent with the extremely high sequence coverage of 

this region for the isolate displaying the amplification (Fig. 4.9A). The estimated copy number 

of the region in our analysis was 4. gchl codes for the first enzyme in the folate synthesis 

pathway. Its amplification has been observed to occur together with a SNP (dhfr-164L) present 

in an enzyme, dihydrofolate reductase (dhfr), which occurs in the same metabolic pathway and 

which is targeted by antifolate antimalarial drugs. The amplification is thought to be a 

compensatory mechanism as a result of presence of the antifolate resistance SNP mutation 

(Nair et al. 2008, Kidgell et al. 2006).

A large deletion at the right end of chromosome 9 observed in CGH data, in 3 of the 19 

samples sequenced, was observed to contain sequence coverage in sequence data (Figure 

4.10). However, four genes in the region (PF3D7 0935400, PF3D7 0936000,

PF3D7 0936400 and PF3D7 0936500) were observed to be copy number variable by 

sequencing in reference to the mean of all the samples sequenced (Table 4.2). The reference 

sample in CGH experiment is known to have the deletion (Mackinnon et al. 2009), and 

therefore clinical isolates with similar copies to the reference, i.e., a log2 ratio close to zero, 

indicate a deletion in the samples. Of interest to this study of field isolates is that this deletion 

has previously only been detected in laboratory cultured lines and thought to be an adaptation 

mechanism to growth in vitro (Kemp et al. 1992, Shirley et al. 1990, Mackinnon et al. 2009).

Another interesting CNV gene, clag 3.1 identified as PF3D7_0302500, belonging to the 

cytoadherence-linked asexual gene family {clag genes) was detected in one sequence method 

(‘probome’) and microarrays. One or both of the clag 3 genes (PF3D7_0302200lclag3.2 and
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Table 4.2. A list of CNV genes detected in CGH (GADA) and at least one sequence 

method with the fraction of the number of samples with CNV in a method that had the 

CNV detected in both the method and CGH (GADA)

Gene Product Exome Gene Genome Probome
PF3D7 0 107200 Carbon catabolite repressor 1/1

protein 4 putative
PF3D7 0302500 Cytoadherence linked asexual 1/1

protein 3.1 (CLAG3.1)
PF3D7_0312000 Conserved Plasmodium protein 1/6 1/6

unknown function
PF3D7 0315200 Circumsporozoite-and TRAP- 1/5

related protein (CTRP)
PF3D7 0422300 Alpha tubulin 2 1/5 1/5 1/5
PF3D7 0522800 G10 protein putative 1/1
PF3D7 0915300 Conserved Plasmodium protein 1/8

unknown function
PF3D7 0925600 Zinc binding protein (Yippee) 2/7 1/7

putative
PF3D7 0925700 Histone deacetylase (HDAC1) 1/7
PF3D7 0935400 Gametocyte development 1/14

protein 1 (GDV1)
PF3D7 0936000 Ring-exported protein 2 1/3

(REX2)
PF3D7 0936400 Ring-exported protein 4 2/13

(REX4)
PF3D7 0936500 Plasmodium exported protein 1/8

unknown function
PF3D7 1038400 Gametocyte-specific protein 1/16 1/16 1/16

(Pfll-1)
PF3D7 1105000 Histone H4 (H4) 5/7 5/7 3/7 5/7
P F 3D 71107100 Nucleic acid binding protein 1/1

putative
PF3D7 1107400 Rad51 homolog (RAD51) 1/4 1/4 1/4
PF3D7_1114200 GTPase activator putative 1/1
PF3D7 1245200 Conserved Plasmodium 1/6

membrane protein unknown
PF3D7 1333100 Conserved Plasmodium protein 1/3

unknown function
PF3D7 1351400 60S ribosomal protein L I7 1/3

putative
PF3D7 1479000 Acyl-CoA synthetase (ACSla) 1/1 1/1 1/1 1/1
Total 12 11 12 17
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Figure 4.9. Amplification of GTP cyclohydrolase gene 1
A) Plot of normalised coverage of a region on chromosome 12 containing three CNV genes 
identified in the ‘exome’ method. B) Plot of the CGH ratio of the same region of all the 183 
samples with CGH data. The coverage and CGH ratio of the sample with the amplification in 
among the sequenced isolates is indicated by the red line.
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Figure 4.10. A CNV identified in chromosome 9 using microarrays but not using 
sequencing.
Plot of A) CGH ratio along a CNV region on chromosome 9. B) Plot of the normalised 
sequence coverage in the ‘genome’ method across the same region. The blue lines indicate 
CGH ratio/normalised coverage of samples with the chromosome 9 deletion observed in CGH 
data.
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PF3D7_0302500) have been previously reported as CNVs in both clinical isolates (Robinson 

et al. 2011) and laboratory lines (Jiang et al. 2008b, Mackinnon et al. 2009, Iriko et al. 2008). 

However, in one of the studies, clag 3.1 was reported to be amplified (Jiang et al. 2008b). The 

two clag 3 genes are known to exhibit a sequence similarity of greater than 90% (Kaneko et al. 

2005). Therefore, only a small proportion of each gene can be uniquely mapped to two genes 

in the reference genome. For the clag 3.1 gene, CNV segments were detected using the 

sequence methods ‘exome’, ‘gene’ and ‘genome’, but for the above reason, the criterion of 

CNV segments constitution at least 50% of the gene length for it to be designated as a CNV 

gene were not met (Figure 4.11 A). Closer inspection of the raw sequence coverage of only the 

regions that differed in sequence between the two genes shows that some of the samples had 

no coverage in these regions in the clag 3.1 gene but had sequence coverage in clag 3.2, thus 

suggesting that there may be a true deletion of this gene (Figure 4.11 C vs. B).

4.4 Discussion

Array CGH has been widely used to detect CNVs in P. falciparum genome (Cheeseman et al. 

2009, Kidgell et al. 2006, Ribacke et al. 2007, Mackinnon et al. 2009, Mok et al. 2011, Jiang 

et al. 2008b). Recently, there has been an attempt to apply whole genome sequencing to detect 

CNVs in the expectation that its higher resolution might yield more accurate results (Robinson 

et al. 2011, Samarakoon et al. 201 lb, Sepulveda et al. 2013). A total of 7 CNV genes were 

identified in 5 clinical isolates in one of these studies, of which 2 have been previously 

reported (Robinson et al. 2011). In a second study, 4 out of 7 isolates sequenced had publicly 

available CGH data (Sepulveda et al. 2013). In the four laboratory parasite lines, the 

proportion of CNV hits (lOObp windows detected to be copy number variable) detected in
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Figure 4.11. Deletion of clag 3.1 gene (PF3D7 0302500) on chromosome 3
A) Plot of the CNV segments (deep pink, green, blue and orange rectangles) identified in the 
region containing the two clag 3 genes, clag 3.2 (PF3D7_0302200) and clag 3.1 
(PF3D7 0302500), on chromosome 3 in the ‘exome’ method. The blue vertical lines show the 
regions that have sequences unique to each gene. Plot of raw per base coverage of only the 
sequences unique to each gene B) the clag 3.2 and C) clag 3.1. The samples with very low 
coverage/no coverage in the unique regions of clag 3.1 are shown by green, orange and blue 
lines and may be real deletions. The CNV segments detected in these samples are shown in 
similar colours in A.

The main goal of this chapter was to confirm the CNVs identified using microarrays by whole 

genome sequencing. Comparison of the two technologies of CNV detection has its challenges. 

First, CNVs detection in P. falciparum using sequencing data is still new and the analysis 

remains a challenge hence complicates the comparison with microarrays. Second, most
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analysis tools used in the two technologies were developed to suit each of the individual 

technologies, therefore comparing CNVs detected by different algorithms may be problematic. 

Third, the two technologies differ in the regions of the genomes targeted with sequencing 

covering the whole genome whereas microarrays target specific regions of genes. Fourth, the 

reference upon which copy number was calculated differ. In microarrays, the number of gene 

copies in the samples is in reference to a single parasite genome while in sequencing, the 

number of copies is in reference to the mean of all the samples. Lastly, the forms of ‘noise’ 

(measurement error) differ in the two technologies: whereas microarrays average out the 

signal, sequencing generates high base to base variability in read depth.

These challenges were overcome by employing various strategies in CNV detection analysis. 

First, regions with less accurate mapping in P. falciparum, i.e., low complexity regions 

(introns and intergenic regions) and highly polymorphic genes (vars, rifins and stevors), were 

excluded prior to CNV calling. The ‘genome’ target, with low complexity regions included in 

analysis, had the highest number of CNV segments detected in the samples ranging from 

1000-3000 per sample (which did not correspond to high numbers of CNV genes) compared to 

the target genomes (‘genes’, ‘exome’, ‘probome’) range (5-1200 segments) which had the 

low complexity regions excluded. Most of these CNV segments in the ‘genome’ were located 

in the intergenic and intron regions.

Second, to analyse similar targets in the two technologies, a sequence genome target, 

‘probome’, made up of the genomic regions targeted by the microarray probes were analysed 

in sequence data. Also, a target genome o f only coding regions of the genome named the 

‘exome’, which are targeted by the array, was included in the comparison. The number of
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overlapping CNV genes detected in the samples was greatest between the ‘probome’ and CGH 

(GADA).

Differences in CNV detection in the two technologies is also contributed by the differences in 

the reference used in copy number estimation. In sequencing, copy number was calculated 

from the normalised coverage of the region in an isolate against the mean of the all the isolates 

whereas in microarrays it was calculated against one reference isolate. Another major 

difference in the microarrays and sequencing technology is measurement used. In microarrays, 

an average intensity signal is obtained for a 70bp sequence whereas in sequencing the read 

depth of each base is obtained. The read depth is biased by GC content and uniqueness of a 

region. The choice of window size and regions over which read depth is calculated and 

normalised to minimize variation is a critical step. Though the read depth, calculated in lOObp 

windows and normalised in lOObp windows, a number of very short fragments of genes/exons 

were detected as CNVs, reflective of the high amount o f variability in sequence data. To 

minimize the technology-specific noise, a cut-off was set on the minimum length of sequence 

and the number of probes required for a gene to be called a CNV.

After accounting for some of these variables, concordance was found in 21 CNV genes with 

the ‘probome’ method proving to be the most concordant. This is because its genomic targets 

were similar to CGH (GADA).

Two clear examples of major discrepancies between microarray and sequencing were found.

A large deletion in chromosome 9 was found by microarray in three isolates but sequencing 

data showed presence of sequence reads in these same samples. Second, a high copy number 

amplification of three consecutive genes in another region of chromosome 12, one of which



was gchl, was found in sequence data but no amplification was observed in the same sample 

by microarrays but was instead was observed in another sample by microarrays that was not 

sequenced. One possible reason for these observed differences is that microarrays have a 

limited dynamic range and, unlike sequencing, may not accurately quantify the massive 

deletions and amplifications. A further possibility is that the presence of subpopulations of 

parasites in the isolate with the CNV were undetected by microarray but became amplified 

during library preparation and visible by sequencing. These examples illustrate that one 

technology cannot replace the other yet for the purpose of CNV detection.

The two dag 3 genes best illustrates the difficulty of detecting CNVs in multiple regions of 

sequence homology in the genome. Focussing on the unique regions of these genes is one way 

to overcome the mapping problem, though mapping in the short unique regions may still be 

affected by sequencing errors and the stringency applied during read mapping to the reference. 

Increasing the sequence read length coupled with de novo assembly may help solve this 

problem (Zhao et al. 2013, Nijkamp et al. 2012).

Improvement of CNV detection methods using sequence data is still needed. One of the 

challenges of comparing CNV detection methods is the lack of a gold standard. Every 

technology has its challenges and even the analysis tools used for CNV detection in each of 

the technologies have shown to yield different results (Pinto et al. 2011, Mills et al. 201 lb).
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Chapter 5

Effects of CNVs on gene expression levels
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5 Chapter 5: Effects of CNVs on gene expression levels

5,1 Introduction

In P. falciparum, a number of CNVs have been identified: however, the functional impact of 

these CNVs on gene expression has not been widely studied. In many organisms, it has been 

shown that CNVs alter gene expression levels and hence affect phenotype (Henrichsen et al. 

2009, Stranger et al. 2007). CNVs have been shown to affect the levels of expression of genes 

within the CNVs (‘direct effects’) and also genes located outside the CNVs (‘indirect effects’). 

In P. falciparum, an example Of a direct effect of a CNV is an amplification of the GTP- 

cyclohydrolase 1 (gchl) gene that leads to increased levels of gchl expression which has been 

associated with antifolate drug resistance (Nair et al. 2008). An example of an indirect and 

global effect of a CNV is the ‘super CNV’ on chromosome 5 comprising an amplification of 

the region containing the P. falciparum multidrug resistance gene 1 (Pfmdrl) associated with 

multidrug resistance gene. This CNV was found to be either positively or negatively 

associated with the level of expression of 269 genes (Gonzales et al. 2008). A number of P. 

falciparum CNVs have also been observed to influence the levels of expression of genes 

within and outside CNV regions (Mackinnon et al. 2009).

In this chapter, the impact of gene copy number variation on the levels of gene expression was 

assessed. Gene expression/transcriptome data were generated by Rono M et al. (unpublished). 

The relationship between gene expression and CNVs discovered in the same set of isolates 

described in Chapters 3 and 4 was investigated. The direct effect o f alteration of gene copy 

number on gene expression and the global effect o f these CNVs were investigated by 

correlation and linear regression analyses of CGH data in relation to expression data.
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5.2 Methods

5.2.1 Samples

Seventy-two isolates out of the 183 isolates used for CNV identification in Chapter 3 had 

expression data and were used in this analysis. The 72 parasite isolates selected had complete 

maturation ex vivo and good quality array data of all the parasite stages. These isolates were 

from Kilifi pre-malaria decline, Kilifi post-malaria decline, Kisumu and Sudan, as described in 

Chapter 2. Twelve out o f the 72 isolates had sequence data (chapter 4).

5.2.2 Gene copy num ber variation

The CGH data (log2 CGH ratio) used in this Chapter were pre-processed as described in 

Chapter 3. The mean CGH ratio was calculated for each gene from CGH ratio of probes 

targeting the genes and used for association analysis. Ninety-five different CNVs comprising 

221 genes were detected in the 72 samples with both CGH and transcriptome data. The mean 

CGH ratio of probes contained in the CNVs (mean amplitude of CNVs) provided an indication 

of the size and direction of gene copy number differences between the test and reference 

isolates.

5.2.3 Gene expression data

Transcriptome data were generated by Rono. M et al. using a similar microarray to that used in

CGH (Chapter 2). Parasite isolates were obtained straight from the arm of infected individuals

at the ring stage of development and were matured ex vivo to obtain samples at all the stages

of the parasite’s 48-hour intraerythrocytic development. This step is required since levels of

expression of most of the parasite’s genes are known to vary across this cycle (Bozdech et al.

2003a). I was involved in maturation experiments of some of the parasites and set up of
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sample database. Preparation of cDNA and amplification from extracted RNA, at each of the 

parasite stages, were carried out (section 2.3.1 and 2.3.2). The amplified product was labelled 

and hybridized against a reference line, a Kilifi laboratory-adapted strain designated as ‘P4’, 

as for CGH. The reference cDNA consisted of a pool of cDNA from all the intraerythrocytic 

developmental stages of the parasite.

Prior to analysis, Loess curves were fitted to the data for each gene across all isolates and the 

residual values were computed. For each gene and for each isolate, these residual values were 

used to calculate the mean value across all stages of development (‘Mean’), and the mean 

value of data 6 hours each side of the time of maximum expression of the gene (‘Max’).

These isolate means were then used for the analyses described below.

5.2.4 Analysis of expression in relation to gene copy num ber

The effect of CNVs on the expression of genes located within them was assessed by 

performing a Pearson correlation between the mean CGH ratio per gene and ‘Mean’ 

expression data of each gene across the 72 isolates. The p-value for assessing significant 

differences from the expected correlation of zero under the null hypothesis of no relationship 

between gene copy number and expression levels was calculated using the cor.test function in 

R.

To investigate whether the correlation obtained from the analysis may have been by chance, a 

permutation test was performed. 100 random permutations of the expression data o f each gene 

were generated and the correlations between mean CGH ratio of each gene and each of the 

100 randomized expression data per gene were calculated. A Kolmogorov-Smimov test for
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significant differences between the distribution of observed correlations and distribution of 

correlations from the permuted data was applied using the ks.test function in R.

To analyse the relationship between gene expression (of genes in the whole genome) and the 

CNVs detected, a linear regression model was applied using the Im function in R. The mean 

log2 expression ratio of each gene was the dependent variable while the copy number state (fit 

as a fixed effect factor with levels for loss, gain or normal) was the independent variable. The 

difference in gene expression between samples with a gene copy number difference and those 

without was indicated by the regression coefficient (effect size). The significance of the 

difference was assessed from the p-value of the regression coefficient from the same model.

5.3 Results

5.3.1 Direct dosage effect of CNVs

The relationships between gene copy number and expression of 221 genes located within the 

95 CNVs was determined by calculating the correlation between the CGH ratio and the log2 

expression ratio in the 72 samples. Both positive and negative correlations between 

expression and copy number were observed (Figure 5.1 A). Significant correlations were 

detected in 41 CNV genes located in 30 different CNVs (p value < 0.05 and absolute 

correlation > 0.23) (Table 5.2). These represent direct dosage effects of CNVs on gene 

expression levels. To test whether the observed distribution of correlations may have been 

obtained by chance, the expression data for each gene were randomized, 100 times per gene, 

among the 72 isolates and the correlation re-calculated, 100 times per gene (Figure 5. IB). The 

observed (Fig. 5.1 A) and empirical (from randomized data, Fig. 5.IB) were found to differ, 

thus showing that the observed correlations between CGH and expression data were not as
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expected by chance (Kolmogorov-Smirnov test with p value < 2.2e-16). These distributions 

differed in that there were unexpected peaks at strong negative and positive correlation values 

of r = -0.3 and r = 0.2-0.3 respectively (Figure 5.1 A).
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Figure 5.1. Correlation between CGH log2 ratio of 221 CNV genes within 95 CNVs and 
their corresponding log2 expression ratio
A) Histogram showing the distribution of correlation coefficient of CGH log2 ratio and log2 

expression ratio of 221 CNV genes in 95 CNVs detected in 72 samples. B) Histogram 
showing the correlation between CGH data and 100 permutations per gene of expression data 
of the 221 genes.
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5.3.2 Direction of CNV effects on expression

Some of the genes shown to have gains or losses in copy number by CGH showed 

correlations with gene expression that varied from strongly negative to strongly positive while 

others showed very low correlations (Figure 5.2A). For genes showing gains in copy number, 

there was an approximately equal number that showed significantly higher (i.e., positive 

correlations) vs. significantly lower expression levels (negative correlations) (15/31 vs. 16/31, 

p-value=l using binomial test). For genes showing loss in copy number, slightly more genes 

showed significant positive relationships with expression (i.e., decreased expression) than 

significant negative relationships, though the difference in proportions between the two 

correlations was not significant (6/10 vs. 4/10, p value = 0.75 using binomial test).

Surprisingly, expression was observed in genes identified to be deleted (Figure 5.2A). This is 

possibly because some of the observed loss in gene copy number may not necessarily mean 

complete absence of the gene, but rather presence of reduced number of copies of the gene in 

the test isolates compared to the reference parasite line.

Also surprising is that, in some instances, genes located within the same CNV exhibited 

opposite directions of the CNV effect. An example of this is the largest CNV on chromosome 

9 with a mean amplitude of 2.5 and containing the highest number of genes (15 genes) which 

showed both positive and negative correlations with expression of some of the genes 

contained within it. However only five genes with positive correlations were statistically 

significant (p value < 0.05) (Table 5.1).

Examples of genes showing positive correlations , i.e., an increase or decrease in copy number

associated with an increase or decrease in gene expression levels, respectively, are genes
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PF3D7 0508100 and PF3D7 1207000 (Figure 5.2D and E). An example of a CNV gene 

showing a negative correlation with expression upon loss of copy number is PF3D7_1149000 

(Figure 5.2B). An example of a negative correlation upon gain in copy number is gene 

PF3D7_0925400 (Figure 5.2C). The direction of CNV effects for all the 41 CNV genes 

showing significant correlations between CGH and expression are shown in Table 5.2.

Table 5.1. Genes in a CNV showing both negative and positive associations between

CGH and expression data

Gene ID Correlation P value
PF3D7 0935500 Positive 0.315833
PF3D7 0935600 Positive 0.010319
PF3D7 0935700 Positive 0.734123
PF3D7 0935800 Negative 0.507444
PF3D7 0935900 Positive 0.036364
PF3D7_0936000 Positive 0.027061
PF3D7 0936100 Positive 0.600683
PF3D7 0936400 Positive 0.028079
PF3D7 0936500 Negative 0.200308
PF3D7_0936700 Positive 0.460633
PF3D7 0936800 Positive 0.008986
PF3D7 0937000 Negative 0.172866
PF3D7 0937100 Negative 0.25637

Among the 41 genes that showed significant correlations between copy number and 

expression were 5 genes located in a region of chromosome 9 that contained a large deletion at 

low frequency in the populations. All the 5 genes within this CNV, PF3D7 0935600,

PF3D7 0935900, PF3D7_0936000, PF3D7_0936400 and PF3D7_0936800, showed 

significant positive correlations between copy number and expression (Figure 5.3).

Page 138 of 191



A) B)

c
<do
£a>oo
cQ

O
o

a>
oO

- 2 - 1 0  1 2 
L oss Gain 
CNV amplitude

PF3D7 1207000

o
* 3Q
%U)
o
co
'5Wvwax
111

(D
6

Of
d

<N
9

L oss No L oss

C)
PF3D7 0508100

<DO
(No'
CM

9

to
9

Gain No Gain

<NO)o
co
"<n«?o
Q.
X
LU

D)
PF3D7 1149000

d

if>
9

Loss No loss

E)
PF3D7 0925400

LU

if)
d

oo
m
9

Gain No Gain

Figure 5.2. Direction of CNV effects on levels of gene expression 
A) Plot showing relationship between the amplitude of 95 CNVs (mean log2 CGH ratio of 
probes within CNV) on the x axis and the correlation coefficient of each of the 221 CNV 
genes in the CNVs. Each spot represents the correlation coefficient obtained from the 
correlation between CGH and expression value in each of the 72 samples, of each CNV gene 
(x axis) and the amplitude of the CNV that contains the gene (y axis). Some of the 95 CNVs 
have more than two 2 genes located within them thus a single y value (amplitude) may have 
more than two different correlation coefficients (x axis). Box plots show ‘Mean’ gene 
expression data (a single ‘mean’ value, calculated from all the time points per gene, of an 
isolate (explained in section 2.3.3)) in samples with the CNV gene and those with normal copy 
number of the gene. A positive correlation between CGH and expression data was observed in 
gene PF3D7 1207000 B) and PF3D7 0508100 C) while a negative correlation was observed 
in PF3D7_1149000 C) and PF3D7 0925400 D).

This deletion has been previously reported in the reference parasite (Mackinnon et al. 2009): 

thus parasites bearing similar gene copies to the reference would have CGH log2 ratios close 

to zero, and those without the deletion will have higher CGH log2 ratios. The deletion was 

observed in 7 of the 72 isolates. Low levels of gene expression were observed in some of the
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Table 5.2. Genes showing direct dosage effect of CNVs on expression

Gene ID Protein Annotation CNV
state

Correlati
on

PF3D7_1129000 Spermidine synthase Gain Positive
PF3D7 1412400 Conserved protein, unknown function Gain Positive
PF3D7 1212300 Conserved protein, unknown function Gain Positive
PF3D7 1212400 Tetratricopeptide repeat family protein Gain Positive
PF3D7 0423400 Asparagine-rich protein Gain Positive
PF3D7 0936800 Plasmodium exported protein (PHISTc) Gain Positive
PF3D7 0935600 Gametocytogenesis-implicated protein Gain Positive
PF3D7 0322700 Conserved protein, unknown function Gain Positive
PF3D7 1329300 Chromatin assembly factor 1 subunit Gain Positive
PF3D7 0928000 Cytochrome c oxidase subunit 6B Gain Positive
PF3D7 0936000 Ring-exported protein 2 Gain Positive
PF3D7 0936400 Ring-exported protein 4 Gain Positive
PF3D7 0935900 Ring-exported protein 1 Gain Positive
PF3D7 1128700 GPI-anchor transamidase Gain Positive
PF3D7 0515200 Conserved protein, unknown function Gain Positive
PF3D7 0925400 Protein phosphatase-beta Loss Positive
PF3D7 0925600 Zinc binding protein (Yippee) Loss Positive
PF3D7 1008900 Adenylate kinase Loss Positive
PF3D7 0822600 Protein transport protein SEC23 Loss Positive
PF3D7 0826000 Conserved protein, unknown function Loss Positive
PF3D7 0804700 Conserved protein, unknown function Loss Positive
PF3D7 1143400 Translation initiation factor eIF-1 A Gain Negative
PF3D7 1313000 Ubiquitin-like protein nedd8 homologue Gain Negative
PF3D7 1244800 Cytoplasmic translation machinery associated 

protein
Gain Negative

PF3D7 1201900 Conserved protein, unknown function Gain Negative
PF3D7 0213600 Conserved protein, unknown function Gain Negative
PF3D7 1316800 Protein transport protein SEC20 Gain Negative
PF3D7 1312800 Conserved protein, unknown function Gain Negative
PF3D7 1317300 Conserved protein, unknown function Gain Negative
PF3D7 0602200 MYND finger protein Gain Negative
PF3D7 0915300 Conserved protein, unknown function Gain Negative
PF3D7 0407100 Methyltransferase Gain Negative
PF3D7 0203100 Protein kinase Gain Negative
PF3D7 1245200 Conserved protein, unknown function Gain Negative
P F 3 D 7 1 128900 Conserved protein, unknown function Gain Negative
PF3D7 0302900 Exportin-1 Gain Negative
PF3D7_1329200 Conserved protein, unknown function Gain Negative
PF3D7 1149000 Antigen 332, DBL-like protein Loss Negative
PF3D71207200 Conserved protein, unknown function Loss Negative
PF3D7 0309600 60S acidic ribosomal protein P2 Loss Negative
PF3D7_1114800 Glycerol-3-phosphate dehydrogenase Loss Negative
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Figure 5.3. Association between the CGH ratio and expression ratio of genes located in 
chromosome 9 region containing a deletion
Plot of the relationship between CGH ratio (x axis) and expression ratio (y axis) of five genes 
PF3D7 0935600 (black), PF3D7 0935900 (red), PF3D7 0936000 (blue), PF3D7 0936400 
(green) and PF3D7 0936800 (orange) located in the right arm of chromosome 9 contained 
within a CNV. The coloured linear regression lines fitted to the corresponding coloured data 
points are generated using Im function in R with the CGH ratio of the genes as the independent 
variable and the expression ratio as the dependent variable. All the fitted lines were found to 
be statistically significant (p value < 0.05).

isolates with CGH ratios close to zero or below 1 (i.e., with the deletion) (Figure 5.3). This 

CNV of interest, observed using CGH data (Chapter 3) but not confirmed using sequencing 

(Chapter 4), has previously been reported only in laboratory-adapted lines but not from 

clinical isolates. The low expression levels observed at low CGH ratios in some isolates may 

support the observation of a deletion of these genes. Alternatively, it may have resulted from a 

result of presence of polymorphism in the isolates which may interfere with microarray 

hybridization. This seems unlikely given that SNP-containing probes were excluded prior to 

CNV analysis (Chapter 3) and that all five genes contained within the region exhibited similar 

reductions in signal in both CGH and expression in some isolates.
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5.3.3 CNV effects on the expression of genes located outside CNV intervals

Previously, CNVs have been associated with not only changes in expression of genes with

altered copy number, but also genes outside the CNV boundaries (Mackinnon et al. 2009,

Gonzales et al. 2008). In this study, the potential CNV regulation of expression of genes

neighbouring the CNVs and also genes on different chromosomes was examined. The effect of

the 95 CNVs on expression of approximately 4000 genes outside CNV regions was assessed

using linear regression models. Gain and loss in copy number showed both negative and

positive effects on expression of genes outside the CNVs (Figure 5.4A). For the majority of

genes the level of expression was not affected by CNVs, indicated by high density observed at

zero (Figure 5.4A). CNV effects on expression were more extreme for deletions than for

amplifications, especially in causing a reduction in expression (Figure 5.4A). Five percent of

these CNV effects on expression were found to be significant (loglO (p value) < -1.30) (Figure

5.4B).
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Figure 5.4. CNV effects on expression of genes located outside the CNVs 
The violin plot shows the results from a linear regression model that was used to explore the 
relationship between changes in expression of approximately 4000 genes with changes in gene 
copy number in 95 CNVs. Violin plot showing the distribution of the A) regression 
coefficient of the CNVs (gain and loss) on gene expression compared to normal copy B) log 10 
(p value) indicating the significance of the CNV effect. The log 10 of the p value of 0.05 is - 
1.30. In the violin plots, the median value is indicated by the white spot, and the interquartile 
range is indicated by the short black lines. The outer line shows the density estimations at each 
value.
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5.3.3.1 Intra-chromosomal effects of CNVs on gene expression

CNV effects on expression were observed in some genes located in close proximity to the 

CNVs (Figure 5.5). The estimated proportions of genes neighbouring the CNVs that showed 

significant influence of the CNV on their expression were highest at 30-50kb and 100-200kb 

from CNV boundaries (defined as the end of the last gene and the start of the first gene in the 

CNV). The lowest proportion was at an interval of 10-20kb from the CNV boundaries.

</><L>ca>CD
V * -O
co"B
O
C lO

CMO
d

oo
d

lQ-Q lQ-Q-Q .a -Q
JSC JC J £ JC JSCjsc JCo o o O o o OT—■o o 9o o

o7—■
o o

CM
A T” <N CO o

If)
ooT—

Figure 5.5. Effect of CNV on expression of genes at a distance from CNV
Barplot showing the proportion of genes as a function of their distance from the CNV 
boundaries that had expression levels significantly affected by CNVs. The CNV boundaries 
include the start of the first gene in the CNV and the end of the last gene in the CNV. 
Proportions were calculated as the fraction of those genes whose expression levels were found 
to be significantly affected by the CNV out of the number of genes located within these 
intervals for which data were available. The CNV effect was assessed using the linear 
regression model described above.

5.3.3.2 Inter-chromosomal effect of CNVs on expression

CNVs were also found to affect the levels of expressions of genes on different chromosomes.

The example in Figure 5.6 shows expression values of genes in samples with and without a

CNV (cnvl2_413) on chromosome 12. The CNV consists of an amplification of

PF3D7 1248600, a gene coding for a conserved Plasmodium protein of unknown function.
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The CNV was found to significantly affect the expression of 170 genes located in all 14 

chromosomes of the parasite genome. This CNV is located approximately IMbp downstream 

from another CNV (gchl amplification) region in chromosome 12 associated with expression 

of 269 genes (Gonzales et al. 2008).

The isolates with the CNV (cnvl2_413) showed two patterns of expression of the genes under 

CNV regulation. Some of the genes had high expression (expression values >0) in some of the 

isolates while others showed low expression (expression values<0). The isolates without the 

amplification (columns under black bar) exhibited a single pattern of gene expression in most 

of the isolates that was similar to a subset of isolates with the CNV (the first 18 columns under 

green bar). These isolates with or without the CNV showing similar pattern of gene expression 

originate from Kilifi and Kisumu populations. The isolates with the CNV showing a different 

expression pattern (last 14 columns under green bar) originate from Sudan. Some of the genes 

showing the CNV effect on expression include 12 genes known to be involved in splicing of 

pre-mRNA and 11 genes that encode chaperones and their regulations 

(http://mpmp.huii.ac.il/). Pre-mRNA splicing has been identified as one of the mechanisms 

utilized by plants to regulate expression of stress responsive genes (Mastrangelo et al. 2012, 

Dubrovina, Kiselev and Zhuravlev 2013). In Arabidopsis, changes in the expression of a gene 

encoding a protein, Sm-like protein 5 (LSm5), involved in mRNA splicing, has been found to 

regulate splicing o f stress-responsive genes which influence the ability of the plant to tolerate 

salt conditions (Cui et al. 2014). In P. falciparum, some of the genes, e.g., heat shock protein 

70, that encode chaperones have been shown to be protective to the parasite under heat stress 

(Pesce et al. 2008, Shonhai et al. 2011). The difference in heat stress response between Sudan 

and the two Kenyan populations (Kilifi and Kisumu) may be due to difference in thermal 

climatic conditions that the human host occupies.
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Figure 5.6. Increased copy number of PF3D7 1248600 gene shown to affect expression of 
genes located on different chromosomes
A heatmap showing the expression values of 183 genes with expression found to be 
significantly affected by cnvl2_413 containing a single gene (PF3D7 1248600) on 
chromosome 12 using linear regression model. 170 of these genes were located on 
chromosomes other than (grey rows) the chromosome on which it was located (pink rows).
The red colour shade indicates expression of greater than 0 while the blue colour indicates 
expression values below 0. The samples with the amplifications are indicated by the columns 
under the green bar, while the samples with normal copy are the columns below the black bar. 
A few samples had missing CGH data for this gene (columns under yellow bar).

5.4 Discussion

The impact of CNVs on gene expression was assessed in light of prior evidence that CNVs

affect gene expression (Gonzales et al. 2008, Mackinnon et al. 2009) and play a role in

phenotypic variation and adaptation (Nair et al. 2008, Chavchich et al. 2010). Forty-one out

of 221 CNV genes were found to exhibit direct dosage effects on gene expression. These CNV

genes showed significant positive and negative correlations between CGH and expression data

in both deletions and amplifications. The positive association between copy number and gene

Page 145 of 191



expression is expected and commonly reported in studies. However, the observed negative 

correlations are unexpected under a model of direct gene dosage effects on expression 

although have been observed elsewhere (Stranger et al. 2007, Henrichsen et al. 2009). These 

negative correlations may be as a result of the CNV being in linkage with other regulatory 

variants that cause the change in gene expression (Stranger et al. 2007). They may also be 

explained by the presence of a feedback loop whereby the expression of additional copies of a 

gene promotes the expression of a repressor that reduces the level of gene expression or 

reduced copies of a gene induces the expression of a gene enhancer leading to increased 

expression (Henrichsen et al. 2009). The extra copies of a gene may also interfere with the 

steric conformation of the gene disrupting its access to transcription machinery (Henrichsen et 

al. 2009, Sexton et al. 2007). In cases where there was a lack of association between CGH and 

expression data there may be a different regulatory mechanism to gene dosage operating. In 

the case of amplified genes, copies of genes may be located in different regions of the genome 

and hence regulated through a different chromatin environment (Henrichsen et al. 2009): the 

microarray technology cannot distinguish between tandem and non-tandem duplications and 

thus would not detect such transpositions.

Some CNVs were observed to affect the expression of genes neighbouring or at a distance 

from CNVs. These include a large proportion of genes located at distances greater than 30kb 

from the CNVs boundaries and some genes located on different chromosomes. This is 

consistent with previous studies in P. falciparum showing that CNVs affect the expression of 

genes located outside as well as inside CNVs (Gonzales et al. 2008, Mackinnon et al. 2009). 

The observation of CNV effects on genes located at different distances from the CNV implies 

that CNVs may regulate other genes through various mechanisms. First, CNVs may alter the 

chromatin structure that is known to play a role in determining gene transcriptional activity
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through epigenetic mechanisms (Cui and Miao 2010). The chromatin structure can be altered 

through modifications at the histone tails forming histone marks upon which effector proteins 

bind, or through histone variants, or through other chromatin remodellers that influence 

accessibility of DNA to transcription factors (Cui and Miao 2010, Duffy et al. 2012). The 

histone marks enable the recruitment o f chromatin-associated proteins which maintain the 

chromatin active and repressive states. Amplifications or deletions that disrupt the histone 

marks may interfere with transcriptional activity in the chromatin environment. An example of 

this in the human genome is a reduction in copy number of the D4Z4 repeats that interferes 

with chromatin structure through loss of histone marks (Bodega et al. 2009, Zeng et al. 2009). 

In addition, genomic alterations that affect genes encoding proteins that bind to the modified 

histones and those involved in histone modifications may lead to global effects on expression 

(Kleinjan and van Heyningen 2005). In P. falciparum, several genes involved in histone 

modifications (HDACs, HATs) and those interacting with the modified histones (SET1, SET2, 

PjHPI, PF3D7_1141800among others) have been identified and have been associated with 

either repressive or active states of the chromatin (Duffy et al. 2012, Cui and Miao 2010). In 

this study, genes encoding histone deacetylase 1 (HDAC1) and SET9 were observed to be 

copy number variable in both microarrays and sequencing and only microarrays, respectively. 

One of the genes under chromatin-mediated regulation is the pfap2-g (PF3D7 1222600) 

whose expression, by removal of the chromatin silencing histone marks, has been linked to 

reprogramming of the parasite’s transcriptome promoting conversion of asexual forms of the 

parasite to sexual forms (gametocytes) (Kafsack et al. 2014). Some of the observed global 

CNV effects, in this study, may be as a result of alteration in chromatin structure that 

interferes with expression of such master regulator genes.
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Furthermore, CNVs may affect the expression of genes at a distance through other methods 

including perturbation of certain functional pathways that result in changes in expression of 

genes involved in these pathways, interference with long-range interactions among promoters, 

c/s-regulatory elements and their transcriptional units (Kleinjan and van Heyningen 2005) and 

lastly, disruption of interactions that form pockets of repressive and active nuclear 

compartments that control gene transcription (Fraser and Bickmore 2007).

In conclusion, the gene expression variation associated with CNVs may result in phenotypic 

diversity in parasite populations that enable the parasite to survive when environmental 

conditions suddenly change.
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Chapter 6

General Discussion
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6 General discussion

6.1 Study objectives

The malaria parasite is exposed to constantly changing vector and host environments and yet 

is able to thrive under these conditions. The parasite has the ability to respond to these changes 

by possessing multiple variants that have varied responses to environmental pressure in order 

to facilitate its survival. There is limited understanding of the mechanisms that facilitate the 

responsive nature of the parasite that enables it to adapt to its environment. Various factors in 

the parasite have been linked to regulation of genes that interact with the environment in vitro, 

or which are associated with adaptive phenotypes, and therefore may contribute to phenotypic 

plasticity in the parasite’s natural setting. These include genetic variants that are thought to 

affect parasite phenotype, epigenetic mechanisms thought to be involved in expression of 

genes involved in immune evasion (Duraisingh et al. 2005, Freitas-Junior et al. 2005, Lopez- 

Rubio et al. 2007) and erythrocyte invasion (Cortes et al. 2007, Jiang et al. 2010) and the 

presence of master regulators of expression, e.g., the Apicomplexan ap2 gene family of DNA- 

binding transcription factors (Balaji et al. 2005, De Silva et al. 2008). It is possible that the 

parasite has a large number of mechanisms that underlie its adaptability. An understanding of 

the factors, networks and interactions that underlie adaptive parasite phenotypes in their 

natural setting may be useful in development of effective therapeutics and vaccines.

Genetic and phenotypic variation has been widely studied as the basis for understanding

malaria parasite biology. In the process, a vast number of SNPs, indels, CNVs and

chromosome size polymorphism have been identified. Investigations o f the relevance of these

variants have been on the rise over the years. First, experiments involving generation of

artificial mutants have aided in the understanding of various processes in the parasite

including erythrocyte invasion, gametocytogenesis, drug resistance among others (Crosnier et
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al. 2011, Ikadai et al. 2013, Triglia et al. 1998). Second, selection experiments have also 

contributed to identification of variants linked to particular phenotypes (Price et al. 2004,

Singh and Rosenthal 2004, Nzila and Mwai 2010). Since genetic variation is the substrate for 

evolution, plasticity in the parasite genome may well underlie the phenotypic plasticity that 

enables parasites to thrive in variable environments. A number of CNVs have been shown to 

underlie adaptive evolution under drug pressure (Nair et al. 2008, Price et al. 2004, Sidhu et al. 

2006, Singh and Rosenthal 2004, Dharia et al. 2009), and in vitro culture conditions in the 

laboratory (Nair et al. 2010, Biggs et al. 1989, Shirley et al. 1990, Kemp et al. 1992, Ribacke 

et al. 2007, Mackinnon et al. 2009). The study of CNVs in natural populations under variable 

natural selection pressures offers insight into their potential role in adaptation to different 

environments.

The hypothesis that CNVs underlie malaria parasite adaptation to different environmental 

conditions in nature was investigated. The specific aims included detection of CNVs in four 

parasite populations using microarrays, calculation of the CNV frequencies in these 

populations and tests for evidence of selection on them, confirmation of the detected CNVs 

using sequencing, and investigation of the impact of the CNVs on gene transcription levels.

6.2 Key findings

6.2.1 CNVs are prevalent in natural populations of P. falciparum

In this study, a genome-wide scan o f CNVs in 183 field isolates from four populations, with 

different malaria transmission intensities, was conducted using microarrays. Ninety-eight 

different CNVs comprising 225 genes, located in the 14 chromosomes of the genome, were 

detected. The proportion of the genes in the genome targeted by the microarray and found to
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be copy number variable was 4.5% (225/5032 genes). This proportion falls within the range of 

the fractions reported in other P. falciparum CNV studies, using microarrays, of 1.5% - 7% 

(Ribacke et al. 2007, Jiang et al. 2008b, Mackinnon et al. 2009, Dharia et al. 2009, Mok et al. 

2011, Kidgell et al. 2006, Carret et al. 2005, Bozdech et al. 2003a). The difference observed in 

the studies may be due to differences in numbers of isolates studied (2-37 isolates), density of 

the arrays (6000 probes - 4.8 million probes) and stringency measures of CNV detection.

Other studies on different organisms estimated the proportions of genomes with CNVs at 2.1% 

- 4.6% in the cattle genome (Bickhart et al. 2012, Hou et al. 2011), 3.7% - 12% in the human 

genome (Redon et al. 2006, Conrad et al. 2010b) and 2% in Drosophila melanogaster 

(Emerson et al. 2008). The length of the CNVs detected in this study ranged between 400bp 

and 90kb with a median of 6.7 kb. This is comparable to the range of lOObp to 107kb reported 

in previous studies of P. falciparum (Kidgell et al. 2006, Cheeseman et al. 2009).

The CNVs identified consist of amplifications and deletions at a ratio of 1.9:1. A greater 

fraction of amplifications than deletions has been commonly observed in different studies of 

P. falciparum (Ribacke et al. 2007) and other organisms (Redon et al. 2006). This may be as a 

result of stronger purifying selection on deletions that may be more deleterious than 

amplifications, assuming that the rates of formation of deletions and amplifications are similar. 

It may also reflect technical challenges in detecting deletions. CNVs showing both deletion 

and amplifications made up 5% (5/98) of the CNVs identified. This has also been observed in 

other genomes (Hou et al. 2011, Chen et al. 2012, Stranger et al. 2007). If real, these indicate 

that CNVs exist at a wide range of copy number in populations, and reflect high plasticity in 

that genomic segment. Alternatively, these may sometimes be an artefact due to the presence 

of sequence polymorphisms in the population. In this study, data from array probes with 

known SNPs within the probe regions were excluded from the analysis and that lbp mismatch
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out of 70bp probe sequence would not have a great effect on hybridisation intensity (Bozdech 

et al. 2003b) thus making this explanation unlikely.

Some of the CNVs reported in this study have been previously identified. Of all the CNVs 

published so far in P. falciparum, approximately 4% (50/1236 genes) were detected in this 

study. The low concordance with previous studies could be explained by differences in 

technical aspects, CNV calling algorithms, populations and numbers of isolates studied. It may 

also imply that there are many more CNVs yet to be discovered.

An interesting CNV found here, previously identified in only laboratory adapted lines and not 

in field isolates, is the large deletion on chromosome 9 containing 18 consecutive genes. This 

was identified in 13% (24/183) of the isolates studied of which 67% (14/24) originated from a 

single population (Sudan). This CNV appears to be real since its deletion is supported by data 

from probes in a large number of consecutive genes located within the CNV. However, upon 

analysis of this deletion by sequencing (Chapter 4), the region was observed to be covered by 

sequence reads in samples that were found to contain the deletion by microarrays. CNV 

calling using sequence data detected four of the 18 genes in the region as deleted, partially 

supporting the results by microarray, but not for the entire region. A deletion/amplification, in 

the case of sequencing, was defined as a region with coverage that was 1.74 fold (0.8 on the 

log2 scale) lower/higher than the mean sequence coverage of all the samples. The variability 

between genes in sequence coverage, inherent in sequencing data, may therefore have 

obscured the deletions in the other 14 genes. The signal may have been further obscured by 

the presence of subpopulations of parasites with and without the deletion within the isolates. 

Deletion of this region has been linked to loss of cytoadherence (Kemp et al. 1992, Biggs et al. 

1989) and gametocytogenesis (Day et al. 1993). The parasites bearing this deletion are thought
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to have a growth advantage since, so far, they appear to arise only in vitro, an environment 

where they are relieved of the cost that comes with the need for transmission and immune 

evasion. In the parasite’s natural setting inside the host, the occurrence of this deletion in a 

subpopulation in nature may be beneficial for increased growth rate of the parasite in the 

short-term, i.e., within its host, but detrimental in the longer term because of its loss of 

transmissibility. The majority of isolates bearing the deletion were found in Sudan, a 

population with low transmission intensity and immunity. Reduced selection pressure from 

host immunity compared to the other populations may enable existence of parasites that are 

less virulent (Gandon et al. 2001), as characterized by loss of cytoadherence. Alternatively, 

increased selection pressure to prolong the infection through the long mosquito-free dry 

season in Sudan may bring this deletion to the fore.

Fifteen functional gene groups were found to be significantly enriched in the list of CNV 

genes detected. Some of these groups are involved in environmental responsiveness processes. 

The two most enriched groups of genes were those coding for Maurer’s cleft proteins and the 

PHIST family of genes. The Maurer’s cleft proteins consist of proteins that reside in the 

Maurer cleft, a parasite derived organelle in the iRBC cytoplasm, or exported to the iRBC 

membrane through the Maurer’s cleft (Lanzer et al. 2006). PHIST family of genes are also 

thought to be exported to the iRBC surface (Sargeant et al. 2006). These two gene groups are 

exposed to the host immune responses and alteration of their copy numbers may be a 

mechanism for evasion of host immunity. Gain in gene copy number would increase the 

chances of random mutations that increase genetic diversity allowing for immune escape. 

Other enriched groups include those involved in glycolysis, an important mechanism for 

production of energy using glucose obtained from the host to support parasite multiplication 

and growth. Enrichment was observed in genes involved in antioxidative activity that relieves
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the parasite of oxidative stress from processes including digestion of haemoglobin, production 

of energy in the mitochondria and host immune responses (Jortzik and Becker 2012).

6.2.2 CNVs may be under selection

I explored for signs of CNVs under selection by assessing the differentiation in CNV 

frequencies between populations using Weir and Cockerham’s F st estimates. Twenty percent 

of the CNVs (19/ 95) were observed to show high differentiation between populations (F st 

>0.20) and hence may show signs of directional selection that result from population-specific 

pressures. The high differentiation may also be as a result of bottlenecks in the population, 

difference in the effective population sizes leading to variation in genetic drift between 

populations and migration of individuals. The CNVs that are show high differentiation 

between populations contain genes coding for proteins involved in gametocytogenesis, 

transcription regulation, DNA repair and proteins that interact with host immunity. Some of 

the differences in the populations that may contribute to differential selection include host 

genetics, host immunity, vector population densities and genetics, transmission intensities, 

drug use and co-infections. So far in P. falciparum, the only natural selection forces on CNVs 

that have been identified have been anti-malarial drugs (Nair et al. 2008) and host immunity 

(Ahouidi et al. 2010).

An example of a CNV with high differentiation between three population pairs (F st >0.35),

the two Kilifi populations compared to Sudan and Kilifi-Pre compared to Kisumu, was

cnvl2_413 on chromosome 12 containing a single gene PF3D7_1248600. This CNV occurred

at a higher frequency in Sudan and Kisumu than in the Kilifi populations (Chapter 3). The

function of the protein encoded by the gene has not been experimentally tested in the

laboratory. It is inferred to be involved in attachment of glycosylphosphatidylinositol (GPI)
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anchor to proteins, based on its sequence. The GPI anchor is useful for attachment of proteins 

to the extracellular surface of the membranes (Gilson et al. 2006). The gene has also been 

identified to belong to sexual stage Gene Ontology (GO) biological process of response to 

external stimuli (Young et al. 2005). The sexual stage GO is found at 

http://chemlims.com/OPI/MServlet.ChemInfo?module=Go&act=find&act2=viewRecord&GO 

Name LikeSBE 0=%3D&GQ Name TextSBE l=GQ:0009628&DataSet=21 . 

Interestingly, in Chapter 5, this deletion was found to significantly affect the levels of 

expression of 170 genes, both positively and negatively. Thus the existence of copy number 

variation at this locus could conceivably be the consequence of selection pressure on its 

regulatory effect on gametocyte production, a key component of parasite fitness.

Most of the CNVs showed low to moderate differentiation between populations (F st<  0.20). 

The presence of these CNVs could be as a result of neutral evolutionary processes, e.g., drift 

and population separation. These CNVs may be of no immediate relevance to the parasite, but 

might be considered to be on standby for future changes in environment that would render 

them advantageous.

6.2,3 Poor overlap between CNVs identified by microarrays and sequencing

A second technology - whole genome sequencing - that has been widely used for CNV studies

in human genome and a few P. falciparum isolates was adopted to validate the CNVs

identified using microarrays. Sequence data of 18 of the 183 isolates were generated and CNV

calling performed. The CGH data of the 18 isolates were also reanalysed using the same

methods for sequence data with adjustments to certain parameters (fold change, number of

probes within CNV, generally at lower stringency than for CGH) in calling of CNVs in order

to compare the results to those from sequence data. Three percent (21/828) of the CNV genes
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detected using microarrays (GADA software) were confirmed by sequencing (cn.MOPs 

software).

The low concordance in results from the two different technologies could be as a result of 

technical and analytic differences between them. First, the read count data used for CNV 

detection in sequence data is affected by inefficient alignment of reads to the reference 

genome due to presence of sequencing errors, repeat regions, sequence polymorphisms and 

short read length. Second, the type of data analysed differ in the two technologies. CGH data 

are log2 intensity ratios (difference in intensity between test and reference genome) and CNVs 

were defined as regions showing greater or less than absolute log2 intensity ratio of 0.8. By 

contrast, sequencing data are normalised read counts per isolate and CNVs were defined as 

regions with fold-differences corresponding to log2 value of 0.8 from the mean read count. 

Third, microarrays have a cap on the maximum signal intensity that can be detected whereas 

this is not the case for read counts in sequencing. Fourth, microarray hybridization may be 

affected by the presence of sequence polymorphisms in natural populations that were not 

detected and hence not ruled out prior to analysis thus resulting in false positive calls. Given 

these differences between the two technologies, one cannot replace the other in CNV 

detection. Instead, they can be used to complement each other for comprehensive mapping of 

CNVs.

6.2,4 CNVs affect the levels of transcription of genes within and outside CNV 

boundaries

An integrated analysis using CGH data and transcriptome data of 72 isolates was performed to

assess variation in gene expression that could be attributed to CNVs. Significant positive and

negative correlations between genetic content (CGH) and expression (transcriptome) data for
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genes identified to be located within CNVs by CGH. These indicate direct dosage effects of 

CNVs on gene expression. Negative correlations are unexpected and may be attributed to the 

involvement of other gene expression regulatory mechanisms. Amplified genes showed 

significant associations with expression more often than deleted genes suggesting that 

amplifications have greater impact on expression and parasite phenotype than deletions.

The effect of CNVs on the expression of the genes in the rest of the genome (i.e., outside the 

CNV boundaries) was assessed using linear regression models. It was surprising to find that 

most of the variation in gene expression significantly associated with CNVs were of genes not 

located in the CNVs. Significant effects on expression were observed in 5.7% of the 

relationships analysed (95 CNVs and expression of 4797 genes). The genes showing altered 

expression associated with a CNV were located in close proximity, at a distance or on 

different chromosomes from the CNVs. However, from these analyses, it is impossible to 

confidently conclude that the CNVs confer causal effects on CNV expression or are linked to 

other causal variants.

6.3 Future directions

This study has identified CNVs as a major source of variation in naturally occurring parasites.

It has also revealed that CNVs affect phenotype, using gene expression as a proxy to

phenotype, and also appear to be under natural selection. This sets the basis for understanding

parasite adaptation in response to its natural environment (host immunity, vectors, host

genetics among others) and control programmes, e.g., vaccines and therapeutics (Mackinnon

and Marsh 2010, Gandon et al. 2001). The findings provide a lead in to better understanding

of new regulatory mechanisms that might be able to be targeted by drugs or vaccines. For

example the CNV on chromosome 12 (cnvl2_413) that was associated with expression of 170
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genes is a high priority candidate for future study because it may be one of the master 

regulators of gene expression. The candidate CNVs can in future be studied using transfection 

technology, e.g., the introduction of extra gene copy number or a deletion to better understand 

the mechanism through which they contribute to phenotypic variation.

However, most of the CNVs identified using microarrays could not be validated by 

sequencing. To improve this situation, better CNV detection tools for sequence data that are 

suitable for the P. falciparum genome are needed. Second, increased sequencing read length 

would be useful in overcoming problems associated with short reads mapping in repeat 

regions. Third, generation of a representative ‘genome’ of all the naturally occurring isolates 

that could be used to establish unique and conserved regions would improve accuracy of read 

depth calculation and hence CNV calling. Lastly, development of a CNV detection tool that 

could be applied to both sequence and CGH data would enable fair comparison between the 

technologies and pooling of information from different sources in order to improve the 

accuracy and power to detect novel CNVs.
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8 Appendix

8,1 Appendix 1.1. A summary of genome-wide studies of CNVs in P. falciparum  using microarrays and next generation sequencing 
technologies.

Platform No. o f CNVs 
identified

Reference
genome

Size
of
CNVs

Isolates CNV detection criteria Reference

70-mer 
microarray :

4488 genes

144 CNV
genes

3D7 1 lab line 
(HB3)

Probes with difference in red and 
green intensities o f less than 50% 
of total (3D7) signal intensity. 
Exclude VSAs

(Bozdech et al. 2003a).

25-mer
Affymetrix
scrMalaria
array.
5159 genes 
260,596 probes

177 CNV 
genes

37 deleted 
genes

NF54 7 cultured 
isolates

Deletion defined as greater than 
40% reduction in intensity o f test 
relative to reference (NF54)

(Carret et al. 2005).

25 mer
Affymetrix
array

13
amplifications 
(-116 genes) 
33 gene 
deleted

3D7 9 lab lines 
and
5 culture
field
isolates

Amplification detection cutoff at 
log2ratio > 0.7
Deletion detected using MOID 
algorithm.

(Kidgell et al. 2006).

70 mer 
microarray

50 genes 
amplified 
32 genes 
deleted

3D7 980bp

107K
bp

2 fresh 
isolates and 
7 lab lines

2 consecutive probes showing 
similar statistically significant ratio 
difference (B statistics in limma 
(Smyth 2005)). Change in one 
direction (increase/decrease), VSAs 
excluded.

(Ribacke et al. 2007).
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PFSANGER 
GeneChip 
2.2 million 
probes

390 CNV 
genes

3D7 4 cultured 
lines

Segmentation using Partek 
Genomic Suite v6.3 
Segments 1.5 fold signal difference 
relative to 3D7 
Minimum o f 15 probes.
>300bp

(Jiang et al. 2008b).

70 mer 
microarray 
5224 genes

-324 CNV 
genes

3D7 5 short term
culture
isolates

1.5 fold in intensity difference 
between test samples and 3D7. 
Significant variation in log2 

intensity between strains (p<0.001). 
Occurrence o f CNV in at least two 
isolates.

(Mackinnon et al. 
2009).

70-mer array 138 CNV 
genes

3D7 6 fresh 
clinical 
isolates

GADA (Pique-Regi et al. 2010). (Mok etal. 2011).

Custom Tiling 
array
4.8 million 
probes
90% coding and 
60% noncoding 
regions.

79 CNV 
regions

3D7 1.9kb
P-
83kbp

4 lab lines Deletion detected by MOID 
algorithm. 10 unique probes per 
gene. Amplifications detected by 
performing z-test on windows 
testing whether log2 ratio >0. Z- 
score cut off o f 18.

(Dharia et al. 2009).

454 sequencing 2 deletions 
5
amplifications

3D7 2.5kb-
160kb

2 lab lines Read depth analysis (Samarakoon et al. 
2011a).

Illumina
sequencing

5 deletions 
2 amplification

3D7 300bp
-20kb

5 fresh 
isolates

Read depth analysis (Yoon et al. 
2009) and paired end mapping

(Robinson et al. 2011).

*MOID-Match-only Integral Distribution Algorithm
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8.2 Appendix 3.1. Overlap between CNVs identified in our study compared to published studies.
CNV name Gene ID Chromosome Gene name Reference
cnvl_005 PF3D7_0108500 1 Hypothetical protein, 

conserved
(Cheeseman et al. 2009)

cnv2_013 PF3D7 0202000 2 Knob associated 
histidine-rich protein

(Jiang et al. 2008b, Samarakoon et al. 201 la, 
Samarakoon et al. 201 lb, Pologe and Ravetch 
1988, Scherf and Mattei 1992, Mackinnon et al. 
2009, Ribacke et al. 2007, Carret et al. 2005)

PF3D7_0202100 2 Plasmodium exported 
protein (PHISTc), 
unknown function

(Cheeseman et al. 2009, Mackinnon et al. 2009, 
Carret et al. 2005)

PF3D7_0202200 2 Plasmodium exported 
protein, unknown 
function

(Mackinnon et al. 2009)

cnv3_043 PF3D7_0309300 3 N2227-Iike protein, 
putative

(Mackinnon et al. 2009)

PF3D7_0309600 3 60S Acidic ribosomal 
protein P2

(Cheeseman et al. 2009)

cnv3_064 PF3D7_0322700 3 (Samarakoon et al. 201 lb)
cnv4_091 PF3D7_0423400 4 (Samarakoon et al. 201 lb)

PF3D7 0423500 4 (Samarakoon et al. 201 lb)
cnv4_092 PF3D7 0424400 4 hypothetical protein (Samarakoon et al. 201 lb, Jiang et al. 2008b)

cnv5_122 PF3D7_0529100 5 hypothetical protein, 
conserved

(Jiang et al. 2008b)

PF3D7_0529200 5 sugar transporter, 
putative

(Mackinnon et al. 2009)

cnv7_169 PF3D7_0710200 7 hypothetical protein (Samarakoon et al. 201 lb, Jiang et al. 2008b, 
Mackinnon et al. 2009)
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cnv7_181 PF3D7 0721000 7 (Samarakoon et al. 201 lb)
cnv7_193 PF3D7_0730500 7 (Samarakoon et al. 201 lb)
cnv8_201 PF3D7_0804700 8 conserved Plasmodium 

protein, unknown 
function

(Mackinnon et al. 2009)

cnv8_215 PF3D7 0829500PF3D7 08180 
00

8 RNA binding protein, 
putative

(Mackinnon et al. 2009)

cnv9_251 PF3D7_0921000 9 ubiquitin conjugating 
enzyme

(Mackinnon et al. 2009)

cnv9_269 PF3D7_0935400 9 cytoadherence-linked
protein

(Mackinnon et al. 2009, Carret et al. 2005, 
Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Kidgell et al. 2006)

PF3D7_0935500 9 (Mackinnon et al. 2009, Jiang et al. 2008b, 
Samarakoon et al. 201 la, Samarakoon et al. 
2011b)

PF3D7_0935600 9 (Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 201 la, Samarakoon et al. 
2011b, Jiang etal. 2008b)

PF3D7_0935700 9 (Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 201 la, Samarakoon et al.
201 lb, Jiang et al. 2008b)

PF3D7_0935800 9 cytoadherence linked 
asexual protein 9 
(CLAG9)

(Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 201 la, Samarakoon et al.
201 lb, Jiang et al. 2008b)

PF3D7_0935900 9 (Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Jiang et al. 2008b, Mackinnon et al. 
2009)

PF3D7_0936000 9 hypothetical protein (Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 201 la, Samarakoon et al. 
2011b, Jiang etal. 2008b)
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PF3D7_0936100 9 hypothetical protein, 
conserved

(Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 201 la, Samarakoon et al.
201 lb, Jiang et al. 2008b)

PF3D7_0936200 9 hypothetical protein (Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 201 la, Samarakoon et al.
201 lb, Jiang et al. 2008b)

PF3D7_0936400 9 hypothetical protein (Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 201 la, Samarakoon et al.
201 lb, Jiang et al. 2008b)

PF3D7_0936500 9 hypothetical protein (Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Jiang et al. 2008b, Mackinnon et al. 
2009)

PFI1770w 9 hypothetical protein (Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Jiang et al. 2008b)

PF3D7_0936700 9 hypothetical protein (Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Jiang et al. 2008b, Mackinnon et al. 
2009)

PF3D7_0936800 9 hypothetical protein (Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 2011a, Samarakoon et al.
201 lb, Jiang et al. 2008b, Ribacke et al. 2007)

PF3D7_0936900 9 hypothetical protein, 
conserved in P. 
falciparum

(Cheeseman et al. 2009, Mackinnon et al. 2009, 
Samarakoon et al. 2011a, Samarakoon et al.
201 lb, Jiang et al. 2008b, Ribacke et al. 2007, 
Kidgell et al. 2006, Carret et al. 2005)

PF3D7_0937000 9 Hypothetical 
hypothetical protein

(Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Jiang et al. 2008b, Mackinnon et al. 
2009, Ribacke et al. 2007)

PF3D7_0937100 9 hypothetical protein (Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Jiang et al. 2008b, Mackinnon et al.
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2009, Ribacke et al. 2007, Cheeseman et al. 
2009)

PF3D7 0937200 9 enzyme, putative (Samarakoon et al. 201 la, Samarakoon et al. 
201 lb, Jiang et al. 2008b, Mackinnon et al. 
2009, Ribacke et al. 2007, Carret et al. 2005)

cnvll_335 PF3D7_1129000 11 spermidine synthase (Mackinnon et al. 2009)
cnvll 344 1/ 
2

PF3D7_1140500 11 myosin heavy chain 
subunit, putative

(Mackinnon et al. 2009)

cnvl1_348 PF3D7_1143400 11 translation initiation 
factor elF-lA, putative

(Mackinnon et al. 2009)

cnvl1_354

i

PF3D7_1148700 11 (Samarakoon et al. 201 lb, Sepulveda et al. 
2013, Jiang et al. 2008b)

PF3D7 1148800PF3D7 11488 
00

11 hypothetical protein Jiang 2008, Samarakoon 2011 A, Cheeseman 
2009

PF3D7_1148900 11 hypothetical protein (Jiang et al. 2008b, Samarakoon et al. 201 lb)
PF3D7_1149000 11 hypothetical protein (Jiang et al. 2008b, Samarakoon et al. 201 lb)

cnvl1_355 PF3D7_1149000 11 antigen 332, putative (Jiang et al. 2008b, Samarakoon et al. 201 lb)

cnvl2_375 PF3D7_1212400 12 Tetratricopeptide repeat 
family protein, putative

(Mackinnon et al. 2009)

cnvl3_434 PF3D7_1313100 13 conserved Plasmodium 
protein, unknown 
function

(Mackinnon et al. 2009)

cnvl3_441 PF3D7_1316800 13 sec20 homolog, putative (Mackinnon et al. 2009)
cnvl3_503 PF3D7_1366400 13 (Samarakoon et al. 2011b)
cnvl4_516 PF3D7_1412400 14 hypothetical protein (Jiang et al. 2008b)
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8.3 Appendix 3.2. Potentially novel CNVs
CNV name Gene ID Description
cnvl_007 PF3D7_0109400 tubulin-specific chaperone a putative

PF3D7_0109500 N-acetyltransferase putative
cnv2_014 PF3D7_0202500 early transcribed membrane protein 2

PF3D7_0202600 conserved Plasmodium protein unknown function
cnv2_016 PF3D7_0203100 protein kinase putative
cnv2_023 PF3D7_0212400 conserved Plasmodium membrane protein unknown function
cnv2_024 PF3D7_0213600 conserved Plasmodium protein unknown function
cnv2_028_l/cnv2_028_2 PF3D7_0215700 DNA-directed RNA polymerase II second largest subunit putative
cnv3_036 PF3D7 0301600 Plasmodium exported protein (hypl) unknown function

PF3D7_0301700 Plasmodium exported protein unknown function
PF3D7 0301800 Plasmodium exported protein unknown function

cnv3_037 PF3D7 0302600 ABC transporter (TAP family) putative
PF3D7_0302700 PFMNL-1 CISDl-like iron-sulfur protein putative
PF3D7_0302800 conserved Plasmodium protein unknown function
PF3D7_0302900 exportin 1 putative

cnv3_051 PF3D7_0315200 CSP and TRAP-related protein
cnv4_073 PF3D7_0407000 conserved Plasmodium protein unknown function

PF3D7 0407100 conserved Plasmodium protein unknown function
PF3D7_0407200 peptidyl-tRNA hydrolase PTH2 putative

cnv4_076 PF3D7_0409500 conserved Plasmodium protein unknown function
PF3D7 0409600 replication protein A large subunit
PF3D7_0409700 conserved Plasmodium protein unknown function

cnv4_078 PF3D7_0411700 conserved Plasmodium protein unknown function
cnv4_092 PF3D7_0424400 surface-associated interspersed gene 4.2 (SURFIN4.2)
cnv5_101 PF3D7 0507900 conserved Plasmodium protein unknown function
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PF3D7 0508000 6-cysteine protein
PF3D7_0508100 SET domain protein putative

cnv5_106 PF3D7_0512600 Rab GTPase lb
PF3D7_0512700 orotate phosphoribosyltransferase

cnv5_108 PF3D7_0514300 aspartyl-tRNA synthetase putative
PF3D7_0514500 conserved Plasmodium membrane protein unknown function
PF3D7_0514600 ribose 5-phosphate epimerase putative

cnv5_109 PF3D7_0515000 RNA recognition motif putative
PF3D7_0515100 rhomboid protease ROM9
PF3D7_0515200 conserved Plasmodium protein unknown function
PF3D7_0515300 phosphatidylinositol 3-kinase

cnv6_125 PF3D7 0602000 conserved Plasmodium protein unknown function
PF3D7_0602100 ATP-dependent RNA helicase putative
PF3D7_0602200 MYND finger protein putative
PF3D7 0602300 conserved Plasmodium protein unknown function
PF3D7 0602400 elongation factor G putative
PF3D7_0602500 geranylgeranyltransferase putative

cnv6_127 PF3D7_0604800 RAP protein putative
PF3D7_0604900 conserved Plasmodium protein unknown function
PF3D7_0605000 mitochondrial ribosomal protein L24 precursor putative
PF3D7 0605100 RNA binding protein putative

cnv6_129 PF3D7_0606200 ubiquitin conjugating enzyme E2 putative
PF3D7_0606300 conserved Plasmodium protein unknown function
PF3D7 0606400 conserved Plasmodium protein unknown function
PF3D7_0606500 polypyrimidine tract binding protein putative

cnv7 185 : PF3D7_0724100 conserved Plasmodium protein unknown function
PF3D7 0724200 immunoglobulin-binding protein 1-related putative

cnv8_201 PF3D7_0805100 conserved Plasmodium protein unknown function
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cnv8_222 PF3D7 0822600 Pfsec23
cnv8_227 PF3D7_0826000 conserved Plasmodium protein unknown function

PF3D7_0825900 conserved Plasmodium protein unknown function
cnv8_233_l/cnv8_233_2 PF3D7_0829500 conserved Plasmodium protein unknown function
cnv9_235 PF3D7 0902900 conserved Plasmodium protein unknown function

PF3D7_0903000 conserved protein unknown function
PF3D7_0903100 retrieval receptor for endoplasmic reticulum membrane proteins putative

cnv9_242 PF3D7_0908000 PI nuclease putative
PF3D7_0908100 conserved Plasmodium membrane protein unknown function

cnv9_249 PF3D7 0915200 conserved Plasmodium protein unknown function
PF3D7 0915300 conserved Plasmodium protein unknown function

cnv9_254 PF3D7_0925400 protein phosphatase-beta
PF3D7_0925500 thioredoxin-like protein 2
PF3D7_0925600 zinc binding protein (Yippee) putative
PF3D7_0925700 histone deacetylase

cnv9_255 PF3D7_0926400 monocarboxylate transporter putative
cnv9_259 PF3D7_0928000 cytochrome c oxidase putative
cnv9_262 PF3D7 0928900 guanylate kinase

PF3D7 0929000 conserved Plasmodium protein unknown function
PF3D7_0929100 conserved Plasmodium protein unknown function
PF3D7_0929200 RNA binding protein putative
PF3D7_0929300 conserved Plasmodium protein unknown function

cnv9_268 PF3D7 0934300 conserved Plasmodium protein unknown function
PF3D7_0934400 transcription factor with AP2 domain(s) putative

cnvl0_270 PF3D7_1001300 Plasmodium exported protein (PHISTa) unknown function
PF3D7_1001400 alpha/beta hydrolase putative

cnvl0_276 PF3D7_1008700 tubulin beta chain
PF3D7_1008800 small subunit rRNA processing protein putative
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PF3D7_1008900 adenylate kinase
cnvl0_279 PF3D7 1012500 phosphoglucomutase putative
cnvl0_283 PF3D7 1016500 Plasmodium exported protein (PHISTc) unknown function

PF3D7 1016700 Plasmodium exported protein (PHISTc) unknown function
cnvll_304 PF3D7_1107300 MIF4G domain containing protein

PF3D7_1107400 Rad51 homolog
PF3D7_1107500 prefoldin putative

cnvl1313 PF3D7_1113800 conserved Plasmodium membrane protein unknown function
PF3D7_1113900 mitogen-activated protein kinase 2

cnvll_316 PF3D7_1114800 glycerol-3-phosphate dehydrogenase putative
PF3D7_1114900 conserved Plasmodium protein unknown function

cnvl1_347 PF3D7_1142600 60S ribosomal protein L35ae putative
PF3D7_1142700 conserved protein unknown function
PF3D7_1142800 conserved Plasmodium protein unknown function
PF3D7_1142900 conserved Plasmodium protein unknown function

cnvl2_359 PF3D7_1201700 conserved Plasmodium membrane protein unknown function
PF3D7 1201800 cytochrome c oxidase assembly protein putative
PF3D7 1201900 conserved protein unknown function
PF3D7_1202000 ATP-dependent RNA helicase putative

cnvl2_360 PF3D7 1202100 conserved Plasmodium protein unknown function
PF3D7_1202200 mitochondrial phosphate carrier protein

cnvl2_364 PF3D7_1205400 conserved Plasmodium protein unknown function
PF3D7 1205500 conserved Plasmodium protein unknown function

cnvl2 3 6 7 PF3D7_1207000 conserved Plasmodium protein unknown function
cnvl2_368 PF3D7_1207200 conserved Plasmodium protein unknown function
cnvl2_377 PF3D7 1214900 conserved Plasmodium membrane protein unknown function

PF3D7_1215000 thioredoxin peroxidase 2
cnvl2_378 PF3D7_1216200 glycerol-3-phosphate dehydrogenase putative
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cnvl2_379 PF3D7_1217500 conserved Plasmodium protein unknown function
PF3D7_1217600 anaphase promoting complex subunit 10 putative

cnvl2_388 PF3D7_1229300 conserved Plasmodium protein unknown function
PF3D7_1229400 macrophage migration inhibitory factor
PF3D7_1229500 T-complex protein 1

cnvl2_398 PF3D7_1238900 protein kinase 2
cnvl2_405 PF3D7_1243700 ubiquitin conjugating enzyme E2 putative
cnvl2_408
cnvl2_408

PF3D7_1244700 conserved Plasmodium protein unknown function
PF3D7_1244800 cytoplasmic translation machinery associated protein putative

cnvl2_409 PF3D7_1245200 conserved Plasmodium membrane protein unknown function
cnvl2_413 PF3D7 1248600 conserved Plasmodium protein unknown function
cnvl3_428 PF3D7_1309000 conserved Plasmodium protein unknown function

PF3D7_1309200 protein phosphatase 2c-like protein putative
PF3D7_1309300 U4/U6 small nuclear ribonucleoprotein putative
PF3D7_1309100 60S ribosomal protein L24 putative

cnvl3_437_l/cnvl3_437_2 PF3D7_1315400 conserved Plasmodium protein unknown function
cnvl3_442 PF3D7_1317300 conserved Plasmodium protein unknown function

PF3D7_1317400 conserved Plasmodium protein unknown function
cnvl3_447 PF3D7_1322300 translation initiation factor EIF-2B subunit related
cnvl3_453 PF3D7_1324900 L-lactate dehydrogenase

PF3D7_1325000 lsm6 homologue putative
cnvl3_457 PF3D7_1329200 conserved Plasmodium protein unknown function

PF3D7_1329300 chromatin assembly factor 1 subunit putative
cnvl3_469 PF3D7_1340400 conserved Plasmodium protein unknown function
cnvl3_473_l/cnvl3_473_2 PF3D7_1344600 lipoate synthase putative
cnvl3_478 PF3D7_1348800 conserved Plasmodium membrane protein unknown function

PF3D7_1349000 conserved Plasmodium protein unknown function
PF3D7 1348900 conserved Plasmodium protein unknown function
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cnvl3_482 PF3D7_1351200 conserved Plasmodium protein unknown function
cnvl4_517 PF3D7_1412500 actin II
cnvl4_541 PF3D7 1431600 ATP-specific succinyl-CoA synthetase beta subunit putative
cnvl4_543 PF3D7 1432200 conserved Plasmodium protein unknown function
cnvl4_549 PF3D7_1438800 conserved Plasmodium protein unknown function

PF3D7_1438900 thioredoxin peroxidase 1
PF3D7_1439000 copper transporter putative

cnvl4_564 PF3D7_1452700 U1 snRNA associated protein putative
PF3D7_1452800 conserved Plasmodium protein unknown function

cnvl4 573 PF3D7_1460700 60S ribosomal protein L27 putative
cnvl4_573 PF3D7_1460800 conserved Plasmodium protein unknown function
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Appendix 4.1. Number and length of CNV segments detected in the six analysis methods of CGH and sequence data
Barplots of the number of CNV segments detected in each of the 18 samples and the distribution of the length of the segments in the A) ‘exome’ 
B) ‘genes’ C) “genome’ D) ‘probome’ E) CGH (cn.MOPS) F) CGH (GADA). The lengths are indicated by red (0-250bp), grey (251-500bp), 
yellow (501-1 OOObp), blue (1001-5000bp), orange (5001-10000bp), green (>10000)
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8.4 Appendix 4.2. Number of CNV genes detected and fraction of gene length identified to be copy number variable.
Barplot of the number of CNV genes identified in the six methods A) ‘genes’ B) ‘genome’ C) ‘probome’ E) ‘exome’ F) CGH (cn.MOPS) and G) 
CGH (GADA) with their corresponding fraction of gene length in CNV segments shown by different colours on bars 0-0.2 (pink), 0.2-0.4 (grey), 
0.4-0.6 (yellow), 0.6-0.8 (green) and 0.8-1 (blue)
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