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Abstract

Reliable prediction models in dengue would facilitate early identification of patients likely 

to progress to more severe disease, potentially improving patient management. However, 

most published studies have limitations with respect to their modelling strategy, sample 

size, and Chosen clinical outcomes, and to date none have exploited longitudinal data. 

Moreover, only a few studies have examined outcomes in patients presenting with dengue 

shock syndrome (DSS), the most severe form of the disease.

This thesis aims to overcome these limitations by using two large prospective datasets 

describing a) 1719 children with established DSS and b) 2598 children hospitalized with 

dengue. First, the population of children with DSS was characterized, and profound DSS, 

a composite outcome reflecting the need for intensive supportive care, was established 

as a suitable outcome for prognostic research in this population. Second, risk factors for 

profound DSS were identified and included in a robust prediction model. Based on this 

model, a simple score chart for use in clinical practice was derived. Third, risk factors 

for progression to DSS among children hospitalized with dengue were identified, and a 

prognostic model for progression to DSS was carefully developed. However, this model 

displayed only moderate performance and had limited clinical utility. Lastly, differences 

between acute and chronic diseases, and the implications for dynamic prediction modeling 

based on longitudinal data, are discussed. A case study of dynamic prediction modeling for 

development of DSS suggested that (1) the current platelet count can be used to improve 

baseline models that rely on enrolment values only, and (2) simple conditional dynamic 

models displayed similar performance to more complex joint models in this situation.
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Chapter 1

Introduction and aims of the thesis

Summary

This chapter provides an overview of dengue, and describes risk factors for severe dengue 

and the current status of prognostic research in dengue. The-chapter concludes by pre­

senting the clinical and statistical aims of this PhD thesis.
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Chapter 1. Introduction and aims of the thesis

1.1 Overview of dengue

1.1.1 Epidemiology

Dengue is one of the most important mosquito-borne viral infections that affects humans 

worldwide (World Health Organization, 2012b). A recent cartographic analysis using a 

compiled database of 8309 geo-located records of dengue incidence occurring from 1960 

to 2012 provided an estimate of 390 (95% credible interval 284-528) million dengue 

infection per year for the global population size of 2010, of which 25% are apparent 

infections (Bhatt et al., 2013). The disease also affects a large geographical area including 

more than 100 countries in the 4 continents Africa, Asia, Americas and Oceania (Bhatt 

et al., 2013) with an on-going spread to previously unaffected areas (La Ruche et al., 

2010;‘Gjenero-Margan et al., 2011; Pun, 2011).

In Vietnam, the first dengue outbreak with virological investigation was in the Mekong 

Delta region in 1963 (Halstead et al., 1965). Nowadays, dengue is highly endemic in Viet­

nam and it is considered as the most frequent cause of fever amongst subjects presenting 

to the public primary health services in southern Vietnam (Phuong et al., 2006). A recent 

estimate of the burden of the disease in this country is 2.6 (95% credible interval 1.9-3.6) 

million of apparent infections and 7.9 (95% credible interval 6.1-10.4) million of inappar- 

ent infections annually (Bhatt et al., 2013). According to the World Health Organization 

(WHO), Vietnam is ranked third amongst the 30 most highly endemic countries/territories 

(after Brazil and Indonesia) (World Health Organization, 2012b).

Dengue can affect susceptible people irrespective of age from infants to the elderly; 

but because of acquired host immunity in endemic countries, it is more prevalent and 

more severe in children. In Vietnam, the disease predominantly affected children from 5 

to 14 years before 1998, but since then, the number of adult cases has increased (Quang 

Ha et al., 2000) which can be explained by the change in age structure of the population 

(Cummings et al., 2009; Cuong et al., 2011).

The disease transmission depends on many factors including host, mosquitoes, viruses 

as well as environment (Guzman and Harris, 2014). In areas where dengue is endemic, 

there is a strong seasonality with peak dengue incidence during the rainy season (Nisalak 

et al., 2003; Cuong et al., 2013), and evidence of spatial dependence within fine and
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intermediate scales (Salje et al., 2012; Cuong et al., 2013). There is also evidence that the 

spatio-temporal transmission of dengue depends heavily on the local human movement 

(Stoddard et al., 2013).

Even though dengue infection is self-limiting in most cases, it is still a potentially 

fatal disease. According to one estimate from 2012, there are hundreds of thousands 

of cases with severe dengue occurring annually, including 20,000 deaths (World Health 

Organization, 2012a). The large case numbers indicate that dengue infection puts a huge 

burden on health care systems, especially in developing countries. A prospective study 

in eight countries in the Americas and Asia estimated the per-patient cost for ambulatory 

and hospitalized cases to be 514 USD and 1394 USD, respectively (Suaya et al., 2009). 

In Vietnam, a recent estimate of the annual health care cost of dengue infection is 30.3 

million USD (Shepard et al., 2013). In Can Tho, a city in Southern Vietnam, the average 

cost for a patient with severe dengue infection was 2,798,000 VND (~ 168 USD) (Tam 

et al., 2012b). w-

1.1.2 Dengue virus

The dengue virus (DENV) is a single-stranded, positive-sense ribonucleic acid (RNA) virus 

and belongs to the genus Flavivirus, family Flaviviridae. Its genome encodes 10 proteins 

including 3 structural proteins (capsid protein C, premembrane protein prM, and envelope 

protein E) and 7 non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). 

Dengue virus might have evolved as an infection of non-human primates thousands years 

ago but now humans are the main host and Aedes mosquitoes (especially Aedes aegypti) 

are the principal vectors (Holmes and Twiddy, 2003).

Currently, there are 4 established virus serotypes (DENV-1, DENV-2, DENV-3, DENV- 

4) that co-circulate in many regions of the world (Messina et al., 2014). Dengue infection 

triggers long-lived serotype-specific immunity and short-lived cross-immunity between 

serotypes (Simmons et al., 2012a). According to the antibody-dependent enhancement 

(ADE) hypothesis, secondary infection with a different virus serotype could result in a 

more severe disease (Halstead and O’Rourke, 1977; Guzman et al., 2013). Within each 

serotype, there are multiple genotypes which may have different structures that may lead 

to different virulence (Leitmeyer et al., 1999). In endemic areas, there is a serotype-
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specific dengue virus circulation with sequential replacement of the dominant serotype 

(Endy, 2002; Nisalak et al., 2003; Vu et al., 2010) which could be explained by the in­

crease in susceptibility to secondary infection of cases with primary infection, the increase 

in transmissibility during secondary infection due to higher viraemia (Recker et al., 2009) 

and other extrinsic factors including changes in vector density, infection rate or environ­

mental temperature (Nisalak et al., 2003).

1.1.3 Clinical manifestations

The typical evolution of dengue disease is characterized by 4 phases: incubation period, 

febrile illness, critical phase and recovery phase (Simmons et al., 2012a; World Health 

Organization, 2009). The incubation period is without clinical features and lasts around

6.5 days (range 2.6-14.2) (Snow et al., 2014). During the febrile illness phase which usu­

ally lasts for 3.2 days (range 0.2-6.8), the most common symptoms are leucopenia and 

rash (Snow et al., 2014). Other non-specific symptoms can occur including headache, 

vomiting, myalgia, and mild haemorrhage (petechiae or bruising). Other laboratory ab­

normalities also occur during this phase including thrombocytopenia and increases in hep­

atic transaminases. Around the day of defervescence (day 4 to day 7 of illness), a small 

proportion of patients progress into the critical phase which is characterized by plasma 

leakage and associated clinical symptoms including pleural effusion, ascites and hypo- 

volaemic shock, and other important laboratory changes such as haemoconcentration and 

hypoproteinaemia. Thrombocytopenia and haemostatic dysfunction are invariably present 

in patients with significant plasma leakage, and may result in severe haemorrhage, primar­

ily from the gastrointestinal tract, exacerbating the overall severity of the infection. Organ 

dysfunction may also occur, usually secondary to profound shock or severe haemorrhage, 

but is sometimes a primary problem, especially in adults (Moxon and Wills, 2008). The 

last phase is the recovery phase, which usually lasts for 48-72 hours, and is characterised 

by the re-absorption of extra-vascular fluid and a general recovery to a normal health sta­

tus. In general, most patients with dengue infection recover completely and only a small 

proportion of cases would die or acquire complications (mostly related to dengue shock 

syndrome (DSS)).
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Chapter 1. Introduction and aims of the thesis

1.1.4 Diagnosis and  classifications 

Dengue diagnostics

As dengue infection has a wide spectrum of manifestations with mostly non-specific symp­

toms, a diagnosis based solely on clinical symptoms is unreliable (World Health Organi­

zation, 2009). Therefore, a number of laboratory tests have been developed to enable 

more accurate and specific dengue diagnosis. In general, these tests either aim to directly 

identify the presence of the virus or its genome/antigens, or use indirect methods which 

identify the presence of the virus indirectly through detecting the presence of antibodies 

that the host produced to eliminate the infection (Peeling et al., 2010).

Direct methods These methods include virus isolation, RNA detection by polymerase 

chain reaction (PCR) assays, and antigen detection (Peeling et al., 2010; World Health Or­

ganization, 2009). These methods are highly specific to dengue infection but can only be 

used in the early phase of disease. Suitable specimens are whole blood, serum, plasma or 

host tissues, but all should be collected before day 5-6 of illness. Amongst them, antigen 

detection using NSl-based assays is the fastest and cheapest method. However, their sen­

sitivity is quite low comparing to their very high specificity, and their diagnostic Accuracy 

may depend on viraemia level and immunity responses (Hang et al., 2009; Tricoii et al., 

2010b; Da Costa et al., 2014; Zhang et al., 2014).

Indirect methods These methods include enzyme-linked immunosorbent assay (ELISA) 

to detect immunoglobulin M (IgM), immunoglobulin G (IgG), and immunoglobulin A 

(IgA) antibodies in whole blood, serum or plasma collected during the late phase of dis­

ease, haemagglutination-inhibition (HI) assay to determine level of antibodies, and the 

plaque reduction neutralization test (PRNT) to assess the level of protective antibodies 

(Peeling et al., 2010). ELISA tests are less specific but cheaper and easier to conduct than 

direct methods and other indirect methods (World Health Organization, 2009).

Differentiation between primary and secondary dengue infection

To differentiate between primary and secondary dengue infections, researchers can rely 

on the HI test, the dengue PRNT and more pragmatic approaches based on IgM and IgG
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capture ELISA. The HI test is problematic for several reasons: it requires paired speci­

mens with at least 7 days in between, yet second specimens are often unavailable; it is 

time-consuming and technically cumbersome as it requires extra procedures to eliminate 

non-specific haemagglutination in samples; it is not specific to dengue as the test is also 

reactive to other flaviviruses (World Health Organization, 2009; Cordeiro et al., 2009; In- 

nis et al., 1989; Kuno et al., 1991; Vaughn et al., 1999; Shu et al., 2003b; De Souza et al., 

2004; Matheus et al., 2005). Similarly, PRNTs are difficult to perform and require consid­

erable time to get results (Cordeiro et al., 2009). Therefore, many research groups have 

used more pragmatic approaches utilizing the ratio between IgM and IgG, or IgG alone 

using just a single specimen. However, results from these approaches require careful in­

terpretation as the level of IgG antibody or the IgM/IgG antibody ratio depend on the test 

that was used and the day of illness when the specimen was obtained.

Dengue classification

Based mainly on studies of dengue in children from Thailand from the 1960s, the WHO 

case classification for dengue infection was first published in 1975 and then updated in 

1986 and 1997 (Bandyopadhyay et al., 2006; Halstead, 2013). This classification differ­

entiates dengue infection into 2 distinct entities: dengue fever (DF) and dengue haemor- 

rhagic fever (DHF) and then sub-categorizes the DHF group further into 4 ordinal grades 

of increasing severity (I, II, III/IV or DSS), based on non-specific signs and the presence 

of haemorrhagic tendency and plasma leakage (World Health Organization, 1997). Over 

the last 30 years, several shortcomings of this classification have been identified including 

difficulties in practically assessing strict criteria for DHF, the low sensitivity in identifying 

severe dengue, the low discrimination ability of certain criteria such as the tourniquet 

test, and an overlap of clinical manifestations between categorizations (Bandyopadhyay 

et al., 2006; Hadinegoro, 2012). Therefore, following a large multi-centre studies which 

re-assessed the utility of the current guideline, a global expert consensus meeting was set 

up in 2009 to propose and then implement a new dengue classification (Alexander et al., 

2011; Horstick et al., 2012). This new classification categorizes dengue into 2 levels of 

severity: dengue with/without warning signs and severe dengue (including severe plasma 

leakage leading to DSS or fluid accumulation with respiratory distress; severe bleeding;
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and severe organ failure), with allowance for the possibility that patients in the former 

group may progress to the latter group (World Health Organization, 2009). This classi­

fication is much simpler than its predecessor and aims is to improve case management 

rather than being purely a research tool (Farrar et al., 2013). While the new system has 

not been without its critics, mainly regarding the non-specificity of warning signs and 

the potential adverse impact on patho-physiological research (Kalayanarooj, 2011; Sriki- 

atkhachom et al., 2011; Halstead, 2013), current evidence from large multi-centre study 

shows that the new classification has a high applicability and is perceived as user-friendly 

(Bamiol et al., 2011). In addition, a large multi-country study is ongoing to assess the 

predictive value of the suggested warning signs for severe dengue (Horstick et al., 2012; 

Jaenisch et al., 2013).

1.1.5 Treatment and Prevention

Currently, there is no specific therapy available for dengue other than supportive care 

(Simmons et al., 2012a). Recent attempts to treat dengue infection using immune modu­

lation (Tam et al., 2012a) and anti-viral therapy (Tricou et al., 2010a; Nguyen et al., 2013; 

Low et al., 2014) did not show clear benefits. However, although disappointing, these tri­

als have provided a structural framework for further clinical trials in this field (Simmons 

et al., 2012b); currently a study of Lovastatin, a drug with both antiviral and endothelial 

stabilizing properties is in progress in Vietnam (Whitehom et al., 2012).

Supportive treatment, especially careful monitoring and appropriate usage of fluid re­

placement are still the basis for successful management (Simmons et al., 2012a; World 

Health Organization, 2012c). All patients with warning signs who are unable to toler­

ate oral fluids should be hospitalized for close observation. Patients with severe dengue 

require emergency treatment including fluid resuscitation for shock and/or blood trans­

fusion for severe bleeding and/or other supportive care and adjuvant therapy (inotropic 

therapy, renal replacement therapy, etc.). Effective fluid resuscitation is very important 

in managing patients with DSS. As the severity of leakage in patients with DSS ranges 

from relatively mild to severe plasma leakage, fluid requirements can range from a small 

prompt initial volume resuscitation to the need for very large volumes of parenteral fluid 

therapy, bolus colloid infusions and/or blood products, together with sophisticated inten­
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sive care management of the complex complications that often accompany severe shock. 

Of note, fluid overload is a significant contributor to morbidity and mortality in these cir­

cumstances, and balancing parenteral fluid therapy at a level just sufficient to maintain 

cardiovascular stability and critical organ perfusion during the phase of vascular leak­

age requires considerable skill and experience. One challenge when considering fluid 

replacement for dengue, especially DSS, is the current controversy regarding the safety 

and efficacy of fluid regimens using hydroxyethyl starch solutions, the only type of colloid 

which is affordable and available in many dengue-endemic countries, in the context that 

there are increasing concerns about the safety of this colloid in patients with severe sepsis 

(Maidand et al., 2011; Myburgh and Mythen, 2013; Huynh et al., 2013).

Regarding prevention, there is still no licensed dengue vaccine available although con­

siderable research efforts have been dedicated to this field since the first attempts more 

than 65 years ago (World Health Organization, 2012d; Coller et al., 2011). Difficulties 

that have hampered the development of vaccines for dengue include the fact there are 

multiple serotypes, the lack of reliable animal models and the potential to induce an im­

mune response which could lead to severe dengue after vaccination (Coller et al., 2011). 

However, advances in basic science have led to significant progress in the last decade with 

at least 5 vaccines in the clinical development stage and several others in preclinical stages 

(Coller et al., 2011). Recent publications regarding the most advanced dengue vaccine, 

the live-attenuated tetravalent dengue vaccine developed by Sanofi Pasteur, indicate that 

the vaccine has a good safety profile and significant efficacy. Two large-scale randomized, 

observer-blind, controlled multi-center phase III trials have reported relative risk reduc­

tions for symptomatic infection between months 13 and 25 after the first vaccine injection 

of 56% in more than 10,000 volunteers in Asia and 61% in more than 20,000 volunteers 

in Latin America (Capeding et al., 2014; Villar et al., 2014), although the findings from 

the initial phase lib trial were not very convincing (Sabchareon et al., 2012). Even though 

these results are promising, there are still open questions regarding the longer term ef­

fects of the vaccine on the risk of severe dengue, the heterogeneity in serotype-specific 

efficacy, and the lack of efficacy in cases naive to dengue that need to be addressed before 

introducing this vaccine into national vaccination programs (Wilder-Smith, 2014).
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1.2 Factors associated with severe dengue

The outcome of dengue in an individual appears to be determined by a complex interplay 

of viral and human factors. This section describes a number of factors which have been 

presented in the literature (see reviews by Pawitan (2011); Yacoub et al. (2013); White- 

horn and Simmons (2011); Srikiatkhachorn and Green (2010); Huy et al. (2013b)), and 

are considered to play an important role.

1.2.1 Viral determinants

Viral factors which may be associated with dengue severity include viral load and viral 

serotype (Vaughn et al., 2000), with DENV-2 and DENV-3 possibly associated with severe 

dengue (Endy, 2002; Nisalak et al., 2003), although severe disease has been reported 

with all four serotypes. There is also some evidence that virus genotypes within the same 

serotype might have different virulence (Rico-Hesse et al., 1997).

1.2.2 Host determinants 

Epidemiological factors

' • Gender: results from epidemiological research in Asian countries suggests that amongst 

hospitalized dengue patients, females are more likely to develop DSS or die (Huy 

et al., 2013b). Possible explanations include a discrepancy in the healthcare-seeking 

behavior between genders in Asian countries or a greater susceptibility to capillary 

leakage in females (Anders et al., 2011).

• Age: patients at the extremes of age (young children and the elderly) have a higher 

risk of DSS and mortality (Anders et al., 2011). The greater risk of severe dengue in 

children may be explained by the higher intrinsic permeability of vascular endothe­

lium in the young (Gamble et al., 2000).

• Comorbidity: patients with pre-existing conditions who may have underlying mi- 

crovascular damage such as diabetes mellitus, hypertension and renal failure seem 

to have higher risk of severe dengue (Pang et al., 2012; Figueiredo et al., 2010; Kuo 

et al., 2008).
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Clinical signs and symptoms

• Clinical signs and symptoms that are associated with severe dengue include pleu­

ral effusion, ascites, abdominal tenderness, hepatomegaly, lethargy, gastrointestinal 

bleeding, vomiting (Branco et al., 2014; Wichmann et al., 2004; Gupta et al., 2011). 

These associations could be explained by the relationship of these signs with plasma 

leakage, haemostatic dysfunction and damage in systemic organs.

• Laboratory findings which are often observed in dengue, and which tend to be 

increasingly abnormal with increasing disease severity, include thrombocytopenia 

(decreased level of platelet count (PLT)), haemoconcentration (increased level of 

haematocrit (HCT)), coagulation derangements, and increased hepatic transami­

nases (Chuansumrit et al., 2010; Tantracheewathom and Tantracheewathom, 2007; 

Wichmann et al., 2004; Tee et al., 2009; Almas et al., 2010). Disturbance of these 

laboratory tests in severe dengue have been attributed to excessive plasma leakage 

in combination with the overproduction of cytokines. Recent evidence also sug­

gests that platelet activation could contribute to the elevated vascular permeability 

in dengue infection through the releasing of IL-1/3 (Hottz et al., 2013).

Host humoral immune response

• The effect of the host’s humoral immune response on severity of disease is demon­

strated by the positive relationship between secondary infection with a heterotypic 

serotype and severe disease (Sangkawibha et al., 1984; Chau et al., 2008; Halstead 

et al., 1970; Kliks et al., 1988). The classical explanation for this relationship is the 

ADE, a theory which suggests that non-neutralising antibodies, elicited in response 

to the previously encountered serotype, contribute to an increase in virus-infected 

cells during the current infection (Halstead and O’Rourke, 1977).

Host cell-mediated immune response

• The magnitude of the T-cell response influences severity of disease due to the exces­

sive production of pro-inflammatory cytokines during T-cell activation (Duangchinda 

et al., 2010; Mongkolsapaya et al., 2003). In addition, high concentrations of several
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cytokines including TNF-a, IL-1, IL-6, IL-10 and chemokines produced by dengue- 

infected cells might also be associated with severe dengue (Butthep et al., 2012; 

Appanna et al., 2012).

Host genetics

• Patients with African ancestry may have a lower risk for severe dengue (Sierra et al., 

2007). Furthermore, several genes related to disease susceptability have been identi­

fied including MICB, PLCE1 (Khor et al., 2011), and other genes encoding a number 

of blood antigens and immune effector cells (Sakuntabhai et al., 2005; Vejbaesya 

et al., 2009).

1.3 Prognostic models in dengue

1.3.1 Introduction to prognostic models 

Prediction/prognosis in clinical medicine

In daily clinical practice, one of the main tasks of clinicians is to investigate and develop 

three main areas of knowledge related to the patient’s illness: diagnosis (whether a par­

ticular illness is present), aetiology (what is the cause of the present illness) and prognosis 

(what is the likely future course of the present illness) (Miettinen, 2011). Based on this, 

clinicians can suggest a suitable intervention or management plan for the patient under 

investigation. Therefore, making prognostic assessments is a natural and familiar task that 

clinicians have to do every day.

As prediction is a fundamental component of medical decision-making, it has an im­

portant role in clinical practice. However, it is also a generally difficult task because 

unlike diagnosis or etiognosis, prognosis requires extrapolation to the future based on the 

present knowledge about a patient’s disease status and characteristics. As the future is 

uncertain, predictions need to rely on many assumptions and making a good prediction is 

an extremely difficult task.

In general, the prediction making process may come with pitfalls including its subjec­

tivity, proneness to errors, and inconsistencies (Meehl, 1954; Dawes et al., 1989; Grove

23



Chapter 1. Introduction and aims of the thesis

et al., 2000; Sox et al., 2013). Common pitfalls when estimating probability using only 

personal experience are:

• Focusing on the presence or absence of predictors but ignoring the prior probability 

of the outcome.

• Basing predictions on the presence of predictors with low predictive ability or a set 

of predictors which do not independently affect outcome.

• Personal experience, especially for clinicians in their early careers, is typically a small 

and unrepresentative sample of the overall population.

• Reliance on a false belief in the relationship between candidate predictors and out­

come, as it is difficult to differentiate invalid relationships from valid ones theoreti­

cally.

• A tendency to be over-confident and overstate subjective certainty.

As a result, deriving precise and unbiased predictions from personal experience alone 

is beyond the cognitive ability of almost everyone (Sox et al., 2013). Therefore, additional 

knowledge, especially that deriving from an objective source like empirical research, is 

needed. Such knowledge includes published reports describing the incidence of outcomes 

amongst patients having a common set of clinical features and clinical prediction models. 

Compared to personal experience, they provide more objective and more comprehensive 

information, especially for rare outcomes. However, their utility and validity can vary 

widely depending on the quality of the clinical studies and the similarities between the 

research population and the population of interest. Amongst these objective sources of 

knowledge, clinical prediction models are recognized as powerful tools to derive pre­

diction. Besides their ability to process and produce complex information that may go 

beyond human mental ability, clinical prediction models provide consistent estimates and 

have been shown to outperform personal judgement in many situations (Dawes et al., 

1989; Grove et al., 2000). Caveats in applying clinical prediction model are related to 

their potential to over-fit the data when they are not developed or tested properly and 

their potential to miss predictors which are relevant but difficult to evaluate in clinical
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research. For more information on what prognostic models are and how they are derived 

I refer to the following sections and Chapter 2.

Based on these rationales, a better model for estimating the risk of the occurrence 

of a certain outcome in clinical practice requires both published evidence and personal 

experience. In addition, further adjustments to risk estimation may be required due to 

differences between the population of interest and the reference population, or due to the 

presence of extraordinary clinical features in the patient that the physician has never seen 

and which have not been reported anywhere (Sox et al., 2013).

What are prognostic models?

A prognostic model is a formal combination rule of multiple predictors from which a 

subject’s absolute risk of the occurrence of a disease event of interest can be calculated 

(Steyerberg et al., 2013). Prognostic modeling is an important part of prognostic research 

which aims to understand and improve future outcomes in subjects with a given health 

state (Hemingway et al., 2013). Developing a prognostic model is the third step of a 4- 

step paradigm for prognostic research which includes (1) investigating the variation of 

outcomes of a health condition in the context of current care (fundamental prognostic 

research); (2) identifying risk factors which are related to outcomes (prognostic factor 

research); (3) developing, validating and assessing the impact of prediction models that 

predict an individual’s risk of a future event (prognostic model research); (4) using prog­

nostic information to help individualize treatment decisions for a subject or group of sub­

jects that share similar characteristics (stratified medicine research) (Hemingway et al., 

2013).

A typical prediction model has three main ingredients: an outcome, candidate predic­

tors, and a statistical model. An outcome can be a hard endpoint such as death or the 

presence of clinical complication, or a surrogate endpoint such as a biomarker of severity, 

or a composite endpoint. Candidate predictors typically include demographic variables 

such as age and gender as well as clinical symptoms or biomarkers which are relevant 

to outcome prediction based on clinical knowledge. As prognosis is aimed at the future, 

predictors have to be collected at a starting point or baseline which is before the outcome 

occurs and the length of the lag period between the starting point and the outcome oc­
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currence affects largely the usefulness of the derived prediction model. The relationship 

between outcome and predictors is modeled using a statistical model and the choice of 

this model depends on the type of outcome. As clinical outcomes are usually binary or 

survival data, the most common statistical models of choice are logistic regression and the 

Cox proportional hazards model, but many other statistical models have been suggested in 

the literature (Steyerberg, 2010; Hastie et al., 2009). As a general rule, these three main 

components have to be pre-specified before fitting any model in order to avoid over-fitting 

and therefore to preserve the validity of the derived model.

Prediction models are different from decision rules. The inputs to a prediction model 

are values of prognostic factors at a pre-defined time point and the output is an estimated 

risk of a specific outcome. Even though one may categorize estimated risks and assign 

suggested actions to each risk category, a typical prediction model only provides a predic­

tion of a risk as it is intended to assist clinicians without suggesting to them what to do 

(Reilly and Evans, 2006). In contrast, a decision rule is designed to directly affect clinical 

decisions by physicians. As accurate predictions do not always improve clinical decisions, 

a promising prediction model has to demonstrate its positive impact on physicians’ de­

cisions and patients’ outcomes through different levels of impact analysis in order to be 

successfully translated into a useful clinical decision rule (Reilly and Evans, 2006).

As described in the previous section, the major advantage of prediction models in 

clinical practice is their ability to provide objective, reproducible and reliable estimation 

of outcome occurrence. Due to their transparency, prediction models can also enhance 

communication between physicians and patients (Steyerberg et al., 2013). Moreover, in 

clinical research prediction models can be used in the design stage to target a population 

of interest, and in the analysis stage to perform stratified analysis according to predicted 

risk groups or to improve the power of statistical analyses (Steyerberg et al., 2013).

Baseline versus dynamic prediction models

Traditionally, a prediction models relies on data collected at a single time point (at the time 

of presentation, admission, diagnosis or initiation of an intervention) to predict outcomes 

in the future. Even though many of these traditional prediction models are useful in 

clinical practice, they have several shortcomings:
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• Initial predictions tend to become less relevant as the disease progresses (Rue et al., 

2001). A possible explanation is that a prediction model based on baseline informa­

tion only cannot capture changes in the patient’s clinical profile according to their 

response to treatment or natural physiologic variation reflecting the course of the 

disease, which may be strong predictors of the outcome (Rue et al., 2001). Fur­

thermore, baseline models might also miss complications, which may strongly affect 

outcome, while being present at baseline but require time to become clinically appar­

ent (Lemeshow et al., 1988). As a result, baseline models might not be transferable 

to later time points and therefore, they may not be used for individual management 

decisions at those time points (Lemeshow et al., 1994; Wagner et al., 1994) .

• Longitudinal information during the patient’s disease course is nowadays frequently 

collected in clinical practice, especially with the introduction of electronic health 

record. Baseline models are inefficient in the sense that they ignore all this post­

baseline information.

For these reasons, dynamic prediction models, which predict the future course of the 

disease at follow-up time points based on the accruing longitudinal information, are re­

quired to allow updating a patients’ prognosis over time (Van Houwelingen and Putter, 

2012). By using all available data, such models may provide much more accurate predic­

tions compared to baseline models in many settings (Lemeshow et al., 1988; Christensen 

et al., 1993; Hughes et al., 1992; Rue et al., 2001; Karp et al., 2004). Dynamic prediction 

may also be appealing for clinicians as it mimics the iteration of obtaining information 

and updating prognosis based on the new information, a task that physicians routinely do 

every day in clinical practice.

1.3.2 Prediction models in dengue

As described in the previous sections, there is still no specific treatment for dengue and 

case management relies mainly on supportive treatment. Therefore, improving outcomes 

in patients with dengue depends in part on effective triage to identify patients who are 

likely to progress to more severe disease at an early stage, and reliable prediction models 

could facilitate this. As a first step, exploring the current status of prognostic research in
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the dengue field should provide useful information to justify and tailor the specific needs 

for developing prediction models in dengue.

Literature Review

A PubMed search for prediction models in dengue on 10 September 2014 yielded 263 

articles amongst which 17 original articles described actual prediction models (Table 1.1). 

These studies were published from 2005 to 2013 (Ibrahim et al., 2005; Iskandar et al., 

2008; Lee et al., 2008; Tanner et al., 2008; Lee et al., 2009; Gomes et al., 2010; Ibrahim 

et al., 2010; Potts et al., 2010a,b; Thein et al., 2011; Brasier et al., 2012b,a; Faisal et al., 

2012; Dewi and Nurfitri, 2012; Ju and Brasier, 2013; Pongpan et al., 2013; Huy et al., 

2013b).

Most of these studies utilized prospective data (13/17) whereas the remaining 4 either 

used retrospective data (3 studies) or did not clearly specify the type of design (1 study). 

Most of them were conducted in South-East Asia (13/17) while 4 were from Latin Amer­

ica. The studies included only children (6/17), only adults (4/17), children and adults 

(5/17), or the age of participants was not specified (2/17). Patients were enrolled from 

hospitals (12/15) or community clinics (3/15), and most studies only included subjects 

with laboratory-confirmed dengue (15/17). The majority of studies focused on predicting 

severe outcomes in patients with dengue infection (14/17) whereas 3/17 studies aimed to 

predict severe outcome in patients with DSS. Amongst the 3 studies in patients with DSS, 2 

studies aimed to demonstrate the applicability of established general severity scores from 

intensive care medicine (PELOD, PRISM) to patients with DSS, while only 1 study aimed 

to develop a novel prediction model for severe outcome in patients with DSS.

Regarding clinical outcomes, 2 studies defined multiple endpoints whereas all others 

only used a single endpoint. Amongst patients with dengue infection, severe outcomes 

were defined as DHF, DSS, or DHF plus other severity criteria concerning pleural effusion 

or specific laboratory values (PLT, HCT, aspartate aminotransferase (AST)). Two studies 

also used PLT counts on day 5 to 7 of illness, and the day of defervescence, as surro­

gate markers for severity in these patients. Amongst patients with DSS, severe outcomes 

included mortality and recurrent shock.

Most studies used a large number of candidate predictors, ranging from general demo-
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graphical factors to clinical symptoms, signs and common laboratory tests. More advanced 

and complicated factors that were occasionally included were proteomic or gene expres­

sions profiles and bioelectrical impedance measurements. In two studies, well-known 

severity scores to predict mortality in children in critical care units were directly assessed. 

In most studies, values for the candidate predictors were collected at the time of presen­

tation. In 3 studies, repeated measurements of predictors were also included; however, 

data from these repeated measures were simply pooled without taking into account the 

dependence of measurements from the same subject. To estimate the effect of candidate 

predictors on outcome, these studies had sample sizes varying from less than 100 patients 

(6/17) to 100-1000 patients (5/17) and 1000-2000 patients (6/17). The effective sample 

size, or the number of subjects experiencing the events of interest, also fluctuated widely 

from 5 to 228 patients. In particular, the effective sample sizes for the studies aiming to 

predict development of DSS amongst patients with dengue were quite low (from 37 to 90 

observed DSS cases).

Logistic regression modeling was the most common statistical model used to derived 

these prediction models (5/14 studies). Other statistical methods were classification and 

regression trees (CART), artificial neural network (ANN), support vector machine (SVM) 

and multivariate adaptive regression splines (MARS). Three studies also compared the 

performance of different statistical modeling approaches as part of their model develop­

ment.

Three of the 17 studies aimed to externally validate previously derived prediction mod­

els. Amongst the others, only one prediction model was validated externally using an in­

dependent dataset, 6 were validated internally using cross-validation and sample-splitting 

methods, and 7 were evaluated in the original dataset without any adjustment. Methods 

for dealing with missing data was described in only 5 studies, while only 1 study reported 

an assessment of the plausibility of modeling assumptions.
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Summary

The above review of the prediction modeling in dengue shows that although the topic 

is increasingly attracting attention, most of developed models have certain limitations. 

Several important areas to be addressed are as follows:

• Modeling strategy: the current models were developed using a variety of different 

modeling strategies, but many of them failed to take into account the importance of 

missing values, modeling assumptions or variable selection. Furthermore, the risk of 

over-fitting was not addressed properly as many studies still assessed performance 

of the derived model using the original data.

• Study population: most studies focused on predicting severe outcomes in patients 

with dengue, and used relatively small datasets. There were only 3 studies that 

looked at outcomes in patients presenting with established DSS.

• Clinical outcomes: there are currently no standardized clinical outcomes in dengue; 

therefore, endpoints vary considerably between studies and formal comparisons are 

difficult. Amongst patients with dengue, the most common outcome was devel­

opment of DHF; however, over a number of years increasing concerns have been 

raised regarding the complexity and usefulness of the DF/DHF classification system, 

in particular the requirement for four specific criteria to support a diagnosis of DHF 

such that some patients with clinically severe disease are categorized inappropri­

ately. Amongst patients with DSS, identified outcomes were mortality and recurrent 

shock; however, in the absence of a comprehensive description of patients with DSS 

or the frequency of relevant outcomes, it is hard to decide which would be most 

relevant for a reliable prediction model.

• Utilization of repeated measurement: most of the prediction models developed to 

date used only baseline information for the candidate predictors. Three studies 

included repeated measurement but failed to take into account the dependency be­

tween measurements on the same subject. As repeated measures, e.g. changes in 

HCT or PLT, might carry important information on a subject’s prognosis, there is a 

need to develop dynamic prognostic models which exploit this and, where necessary,
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to develop the required statistical methodology to achieve this goal.

1.4 Aims of the thesis

In the context of the limitations of current prognosis research in dengue and with the 

availability of an extensive resource of more than 4000 well-characterized patients en­

tered into various dengue studies over the last 10 years at OUCRU, in this PhD project I 

have set out to develop robust prediction tools for use in clinical practice, and to improve 

methodology in building dynamic prediction models which incorporate longitudinal in­

formation in the acute disease setting. Specifically, the aims of this work can be broadly 

separated into two main areas - clinical, and statistical.

The clinical aims of my PhD thesis are:

1. To describe the clinical and laboratory features of DSS in children,

2. To develop prognostic models for severe outcome amongst children with DSS, using 

baseline information obtained at the time of development of shock,

3. To develop prognostic models for progression to DSS in children hospitalized with 

dengue using both baseline and longitudinal information.

The statistical aim is to adapt and compare available methods for developing and 

assessing dynamic prognostic models using the datasets utilized to achieve the clinical 

aims.

Based on these aims, the thesis is structured as follows:

• Chapter 2 describes the clinical datasets, study procedures and common analytic 

methods used in this thesis (descriptive analysis, treatment of missing values, build­

ing blocks of prediction model development using baseline information only),

• Chapter 3 describes the characteristics at presentation with shock, and the clinical 

evolution during hospitalization, of over 1700 children with DSS,

• Chapter 4 assesses risk factors for severe outcome amongst children with DSS and 

presents a prognostic model for severe outcome using baseline information only,
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• Chapter 5 assesses risk factors for DSS development amongst children hospitalized 

with dengue and presents a prognostic model for DSS using baseline information 

only,

• Chapter 6 describes the current knowledge about dynamic prediction models, im­

plications of differences between acute and chronic diseases on dynamic prediction 

modelling, and compares methodology to develop and evaluate such models, using 

dengue as a case study,

• Chapter 7 summarizes the conclusions from this thesis and suggests a number of 

avenues for future research in this field.

1.5 Appendix

Search term for the literature review of prognostic models in dengue (((“dengue 

hemorrhagic fever”[MeSH Terms] OR “dengue shock syndrome”[Text Word]) OR “dengue 

shock”[All Fields]) OR (severe[All Fields] AND (“dengue”[MeSH Terms] OR “dengue”[All 

Fields]))) AND ((“Decision Support Techniques”[Mesh] OR “Bayes Theorem”[Mesh] OR 

“Prognosis”[Mesh] OR “Forecasting”[Mesh]) OR “Risk Factors”[Mesh]).
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Chapter 2

Materials and common analytical 

methods

Summary

This chapter describes the datasets used in this PhD project, together with detailed in­

formation regarding data collection and laboratory diagnostics. In addition, this chapter 

specifies common analytical methods used in the subsequent chapters, including descrip­

tive analyses, treatment of missing values and the chosen strategy to develop prognostic 

models using baseline information.
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2.1 Materials

In this PhD project I utilized data from two large paediatric cohorts (with study codes 

DF and MD) to describe clinical features of the corresponding populations of children 

with dengue, to develop prognostic models for severe outcomes, and to illustrate the 

development of dynamic prognostic models for acute diseases.

2.1.1 Study populations 

DF cohort

This prospective cohort was enrolled at the paediatric intensive care unit (PICU) of the 

Hospital for Tropical Diseases (HTD) in Ho Chi Minh City, Vietnam, from 1999 and 2009. 

The participants comprised children below 15 years of age admitted to the PICU with a 

clinical diagnosis of DSS. To limit the effect of treatment before admission on outcome, 

patients transferred from other facilities for tertiary care (after initial shock resuscitation) 

were not included. However patients transferred from other wards at HTD after devel­

opment of DSS, some of whom had received some maintenance fluid therapy during the 

febrile phase, were eligible for enrolment. ^ ,

From 1999 to 2009, 1810 children with DSS were enrolled in this cohort. For each 

patient, information on baseline characteristics at enrolment (collected within 2 hours 

of presentation with DSS), detailed information on treatment during hospitalization, and 

clinical outcomes at discharge were collected. Daily PLT were measured and HCT assess­

ments were repeated every 2 to 12 hours with the exact schedule depending on the clinical 

status of the patient.

During the first 6 years of the study (1999 to 2004), 503 patients in this cohort were 

also recruited into a nested randomised controlled trial (RCT) which compared different 

fluid types for initial resuscitation in children with DSS (Wills et al., 2005). All patients 

enrolled during 1999-2002 were recruited into this trial; however, a number of patients 

were not included in the RCT during 2003-2004 as the trial was temporary stopped due 

to safety reasons.
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MD cohort

This prospective cohort was recruited at HTD between 2001 and 2009. Participants com­

prised children aged between 5 and 15 years admitted to the dengue ward with a clinical 

suspicion of dengue. In total, 3040 patients were enrolled into this study. The available 

data included baseline information at enrolment, treatment given, and clinical outcomes 

at discharge, as well as daily HCT and PLT values.

2.1.2 Study procedures and data collection

In both cohorts, trained study doctors obtained written informed consent from a parent 

or guardian (after giving verbal and written explanations), and then enrolled the children 

into the study. At enrolment, baseline information including demographic characteristics, 

clinical history, and examination findings were collected using a structured case report 

form (CRF). During hospitalization, all patients were followed daily and information on 

therapeutic interventions and supportive care, especially on fluid usage and major clinical 

events, were recorded by study doctors. At discharge, study records were reviewed and 

each patient was assigned a final diagnosis and clinical disease category based on WHO 

and local clinical guidelines (World Health Organization, 1997). All patients were asked 

to return for follow-up assessments at one month, and again at two months if there were 

any ongoing concerns. In the DF cohort, the original study CRF contained only limited 

information on fluid interventions. Therefore I designed an additional short CRF to collect 

more detailed information on fluid usage, and worked with two study nurses to extract 

relevant data from the hospital files and other source documents.

For all patients, 5 ml venous blood samples were obtained on the day of enrolment, the 

day of discharge or defervescence, and at the follow up visits. These blood specimens were 

used to perform dengue serology and reverse transcriptase polymerase chain reaction (RT- 

PCR) tests. In addition, 1 ml finger prick blood samples were obtained daily (in MD) or at 

varying intervals from 2-12 hourly (in DF) as part of standard care for dengue patients at 

HTD. These blood samples were used to measure HCT levels and PLT counts of the patient 

at that time point.

During the study period, patients were managed following the treatment guidelines
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of HTD and supervised by a group of senior clinicians which remained stable during the 

whole study period. In the DF cohort, initial treatment in the first two hours after pre­

sentation with compensated shock (for patients not enrolled in the RCT) was 25 ml/kg of 

Ringer’s Lactate fluid, or the same volume of a colloid solution (6% dextran or starch) for 

patients presenting with decompensated/hypotensive shock. Subsequently, a standard­

ized schedule of Ringer’s Lactate was used, involving staged reductions at specific time 

intervals, aiming for maintenance fluid therapy after eight hours. Patients in the RCT 

were randomized to receive one of three possible intravenous fluid solutions at a rate of 

25 ml/kg over 2 hours for initial volume resuscitation, but subsequent management, study 

procedures and data collection were otherwise similar to other patients in the cohort. Pa­

tients whose cardiovascular status failed to stabilize within the first two hours or who 

deteriorated during the mandatory 36-48 hour period of close observation received 10-15 

ml/kg infusions of rescue colloid plus inotropes, blood products or other therapies at the 

discretion of the treating clinician.

Both cohorts were approved by the HTD ethical committee and the Oxford Tropical 

Research Ethics Committee.

•:r~: \
2.1.3 Laboratory diagnostics

In this project, two sets of laboratory diagnostics were performed: (1) to confirm the 

dengue diagnosis, and (2) to differentiate primary and secondary dengue infections. Only 

patients with laboratory-confirmed dengue were included in the main analyses.

Determination of dengue diagnosis

A laboratory-confirmed case was defined by detection of DENV RNA in plasma (PCR), 

or by seroconversion on the capture ELISA (ELISA). In the DF study, patients with ele­

vated dengue-specific IgM at onset of shock were also considered as confirmed dengue 

cases provided the overall clinical picture was consistent with DSS. Cases were defined as 

dengue-negative if the enrolment RT-PCR and paired serology specimens were all nega­

tive.
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ELISA Dengue IgM and IgG capture ELISAs were performed on paired enrolment and 

early convalescent specimens. During the study period the diagnostic laboratory used a 

number of different serological tests, following the manufacturer’s instructions for com­

mercial kits (Dengue Duo IgM and IgG Capture ELISA, PanBio, Australia), or established 

standard operating procedures for in-house methods (Cardosa et al., 2002).

Cross reactivity with flaviviruses that co-circulate in the region may influence the re­

sults of IgG serology in particular in Vietnam, Japanese encephalitis (JE) virus is known 

to circulate and to cause sporadic cases of meningo-encephalitis. However, although an 

inactivated JE vaccine was introduced in 1997 for use in high-risk areas, southern Viet­

nam is not considered to be high-risk and JE vaccination is not part of the local Expanded 

Program of Immunization. Vaccination became available privately in Ho Chi Minh City 

from around 2005-2006 onwards but uptake remains sporadic. Although the specific 

sero-diagnostic tests performed did not assess cross-reactivity for JE virus, due to the low 

vaccine coverage locally it is unlikely that JE vaccination affected the identification of sec­

ondary dengue cases in this study. Symptomatic disease caused by JE virus is primarily 

neurological and unlikely to mimic dengue infection. None of the patients in either cohort 

had a past history of serious neurological disease, but it is possible that recent asymp­

tomatic or pauci-symptomatic JE virus infection influenced the serological responses we 

documented, although the number of cases affected is likely to be small.

PCR RT-PCR was performed on the enrolment specimen using established methodology 

(Lanciotti et al., 1992; Shu et al., 2003a).

Determination of primary/secondary dengue infection

As described in Chapter 1, serological definitions for primary versus secondary infections 

commonly rely on the ratio of IgM/IgG, but may give varying results depending on the 

test used and the day of illness when the specimen is obtained. Given that a number of 

different sero-diagnostic tests were employed during the 10-year study-period serologic 

classification of dengue infection was determined using the following simple definitions:

• Primary infection: if the patient had two negative dengue-specific IgG results pro­

vided that the second sample was obtained during the second week of illness.
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• Secondary infection: if there was at least one positive dengue-specific IgG on or 

before day 7 of illness.

• Possible primary infection: if the patient only had single negative dengue-specific 

IgG, either in the first or the second week of illness.

• Unclassifiable: all other patients, the primary reason for being ‘unclassifiable’ was 

the availability of a single specimen or late convalescent specimens only.

Of note, as the level of dengue-specific IgG increases over time during dengue in­

fection, there would be a high chance that a patient with primary dengue infection has 

positive IgG result in the late course of illness (i.e. day 6, day 7 of illness). Therefore, this 

simple classification is expected to provide a relative accurate detection of primary dengue 

infection, but a less precise detection of secondary cases.

2.1.4 Data cleaning and checking

A team of experienced physicians and I were responsible for checking and cleaning the 

study databases. This procedure involved two steps: checking individual CRFs and check­

ing the aggregated databases. In the first step, I and other physicians examined all written 

CRFs to check the consistency and accuracy between written CRFs and the electronic 

databases. In the second step, I checked the whole database to find outliers or implausible 

values and then traced them back to the written CRF for cross-checking if necessary. All 

corrections were documented in both the written CRFs and the electronic databases.

2.2 Common analytical methods

2.2.1 Descriptive analysis

The distribution of variables was described by numbers and/or graphs. Numerical sum­

maries were median and the corresponding interquartile range (IQR) for continuous vari­

ables, or frequency and percentage for categorical variables. Graphical displays included 

histogram for continuous variables, and bar plots for categorical variables. The evolu­

tion of longitudinal data over time was visualized using plots of patient profiles over time 

together with a scatter-plot smoother based on local regression (Diggle et al., 2002).
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2.2.2 Treatment of missing values

The extend of missing data was assessed for all pre-defined candidate predictors. The 

amount of missing values were summarized in terms of the frequency (%) of missing 

values per variable, the range of the total number of missing values per individual, and the 

frequency and fraction of incomplete cases (individuals with at least one missing value). 

To assess the plausibility of the missing completely at random (MCAR) assumption, I also 

investigated the relationship between indicators of missingness in a certain variable and 

the observed values of other covariates using multivariable logistic regression (Steyerberg, 

2010).

To deal with missing values, common approaches are complete-case analysis, single 

imputation and multiple imputation. The decision regarding the method of choice de­

pends largely on the suspected missingness mechanism and the amount of missing values 

in a specific situation (Steyerberg, 2010). A simple rule of thumb proposed by Harrell 

suggests using complete-case analysis or single imputation when the fraction of incom­

plete cases is less than 5%, single imputation or multiple imputation when the fraction of 

incomplete cases ranges from 5% to 15%, and multiple imputation when the quantity is 

larger than 15% (Harrell, 2001).

In the DF cohort, I decided to use a single imputation as the fraction of incomplete 

cases was low (4%, details are presented in Chapter 4). Specifically, missing values were 

imputed with the median of non-missing values for continuous variables, or the most 

frequent category for categorical variables. However, univariate analyses were still based 

on complete-case analyses.

In the MD cohort, the fraction of incomplete cases was higher (7%) and there was 

also evidence that the missingness of certain variables depended on observed values of 

other covariates, which implies that the MCAR assumption might be violated (details are 

presented in Chapter 5). Therefore, multiple imputation was chosen to deal with missing 

data.

Specifically, I used multivariate imputation by chained equations (MICE) as imple­

mented in the R package mice version 2.22 (Van Buuren and Groothuis-Oudshoom, 2011), 

to generate multiple imputed data sets based on a set of imputation models (each variable
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with missing values has one imputation model). MICE is an iterative procedure and in 

the first step, all missing values were imputed by values randomly chosen from observed 

values. For the first variable with missing values, the parameters of its imputation model 

were then estimated based on individuals with non-missing values for that variable and 

then the models’ posterior predictive distribution was used to draw imputed values for 

missing data. In an iterative fashion, this procedure was repeated for all variables in a 

pre-defined order and many iterations were performed to create a single imputed dataset 

in order to stabilize the result. The quality of the whole imputation process was then as­

sessed by examining variances within and between parallel imputation streams, and the 

distribution of imputed values (Van Buuren and Groothuis-Oudshoom, 2011).

For the MD data, the chosen imputation models were predictive mean matching for 

continuous variables, logistic regression for binary variables and multinomial regression 

for categorical variables with more than 2 classes (Van Buuren and Groothuis-Oudshoom, 

2011). The advantage of predictive mean matching is that imputed values match actually 

Observed data which might be more appropriate than regression imputation if the nor­

mality assumption is violated. As recommended, these models included outcomes and 

all candidate predictors (with only linear terms for continuous covariates and no interac­

tion terms) (White et al., 2011). The visit order of the variables in each iteration cycle 

was according to their (increasing) number of missing values. In total twenty imputed 

datasets were created and 50 cycles per dataset were performed. Of notes, this exceeds 

the minimum required numbers of imputed datasets and repeated cycles according to 

current recommendation which are 7 (the percentage of incomplete cases) and 10-20, 

respectively (White et al., 2011).

These imputed datasets were used throughout the whole analyses except for univariate 

analyses which were based on complete-case analyses. Estimates and asymptotic covari­

ance matrices (and associated Wald-type tests) were combined across multiple imputed 

datasets using Rubin’s rule and likelihood ratio tests for multiple imputed datasets were 

calculated using the method of Meng and Rubin (Meng and Rubin, 1992; White et al., 

2011). As recommended, I also performed complete-case analyses (in all steps) and ex­

amined differences between results (Sterne et al., 2009).
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2.2.3 Strategy to develop prediction models using baseline information

In this project, all prediction models using baseline covariates were developed following 

current standard methodology and recommendations (Harrell, 2001; Steyerberg, 2010).

Clinical outcomes and candidate predictors

Depending on the specific context of each study, clinical outcomes and candidate predic­

tors were pre-defined based on clinical knowledge and prior to any analysis. All values 

of candidate predictors were obtained at baseline. All cases in whom the outcome had 

already occurred at or prior to the baseline assessment were removed from the prediction 

model development.

Statistical models of choice

The primary outcomes in both cohorts were binary: severe DSS (yes/no) in the DF cohort, 

and DSS (yes/no) for MD. Hence, the logistic regression model was the statistical model 

of choice. In the MD data set, the time point of the occurrence of DSS was also recorded; 

therefore, in theory, time to DSS occurrence could also be used as an outcome and a 

survival model could be applied to develop a prognostic model. However, using time to 

event as an outcome requires a meaningful time origin. In this setting, two time origins 

could be used including the time point of enrolment and the time point of disease onset. 

As the former time point is quite arbitrary, it is less meaningful than the time point of 

disease onset. However, using the time of disease onset as the time origin posed two 

problems. First, subjects only came under observation at the time of enrolment and hence, 

the dataset contains possibly informative left-truncation. Second, several of the selected 

candidate predictors are in principle time-varying but for the majority of them their values 

were only recorded at a single time point, i.e. the time of enrolment. Thus, in order to 

keep the analysis simple and transparent, I decided to use the logistic regression model as 

the main statistical model for the analysis of MD data.

However, the validity of the logistic regression models is based on the assumptions of 

linearity and additivity of covariate effects while these assumptions are relaxed in several 

modem approaches. In addition, some of the more modem approaches are also less
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prone to over-fitting. Therefore, I also applied modem statistical models including the 

lasso, generalized additive models (GAM), classification and regression trees (GART), and 

gradient boosting with trees as base learners (Hastie et al., 2009) and compared their 

performances to the main logistic models in order to detect any defects in the latter.

Model specification

For simplicity, the initial prediction model included all candidate predictors as linear and 

additive terms. These assumptions were subsequently assessed based on a pre-defined 

maximum amount of flexibility (“degrees of freedom”) allowed for each continuous vari­

ables and pre-defined interaction tests. These pre-specifications depended on clinical 

judgement, expected associations from the literature, and the number of effective events 

in the data.

Model assumption assessments

For logistic regression models, the initial simple models were first assessed for the plausi­

bility of common model assumptions.

Linearity assumption This assumption states that the effect of a candidate predictor on 

the outcome depends linearly on its value (the linearity is only applied to the appropriate 

scale of the model, e.g. linear on the log-odds ratio scale for a logistic model). In reality, 

this assumption is hardly ever completely true; however if the effect of a covariate on the 

outcome is approximately linear, using a linear model has the benefits of simplicity and 

transparency. However, the performance of a prediction model can be hampered when 

a truly non-linear relationship is forced to be linear. In this project, this assumption was 

assessed in two ways:

• Numerically by performing statistical test to compare goodness-of-fit between the 

initial model and a more flexible model which allows for non-linear effect. Natu­

ral cubic splines with pre-defined degrees of freedom and knot locations are often 

recommended for modeling non-linear effects (Harrell, 2001) and in this case, the 

linear and non-linear models can be compared using a likelihood ratio test.
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• Graphically by assessing estimated non-linear effects of each continuous variable on 

the outcome from a flexible multivariable model which allows for non-linearity The 

flexible multivariable model was chosen as a generalized additive model which in­

cluded all continuous variables of interest modeled as natural cubic spline functions 

with automated selection of the required degree of smoothness, and the partial effect 

of each variable on outcome was extracted and visualized using term plots (Wood, 

2006).

If pronounced non-linear terms were detected during this assessment, they were added 

to the model.

In contrast to classical linear regression models, GAM, CART and boosting with trees 

as base learners by default allow for non-linear covariate effects. However, in the case 

of CART, the linearity assumption is replaced by the often even less plausible assumption 

that the covariate effect can be described by a step function.

Additivity assumption The simple formulation of logistic regression also assumes ad­

ditivity of covariates effects. This assumption is violated when there are (synergistic or 

antagonistic) interactions between covariates, i.e. if the effect of one covariate on the 

outcome depends on the levels of other covariate. Commonly seen interactions in clinical 

studies are between severity/place/time/age with other candidate predictors (Steyerberg, 

2010). In my context, relevant potential interactions are between the day of illness at 

enrolment/gender and other covariates, and these interactions were assessed by over­

all interaction tests, i.e. likelihood ratio tests comparing the initial model and the ex­

tended model which also included pre-defined interaction terms. If this overall test was 

significant, further investigation was performed to identify the specific interaction. If pro­

nounced interaction terms were detected during this assessment, they were added to the 

model.

Of note, the additivity assumption is relaxed in CART models and boosting with trees 

as base learners which automatically include interaction terms.
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Model estimation

Parameters of logistic regression models were estimated using standard maximum likeli­

hood estimation. Estimation of the penalty parameter for the lasso was based on standard­

ized covariates and leave-one-out cross validation with the likelihood as the optimization 

criterion as implemented in the R package glmnet version 1.9.8 (Friedman et al., 2010). 

The CART model built and pruned back a classification tree using default parameter set­

tings of the R package rpart version 4.1.8 (Themeau et al., 2014). The GAM model was 

built based on default settings of the R package mgcv version 1.8.3 (Wood, 2011). The 

implementation automatically estimates the degrees of freedom of smooth terms based on 

generalized cross-validation. To fit a “pure” additive model, the interaction terms were 

not included in the model formula. Finally, a generalized boosted regression model with a 

Bernoulli distribution for the outcome was fitted using classification trees as base learners 

as implemented in the R package gbm version 2.1.6 (Greg Ridgeway with contributions 

from others, 2014). Each tree has a depth of at most 2 which allows for 2-way inter­

actions. The number of 3000 iterations and the learning rate of 0.001 were chosen as 

recommended by the gbm package author.

Model reduction

As some candidate predictors may have negligible effects on the outcome and the full 

model is generally complex, it is necessary to simplify the model before applying it to 

clinical practice (Steyerberg, 2010). In this project, I used several different variable selec­

tion techniques including stepwise selection using the Akaike information criterion (AIC) 

or the Bayesian information criterion (BIC) as selection criteria and best subset selection 

which searches through all possible models to find the best one regarding AIC or BIC cri­

teria. Of note, the lasso by default includes variable selection by shrinking coefficients of 

unimportant variables to zero.

Model performance

Performance criteria The performance of developed models was assessed in terms of 

overall performance, discrimination and calibration. These criteria are described in detail
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in (Steyerberg, 2010) and only briefly discussed here. The overall performance of predic­

tion models was quantified with the Brier score which is the average squared difference 

between patients’ observed outcomes (0 for patients without the outcome, 1 for patients 

with the outcome) and their predicted risks. This quantity can range from 0 for a perfect 

model to a maximum value depending on the incidence of outcome for a non-informative 

model (for example 0.25 with a 0.5 incidence of the outcome). Discrimination measures 

how well a prognostic model can differentiate subjects with and without outcome. This 

aspect of model performance can be assessed using the c-statistic defined as the area un­

der the ROC curve (AUC). An AUC of 1 indicates perfect discrimination whereas an AUC 

of 0.5 indicates that the model does not discriminate better than random guessing. Cali­

bration measures the agreement between observed and predicted outcomes. This measure 

can be quantified in terms of calibration-in-the-large and the calibration slope. For binary 

outcome, calibration-in-the-large was estimated as the intercept of the logistic regression 

model that regresses observed outcomes on the linear predictor derived from the pre­

diction model with its slope forced to be 1 (i.e. the linear predictor is included as an 

offset). Therefore, this measure assesses how well the predicted risks match the observed 

outcomes in the log-odds scale, adjusted for the linear predictor. The optimal value of 

calibration-in-the-large is 0. Calibration-in-the-large of <0 or >0, respectively, indicate 

that predicted outcomes are systematically too high or too low. The calibration slope was 

estimated as the slope of the logistic regression model that regresses observed outcome on 

the linear predictor derived from prediction model. This measure reflects the extremeness 

of the predicted outcome and is compared to 1. A calibration slope < 1 indicates that the 

predictions are too extreme; whereas a calibration slope > 1 implies that the predictions 

are not extreme enough.

Correction for optimism As no independent validation datasets were available to assess 

performance of prediction models developed in this project, models were evaluated on the 

development dataset which imposes the risk of optimism, i.e. over-estimation of perfor­

mance due to over-fitting (Steyerberg, 2010). In order to compensate for optimism and to 

get a realistic assessment of the performance of the entire model development process, all 

performance measures were corrected for optimism using temporal validation or 10-times
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repeated 10-fold cross-validation technique.

In temporal validation, the whole data was split into a training and a test set based on 

time. The whole model development process was applied on the training set which was the 

old data, and subsequendy, the derived model was assessed on the test set which was the 

new data. This so-called “temporal performance” represents a more truthful assessment 

of the whole modeling process than the optimistic apparent one (Steyerberg, 2010) .

In 10-times repeated 10-fold cross-validation, the whole modeling procedure except 

for assumption assessments was firstly repeated 10 times by using a selection of nine 

tenths of the data for model development and one tenth for validation, respectively (Steyer­

berg, 2010). The cross-validation was further repeated ten times to minimize dependence 

on the random split into ten sub-datasets. The performance of the derived model on the 

test sets was then averaged across the 100 test sets to provide overall optimism-corrected 

performance measures. %

Model presentation

The final model which had the best trade-off between simplicity and accuracy was chosen 

as the basis for a score chart following the approach of Sullivan et al. (2004). In brief, 

the linear predictor of the selected model was rounded and simplified, followed %  a 

categorization of continuous variables and assignment of a point value to each category 

of a covariate. The total point score for each patient obtained from the score chart is an 

approximation of the linear predictor corresponding to that patient which can then be 

converted to a predicted risk. Finally, the adequacy of this score chart was evaluated by 

comparing risk predictions from the score chart to those of the original statistical model, 

and by visualizing their agreement with a Bland-Altman plot (Bland and Altman, 1986).

Adjustment of model development and validation steps for multiple imputation

For multiple imputed datasets, the above model development and validation steps were 

adjusted according to current recommendation (White et al., 2011).

For assessing the linearity and additivity assumptions, likelihood ratio test were per­

formed comparing the simple model with linear terms and no interaction terms to models 

with more flexible terms for each imputed dataset. The results were then combined with

49



Chapter 2. Materials and common analytical methods

method given by Meng and Rubin (1992). Likewise, the overall multivariable model was 

derived by using Rubin’s rule to combine the multivariable models fitted on each imputed 

dataset.

Variable selection was based on backwards stepwise model selection (Hastie et al., 

2009). At each variable selection step, the model of interest was fitted to all imputed 

datasets and the least significant predictor was excluded if its pooled p value was larger 

than 0.15 (the p-value cut-off of 0.15 was chosen to approximately mimic variable selec­

tion based on AIC). The final model was obtained by applying Rubin’s rule to aggregate 

parameter estimates from a model which included all predictors that remained after the 

variable selection procedure across imputed datasets.

Regarding model validation, both temporal and cross-validation were performed as 

described above. In both cases, the whole modeling procedure for each statistical model 

of interest was applied to each imputed training set. Predictions of each fitted model 

on the corresponding imputed test set were obtained and then compared to observed 

outcomes in the test set of each imputed dataset to derive performance measures. These 

measures were then averaged across imputed test sets to provide a single set of measures 

for each model.

2.2.4 Statistical software

All analyses were performed with the statistical software R version 3.1.2 (2014-10-31) (R 

Core Team, 2014) and its companion packages including machine learning and multiple 

imputation packages (as described in the previous sections) and other packages including 

Hmisc version 3.14.6 (Harrell and with contributions from Charles Dupont and many oth­

ers, 2014), ggplot2 version 1.0.0 (Wickham, 2009), plyr version 1.8.1 (Wickham, 2011) 

and dplyr version 0.3.0.2 (Wickham and Francois, 2014).
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Chapter 3

Clinical and laboratory features of 

children with DSS

Summary

DSS is a severe manifestation of dengue vims infection that particularly affects children 

and young adults. Despite its increasing global importance, there are no prospective stud­

ies describing the clinical characteristics, management or outcomes of DSS. This chap­

ter describes the findings at onset of shock and the clinical evolution until discharge 

or death, based on a comprehensive prospective dataset of 1719 Vietnamese children 

with laboratory-confirmed DSS managed in a single intensive care unit between 1999 and 

2009.

The research in this chapter has been published in: Lam PK, Tam DTH, Diet TV, Tam 

CT, Tien NTH, Kieu NTT, Simmons C, Farrar J, Nga NTN, Qui PT, Dung NM, Wolbers 

M, Wills B (2013) Clinical characteristics of dengue shock syndrome in Vietnamese chil­

dren: a 10-year prospective study in a single hospital. Clinical Infectious Diseases, 57(11): 

1577-86.

51



Chapter 3. Clinical and laboratory features of children with DSS

3.1 Introduction

Despite the increasing burden of dengue globally and the severity of DSS which is poten­

tially fatal, only a few small retrospective reports have described the clinical characteris­

tics, management, and outcomes of DSS cases (Bunnag and Kalayanarooj, 2011; Maron 

et al., 2011; Ranjit et al., 2005). At the HTD in Ho Chi Minh City a prospective obser­

vational study aiming to enrol all children presenting with DSS was conducted between 

1999 and 2009. This chapter presents data from more than 1700 cases collected over the 

10-year period, providing the first comprehensive description of the clinical features of 

DSS in children.

3.2 Methods

In this chapter, data from patients enrolled into the DF cohort were used to describe the 

clinical features and outcome of DSS in Vietnamese children. Details regarding study 

design and data collection, including dengue confirmation and serological classification, 

were described in Chapter 2. Disease classification was performed using the WHO 1997 

and 2009 criteria (World Health Organization, 1997, 2009). The total number of DSS 

cases admitted directly to the PICU during the study period (excluding transfers from 

other hospitals after initiation of resuscitation) was ascertained from the hospital’s main 

record system.

3.3 Results

From 1999-2009 a total of 1810/1847 children (98%) admitted to PICU with clinical 

DSS participated in the study. In 19 cases both RT-PCR and paired serology were negative, 

while in 72 cases the results were inconclusive; in the remaining 1719 cases (95%) dengue 

virus infection was confirmed, with the infecting serotype identified in 1209/1647 cases 

(73%) for whom RT-PCR was performed. Among the confirmed dengue patients 503 

(29%) participated in the nested RCT (as described in Chapter 2), while the remaining 

1216 (71%) were enrolled in the observational study. Almost all cases were admissions 

from the local catchment area, with less than 4% of cases transferred from another health
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facility, most during the febrile phase; however two patients were enrolled in error, having 

already received parenteral fluid therapy for shock resuscitation prior to transfer.

3.3.1 Characteristics at presentation with shock

Demographic information and selected clinical characteristics for all 1719 confirmed dengue 

patients are described in Table 3.1. For most study-specific parameters data was missing 

in less than 5% of cases. The median age was 10 years, varying by year during the study 

from 9 to 11 years. The median (IQR) day of illness at shock was consistently 5 (4-6) for 

each year of the study, although 62 cases (4%) overall presented on illness day 3.

The most common symptoms reported were lethargy (1490/1719, 87%), vomiting 

(1199/1713, 70%) and abdominal pain (1238/1714, 72%). Most children were afebrile, 

but 153/1718 (9%) still had an axillary temperature of 38°C or more at onset of shock, 

without a clear relationship to the day of illness at that time (p=0.1, Wilcoxon-rank- 

sum test). In 123/1719 (7%) the blood pressure was not measureable, while 417/1596 

(26%) of the remainder exhibited hypotension for age and 1568/1596 (98%) had a pulse 

pressure of 20 mmHg or less. Respiratory distress (3/1718, <1%) and cyanosis due to 

profound shock (10/1714, <1%) were extremely uncommon. The liver was palpable in 

1478/1696 (87%) of cases, with abdominal tenderness in 1238/1714 (72%), whereas a 

palpable spleen was extremely uncommon (only 5 cases documented). Almost one third 

(493/1719, 29%) of the patients had no evidence of bleeding. Among cases with bleeding 

this was limited to skin petechiae or minor bruising in the majority of cases, with mucosal 

haemorrhage noted in only 73 cases.

3.3.2 Progress in hospital

Since many patients in the RCT received initial resuscitation with a colloid according to 

their randomization, information on management and complications after enrolment is 

presented for the observational study and RCT groups separately (Table 3.2). Apart from 

the greater colloid usage there was little difference between the two study groups other 

than a slighdy higher proportion of minor skin bleeding observed in the RCT group. Con­

sidering the observational study only, most children recovered well with standard crystal­

loid resuscitation, although 547/1211 (45%) patients also received colloid therapy, 244
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Table 3.1. Baseline characteristics o f the study participants at enrolment (n =  1719).

Characteristics Observational study (n = 1216) All patients (n = 1719)
n Summary statistics n Summary statistics

Age [year] 1216 10 (7-12) 1719 10 (7-12)
Gender: Female 1216 567 (47) 1719 817 (48)
Referal status 1216 1719
- Home 477 (39) 720 (42)
- HTD 673 (55) 911 (53)
- Other 58 (5) 65 (4)
- Unknown 8 (1) 23 (1)
Day of illness 1216 5 (5-6) 1719 5 (4-6)
Weight [kg] 1216 29 (21-38) 1719 27 (20-35)
Temperature > 38° C 1215 112 (9) 1718 153 (9)
Pulse rate [per min] a 976 120 (104-120) 1393 120 (100-120)
Systolic BP [mmHg] a 1138 90 (85-100) 1596 90 (85-100)
Pulse pressure [mmHg] a 1138 20 (15-20) 1596 20 (15-20)
Haemorrhage 1216 1719
- None 402 (33) 493 (29)
- Skin only 774 (64) 1153 (67)
- Mucosal 40 (3) 73 (4)
Abdominal tenderness 1214 794 (65) 1714 1238 (72)
Liver size [cm] 1204 2 (1-2) 1696 2 (1-2)
Haematocrit [%] 1195 50 (47-52) 1696 49 (46-52)
Platelet count [1,000 cell/mm3] 1196 38 (26-54) 1695 41 (28-61)
AST [IU/1] 917 133 (89-218) 1030 125 (80-206)
DHF according to WHO 1997 1159 635 (55) 1642 939 (57)
RT-PCR performed 1176 1647
- DENV-1 661 (56) 675 (41)
- DENV-2 285 (24) 367 (22)
- DENV-3 19 (2) 48 (3)
- DENV-4 8 (1) 110 (7)
- Mixed 8 (1) 9 (1)
- Negative 195 (17) 438 (27)
Immune status 1115 1618
- Primary 6 (1) 6 (0)
- Secondary 1024 (92) 1506 (93)
- Unclassifiable 85 (8) 106 (7)

S u m m a ry  statistics are median (IQR) fo r  continuous variables and frequency (% ) fo r  categorical variables. 

a Only fo r  subjects w ith  measurable value.

Abbreviation: IQR = interquartile range, HTD = Hospital fo r  Tropical Diseases, BP  =  blood pressure, A S T  =  

aspartate aminotransferase, DHF = dengue haem orrhagic fever, WHO = World H ealth Organization, RT-PCR = 

reverse transcriptase polym erase chain reaction, DENY = dengue virus.
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(45%) of them within the first 2 hours. Most children (328, 60%) in this group received 

only a single colloid bolus, but up to 7 colloid infusions were needed for severe cases, with 

a median (IQR) volume of 19 (12-25) ml/kg of colloid given throughout hospitalization, 

on a background of 114 (99-129) ml/kg total parenteral fluid therapy. Considering the 

whole patient cohort, additional cardiovascular support with inotropic drugs was required 

in 75/1719 (4%), and 513/1717 (30%) patients developed clinical signs of fluid over­

load (pleural effusion or ascites) following resuscitation. Among these patients, 313/513 

(61%) were treated with diuretic therapy for 1-2 days after haemodynamic stabilization.

After admission 158/1719 (9%) children developed at least one new bleeding manifes­

tation, among them 98 cases with skin bleeding only and 60 cases with mucosal bleeding. 

Considering all 126 patients with overt mucosal bleeding (either present at enrolment or 

developing subsequently) gastrointestinal bleeding occurred most frequently (61 cases), 

compared to epistaxis (36 cases), gum bleeding (22 cases) or unusual vaginal bleeding 

(21 cases). In 31 patients overall the bleeding was clinically severe, requiring transfu­

sion in 26 cases (18 during active resuscitation, and 8 during the recovery phase due to 

symptomatic anaemia), resulting in significant but asymptomatic anaemia at discharge in 

4 cases, and involving a critical organ in 1 case (spinal cord haemorrhage, confirmed on 

magnetic resonance imaging (MRI) scan). Although most severe haemorrhage involved 

the gastrointestinal tract primarily (15 cases), 7 children had severe skin bleeding only, 

mainly at sites of invasive procedures, and 4/7 required transfusion. Platelet concentrates 

were not available during the study but children with severe coagulopathy and bleed­

ing received fresh frozen plasma or other blood products at the discretion of the treating 

clinician.

55



Chapter 3. Clinical and laboratory features o f children with DSS

Oc
i—iN

o

•S
5'a
£
oa3
O

"3
Ca

bOaca
£

Io

b
a
£
£3CO
cn
CO
w
2Pa

oc
rHIN
l-H

II
e

C3
O h

Vre
s -reXu

COo
LO

HUcC

CO
rH
CN

>>133

re3_o
re
£a>wXO

ON

ON ON 
l—l r —I 
I N  t N

00 o

CO

00

CO CO
o  o
LO LD

NT CM
00 rH  N "

CNI On CM 
CM LO CM "d"

/— > 
CO
co / ~ \
l-H Oc

1
CN /—i

CN r —v t— ■.

/—N i--- •. r~\ o cO LO O o 1 1
CN CN N " l-H LO r H CO IN V
'— / v__ / v__/ ' __/ i__‘ v__/ i__/

l-H CO LO NO LO LO CO CN oo
CO CN IN r H NO CN l-H O

r H ON LO CN
l-H

Oc O n O n CO N - N - IN LO Oc
t-H l-H t-H l-H l-H cO l-H o t-H
IN IN IN IN IN O n IN IN IN
l-H l-H i-H l-H r H l-H l-H l-H

r— \
CO
■N" !---S
l-H LO

o r—\ CO
r— \ \ r~\

t—\ /—\ \ l-H co LO N " l-H r—1
CN CN N " l-H CO CN co 00 V

i__ ' v--- ' ' __' v__‘ --—/ '— '

l-H 00 O LO 00 LO CO cO r H
r H CN CN l-H CN I N O

r H N" l-H N -

CO CO CO CO CO 00 CO O n CO
O o o o o l-H o O c o
LO LO LO LO LO N " LO N - LO

ON
<N

r~\ 
LO
CN

cO
re- I—■. /—\ 
Oc CO CO

On Oc 00 
CO CO CO

CN
o  O i LO CS 0 0  CO 
LO Oc N " rH  CN cO

cO cO
i-H rH
CN CN

O O O L O - ^ - t N O c O c O l N  
C N r H I O r H ’̂ - r - I ^ O  

r H LO CO CN

C O C O C O O I - H C O N - C O C O
l-H t-H 1—i i-H i—I i-H ^ 0  rH
C N C N C N C N C N L O C N C N C N

bo

00 oo

qj cd

« .tj 2  w2  c/3 i i

O '
N _

be

3
C
a

<y

ce
bO

- c•40

"3
£•3

. ubo3
- C

3-e
3

£

•2£o3
C
3

t-HU«
uT
bo
C
3

•2 O'

3 .2
2 <P ’>
C  tu

£ t  £
CO O ^

56



Chapter 3. Clinical and laboratory features of children with DSS

The evolution of haematocrit and platelet values during hospitalization is shown in 

Figure 3.1. The median (IQR) maximum haematocrit was 50% (47-52), documented at 

presentation in most cases (86%, 1484/1719). Among cases with both enrolment and 

one-month follow-up haematocrit values 753/830 (91%) had evidence of at least 20% 

haemoconcentration at enrolment. The haematocrit declined rapidly during the first 4 

hours of fluid resuscitation, later rising again in the majority of children. In contrast 

the platelet nadir (median (IQR) of 28,000 (19,000-40,000 cells/mm3) occurred most 

frequently one day after onset of shock (720/1718, 42%). Although a transient drop 

in platelet count was seen in all cases, in 25/1718 (1.5%) cases the nadir did not fall 

below 100,000 cells/mm3. Coagulation profiles were performed infrequently and are not 

reported here, but the abnormalities observed were consistent with previous reports (Wills 

et al., 2002, 2009). Liver enzyme levels were checked in approximately 60% and were 

moderately elevated at shock, with aspartate aminotransferase levels consistently higher 

than alanine aminotransferase levels.

All patients would have fulfilled the 2009 WHO criteria for severe dengue, while only 

939/1642 (57%) of the children with sufficient data to allow classification at the onset of 

shock would have been categorized as DHF. Using all available information from the acute 

illness and any follow-up visits, 1202/1705 (70%) of the patients eventually fulfilled the 

four criteria for DHF with the remainder classified as dengue fever by default.

3.3.3 Outcome

The most common complication observed during treatment for DSS is recurrent shock, 

conventionally termed “re-shock”; the accepted definition at HTD is narrowing of the 

pulse pressure (PP) to < 20 mmHg after a period of apparent cardiovascular stability, as­

sociated with tachycardia and cool extremities, and considered to require additional vol­

ume resuscitation with a colloid fluid bolus. Patients may experience several episodes of 

re-shock during the critical period for leakage. According to local management guidelines 

the need for two or more colloid boluses (given either at presentation with decompen­

sated/hypotensive shock or during re-shock episodes) is considered an indicator of severe 

disease, and is the recommended threshold to proceed to central venous pressure (CVP) 

monitoring. In cases with ongoing hypotension and a poor response to colloid therapy,

57



Chapter 3. Clinical and laboratory features o f children with DSS

Panel A

Baseline >1-3 >9-11 >11-13 >13-15 >15-17 >17-19 >19-21 >21-23 >23-25 Discharge Follow-up

Hours from admission

Discharge Follow-up

'Days from admission

Figure 3.1. Boxplots describing changes in haematocrit (upper panel) and platelet count (lower panel) 
during the evolution of the illness. Haematocrit data is presented for the 24 hours following admission, 
while platelet data is presented daily for the first 4 days, together with the values at hospital discharge 
and follow-up for both parameters. The numbers displayed below each boxplot represent the number of 
patients included within that time interval. If multiple values were recorded during any time interval, 
the highest haematocrit and the lowest platelet count were respectively chosen for that patient. The 
haematocrit graph excludes data from the 73 DSS cases with mucosal bleeding at presentation.

inotropic agents such as dopamine or dobutamine may be added. Other major complica­

tions include severe bleeding (requiring a blood transfusion, involving a critical organ, or 

resulting in significant but compensated anaemia), and organ failure (significant impair­

ment in function of an organ system).

These facts suggested three main outcomes for consideration among children with 

DSS. The first potential outcome is “recurrent shock” which was defined as development 

of one or more episodes of re-shock after the initial resuscitation. The second outcome was 

“critical DSS”, here defined as death or requirement for inotropes (in addition to colloid 

therapy to maintain cardiovascular stability) or development of any major complication 

(severe bleeding or organ failure). The last main outcome was a composite outcome of
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“profound DSS”, defined as either a) 2 or more episodes of re-shock in subjects presenting 

with compensated shock, or b) 1 or more episodes of re-shock in subjects presenting with 

decompensated/hypotensive shock (thus these patients had already received a colloid bo­

lus during their initial resuscitation), or c) requirement for inotropes or development of 

any other major complication, or d) death. (In the first two categories the participants 

would have been treated with at least two colloid boluses, i.e. they would have achieved 

the threshold for CVP monitoring).

To assess whether a patient had recurrent shock or profound DSS, detailed information 

on fluid resuscitation of each patient is required. Information on fluid use was missing in 

10 cases, but among the 1709 patients with complete information on fluid usage, 595 

(35%) developed recurrent shock at some point after the initial resuscitation, and 367 

(21%) had profound DSS. Amongst all patients, 86/1719 (5%) fulfilled the criteria for 

critical DSS.

Looking specifically at mortality, only 8 patients died during the 10-year study period, 

including 1 infant and 7 children (Table 3.3), although one additional DSS-associated 

death outside the study was identified from hospital records. In 3/8 cases shock occurred 

early, on illness day 4. All 8 patients developed profound shock within the first 12 hours, 

requiring multiple colloid infusions plus inotropic support and with rapid development 

of significant fluid overload. The interval from admission to death was generally short 

(median, range 34 (11-87) hours in 7 cases) and one child with multi-organ failure was 

taken home moribund after 4 days. Major bleeding requiring transfusion was apparent in 

7/8 cases before death.

Overt organ dysfunction was very uncommon. Other than in association with pro­

longed shock no patient in the cohort had clinically significant hepatic, renal or neurolog­

ical compromise, except for the child with spinal cord haemorrhage and one other child 

with profound shock, liver failure and coma. The latter two children gradually improved 

over several weeks with supportive care, and both eventually made a full recovery.

59



Ta
ble

 
3.

3.
 S

ele
cte

d 
cli

ni
ca

l 
an

d 
la

bo
ra

to
ry

 
ch

ar
ac

te
ris

tic
s 

for
 

the
 

8 
ch

ild
re

n 
wh

o 
di

ed
.

Chapter 3. Clinical and laboratory features o f children with DSS

TOU

co
<U O ' 

« §

>>
CO

<u
ocn

vO

vb 
O «/s

<u

1 e
■S 1,52 ■£ 
c  g
4) O CO c 0) C

03 <U
5 ^ ° °
£  3  O ' CM

a-COcC

<U O '>■ 13 °  vo 42 o
o
CO "S’a.

l o  LO
Q \ rH

^  LO CD —.o m • S  ̂ o
-  “ ■ N  ”  co  H

CO *-•

4> ..
>> 2 o £ o

<U CNa

CN o  LO O'
CO ^

o o
O ' CN

a

LO LO 
O ' f *

TO
2

o o
O ' 2  &
CO 1-1

o o
TO
3

bo
I

>»"TO
3

COMu

cu 
T 3  <U C 

bO <U< o
o o
*-• c>.TO m
£■ Q

_G
u  £

3 <D
2 gCL> H
a. <U
6 ^  1) G P a,

bo
X
E

•- Oh .S

ooo
rC
O '

4
LO

U  +  CO

+  CN

+  CN

O
S? 00

CO

4- co

+  cn  \

ooo
K

+ <*•
oo
°- 

TO" COo

ooCD.
rC

o
CO g  LO CD 

N

o

CN
+  LO o  

O '

+ +
LO 

LO £

LO

o_ o°  o 3 +o
CN

oo  _
*  o  +o
CO

o
$  §  3 +

+  CO ^  
LO

CN
+  LO LO 

00

+  CO CO 
CO

, O ' 
+  CO

o
CO O
^  LO

CO

+  +  CN

+  CN CO 
CN

+  CN

*3
G<U

G
. 0

TO i— i
H 'Po'

00
TO H

B
a

‘a
(A

U
I

c
\ o

43 E
13 bo c lu _c s

S3
a

* 5
3

Q
C3

s

o-Q
’o 00 ^  

2 8 T3 «g

bO4*

’2  £ G

£  £

j:£ eg
I  £

bTO-aco

TO-aco

bTO
TO3
C
O

TO
co

• o
co

bTOTO
C
O

60

Ca
se

 
1 

wa
s 

en
ro

lle
d 

in 
the

 f
lu

id
 

ra
nd

om
is

ed
 

co
nt

ro
lle

d 
tr

ia
l 

an
d 

re
ce

iv
ed

 
the

 f
ir

st
 

bo
lu

s 
of 

co
llo

id
 

ac
co

rd
in

g 
to 

the
 

tr
ia

l 
ra

nd
om

iz
at

io
n.

Ca
se

 
8 

wa
s 

ta
ke

n 
ho

m
e 

4 
da

ys
 

af
te

r 
ad

m
is

si
on

 
an

d 
is 

pr
es

um
ed

 
to 

ha
ve

 
di

ed
. 

Th
e 

ch
ild

 
wa

s 
pr

of
ou

nd
ly

 
hy

po
te

ns
iv

e 
wi

th
 

m
ul

tio
rg

an
 

fa
ilu

re
 

at 
the

 
tim

e 
of 

di
sc

ha
rg

e.
 

A
bb

re
vi

at
io

ns
: 

BP
 

= 
bl

oo
d 

pr
es

su
re

, 
HC

T 
= 

ha
em

at
oc

ri
t, 

PL
T 

= 
pl

at
el

et
 

co
un

t, 
DE

NY
 

= 
de

ng
ue

 
vi

ru
s, 

GI
 

= 
ga

st
ro

in
te

st
in

al
 b

le
ed

in
g,

 
4- 

= 
ye

s, 
- 

= 
no

, 
N/

A 
= 

no
t 

av
ai

la
bl

e.



Chapter 3. Clinical and laboratory features o f children with DSS

3.3.4 Dengue serotypes and immune status

The relative frequency of dengue serotypes identified in the patient cohort over time is 

presented in Figure 3.2, Panel A. With increasingly sensitive diagnostics the proportion of 

cases with a serotype identified increased gradually, rising from 33% initially to more than 

82% after 2007. In 1999 DENV-3 was the most common serotype seen, replaced by DENV- 

4 peaking in 2001, DENV-2 peaking in 2004, and finally by DENV-1 extending from 2005 

to 2009. Almost all patients had an IgG response consistent with secondary infection, 

although in 106/1618 (7%) of cases the information available was insufficient to allow 

categorization. The pattern of serotypes observed in the children with DSS was very 

similar to that seen among 1509 children with secondary dengue without shock enrolled 

into the MD cohort during 2001-2009 (Figure 3.2, Panel B).

78
132

135
164

285
325

DENV-1

DENV-2

DENV-3
D E N V -4

Mixed

2004
Year

DENV-1
D E N V -2

D E N V -3

DENV-4
Mixed

Figure 3.2. Serotype distributions over time for DSS cases (Panel A), and for children with secondary 
dengue but did not experience severe complications in the MD cohort (Panel B). The numbers below 
each bar are the total number of cases in whom a serotype was identified (first line), and the total 
number of cases enrolled into the corresponding study (second line).
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Table 3.4. Selected clinical and laboratory characteristics for the 6 primary dengue cases.

Characteristics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
At presentation with shock
Age [months/years] 4m 11m 13m 7y iy 12y
Gender Male Female Male Male Female Male
Year of study 2008 2008 2008 2008 2009 2009
Day of illness 5 5 5 5 5 6
Temperature [°C] 37.5 37.0 37.0 37.0 37.0 37.0
Pulse rate [per min] 148 Rapid, weak 168 140 Rapid, weak 110
Systolic BP [mmHg] 50 70 90 90 80 90
Pulse pressure [mmHg] 20 20 15 20 20 20
Bleeding Petechiae Petechiae Petechiae - Petechiae Petechiae
Abdominal tenderness + + + + - -

Liver size [cm] 3 1 4 3 2 1
HCT [%] 36 47 50 56 45 46
PLT [cell/mm3] 40,000 19,000 77,000 81,400 37,900 66,000
During hospitalization
Maximum HCT [%] 36 47 50 56 45 47
Minimum PLT [cells/mm3] 24,000 9,000 45,800 61,000 28,400 53,000
New bleeding - - - - - -

Number of colloid boluses 0 2 1 0 0 0
Colloid volume [ml/kg] 0.0 25.0 25.3 0.0 0.0 0.0
Clinical fluid overload - - + - - -

Survival status Recovery Recovery Recovery Recovery Recovery Recovery
IgG by day of illness Day 5 :  ( - ) Day 5 :  ( - ) Day 5 :  ( - ) Day 5 :  ( - ) Day 5 :  ( - ) Day 6: (-)

Day 8 :  C-) Day 8 :  ( - ) Day 8 :  ( - ) Day 8 :  ( - ) Day 8 :  ( - ) Day 9: (-)
Serotype DENV-2 DENV-1 Negative DENV-1 DENV-1 DENV-1

Diagnosis fo r  the case w ith PCR negative  w a s  based on the positive dengue IgM  capture ELISA on samples 

taken on days 5  and 8.

Abbreviations: BP = blood pressure, HCT = haematocrit, PLT = p latelet count, IgG  =  im m unoglobulin G, 

IgM  = im m unoglobulin  M, ELISA -  enzym e-linked im m unosorbent assay, DENV  =  dengue virus, +  =  yes, -  

= no.

Overall only 6 cases were classified as clear primary infections, 4 infants and two 

children aged 7 and 12 years (Table 3.4). For an additional 5 children under 18 months 

immune status was classified as indeterminate, but the serological patterns observed and 

their age suggested primary infection. Conversely, all 157 children aged 18-60 months 

with classifiable immune status had secondary dengue. All the definite primary cases 

recovered, although two infants required colloid infusions. However, one 11-month old 

boy with indeterminate/possible primary dengue died with profound shock and major 

gastrointestinal bleeding.
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3.4 Discussion

This chapter presents the first comprehensive description of the clinical presentation of 

DSS in children, using data gathered prospectively over 10 years on a large cohort of pa­

tients managed in a single Vietnamese institution. Over 95% of all children admitted with 

DSS during the study period were evaluated. Since prior shock resuscitation might con­

found the clinical picture the analysis focused on direct admissions only; although a few 

cases were missed, including one child who died, overall the results are representative of 

the clinical spectrum of DSS cases admitted direcdy to a busy hospital in a hyperendemic 

region.

During the 10-year study each dengue serotype predominated for one or more years, 

so DSS caused by all four serotypes were able to be observed. Apart from infants below 

18 months, virtually all children had secondary dengue, in line with established concepts 

of pathogenesis (Yacoub et al., 2013). The pattern of serotype replacement seen in the 

cohort was similar to that seen among children with secondary infections enrolled the 

MD cohort, and also to the relative virus prevalence identified by passive surveillance 

in southern Vietnam during the same time-period (Vu et al., 2010). Thus the viruses 

associated with DSS appear to be representative of the virus population affecting the wider 

community with no evidence that a particular serotype contributes to a greater risk for 

shock. Notably however 3 out of 8 deaths were associated with DENV-3 although the total 

number of DENV-3 infections identified was small. Since a number of interacting host 

and viral factors influence an individual’s propensity to develop severe vascular leakage 

(Yacoub et al., 2013), only very detailed studies can establish whether particular viral 

characteristics do confer an increased risk for DSS or death.

The clinical signs and symptoms documented in this large cohort were generally con­

sistent with empirical descriptions of DSS (World Health Organization, 2009). Interest­

ingly however, 9% of all cases were still febrile at presentation. Increased permeability 

commences during the febrile phase, typically resulting in shock when leakage exceeds 

the capacity of the homeostatic compensatory mechanisms to maintain adequate plasma 

volume (Srikiatkhachom et al., 2007; Trung and Wills, 2010). Functional cardiac im­

pairment also contributes to the cardiovascular decompensation, although the underlying
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mechanisms remain unclear (Yacoub et al., 2012). Although defervescence and onset of 

DSS are often temporally linked it is important that clinicians managing early dengue 

cases are aware that DSS can occur before defervescence. Identification of more reliable 

warning signs of likely deterioration would be useful both for individual case-management 

and to facilitate effective use of limited healthcare resources.

In agreement with other studies (Phuong et al., 2004), a considerable number of DSS 

cases had no bleeding manifestations during the illness episode. Severe bleeding was 

uncommon and primarily observed from the gastrointestinal tract, although massive soft- 

tissue bleeding necessitating transfusion occurred in 3 children. Also consistent with other 

studies (Alexander et al., 2011; Phuong et al., 2004), almost one third of cases did not 

achieve the WHO 1997 classification for DHF, mainly due to failure to fulfill the haemor­

rhage and/or plasma leakage criteria since thrombocytopenia was almost universal. All 

patients were examined carefully each day but a tourniquet test was not mandatory as 

these are infrequently performed in Vietnam and several studies have demonstrated poor 

utility in clinical practice (Phuong et al., 2004; Srikiatkhachom and Green, 2010). More­

over, radiological investigations to identify plasma leakage were not performed unless 

clinically indicated, as the study aimed to reflect real-world practice. Haemoconcentra- 

tion below the conventional threshold of 20% in association with DSS has been reported 

previously (Maron et al., 2011), and radiological evidence of leakage is often not detected 

until relatively late in the disease evolution. Since patients must be treated according to 

their actual clinical status at any time, it is apparent that the 2009 WHO classification 

system is preferable for individual case-management (World Health Organization, 2009).

The case fatality rate was extremely low (<1%). Most patients recovered well with the 

standard crystalloid fluid regimen or following a single bolus of colloid, and requirement 

for additional colloid therapy, inotropic support and/or blood products was infrequent. 

Prompt diagnosis and immediate admission to PICU with management coordinated by a 

highly experienced team undoubtedly contributed to this favourable outcome. In line with 

WHO principles for fluid management of DSS, the unit operates a generally conservative 

policy after initial resuscitation, relying on frequent clinical assessments and regular ward- 

based haematocrit measurements to limit fluid administration to the minimum required, 

thereby minimizing the risk of fluid overload. However, the study focused on direct ad­
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missions only and it is clear that external referrals with prolonged shock or established 

fluid overload are considerably more difficult to manage and have correspondingly higher 

mortality rates (Bunnag and Kalayanarooj, 2011).

Only a very small number of confirmed primary dengue cases were included in the 

cohort and all recovered quickly without notable complications. However one death did 

occur in a suspected primary case, underlining the view that primary dengue can result in 

severe and even fatal disease (Barnes and Rosen, 1974; Nogueira et al., 1999; Scott et al., 

1976). Given that immune status could not be defined in 6% of patients some primary 

cases might have been missed but the number is likely to be small.

Three potential outcomes for patients with DSS were identified as potentially useful 

for developing prognostic models in this population, including recurrent shock, profound 

DSS and critical DSS. However, profound DSS is preferred as the primary outcome of 

interest for a number of reasons. Firstly, the number of subjects experiencing critical 

DSS was too small for prognostic modelling. Secondly, differences in initial resuscitation 

between patients with compensated or hypotensive shock (use of crystalloid or colloid 

fluids, respectively) may have influenced the likelihood of developing recurrent shock 

subsequently. Thirdly, a large proportion of cases experiencing their first episode of re­

shock recover fully following a single colloid bolus without requiring additional supportive 

therapy. By defining as a composite outcome measure that includes use of at least two 

boluses of colloid, profound DSS is able to reflect the local threshold for concern regarding 

severe disease, as indicated by the recommendation to proceed to CVP monitoring in cases 

requiring more than two colloid boluses.

In summary, this is a comprehensive clinical description of DSS in a large cohort of 

"Vietnamese children. With prompt intervention and assiduous clinical care by experienced 

staff the outcome of this potentially fatal condition can be very good. As the emerging 

dengue pandemic spreads to new geographical locations it is crucial that this accumulated 

experience be translated into practical advice and support for clinicians newly exposed to 

this severe complication of a common disorder.
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Prognostic models for profound DSS 

amongst children with DSS

Summary

Reliable prognostic tools to assist physicians in identifying children at risk of profound DSS 

and likely to require intensive support are lacking. This chapter used data from the DF 

cohort to identify clinical and laboratory risk factors of profound DSS, develop a prediction 

model for profound DSS and derived a simple score chart for use in clinical practice.
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4.1 Introduction

Prognostic models for poor outcomes can enhance a physician’s clinical decision-making 

processes (Steyerberg et al., 2013; Riley et al., 2013). Several prognostic models (PRISM, 

PIM) have been developed to characterise children with severe illness admitted to west­

ern PICUs (Pollack et al., 1988; Shann et al., 1997), and to compare outcomes within 

and between different units over time. However, models such as PRISM and PIM typi­

cally require detailed clinical and laboratory data that is not readily available in countries 

where dengue is endemic, and are thus not practical in these settings. Although a number 

of predictive models have been developed to help distinguish dengue from other febrile 

illnesses with similar presentations (Potts and Rothman, 2008; Potts et al., 2010a), and 

to try to improve identification of cases likely to develop severe complications (Tanner 

et al., 2008; Potts et al., 2010a), to date only a single report describes a prognostic model 

for poor outcome in patients with established DSS (Huy et al., 2013a). Therefore this 

study analyzed data from a large 10-year cohort of children presenting with DSS, aiming 

to identify risk factors for profound shock, and to develop a prognostic model to assist 

physicians in identifying children likely to require intensive supportive therapy.

4.2 Methods

This chapter utilized data from the DF cohort. Detailed information related to study de­

sign, study participants, dengue diagnostics, general statistical analyses (descriptive anal­

ysis, treatment of missing values) and modeling strategy are described in Chapter 2. I 

present here definitions of clinical outcomes and candidate predictors and several specific 

statistical methods used in this chapter.

4.2.1 Clinical outcomes and candidate predictors

As discussed in Chapter 3 (Section 3.4), amongst three potential clinical outcomes in chil­

dren with DSS (recurrent shock, profound DSS, critical DSS), profound DSS is preferred 

as the primary outcome. Secondary outcomes were recurrent shock, critical DSS, and 

the total volume of colloid, defined as the total volume of colloid patient received during
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hospitalization from shock. All clinical definitions are described in Table 4.1.

Table 4.1. Definition of clinical outcomes amongst children with DSS.

Clinical outcome Definition
Profound DSS 

Recurrent shock

Critical DSS

Total volume of colloid

Major complications 
Severe bleeding

Organ failure

Death OR major complications OR requirement of specific addi­
tional therapy (2 or more colloid boluses, or inotropic support) 
Pulse pressure < 20 mmHg after a period of apparent cardiovas­
cular stability, associated with tachycardia and cool extremities, 
and considered to require additional volume resuscitation with a 
colloid fluid bolus
Death OR major complications OR requirement of inotropic sup­
port
The total volume of colloid (ml/kg) patient received during hos­
pitalization from shock 
Severe bleeding OR organ failure
Requirement of blood transfusion OR bleeding resulting in signif­
icant but asymptomatic anaemia OR bleeding involving a critical 
organ
Significant impairment in function of an organ system, judged by 
the treating physician to require specific therapeutic intervention

Candidate predictors described in Table 4.2 were all assessed within 2 hours of onset 

of shock and were chosen based on clinical experience and evidence from the published 

literature (Srikiatkhachom and Green, 2010; Wills et al., 2002; Maron et al., 2010). As 

pulse pressure (PP) and systolic blood pressure (BP) are closely linked haemodynamic pa­

rameters and some patients may present with no detectable blood pressure, an additional 

categorical candidate predictor, the haemodynamic index, was created to allow all patients 

to be classified into one of three ordered categories representing their initial cardiovascu­

lar status. The haemodynamic index is defined as 1 when the PP exceeds 10 mmHg and 

the systolic BP is m aintained above the lower limit of normal for age (i.e. > 80 mmHg 

if under 5 years, or > 90 mmHg if aged 5 years or more). A haemodynamic index of 2 

corresponds to a PP below 10 mmHg or a systolic BP below the lower limits for age, while 

a haemodynamic index of 3 indicates that the blood pressure is unmeasureable. Aspartate 

aminotransferase (AST) and dengue serotype were included in the univariate analysis but 

not in the multivariable analysis as they are less readily available for clinicians and were 

frequently missing (Table 4.3).
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Table 4.2. List of candidate predictors.

Predictor Unit or possible values Type
Age Year Continuous
Gender Female/Male Binary
Weight Kg Continuous
Day of illness Day of illness at shock Continuous
Pulse rate Beats per minute (fast and weak pulse = 200 

pulses/min)
Continuous

Temperature Body temperature [°C] measured in the axilla Continuous
Systolic BP mmHg continuous
Pulse pressure Difference between systolic and diastolic BP 

[mmHg] OR 5 mmHg if systolic BP was measurable 
but diastolic BP was unmeasurable

Continuous

Haemodynamic index 1 if systolic BP > lower limit of normal" AND PP > 
10 mmHg
2 if systolic BP < lower limit of normal" OR PP < 10 
mmHg
3 if systolic BP was unmeasurable

Categorical

Haemorrhage “None” if no bleeding at enrolment 
“Skin” only if only have petechiae/bruising 
“Mucosal” if epistaxis OR gum OR gastrointestinal 
OR vaginal bleeding

Categorical

Abdominal tenderness Yes/No Binary
Liver size Size of liver below costal margin [cm] Continuous
HCT Haematocrit value [%] Continuous
PLT Platelet count [cells/mm3] Continuous

a Lower lim it o f  norm al systolic BP is 80  m m H g ( i f  age < 5 years old) or 90 m m H g ( i f  age >  5  years old). 

Abbreviations: BP = blood pressure, HCT = haematocrit, PLT = p la telet count.

4.2.2 Statistical analysis

Analysis of profound DSS, recurrent shock and critical DSS

The study population included all patients with confirmed DSS for whom clinical outcomes 

could be assessed. Since the randomized treatm ent assignment might have affected the 

number of colloid boluses given, the primary analysis population excluded patients from 

the RCT (Wills et al., 2005). A sensitivity analysis including all patients was also per­

formed, adjusting for the randomized treatm ent assignment by adding a categorical co- 

variate with three levels (assigned to a colloid in the RCT; assigned to a crystalloid in the 

RCT; enrolled only in the observational study) to the corresponding regression models. 

Details regarding the development of prognostic models are described in Chapter 2.
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Logistic regression was the main statistical model for the univariate and multivariable 

analyses of all three outcomes (i.e. recurrent shock, profound DSS and critical DSS). 

Alternative statistical approaches were: logistic regression with variable selection and 

shrinkage based on the lasso, classification and regression trees (CART), generalized ad­

ditive models (GAM), and gradient boosting with trees as base learners (Hastie et al., 

2009).

To validate the modeling procedure, both temporal and internal validation of the 

whole model development process, except for the non-linearity and interaction assess­

ments, were performed (Steyerberg, 2010). For temporal validation, the models were 

developed using data from the 939 patients enrolled before 2009 and validated on the 

268 patients enrolled during 2009.

Analysis of total volume of colloid

As described in the Figure 4.1, the total volume of colloid had a very skewed distribution 

which consists of a point mass at 0 and a positive right-skewed tail. Therefore, normal 

linear regression cannot be applied and potential applicable analytical methods are robust 

regression (median regression) (Koenker, 2005), hurdle models (Tobin, 1958), or survival 

analysis. Survival analysis using Cox regression is traditionally used for survival analysis 

of time-to-event endpoints. However, it has also been suggested as a flexible model for 

general non-negative continuous outcomes with a right-skewed distribution and a point 

mass at 0 (Aalen et al., 2008). I decided to use the Cox proportional hazards regression 

model for the analysis of the total volume of colloid and treated patients who died either 

as right-censored observation or, alternatively, replaced their actual total colloid volume 

by the maximum observed total colloid volume plus 1.

4.3 Results

4.3.1 General description

A total of 1810 children were enrolled in the two studies (observational study and RCT) 

and the analysis population included 1706 patients with laboratory-confirmed dengue and 

complete information regarding fluid usage (Figure 4.2). Among these patients, the 1207
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Figure 4.1. Histogram of the total volume of colloid in all patients (n = 1706).

patients enrolled in the observational study formed the primary analysis population.

A detailed description of patients enrolled into the DF study is provided in Chapter 3 

and for reference, patient characteristics and outcomes are also reported in Table 4.3. In 

general, characteristics and outcome of patients enrolled only in the observational study 

were similar to all patients, except for the usage of colloid fluid which can be explained 

by the inclusion of patients enrolled into the fluid rescuscitation randomized clinical trial. 

In the main analysis population, 222/1207 (18%) of the children had profound DSS, 

433/1207 (36%) developed recurrent shock, and 57/1207 (5%) had critical DSS. Deaths 

were very rare and major complications were infrequent; thus most children were clas­

sified as having profound DSS on the basis of their requirement of specific additional 

therapy. No systematic time trends were observed for the prevalence of profound DSS or 

critical DSS over the study period but there was a small but statistically significant decline 

in the prevalence of recurrent shock (linear trend tests: p values were 0.34, 0.03, 0.65 for 

profound DSS, recurrent shock and critical DSS, respectively) (Figure 4.3).
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Analysis population 
(n = 1706)

Children with DSS 
assessed for eligibility 

(n = 1810)

In fluid trial (n = 499)Not in fluid trial (n = 1207) 
[Primary analysis population]

Excluded (n = 104)
- Not dengue (n = 19)
- Unknown serology and PCR result (n = 72)
- Incomplete fluid information (n = 10)
- Major/Unusual bleeding occurred early (n = 3)

Figure 4.2. Flow-chart of the analysis for prof ound DSS.

Assessment of missing values Amongst all 1706 cases, 4% (75) of participants had at 

least one missing value in one or more candidate predictors. The number of missing values 

per individual ranged from 0 to 2. HCT and PLT were the two most frequently missing 

predictors with 1% missing values.

72



% 
of 

all
 d

en
gu

e 
sh

oc
k 

sy
nd

ro
m

e 
(D

SS
) 

ca
se

s

Chapter 4. Prognostic models for profound DSS amongst children with DSS

O utcom e
Profound DSS 
Recurrent shock 
Critical DSS 
Death

76 91 104 182 162 324 268

2003 2004 2005 2006 2007 "~2008 2009
Year

Figure 4.3. Frequency of adverse clinical outcomes over time for patients enrolled in the obsenutional 
study (n = 1207). The numbers shown below the line graphs indicate the total number of DSS cases 
enrolled in the study each year.
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Table 4.3. Baseline characteristics and outcomes of study participants in DF cohort.

Characteristics Observational study (n = 1207) All patients (n = 1706)
n Summary statistics n Summary statistics

Demographic characteristics
Age [year] 1207 10 (7-12) 1706 10 (7-12)
Gender: Female 1207 562 (47) 1706 810 (47)
Clinical features at presentation with shock
Weight [kg] 1207 29 (21-38) 1706 27 (20-35)
Day of illness [day] 1207 5 (5-6) 1706 5 (4-6)
Temperature > 38°C 1206 108 (9) 1705 149 (9)
Pulse rate [per min] 1207 120 (100-140) 1706 120 (100-130)
Systolic BP [mmHg] 1207 90 (85-100) 1706 90 (80-100)
Pulse pressure [mmHg] 1207 20 (15-20) 1706 20 (15-20)
Haemodynamic index 1207 1706
- Group 1 829 (69) 1146 (67)
- Group 2 300 (25) 438 (26)
- Group 3 78 (6) 122 (7)
Haemorrhage 1207 1706
- None 398 (33) 489 (29)
- Skin only 769 (64) 1144 (67)
- Mucose 40 (3) 73 (4)
Abdominal tenderness: Yes 1205 787 (65) 1701 1228 (72)
Liver size [cm] 1195 2 (1-2) 1683 2 (1-2)
HCT [%] 1186 50 (47-52) 1683 49 (46-52)
PLT [1000 cell/mm3] 1188 38 (26-54) 1683 41 (28-60)
AST [IU/1] 910 133 (89-218) 1021 125 (80-206)
RT-PCR performed 1167 1635
- DENV-1 658 (56) 672 (41)
- DENV-2 281 (24) 363 (22)
- DENV-3 19 (2) 46 (3)
- DENV-4 7 (1) 109 (7)
- Mixed 8 (1) 9 (1)
- Negative 194 (17) 436 (27)
Outcomes
Used colloid: Yes 1207 544 (45) 1706 958 (56)
At least 2 colloid boluses 1207 218 (18) 1706 355 (21)
Total colloid volume [ml/kg] 544 19 (12-25) 958 25 (15-29)
Survival status: Died 1207 7 (1) 1706 8 « 1 )
Major complications: Yes 1207 17 (1) 1706 28 (2)
Inotropic drug: Yes 1207 54 (4) 1706 74 (4)
Recurrent shock: Yes 1207 433 (36) 1706 593 (35)
Profound DSS: Yes 1207 222 (18) 1706 364 (21)
Critical DSS: Yes 1207 57 (5) 1706 83 (5)

S u m m a ry  statistics are median (IQR) fo r  continuous variables and frequency (% ) fo r  categorical variables. 

Abbreviations: A S T  =  aspartate aminotransferase, RT-PCR =  reverse transcriptase polym erase chain reaction, 

DENY = dengue virus, D SS  =  dengue shock syndrome.
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4.3.2 Analysis of profound DSS 

Univariate analysis

Apart from bleeding, abdominal tenderness, liver size and platelet count, all other parame­

ters assessed showed significant associations with profound DSS in the univariate analysis 

of the observational study population (Table 4.4). Results based on all 1706 patients were 

largely consistent.

Multivariable analysis

Linearity and additivity assessments As shown in Table 4.5, flexible spline functions 

showed a significant improvement for modelling the day of illness and HCT while linear 

terms seemed to be adequate for other covariates. Consistent with these findings, plots 

showing the estimated adjusted association of covariates with outcome from a generalized 

additive model (GAM) also indicated potential non-linearity in the relationships between 

day of illness and HCT with severity of disease (Figure 4.4). However, these non-linear 

associations were driven by rare patients with highly unusual covariate values. Indeed, for 

the day of illness at shock, the increase of severity from day 7 onwards just represents the 

high proportion of profound DSS amongst 4 unusual patients who had shock later than, 

day 7 (2 out of 4 had profound DSS). Similarly, for HCT, the high proportion of profound 

DSS amongst 5 patients who had HCT less than 40% (3 out of 5 cases had profound DSS) 

may distort the relationship between HCT and severity. Of note, 2 out of these profound 

DSS cases had received intravenous fluid before enrolment into the study. The plots from 

a GAM-fit without these 9 unusual cases estimated a linear association with outcome, i.e. 

confirmed the adequacy of the simple model (Figure 4.5). Because the day of illness at 

shock and HCT values of the unusual cases appeared correct and plausible, they were 

not excluded from the analysis even though these cases are not typical for dengue shock 

patients. However, due to their low number, they do not provide convincing evidence for 

a non-linear association.

The assessment of pre-defined interaction terms revealed a significant interaction be­

tween haemodynamic index and gender (Table 4.5). Haemodynamic index is a categorical 

variable created by categorizing and combining systolic blood pressure and pulse pres-
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sure. To exclude that the interaction is an artifact from categorization in the definition 

of haemodynamic index categories, alternative models which included systolic BP and 

pulse pressure as continuous covariates were fitted. This revealed that the interaction 

between haemodynamic index and gender can be explained by the interaction between 

systolic BP and gender and that the interaction remained when systolic BP was modelled 

as a continuous variable (p values of interaction tests are 0.05 and 0.02 for patients in 

the observational study including all subjects or only those with positive systolic BP only, 

respectively; of note, for the analysis of all subjects, systolic BP was modeled with 2 vari­

ables: continuous systolic BP and an indicator of zero systolic BP).

Based on these considerations, no non-linear terms were added to the multivariable 

logistic regression model but I added an interaction term between haemodynamic index 

and gender.
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Table 4.4. Univariate effects of candidate predictors on profound DSS estimated from univariate logistic 
regression models.

Covariate Observational study (n = 1207) All patients (n = 1706)
OR 95% Cl p value OR 95% Cl p value

Age [+1 year] 0.85 (0.81, 0.89) <0.01 0.83 (0.80, 0.86) <0.01
Gender 0.04 0.07
- Female 1.00 1.00
- Male 0.74 (0.55, 0.99) 0.80 (0.64, 1.02)
Weight [+5 kg] 0.84 (0.78, 0.90) <0.01 0.83 (0.77, 0.88) <0.01
Day of illness [+1 day] 0.73 (0.62, 0.87) <0.01 0.72 (0.63, 0.82) <0.01
Temperature [+1°C] 1.47 (1.07, 1.99) 0.02 1.49 (1.16, 1.90) <0.01
Pulse rate [+10 per min] 1.14 (1.10, 1.19) <0.01 1.11 (1.07, 1.14) <0.01
Systolic BP [+5 mmHg] 0.92 (0.90, 0.94) <0.01 0.93 (0.91, 0.95) <0.01
Pulse pressure [ + 5 mmHg] 0.61 (0.55, 0.68) <0.01 0.67 (0.61, 0.74) <0.01
Haemodynamic index <0.01 <0.01
- Group 1 1.00 1.00
- Group 2 1.67 (1.19, 2.32) 1.62 (1.24, 2.11)
- Group 3 5.06 (3.11, 8.23) 3.76 (2.53, 5.57)
Haemorrhage 0.43 0.02
- None 1.00 1.00
- Skin only 0.82 (0.60, 1.12) 0.80 (0.62, 1.05)
- Mucosal 0.98 (0.41, 2.11) 1.57 (0.90, 2.68)
Abdominal tenderness 0.29 0.21
- Yes 1.00 1.00
-No 1.18 (0.87, 1.59) 1.19 (0.91, 1.56)
Liver size [+1 cm] 1.04 (0.89, 1.21) 0.65 1.03 (0.91, 1.17) 0.62
HCT[+1 %] 1.07 (1.03, 1.11) <0.01 1.06 (1.02, 1.09) <0.01
PLT [ + 10,000 cell/mm3] 1.03 (1.00, 1.07) 0.07 1.02 (0.99, 1.05) 0.19
PLT [per 10-fold increase] 1.58 (0.91, 2.76) 0.11 1.42 (0.91, 2.22) 0.13
AST [+1 IU/1] 1.00 (1.00, 1.00) <0.01 1.00 (1.00, 1.00) <0.01
AST [per 2 times increase] 1.25 (1.07, 1.45) <0.01 1.27 (1.10, 1.47) <0.01
RT-PCR result 0.23 0.04
- DENV-1 1.00 1.00
- DENV-2 1.15 (0.81, 1.61) 1.22 (0.88, 1.69)
- DENV-3 2.46 (0.90, 6.25) 2.92 (1.48, 5.71)
- DENV-4 3.17 (0.62, 14.54) 1.28 (0.68, 2.39)
- Mixed 0.60 (0.03, 3.43) 0.56 (0.03, 3.08)

The analyses in all pa tien ts were adjusted fo r  the random ized trea tm ent assignm ent. Patients w ith  negative  

RT-PCT were excluded in the analysis fo r  RT-PCR.

Abbreviations: OR = odds ratio, Cl =  confidence interval, BP -  blood pressure, HCT  =  haem atocrit, P IT  -  

platelet count, A S T  = aspartate aminotransferase, RT-PCR =  reverse transcriptase polym erase chain reaction, 

DENY = dengue virus.
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Chapter 4. Prognostic models for profound DSS amongst children with DSS

Table 4.5. Linearity and additivity tests in the pre-defined logistic regression model for 
profound DSS (n = 1207).

Predictor Deviance df p value
Linearity tests (compared to a quadratic function)
Age 1.40 1 0.24
Weight <0.01 1 0.98
Day of illness 2.51 1 0.11
Pulse rate 0.44 1 0.51
Temperature 0.57 1 0.45
HCT 4.35 1 0.04
PLT 0.13 1 0.72
Linearity tests (compared to a natural cubic spline with 4 degrees of freedom)
Age 6.83 3 0.08
Weight 4.36 3 0.22
Day of illness 8.46 3 0.04
Pulse rate 1.29 3 0.73
Temperature 2.83 3 0.42
HCT 7.99 3 0.05
PLT 0.41 3 0.94
Additivity tests (interaction tests)
Age and all other covariates 16.7 14 0.27
Day of illness at shock and all other covariates 22.2 14 0.07
Haemodynamic index and all other covariates 35.6 24 0.06
Haemodynamic index and sex 9.9 2 0.01
Systolic BP and gender3 6.1 2 0.05
Systolic BP and genderb 5.7 1 0.02

a Systolic BP includes continuous systolic BP and indicator o f zero systolic BP, model on all p a ­

tients in the observational study. 

b Systolic BP ju s t  includes continuous systolic BP, model on pa tien ts in the observational study  

w ith  positive systolic BP.

Abbreviations: HCT  =  haematocrit, PLT =  platelet count, BP  =  blood pressure.
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Chapter 4. Prognostic models for profound DSS amongst children with DSS
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Figure 4.5. Plots of estimated component smooth functions for day of illness and haematocrit from 
a generalized addictive model (GAM) fit for profound DSS after removal of 9 patients with day of 
illness > 7 or haematocrit values < 40%. Dots correspond to individual partial residuals; solid lines 
correspond to spline functions estimated by GAM; gray areas correspond to point-wise 95% confidence 
intervals of the estimated values.

The full and reduced logistic regression model The multivariable models assessing 

relationships for the predefined candidate predictors with the primary outcome on the pri­

mary analysis population and on all patients are summarized in Table 4.6 & 4.7. Younger 

age, earlier day of illness at shock, faster pulse rate, higher temperature, higher haem at­

ocrit and worse haemodynamic status in females were all associated with profound DSS. 

These predictors were also chosen by the reduced model based on stepwise variable selec­

tion or best subset selection using AIC which both selected the same variables (Table 4.6 

& 4.7).
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Table 4.6. Adjusted effects of candidate predictors on profound DSS estimated from the full logistic 
regression model and the reduced model with stepwise variable selection based onAIC (n = 1207).

Covariate Full model Reduced model
OR 95% Cl p value OR 95% Cl p value

Age [+1 year] 0.86 (0.80, 0.93) <0.01 0.87 (0.83, 0.92) <0.01
Weight [+5 kg] 1.03 (0.92, 1.14) 0.59 - - -
Day of illness [+1 day] 0.79 (0.65, 0.94) 0.01 0.78 (0.65, 0.94) <0.01
Temperature [+1°C] 1.58 (1.12, 2.21) 0.01 1.59 (1.12, 2.20) <0.01
Pulse rate [+10 per min] 1.08 (1.03, 1.13) <0.01 1.07 (1.03, 1.13) <0.01
Haemorrhage 0.81 -
- None 1.00 -
- Skin only 0.94 (0.67, 1.33) - -
- Mucosal 1.22 (0.47, 2.89) - -
Abdominal tenderness 0.91 -
- Yes 1.00 -
-No 1.02 (0.70, 1.47) - -
Liver size [+1 cm] 0.96 (0.80, 1.16) 0.69 - - -
HCT[+1 %] 1.07 (1.03, 1.12) <0.01 1.07 (1.03, 1.12) <0.01
PLT [+10,000 cell/mm3] 1.02 (0.98, 1.06) 0.24 - - -
Gender
- Female 1.00 1.00
- Male 1.14 (0.75, 1.73) 1.17 (0.78, 1.77)
Haemodynamic index -  females
- Group 1 1.00 1.00
- Group 2 vs. group 1 2.57 (1.59, 4.15) 2.55 (1.58, 4.12)
- Group 3 vs. group 1 3.01 (1.43, 6.36) 3.06 (1.46, 6.45)
Haemodynamic index -  males
- Group 1 1.00 1.00
- Group 2 vs. group 1 0.82 (0.46, 1.41) 0.79 (0.45, 1.36)
- Group 3 vs. group 1 1.60 (0.70, 3.61) 1.55 (0.67, 3.49)

95%  confidence intervals fo r  the reduced model do no t take into account the uncerta in ty o f  m odel selection, 

p  values fo r  gender and haem odynam ic index are no t provided due to interaction.

Abbreviations: OR = odds ratio, Cl =  confidence interval, HCT  =  h a em a to a it, PLT — p la te let count, AIC  =  

A ka ike  inform ation criterion.
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Table 4.7. Adjusted effects of candidate predictors on profound DSS estimated from the full logistic 
regression model and the reduced model with stepwise variable selection based on AlCfor all patients (n 
= 1706).

Candidate predictors Full model Reduced model
OR 95% Cl p value OR 95% Cl p value

Age [+1 year] 0.82 (0.77, 0.87) <0.01 0.84 (0.80, 0.88) <0.01
Weight [ + 5 kg] 1.05 (0.96, 1.16) 0.27 - - -
Day of illness [+1 day] 0.74 (0.64, 0.85) <0.01 0.74 (0.65, 0.86) <0.01
Temperature [+1°C] 1.50 (1.14, 1.96) <0.01 1.50 (1.14, 1.95) <0.01
Pulse rate [+10 per min] 1.04 (1.00, 1.08) 0.08 1.04 (1.00, 1.08) 0.08
Haemorrhage 0.02 0.02.
- None 1.00 1.00
- Skin only 0.96 (0.72, 1.28) 0.94 (0.71, 1.25)
- Mucosal 2.16 (1.17, 3.91) 2.19 (1.20, 3.95)
Abdominal tenderness 0.47 -
- Yes 1.00 -
-No 0.89 (0.65, 1.23) - -
Liver size [+1 cm] 0.98 (0.85, 1.13) 0.79 - - -
HCT[+1 %] 1.07 (1.03, 1.11) <0.01 1.07 (1.03, 1.11) <0.01
PLT [+10,000 cell/mm3] 1.01 (0.98, 1.04) 0.53
Gender
- Female 1.00 1.00
- Male 1.13 (0.81, 1.58) 1.16 (0.84, 1.62)
Haemodynamic index -  females
- Group 1 1.00 1.00
- Group 2 vs. group 1 2.13 (1.44, 3.14) 2.11 (1.43, 3.10)
- Group 3 vs. group 1 2.94 (1.59, 5.44) 2.93 (1.59, 5.43)
Haemodynamic index -  males
- Group 1 1.00 1.00
- Group 2 vs. group 1 1.06 (0.69, 1.61) 1.02 (0.66, 1.53)
- Group 3 vs. group 1 1.15 (0.56, 2.31) 1.12 (0.55, 2.26)

These analyses were adjusted fo r  the random ized trea tm ent assignment. 95%  confidence intervals fo r  the  

reduced model do not take into account the uncertainty o f  model selection, 

p  values fo r  gender and haem odynam ic index are no t provided due to interaction.

Abbreviations: OR = odds ratio, Cl = confidence interval, HCT = haematocrit, PLT = p la te let count, AIC  =  

A ka ike  inform ation criterion.
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Model performance As described in Table 4.8, all approaches have similar overall per­

formance, in terms of the Brier score. However, their Brier scores are close to Brier scores 

of non-informative models that assign the incidence of the outcome as the predicted risk 

for all patients (estimated Brier score of non-informative models in temporal validation is 

0.12; median [IQR] Brier score of non-informative models in internal validation is 0.15 

[0.14-0.16]). Of note, Brier scores in temporal validation are lower than in internal vali­

dation, which may be explained by the lower outcome incidence in the test set in temporal 

validation (incidence of profound DSS in test set is 0.15 in temporal validation; in inter­

nal validation, median [IQR] outcome incidence is 0.18 [0.16-0.21]). The reduced models 

had very similar performance characteristics to the full model in terms of discrimination 

and calibration. Both models showed acceptable discrimination for both temporal and in­

ternal validation with an AUC of at least 0.69. Calibration in internal validation was also 

satisfactory. However, in temporal validation, models developed using data from the 939 

patients enrolled before 2009 tended to overestimate the risk of profound DSS for the 268 

patients enrolled in 2009 (i.e. the observed incidence of this outcome in the test set was 

15% compared to an average predicted risk of 21% in both the full and reduced models) 

(Table 4.8 & Figure 4.6). The reduced model performed better than, or as well as, al­

ternative logistic models and more sophisticated models including lasso, GAM, CART and 

boosting (Table 4.8). While several alternative models showed satisfactory performance, 

CART showed quite poor results.
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Figure 4.6. Calibration plots for temporal validation of the full logistic model (panel A) and the 
reduced model with variable selection based on AIC (panel B) for profound DSS. Model development 
was on patients enrolled before 2009 (n — 939), validation on patients enrolled in 2009 (n = 268). 
Black triangfes show average predicted versus observed risk for 5 patient strata of equal size grouped 
according to their predicted risk. Corresponding vertical lines show 95% confidence intervals. The 
black line corresponds to a non-parametric smoother of the predicted versus observed values. The 
red dashed reference line corresponds to the ideal relationship. Each panel also describes temporal 
validated performance of each model (left upper corner) and the distribution of observed values (at 
the bottom).
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Chapter 4. Prognostic models for profound DSS amongst children with DSS

The score chart

A simplified score chart for clinical use based on the reduced model was developed fol­

lowing the procedures described in section Model presentation, and is shown in Figure 

4.7. The base model was the reduced logistic model (stepwise model selection using 

AIC) displayed in Table 4.6. However, results in Table 4.6 give lower risk predictions in 

males with haemodynamic index group 2 compared to group 1. As the corresponding dif­

ference in estimates is small, non-significant, and clinically implausible, haemodynamic 

index groups 1 and 2 in males were pooled, and then the logistic model was refitted prior 

to deriving the point score. Of note, this score chart was derived without any adjust­

ment for mis-calibration. However, this adjustment could have been done by applying the 

internally-validated calibration intercept and slope to the linear predictors before deriving 

the final score.

This score chart assigns points to each predictor value and the total point sum is then 

translated to the predicted risk of a severe outcome. For example, the total point sum for 

a 10-year-old girl who presents on day 6 of illness with a pulse rate of 100 beats/min, 

a temperature of 37.5°C, a haematocrit of 44% and a haemodynamic index of 1 is 11 

(5+2+1+2+1+0), and therefore, her estimated risk of developing profound shock during 

hospitalization is less than 10%. Based on this low estimated risk and taking into account 

the available resources and clinical expertise, the treating physician may decide to keep 

this patient in his/her health facility with an appropriate monitoring schedule rather than 

to refer the patient to a higher level hospital.

The adequacy of this score chart was evaluated by comparing risk predictions from 

the score chart to those from the logistic model with AIC model selection for patients in 

the observational study. The median (IQR) of the differences between these two risk- 

estimation approaches was 0.018 (0.004, 0.035) and the range was -0.093 to 0.126. The 

largest differences occurred in patients with intermediate predicted risks (Figure 4.8 & 

4.9).
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Point score
Risk factor Categories Points Risk factor Categories Points

Age [years] 15 -  age Temperature [ °C] < 37.5 0
37.5 -  37.9 2

38.0 -  38.4 3
38.5 -  38.9 5

>39 6

Day of illness <4 7 Haematocrit [%] <40 0
4 5 4 0 - 4 4 1

5 4 45 -4 9 4
6 2 5 0 - 5 4 7

£7 0 55 -5 9 9
> 60 10

Pulse [per min] < 90 0 Hemodynamic Index

9 0 -  109 1 For females 1 0
1 1 0 -1 2 9 2 2 7

130-149 3 3 8
1 5 0 -1 6 9 4

170-189 5 For males 1 or 2 1
Rapid, thready 6 3 4

Risk estimation

Total score 510  15 20 
I ' I i

25
i

30 35 
i i

40
1

45 50
i i

Predicted risk [%]
"  1 1
0 10 20

I
30

"I........ . I I
40 50 60

r  — i—
70 80

--- 1----------1
90 100

Figure 4.7. S co re-ch a rt f o r  p re d ic tio n  o f  p ro fo u n d  D SS. The u p p e r  p a n e l a ssigns a  p o in t  score f o r  each  

r isk  fa c to r  w h ile  the  lo w er p a n e l assigns th e  p re d ic ted  r isk  o f  d eve lo p in g  p ro fo u n d  sh o c k  b a sed  o n  th e  

to ta l p o in t  su m  f o r  a ll r isk  fa c to rs .
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Risks estimated from the score chart

Figure 4.8. Scatter plot of risks estimated from the score chart versus the logistic regression model

Figure 4.9. Bland-Altman plot of differences between risks estimated by the score chart and those esti­
mated by the logistic model for profound DSS withAkaike information criterion (AIC) model selection 
(and without pooling the haemodynamic index categories in males).
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4.3.3 Analysis of recurrent shock

Results from the analysis of recurrent shock were consistent with results from the analy­

sis of profound DSS and for both outcomes; there was a significant interaction between 

haemodynamic index and gender (Table 4.9). Independent risk factors of recurrent shock 

were younger age, earlier day of illness at shock, higher temperature, faster pulse rate, 

higher haematocrit and worse haemodynamic status in females. The prediction model 

for recurrent shock based on these risk factors had a moderate performance and AUC, 

calibration-in-the-large, and calibration slope in internal validation were 0.64, -0.003, 

0.86 (for the full model) and 0.65, -0.004, 0.93 (for the reduced model with stepwise 

variable selection based on AIC), respectively (Table 4.10).

This dataset also provides an opportunity to externally assess the performance of a 

prognostic model developed by Huy et al. (2013a). Their model aimed to predict the 

occurrence of recurrent shock based on five variables: day of illness at hospital admission, 

presence of purpura/ecchymosis and ascites/pleural effusion at shock, as well as platelet 

count and pulse pressure at shock. For the DF data, the model equation of Huy et al. 

(2013a) yielded an AUC of 0.54 (95% confidence interval: 0.50-0.57) and substantially 

under-estimated the true risk of recurrent shock (average predicted risk 15% compared to 

an observed risk of 36%).
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Table 4.9. Adjusted effects of candidate predictors for recurrent shock estimated from logistic models for 
patients in the observational study and all patients.

Covariate Observational study All patients
OR 95% Cl p value OR 95% Cl p value

Age [+1 year] 0.90 (0.85, 0.96) <0.01 0.86 (0.82, 0.91) <0.01
Weight [+5 kg] 1.00 (0.92, 1.08) 0.96 1.03 (0.96, 1.11) 0.46
Day of illness [+1 day] 0.78 (0.68, 0.91) <0.01 0.75 (0.66, 0.84) <0.01
Temperature [+1°C] 1.85 (1.39, 2.48) <0.01 1.79 (1.41, 2.28) <0.01
Pulse rate [+10 per min] 1.07 (1.02, 1.11) <0.01 1.05 (1.01, 1.08) 0.01
Haemorrhage 0.95 0.19
- None 1.00 1.00
- Skin only 0.96 (0.73, 1.26) 0.97 (0.76, 1.23)
- Mucosal 1.02 (0.47, 2.14) 1.57 (0.90, 2.71)
Abdominal tenderness 0.76 0.98
- Yes 1.00 1.00
-No 0.95 (0.71, 1.28) 1.00 (0.77, 1.31)
Liver size [+1 cm] 1.05 (0.91, 1.22) 0.49 1.03 (0.91, 1.17) 0.63
HCT [+1 %] 1.07 (1.03, 1.11) <0.01 1.07 (1.04, 1.10) <0.01
PLT [+10,000 cell/mm3] 1.00 (0.96, 1.03) 0.86 0.99 (0.97, 1.02) 0.69
Gender
- Female 1.00 1.00
- Male 1.42 (1.04, 1.95) 1.40 (1.07, 1.83)
Haemodynamic index -  females
- Group 1 1.00 1.00
- Group 2 vs. group 1 1.86 (1.24, 2.79) 1.77 (1.26, 2.50)
- Group 3 vs. group 1 1.51 (0.75, 3.05) 1.74 (0.98, 3.11)
Haemodynamic index -  males
- Group 1 1.00 1.00
- Group 2 vs. group 1 0.77 (0.50, 1.16) 0.91 (0.64, 1.28)
- Group 3 vs. group 1 0.65 (0.30, 1.41) 0.56 (0.29, 1.08)

Interaction tests between gender and haem odynam ic index were significant in both models  ( p< 0 .01  in both  

models), p  values fo r  gender and haem odynam ic index are no t provided due to interaction.

The analyses in all patients were adjusted fo r  the random ized treatm ent assignment.

Abbreviations: OR = odds ratio, Cl = confidence interval, HCT  =  haematocrit, PLT = pla telet count.
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Chapter 4. Prognostic models for profound DSS amongst children with DSS

4.3.4 Analysis of critical DSS

The numbers of patients experiencing critical DSS in the observational study and in the 

whole patient population were 57/1207 (5%) and 83/1706 (5%), respectively. The mul­

tivariable analysis of this outcome in the observational study patients identified similar 

risk factors as for the profound DSS (Table 4.11) except that pulse rate was not an in­

dependent risk factor, and there was no evidence of an interaction between gender and 

haemodynamic index.

Table 4.11. Adjusted effects of candidate predictors on critical DSS estimated from logistic models 
for patients in the observational study and for all patients.

Covariate Observational study All patients
OR 95% Cl p value OR 95% Cl p value

- Age [+1 year] 0.73 (0.62, 0.86) <0.01 0.72 (0.62, 0.82) <0.01
Gender 0.09 0.03
- Female 1.00 1.00
- Male 0.59 (0.32, 1.08) 0.59 (0.36, 0.96)
Weight [+5 kg] 0.96 (0.73, 1.22) 0.73 1.00 (0.80, 1.24) 0.97
Day of illness [+1 day] 0.71 (0.49, 1.00) 0.05 0.77 (0.59, 1.01) 0.06
Temperature [+1°C] 1.51 (0.84, 2.54) 0.16 1.83 (1.20, 2.72) <0.01
Pulse rate [+10 per min] 0.97 (0.87, 1.06) 0.48 0.98 (0.90, 1.06) 0.62
Haemodynamic index 0.04 0.23
- Group 1 1.00 1.00
- Group 2 1.00 (0.47, 1.99) 1.04 (0.59, 1.81)
- Group 3 3.36 (1.26, 9.18) 2.13 (0.89, 5.12)
Haemorrhage 0.63 0.17
- None 1.00 1.00
- Skin only 0.75 (0.41, 1.39) 0.89 (0.53, 1.51)
- Mucosal 1.06 (0.14, 5.01) 2.42 (0.80, 6.52)
Abdominal tenderness 0.78 0.44
-Yes 1.00 1.00
- No 1.10 (0.56, 2.10) 1.26 (0.70, 2.23)
Liver size [+1 cm] 1.00 (0.71, 1.41) 0.99 1.13 (0.86, 1.49) 0.38
HCT[+1 %] 1.10 (1.02, 1.19) 0.01 1.09 (1.02, 1.16) <0.01
PLT [+10,000 cell/mm3] 1.04 (0.99, 1.10) 0.10 1.04 (1.00, 1.09) 0.06

Interaction tests between gender and haem odynam ic index were no t significant fo r  both models (p = 0 .4 5  

and  0.85, respectively). The analyses in all pa tien ts were adjusted fo r  the random ized trea tm ent assign­

ment.

A bbreviations: OR = odds ratio, Cl = confidence interval, HCT  =  haematocrit, PLT =  platelet count.
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4.3.5 Analysis of total volume of colloid

Results from Cox regression identified the same risk factors for the higher volume of col­

loid required (Table 4.12 & 4.13). These results were also in agreement with the analysis 

of primary endpoint, at least in the direction of potential effects of pre-defined covariates 

on outcome.

Table 4.12. Adjusted effects of candidate predictors on the total volume of colloid estimated from 
Cox models for patients in observational study (n = 1207).

Covariate Model 1 Model 2
HR 95% Cl p value HR 95% Cl p value

Age [+1 year] 1.06 (1.03, 1.09) <0.01 1.06 (1.03, 1.09) <0.01
Gender 0.78 0.75
- Female 1.00 1.00
- Male 1.02 (0.90, 1.15) 1.02 (0.90, 1.15)
Weight [+5 kg] 1.04 (1.00, 1.07) 0.07 1.03 (0.99, 1.07) 0.09
Day of illness [+1 day] 1.11 (1.04, 1.18) <0.01 1.11 (1.04, 1.18) <0.01
Temperature [+1°C] 0.85 (0.74, 0.98) 0.02 0.82 (0.71, 0.94) <0.01
Pulse rate [ + 10 per min] 0.96 (0.94, 0.98) <0.01 0.96 (0.94, 0.98) <0.01
Haemodynamic index <0.01 <0.01
- Group 1 1.00 1.00
- Group 2 0.90 (0.78, 1.03) 0.89 (0.78, 1.02)
- Group 3 0.55 (0.42, 0.71) 0.57 (0.44, 0.74)
Haemorrhage 0.67 0.62
- None 1.00 1.00
- Skin only 1.06 (0.93, 1.20) 1.06 (0.93, 1.20)
- Mucosal 1.06 (0.76, 1.48) 0.98 (0.71, 1.37)
Abdominal tenderness 0.24 0.18
-Yes 1.00 1.00
- No 1.08 (0.95, 1.24) 1.10 (0.96, 1.25)
Liver size [+1 cm] 1.02 (0.96, 1.09) 0.55 1.01 (0.95, 1.08) 0.68
HCT[+1 %] 0.97 (0.96, 0.98) <0.01 0.97 (0.96, 0.98) <0.01
PLT [+10,000 cell/mm3] 1.00 (0.98, 1.01) 0.58 1.00 (0.98, 1.01) 0.72

Outcome o f who died were either treated as right-censored observations (model 1) or replaced by the  

m axim um  observed outcome p lus 1 (model 2).

Abbreviations: HR  =  hazards ratio, Cl — confidence in ten ’al, HCT = haematocrit, PLT = p la telet count.
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Table 4.13. Adjusted effects of candidate predictors on the total volume of colloid estimated from 
Cox regression models for all patients (n = 1706).

Covariate Model 1 Model 2
HR 95% Cl p value HR 95% Cl p value

Age [+1 year] 1.07 (1.05, 1.10) <0.01 1.07 (1.05, 1.10) <0.01
Gender 0.40 0.36
- Female 1.00 1.00
- Male 1.04 (0.94, 1.15) 1.05 (0.95, 1.16)
Weight [+5 kg] 1.05 (1.01, 1.08) 0.01 1.04 (1.00, 1.08) 0.03
Day of illness [+1 day] 1.13 (1.07, 1.18) <0.01 1.12 (1.07, 1.18) <0.01
Temperature [+1°C] 0.82 (0.73, 0.92) <0.01 0.78 (0.70, 0.88) <0.01
Pulse rate [+10 per min] 0.97 (0.95, 0.98) <0.01 0.96 (0.95, 0.98) <0.01
Haemodynamic index <0.01 <0.01
- Group 1 1.00 1.00
- Group 2 0.92 (0.82, 1.03) 0.92 (0.82, 1.03)
- Group 3 0.63 (0.50, 0.78) 0.66 (0.53, 0.82)
Haemorrhage 0.84 0.69
- None 1.00 1.00
- Skin only 1.03 (0.92, 1.15) 1.03 (0.92, 1.15)
- Mucosal 1.00 (0.78, 1.29) 0.94 (0.73, 1.21)
Abdominal tenderness 0.69 0.53
-Yes 1.00 1.00
-No 1.03 (0.91, 1.16) 1.04 (0.92, 1.18)
Liver size [+1 cm] 1.01 (0.96, 1.07) 0.72 1.00 (0.95, 1.06) 0.95
HCT[+1% ] 0.97 (0.96, 0.98) <0.01 0.97 (0.96, 0.98) <0.01
PLT [+10,000 cell/mm3] 0.99 (0.97, 1.00) 0.05 0.99 (0.98, 1.00) 0.09

Outcome o f  who died were either treated as right-censored observations (model 1) or replaced by the 

m axim um  observed outcom e plus 1 (model 2 ). These analyses were adjusted fo r  the random ized treat­

m en t assignment.

Abbreviations: HR = hazards ratio, Cl =  confidence interval, HCT  =  haematocrit, PLT =  platelet count.
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4.4 Discussion

This chapter evaluated risk factors for poor outcomes in children with DSS. Younger age, 

earlier day of illness, higher temperature, faster pulse rate, higher haematocrit, and a 

worse haemodynamic status (in females) at onset of shock were associated with a higher 

risk of developing profound DSS, the primary outcome of this study. The results for sec­

ondary outcomes including recurrent shock, critical DSS and total volume of colloid, were 

largely consistent with the primary analysis. A robust prediction model for profound shock 

was developed and presented as a simple score-chart designed to assist decision-making 

in clinical practice.

The pathognomonic feature of the vasculopathy associated with severe dengue is an 

increase in intrinsic vascular permeability resulting in a transient capillary leak syndrome. 

Cardiovascular decompensation occurs when plasma losses exceed the capacity for up- 

regulation of the normal compensatory mechanisms that maintain plasma volume within 

well-circumscribed limits (Trung and Wills, 2010). Several studies have demonstrated a 

greater risk for vascular leakage and development of DSS among children compared to 

adults (Anders et al., 2011; Guzman et al., 2002; Hammond et al., 2005; Dinh The et al., 

2012), probably related to higher intrinsic permeability with younger age (Gamble et al., 

2000), and a relationship with severity of shock is therefore to be expected. Similarly ear­

lier presentation with DSS implies more severe capillary leakage that quickly overwhelms 

the capacity for compensation, and this is consistent with the associations demonstrated 

between profound shock and other markers of leakage severity such as higher haematocrit 

and more severe haemodynamic compromise at presentation. Higher temperature at on­

set of shock was also associated with profound shock; 9% of cases had a temperature of 38 

degrees or more at presentation irrespective of the day of illness (Chapter 3) possibly in­

dicating a greater viral burden or a more intense immune response in these cases. Several 

of these factors, and others such as aspartate aminotransferase identified in the univariate 

analysis, have also been identified as risk factors for development of shock and/or more 

severe dengue disease generally (Anders et al., 2011; Potts et al., 2010a; Srikiatkhachom 

and Green, 2010).

Interestingly no significant relationship between platelet count and shock severity was
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found, although other studies have indicated a strong association with leakage severity 

(Wills et al., 2009). However, it is probable that the profound thrombocytopenia already 

present at enrolment masked any additional effects, and that a very large sample size 

would be required to detect differences between severity groups. Similarly the absence 

of any relationship between abdominal tenderness or liver size and shock severity likely 

reflects the fact that these parameters are closely linked with development of shock per 

se.

Female gender has been identified previously as an independent predictor of mortality 

in children with DSS, possibly reflecting higher intrinsic vascular permeability and thus 

greater susceptibility to capillary leak syndrome in females than males (Anders et al., 

2011). In this study, there was a difference in the effect of initial haemodynamic status 

by gender in the analysis of profound DSS and recurrent shock but not with the more 

restricted definition of critical DSS. Potentially the higher intrinsic permeability in female 

subjects does influence the severity of leakage but only up to a critical point; when haemo­

dynamic collapse finally occurs all subjects do badly and the differential effect of gender 

is obscured. Of note however, in the analysis of the secondary outcome of critical DSS, the 

event rate was lower and hence the statistical power to identify associations was reduced.

The final clinical prediction model provides a reliable tool to predict development of - 

profound shock among DSS cases. The candidate predictors and primary outcome were 

prospectively defined, and the model was carefully developed and validated following 

standard methodology expected to minimize optimistic and/or spurious results (Harrell, 

2001; Steyerberg, 2010). The final full model showed good calibration and discrimina­

tion, with an AUC of 0.74 (0.65, 0.82) for temporal validation, and performed favourably 

compared to a number of alternative modelling strategies. In temporal validation, all the 

statistical models tended to overestimate the average risk of profound DSS in patients re­

cruited in 2009 by about 5%, compared to models developed on patients recruited earlier 

during the study-period. There was no systematic linear time-trends in the risk for pro­

found DSS over time and the same recruitment protocol and treatment regime were used 

throughout the study. However, the observed risk in 2009 was the lowest over the entire 

observation period (Figure 4.3). Although the over-estimation in 2009 could be a chance 

finding it is also possible that some undefined change did occur, only becoming apparent
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in 2009, but if so, the overall effect was minor.

The final model was simplified to a score chart. While this approach results in a mild 

loss of precision (Steyerberg, 2010), a chart is easier to understand than a regression 

formula or a nomogram, and allows clinicians to rapidly assess a patient’s risk of progres­

sion. There is no clear-cut risk stratification or a decision rule based on the final prognostic 

model, since such a rule would require careful evaluation of costs and benefits, together 

with a defined intervention strategy for high-risk patients. Currently no such strategy 

exists, and effective management relies on careful monitoring and assiduous supportive 

care. In these circumstances experienced doctors are better equipped to decide on a par­

ticular therapeutic regimen, and the contribution of the current prognostic model is to 

provide physicians with guidance on the likely risk for developing profound shock. Ideally 

all DSS cases should be managed in a high-dependency unit (HDU) or ICU, but such facil­

ities are limited especially in dengue-endemic areas, and given the very large numbers of 

potentially severe cases encountered daily, it can be difficult to prioritise individual cases. 

Using this score physicians may elect to monitor high-risk patients closely in a local HDU 

or ICU setting, or may choose to transfer them early to tertiary-level facilities, allowing 

more effective use of available staff and equipment for the remaining DSS cases. In the 

wider context, a prediction model such as this could be useful for identification of target 

populations for studies evaluating novel interventions for DSS (Simmons et al., 2012a).

Regarding prediction model for recurrent shock, the model developed in this project 

differs from the recent prediction model for recurrent shock developed by Huy et al. 

(2013a) in several respects, even though both models were based on Vietnamese children 

with DSS. Data of 1207 patients from a single hospital was used in this study whereas 

the study by Huy et al combined data of 444 patients from two very different health care 

settings (a preventive health-care centre of a small province and a large referral hospital 

in a big city) but did not report site-specific summaries. That model identified admission 

day, purpura/ecchymosis, ascites/pleural effusion, platelet count and pulse pressure, as 

risk factors for recurrent shock (Huy et al., 2013a); whereas identified risk factors for 

recurrent shock in this study were younger age, earlier day of illness at shock, higher 

temperature, faster pulse rate, higher haematocrit and worse haemodynamic status in fe­

males. It is difficult to compare the models, as the reported proportions of patients with
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purpura/ecchymosis (36% in Huy’s study vs. 3% in this study) and ascites/pleural effu­

sion (44% in Huy’s study vs. 1% in this study) were markedly different. Of note all data in 

this study were collected within 2 hours of onset of shock, while the timing of data collec­

tion in Huy’s study was not clearly specified; the high incidence of features that typically 

develop after initiation of fluid resuscitation suggests that timing of data collection may 

be relevant, and may explain why application of Huy’s model to this dataset showed only 

low discrimination (AUC 0.54) for the prediction of recurrent shock.

One potential limitation of this study relates to the definition of the clinical outcomes, 

some of which may be considered subjective. However, management of DSS in endemic 

areas is generally protocol driven, following a long-established precedent established by 

the World Health Organization (World Health Organization, 1997), and adherence to lo­

cal management guidelines is typically very good in Vietnam. In addition, results from 

analysis of recurrent and profound shock were largely consistent with the analysis of crit­

ical DSS, which is less prone to clinician bias. Furthermore, in the context of DSS where 

prompt diagnosis with immediate fluid resuscitation is very effective (World Health Orga­

nization, 2009), the occurrence of hard outcomes such as death or major complications 

depends heavily on local expertise and the facilities of the healthcare system (Gibbons 

and Vaughn, 2002). Although the definition of profound DSS in this study might be a 

robust assessment of the overall severity of DSS, physicians applying these results must 

understand the provided reasoning as well as the potential pitfalls inherent in this type of 

analysis.

Developing a prognostic model using data from a single hospital with better exper­

tise and facilities than many local healthcare facilities may be considered another lim­

itation of the study, potentially restricting generalizability outside the primary context. 

However, as all the risk factors identified are clinically plausible, the model might also 

discriminate effectively in other settings. To adjust the model to provincial hospitals in 

Vietnam, where the distribution of predictors would likely be very similar to this study, 

simple re-calibration of the intercept of the current prognostic model to take into account 

differences in outcome prevalence may be sufficient, and such a re-calibration could be 

performed with a much smaller sample size (Steyerberg, 2010). However, re-calibration 

or re-estimation of the regression coefficients may be required to adapt the current model
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to settings with markedly different patient characteristics, facilities or management guide­

lines (Steyerberg, 2010). Further work is needed to assess the performance of the model 

in a variety of hospitals and clinics within the region, as well as more broadly across 

healthcare systems in parts of the world where dengue infection is less common.

In summary, this chapter identified several clinical and laboratory risk factors of severe 

outcome amongst children with DSS. Based on these predictors, a simple score chart for 

profound DSS prediction was derived. This score-chart, which is simple to understand and 

easy to apply, could play a valuable role in triage and management of children with DSS in 

endemic areas, although precise prediction alone cannot improve clinical decision-making 

or overall outcomes.
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Chapter 5

Prognostic models for DSS in 

hospitalized children with dengue

Summary

This chapter describes risk factors for DSS and presents a prognostic model for progression 

to DSS amongst hospitalized children with dengue using baseline information only.
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5.1 Introduction

In contrast to the previous two chapters, which studied the DF cohort of children with 

dengue shock syndrome (DSS), this chapter examines the broader MD cohort of hos­

pitalized children with dengue and investigates risk factors for progression to DSS. As 

described in Chapter 1, several earlier studies aimed to identify risk factors for severe 

outcomes amongst patients with dengue. However, only a few studies also tried to incor­

porate the identified risk factors into clinical prediction models in order to provide useful 

tools for clinical practice. Moreover, most of these studies looked at DHF rather than DSS 

as the primary outcome, included only small sample sizes, and used non-standardized 

modeling strategies.

In this study, we aimed to assess the predictive ability of several clinical and labora­

tory variables which are commonly available in endemic countries like Vietnam for the 

outcome of progression to DSS and to incorporate these variables into a prediction model 

using a large dataset of children hospitalized with dengue infection.

5.2 Methods

This chapter utilized data from the MD cohort. Detailed information related to study 

design, study participants, dengue diagnostics, general statistical analyses (descriptive 

analysis, treatment of missing values) and modeling strategy are described in Chapter 2 .1 

present here definitions of the primary study population, clinical outcomes and candidate 

predictors and several specific statistical methods used in this chapter.

5.2.1 Study population

The primary study population included only patients with laboratory-confirmed dengue 

who were enrolled before day 5 of illness and did not experience DSS on the day of 

enrolment. Patients enrolled at a later day of illness were excluded as DSS most frequently 

occurs on day 5 or 6 of illness (Chapter 3). However, all patients regardless of the day of 

illness at enrolment were included in the descriptive analyses.

101



Chapter 5. Prognostic models for DSS in hospitalized children with dengue

5.2.2 Clinical outcomes and candidate predictors

In this study, the primary outcome of interest is the occurrence of DSS. In addition, the fol­

lowing clinical outcomes during hospitalization were described: referral to the pediatric 

intensive care unit (PICU), new bleeding, requirement for intravenous fluids, the platelet 

nadir, the day of the platelet nadir, the maximum haematocrit (HCT), the day of the maxi­

mum HCT, and the overall haemoconcentration. Definitions of these clinical outcomes are 

described in Table 5.1.

Table 5.1. Definition of clinical outcomes.

Clinical outcome Definitions
Dengue shock syndrome WHO definition (World Health Organization, 2009)
Referral to the PICU Being referred to the PICU
Newbleeding Having new bleeding during hospitalization
Platelet nadir The minimum PLT count from day 3 to day 8 of illness (set to

missing if <3 PLT values were available for a subject)
Day of platelet nadir The day of illness at which the platelet nadir was reached
Maximum HCT The maximum HCT value from day 3 to day 8 (set to missing if

<3 HCT values were available for a subject)
Day of maximum HCT The day of illness at which the maximum HCT was reached
Overall haemoconcentration The overall haemoconcentration was defined as the percentage

change of the maximum HCT from day 3 to 8 compared to the 
normal HCT for a specific patient. The normal HCT for a specific 
patient was defined as the HCT value at follow-up (after day 14 of 
illness). If this was not available, the minimum HCT value before 
day 2 of illness (provided the PLT count at the same time was 
> 200,000 cells/mm3) or the population value (37% for children 
from 5 to 10 years old, 38.5% for females more than 10 years old, 
40% for males more than 10 years old) was used.

Abbreviations: PICU =  paediatric intensive care unit, HCT =  haematocrit, PLT = platelet count.

Table 5.2 describes candidate predictors measured at the time of enrolment into the 

cohort. These predictors included the presence of WHO warning signs (World Health Or­

ganization, 2009; Alexander et al., 2011) and other clinical signs and symptoms that were 

identified as risk factors of severe dengue in previous studies (Huy et al., 2013a). Serotype 

and immune status were only included in univariate analyses but not in the multivariable 

analysis as they were missing in a large number of participants and in general they would 

not be available to the treating physician in clinical practice.

102



Chapter 5. Prognostic models for DSS in hospitalized children with dengue

Table 5.2. List of candidate predictors.

Predictor Unit or possible values Type
Age Year Continuous
Gender Female/Male Binary
Weight Kg Continuous
Day of illness Day of illness at enrolment Continuous
History of tiredness Yes/No Binary
History of vomiting Yes/No Binary
Tourniquet test Negative/Equivocal/Positive Categorical
Temperature Body temperature [°C] measured in the axilla Continuous
Pulse rate Beats per minute Continuous
Systolic blood pressure mmHg Continuous
Mucosal bleeding Yes/No Binary
Abdominal pain Yes/No Binary
Palpable liver Yes/No Binary
Haematocrit Haematocrit value [%] Continuous
Platelet count Platelet count [cells per mm3] Continuous

5.2.3 Statistical analysis

As described in detail in Chapter 2, logistic regression was the statistical model of choice 

for all univariate and multivariable analyses. All candidate predictors were included in 

both univariate and multivariable analyses. The univariate analysis was based on the 

complete-case dataset, whereas I used multiple imputation for the multivariable analyses.

Details regarding the calculation of multivariable analyses and the chosen strategy for 

the development of the prognostic model for DSS are described in Chapter 2. Linearity 

assessment was performed for all continuous variables. Furthermore, I tested for possible 

interactions between gender and day of illness at enrolment, gender and all other covari- 

ates, and day of illness with all other covariates. Regarding model validation, I used a) 

10-times 10-fold cross-validation and b) temporal validation, where the original dataset 

was split into a training set including 1663 patients enrolled before 2008, and a test set 

including 638 patients enrolled from 2008 onwards. For multiple imputation analysis, I 

followed current recommendations on how to perform these analyses on multiple im pu­

tation datasets (White et al., 2011) as detailed in Chapter 2 (Sections 2.2.3).
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5.3 Results

5.3.1 General description

Children with 
confirmed dengue infection 

(n = 2598)

Children hospitalized with 
clinical dengue infection 

(n = 3044)

Analysis population 
(n = 2301)

Excluded (n = 297)
- Day of illness at enrolment was missing (n = 1)
- Being enrolled after day 4 of illness (n = 296)

Excluded (n = 446)
- Not enough information (n = 2)
- Not dengue (n = 213)
- Unknown serology and PCR result (n = 215)
- Shock occurred on day of enrolment (n = 16)

Figure 5.1. Flow-chart of the analysis for DSS development.

A total of 3044 children were enrolled into the MD cohort and 2598 of them had a 

laboratory confirmed dengue diagnosis. Amongst these, 2301 patients were enrolled on 

day 4 of illness or earlier and formed the primary analysis population (Figure 5.1).

Baseline characteristics

Characteristics of study participants at enrolment are summarized in Table 5.3. There 

were more males than females enrolled in this study and the median age was 12 years 

(IQR 10-13 years, range 5-16 years). Almost all patients were admitted to the Hospital 

for Tropical Diseases (HTD) within the first 4 days of illness (2411/2598, 94%). Most 

patients were then enrolled into the study within two days from hospital admission (67% 

on admission, 26% after 1 day, 6% after 2 days). The delay in enrolment of patient into 

the study may be explained by the fact that most study doctors were also treating doctors 

at the ward and extremely busy, especially during the dengue season. Another explanation 

is the fact that 206 (24% of 852 patients who were enrolled late) patients were admitted
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on Saturday and Sunday, and therefore be enrolled one or two days later as study patients 

were only enrolled on weekdays.

As expected, most patients still had fever at enrolment (96% patients had body tem­

perature > 38°C). In general, haemodynamic parameters including pulse rate and systolic 

BP were still within the normal range. There was one case with a systolic BP of 199 

mmHg; however, this high blood pressure may not be attributable to dengue infection as 

the patient also had an underlying congenital heart disease.

At the time of enrolment, platelet values were quite low, whereas haematocrit values 

were slightly higher than the normal range. In patients whose follow-up platelet count 

after 14 days of illness was available, the platelet counts at enrolment were decreased by 

a median of 59% (IQR, 43% - 69%) compare to follow-up values; whereas, the level of 

haemoconcentration at enrolment was minimal (median 3%, IQR -3% to 10%).

Most cases were infected with DENV-1 and DENV-2. Amongst cases whose serology 

status could be determined, many (79%, 1601/2030) were secondary infections.
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Table 5.3. Characteristics o f participants at study enrolment.

Characteristics

Age [years]
Gender: Female 
Weight [kg]
Day of illness at enrolment 
- 1 
- 2  
-3  
- 4

- 5 
-6
- 7
Days from
admission to enrolment 
-0  
-1 
-2  
-3  
- 4

History of headache: Yes 
History of muscle pain: Yes 
History of tiredness: Yes 
History of diarrhea: Yes 
History of cough: Yes 
History of vomiting: Yes 
Temperature [°C] 
Temperature > 38°C 
Tourniquet test
- Negative
- Equivocal
- Positive 
Pulse [per min]
Systolic BP [mmHg] 
Bleeding
- None
- Skin only
- Mucosal
Abdominal pain: Yes

Patients with dengue 
(n = 2598)

n Summary statistics
2597 12 (10-13)
2598 1068 (41)
2592 35.0 (27.0-42.0)
2597

12 «  1)
351 (13)
908 (35)

1030 (40)
286 (11)

9 « 1 )
1 « 1 )

2596

1746 (67)
682 (26)
143 (6)
23 (1)
2 « 1 )

2597 1853 (71)
2586 584 (23)
2594 2201 (85)
2591 238 (9)
2594 398 (15)
2591 940 (36)
2596 39.0 (38.5-39.5)
2596 2492 (96)
2582

1279 (49)
532 (21)
771 (30)

2593 100 (100-120)
2595 90 (90-100)
2537

1759 (69)
578 (23)
200 (8)

2586 556 (22)

Patients with dengue 
before day 5 (n = 2301)

n Summary statistics
2300 12 (10-13)
2301 939 (41)
2296 34.5 (27.0-42.0)
2301

12 « 1 )
351 (15)
908 (39)

1030 (45)
0 (0)
0 (0)
0 (0)

2299

1564 (68)
603 (26)
117 (5)
15 (1)
0 (0)

2301 1627 (71)
2290 507 (22)
2298 1936 (84)
2295 196 (9)
2298 351 (15)
2295 832 (36)
2299 39.0 (38.5-39.5)
2299 2210 (96)
2289

1164 (51)
458 (20)
667 (29)

2297 100 (100-116)
2298 93 (90-100)
2244

1615 (72)
471 (21)
158 (7)

2291 465 (20)
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Palpable liver: Yes 2575 256 (10) 2279 217 (10)
Liver size below 256 1 (1-2) 217 1 (1-2)
the costal margin [cm]
HCT [%] 2554 39.6 (37.3-42.1) 2259 39.5 (37.2-42.0)
Haemoconcentration [%]a 2553 2.6 (-3.1-9.7) 2258 2.0 (-3.3-9.0)
PLT [1000 cells/mm3] 2553 129 (92-174) 2258 134 (97-178)
PLT change [%]b 1009 -58.6 (-69.6- -43.4) 894 -56.7 (-67.6- -41.9)
Serotype 2430 2152
- DENV-1 1116 (46) 956 (44)
- DENV-2 583 (24) 553 (26)
- DENV-3 219 (9) 195 (9)
- DENV-4 176 (7) 169 (8)
- Mixed 9 « 1 ) 8 « 1 )
- Negative 327 (13) 271 (13)
Immune status 2567 2271
- Primary 141 (5) 114 (5)
- Possible primary 288 (11) 271 (12)
- Secondary 1601 (62) 1419 (63)
- Unclassifiable 537 (21) 467 (21)

S u m m ary  statistics are m edian (IQR) fo r  continuous variables and frequency (% )fo r  categorical variables. 

a Haemoconcentration was defined as the percentage change in the haem atocrit value a t enrolm ent com­

pared to norm al haem atocrit (follow-up value or early value or population  value). 

b Comparing to follow -up value.

Abbreviations: IQR = interquartile range, HCT = haematocrit, PLT =  platelet count, DENV = dengue 

virus.

Clinical outcomes

During hospitalization, 200 cases (8%) were referred to the PICU for more intense m on­

itoring and management (Table 5.4). Among 2598 patients with dengue, 156 (6%) pa­

tients developed DSS (55/156 or 35% of them  were females) and there was no systematic 

time trend in the incidence of DSS over the study period (linear trend test: p value was 

0.57). Even though DSS occurred on any day from day 3 to 8 of illness, the most critical 

period was from day 4 to day 6 (90% of DSS cases). In most cases, DSS happened within 

3 days from enrolment (94%).

New bleeding occurred in 42% of cases, but in only 11% of these cases (120/1071) 

was the bleeding site mucosal. Among cases with mucosal bleeding, the most frequent 

bleeding sites were nose (66/120) and gum (35/120), with less frequent sites being gas-
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trointestinal (16/120) and vaginal (5/120). Haemorrhage into the spinal cord occurred 

in 1 case.

The platelet nadir commonly occurred around day 6 with a median nadir value of 

64,000 (IQR: 41,000-98,000) cells/mm3. Many patients also had their highest haema­

tocrit value on the same day with a median level of 44% (IQR 41%-47%) and a corre­

sponding median maximum haemoconcentration of 13% (IQR 6% -  22%).

In general, the distributions of baseline characteristics and clinical outcomes in cases 

enrolled before day 5 were similar to those of all patients with dengue (Table 5.3 & 5.4).

Assessment of missing values

Amongst cases enrolled before day 5 of illness, 7% (171/2301) of participants had at least 

one missing value in one or more candidate predictors. The number of missing values 

per individual ranged from 0 to 6. HCT and PLT were the two most frequently missing 

predictors with 2% missing values.

The absence of several variables was found to be related to observed values of other 

variables: Tourniquet test results tended to be more frequently missing in cases who did 

not report tiredness, and the liver size below the costal margin was more often missing in 

cases enrolled earlier and cases with lower HCT values at enrolment.

As performing a complete case analyses would require ignoring 7% of data, and the 

MCAR assumption might be untenable in this situation, further multivariable analyses 

were based on imputed data sets using multiple imputation.

As described in detailed in Section 2.2.3 of Chapter 2 ,1 created 20 imputed datasets 

using the MICE algorithm. Plots of the mean and variance of the imputations per stream 

by the iteration number suggested that the MICE algorithm had converged, as the vari­

ance between imputation streams was no larger than the variance within each stream 

without any observable trends. The imputed data were also reasonable as their values 

and distributions were similar to observed data.
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Table 5.4. Clinical outcomes of study participants during hospitalization.

Characteristics

DSS: Yes
Day of illness at shock
- 3 
-4
- 5 
- 6
- 7 
- 8
Days from enrolment to shock
-  1 
- 2  
-3  
-4
- 5
Referred to PICU: Yes 
Bleeding during hospitalization 
-No
- Skin only
- Mucosal
- Other
Received IV fluid: Yes
Total volume of IV fluids [ml/kg]
- Patients without DSS
- Patients with DSS
Platelet nadir [1000 cells/mm3] 
Day of platelet nadir 
Maximum haematocrit [%]
Day of maximum haematocrit 
Overall haemoconcentration [%]

Patients with dengue 
(n = 2598)

n Summary statistics
2598 156 (6)

156
2 (1)

33 (21)
70 (45)
38 (24)
11 (7)
2 (1)

156
75 (48)
49 (31)
23 (15)

8 (5)
1 (1)

2598 200 (8)
2583

1508 (58)
951 (37)
120 (5)

4 (<1)
2597 1859 (72)
1850
1710 20.8 (14.3-33.3)

140 129.1 (98.8-164.5)
2569 64 (41-98)
2569 6 (5-7)
2573 44 (41-47)
2573 6 (5-6)
2572 13 (6-22)

Patients with dengue 
before day 5 (n = 2301) 

n Summary statistics
2301 143 (6)

143
2 (1)

33 (23)
70 (49)
28 (20)

8 (6)
2 (1)

143
65 (45)
46 (32)
23 (16)

8 (6)
1 (1)

2301 179 (8)
2288

1333 (58)
842 (37)
110 (5)

3 « 1 )
2300 1664 (72)
1657
1528 21.7 (14.3-35.7)

129 129.1 (100.0-165.0)
2279 65 (41-99)
2279 6 (5-7)
2283 44 (41-47)
2283 5 (4-6)
2282 13 (6-22)

S u m m ary  statistics are median (IQR) fo r  continuous variables and frequency (% ) fo r  categorical variables. Total 

volum e o f IV  flu ids fo r  patients w ith  DSS included f lu id  given a fter developm ent o f DSS.

Abbreviations: D SS = dengue shock syndrom e, N  = intravenous.
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5.3.2 Risk factors of DSS 

Univariate analysis

In univariate analyses, significant risk factors for developing DSS were male gender, a his­

tory of vomiting, higher temperature, abdominal pain, a palpable liver and lower platelet 

counts (Table 5.5). Regarding immune status, no case with a definite primary dengue 

infection developed DSS whereas 84/1419 (6%) cases with definite secondary infections 

progressed to DSS.
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Multivariable analysis

The linearity assessment suggested that linear terms were sufficient for all continuous 

candidate predictors except that there was some indication of non-linearity for the effect 

of age on the development of DSS, as displayed in Figure 5.2. However, the displayed 

non-linearity for age was not strong and linearity tests mostiy did not reach statistical 

significance. There was also no evidence of any interactions between gender or day of 

illness with any other variables (Table 5.6). Thus, no non-linear terms or interactions 

were added to the pre-defined multivariable model.

Table 5.6. Linearity and additivity tests in the pre-defined multivariable logistic regression
model for the development of DSS using complete-case and multiple imputation analyses.

Complete case analysis Multiple imputation
Deviance df p value p value

Linearity tests (compared to a quadratic function)
Age 3.94 1 0.05 0.06
Weight 0.88 1 0.35 0.37
Temperature 0.10 1 0.75 0.75
Pulse 0.35 1 0.56 0.52
Systolic BP 0.01 1 0.91 0.76
HCT 0.50 1 0.48 0.50
PLT 1.13 1 0.29 0.25
Linearity tests (compared to a natural cubic spline with 4 degrees of freedom)
Age 5.30 3 0.15 0.12
Weight 6.98 3 0.07 0.16
Temperature 5.12 3 0.16 0.14
Pulse 1.47 3 0.69 0.59
Systolic BP 3.17 3 0.37 0.55
HCT 2.18 3 0.54 0.64
PLT 2.90 3 0.41 0.39
Additivity assessment (interaction tests)
Gender vs. others 12.39 15 0.65 0.80
Day of illness vs. others 13.82 15 0.54 0.30
Gender vs. age 0.01 1 0.91 0.87

Abbreviations: BP =  blood pressure, HCT  = haematocrit, PLT =  pla te let count.
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In the multivariable analysis using all pre-defined candidate predictors, identified risk 

factors for developing DSS included male gender, enrolment at an earlier day of illness, 

vomiting, higher temperature, a palpable liver, and a lower platelet count. This result 

was consistent between the complete-case analysis and the analysis based on multiple 

imputation (Table 5.7). In both univariate and multivariable analyses, there was evidence 

of a protective effect of being female (Table 5.5 & 5.7). However, this effect no longer 

reached statistical significance when I re-did the univariate and multivariable analyses on 

all 2598 patients with dengue infection regardless of the day of enrolment (Table 5.10).

Table 5.7. Adjusted effect of candidate predictors on the development of DSS amongst cases enrolled 
before day 5 of illness in complete-case and multiple imputation analyses (n = 2301).

Covariate Complete-case analysis Multiple imputation analysis
OR 95% Cl p value OR 95% Cl p value

Age [+1 year] 0.92 (0.83, 1.01) 0.09 0.94 (0.85, 1.04) 0.22
Gender: Females 0.64 (0.43, 0.94) 0.02 0.65 (0.44, 0.94) 0.02
Weight [+1 kg] 1.00 (0.98, 1.02) 0.91 0.99 (0.97, 1.02) 0.61
Day of illness 0.67 (0.51, 0.88) <0.01 0.68 (0.52, 0.88) <0.01
History of tiredness: Yes 0.92 (0.56, 1.59) 0.76 0.88 (0.54, 1.43) 0.61
History of vomiting: Yes 2.17 (1.51, 3.14) <0.01 2.19 (1.53, 3.13) <0.01
Tourniquet test 0.46 0.47
- Negative 1.00 1.00
- Equivocal 1.05 (0.64, 1.66) 1.11 (0.70, 1.76)
- Positive 0.78 (0.50, 1.21) 0.82 (0.54, 1.25)
Temperature [+1°C] 1.45 (1.10, 1.91) <0.01 1.39 (1.07, 1.82) 0.02
Pulse [ + 10 per min] 1.03 (0.85, 1.23) 0.79 1.03 (0.86, 1.23) 0.79
Systolic BP [ + 10 mmHg] 0.99 (0.77, 1.23) 0.90 1.01 (0.81, 1.25) 0.94
Mucosal bleeding: Yes 1.09 (0.52, 2.06) 0.81 1.17 (0.61, 2.25) 0.63
Abdominal pain: Yes 1.12 (0.69, 1.79) 0.63 1.05 (0.66, 1.67) 0.83
Palpable liver: Yes 1.74 (0.99, 2.98) 0.05 1.74 (1.02, 2.98) 0.04
HCT [+1 %] 1.02 (0.98, 1.07) 0.28 1.03 (0.98, 1.07) 0.23
PLT [+10,000 cells/mm3] 0.89 (0.85, 0.92) <0.01 0.89 (0.86, 0.93) <0.01

Abbreviations: BP  =  blood pressure, HCT = haematocrit, PLT = pla telet count, OR =  odds ratio, Cl =  

confidence inter\>al.

5.3.3 P rediction m odels

Age, gender, day of illness, history of vomiting, temperature, palpable liver and platelet 

count were retained in the logistic regression model with stepwise variable selection (Table 

5.8). The same predictors and similar effect sizes were chosen by the complete-case and

114



Chapter 5. Prognostic models for DSS in hospitalized children with dengue

the multiple imputation analysis.

Table 5.8. Reduced model for the development of DSS with variable selection (complete-case and 
multiple imputation).

Covariate Complete-case analysis Multiple imputation analysis
OR 95% Cl p value OR 95% Cl p value

Age [+1 year] 0.92 (0.85, 1.00) 0.04 0.93 (0.86, 1.01) 0.09
Gender: Female 0.63 (0.43, 0.92) 0.02 0.64 (0.44, 0.92) 0.02
Day of illness 0.68 (0.52, 0.90) <0.01 0.69 (0.53, 0.89) 0.01
History of vomiting: Yes 2.19 (1.53, 3.16) <0.01 2.19 (1.54, 3.11) <0.01
Temperature [+1°C] 1.43 (1.10, 1.86) <0.01 1.36 (1.05, 1.75) 0.02
Palpable liver: Yes 1.78 (1.08, 2.83) 0.02 1.76 (1.11, 2.80) 0.02
PLT [+10,000 cells/mm3] 0.89 (0.85, 0.92) <0.01 0.89 (0.86, 0.93) <0.01

95%  confidence intervals and p  values do no t take into account the uncertainty o f  model selection. 

Abbreviations: PLT = platelet count, OR = odds ratio, Cl = confidence interval.

In both temporal and internal validation, CART was inferior whereas all the other 

models had similar performance. The reduced logistic regression models with variable 

selection performed comparably to the full logistic model, and there were no big differ­

ences in performance between models with and without gender as a covariate. In internal 

validation, all models (except for CART) had moderate AUC and good calibration. How­

ever, there was an indication of over-fitting in temporal validation when discrimination of 

all models was substantially lower and miscalibration was apparent for logistic regression 

models. As the incidence of DSS between training and test sets were similar (91/1552 

or 6% and 43/634 or 7% for training and test set, respectively), the poor model perfor­

mance in temporal validation may be explained by the relatively low effective sample size 

in both the training and the test set which could have led to over-fitting and unstable coef­

ficient estimates in the training set and imprecise estimates of performance in the test set. 

Another explanation could be the existence of interactions between some risk factors (for 

example age, gender, or day of illness at enrolment) and time, which could be investigated 

by appropriate interaction tests in the statistical model using data from all patients. The 

results were similar between complete case and multiple imputation analyses (Table 5.9).

Applying the reduced logistic regression model (complete case analysis, including gen­

der as a covariate) on the original dataset yielded a skewed distribution of subject-specific 

predicted risks (median 0.045, IQR 0.026 -  0.079). Figure 5.3 displays the number of
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true positive and false positive cases depending on the chosen risk threshold for classify­

ing subjects as likely to progress to DSS or not. For a low risk threshold, the number of 

false positive cases is quite high. For example, at a risk threshold of 5%, 108/134 (81%) of 

cases with DSS would be correctly classified; however, the number of false positive cases 

would be eight times higher (894 cases). For a higher risk threshold, the number of false 

positive cases is decreased at the cost of missing true positive cases. For example, at a risk 

threshold of 20%, there are only 46 false positive cases but only 17/134 (13%) of cases 

with DSS would be detected by the model.

As the relatively low incidence of DSS and the moderate performance of the prediction 

model jointly indicate that the presented prediction model is of limited clinical useful­

ness, I decided not to simplify the model for clinical use, e.g. to create a score chart or 

nomogram.

Quantity

—■ True positive 
False positive

0.00 0.05 0.10 0.20 0.30 0.40 0.50
Risk threshold

Figure 5.3. The number of true positive and false positive cases when the reduced logistic regression 
model (including gender and based on complete-case analysis) is applied on the original dataset us­
ing different risk thresholds for classification. Rugs at the bottom correspond to the distribution of 
predicted risks. The two vertical lines correspond to risk thresholds of 5% and 20%.
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Chapter 5. Prognostic models for DSS in hospitalized children with dengue

5.4 Discussion

This chapter identified male gender, enrolment at an earlier day of illness, a history of 

vomiting, higher temperature, a palpable liver, and lower platelet counts at enrolment as 

risk factors for DSS amongst children hospitalized with dengue infection. Based on these 

identified factors, I developed prediction models for DSS with moderate performance but 

rather limited clinical usefulness.

The incidence of DSS in this study (6%) was lower compared to previous studies (An­

ders et al., 2011; Alexander et al., 2011; Giraldo et al., 2011; Gupta et al., 2011; Chuan- 

sumrit et al., 2010; Mena Lora et al., 2014) where this number varied from 10% to 20%. 

This could be because this cohort aimed to include patient who were hospitalized early 

(within 3-4 days of illness) whereas other studies assessed a more general population of 

patients hospitalized with dengue. Another explanation is the fact that patients who were 

very sick at hospital admission would not have been included in this study, as they are 

referred direcdy to the PICU rather than the general hospital ward where this study took 

place.

In agreement with the current literature, thrombocytopenia and clinical warning signs 

including vomiting and a palpable liver were identified as predictors of DSS in this analysis 

(World Health Organization, 2009; Huy et al., 2013b). In addition, higher temperature at 

enrolment was also independendy associated with an elevated risk of DSS, which might 

be explained by the positive correlation between temperature and viral load (Tsai et al., 

2013; Vaughn et al., 1997).

In this study, there was 114/2271 (5%) cases classified as primary dengue and none of 

them developed DSS later; whereas 45/271 (17%) of possible primary cases and 84/1419 

(6%) of secondary cases developed DSS. However, this result should be interpreted with 

caution because the immune status classification was based only on IgG result and was 

expected to be imprecise in detecting secondary infection (Section 2.1.3 of Chapter 2). In 

an attempt to verify the classification used in this study, I also assessed immune status of 

participants using a new classification algorithm has been developing in our unit, which 

based on IgM/IgG ratio and allows cut-off value to vary over time. Amongst 628 cases 

whose immune status can be determined using both method, most cases with primary
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(32/42, 76%) and possible primary infection (67/96, 70%) in the current system were 

also classified as primary in the new system; however, only 55% (162/297) secondary 

cases in the current system were classified as secondary in the new system.

Enrolment at an earlier day of illness was associated with a significantly higher risk 

of DSS in multivariable but not univariate analyses. However, this could be an artifact 

attributable to the adjustment for other clinical signs and symptoms at enrolment, espe­

cially platelet count, in the multivariable analysis. By adjusting for platelet count, the 

reported odds ratio corresponds to the comparison of two subjects who were enrolled on 

two consecutive days of illness but had the same platelet count on their respective days of 

enrolment. As platelet count is known to decrease over time during dengue illness (Dinh 

The et al., 2012), the subject enrolled earlier would have a lower platelet count relative to 

their day of enrolment and, as platelet count is strongly inversely associated with the risk 

of DSS development, this might explain the reported effect.

In this study, there was a significant relationship between male gender and'a higher 

risk of developing DSS, which is in contradiction to evidence from previous epidemiologic 

studies (Huy et al., 2013b). However, this association was only significant in the primary 

study population of patients enrolled before day 5 of illness but not in all enrolled patients 

with confirmed dengue. Of note, in the DF cohort, females were more likely to be admitted 

on the day of DSS than males (% of cases admitted on the day of DSS were 49% for females 

and 41% for males, Chi-squared test p value was <0.01). As “severe” cases, who might 

develop DSS shortly after hospital admission, were underrepresented in the MD study, 

“severe” females might also be underrepresented which could explain our results. Further 

research is required to shed light on the role of gender in dengue infection.

Amongst all developed prediction models in this analysis, the reduced logistic regres­

sion model based on the full logistic regression model with all pre-defined candidate pre­

dictors and stepwise variable selection was the model with the best trade-off between 

transparency/simplicity and accuracy. Unfortunately, the clinical usefulness of this model 

nevertheless appears to be rather limited even though it achieved a moderate performance 

in both temporal and internal validation. To be useful in clinical practice, a prediction 

model would need to be able to correcdy identify most subjects who subsequently develop 

DSS. However, as illustrated in Figure 5.3, this would mandate a very low risk threshold
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which would imply that the number of true positives would be swamped by the much 

larger number of false positives.

As the current model was carefully developed based on a relatively large sample size, 

the limited usefulness of the derived prognostic models could indicate that readily avail­

able baseline characteristics and warning signs are in general insufficient for reliable pre­

diction of DSS in hospitalized patients. Novel markers with higher predictive value might 

be required in order to achieve a better prediction model. However, to identify novel 

predictors, which are not routinely collected currently, and implement them in clinical 

practice might require a lot of time and effort. An alternative approach would be to try to 

incorporate longitudinal information of risk factors, which are often already available in 

clinical practice. This is examined in the next chapter.

5.5 Appendix

Table 5 .10. Unadjusted and adjusted effect of candidate predictors on the development of DSS 
amongst all patients with dengue (complete-case analysis amongst n=2598 subjects amongst 
which n=2186 had complete data).

Covariate Complete-case analysis Multiple imputation analysis
OR 95% Cl p value OR 95% Cl p value

Age [+1 year] 0.97 (0.90, 1.04) 0.34 0.91 (0.83, 1.01) 0.07
Gender: Female 0.77 (0.55, 1.07) 0.12 0.73 (0.51, 1.05) 0.09
Weight [+1 kg] 0.99 (0.98, 1.01) 0.34 1.00 (0.98, 1.02) 0.98
Day of illness 0.89 (0.74, 1.07) 0.21 0.65 (0.52, 0.81) <0.01
History of tiredness: Yes 0.93 (0.61, 1.48) 0.76 0.87 (0.54, 1.46) 0.58
History of vomiting: Yes 2.34 (1.69, 3.26) <0.01 2.17 (1.53, 3.09) <0.01
Tourniquet test 0.89 0.58
- Negative 1.00 1.00
- Equivocal 1.09 (0.71, 1.65) 1.03 (0.65, 1.60)
- Positive 1.07 (0.73, 1.56) 0.82 (0.54, 1.24)
Temperature [+1°C] 1.35 (1.06, 1.71) 0.01 1.45 (1.11, 1.88) <0.01
Pulse [+10 per min] 1.08 (0.92, 1.26) 0.35 1.02 (0.85, 1.21) 0.86
Systolic BP [+10 mmHg] 1.03 (0.83, 1.24) 0.79 1.01 (0.80, 1.24) 0.94
Mucosal bleeding: Yes 1.10 (0.58, 1.91) 0.75 0.93 (0.47, 1.70) 0.82
Abdominal pain: Yes 1.70 (1.18, 2.40) <0.01 1.20 (0.76, 1.85) 0.43
Palpable liver: Yes 2.42 (1.57, 3.62) <0.01 1.70 (1.00, 2.83) 0.05
HCT[+1 %] 1.02 (0.98, 1.06) 0.24 1.02 (0.98, 1.07) 0.32
PLT [+10000 cells/mm3] 0.92 (0.89, 0.95) <0.01 0.89 (0.85, 0.92) <0.01
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Chapter 6

Dynamic prognostic models in acute 

diseases

Summary

This chapter provides an overview of current approaches to developing and assessing dy­

namic prediction models. Differences between acute and chronic disease settings and 

their implications for statistical modelling are discussed. The chapter concludes with a 

case study which describes and compares several dynamic prediction models for the de­

velopment of DSS in hospitalized dengue patients.
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6.1 Introduction to dynamic prognostic models

As discussed in Chapter 1 (Section 1.3.1), dynamic prediction models allow predicting the 

future course of the disease at follow-up time points based on the updated longitudinal 

information. In many settings, such models provide more accurate predictions compared 

to baseline models (Lemeshow et al., 1988; Christensen et al., 1993; Hughes et al., 1992; 

Rue et al., 2001; Karp et al., 2004). Dynamic prediction may also be appealing for clini­

cians as it mimics the iteration of obtaining information and updating prognosis based on 

this new information, a task that physicians routinely do every day in clinical practice.

6.2 Modelling approaches to dynamic prediction models

A naive strategy to obtain a dynamic prediction is to apply a baseline model sequentially 

over time by simply plugging in the time-updated covariate values. Even though this 

strategy might work better than a traditional baseline model in some settings of chronic 

diseases (Karp et al., 2004), it is conceptually inappropriate as baseline models should 

only be used to provide predictions for future patients from the same time origin as that 

used in the model development (Hughes et al., 1992).

Let Y (u) denote the event status of the outcome of interest at time u, i.e. Y(u) =  1 if 

the outcome occurred at or before time u and Y (u) =  0 otherwise, and let Z(t)  denote the 

value of the time-varying predictor variables at time t. Then the goal of dynamic prediction 

modelling, which is to predict the conditional probability of the event occurrence of Y  

up to a future time point u depending on the patient history Z  up to the current time 

point t, can be written as ir(u\t) =  P (Y (u )  =  1|Z{s)  for s <  t  and Y ( t )  =  0) (Van 

Houwelingen and Putter, 2012). I will schematically denote this conditional probability 

by [Y\Z]. Fundamentally, there are two ways to obtain this conditional probability: either

one can model the conditional probability directly, or one can model the joint probability
\Y  Z][Y, Z\ first and then get the quantity of interest from the joint model, i.e. [Y\Z] =  ’ -  .

In the conditional approach, one can base the conditional probability of interest n(u\t) on 

either (1) the complete history of the time-dependent covariates up to the current time 

t, or (2) a subset or some aspects of the history of time-dependent covariates up to time 

t. Even though approach (1) is often desired, approach (2) is easier to conduct and, if
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the relevant aspects of the history of time-dependent covariates up to time t  are chosen 

carefully, usually adequate (Pepe and Couper, 1997; Diggle et al., 2002).

6.2.1 Conditioning on the complete underlying history of the longitudinal 

process

One model that falls in this category is the Cox proportional hazards regression model 

with time-dependent covariates (Cox, 1972) that models the hazard rate of an event at 

time t, A(t), as follows:

A(t| Yf (tj) =  A0(t) exp (PiWi +  P2Zi{t))

where Ao(t) is the baseline hazard at time t, are the time-fixed covariates of subject 

i, Z i( t) denotes the longitudinal time-dependent covariate values of subject i at time t  

(which can also include all observed past values, lagged values, or changes of the longitu­

dinal process); and fa, f c  are the corresponding vectors of regression coefficients.

For parameter estimation, values of Zi at all observed event times are required (Collett, 

2003). As these values might not be available in practice where longitudinal variables are 

only collected at discrete time points, they have to be imputed, for example by using 

the “last observation carried forward” method or linear interpolation between consecutive 

observed values (Collett, 2003). Moreover, as only longitudinal values at observed event 

times are used in the model estimation stage, this approach discards a lot of information 

(Altman and De Stavola, 1994), especially when the frequency of events is low.

Based on this model, the dynamic prediction for the event status at the future time u 

given the current history at time t of subject i can be approximated by the probability of 

having an event at time u given that the subject is event-free at time t, which is defined as

Pr(yj(u) = i|yi(t) = o,iyj>zj(o),...,zj(t)) = i - ^

where Si(t) is the survival function of subject i at time t.

As survival function in time-dependent Cox proportional hazards regression model 

depends on all values of time-dependent covariates from baseline to the time point of 

interest, the right hand side of the above equation depends on future values of Zi from
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time t  to time u, which are not available at time t. Therefore, dynamic prediction at a 

specific time point depends not only on the entire longitudinal covariate profile up to the 

current time t, but also on the future unobserved evolution of the longitudinal process 

up to time u. Dynamic predictions must thus rely on assumptions regarding the future 

development of the longitudinal markers, for example that they remain constant (Altman 

and De Stavola, 1994). This also leads to a conceptual difficulty when applying this type of 

model with internal time-dependent covariates, especially when the event is death, as the 

existence of a covariate value is contingent upon the survival of the patient up to that time 

point (Fisher and Lin, 1999). While these are major issues, time-dependent Cox regression 

models are also easy to fit in standard statistical software, for example using the coxph 

function in the R library survival, and have been applied to develop dynamic prediction 

models in various settings (Christensen et al., 1993; Karp et al., 2004; Hartmann et al., 

2012).

6.2.2 Conditioning on some aspects of the history of the longitudinal pro­

cess

In this approach, certain aspects of the history of the longitudinal process which are con­

sidered most relevant to outcome prediction, for example all observed past values, the 

current value, previous values or the change in these values, are used to obtained dynamic 

predictions. Each of these aspects could be modelled using either the person-interval or 

the partly conditional modelling approach outlined below.

Person-interval approach

In this approach, the follow-up time of each participant is split into intervals and then 

information regarding covariate values at or before the interval, and outcome occurrence 

during each interval are used for parameter estimation. Different models have been pro­

posed depending on how person-intervals are defined. One splitting strategy is to divide 

individual follow-up times into short, distinct intervals of equal length (Wu and Ware, 

1979; Cupples et al., 1988; Ruttimann and Pollack, 1991; Hughes et al., 1992). Start­

ing points of the interval can be defined either as times when repeated measurements 

are recorded (Wu and Ware, 1979; Guppies et al., 1988; Ruttimann and Pollack, 1991;
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Hughes et al., 1992) or as consecutive starting points at equal distance according to the 

pre-defined interval length (Hughes et al., 1992). Another splitting strategy is to divide 

individual follow-up time into intervals of equal length that start at a pre-defined time 

point, landmark time tLM, and stop at +  w  where w  is the pre-defined window of pre­

diction (Van Houwelingen and Putter, 2012). In this landmarking approach, the derived 

intervals from the same individual may be distinct or may overlap, depending on whether 

the prediction window is smaller or larger than the gap between landmark points. Another 

splitting strategy which might result in intervals of variable length is to define the inter­

vals to start at measurement time points and to end at the next consecutive measurement 

time points (Murtaugh et al., 1994). A simple illustration of these splitting strategies is 

presented in Figure 6.1. When biomarker values are measured at regular time points and 

the length of the interval is set equal to the gap between consecutive measurement points, 

all of these splitting strategies lead to the same intervals.

Given the interval, logistic regression or Cox regression models can be used to model 

the outcome of interest within that interval conditional on past covariate values. In prin­

ciple, the relationship between covariates and outcome can vary across different intervals, 

and one can also use all observed longitudinal values up to the current interval resulting 

in a very general model as proposed by Wu and Ware (1979):

t
logit {Pr(Yi,t =  1\W(, Z y )} =  +  p f W i  +  P ^ Z i J

3 = 0

where Y^t is the outcome of subject i during interval t, Wi are fixed time-independent 

covariates, Z^t is the observed value of repeated measurement of subject i at the beginning 

of interval t , Z*,* is the collection of all repeated measurements Z^j of subject i until time 

t  ( j  <  t), and /?o> Pi, @2 are the corresponding regression coefficients.

In this model, two assumptions are made: (1) both current measurements and earlier 

measurements of potential risk factors contribute to the overall linear predictor of the risk 

score in an additive way and (2) the same intervals are selected for each participant, which 

essentially requires that all patients be assessed at the same time points. This approach 

uses all observed repeated measurements but does not require rich longitudinal data. 

However, two main drawbacks of this approach are that it (1) involves a large number of
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0 -1 2 3 4 5 6 7 8 T0 -------------------  j------------- £ --------------j------;------- f ------------0 ----------_ j ------------- 0 ---------— ----- >

Person-interval Outcome

Option 1: | _ j 0

I 1 0
i_______ '___ _i o

Option 2: | | 0

I 1 0
I  ̂ 1 0

I 1 1

Option 3: | ] 0
Landmarking with , , n
tLM = 0 , 2 , 4 , 6  1 1
w = 2--------------------------------------------------------------------------------- I----------------------- ; 1 0

1

Option 4: |_________| 0

I -H 0
I  1 0

I— — I 0
i— ; 1 1

Partly conditional model

Figure 6.1. Illustration of different strategies to define intervals in person-interval and partly con­
ditional modelling approaches. Red dots correspond to time points when repeated measurements are 
recorded; the black dot corresponds to the time when the event occurs.

parameters, which might be difficult to estimate with a limited sample size, and that it 

(2) provides different logistic models with different numbers of parameters for each time 

point of assessment.

Additional assumptions are required to reduce the number of parameters in the ap­

proach described above, for example one can assume regression coefficients to be the 

same in all intervals (Ruttimann and Pollack, 1991) or time-varying according to sim­

ple linear functions only (Wu and Ware, 1979). Ruttimann and Pollack (1991) further 

reduced the number of parameters by applying likelihood ratio tests in a stepwise back­

wards procedure. By assuming that the relationship between covariates and outcome is 

independent of the time interval, data from all intervals can be pooled together as if the
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information recorded in each interval is new observation (Cupples et al., 1988; Hughes 

et al., 1992; Murtaugh et al., 1994). Further assuming that only the current values of 

the longitudinal markers are relevant to outcome prediction results in a very simple and 

straightforward model which is just a standard logistic regression or Cox regression model 

applied to this pooled dataset

logit {P r (Y ift =  1| W h Ziit)}  =  j30 +  PiW t +  fi2Zi)t

\ ( u \ W i , Z iit) =  \ o ( u ) e x p { P i W i + j 3 2Zi,t }

A clear strength of this approach is that it is both easy to interpret and “dynamic”: it 

is easy because it uses the same model at each time point and the dynamic updating can 

easily be implemented by plugging the current values of the risk factors into the model. 

However, its assumptions may be implausible in the setting of rapidly progressive diseases 

or if the prediction intervals are long.

A more recent approach in this category is the landmarking method, which proposes 

to fit standard models to individuals still at risk at the landmark time point tLM and ap­

plies administrative censoring at the time horizon tL M +  w  (Van Houwelingen and Putter, 

2012). Specifically, the main idea is to fit a standard Cox model to a big dataset that stacks 

all at-risk datasets from each landmark point. Based on this, we can get an approximate 

risk prediction for an individual at a certain time horizon u =  tLM +  w  given their risk 

factors at landmark point tLM• This landmarking approach is somewhat similar to the 

above approaches except that it allows baseline hazards and/or regression coefficients to 

depend on the landmark point by fitting separate models for different landmark points. 

The approach uses either a Cox model stratified by the landmark points (if different base­

line hazards for each landmark point are desired) or an analysis involving delayed entry 

(if a common baseline hazard is desired). Furthermore, as the person-intervals in the 

landmarking approach can be overlapping, naive standard error of estimated regression 

coefficients will be too narrow, and therefore, they have to be corrected, for example by 

using sandwich estimators of the covariance matrix (Van Houwelingen and Putter, 2012).

Obtaining dynamic predictions from all of the above models is relatively straightfor­

ward. Specifically, they can be obtained by either plugging-in estimated parameters and 

individual covariate information into the logistic model, or by using the formula
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A 0(s) exp((3iWi +  (d2Zi,t)ds=  1 — exp

= 1 -  exp{ -  exp(/?iWi +  p 2Zi)t)(Ho(u) -  H 0{t))}

where Ho(t) is the cumulative hazard function at time t  for a Cox model.

As these models, except for landmarking, involve splitting the follow-up time into 

relative short periods, these models might only be appropriate for short-term prediction 

within the pre-defined interval and extrapolation beyond that interval can lead to mislead­

ing results (Hughes et al., 1992). In the landmarking approach, short-term or long-term 

prediction can be obtained by adjusting the prediction window. Several dynamic models 

using this person-interval approach have been derived and claimed to perform better than 

baseline prediction models (Ruttimann and Pollack, 1991; Hughes et al., 1992; Murtaugh 

et al., 1994). As an example, the updated natural history prediction model for primary 

biliary cirrhosis was developed based on this approach (Murtaugh et al., 1994) and is 

available as an online tool for use in clinical practice (Mayo Clinic, 2015).

Partly conditional models approach

Unlike the person-interval approach, partly conditional models always involve splitting 

follow-up time into overlapping intervals which start at each repeated measurement point 

and last till the end of the follow-up time (Figure 6.1). In addition, partly conditional 

survival models as proposed by Zheng and Heagerty (Zheng and Heagerty, 2005) also 

require to reset the time clock to zero at the beginning of each interval.

Similar to the person-interval approach, logistic regression or Cox regression models 

can be used to model the outcome of interest in each interval. However, as described in 

(Pepe et al., 1999), the main feature of this approach is that it allows model parameters 

to depend on both the timing of the desired prediction and the timing of the predictors:

logit {Pr{Yi(u)  =  l|Yf(t) =  0 ,W i ,Z i j ) }  =  Po{u,t) +  P i(u ,t)W i  +  P2(u ,t)Z i)t

\i,t{u\Wi, Zitt) =  \ 0{u ,t )e x p {p i{u , t )W i  + P 2{u,t)Zi,t)
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Of note, the time-varying regression coefficients can be assumed to follow some smooth 

parametric functions, such as regression splines, which may involve both u and t. Fur­

thermore, as intervals from the same individual are overlapping, correction for standard 

errors of the regression coefficients is required, preferably by using generalized estimating 

equation with an independence working correlation structure. As in the person-interval 

approach, the most general model in this setting is to fit totally different models at each 

time point t of measurement (Wagner et al., 1994; Rue et al., 2001). Further assump­

tions are required to simplify the model, for example, it is often sensible to only allow the 

intercept to depend on the time of the measurement (Lemeshow et al., 1994).

Dynamic prediction in this approach can be obtained in the same manner as in the 

person-interval approach. However, as the intervals are not restricted within a short pre­

defined period, long-term prediction is possible for all models in this approach.

6.2.3 Approaches based on joint models

Even though the conditional modelling approaches described in the Sections 6.2.1 and 

6.2.2 are easily interpretable and can be relatively easily implemented with standard sta­

tistical software, they rely only on observed values of the longitudinal process, which 

ignores the potential effect of measurement error, and they do not model the longitudinal 

data explicitly. Thus, it is not possible to formulate directly an association between the 

outcome and an underlying characteristic of the patient’s entire covariate profile such as a 

constant slope of decline. Fortunately, these shortcomings can be resolved within the joint 

modelling framework. Joint models of a time-to-event or binary outcomes and longitudi­

nal data have received a lot of attention in the statistical literature during the last years. 

The main purpose of this approach is to model the joint distribution of the outcome and 

the longitudinal data simultaneously (Verbeke and Davidian, 2008).

Essentially, joint modelling approaches use classical longitudinal models for the longi­

tudinal data and logistic regression or survival analysis for the outcome but rather than 

being separate models, the two models are linked. In principle, the model for the out­

come and the model for the longitudinal data can be linked in three different ways: (1) 

using observed values of the longitudinal process as covariates in the model for the out­

come, (2) a two-stage approach in which first a longitudinal model is fitted (ignoring
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the potential informative censoring induced by the outcome model) and then fitted val­

ues from that longitudinal model are used as covariates in the main outcome model, (3) 

using a shared latent structure for the two sub-models (Lawrence Gould et al., 2014). 

Even though the first two approaches are easy to implement with standard statistical soft­

ware, they are somewhat ad-hoc and thus might produce biased results (Sweeting and 

Thompson, 2011). In contrast, the third approach specifies a proper probability model for 

the joint distribution of observed longitudinal and outcome data and is thus amenable to 

established statistical estimation methods such as maximum likelihood estimation. There­

fore, most of the current research in this field focuses on this third approach, where the 

shared latent structure that links the main outcome model and the longitudinal processes 

model is either defined via shared random effects (shared random-effect models, SREM, 

(Wulfsohn and Tsiatis, 1997)) or via a latent class membership (joint latent class model, 

JLCM, (Proust-Lima and Taylor, 2009)).

In both SREM and JLCM approaches, the frequently used submodels for the longitudi­

nal data and the main outcome, respectively, are the linear mixed effects model and the 

Cox proportional hazards model (for time-to-event outcomes) or logistic regression (for 

binary outcomes). Both approaches require the longitudinal and the outcome processes to 

be independent conditional on either the shared random effects (in SREM) or the latent 

class structure (in JLCM). JLCMs require a heterogeneous population of subjects that can 

be classified into multiple classes with different average longitudinal profiles and risks of 

outcome, while they do not rely on any specific assumptions regarding the relationship be­

tween the risk of the outcome and the longitudinal data in the model for the main outcome 

(Proust-Lima et al., 2014). In contrast, SREMs require assumptions regarding the effect of 

longitudinal data on the risk of the main outcome in the model for the main outcome. As 

the number of observed longitudinal measurements per individual decrease, parameter 

estimation in SREM becomes more sensitive to the assumptions regarding the distribu­

tion of the random effect (Rizopoulos et al., 2008); however, sparsity of longitudinal data 

might also a problem for the JLCM.

Parameters in both SREM and JLCM can be estimated using maximum likelihood esti­

mation (Rizopoulos, 2012; Proust-Lima and Taylor, 2009). Methods for parameter estima­

tion in shared random-effects joint models include approximate methods and likelihood-
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based approaches using the EM algorithm (Tsiatis and Davidian, 2004). The more precise 

likelihood-based approaches are computationally intensive. Likelihood estimation for joint 

latent class models is more tractable because a closed-form of the (mixture) log-likehood 

can be derived and the parameters of interest can be estimated using standard maxi­

mum likelihood procedures (Proust-Lima and Taylor, 2009). Nevertheless, care must be 

taken as the likelihood function frequently has multiple maxima. Moreover, the model 

requires at least a verification of the latent class assumption. Parameters in SREM can 

also be estimated using a Bayesian approach (Faucett and Thomas, 1996). Within the 

Bayesian framework, computational implementation might be easier without the neces­

sity of asymptotic approximations, and in situation where joint models are very complex 

and frequentist methods are infeasible, Bayesian approaches could provide a practical 

approach to solving the problem (Lawrence Gould et al., 2014).

A main advantage of joint models is that they model the joint distribution of longitudi­

nal risk factor and outcomes efficiently and eliminate measurement error while providing 

valid inference. In both approaches, dynamic predictions can be obtained in the same 

way (Proust-Lima et al., 2014) and, in case of a survival model for the main outcome, the 

prediction is given by the following formulas:

G
7r(u\t) =  Pr{Ti <  u\Ti > t , C i =  g , Wf, 9)Pr(ci =  g\T{ >  t, Z {(t), W*; 6)

9 = 1

7r(u\t) =  [  Pr(Ti <  u\Ti >  t, bi, Wf, 9)f{bi\Ti >  t, Zi(t), Wz-; 9)dbi
Jbi

where the first quantity in both formulas is the probability of outcome occurrence 

within the period ( t , u) given the class membership (in JLCM, first formula) or the ran­

dom effects (in SREM, second formula), and the second quantity is the probability that 

a subject belongs to a certain class (in JLCM) given current information or the density 

of random effects given current information (in SREM). More specifically, in the above 

formulas, T* is the event time, c* is the group membership (in a JLCM), bi is the random 

effect (in a SREM), Z{ denotes longitudinal covariates, Wi denotes fixed covariates from 

both longitudinal and survival models, and 9 denotes all model parameters (including 

regression coefficients).

In practice, one can calculate dynamic predictions from joint models by plugging-in pa­
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rameter estimates and empirical Bayes estimates for random effects into an approximated 

version of the above formula. Corresponding standard errors and confidence intervals 

for predictions can be obtained by approximating the distribution of dynamic predictions 

using Monte Carlo simulation (Rizopoulos, 2012).

Joint models have been successfully applied to address prognostic questions in several 

clinical settings including the prediction of relapse of prostate cancer based on longitudi­

nal post-treatment PSA measurements (Proust-Lima and Taylor, 2009) and the prediction 

of rupture of the abdominal aortic aneurysm (AAA) based on AAA diameter measurement 

via ultrasound (Sweeting and Thompson, 2011). However, the resulting models and pre­

dictions are difficult to interpret for a clinical audience. Moreover, these models appear to 

be most suitable for rich datasets with extensive longitudinal data and one (or a low num­

ber) of different longitudinal markers only. Current research includes novel suggestions 

to develop joint models with more than one longitudinal marker (Andrinopoulou et al., 

‘2014; Rizopoulos and Ghosh, 2011).

6.3 Assessment of dynamic prognostic models

In general, all performance criteria described in Section 2.2.3 can be used to assess dy­

namic prognostic models. Amongst them, the Brier score (for overall performance) and 

the AUC (for discrimination) are the most frequently used criteria (Schoop et al., 2008, 

2011; Zheng and Heagerty, 2007; Rizopoulos, 2011; Blanche et al., 2014). For predic­

tion models using baseline information only, model performance only depends on the 

prediction window. However, in the dynamic prediction framework, model performance 

depends on both the time point of the prediction and the prediction window. There­

fore, plots which describe changes in performance of each model depending on either the 

prediction time point for a specific prediction window, or depending on the prediction 

window at a specific prediction time point can be used to compare performance between 

models (Proust-Lima and Taylor, 2009). In addition, as updated predictions are only rele­

vant to observations still at risk, performance assessment at each prediction time point in 

the dynamic prediction scheme is restricted to the at-risk population at that time (Schoop 

et al., 2008).
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When the outcome of interest is the time to an event of interest, both baseline and 

dynamic prediction frameworks have to take into account censoring, as contributions to 

the Brier score or AUC from individuals who are censored before the future time of interest 

u cannot be defined. When censoring is assumed to be independent of the time to event 

and the longitudinal processes, the inverse probability of censoring weighting technique 

(Graf et al., 1999; Blanche et al., 2014) can be used to make the population of non­

censored individuals (up to a future time u) representative of the whole at-risk population 

at prediction time t  by up-weighting their contributions to the performance measure with 

weights defined as

, ^  I { T i > u ) , I ( t < T i <  u)Ai

Wi(“ ' t) =  ^ H r + c m  It)

where Ti is the individual observed follow-up time, Si is the individual event indicator 

(1 if event occur, 0 if being censored), G(u\t) is the probability of not being censored at 

time u given not being censored at time t, G(Ti\t) is the individual probability of not being 

censored at the end of follow-up time given not being censored at time t.

As in the traditional framework, developing a prediction model on a large dataset and 

then validating it on an external dataset is also recommended for dynamic prediction mod­

els (Proust-Lima et al., 2014). When external validation is impossible, internal validation 

using e.g. cross-validation can be used to correct for optimism; however, this strategy is 

computational intensive for complex dynamic models such as joint models.

6.4 Differences between acute and chronic disease settings (and 

implications for modelling)

Chronic diseases are diseases with a long duration and slow progression, such as cancer, 

cardiovascular or liver diseases. In contrast, acute diseases progress rapidly within a short 

duration, as is the case for many infectious diseases and in emergency care. Regarding 

dynamic prediction modelling, it is interesting to note that complex approaches (joint 

models) have been developed and applied mainly for chronic diseases (Proust-Lima and 

Taylor, 2009; Rizopoulos, 2012; Sweeting and Thompson, 2011), whereas, simpler ap-
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proaches (conditional models) have been applied in both acute (Ruttimann and Pollack, 

1991; Rue et al., 2001; Lemeshow et al., 1988,1994; Wagner et al., 1994) and chronic set­

tings (Christensen et al., 1993; Hughes et al., 1992; Wu and Ware, 1979; Hartmann et al., 

2012; Cupples et al., 1988; Murtaugh et al., 1994; Van Houwelingen and Putter, 2012). 

This divergence in the application of dynamic models suggests that there are differences 

between the chronic and the acute disease settings, which may affect the development 

and application of dynamic prediction models.

6.4.1 Time origin, prediction horizon, and outcome of interest

One important feature of acute diseases is that the disease (especially in infectious dis­

eases) often has a clear time origin (time of infection, for example) and only lasts for a 

certain period. After that time, the disease usually resolves and the patient fully recovers. 

Therefore, the prediction horizon in this setting is restricted to a specific period where 

the event of interest may occur, and predictions beyond that period are of no interest. 

As time evolves, the clinically useful time horizon of predictions decreases, and in some 

sense, long-term predictions converge to short-term predictions. Of note, early prediction 

is key in acute diseases as predictions at a late time point allow only for a very limited 

remaining time window for possible interventions. Therefore, in acute disease settings, 

the prediction time is restricted to a specific period in the early phase of the disease in 

order to be clinically useful.

In contrast, chronic diseases usually have no clear time origin as the disease can 

progress slowly while in a “hidden” state before becoming clinically apparent (Liesto 1 

and Andersen, 2002). Therefore, the time origin in this setting is usually defined as the 

time of diagnosis, the start date of an intervention or even the somewhat arbitrary time 

point when the patient was enrolled into a prognostic study. Furthermore, the definition 

of “cure” is vague in this setting and usually refers to some arbitrary fixed time interval, 

for example, “recurrence-free survival for >5 year” (Van Houwelingen and Putter, 2012). 

Thus predictions at any time point of the disease for a fixed prediction horizon may be 

clinically useful in this setting accepting that the patient will still suffer from the chronic 

disease at the end of the prediction period.

In addition, as “cure” is clearly defined in most acute diseases and many patients are
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hospitalized for treatment or at least under close observation as outpatients during the 

entire disease period, censoring is often not a major issue in acute diseases. Also, the 

observed follow-up duration is usually the same for all subjects. In contrast, in chronic 

diseases which require long-term follow-up of patients, losses to follow-up are an impor­

tant problem and the validity of statistical models may depend heavily on the amount and 

mechanism of censoring (Fitzmaurice et al., 2004).

These differences between the two settings might also affect the decision regarding 

the outcome of interest, and the statistical model for that outcome. For example, in acute 

diseases, the outcome is often a binary indicator of the occurrence of a disease event of 

interest at any time point during the relatively short disease course. Hence, a logistic 

model is the model of choice. In contrast, in chronic diseases with longer and often 

unequal follow-up of patients, the time to an outcome might be more relevant and a 

survival regression model could be a reasonable model.

6.4.2 Repeated measurement

As many acute diseases require hospitalization for monitoring and treatment, longitudi­

nal information is usually recorded regularly with a common schedule for all patients, 

resulting in balanced and complete longitudinal data. However, for the chronic setting, 

longitudinal data is more irregularly collected and individual patients may delay or miss 

scheduled follow-up visits. On the other hand, as the course of disease is relatively short, 

the number of repeated measurements per patient is often limited in the acute setting.

These differences may affect how longitudinal data are modelled. For example in the 

person-interval approaches described in Section 6.2.2, models developed in the chronic 

setting may depend on how each person-interval is defined; whereas this may not be 

an important issue in the acute setting as the longitudinal dataset is balanced and thus 

different interval splitting strategies lead to the same result. One the other hand, limita­

tions regarding the number of repeated measurement per patients may restrict the use of 

complex and flexible models such as joint models in the acute setting.
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6.4.3 Relationship between outcome and time-dependent covariates

In acute diseases, the whole time course of disease can often be virtually divided into dif­

ferent latent phases: onset, critical and recovery phases, and outcomes of patients may be 

very different between these phases. As a result, the assumption of a time-independent re­

lationship between the outcome and time-dependent covariates may not hold in the acute 

setting, but in chronic diseases which are more stable over time, the assumption may be 

valid. Furthermore, in acute diseases the current value of a biomarker, which may reflect 

the current response of a patient to treatment, could be the most relevant predictor for 

outcome from that time point onwards. However, as disease progress is slow in chronic 

diseases, it is usually reasonable to argue that the whole trajectory of repeated measure­

ment is required to predict outcome accurately. In practice, these differences might affect 

how the relationship between outcome and time-dependent covariates is specified in dy­

namic prediction models.

6.4.4 Competing risks

As such illnesses evolve over a long time span, progression of a specific chronic disease 

can be complicated by the presence of other diseases. Therefore, many types of event 

may occur and some of them may affect the occurrence of the main event of interest. 

This “competing risks” problem would require special consideration in the modelling steps 

in order to provide valid predictions (Wolbers et al., 2009). However, in acute disease 

settings, competing risks are rare and often biologically implausible; therefore, this issue 

can be ignored when developing prediction models in this setting.

6.4.5 Clinical usefulness

As acute diseases often require prompt management decisions within a short time, a prog­

nostic model must be easy to interpret and easy to use, in order to be widely used in 

clinical practice. From this practical point of view, complex models such as joint models 

might be inferior to simpler models, as it is difficult not only to explain them to a non- 

statistical audience but also to retrieve outcome predictions. This drawback may hamper 

the implementation of such models in the field of acute diseases.
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6.5 Case study: dynamic prediction models for the develop­

ment of DSS in hospitalized dengue patients

In chapter 5, a prediction model for the development of DSS with 7 covariates includ­

ing age, gender, day of illness, history of vomiting, temperature, having a palpable liver, 

and platelet count was derived using data from 2301 children hospitalized with dengue 

infection. However, this model only had a moderate performance in both temporal and 

internal validation. Of note, platelet count, a well-known risk factor of DSS, was recorded 

daily in that study. Therefore, there is an opportunity to assess whether integrating this 

longitudinal information can improve the performance of the baseline model presented in 

the previous chapter.

6.5.1 Description of data

For the purpose of this cases study, only patients who enrolled into the MD cohort on day 3 

of illness were included. The main reason for this is that including all patients would both 

complicate statistical modelling and clinical interpretation of a dynamic prediction model. 

The previous baseline model involves several clinical signs and symptoms, which are time- 

dependent. However, the information regarding these covariates was only collected at the 

single time point of enrolment. Including only individuals who enrolled on the same day of 

illness unifies the time scale from disease onset (which is the most clinically relevant scale) 

and the time scale from enrolment. Hence signs and symptoms can simply be regarded as 

baseline covariates and there is no need to model time-varying signs and symptoms and 

their effect on outcome, which would require strong and untestable assumptions as only 

a single measurement per patient is available. In addition, even though there were more 

patients enrolled on day 4 than day 3 of illness, the time point at day 3 was still chosen, 

as it is more useful to obtain prediction of DSS development from day 3 onwards rather 

than from day 4 which is too close to the time that DSS often occurs.

Amongst all 908 confirmed dengue patients from the MD cohort who enrolled on day 

3, 17 patients did not have a platelet count at enrolment and were excluded from the 

analysis. Therefore, the final analysis included data at enrolment and updated platelet 

counts from 891 patients.
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Clinical outcome

In total, 59 cases (59/891, 7%) developed DSS (Table 6.1). While DSS can occur at any 

time from day 4 to day 8 of illness, most patients developed DSS within the first 2 days 

after enrolment (day 4-5 of illness). For patients who did not develop DSS, a few were 

discharged early but 95% remained in the hospital until illness day 7 or later (Table 6.1).

There are two clinical outcomes of interest in this case study: (1) whether a patient 

progresses to DSS at all, and (2) whether a patient progresses to DSS on the following day 

given the present state of the patient. The former question refers to long-term prediction, 

while the latter refers to short-term prediction. The course of dengue infection only lasts 

for 1-2 weeks and in the dataset only a single DSS case occurred after day 7 of illness. 

Based on this I chose days 3-6 of illness as the relevant prediction time points. Further­

more, it is reasonable in this setting to assume that patients will not develop DSS after 

hospital discharge. Therefore, rather than using the real follow-up time of each patient, 

which would imply that the patient’s disease status after discharge is unknown, I reset 

the follow-up times for all patients discharged without DSS to 6 days after enrolment (i.e. 

day 9 of illness). Let Ti be the day of illness on which DSS occurred (which was on day 8 

or earlier for all subjects) for subjects with DSS, and day 9 for subjects without DSS. The 

long-term outcome can be rephrased in terms of follow-up time as (Ti <  8); therefore, 

the long-term prediction made at time t  (with t  < 6) is Pr(Ti < 8|T; > t). Similarly, the 

short-term prediction at time t  is Pr(T{ =  t  +  l|Tf > t) for t  <  6.

Longitudinal data

Longitudinal data in this study includes daily platelet counts of each patient until DSS 

development or discharge. The majority of subjects had 4-6 measurements but for patients 

who developed DSS, most of them only had 1-3 measurements (Table 6.1). Amongst all 

patients, 35 (4%) cases had at least one missing platelet count within their series (31/35 

had only 1 missing value, 4/35 cases had 2 missing values).
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Table 6.1. Outcome and number of platelet counts per patient in this case study (n = 891).

Characteristics N (%)
DSS 59 (7)
Day of DSS
- Day 4 of illness 22 (37)
- Day 5 of illness 21 (36)
- Day 6 of illness 10 (17)
- Day 7 of illness 5 (8)
- Day 8 of illness 1 (2)
Day of discharge (in patients without DSS)
- Day 4 -  6 of illness 41 (5)
- Day 7 -  8 of illness 428 (51)
- Day 9 of illness or later 363 (44)
Number of platelet count measurements per patient
- 1 to 3 75 (8)
- 4 to 6 704 (79)
- 7 to 9 112 (12)
Number of platelet count measurements before DSS (in patients with DSS)
- 1 22 (37)
-2 21 (36)
-3 11 (19)
-4 4 (7)
- 5 1 (1)

Other covariates

In this analysis, the baseline variables that were identified as risk factors of DSS according 

to the analysis of Chapter 5 were also included: age, gender, history of vomiting, tem ­

perature, and having a palpable liver. There were 14/891 (1.6%) cases with at least one 

missing value for these covariates (1 for tem perature, 11 for liver size, 2 for history of 

vomiting). As the number of missing values was low, I chose to impute these missing 

values by using the category with the highest frequency for categorical variables and the 

median of observed values for continuous variables.

6.5.2 Exploratory analysis of repeated platelet counts and their potential 

benefit for the prediction of DSS development

Figure 6.2 describes the trajectories of the platelet count over the course of disease for 

all patients included in this analysis. On average, the platelet count tended to decrease
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initially until about day 6, and then slowly returned to the normal level when the disease 

resolved.

Interestingly platelet counts in patients who developed DSS tended to be lower than 

in patients who did not have DSS, and this difference was most pronounced on the day 

before DSS occurrence (Figure 6.3). This observation suggests that the platelet value on 

the current day or the change from the previous day may relate to the occurrence of DSS 

on the next day.

500 - i

3 4 5 6 7 8 9
Day of illness

Figure 6.2. Individual trajectories of platelet counts from day 3 to day 9 of illness amongst all 891 
patients in this analysis (grey lines). The black line displays a loess scatterplot smoother

To investigate the relationship between the risk of DSS development and the platelet 

count on a specific day of illness further, patients still at risk on that day (i.e. those 

without DSS until that day) were split into groups of equal size, based on their platelet 

values (current or previous values, or current change). Then, the average platelet count 

and average change was calculated in each group and compared to the percentage of 

subjects who developed DSS on the next day or overall in that group, respectively. These 

values are displayed in Figures 6.4 and 6.5, which show a negative relationship between 

the current platelet count and the change in the platelet count from the previous day with 

both the short-term and long-term occurrence of DSS. Based on these observations, the 

current platelet count or the change from the previous day could be relevant to predicting
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3 4 5 6 7 8 9 3 4 5 6 7 8 9
Day of illness

DSS on day 4 (n = 22)

200

DSS on day 6 (n = 10)

DSS on day 5 (n = 2 1 ) ________

DSS on day 7 (n = 5)

loo-;

Figure 6.3. Trajectories of platelet counts for all patients who developed DSS from day 4 to day 7 of 
illness (black lines and dots) and 20 randomly chosen patients who did not have DSS (grey lines and 
dots).

the occurrence of DSS over time. As the change in platelet count cannot be determined at 

the time of enrolment, the current platelet count was the main variable of interest in the 

development of dynamic prediction models in the following section.
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Figure 6.5. Relationship between changes in platelet count from the previous day (value on the current 
day minus value on the previous day) and the risk of long-term outcome (overall DSS occurrence) or 
short-term outcome (DSS occurrence on the following day) amongst patients still at risk on day 4 and 
5 of illness. For each population at risk, individuals were grouped into 5 groups of equal size based on 
the observed changes in their platelet counts. The dots display the mean change and the observed risk 
of the outcome in each patient group, n refers to the total sample size of each at-risk population.

6.5.3 Dynamic prediction  m odelling -  m odel specification and  assessm ent 

Model specification

I compared a baseline model, which included only the platelet count at enrolment, to 

several dynamic prediction models for the risk of a short or long-term outcome (DSS oc­

currence on the next day or overall DSS occurrence, respectively) based on the approaches 

to model development described in Section 6.2. The candidate dynamic prediction m od­

els covered a model using the person-interval approach (for short-term outcome only), 

two partly conditional models which included either the current platelet value alone or 

the current value and the change from the previous value, and a joint model. A detailed 

specification of the models is provided below.
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The specification of the models is based on the following notation:

• t  denotes the day of illness (predictions at time t  =  3,4,5 ,6 are desired to predict 

the short-term outcome at time t  +  1 and the long-term outcome after time £).

•  Ti denotes the day of illness on which DSS occurred in patient i (which was on day 

8 or earlier for all subjects) and day 9 for subjects without DSS.

• Wi is the vector of time-fixed covariates for patient i (age, gender, history of vomit­

ing, temperature, and having a palpable liver).

• Zi(t) is the observed platelet count at day t. The observed count at enrolment is 

denoted by both Z i(3) to emphasize its usage as a time-dependent value and 3 to 

emphasize its usage -as a baseline covariate.

• Ai(t) =  Z i(t) — Z i(t — 1) is the change in platelet count from the previous day. The 

change is only defined from illness day 4 onwards as values before day 3 are not 

available.

• The discrete time hazard on day t  is denoted by X(t) and defined as A(f) =  P r(T{ =  

t\T{ >  t  -  1). Ao(f) refers to the baseline hazard.

• All regression coefficients are denoted by /3 with corresponding subscripts. Regres­

sion coefficients that depend on time are denoted by /3(t).

Models for short-term prediction (DSS on the next day) As the baseline model, a 

traditional discrete time Cox proportional hazards regression model was used which de­

pended only on baseline information:

P r{T i =  t  +  l|Ti > t, Wh Zi)3) =  1 -  exp{— exp (0o(t) +  ftW i +  fcZ i,?)}

This is denoted as the baseline Cox model in the following paragraphs.

The person-interval model split the follow-up time of each patient into distinct intervals 

of length one day and applied a binary regression model with a time-varying intercept to 

the pooled data from all intervals:
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g {P r(T i =  t  +  l \T i>  t, W*, Z,-(t))} = ft>(f) +  faW i +  p 2Zi{t)

g () in the formula above denotes the link function for which I chose the complemen­

tary log-log link. This implies that the fitted model is equivalent to a discrete time Cox 

proportional hazards model with a time-dependent covariate (Singer and Willett, 2003).

The partly conditional model splits the follow-up time of each patient into overlapping 

intervals starting from the prediction time point to to the maximum follow-up of day 9. 

The following Cox regression model was fitted to the pooled data set of information from 

these intervals

P r(T i =  t  +  l \ T i > t > t o ,  W i, Ziito)) =  1 -  exp j  — exp (Po°\t) +  fi\W i +  02-Zi(*o)) }

This is a discrete time Cox model with time-independent covariates stratified by the 

prediction time point to (i.e. allowing for separate baseline hazards for each to). This 

model is referred to as “partly conditional survival model (1 )”.

A second partly conditional model {“partly  conditional survival model (2 )”) was also 

investigated to assess whether adding the change in the platelet count as a covariate 

improves prediction. Specifically, this model has the following form:

P r(T i =  t  +  l \ T i > t > t o , W i , Z i ( t o ) , A i ( t o ) )

=  1 -  exp j  -  exp ( j3 ^ ° \t) +  p{W i -1- p2Zi( t0) +  /33A »(*o)) }

As the change is only available from day 4 onwards, this model was only fitted to 

prediction time points to with to >  4.

Finally, a jo in t model was fitted. Based on Figure 6.2, the trajectory of platelet count 

for each patient could be modelled by a linear mixed effects model with a quadratic func­

tion for platelet count over time and allowing for individual variation by using random 

intercept and slope terms. Moreover, platelet count is known to depend on gender and 

age. Hence, the longitudinal sub-model of the joint model was defined as follows:
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P la te le ti(t) =  Z? (t) +  £i(t)

= ao + ao,i Agei + ao pGenden + a it  + + ao,i + a ij t  + £i(t)

Here, Z?(t)  denotes the “true” platelet value without measurement error £i(t) and 

the random effects a0)i and a i j  are assumed to have a joint bivariate normal distribution 

independent of measurement error £i(t). The survival sub-model of the joint model is a 

Cox regression model that included the true current platelet count (without measurement 

error) as a covariate

P r(T i =  t  +  l \Ti > t , W i , Z*( t ) )==\ o( t  +  l)exp((31Wi +  (32Z!(t))

In this model, the log baseline hazard function was modelled using regression splines 

with knot locations chosen automatically by the statistical software (Rizopoulos, 2010).

Models for long-term prediction (DSS on any subsequent day) For the model in­

cluding baseline information only, I chose a binary regression model (the baseline binary 

model) with an intercept that varies by day of illness:

g {P r(T i < 8|T{ > t, W i, Zi$)}  =  fio(t) + fiiW i -F jd^Zi^

For this model and all subsequent models, g() denotes the complementary log-log link 

for consistency reasons with the partly conditional model for short-term survival described 

above. Of note, person-interval models are not designed for long-term prediction and 

hence were not implemented for this purpose.

The partly conditional binary models split the follow-up time of each patient into over­

lapping intervals starting from the prediction time points t to the maximum follow-up 

of day 9. They then applied a binary regression model to the pooled data including the 

current platelet count (partly conditional binary model (1)) or the current count and the 

change from the previous day (partly conditional binary model (2), only for illness day 4 

onwards) leading to the following models:
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g { P r ( T i < 8 \ T > t , W h Zi (t))} =  (30(t) +  /31Wi +  /32Zi (t)

and

9 {P r(T i <  8|T > t ,W i, Zi ( t ) )}  =  /30(t) +  /W i +  h Z i ( t )  +  f o A 4(t)

Finally, the jo in t model described above can also be used for long-term prediction.

Model estimation

As prediction times of interest were day 3,4, 5, and 6, only data of repeated measurement 

up to day 6 of illness were used to estimate parameters in all models. When the ob­

served platelet count at prediction time t was missing, its value was substituted by the last 

non-missing observed value up to that time point (the “last observation carried forward” 

imputation method (Collett, 2003)). All models were estimated within the likelihood 

framework.

In this setting, time is discrete leading to many ties, i.e. DSS events recorded on the 

same day. Therefore, instead of using standard continuous-time survival model, I used 

discrete-time approaches for all survival models throughout, except for the survival sub­

model of the joint model (as this feature has not yet been implemented in current statis­

tical software). Similar to the person-interval approach of dynamic prediction modelling, 

fitting a discrete-time survival model requires splitting the follow-up time of each subject 

into short time intervals and then using the pooled dataset for model estimation. The 

statistical model of choice in this case is binary regression model with a complementary 

log-log link which can be estimated using standard software for generalized linear models 

(Singer and Willett, 2003). Hence, the main function for fitting the models was the func­

tion glm() which fits generalized linear models in the statistical software R (R Core Team, 

2014).

Generalized estimating equations with an independence working correlation structure, 

as implemented in package geepack (Halekoh and Ho jsgaard, 2006), were used to correct 

the estimated standard errors in the baseline binary regression model and partly condi­

tional models. Finally, the joint model was fitted using package JM (Rizopoulos, 2010).
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Prediction and model assessment

Short-term and long-term predictions are straightforward to obtain from the respective 

short- and long-term prediction models other than the joint model. For the joint model, 

both short-term and long-term predictions were obtained by plugging-in parameter esti­

mates and empirical Bayes estimates for random effects into an approximated function of 

the dynamic predictive distribution, as described in Section 6.2.3’and implemented in the 

aforementioned R package JM. If a patient’s platelet count at a prediction time point was 

missing, then this patient was excluded from the respective data set for predictions.

Between days 3-6 of illness the performance of short- and long-term predictions of all 

models amongst patients at risk (i.e. those without DSS at or before the prediction time 

point) was evaluated with the Brier score and the area under the ROC curve (AUC). As no 

independent data is available for external validation, internal validation on the original 

dataset with 10-fold cross validation was used to correct for optimism.

6.5.4 Dynamic prediction modelling -  results

Tables 6.2 and 6.3 summarize the estimated regression coefficients for each developed 

model. The effects of time-fixed covariates on outcomes were similar between models. 

However, the effects of the baseline platelet count on outcomes were smaller than the 

corresponding effects of the current platelet count. The results also showed a bigger 

effect of the current platelet count on short-term outcome in the joint model compared 

to person-interval and partly conditional survival models, which can be explained by the 

attenuation effect of measurement error.
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Table 6.3. Estimated coefficients (Est) and corresponding standard errors (SE) from fitted models for 
long-term prediction of DSS.

Covariate Baseline binary 
model

Partly conditional 
binary model (1)

Partly conditional 
binary model (2)

Est SE Est SE Est SE
Age [+ 1 year] -0.02 0.05 -0.04 0.05 -0.01 0.07
Gender: Females -0.38 0.32 -0.47 0.32 -0.57 0.42
History of vomiting: Yes 0.85 0.33 0.90 0.33 0.77 0.42
Temperature [+1°C] 0.43 0.18 0.44 0.18 0.43 0.21
Palpable liver: Yes 0.63 0.49 0.46 0.48 0.64 0.60
PLT (baseline) [+10,000 cells/mm3] -0.05 0.03
PLT (current) [+10,000 cells/mm3] -0.11 0.03 -0.11 0.04
PLT (change) [+10,000 cells/mm3] -0.09 0.03

The baseline model included the baseline p la te let count only w ith  a tim e-varying intercept whereas all other models 

used the current p la telet count as a covariate. The p artly  conditional b inary model (2) additionally  included the 

change in the p latelet count fro m  the previous day and was f itte d  to data fro m  day 4 onwards only.

The Brier score and the AUC at different prediction time points are displayed for all 

models in Figures 6.6 and 6.7 (short-term prediction) and Figures 6.8 and 6.9 (long­

term prediction). In terms of overall performance, the Brier score revealed no apparent 

differences between models. In terms of discrimination, AUCs were higher for short-term 

prediction compared to long-term prediction. The baseline models were inferior to all 

other models for both short-term and long-term prediction. Furthermore, AUCs of the 

baseline models for short-term prediction tended to decline as the prediction time point 

increased whereas the performance of other models was relatively stable over time, which 

suggests a decrease in the relevance of the day 3 platelet count on short-term prognosis 

at later time points. Differences in discrimination between other models, which required 

updated platelet counts, were minimal. Adding the change in platelet count from the 

previous day to the model in addition to the current platelet count seemed to increase 

discrimination of these models; however, the improvement was not remarkable. Of note, 

assessing performance of a single model over time based on long-term predictions might 

be misleading as the prediction horizon differs for different prediction time points.
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Brier score for short-term  prediction

Time of prediction (day of illness)

Model

+  Baseline Cox model 

Person-interval model 

^  Partly conditional survival model (1) 

♦  Partly conditional survival model (2) 

^  Joint model

Figure 6.6. Brier score for short-term prediction (probability of having DSS on the next day) of each 
model at each prediction time. All values were corrected for optimism via 10-fold cross validation. 
Partly conditional swvival model (1) only used the current platelet count whereas partly conditional 
swvival model (2) included both the current value and the change from the previous value as covari- 
ates. Predictions for the partly conditional survival model (2) are only available from illness day 4 
onwards.

AUC for short-term  prediction

&  Person-interval model 

^  Partly conditional survival model (1)
f— -!

Partly conditional survival model (2) 

Joint model

E  0.25 H

Time of prediction (day of illness)

Figure 6.7. Area under the ROC cwve (AUC) for short-term prediction (probability of having DSS on 
the next day) of each model at each prediction time. All values were corrected for optimism via 10-fold 
cross validation. Partly conditional survival model (1) only used current platelet count while partly 
conditional survival model (2) included the current value of the platelet count and the change in value 
from the previous day as covariates. Predictions for the partly conditional swvival model (2) are only 
available from illness day 4 onwards.
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6.6 Discussion

To date, the majority of dynamic prediction models have been developed for chronic dis­

eases. In this chapter, I contrasted several aspects of chronic versus acute diseases which 

affect the choice of the most appropriate statistical model. The period during which an 

acute disease evolves is usually much shorter and patients are often under close obser­

vation throughout the disease. As a consequence, the resulting dataset is more likely to 

contain balanced longitudinal data collected at the same discrete time points for each 

patient, to include the same duration of follow-up for each patient which is sufficient to 

conclusively assess the outcome of the disease, and to have little missing data. In this 

sense, the development of dynamic prediction models in acute diseases might be consid­

ered to be easier than in chronic diseases. However, due to the limitations in the amount 

of available longitudinal data and the dynamic nature of the disease, developing sophis­

ticated and flexible models such as joint models is not always possible in acute diseases, 

and if it is, there is no guarantee that these models would perform better than simpler 

ones.

Based on the presented case study of dynamic prediction modelling in hospitalized 

dengue patients where DSS was the outcome of interest, several observations can be made. 

First, as longitudinal data was balanced, it was quite easy and useful to explore the po­

tential value of longitudinal information by stratifying patients based on the prediction 

time and using simple graphical tools. Second, the case study clearly demonstrated the 

usefulness of dynamic prediction modelling as all investigated dynamic models outper­

formed the models that included baseline information only. This is in accordance with 

similar findings for many other diseases (Lemeshow et al., 1988; Christensen et al., 1993; 

Hughes et al., 1992; Rue et al., 2001; Karp et al., 2004). Third, all the dynamic models 

investigated had a similar performance and the simpler conditional models even tended 

to have a slightly superior performance than the joint model. This suggests that in the 

acute setting where longitudinal data is often balanced but also limited, simple approaches 

(conditional models) are indeed preferred to complex models. Of note, I included only 

one longitudinal covariate in the case study as changes in symptoms over time were not 

recorded in the MD study. However, extensions to more than one longitudinal covariate
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are straightforward in the conditional setting whereas joint modelling is challenging for 

multivariate longitudinal data and publicly available software implementations to fit such 

models are currently lacking.

Specific to dengue infection, this case study provides evidence that the current platelet 

value or the change in value from the previous day could be used to improve prediction 

of the occurrence of DSS, especially for short-term prediction. While reliable long-term 

predictions would be desirable, short-term predictions could still be useful in supporting 

the day-to-day management of patients, for example the decision whether daily outpatient 

follow-up is sufficient for a patient or they require hospitalization. A limitation of the 

present dataset is that the sample size and the number of DSS cases was too small to draw 

definite conclusions. This also prevented the exploration of more complex models with 

time-vaiying coefficients for the longitudinal platelet count or non-linear platelet effects.

In conclusion, this chapter suggests that dynamic prediction models based on condi­

tional models, which are relatively straightforward to implement, can improve prediction 

in acute diseases where longitudinal data is frequently routinely collected. In dengue, a 

large international cohort study which collects detailed longitudinal laboratory data as 

well as signs and symptoms of dengue patients is currently recruiting (Jaenisch et al., 

2013). The resulting data set will open up an opportunity for dynamic prediction mod­

elling which could lead to improved case management and the early identification of cases 

likely to develop DSS.
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6.7 Appendix

Brier s c o re  for ionq-te rm  prediction

Bssafine Iwjsry itrodei 
Partly consEicnai binary modei (1) 

~ ftwtly «w»8Wwal binety rnodef (2) 
Joint model

Itess of fESHfcofinr. (slay d f i&ssss)

Figure 6.8. Brier score for long-term prediction (overall DSS occurrence) of each model at each 
prediction time. All values were coirected for optimism via 10-fold cross validation. Partly conditional 
binary model (1) only used the current platelet count whereas partly conditional binary model (2) 
included both the current value and the change from the previous value as covariates. Predictions for 
the partly conditional binary model (2) are only available from illness day 4 onwards.

AUC for long-term prediction

IJ
5 0.75-

oao-l ,__________________________ ,____________________________,

3 V Cfau^rv)5

Figure 6.9. Area under the ROC curve (AUC) for long-term prediction (overall DSS occurrence) of 
each model at each prediction time. All values were corrected for optimism via 10-fold cross validation. 
Partly conditional binary model (I) only used cwrent platelet count while partly conditional binary 
model (2) included both current value and change in value from previous day of platelet count as 
covariates. Predictions for the partly conditional binary model (2) are only available from illness day 
4 onwards.
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Conclusions

7.1 Contributions of this thesis

7.1.1 Clinical contributions

This thesis provides the first comprehensive description of children with dengue shock 

syndrome (DSS) based on a large cohort of children admitted to a single institution with 

established DSS. The description provides a solid basis for further research in order to 

achieve a better understanding of the disease. The results demonstrate that case fatality 

in children with established DSS is very low if diagnosis is prompt, and the patient is 

immediately admitted to an intensive care unit and carefully managed by an experienced 

team of clinicians and nurses. Clinicians working in other settings, especially those newly 

exposed to this disease, could use this experience to improve outcome for their patients.

This thesis also identified several risk factors a) for profound DSS amongst children 

with DSS, and b) for the development of DSS amongst children hospitalized with dengue. 

„ These findings not only provide empirical evidence for experienced clinicians, who may 

already recognize these factors in their clinical practice, but also provide useful prognostic 

guidance for clinicians less familiar with the disease. As most of the risk factors identified 

are readily available in clinical practice, these findings could be very useful for clinicians 

in regions where resources are limited.

A major contribution of the present thesis is development of the two prognostic models 

for profound DSS in children with DSS and for progression to DSS in children hospitalized 

with dengue. A simple score chart was derived from the prediction model for profound
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DSS which can be applied in clinical practice, for example to prioritise patient triage, 

and in research, for example to identify the target population for studies evaluating new 

interventions for DSS.

In addition, the case study in chapter 6 of this thesis provides preliminary evidence that 

a patient’s current platelet count is a better predictor of DSS than the enrolment value and 

that dynamic prediction modelling can improve prognostic modelling in dengue.

7.1.2 Statistical contributions

Even though guidelines and standard recommendation for the development of prediction 

models based on baseline covariates are available (Harrell, 2001; Steyerberg, 2010), ex­

plicitly developing a prognostic model in a specific disease still poses challenges. This 

thesis provides case studies that illustrate how to develop prognostic models for dengue, 

a task that required special considerations regarding the choice of the outcome and co­

variates of interest, treatment of missing data, and the potential relevance of dynamic 

predictions. These case studies are useful for researchers interested in the topic but unfa­

miliar with prognostic modelling techniques or dengue.

Dynamic prediction models allow the usage of accruing longitudinal information to 

update predictions and are the topic of active ongoing statistical research. This thesis 

provides the first systematic comparison of acute and chronic diseases with respect to 

dynamic predictive modelling. Several differences between the two settings were iden­

tified regarding the choice of the time origin, prediction horizon, and outcome of inter­

est; the frequency and regularity of repeated measurement; the expected relationship 

between outcome and time-dependent covariates; the possibility of competing risks; and 

the importance of simple and rapid prognostic algorithms. These differences suggest that 

conditional models which are simpler to develop and interpret than joint models might 

be preferable in the acute setting. This recommendation was supported by a case study 

which comparing different approaches to integrating daily platelet counts into a dynamic 

prediction model for the development of DSS.
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7.2 Suggestions for future research

Findings from this thesis suggest further research to investigate the role of risk factors, 

such as platelet count, haematocrit level and gender, on the pathogenesis of the disease. 

An interesting finding is that platelet count and haematocrit levels might have different 

relevance at different stages of the disease: platelet count is an important risk factor for 

developing DSS in the early stage whereas once a patient has progressed to DSS, haemat­

ocrit is more important as an indicator of further progression of the disease. Furthermore, 

changes in platelet counts over time also relate to changes in the likelihood of developing 

DSS. As the main underlying pathophysiological abnormality in DSS is plasma leakage 

(Simmons et al., 2012a), these findings suggest a possible role for platelets in the in­

duction of plasma leakage, a phenomenon supported by the recent work by Hottz et al.

(2013). Haematocrit levels, by constrast, are likely to reflect the extent of plasma leak­

age but not to be involved at a mechanistic level. Further research is required to clearly 

determine the roles of these factors in the pathophysiology of the disease. In addition, 

further research is required to confirm the role of gender with respect to the risk of pro­

gression to DSS, health-seeking behavior, and the observed interaction between gender 

and haemodynamic parameters on the risk of progression from DSS to profound DSS.

The simple score chart for prediction of profound DSS developed in chapter 4 has the 

potential to be a valuable prediction tool for clinicians. However, this score chart was 

based on a prediction model using data from a single hospital only with moderate per­

formance. Continuing research is required to further assess this score in clinical practice. 

This includes independent validation studies to assess the performance of the score chart 

in other settings and subsequent studies to assess the impact of score-chart guided man­

agement of DSS patients on outcomes and costs, ideally in a comparative trial (Moons 

etal., 2009).

The case study in chapter 6 suggests the value of dynamic models for predicting DSS 

based on longitudinal data. However, this case study was based on a dataset with a rel­

atively low number of DSS events and lacked longitudinal data for laboratory markers 

and signs and symptoms other than the platelet count. Hence, this case study contributes 

only as proof-of-concept analysis. A large ongoing prospective multi-centre study within
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the International Research Consortium on Dengue Risk Assessment, Management, and 

Surveillance (Jaenisch et al., 2013) is currently collecting extensive longitudinal data on 

a large number of dengue patients. The resulting dataset should provide an excellent op­

portunity to develop a powerful dynamic prediction model using the approaches outlined 

in this thesis.
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