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Abstract

Reliable prediction models in dengue would facilitate early identification of patients likely
to progress to more severe disease, potentially improving patient management. However,
most published studies have limitations with respect to their modelling strategy, sample
size, and chosen clinical outcomes, and to date none have exploited longitudinal data.
Moreover, only a féw studies have examined outcofnes in patients presenting with dengue
shock syndrome (DSS), the most severe form of the disease. '

This thesis aims to overcome these limitations by using two large prospective datasets
describing a) 1719 children with established bSS and b) 2598 children hospitalized with
dengue. First, the population of children with DSS was characterized, and profound DSS,
a composite outcome reflecting the need for intensive supportive care, was established
" as a suitable outcome for prognostic research in this population. Second, risk factors for
profound DSS were identified and included in a robust prediction model. Based on this
model, a simple score chart for use in clinical practice was derived. Third, risk factors
for progression to DSS among children hospitalized with dengue were identified, and a
prognostic model for progression to DSS was carefully developed. However, this model
displayed only moderate performance and had limited clinical utility. Lastly, differences
-between acute and chronic diseases, and the implications for dynamic predicu'on modeling
based on longitudinal data, are discussed. A case study of dynamic prediction modeling for
development of DSS suggested that (1) the current platelet count can be used to improve .
baseline models that rely on enrolment values only, and (2) simple conditional dynamic

models displayed similar performance to more complex joint models in this situation.
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Chapter 1
Introduction and aims of the thesis

Summary

This chapter provides an overview of dengue, and describes risk factors for severe dengue
and the current status of prognostic research in dengue. The chapter concludes by pre-

senting the clinical and statistical aims of this PhD thesis.

13



Chapter 1. Introduction and aims of the thesis

1.1 Overview of dengue

1.1.1 Epidemiology

" Dengue is one of the most important mosquito-borne viral infections that .affects humans
worldwide (World Health Organization, 2012b). A recent cartographic analysis using a
compiled database of 8309 geo-located records of dengue incidence occufring from 1960
to 2012 provided an estimate of 390 (95% credible interval 284-528) million dengue
infection per year for the global population size of 2010, of which 25% are apparent'
infections (Bhatt et al., 2013). The disease also affects a large geographical area including

“more than 100 countries in the 4 continents Africa, Asia, Americas and Oceania (Bhatt
et al., 2013) with‘an on-going spread to previously unaffected areas (La Ruche et al.,
2010; Gjenero-Margan et al., 2011; Pun, 2011).

In Vietnam, the first dengue outbreak with virological investigatioﬁ wés in the Mekong
Delta region in 1963 (Halstead et al., 1965). Nowadays, dengue is highly endemic in Viet-
nam and it is considered as the most frequent cause of fever amongst subjects presenting
to the public primary health services in southern Vietnam (Phuong et al., 2006). A recent |
estimate of the burden of the disease in this country is 2.6 (95% credible interval 1.9-3.6)
million of apparent infections and 7.9 (95% credible interval 6.1-10.4) million of inappar-
ent infections annually (Ehatt et al., 2013). According to the World Health Organization
(WHO) ,‘ Vietnam is ranked third amongst the 30 most highly endemic countries/territories
(after Brazil and Indonesia) (World Health Organization, 2012b). | '

Dengue can affect susceptible people iﬁespecﬁve of age frofn infants to the elderly;‘
but because of acquired host immunity in endemic countries, it is more prevalent and

- more severe in children. In Vietnam, the disease predominantly affected children from 5
to 14 years before 1998, but since then, the number of adult cases has increased (Quang
Ha et al., 2000) which can be explained by the change in age structure of the population
(Cummings et al., 2009; Cuong et al., 2011).

The disease transmission depends on many factors including host, mosquitoes, viruses
as well as environment (Guzman and Harris, 2014). In areas where dengue is endemic,
there is a strong seasonality with peak dengue incidence during the rainy season (Nisalak

et al., 2003; Cuong et al., 2013), and evidence of spatial dependence within fine and
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Chapter 1. Introduction and aims of the thesis

intermediate scalés (Salje et al., 2012; Cuong et al., 2013). There is also evidence that the
spatio-temporal transmission of dengue depends heavily on the local human movement
(Stoddard et al., 2013). |
Even though dengue infection is self-limiting in most cases, it is still a potentially
fatal disease. According to one estimate from 2012, there are hundreds of thouéands
of cases with severe dengue occurring annually, including 20,000 deaths (World Health
Organization, 2012a). The large case numbers indicate that dengue infection puts a huge
burde'n on health care systéms, especially in developing countries. A prospective study
in eight countries in the Americas and Asia estimated the per-patient cost for ambulatory
~and hospitalized cases to be 514 USD and 1394 USD, respectively (Suaya et al.; 2009).
In Vietnam, a recent estimate of the annual health care cost of dengue infection is 30.3
million USD (Shepard et al., 2013). In Can Tho, a city in Southern Vietnam, the average
cost for a patient with severe dengue infection was 2,798,000 VND (~ 168 USD)*(Tam
et al., 2012b). ;

1.1.2 Dengue virus

The dengue virus (DENV) is a single-stranded, positive-sense ribonucleic acid (RNA)virus
and belongs to the genus Flavivirus, family Flaviviridae. Its genome encodes 10 pr&féins
including 3 structural proteins (capsid protein C, premembrane protein prM, and ‘envelope
protein E) and 7 non-structural proteiﬁs (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5).
Dengue virus might have evolved as an infection of non;human primates thousands years
ago but now humans are the main host and Aedes mosquitoes (especially Aedes aegypti)
are the principal vectors (Holmes and Twiddy, 2003).

Currently; there are 4 established virus serotypes (DENV-1, DENV-2, DENV-3, DENV-
4) that co-circulate in many regions of the world (Messina et al., 2014). Dengue infection
triggers long-lived serotype-specific immunity and short-lived cross-immuhity between
serotypes (Simmons et al., 2012a). According to the antibody-dependent enhancement
(ADE) hypothesis, secondary. infection with a different virus serotype could result in a
| more severe disease (Halstead and O’'Rourke, 1977; Guzman et al., 2013). Within each
sérotype, there are mulﬁple genotypes which may have different stiuctures that may lead

to different virulence (Leitmeyer et al., 1999). In endemic areas, there is a serotype-
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Chapter 1. Introduction and aims of the thesis

specific dengue virus circulation with sequential replacement of the dominant serotype
(Endy, 2002; Nisalak et al;, 2003; Vu et al., 2010) which could be explained by the in-
crease in susceptibility to secondary infection of cases with primary infection, the increase
in transmissibility during secondary infection due to higher viraemia (Recker et al., 2009)
and other extrinsic factors including changes in vector density, infection rate or environ-

mental temperature (Nisalak et al., 2003).

1.1.3 Clinical manifestations

The typical evolution of dengue disease is characterized by 4 phases: incubation period,
febrile illness, critical phase and recovery phase (Simmons et al., 2012a; World Health
Organizaﬁdn, 2009). The incubation period is without clinical features and lasts around
6.5 days (range 2.6-14.2) .(Snow et al., 2014). During the febrile illness phase which usu-
ally lasts for 3.2 days (range 0.2-6.8), the most common symptbms, are leucopenia and
‘rash (Snow et al.,'2‘014). vOrher non-specific symptoms can occur including headache,
vomiting, myalgia, and mild haemorrhage (petechiae or bruising). Other laboratory ab-
normalities also occur durjng this phase including thrombocytopenia and increases in hep-
atic transaminases. Around the day of defervescence (day 4 to day 7 of illness), a small
proportion of patients progress into the critical phase which is characterized by plasma
. leakage and associated clinical symptoms including pleural effusion, ascites and hypo- |
volaemic shock, and other important laboratory changes such as haemoconcentration and
hypoproteinaemia. Thrombocytopenia énd haemostatic dysfunction are invariably present
in patients with significant plésma leakage, and may result in severe haemorrhage, primar-
ily from the gastrointestinal tract, exacerbating the overall severity of the infection. Organ
dysfunction may also occur, usually secondary to profound shock or severe haemorrhage,
but is sometimes a primary problem, especially in adults (Moxon and Wills, 2008). The
lést phase is the recovery phase, which usually lasts for 48-72 hours, and is characterised
by the re-absorption of extra-vascular fluid and a general recovery to a normal health sta-
tus. In general, most patients with dengue infection recover completelyA and only a small
proportion of cases would die or acquire complications (mostly related to dengue shock

syndrome (DSS)).
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Chapter 1. Introduction and aims of the thesis

1.1.4 Diagnosis and classifications
Dengue diagnosﬁcs

As deﬁgue infection has a wide spectrum of manifestations with mostly non-specific symp-
toms, a diagnosis based solely on clinical symptoms is unreliable (World Health Organi-
zation, 2009). Therefore, a number of laboratory tests have been developed to enable
more accurate and specific dengue diagnosis. In general, these tests either aim to directly
identify the presence of the virus or its genome/antigens, or use indirect methods which
identify the presence of the virus indirectly through detecting thé presence of antibodies

_ that the host produced to eliminate the infection (Peeling et al., 2010).

Direct methods These methods include virus isolation, RNA detqctibn by polymerase
chain reaction (PCR) assays, and antigeh detection (Peeling et al., 2010; World Health Or-
- ganization, 2009). These methods are highly specific to dengugé infection but can %’nly be -
used in the early phase of disease. Suitable specimens are whble blood, serum, plaéma or
host tissues, but all should be collected before day 5-6 of illness. Amongst them, antigen’
detection using NS1-based aséays is the fastest and cheapest method. However, their sen-
sitivity is quite low comparing to their very high specificity, and their diagnostic accuracy
.may depend on viraemia level and immunity responses (Hang et al., 2009; Tricou ‘et al,,

2010b; Da Costa et al., 2014; Zhang et al., 2014).

Indirect methods These methods include enzyme-linked immunosorbent assay (ELISA)
to detect immunoglobulin M (IgM), immunoglobulin G (IgG),’ and immunoglobulin A
(IgA) antibodies in whole blodd, serum or plasma collected during the late phase of dis-
ease, haemagglutination-inhibition (HI) assay to determine level of antibodies, and the
plaque reducu‘on‘ neutralization test (PRNT) to assess the level of protective antibodies
(Peeling et al., 2010). ELISA tests are less specific but cheaper and easier to conduct than

direct methods and other indirect methods (World Health Organization, 2009).

Differentiation between primary and secondary dengue infection

To differentiate between primary and secondary dengue infections, researchers can rely

on the HI test, the dengue PRNT and more pragmatic approaches based on IgM and IgG
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Chapter 1. Introduction and aims of the thesis

capture ELISA. The HI test is problematic for several reasons: it requirés paired speci-
mens with at least 7 days in between, yet second specimens are ofteh unavailable; it is
time-consuming and technically cumbersome as it requires extra procedures to eliminate
non-specific haemagglutination in samples; it is not specific to dengue as the test is also
reactive to other flaviviruses (World Health Organization, 2009; Cordeiro et al., 2009; In-
nis et al., 1989; Kuno et al., 1991; Vaughn et al., 1999; Shu et al., 2003b; De.Souza etal,
2004; Matheus et al., 2005). Similarly, PRNTs are difficult to perform and require consid-
erable time to get results (Cordeiro et al., 2009). Therefore, many research groups have
bused more pragmatic approaches utilizing the ratio between IgM and IgG, or IgG alone
using just a single specimen. However, results from these approaches requife careful in-
terpretation as the level of IgG antibody or the IgM/IgG antibody ratio depend on the test

that was used and the day of illness when the specimen was obtained.

Dengue classification

Based mainly on studies of dengue in children from Thailand from the 1960s, the WHO
case classification for dengue infection was first published in 1975 and then updated in
1986 and 1997 (Bandyopadhyay et al., 2006; Halstead, 2013). This classification differ-
entiates dengue infection into 2 distinct entities: dengue fever (DF) and dengue haemor-
rhagic fever (DHF) and then sub-categorizes the DHF group further into 4 ordinal grades
of increasing severity (I, II, III/IV or DSS), based on non-specific signs and the presence
of haemorrhagic tendency and plasma leakage (World Health Organization, 1997). Over
the last 30 years, several shortcomings of this classification have been identified including
~ difficulties in practically assessing strict criteria for DHF, the low sensitivity in identifying
severe dengue, the low discrimination ability of certain criteria such as the tourniquet
test, and an overlap of clinical manifestations between categorizations (Bandyopadhyay
et al., 2006; Hadinegoro, 2012). Therefore, following a large multi-centre studies which
re-assessed the utility of the current guideline, a global expert consensus meeting was set
up in 2009 to propose and then implement a new dengue classification (Alexander et al.,
2011; Horstick et al., 2012). This new classification categorizes dengue into 2 levels of
severity: dengue with/without warning signs and severe dengue (including severe plasma

leakage leading to DSS or fluid accumulation with respiratory distress; severe bleeding;
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- and severe organ failure), with allowance for the possibility that patients in the former
group may progress to the latter group (World Health Organization, 2009). This classi-
fication is much simpler than its 'predecessor and aims is to improve case management
rathef than being purely a fesearch tool (Farrar et al., 2013). While the new system has
not been without its critics, mainly regarding the non-specificity of warning signs and
the potential adverse impact on patho-physiological research (Kalayanarooj, 2011; Sriki-
atkhachorn et al., 2011; Halstead, 2013), current evidence ffom large multi-cen_tre study
shows that the new classification has a high applicability and is berceived as user-friendly
(Barniol et al., 2011). In addition, a large multi-country study ié ongoing to assess the
| predictive value of the suggested warning signs for severe dengue (Horsﬁck et al., 2012;

Jaenisch et al., 2013).

1.1.5 Treatment and Prevention

Currently, there is nb specific therapy available for dengue other than supportivé‘r"ca‘re
(Simmons et al., 2012a). Recent attempts to treat dengue infection using immune modu-
lation (Tam et al., 2012a) and anti-viral therapy (Tricou et al., 2010a; Nguyen et al., 2013;
Low et al., 2014) did not show clear benefits. However, although disappointing, these tri-
als have provided a structural framework for further clinical trials in this field (Simmons
et al., 20125); currently a stﬁdy of Lovastatin, a drug with both antiviral and endothelial
stabilizing properties is in progress in Vietnam (Whitehorn et al., 2012).

Supportive treatment, especially careful monitoring and appropriate usage of fluid re-
placement are stiH the basis for successful management (Simmons et al., 2012a; World
" Health Organization, 2012c). All patients with warning signs who are unable to toler-
ate oral fluids should be hospitalized for close observation. Patients with sevefe dengue
require emergency treatment including fluid resuscitation for shock and/or blood trans-
fusion for severe bleeding and/or other supportive care and adjuvant therapy (inotrdpié
therapy, renal replacement therapy, etc.). Effectivé fluid resuscitation is very important
in managing patients with DSS. As the severity of leakage in patients with DSS ranges
from relatively mild to severe plasma leakage, fluid re’quirements can range from a small
prompt initial volume resuscitation to the need for very large volumes of parenteral fluid

therapy, bolus colloid infusions and/or blood products, together with sophisticated inten-
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sive care management of the complex complications that often accompany severe shock.
Of note, fluid overload is a significant contributor to morbidity and mortality in these cir-
cumstances, and balancing parenteral fluid therapy at a level just sufficient to maintain
~ cardiovascular stability and critical organ perfusion duriné the phase of vascular leak-
age requires considerable skill and experience. One challenge when considering fluid
replacement for dengue, especially DSS, is t}le current controversy regarding the safety
and efficacy of fluid regimens using hydroxyethyl starch solutions, the only type of colloid
which is affordable and available in many dengue-endemic countries, in the context that
there are increasing concerns about the safcty of this collo.id in patients with severe sepsis
(Maitland et al., 2011; Myburgh and My‘rhen, 2013; Huynh et al., 2013).

Regarding prevention, there is still no licensed dengue vaccine available although coo-
siderable research efforts have been dedicated to this field since the first attempts more
than 65 years ago (World Health Organization, 2012d; Coller et al., 2011). Difficulties
that have hampered the development of vaccines for dengue include the fact there are
‘multiple éerotypes, the lack of reliable animal models and the potehti‘al to induce an im-
mune response which could lead to severe dengue after vaccination (Coller et al., 2011).
However, advances in basic science have led to significant progress in the last decade with
at least 5 vaccines in the clinical development stage and several others in preclinical stagés
(Coller et al., 2011). Recent publications regarding the most advanced dengue vaccine,
the live-attenuated tetravalent dengue vaccine developed by Sanofi Pasteur, indicate that
the vaccine has a good safety profile and significant efficacy. Two large-scale randomized,
observér—blind, controlled multi-center phase III trials have reported relative risk reduc-
tions for symptomatic infection betweén mohths 13 and 25 after the first vaccine injection
of 56% in more than 10,000.volunteers in Asia and 61% in moré than 20,000 volunteers
in Latin America (Capeding et al., 2014; Villar et al., 2014), although the findings from
~ the initial phase IIb trial were not very convincing (Sabchareon et al., 2012). Even though
these results are promising, there are still open questions regarding the longer term ef-
fects of the vaccine on the risk of severe dengue, the heterogeneity in serotype-specific
efficacy, and the lack of efficacy in cases naive to dengue that need to be addressed before |

introducing this vaccine into national vaccination programs (Wilder-Smith, 2014).
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1.2 Factors associated with severe dengue

The outcome of dengue in an individual appears to be détermined by a complex interplay
of viral and human factors. This section describes a number of factoré which have been
presented in the literature (see reviews by Pawitan (2011); Yacoub et al. (2013); White-
horn and Simmons (2011); Srikiatkhachorn and Green (2010); Huy et al. (2013b)), and

are considered to play an important role.

1.2.1 Viral determinants

Viral factors which may be associated with dengue severity include viral load and viral
serotype (Vaughn et al., 2000), with DEW-Z and DENV-3 possibly associated with severe
dengue (Endy, 2002; Nisalak et al., 2003), although severe disease has been reported
with all four serotypes. There is also some evidence that virus genotypes within the same

serotype might have different virulence (Rico-Hesse et al., 1997).

1.2.2 Host determinants
Epidemiological factors

" o Gender: results from epidemiological research in Asian countries suggests that amongst
hospitalized dengue patients, females are more likely to develop DSS or die (Huy
etal,, 2013b). Possible' explanations include a discrepancy in the healthcare-seeking
behavior between genders in Asian countries or a greater susceptibility to c‘apillary ’

leakage in females (Anders et al., 2011).

e Age: patients at the extremes of age (young children and the elderly) have a higher
risk of DSS and mortality (Anders et al., 2011). The greater risk of severe dengue in
children may be explained by the higher intrinsic permeability of vascular endothe-

lium in the young (Gamble et al., 2000).

e Comorbidity: paﬁents with pre-existing conditions who may have underlying mi-
crovascular damage such as diabetes mellitus, hypertension and renal failure seem
to have higher risk of severe dengue (Pang et al., 2012; Figueiredo et al., 2010; Kuo
et al., 2008).
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Clinical signs and symptoms

e (Clinical signs and symptomsvthatl are éssociated with severe dengue include pleu-
ral effusion, ascites,' abdominal tenderness, hepatomegaly, lethargy, gastrointestinal
bleeding, Vorhiting (Branco et él., 2014; Wichmann et al., 2004; Gupta et al., 2011).
These associations could be explained by the relationship of these signs with plasma

leakage, haemostatic dysfunction and damage in systemic organs.

e Laboratory findings which are often observed in dengue, and which tend to be
increasingly abnormal with increasing disease severity, include thrbmbocytopenia
(decreased level of platelet count (PLT)), haemoconcentration. (increased level of
haematocrit (HCT)), coagulation derangements, and increased hepatic transami-
nases (Chuansumrit et al., 2010; Tantracheewathorn and Tantracheewathorn, 2007;
Wichmann et al., 2004; Tee et al., 2009; Almas et al., 2010). Disturbance of these
laboratory tésts in severe dengue have been attributed to excessive plasma leakage
in combination with the overproduction of cytokines. Recent evidence also sug- -

. gests that platelet activation could contribute to the elevated vascular permeability

.in dengue infection through the releasing of IL-13 (Hottz et al., 2013).

Host humoral immune response

o The effect of the host’s humoral immuné response on severity of disease is demon-
strated by the positive relatiohship between secondary infection With a heterotypic .
serotype and severe disease (Sangkawibha et al., 1984; Chau et al., 2008; Halstead
et al., 1970; Kliks et al., 1988). The classical explanation for this relationship is the
ADE, a theory which suggests that non-neutralising antibodies, elicited in response
to the previously encountered serotype, contribute to an increase in virus-infected

cells during the current infection (Halstead and O’Rourke, 1977).

Host cell-mediated immune response

o The magnitude of the T-cell response influences severity of disease due to the exces-
sive production of pro-inflammatory cytokines during T-cell activation (Duangchinda

et al., 2010; Mongkolsapaya et al., 2003). In addition, high concentrations of several

22



Chapter 1. Introduction and aims of the thesis

cytokines including TNF-¢, IL-1, IL-6, IL-10 and chemokines produced by dengue-
infected cells might also be associated with severe dengue (Butthep et al., 2012;

Appanné et al., 2012).

Host genetics

e Patients with African ancestry may have a lower risk for severe dengﬁe (Sierra et al.,
2007). Furthermore, several genes related to disease susceptability have been identi-
fied including MICB, PLCE1 (Khor et al., 2011), and other genes encoding a number

of blood antigens and immune effector cells (Sakuntabhai et al., 2005; Vejbaesya

et al.,, 2009).

1.3 Prognostic models in dengue

1.3.1 Introduction to prognostic models
Prediction/prognosis in clinical medicine

In daily clinical practice, one of the main tasks of clinicians is to investigate and develop
three maih areas of knowledge related to the patient’s illness: diagnosis (whether a par-
ticular illness is present), aetiology (what is the cause of the present illness) and prognosis
(what is the likely future course of the present illness) (Miettinen, 2011). Based on this,
clinicians can suggest a suitéble intervention or management plan for the patient under
investigation. Therefore, making prognostic assessments is a natural and familiar task that
clinicians have to do every day. |

'As prediction is a fundamental component of medical decision-making, it has an im-
portant role in clinical practice. However, it is also a generally difficult task because
unlike diagnosis or etiognosis, prognosis requires extrapolation to the future based on the
present knowledge about a patient’s disease status and characteristics. As the future is
uncertain, predictions need to rely on many assumptions and making a good prediction is
an extremely difficult task.

In general, the prediction making process may come with pitfalls including its subjec-

tivity, proneness to errors, and inconsistencies (Meehl, 1954; Dawes et al., 1989; Grove
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et al., 2000; Sox et al., 2013). Common pitfalls when estimating probability using only

personal experience are:

e Focusing on the presehce or absence of predictors but ignoring the prior probability

of the outcome.

e Basing predictions on the presence of predictors with low predictive ability or a set

of predictors which do not independently affect outcome.

o Personal experience, especially for clinicians in their early careers, is typically a small

and unrepresentative sample of the overall population.

e Reliance on a false belief in the relationship between candidate predictors and out--
come, as it is difficult to differentiate invalid relationships from valid ones theoreti-

cally.

e A tendency to be over-confident and overstate subjective certainty.

As a result, deriving precise and unbiased predictions from personal experience alone
is beyond the cognitive ability of almost everyone (Sox et al., 2013). Therefore, additional .
knowledge, especially that deriving from an objective source like empirical ;esearch, is
needed. Such knowledge includes published reports describing the incidence of outcomes
ambngst patients having a .common set of clinical features and clinical prediction models.
Compared to i)ersonal experience, they provide more objective and more comprehensive
information, ‘especia]ly for rare outcomes. However, their utility and validity can vary
widely depending on the quality of the clinical studies and the similarities between the
* research population and the population of interest. Amongst these objective sources of
knowledge, clinical prediction models are recognized as powerﬁﬂvtools to derive pre-
diction. Besides their ability to process and produce complex information that may go
~ beyond human mental ability, clinical prediction models provide consistent estimates and
have been shown to outperfo'rrnipersonal judgement in many situations (Dawes et al.,
1989; Grove et al., 2000). Caveats in applying clinical prediction model are related to
their potential to over-fit the data when they are not developed or tested properly and

their potential to miss predictors which are relevant but difficult to evaluate in clinical
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research. For more information on what prognostic models are and how they are derived
I refer to the following sections and Chapter 2.

Based on these rationales, a better model for estimating the risk of the occurrence
of a certain outcome in clinical practice requires both published evidence and personal
experience. In addition, further adjustments to risk estimation may be required due to

- differences between the population of interest and the reference population, or due to the
presence of extraordinary clinical features in the patient that the physician has never seen

and which have not been reported anywhere (Sox et al., 2013).

What are prognostic models?

A prognostic model is a formal combination rule of multiple predictors from which a
subject’s absolute risk of the o.ccurrence of a disease event of interest can be caléulated
(Steyerberg et al., 2013). Prognostic modeling is an important part of prognostic research
which aims to understand and improve future outcomes in subjects with a given health
state (Hemingway et al., 2013). Developing a prognostic model is the third step of a 4- A
step paradigm for prognostic research which includes (1) investigating the variation of
outcomes of a health condition in the context of current care (fundamental prognostic
research); (2) identifying risk factors which are related to outcomes (prognostic g'ctor
research); (3) developing, validating and assessing the impact of prediction models that
predict an individual’s risk of a future event (prognostic model research); (4) using prog-
nostic information to help individualize treatment decisions for a subject or group of sub-
jects that share similar characteristics (stratified medicine research) (Hemingway et al.,
2013). . |

A typical prediction model has three main ingre'dients: an outcome, candidate predic-
tors, and a statistical model. An outcome can be a hard endpoint such as death or the
presenée of clinical complicatidn, or a surrogate endpoint such as a biomarker of severity,
or a composite endpoint. Candidate predictors typically include demographic variables
such as age and gender as Well as clinical symptoms or biomarkers which are relevant
to outcome prediction based 6n clinical knowledge. As prognosis is aimed at the future,
predictors have to be collected at a starting point or baseline which is before the outcome

* occurs and the length of the lag period between the starting point and the outcome oc-
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currence affects largely the usefulness of the derived prediction model. The relationship
between outcome and bredictors is modeled using a statistical model and the choice of
this model depehds on the type of outcome. As clinical outcomes are usually binary or
survival data, the most common statistical modéls of choice are logistic regression and the
Cox proporﬁonal hazards model, but many other statistical models have beén suggested in
the literature (Steyerberg, 2010; Hasﬁe et al., 2009). As a general rule, these three main
components have to be pre-specified before fitting any model in order to avoid over-fitting
and therefore to preserve the validity of the derived model.

Prediction models are different from decision rules. The inputs to a prediction model
are values of prognostic factors at a pre-defined time point and the output is aﬁ estimated
risk of a specific outcome. Even though one may categorize estimated risks and assign
suggested actions to each risk category, a typical prediction model only provides a predic-
tion of a risk as it is intended to assist clinicians without suggesting to them what to do
(Reilly and Evans, 2006). In contrast, a decision rule is designed to directly affect clinical
decisions by physicians. Asvaccuraté predictions do not always imprbve clinical decisions,
a promising prediction model has to demonstrate its positive impact on physicians’ de-
cisions and patients’ outcomes through different levels of impact analysis in order to be
successfully translated into a useful clinical decision rule (Reilly and Evans, 2006).

As described in the previous section, the major advantage of brediction models in
clinical practice is their ability to provide objective, reproducible and reliable estimation
of outcome occurrence. Due to their transparency, prediction modek can also enhance
communication between physicians and patients (Steyerberg et al., 2013). Moreover, in-
clinical research prediction models can be used in the design stage to target a population
of interest, and in the analysis stage to perform stratified analysis according to predicted

‘risk groups or to improve the power of statistical analyses (Steyerberg et al., 2013).

Baseline versus dynamic prediction models

Traditionally, a prediction models relies on data collected at a single time point (at the time
of presentation, admission, diagnosis or initiation of an intervention) to predict outcomes
in the future. Even though many of these traditional prediction models are useful in

clinical practice, they have several shortcomings:
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e Initial predictions tend to become less relevant as the disease progrésses (Rué et al,,
2001). A possible explanation is that a prediction model based on baseline informa-
tion only cannot capture changes in the patient’s clinical profile according to their
response to tfeatment or natural physiologic variation reflecting the course of the
disease, which may be strong predictors of the outcome (Rué et al., 2001). Fur-
thermore, baseline models might also miss complications, which may strongly affect
outcome, while being present at baseline but require time to become clinically appar-
ent (Lemeshow et al., 1988). As a result, baseline models might not be transferable
to later time points and therefore, théy may not be used for individual management

decisions at those time points (Lemeshow et al., 1994; Wagner et al., 1994) .

e Longitudinal information during the patient’s disease course is nowadays frequently
collected in clinical practice, especially with the introduction of electronic health .

record. Baseline models are inefficient in the sense that they ignore all this post-

baseline information.

For these reasons, dynamic prediction models, which predict the future course of the
disease at follow-up time points based on the accruing longitudinal information, are re-
quired to allow updating a patients’ prognosis over time (Van Houwelingen and Putter,
2012). By using all available data, such models may provide much more accurate predic-
tions compared to baseline models in many settings (Lemeshow et al., 1988; Christensen
et al., 1993; Hughes et al., 1992; Rué et al., 2001; Karp et al., 2004). Dynamic prediction
may also be appealing for clinicians as it mimics the iteration of 6btaining information
and updating prognosis based on the new information, a task that physicians routinely do |

every day in clinical practice.

1.3.2 Prediction models in dengue

As described in the previous sections, there is still no specific treatment for dengue and
case mahagement relies mainly on supportive treatment. Therefore, improving outcomes
in patiénts with dengue depends in part on effective triage to identify patients who are
| likely to progress to more severe disease at an early stage, and reliable prediction models

could facilitate this. As a first step, exploring the current status of prognostic research in
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the dengue field should provide useful information to justify and tailor the specific needs

fbr developing prediction models in dengue. -

Litérature Review

A PubMed search for prediction models in deﬁgue on 10 September 2014 yielded 263
articles amongst which 17 original érticlgs described actual prediction models (Table 1.1).
These studies were published from 2005 to 2013 (Ibrahim et aL, 2005; Iskandar et al.,
2008; Lee et al., 2008; Tanner et al., 2008; Lee et al., 2009; Gomes et al., v2010; Ibrahim
et él., 2010; Potts et al., 2010a,b; Thein et al., 2011; Brasier et al., 2012b,a; Faisal et al.,
2012; Dewi and Nurfitri, 2012; Ju and Brasier, 2013; Pongpan et al., 2013; Huy et al.,
2013b). |

Most of these studies utilized prospective data (13/17) whereas the remaining 4 either
used retrospective data (3 studies) or did not clearly specify the type of design (1 study).
Most of them were conducted in South-East Asia (13/17) while 4 were from Latin Amer-
ica. The studies included only children (6/17), only adults (4/17), children and adults
(5/17), or the age of participants was not specified (2/17). Patients were enrolled from
hospitals (12/15) or community clinics (3/15), and most studies only included subjects

" with labofatory-COnﬁnned dengue (15/17). The majority of studies focused on predicting
severe outcomes in patients with dengue infection (14/17) whereas 3/17 studigs aimed to
predict severe outcome in patients with DSS. Amdngst the 3 studies in patients with DSS, 2
studies aimed to demonstrate the applicability of established general severity scores from
intensive care medicine (PELOD, PRISM) to patients with DSS, while only 1 study aimed
to develop é novel prediction model for severe outcome in patients with DSS.

Regarding clinical outcomes, 2 studies defined multiple endpoints whereas all others
only used a single endpoint. Amongst patients with dengue infection, severe outcomes
were defined as DHF, DSS, or DHF plus other severity criteria concerning pleural effusion
or specific laboratory values (PLT, HCT, aspartate aminotransferase (AST)). Two studies
also used PLT cdunts on day 5 to 7 of illness, and the day of deférvescence, as surro-

- gate markefs for severity in these patients. Amongst patients with DSS, severe outcomes
included mortality and recurrent shock.

Most studies used a large number of candidate predictors, ranging from general demo-
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graphical factors to clinical symptoms, signs and common laboratory tests. More advanced
and complicated factors that were occasionally included were proteomic or gene expres-
sions profiles and bioelectrical impedance measurements. In two studies, well-known
severity scores to predict mortality in children in critical care units were directly assessed.
In most studies, values for the candidatevpredictors were collected at the time of presen-
tatiori. In 3 studies, repéated measurements of predictors were also included; however,
data from these repeated measures were simply pooled without taking into account the
dependence of measurements from the same subject. To estimate the effect of candidate
predictors on outcome, these studies had sample sizes varying from less than 100 patients
(6/17) to 100-1000 patients (5/17) and 1000-2000 patients (6/17). The effective sample
size, or the number of subjects experiencing the events of interest, also fluctuated widely
from 5 to 228 patients. In particular, the effective sample sizes for the studies aiming to
predict development of DSS amongst patients with dengue were quite low (from 37 to 90
- observed DSS cases).

Logistic regression modeling wés the most common statistical model used to derived
these prediction models (5/14 studies). Other statistical methods were classification and
regression trees (CART), artificial neural network (ANN), support vector machine (SVM)

- and multivariate adaptive regression splines (MARS). Three studies also compared the
performance of different statistical modeling approaches as part of their model develop-
ment.

Three of the 17 studies aimed to externally validate previously derived prediction mod-
els. AIhongst the others, only one prediction model was validated externally using an in-
dependent dataset, 6 were validated internally using cross-validation and sample-splitting
methods, and 7 were evaluated in the original dataset without any adjustment. Methods
for dealing with missing data was described in only 5 studies, while only 1 study reported

an assessment of the plausibility of modeling assumptions.
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Summary

- The above review of the prediction modeling in dengue shows that although the topic
is increasingly attracting attention, most of developed models have certain limitations.

Several important areas to be addressed are as follows: |

e Modeling strategy: the current models were developed using a variety of different
modeling strategies, but many of them failed to take into account the importance of
* missing values, modeling assumptions or variable selection. Furthermore, the risk of
over-fitting was not addressed properly as many studies still assessed performance

of the derived model using the original data.

¢ Study population: most studies focused on predicting severe outcomes in patients
with dengue, and used relatively small datasets. There were orily 3 studies that

looked at outcomes in patients presenting with established DSS.

e Clinical outcomes: there are currently no standardized clinical outcomes in dengue;
therefore, endpoints vary considerably between studies and formal comparisons are
difficult. Amongst patients with dengue, the most common outcome was devel-
opment of DHF; however, over a number of years increasing concerns have been
raised regarding the complexity and usefulness of the DF/DHF classification system,
in particular the requirement for four specific criteria to support a diagnosis of DHF
such that some patients with clinically severe disease are categorized inappropri- |

-ately. Amongst patients with DSS, identified outcomes were mortality and recurrent
shock; however, in the absence of a comprehensive vdescription of patients with DSS
or the frequency of relevant outcomes, it is hard to decide which would be most

relevant for a reliable prediction model.

* Utilization of repeated measurement: most of the prediction models developed to
date used only baseline information for the candidate predictors. Three studies
included repeated measurement but failed to take into account the dependency be-
tween measurements on the same subject. As repeated measures, e.g. changes in
HCT or PLT, might carry importént information on a subject’s prognosis, there is a

need to develop dynamic prognostic models which exploit this and, where necessary,
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to develop the required statistical methodology to achieve this goal.

1.4 Aims of the thesis

In the context of the limitations of éurrent prognosis research in dengue and with the
availability of an extensive resource of more than 4000 well-characterized patients en-
tered into various dengue studies over the last 10 years at OUCRU, in this PhD project I
have set out to develop rbbust prediction tools for use in clinical pracﬁce, and to improve
methodology in building dynamic prediction models which incorporate longitudinal in-
formation in the acute disease setting. Specifically, the aims of this work can be broadly
separated into two main areas - clinical, and statistical.

The clinical aims of my PhD thesis are:

1. To describe the clinical and laboratory features of DSS in children,

2. To develop prognostic models for severe outcome amongst children with DSS, using

baseline information obtained at the time of development of shock,

3. To develop prognostic models for progression to DSS in children hospitalized with

dengue using both baseline and longitudinal information.

The statistical aim is to adapt and compare available methods for developing and
assessing dynamic prognostic models using the datasets utilized to achieve the clinical
aims.

Based on these aims, the thesis is structured as follows:

e Chapter 2 describes the clinical datasets, study procedures and common analytic
methods used in this thesis (descriptive analysis, treatment of missing values, build-

ing blocks of prediction model development using baseline information only),

e Chapter 3 describes the characteristics at presentation with shock, and the clinical

evolution during hospitalization, of over 1700 children with DSS,

o Chapter 4 assesses risk factors for severe outcome amongst children with DSS and

presents a prognostic model for severe outcome using baseline information only,

34



Chapter 1. Introduction and aims of the thesis

e Chapter 5 assesses risk factors for DSS development amongst children hospitalized
with dengue and presents a prognostic model for DSS using baseline information

only,

e Chapter 6 describes the currentvknowledge about dynamic prediction models, im-
plications of differences between acute and chronic diseases on dynamic prediction
modelling, and compares methodology to develop and evaluate such models, using

dengue as a case study,

e Chapter 7 summarizes the conclusions from this thesis and suggests a number of

avenues for future research in this field.

1.5 Appendix

Search term for the literature review of proghostic models in dengue (((“déﬁgue
hemorrhagic fever”[MeSH Térms] OR “dengue shock syndrome”[Text Word]) OR “dengue
shock”[All Fields]) OR (severe[All Fields] AND (“dengue”[MeSH Terms] OR “dengue”[All
Fields]))) AND ((“Decision Support Techniques”[Mesh] OR “Bayes Theorem”[Mesh] OR
“Prognosis” [Mesh] OR “Forecasting”[Mesh]) OR “Risk Factors”[Mesh]).
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Chapter 2
Materials and common analytical

methods

Summary

.This chapter describes the datasets used in this PhD project, together with detailed in-
formation regarding data collection and laboratory diagnostics. In addition, this chapter
specifies common analytical methods used in the subsequent chapters, including descrip-
tive analyses, treatment of missing values and the chosen strategy to develop pi'ognostic

models using baseline information.
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2.1 Materials

“In this PhD project I utilized data from two large paediatric cohorts (with study codes
DF and MD) to describe clinical features of the corresponding populations of children
with dengue, to develop prognostic models for severe outcomes, and to illustrate the

development of dynamic prognostic models for acute diseases.

2.1.1 Study populations
DF cohort

This prospective cohort was enrolled at the paediétrié intensive care unit (PICU) of the
Hospital for Tropical Diseases (HTD) in Ho Chi Minh City, Vietnam, from 1999 and 2009. ‘
The participants comprised children below 15 years of age admitted to the PICU with a
clinical diagnosis of DSS. To limit the effect of treatment before admission on outcome,
patients transferred from other facilities for tertiary care (after initial shock resuscitati&n)
were not included. However patients transferred from other wards at HTD after devel-
oinment of DSS, some of whom had received some maintenance fluid therapy during the
febrile phase, were eligible for enrolment.
From 1999 to 2009, 1810 children with DSS were enrolled in this cohort. For each
patient, information on baseline characteristics at enrolment (collected within 2 hours
of presentation with DSS), detailed information on treatment during hospitalization, and
clinical outcomes at discharge were collected. Daily PLT were measured and HCT assess-
ments were repeated every 2 to 12 hours with the exact schedule depending on the clinical
status of the patient. ' v |
During the first 6 years of the study (1999 to 2004), 503 paﬁents in this cohort were
also recruited into a nested randomised controlled trial (RCT) which compared different
fluid types for initial resuscitation in children with DSS (Wills et al., 2005). All patients
enrolled during 1999-2002 were recruited into this trial; howeyer, a number of patients
were not included in the RCT during 2003-2004 as the trial was temporary stopped due

to safety reasons.
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MD cohort

This prospective cohort was recruited at HTD between 2001 and 2009. Participants com-
prised children aged between 5 and 15 years admitted .to the dengue ward with a clinical
suspicion of dengue. In total, 3040 patiehts were enrolled into this study. The available
data included baseline information at‘ enrolment, treatment given, and clinical outcomes

at discharge, as well as daily HCT and PLT values.

2.1.2 Study procedures and data collection

In both cohorts, trained study doctors obtained written informed consent from a parent
or guardian (after giving verbal and written explanations), and then enrolled the children
into the study. At enrolment, baseline information including demographic characteristics,
clirﬁcal history,‘ and examination findings were collected using a structured case report
form (CRF). During hospitalization, all patients were followed daily and information on
therapeutic interventions and supportive care, especially on fluid ﬁsage and major clinical
events, were recorded by study doctors. At discharge, study records were reviewed and
eaéh patient was assigned a final diagnosis and clinical disease category based on WHO
and local clinical guidelines (World Health Organizatioﬁ, 1997).7 All patients were asked
to return for follow-up assessments at one month, and agéin at two months if there were
any ongbing concerns. In the DF cohort, the original study CRF contained only limited
information on fluid interventions. Therefore I designed an additional short CRF to collect
more detailed information on fluid usage, and worked with two study nurses to extract
relevant daté from the hospital files and other source documents.

For all patients, 5 ml venous blood samples were obtained on the day of enrolment, the
day of discharge or defervescence, and at the follow ﬁp visits. These blood specimens were -
used to perform dengue serology and reverse transcriptase polymerase chain reaction (RT-
PCR) tests. In addition, 1 ml finger prick blood samples were obtained daily (in MD) or at
varying intervals from 2-12 hourly (in DF) as part of standard care for dengue patients at
HTD These blood samples were used to measure HCT levels and PLT counts of the patient
at that time point. | |

During the study period, patients were mahaged following the treatment guidelines
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~of HTD and superﬁsed by a group of senior clinicians which remained stable during the
whole study period. In the DF cohort, initial treatment in the first two hours after pre-
sentation with compensated shock (for patients not enrolled in the RCT) was 25 ml/kg of
Ringer’s Lactate fluid, or the same Volume of a colloid solution (6% dextran or starch) for
patients presenting with decompensatéd/hypotensive shock. Subsequently, a standard-
ized schedule of Ringer’s Lactate was used, involving staged reductions at specific time
intervals, aiming for maintenance fluid therapy after eight hours. Patients in the RCT
were randomized to ‘receive one of three possible intravenous fluid solutions at a rate of
25 ml/kg over 2 hours for initial volume resuscitation, but subsequent management, study
procedures and data collection were otherwise similar to other patients in the cohort. Pa-
tients whose cardiovascular status failed to stabilize within the first two hours or who
deteriorated during the mandatory 36-48 hour period of close observation received 10—15.
ml/kg infusions of rescue colloid plus inotropes, blood products or other therapies at" 'f;he
discretion of the treating clinician. | "
Both cohorts were approved by the HTD ethical committee and the Oxford Tropical

Research Ethics Committee.

2.1.3 Laboratory diagnostics

In this project, two sets of laboratory diagnostics were performed: (1) to confirm the
dengue diagnosis, and (2) to differentiate primary and secondary dengue infections. Only

patients with laboratory-confirmed dengue were included in the main analyses.

Determination of dengue diagnosis

A laboratory-confirmed case was defined by detection of DENV RNA in plasma (PCR),
or by seroconversion on the capturé ELISA (ELISA). In the DF study, patients with ele-
vated dengue-specific IgM at onset of shock were also considered as confirmed dengue
cases provided the overall clinical picture was consistent with DSS. Cases were defined as
dengue-negative if the enrolment RT-PCR and paired serology specimens were all nega-

tive.
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ELISA Dengue IgM and IgG capture ELISAs were perfoﬁned on paired enrolment and -
early convalescent specimens. Duﬁng the study period the diagnostic laboratory used a
number of different serological tests, following the manufacturer’s instructions for com-
mercial kits (Dengue Duo IgM and IgG Capture ELISA, PanBio, Australia), or established
standard operating procedures for in-house methods (Cardosa et al., 2002).

Cross reactivity with flaviviruses that co-circulate in the region may influence the re-
sults of IgG serology in particular in Vietnam, Japanese encephalitis (JE) virus is known
to circulate and to cause sporadic cases of meningo-encephalitis. However, although an
inactivated JE vaccine was introduced in 1997 for use in high-risk areas, southern Viet-
nam is not considered to be high-risk and JE vaccination is not part of the local Expanded
Prograrh of Immunization.  Vaccination became available privately in Ho Chi Minh City
from around 2005-2006 onwards but uptake remains sporadic. ~Although the specific
sero-diagnostic tests performed did not assess cross-reactivity for JE virus, due to the low
vacciﬁe coverage locally it IS unlikely that JE vaccination affeéted the identification of sec-
ondary dengue cases in this study. Symptomatic diseasé caused by JE virus is pﬁmarﬂy
ﬁeurological and unlikely to mimic dengue infection. None of the patients in either cohort
had a past history of serious neurological disease,. but it is possible that recent asymp-
tomatic or pauci-symptomatic JE virus infection influenced the serological responses we

documented, although the number of cases affected is likely to be small.

PCR RT-PCR was performed on the enrolment specimen using established methodology

(Lanciotti et al., 1992; Shu et al., 2003a).

Determination of primary/secondary dengue infection

As described in Chapter 1, serological definitions for primary versus secondary infections
commonly rely on the ratio of IgM/I‘gG, but may give varying results depending on the
test used and the day of illness when the specimen is obtained. Given that a number of '
different sero-diagnostic tests were employed during the 10-year study-period serologic

classification of dengue infection was determined using the following simple definitions:

e Primary infection: if the patient had two negative dengue-specific IgG results pro-

vided that the second sample was obtained during the second week of illness.
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e Secondary infection: if there was at least one positive dengue-specific IgG on or

before day 7 of illness.

" e Possible primary infection: if the patient only had single negative dengue-specific

IgG, either in the first or the second week of illness.

e Undlassifiable: all other patients, the primary reason for being ‘unclassifiable’ was

the availability of a single specimen or late convalescent specimens only.

Of note, as the level of dengue-specific IgG increases over time during dengue in-
fection, there would be a high chance that a paﬁeﬁt with primary dengue infection has
positive IgG result in the late course of illness (i.e. day 6, day 7 of illness). Therefore, this
simple classification is expectéd to provide a relative accurate detection of primary dengue

infection, but a less precise detection of secondary cases.

2.1.4 Data cleaning and checking

A team of experienced physicians and I were responsible for checking and cleaning the
study databases. This procedure involved two Steps: checking individual CRFs and check-
ing the aggregated databases. In the first step, I and other physicians examined all written
CRFs to check the consistency and accuracy between written CRFs and the ele&fdnic
databases. In the second step, I checked the whole database to find outliers or implausible
values and then traced them back to the written CRF for cross-checking if necessary. All

corrections were documented in both the written CRFs and the electronic databases.

2.2 Common analytical methods

2.2.1 Descriptive analysfs

The distribution of variables was described by numbers and/or graphs. Numerical sum-
maries were median and the cor;esponding interquartile range (IQR) for continuous vari-
_ ables, or frequency and percentage for categorical variables; Graphical displays included/
histogram for continuous variables, and bar plots for categorical variables. The evolu-
tion of longitudinal data over time was visualized using plots of patient profiles over time

together with a scatter-plot smoother based on local regression (Diggle et al., 2002).
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2.2.2 Treatment of missing values

- The extend of missing data was assessed for all pre-defined candidate predictors. The
amount of missing values were summarized in terms of the fréquéncy (%) of missing
values per variable, the range of the total number of miésing values per individual, and the
frequency and fraction of incomplete cases (iﬁdividuals with at least one missing value).
To assess the plausibility of the missing completely at random (MCAR) assumptidn, I also
investigated the relationship between indicators of missingness in a certain variable and
the observed values of other covariates using multivariable logistic regression (Steyerberg,
2010).

To deal with missing values, common approaches are complete-case analysis, single
imputation and multiple imputation. The decision regarding the method of choicé de-
pends largely on the suspected missingness mechanism and the amount of missing values
in a specific situation (Steyerberg, 2010). A simple rule of 'd1um5 proposed by Harrell
silggests using complete-case analysis or single imputation wheh the fraction of incom-
plete cases is less ﬂian 5%, single imputation or multiple imputation when the fraction of
incomplete cases ranges from 5% to 15%, and multiple imputation when the quantity is
larger than 15% (Harrell, 2001). |

In the DF cohort, I decided to use a single imputation as the fraction of incomplete
cases was low (4%, details are presented in Chapter 4). Specifically, missing values were
imputed with the median of non-missing values for continuous variables, or the most
frequent category for cétégorical variables. However, univariate analyses were still based
on complete-case analyses.

Inbthe MD cohort, the fraction of incomplete cases was higher (7%) and there was
also evidence that the missingness of certain variables depended on observed values of
other covariates, which implies that the MCAR assumption might be violated (details are
presented in Chapter 5). Therefore, multiple imputation was Choseﬁ to deal with missing
data.

Specifically, I used mﬁltivariate imputation by chained equations (MICE) as imple-
mented in the R package mice version 2.22 (Van Buuren and Groothuis-Oudshoofn, 2011),

to generate multiple imputed data sets based on a set of imputation models (each variable
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with missing values has one imputation model). MICE is an iterative procedure and in
the first step, all missing values were imputed by values randomly chosen from observed
values. For the first variable with missing values, the parameters of its imputation model
were then estimated based on individuals with non-missing values for that variable and
then the models’ posterior predictive distribution was used to draw imputed values for
missing data. In an iterative fashion, this procedure was repeated for all variables in a
pre-defined order and many iterations were performed to create a single imputed dataset
-in order to stabilize the result. The quality of the whole imputation process was then as-
sessed by examining variances within and between parallel imputation streams, and the
distribution of imputed values (Van Buuren and Groothuis-Oudshoorn, 2011).

For the MD data,\the chosen imputation models were predictive rhean matching for
continuous variables, logistic regression for binary variables and muitinomial regression
for categorical variables with more than 2 classes (Van Buuren and Groothuis-Oudshl;.lporn,
2011). The advantage of predictive mean matching is that imputed Values match a&ﬁally
observed data which might be more appropriate than regression imputation if the nor-
mality assumption is violated. As recommended, these models included outcomes and
all candidate predictors (with only linear terms for continuous covariates and no interac-
tion terms) (White et al., 2011). The visit order of the variables in each iteration; cycle
was according to their (increasing) number of missing values. In total twenty imputed
dataseté Were created and 50 cycles per dataset were performed. Of nortes, this exceeds
the minimum requiréd numbers of imputed datasets and repeated cycles according to
current recommendation Which are 7 (the percentage of incomplete cases) and 10-20,
respectively (White et al., 2011).

These imputed datasets were used throughout the whole anélyses except for univariate
analyses which were based on complete-case analyses. Estimates and asymptotic covari-
ance matrices (and associated Wald-type tests) were combined across multiple imputed
datasets using Rubin’s rule and likelihood ratio tests for niultiple imputed datasets were
calculated using the method of Meng and Rubin (Meng and Rubin, 1992; White et al.,
2011). As recommended, I also performed complete-case analyses (in all steps) and ex-

amined differences between results (Sterne et al., 2009).
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2.2.3 Strategy to develop prediction models using baseline information |

In this project, all prediction models using baseline covariates were developed following

current standard methodology and recommendations (Harrell, 2001; Steyerberg, 2010).

- Clinical outcomes and candidate predictors

Depending on the specific confext of each study, clinical outcomes and candidate predic-
tors were pre-defined based on clinical knowledge and prior to any analysis. All values
of candidate predictors were obtained at baseline. All cases in whom the outcome had
alfeady occﬁrred at or priof to the baseline assessment were removed‘from the prediction

model development.

Statistical models of choice

The primary outcomes in both cohorts were binary: severe DSS (yes/no) in the DF cohort,
and DSS (yes/no) for MD. Hence, the logistic regression model was the statistical model
of choice. In the MD data set, the time point of the occurrence of DSS was also recorded;
therefore,r in theory, time to DSS occurrence could also be used as an outcome and a
survival model could be appliéd to develop a prognostic model. However, using time to
event as an outcome requires a meaningful time origin. In this setting, two time origins
could be used including the time point of enrolment and the time point of diseabse onset.
As the former time point is quite arbitrary, it is less vmeaningful than the time point of
disease onset. However,v using the time of disease onset as the time origin posed two
problems. First, subjects only éame under observation at the time of enrolment and hence,
the dataset contains possibly informative left-truncation. Second, several of the selected
candidate predictors are in principle ‘time-varying but for the majority of them their values
were only recorded at a single time point, i.e. thé time of enrolment. Thus, in order to
keep the analysis éimple and transparent, I decided to use the logistic regression model as
the main statistical model for the analysis of MD data.

However, the validity of the logistic regression models is based on the‘ assumptions of
linearity and additivity of covariate effects while these assumptions are relaxed in several

modern approaches. In addition, some of the more modern approaches are also less
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prone to over-fitting. Therefore, I also applied modern statistical models including the
lasso, generalized additive models (GAM), classification and regression trees (CART), and
gradient boosting with trees as base learners (Hastie et al., 2009) and compared their

performances to the main logistic models in order to detect any defects in the latter.

Model specification

For simplicity, the initial prediction model included all candidate predicfors as linear and
additive terms. These assumptions were subsequently assessed based on a pre-defined
maximum amount of flexibility (“degrees of freedom”) allowed for each continuous vari-
ables and pre-defined interaction tests. These pre-speciﬁca‘tions depended on clinical
judgement, expected associations from the literature, and the number of effective events

in the data.

Model assumption assessments

For logistic regression models, the initial simple models were first assessed for the plausi-

bility of common model assumptions.

Linearity assumption This assumption states that the effect of a candidate predictd;é:):n
.the outcome depends linearly on its value (the linearity is only applied to the appropriiate
scale of the model, e.g; linear on the log-odds ratio scale for a logistic model). In reality,
this assumption is hardly ever completely true; however if the effect of a covariate on the
outcome is approximately linear, using a linear model has the benefits of simplicity and
transparency. However, the performance of a prediction model can be hampered when
a truly non-linear relationship is forced to be linear. In this project, this assumption was

assessed in two ways:

e Numerically by performing statistical test to compare goodness-of-fit between the
initial model and a more flexible model which allows for non-linear effect. Natu-
ral cubic splines with pre-defined degrees of freedom‘ and knot locations are often
recommended for modeling non-linear effects (Harrell, 2001) and in this case, the

linear and non-linear models can be compared using a likelihood ratio test.
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e Graphically by assessing estimated non-linear effects of each continuous variable on
the outcome frdm a flexible multivariable model which allows for non-linearity. The
_flexible multivariable model was chosen as a generalized additive model which in-
cluded all continuous V‘ariables of interest modeled as natural cubic spline ’functions
with automated selection of the required degree of smoothness, and the partiél effect
 of each variable on outcome was extracted and visualized using term plots (Wood,

2006).

If pronounced non-linear terms weré detected during this assessment, they were added
to the model. A

In contrast to classical linear regression models, GAM, CART and Boosting with trees
as base learners by default allow for non-linear covariate effects. However, in the case
of CART, the linearity assumption is replaced by the often even less plausible assumption

that the covariate effect can be described by a step function.

Additivity assumption The simple formulation of logistic regression also assumes ad-
ditivity of covariates effects. This assumptibn is violated when there are (synergistic or -
antagonistic) interactions between covariates, i.e. if the effect of one cévariate on the
outcome depends on the levels of other covariate. Commonly seen interactions in clinical
studies are between severity/place/time/age with other candidate predictors (Steyerberg,
2010). In my context, relevant potential interactions are between the day of illness at
enrolment/gender and other covariates, and these interactions were assessed by over-
all interaction tests, i.e. likelihood ratio tests comparing the initial model and the ex-
tended model which also included pre-defined interaction terms. If this overall test was
significant, further investigation was performed to identify the specific interaction. If pro-
nounced interaction terms were detected during this asseésment, they were added to the
model. |

Of note, the additivity assumption is relaxed in CART models and boosting with trees

as base learners which automatically include interaction terms.
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Model estimation

’Parametérs of logistic regression models were estimated using standard maximum likeli-
hood estimation. Estimation of the penalty parameter for the lasso was based on standard-
ized covariates and leave-one-out cross validation with the likelihood as the optimization
criterion as implemented in the R package glmnet version 1.9.8 (Friedman et al., 2010).
The CART model built and pruned back a classification tree using default parameter set-
tings of the R package rpart version 4.1.8 (Therneau et al., 2014). The GAM model was
built based on default settings of the R package mgcv version 1.8.3 (Wood, 2011). The
implementation automatically estimates the degrees of freedom of smooth terms based on
generalized cross-validation. To fit a “pure” additive model, the interaction terms were
not included in the model formula. Finally, a géneralized béosted regressign model with a
Bernoulli distribution for the outcome was fitted using classification trees as base lea;fners
as implemented in the R package gbm version 2.1.6 (Greg Ridgeway w1th contﬁbq;t};ions
from others, 2014). Each tree has a depth of at most 2 which aliows for 2-way inter-
actions. The number of 3000 iterations and the learning rate of 0.001 were‘chosen as

recommended by the gbm package author.

Model reduction

As some candidate predictors may have negligible effects on the outcome and the full
model is generally complex, it is necessary to simplify the model before applyiﬁg it to
clinical practice (Steyerberg, 2010). In this project, I used several different variable selec- -
tion techniques including stepwisé selection using the Akaike information criterion (AiC)
or the Bayesian information criterion (BIC) as selection criteria and best subset selection
which searches through all possible models to find the best one regarding AIC or BIC cri-
teria. Of note, the lasso by défault includes variable selection by shrinking coefficients of

unimportant variables to zero.

Model pérformance

" Performance criteria The performance of developed models was assessed in terms of

overall performance, discrimination and calibration. These criteria are described in detail
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in (Steyerberg, 2010) and only briefly discussed here. The overall performance of predic-
tion models was quantified with the Brier score which is the average squared difference
between patients’ observed outcomes (0 for patiénts without the outcome, 1 for patients
with the outcome) and their prédicted risks. This quantity cah range from O for a perfect
model to a maximum value depending on the incidence of 6utcome for a non-informative
model (fof example 0.25 with a 0.5 incidence of the outcome). Discrimination measures
how well a prognostic model can differentiate subjects with and without outcome. This
aspect of model performance can be assessed using the c-statistic defined as the area un-
v der the ROC curve (AUC). An AUC of 1 indicates perfect discrimination whéreas an AUC
of 0.5 indicates that the model doés not diécriminate better than randoﬁl guessing. Cali-
bration measures the agreement between observed and predictéd outcomes. This measure
can be quantified in terms of calibration-in-the-large and the calibration slope. For binary
outcome, calibration-in-the-large was estimated as the intercept of the.logistic regression
model that regresses observed outcomes on the linear predictor derived from the pre-
diction model with its slope forced to be 1 (i.e. the linear predictor is included as an
offset). Therefore, this measure assesses how well the predicted risks match the observed
outcomes in the log-odds scale, adjusted for the linear predictor. The optimal value of
calibration-in-the-large is 0. Calibration-in-the-large of <0 or >0, respectively, indicate
that predicted outcomes are systematically too high or too low. The calibration slope was
estimated as the slope of the logistic regression model that regresses observed outcome on
the linear predictor derived from prediction model. This measure reflects the extremeness
of the pfedicted outcome and is compared to 1. A ycalib‘rati’on slope < 1 indicates that the
predictions are too extreme; whergas a calibration slope > 1 implies that the predictions

are not extreme enough.

Correction for optimism As no independent validation datasets were available to assess
performance of prediction models developed in this project, models were evaluated on the
development dataset which imposes the risk of optimism, i.e. over-estimation of perfor-
mance due to over-fitting (Steyerberg, 2010). In order to compensate for optimism and to
get a realistic assessment of the performance of the entire model development process, all

performance measures were corrected for optimism using temporal validation or 10-times
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repeated 10-fold cross-validation technique.

" In temporal validation, the whole data was split into a training and a test set based on
" time. Thé whole model development proéess was applied on the training set which was the
- old data, and subsequently, the derived model was assessed on the test set which was the
new data. This so-called “temporal performance” represents a more truthful assessment
of the whole modeling process than the optimistic apparent one (Steyerberg, 2010) .

In 10-times repeated 10-fold cross-validation, the whole modeling procedure except'
for assumption assessments was firstly repeated 10 times by using a selection of nine
tenths of A.the data for model development and one tenth for validation, respectively (Steyer-
berg, 2010). The cross-validation was further repeated ten times to minimize depéndence
on the randofn split into ten sub-datasets. The performance of the derived model on the
test sets was then averaged across the 100 test sets to provide overall optimism-corrected

performance measures.

Model presentation

The final model which had the best trade-off between simplicity and accuracy was chosen
as the basis for a score chaft: following the approach of Sullivan et al. (2004). In brief,
the linear predictor of the selected model was rounded and simplified, followed by a
categorization of continuous variables and assignment of a point value to each category
of a covariate. The total point score for each patient obtained from the score chart is an
approximation of the linear predictorb corresponding to that paﬁent which can then be
converted to a predicted risk. Finally, the adequacy of this score chart was evaluated by
comparing risk predictions from the score chart to those of the original statistical model,

and by visualizing theii agreement with a Bland-Altman plot (Bland and Altman, 1986).

Adjustment of model development and validation steps for multiple imputation

For multiple imputed datasets, the above model development and validation steps were
adjusted according to current recommendation (White et al,, 2011).

For assessing the linearity and additivity assumptions, likelihood ratio test were per-
formed comparing the simple model with linear terms and no interaction terms to models

with more flexible terms for each imputed dataset. The results were then combined with
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method given by Meng and Rubin (1992). Likewise, the overall multivariable model was
_derived by using Rubin’s rule to combine the multivariable models fitted on each imputed
dataset. | | | ' |
| Variable selection was based oﬁ Eackwards stepwise model selection (Hastie et al.,
.2009). At each variable selection step, the model of interest was fitted to all imputed
datasets and the least significant predictor was excluded if its pooled p value was larger
than 0.15 (the p-\}alue cut-off of 0.15 was chosen to approximately mimic variable selec-
tion based on AIC). The final model was obtained by applying Rubin’s rule to aggregate
parameter estimates from a model which included all predictors that remained after the
variable selection procedure across imputed datasets. '
Regarding model validation, both temporal and cross-validation were performed as
described above. In both cases, the whole modeling procedure for each statistical model
| of interest was applied to each imputed training set. Predictions of each fitted model
on the corresponding imputed test set were obtained and then compared to observed
outcomes in the test set of each imputed dataset to derive performance measures. These
measures were then averaged across imputed test sets to provide a single set of measures

for each model.

2.2.4 Statistical software

All analyses were performed with the statistical software R version 3.1.2 (2014-10-31) (R
Core Team, 2014) and its companion packages including maéhine learning and multiple
imputation packages (as described in the previous sections) and other packages including
Hmisc version 3.14.6 (Harrell and with contributions from Charles Dupont and many oth-
ers, 2014), ggplot2 versmn 1.0.0 (Wickham, 2009), plyr version 1.8.1 (Wickham, 2011)
and dplyr version 0.3.0.2 (Wickham and Francois, 2014)
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Chapter 3

Clinical and laboratory features of

children with DSS

Summary

DSS is a severe manifestation of dengue virus infection that particularly affects children
and young adults. Despite its increasing global importance, there are no prospective stud-
ies describing the clinical characteristics, management or outcomes of DSS. This chap-
ter describes the findings at onset of shock and the clinical evolution until discharge
or death, based on a comprehensive prospective dataset of 1719 Vietnamese children
-with laboratory-confirmed DSS managed in a single intensive care unit between 1999 and
2009. |

The research in this chapter has been published in: Lam PK, Tam DTH, Diet TV, Tam
CT, Tien NTH, Kieu NTT, Simmons C, Farrar J, Nga NTN, Qui PT, Dung NM, Wolbers
M, Wills B (2013) Clinical characteristics of dengue shock syndrome in Vietnamese chil-
dren: a 10-year prospective study in a single hospital. Clinical Infectious Diseases, 57(11):

- 1577-86.
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3.1 Introduction

Despite the increasing burden of dengue gldbally and the severity of DSS which is‘poten-
tially fatal, only a few small retrospective reports have described the clinical characteris-
tics, management, and outcomes of DSS cases (Bunnag and Kalayanarooj, 2011; Marén
et al., 2011; Ranjit et al., 2005). At thé HTD in Ho Chi Minh City a prospective obser-
‘ vaﬁonal study aiming to enroi all children presenting with DSS was conducted between
1999 and 2009. This chapter presents data from more than 1700 cases collected over the
10-year period, providing the first comprehensive description of the clinical features of

DSS in children.

3.2 Methods

In this chapter, data from patients enrolled into the DF cohort were used to describe the
clinical features and outcome of DSS in Vietnamese children. Details regarding study
design and data collection, including dengue confirmation and serological classification,
“were described in Chapter 2. Disease classification was performed using the WHO 1997
and 2009 criteria (World Health Organization, 1997, 2009). The total number of DSS V
cases admitted directly to the PICU during the study period (excluding transfers from
other hospitals after initiation of resuscitation) was ascertained from the hospital’s main

record system.

3.3 Results

From 1999-2009 a total of 1810/1847 children (98%) admitted to PICU with clinical
DSS participated in the study. In 19 cases both RT-PCR and paired serology were negative,
while in 72 cases the results were inconclusive; in the remaining 1719 cases (95%) dengue
virus infection was confirmed, with the infecting serotype identified in 1209/1647 cases
(73%) for whom RT-PCR was performed. Among the confirmed dengue patients 503
(29%) participated in the nested RCT (as described in Chapter 2), while the remaining
1216 (71%) were enrolled in the observational study. Almost all cases were admissions

from the local catchment area, with less than 4% of cases transferred from another health
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facility, most during the febrile phase; however two patients were enrolled in error, having

already received parenteral fluid therapy for shock resuscitation prior to transfer.

3.3.1 Characteristics at presentation with shock

Demographic information and selected clinical characteristics for all 1719 confirmed dengue
patienfs are described in Table 3.1. For most study-speciﬁc parameters data was missing -
in less than 5% of caseé. The median age was 10 years, varying by year during the study
from 9 to 11 years. The median (IQR) day of illness at shock was consistently 5 (4-6) for
each year ofv the study, although 62 cases (4%) overall presented on illness day 3.

The most common symptoms reported were lethargy (1490/1719, 87%), vomiting
(1199/1713, 70%) and abdominal pain (1238/1714, 72%). Most children were afebrile,
but>153/ 1718 (9%) still had an axillary temperature of 38°C or more at onset of shock,
without a clear relationship to the day of illness at that time (p=0.1, Wilcoxon;rank-
sum test). In 123/1719 (7%) the bldod pressure was not measureable, while 417/1596
(26%) of the remainder exhibited hypotension for age and 1568/1596 (98%) had a pulse
pressure of 20 mmHg or less.” Respiratory distress (3/1718, <1%) and cyanosis due to
profound shock (10/1714, <1%) were extremely uncommon. The liver was palpable in
1478/ 1696 (87%) of cases, with abdominal tenderness in 1238/1714 (72%), whereas a
palpable spleen was extremely uncommon (only 5 cases documented). Almost one third
(493/1719, 29%) of the patients had no evidence of bleeding. Among cases with bleeding
this was limited to skin petechiae or minor bruising in the majority of cases, .with mucosal

haemorrhage noted in only 73 cases.

3.3.2 Progress in hospital

Since many patients in the RCT received initial resuscitation with a colloid according to
their randomization, information on management and complications after enrolment is
presented for the observational study and RCT groups separately (Table 3.2). Apart from
the greater colloid usage there was little difference between the two study groups other
than a slightly higher proportion of minor skin bleeding observed in the RCT group. Con-
sidering the observational study only, most children recovered well vﬁth standard crystal-

loid resuscitation, although 547/1211 (45%) patients also received colloid therapy, 244
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Table 3.1. Baseline characteristics of the study participants at enrolment (n = 1719).

Characteristics Observational study (n = 1216) All patients (n = 1719)
n Summary statistics n Summary statistics

Age [year] 1216 10 (7-12) 1719 10 (7-12)

Gender: Female 1216 567 (47) 1719 817 (48)

Referal status 1216 1719

- Home 477  (39) 720 (42)

-HID 673  (55) 911 (53)

- Other 58 (5) 65 (4

- Unknown & () 23 (1)

Day of illness 1216 (5-6) 1719 5 (4-6)

Weight [kg] 1216 29  (21-38) 1719 27  (20-35)

Temperature > 38°C 1215 112 (9) 1718 153 (9)

Pulse rate [per min] a 976 120  (104-120) 1393 120 (100-120)

Systolic BP [mmHg] a 1138 90 (85-100) 1596 90 (85-100)

Pulse pressure [mmHg] a 1138 20 (15-20) 1596 20  (15-20)

Haemorrhage 1216 1719

- None 402  (33) 493  (29)

- Skin only 774  (64) 1153 (67)

- Mucosal 40 (3) 3 4

Abdominal tenderness 1214 794  (65) 1714 1238 (72)

Liver size [cm] 1204 2 (1-2) 1696 2 (1-2)

Haematocrit [%] 1195 50 (47-52) 1696 49  (46-52)

Platelet count [1,000 cell/mm3] 1196 38 (26-54) 1695 41 (28-61)

AST [IU/1] 917 133 (89-218) 1030 125 (80-206)

DHF according to WHO 1997 1159 635 (55 1642 939 (57)

RT-PCR performed 1176 1647

- DENV-1 661  (56) 675 (41)

- DENV-2 285  (24) 367 (22)

- DENV-3 19 (2 48 (3)

- DENV4 8 (1) 110 (7)

- Mixed 8 (1) 9

- Negative 195 (17) 438 (27)

Immune status 1115 1618

- Primary 6 (1 6 (0

- Secondary 1024  (92) 1506 (93)

- Unclassifiable 8 (8) 106 (7)

Summary statistics are median (IQR) for continuous variables and frequency (%) for categorical variables.

a Onlyfor subjects with measurable value.

Abbreviation: IQR = interquartile range, HTD = Hospital for Tropical Diseases, BP = blood pressure, AST =

aspartate aminotransferase, DHF = dengue haemorrhagicfever, WHO = World Health Organization, RT-PCR =

reverse transcriptase polymerase chain reaction, DENY = dengue virus.
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(45%) of them within the first 2 hours. Most‘children (328, 60%) in this group received
only a single colloid bolus, but up to 7 colloid infusions were needed for severe cases, with
a median (IQR) volume of 19 (12-25) ml/kg of colloid given throughout hospitalization,
on a background of 114 (99-129) ml/kg total parenteral fluid therapy. Considering the
whole patient cohort, additional cardiovascular support with inotropic drugs was required
in 75/1719 (4%), and 513/1717 (30%) patients developevd clinical signs of fluid over-
-load (pleural effusion or ascites) following resuscitation. Among these patients, 313/513
(61%) were treated with diuretic therapy for 1-2 days after haemodynamic stabilization.
After admission 158/1719 (9%) children developed at least one new bleeding manifes-
tation, among them 98 cases with skin bleeding only and 60 cases with mucosal bleeding.
Considering all 126 patients with overt mucosal bleeding (either present at enrolment or
developing subsequently) gastfointéstinal bleeding occurred most frequently (61 cases),
compared to epistaxis (36 cases), gum bleeding (22 cases) or unusual vaginal bleeding
(21 cases). In 31 patients overall the bleeding was clinically severe, requiring transfu-
sion in 26 cases (18 during active resuscitation, and 8 during the recovery phase due to
symptomatic anaemia), resulting in signiﬁcént but asymptomatic anaemia at discharge in
4 cases, and involving a critical organ in 1 case (spinal cord haemorrhage, conﬁrm:e‘d on
magnetic resonance imaging (MRI) scan). Although most severe haemorrhage in\}dlved
“the géstrointestinal tract primarily (15 cases), 7 children had severe skin bleeding only,
mainly at sites of invasive procedures, and 4/7 required transfusion. Platelet concentrates
were not available during the study but children with severe coagulopathy and bleed-
ing received fresh frozen plasma or other blood products at the discretion of the treating

clinician.
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Chapter 3. Clinical and laboratory features of children with DSS

The evolution of haematocrit and platelet values during hospitalization is shown in
Figure 371. ‘The median (IQR) maximum haematocrit was 50% (47-52), documented at
presentation in most cases (86%, 1484/1719). Among cases with both enrolment and
one-month follow-up haematocrit values 753/830 (91%) had evidence of at least 20%
haemoconcentratibn at enrolment. The haematocrit declined rapidly during the first 4
hours of fluid resuscitation, later rising again in the majority of children. In contrast
the platelet nadir (median (IQR) of 28,000 (19,000-40,000 cells/mm3) occurred most
frequently one day after onset of shock (720/1718, 42%). Although a transient drop
in platelet count was seen in all cases, in 25/1718 (1.5%) cases the nadir did not fall
below 100,000 cells/mm?. Coagulation profiles were performed infrequently and are not
reported here, but the abhormalities observed were consistent with previous reports (Wills
et al., 2002, 2009). Liver enzyme levels were checked in approximately 60% and were
moderately elevated at shock, with aspartate aminotransferase levels consistently higher
than alanine aminotransferase levels. ‘

All patients would have fulfilled the 2009 WHO criteria for severe dengue, while only
939/1642 (57%) of the children with sufficient data to allow classification at the onset of
shock would have been categorized as DHF. Using all available information from the acute
illness and any follow-up visits, 1202/1705 (70%) of the patients eventually fulfilled the

four criteria for DHF with the remainder classified as dengue fever by default.

3.3.3 Outcome

The mbst common complicatioﬁ observed during treatment for DSS is recurrent shock,
conventionally termed “re-shock”; the accepted definition at HTD is narrowing of the
pulse pressure (PP) to < 20 mmHg after a period of apparent cardiovascular stability, as-
sociated with tachycardia and cool extremities, and considered to require additional vol-
ume resuscitation with a colloid fluid bolus. Patients may experience several episodes of
re-shock during the critical period for leakage. According to local management guidelines
the need for two or more colloid boluses (given either at presentation with decompen-
sated/hypotensive shock or during re-shock episodes) is considered an indicator of severe
disease, and is the recommended threshold to proceed to central venous pressure (CVP)

monitoring. In cases with ongoing hypotension and a poor response to colloid therapy,

57



Chapter 3. Clinical and laboratory features of children with DSS

Panel A

Baseline ~ >1-3 >9-11  >11-13  >13-15  >15-17 >17-19 >19-21  >21-23  >23-25 Discharge Follow-up
Hours from admission

Discharge Follow-up

'Days from admission

Figure 3.1. Boxplots describing changes in haematocrit (upperpanel) andplatelet count (lower panel)
during the evolution ofthe illness. Haematocrit data is presentedfor the 24 hoursfollowing admission,
while platelet data is presented dailyfor thefirst 4 days, together with the values at hospital discharge
andfollow-up for both parameters. The numbers displayed below each boxplot represent the number of
patients included within that time interval. If multiple values were recorded during any time interval,
the highest haematocrit and the lowest platelet count were respectively chosen for that patient. The

haematocrit graph excludes data from the 73 DSS cases with mucosal bleeding at presentation.

inotropic agents such as dopamine or dobutamine may be added. Other major complica-
tions include severe bleeding (requiring a blood transfusion, involving a critical organ, or
resulting in significant but compensated anaemia), and organ failure (significant impair-
ment in function of an organ system).

These facts suggested three main outcomes for consideration among children with
DSS. The first potential outcome is “recurrent shock” which was defined as development
of one or more episodes ofre-shock after the initial resuscitation. The second outcome was
“critical DSS”, here defined as death or requirement for inotropes (in addition to colloid
therapy to maintain cardiovascular stability) or development of any major complication

(severe bleeding or organ failure). The last main outcome was a composite outcome of
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“profound DSS”, defined as either a) 2 or more episodes of re-shock in subjects presenting

with compensated shock, or b) 1 or more episodes of re-shock in subjects presenting with

decompensated/hypotensive shock (thus these patients had already received a colloid bo-

lus during their initial resuscitation), or c) requirement for inotropes or development of

any other major complication, or d) death. (In fhe first two categories the participants

would have been treated with at least two colloid boluses, i.e. they would have achieved
| the threshold for CVP monitoring).

To assess whether a patient had recurrent shock or profound DSS, detailed information
on fluid resuscitation of each patient is required. Information on fluid use was missing in
10 cases, but among the 1709 patients with complete information on fluid usage, 595
(35%) developed recurrent shock at some point after the initial resuscitation, and 367

- (21%) had profound DSS. Amongst all patients, 86/1719 (5%) fulfilled the criteria for
critical DSS. » .

Looking speciﬁcally_ at mortality, lonly 8 patients died during the 10-year study period,
including 1 infant and 7 children (Table 3.3), although one additional DSS-associatéd
death outside the study was identified from hospital records. In 3/8 cases shock occurred
early, on illness day 4. All 8 patients developed profound shock within the first 1%3:gqurs,
requiring multiple colloid infusions plus inotropic support and with rapid develéi)inent
of significant fluid overload. The interval from admission to death was generally short
(median, range 34 (11-87) hours in 7 cases) and one child with multi-organ failure was
taken home moribund after 4 days. Major bleeding requiring transfusion was apparent in
7/8 cases before death. |

Overt organ dysfunction was very uncommon. Other than in association with pro-
Ionged shock no patient in the cohort had clinically significant hepatic, renal or neurolog-
ical compromise, except for the child with spinal cord haemorrhage and one other child
with profound shock, liver failure and coma. The latter two children gradually improved

over several weeks with supportive care, and both eventually made a full recovery.
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3.3.4 Dengue serotypes and immune status

The relative frequency of dengue serotypes identified in the patient cohort over time is
presented in Figure 3.2, Panel A. With increasingly sensitive diagnostics the proportion of
cases with a serotype identified increased gradually, rising from 33% initially to more than
82% after 2007. In 1999 DENV-3 was the most common serotype seen, replaced by DENV-
4 peaking in 2001, DENV-2 peaking in 2004, and finally by DENV-1 extending from 2005
to 2009. Almost all patients had an IgG response consistent with secondary infection,
although in 106/1618 (7%) of cases the information available was insufficient to allow
categorization. The pattern of serotypes observed in the children with DSS was very
similar to that seen among 1509 children with secondary dengue without shock enrolled

into the MD cohort during 2001-2009 (Figure 3.2, Panel B).

DENV-1

DENV-2
DENV-3
DENV-4
Mixed

78 135 285
132 164 325

2004
Year

DENV-1
DENV-2
DENV-3
DENV-4
Mixed

Figure 3.2. Serotype distributions over timefor DSS cases (Panel A), andfor children with secondary
dengue but did not experience severe complications in the MD cohort (Panel B). The numbers below
each bar are the total number of cases in whom a serotype was identified (first line), and the total
number of cases enrolled into the corresponding study (second line).
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Table 3.4. Selected clinical and laboratory characteristics for the 6 primary dengue cases.

Characteristics Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
At presentation with shock
Age [months/years] 4m 11m 13m Ty iy 12y
Gender Male Female Male Male Female Male
Year of study 2008 2008 2008 2008 2009 2009
Day of illness 5 5 5 5 5 6
Temperature [°C] 37.5 37.0 37.0 37.0 37.0 37.0
Pulse rate [per min] 148 Rapid, weak 168 140 Rapid, weak 110
Systolic BP [mmHg] 50 70 90 90 80 90
Pulse pressure [mmHg] 20 20 15 20 20 20
Bleeding Petechiae Petechiae Petechiae - Petechiae Petechiae
Abdominal tenderness + + + + - -
Liver size [cm] 3 1 4 3 2 1
HCT [%)] 36 47 50 56 45 46
PLT [cell/mm3] 40,000 19,000 77,000 81,400 37,900 66,000
During hospitalization
Maximum HCT [%)] 36 47 50 56 45 47
Minimum PLT [cells/mm3] 24,000 9,000 45,800 61,000 28,400 53,000
New bleeding - - - - - -
Number of colloid boluses 0 2 1 0 0 0
Colloid volume [ml/kg] 0.0 25.0 253 0.0 0.0 0.0
Clinical fluid overload - - +
Survival status Recovery Recovery Recovery  Recovery Recovery Recovery
IgG by day of illness Days: () Days: (- Days: (- Days: (o) Days: () Day 6: (-)
Days: ¢ Day s: () Days: () Days: (- Days: (- Day 9: (-)
Serotype DENV-2 DENV-1 Negative DENV-1 DENV-1 DENV-1

Diagnosis for the case with PCR negative was based on the positive dengue IgM capture ELISA on samples
taken on days 5 and 8.

Abbreviations: BP = blood pressure, HCT = haematocrit, PLT = platelet count, IgG - immunoglobulin G,
IgM = immunoglobulin M, ELISA - enzyme-linked immunosorbent assay, DENV = dengue virus, + = yes, -

= no.

Overall only 6 cases were classified as clear primary infections, 4 infants and two
children aged 7 and 12 years (Table 3.4). For an additional 5 children under 18 months
immune status was classified as indeterminate, but the serological patterns observed and
their age suggested primary infection. Conversely, all 157 children aged 18-60 months
with classifiable immune status had secondary dengue. All the definite primary cases
recovered, although two infants required colloid infusions. However, one 11-month old
boy with indeterminate/possible primary dengue died with profound shock and major

gastrointestinal bleeding.
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3.4 .Discussion

This chapter presénts the first comprehensive description of the clinical presentation of
DSS in children, using data gathered prospectively over 10 years on a large cohort of pa-
tients managed in a single Vietnamese institution. Over 95% of all children admitted with
DSS during the study period were evaluated. Since prior shock resuscitation might con-
found the clinical picture the analysis focused on direct admissions only; although a few
- cases were missed, including one child who died, overall the results are representative’ of :
the clinical spectrum of DSS cases admitted directly to a busy hospital in a hyperendemic
regibn. | ' |

During the 10-year study each dengue serotype predominated for one or more years,
. so DSS caused by all four serotypes were able to be observed. Apart from infants below
18 months, virtually all children had secondary dengue, in line With establiéﬁed concepts
of pathogenesis (Yacoub et al., 2013). The pattern of serotype replacement seen in the
cohort was similar to that seen among children with secondary infections enrolled the
MD cohort, and also to the relative virus prevalence identified by passive surveillance
in southern Vietnam during the same time-period (Vu et al., 2010). Thus the viruses
associated with DSS appear to be representative of the virus population affecting thé}'fﬁder
community with no evidence that a particular s;erotype contributes to a greater nsk for
shock. Notably however 3 out of 8 deaths were assoéiated with DENV-3 although the total
number of DENV-3 infections identified was small. Since a number of interacﬁng host
and viral factors influence an individual’s prépensity to develop severe vascular leakage
(Yacoub et al., 2013), only very detailed studies can establish whether particular viral
characteristics do confer an increased risk for DSS or death.

The clinical signs and symptoms documented in this large cohort were generally con-
sistent with empirical descriptions of DSS (World Health Organization, 2009). Interest-
ingly however, 9% of all cases were still febrile at presentation. increased permeability
commences during the febrile phase, typically resulting in shock when leakage exceeds
the capacity of the homeostatic compensatory mechanisms to maintain adequate plasma
volume (Srikiatkhachorn et al., 2007; Trung and Wills, 2010). Functional cardiac im-

pairment also contributes to the cardiovascular decompensation, although the underlying
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mechanisms remain unclear (Yacoub et al., 2012). Although defervescence and onset of
DSS are often temporally linked it is important that clinicians managing early dengue
cases are aware that DSS can occur before defervescence. Identification of more reliable
warning signs of likely deterioration would be useful both for individual case-management
and to facﬂitate effective use of limited healthca;e resources. |
" In agreement with other studies (Phuong et al., 2004), a considerable number of DSS
cases had no bleeding manifestations during the illness episode. Severe bléedihg was |
uncommon and primarily observed from the gastrointestinal tract, althbugh massive soft-
tissue bleeding necessitating transfusion occurred in 3 children. Also consistent with other
studies (Alexander et al., 2011; Phuong et al., 2004), almost one third of cases did not _
achieve the WHO 1997 classification for DHF, mainly due to failure to fulfill the haemor-
rhage and/or plasma leakage criteria since thrombocytopenia was almost universal. All
patients were examined carefully each day but a tourniquet test was not mandatory as
these are infrequently performed in Vietnam and several studies have demonstrated poor
utility in clinical practice (Phuong et al., 2004; Srikiatkhachorn and Green, 2010). More-
over, radiological investigations to idéntify plasma leakage were not performed unless
clinically indicated, as the study aimed to reflect real-world practice. Haemoconcentra-
tion below the conventional threshold of 20% in association with DSS has been reported
previoﬁsly (Marén et al., 2011), and radiological evidence of leakage is often not detected A
until relatively late in the disease evolution. Since patients must be treated according to
their actual clinical status at any time, it is apparent that the 2009 WHO classification
system is preferable for individual case-management (World Health Organization, 2009).
The case fatality rate was extremely low (<1%). Most patients recovered well with the
standérd crystalloid fluid regimen or following a single bolus of colloid, and requirement
for additional colloid therapy, inotropic support and/or blood products was infrequent.
Prompt diagnosis and immediate admission to PICU with management coordinated by a
hjglﬂy experienced team undoubtedly contributed to this favourable outcome. In line with
‘~ WHO principles for fluid management of DSS, the unit operates a generally conservative
policy after initial resuscitation, relying on frequent clinical assessments and regular ward-
based haematocrit measurements to limit fluid administration to the minimum required,

thereby minimizing the risk of fluid overload. However, the study focused on direct ad-
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missions only and it is clear that external referrals with prolonged shock or established
fluid overload are considerably more difficult to manage and have corréspondingly higher
~mortality rates (Bunnag and Kalayanarooj, 2011).

Only a very small number of confirmed primary dengue cases were included in the
cohort and all recovered quickly without notable complications. However one death did
occur in a suspected primary case, underlining the view that primary dengue can result in
severe and even fatal disease (Barnes and Rosen, 1974; Nogueira et al., 1999; Scott et al.,
1976). Given that immune status could not be defined in 6% of patients some primary
cases might have been missed but the number is likely to be small.

Three potential outcomes for patients with DSS were identified as potentially useful
for developing prognostic models in this population, including recurrent shock, profound
DSS and critical DSS. However, profound DSS is preferred as the primary outcome of
interest for a number of reasons. Firstly, the number of subjects experiencing critical
DSS was too small for prognostic modelling. Secondly, differences in initial resuscitation
between patients with compensatéd or‘hy'potensive shock (use of crystalloid or colloid
fluids, respectively) may have influenced the likelihood of developing recurrent shock
subsequently. Thirdly, a large proportion of cases experiencing their first episode of re-
shock recover fully following a single colloid bolus without requiring additional supportive
therapy. By defining as a composite outcome measure that includes use of at least two
boluses of colloid, profound DSS is able to reflect the local threshold for concern regarding
severe diéease, as indicated by the recommendation to proceed to CVP monitoring in cases
requin'ng'more than two colloid boluses.

In summary, this is a comprehensive clinical description of DSS in a large cohort of
Vietnamese children. With prompt intervention and assiduous clinical care by experienced
staff the outcome of this potentially fatal condition can be very good. As the emerging
dengue pandemic spreads to new geographical locations it is crucial that this accumulated
experience be translated into practical advice and support for clinicians newly exposed to

this severe complication of a common disorder.
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Prognostic models for profound DSS

amongst children with DSS

Summary

Reliable prognostic tools to assist physicians in identifying children at risk of profound DSS
and likely to require intensive support are lacking. This chapter used data from the DF
cohort to identify clinical and laboratory risk factors of profound DSS, develop a prediction

model for profound DSS and derived a simple score chart for use in clinical practice.
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4.1 Introduction

Prognostic models for poor outcomes can enhance a physician’s clinical decision-making
processes (Steyerberg et al., 2013; Riley et al., 2013). Several pfognostic models (PRISM,
, PIM) have been developed to characterise children with severe illnesS admitted to west-
ern PICUs (Pollack et al.; 1988; Shann et al., 1997), and to compare outcomes within
and between different units over time. However, medels :such as PRISM and PIM typi- -
cally require detailed clinical and laboratory data that is not readily available in countries
where dengue is endemic; and are thus not practical in these settings. Although a number
of predictive models have been developed to help distinguish dengue from other febrile
illnesses with similar presentations (Potts and Rothman, 2008; Potts’et al., 2010a), and
to try to improve identification of cases likely to develop severe complications (Tanner
et al., 2008; Potts et al., 2010a), to date only a single report describes a prognosﬁc fnodel
for poor outcome in patients with es‘tablished DSS (Huy et al., 2013a). . Therefore this '
study analyzed data from a large 10-year cohort of children presenting with DSS, aiming
to identify risk factors for profound shock, and to develop a prognostic model to assist

physicians in idenﬁfying children likely to require intensive supportive therapy.

4.2 Methods

"This chapter utilized data from the DF cohort. Detailed information related to study de-
sign, study participants, dengue diagnostics, general statistical analyses (descriptive anal-
ysis, treatment of missing values) and modeling strategy are described in Chapter 2. I
present here definitions of clinical outcomes and candidate predictdrs and several specific

statistical methods used in this chapter.

4.2.1 Clinical outcomes and candidate predictors

As discussed in Chapter 3 (Section 3.4), amongst three potential clinical outcomes in chil-
dren with DSS (recurrenf shock, profound DSS, critical DSS), profound DSS is preferred
as the primary outcome. Secondary outcomes were recurrent shock, critical DSS, and

the total volume of colloid, defined as the total volume of colloid patient received during
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hospitalization from shock. All clinical definitions are described in Table 4.1.

Table 4.1. Definition of clinical outcomes amongst children with DSS.

Clinical outcome Definition

Profound DSS Death OR major complications OR requirement of specific addi-
tional therapy (2 or more colloid boluses, or inotropic support)

Recurrent shock Pulse pressure < 20 mmHg after a period of apparent cardiovas-
cular stability, associated with tachycardia and cool extremities,
and considered to require additional volume resuscitation with a
colloid fluid bolus

Critical DSS Death OR major complications OR requirement of inotropic sup-
port

Total volume of colloid The total volume of colloid (ml/kg) patient received during hos-
pitalization from shock

Major complications Severe bleeding OR organ failure

Severe bleeding Requirement of blood transfusion OR bleeding resulting in signif-
icant but asymptomatic anaemia OR bleeding involving a critical
organ

Organ failure Significant impairment in function of an organ system, judged by

the treating physician to require specific therapeutic intervention

Candidate predictors described in Table 4.2 were all assessed within 2 hours of onset
of shock and were chosen based on clinical experience and evidence from the published
literature (Srikiatkhachom and Green, 2010; Wills et al., 2002; Maron et al., 2010). As
pulse pressure (PP) and systolic blood pressure (BP) are closely linked haemodynamic pa-
rameters and some patients may present with no detectable blood pressure, an additional
categorical candidate predictor, the haemodynamic index, was created to allow all patients
to be classified into one of three ordered categories representing their initial cardiovascu-
lar status. The haemodynamic index is defined as 1 when the PP exceeds 10 mmHg and
the systolic BP is maintained above the lower limit of normal for age (i.e. > 80 mmHg
if under 5 years, or > 90 mmHg if aged 5 years or more). A haemodynamic index of 2
corresponds to a PP below 10 mmHg or a systolic BP below the lower limits for age, while
a haemodynamic index of 3 indicates that the blood pressure is unmeasureable. Aspartate
aminotransferase (AST) and dengue serotype were included in the univariate analysis but
not in the multivariable analysis as they are less readily available for clinicians and were

frequently missing (Table 4.3).
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Table 4.2. List of candidate predictors.

Predictor Unit or possible values Type
Age Year Continuous
Gender Female/Male Binary
Weight Kg Continuous
Day of'illness Day of illness at shock Continuous
Pulse rate Beats per minute (fast and weak pulse = 200 Continuous
pulses/min)
Temperature Body temperature [°C] measured in the axilla Continuous
Systolic BP mmHg continuous
Pulse pressure Difference between systolic and diastolic BP Continuous
[mmHg] OR 5 mmHg if systolic BP was measurable
but diastolic BP was unmeasurable
Haemodynamic index 1 if systolic BP > lower limit of normal" AND PP > Categorical
10 mmHg
2 if systolic BP < lower limit of normal" OR PP < 10
mmHg
3 if systolic BP was unmeasurable
Haemorrhage “None” if no bleeding at enrolment Categorical
“Skin” only if only have petechiae/bruising
“Mucosal” if epistaxis OR gum OR gastrointestinal
OR vaginal bleeding
Abdominal tenderness  Yes/No Binary
Liver size Size of liver below costal margin [cm] Continuous
HCT Haematocrit value [%] Continuous
PLT Platelet count [cells/mm3] Continuous

a Lower limit ofnormal systolic BP is 80 mmHg (ifage < 5years old) or 90 mmHg (ifage > 5 years old).
Abbreviations: BP = blood pressure, HCT = haematocrit, PLT = platelet count.

4.2.2 Statistical analysis
Analysis of profound DSS, recurrent shock and critical DSS

The study population included all patients with confirmed DSS for whom clinical outcomes
could be assessed. Since the randomized treatment assignment might have affected the
number of colloid boluses given, the primary analysis population excluded patients from
the RCT (Wills et al.,, 2005). A sensitivity analysis including all patients was also per-
formed, adjusting for the randomized treatment assignment by adding a categorical co-
variate with three levels (assigned to a colloid in the RCT; assigned to a crystalloid in the
RCT; enrolled only in the observational study) to the corresponding regression models.

Details regarding the development of prognostic models are described in Chapter 2.
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Logistic regression was the méin statistical model for the univariate and multivariable -
anaiyses of all three outcomes (i.e. recurrent shock, profound DSS and critical DSS).
- Alternative statistical approaches were: logistic regression with variable selection and
shrinkage based on the lasso, classification and regression trees (CART), generalized ad-
" ditive models (GAM), and gradient boosting with trees as base learners (Hastie et al.,v
2009). | |

To validate the modeling procedure, both temporal and internal validation of the
whole model development process, except for the ﬁon-lmearity and interaction assess-
ments, were performed (Steyerberg, 2010). For temporal validation, the models were
develbped using data from the 939 patients enrolled before 2009 and validated on the
268 patients enrolled during 2009. |

Analysis of total volume of colloid

As described in the Figure 4.1, the total volume of colloid had a very skewed distribution
which consists of a point mass at 0 and a positive right-skewed tail. Therefore, normal
linear regression cannot be applied and potential applicable analytical methods are robust
regression (median regression) (Koenker, 2005), hurdle models (Tobin, 1958), or survival
analysis. Survival analysis using Cox regression is tréditionally used for sufvival analysis
of time-to-event endpoints. However, it has also been suggested as a flexible model for
general non-negative continuous outcomes with a right-skewed distribution and a point
mass at 0 (Aalen et al., 2008). I decided to use thé Cox proportional hazards regression
model for the analysis of the total volume of colloid and treated patients who died either
as right-censored observation or, alternatively, replaced their actual total colloid volume

by the maximum observed total colloid volume plus 1.

4.3 Results

4.3.1 General description

A total of 1810 children were enrolled in the two studies (observational study and RCT)
and the analysis population included 1706 patients with laboratory-confirmed dengue and

complete information regarding fluid usage (Figure 4.2). Among these patients, the 1207
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Figure 4.1. Histogram of'the total volume of colloid in all patients (n = 1706).

patients enrolled in the observational study formed the primary analysis population.

A detailed description of patients enrolled into the DF study is provided in Chapter 3
and for reference, patient characteristics and outcomes are also reported in Table 4.3. In
general, characteristics and outcome of patients enrolled only in the observational study
were similar to all patients, except for the usage of colloid fluid which can be explained
by the inclusion of patients enrolled into the fluid rescuscitation randomized clinical trial.
In the main analysis population, 222/1207 (18%) of the children had profound DSS,
433/1207 (36%) developed recurrent shock, and 57/1207 (5%) had critical DSS. Deaths
were very rare and major complications were infrequent; thus most children were clas-
sified as having profound DSS on the basis of their requirement of specific additional
therapy. No systematic time trends were observed for the prevalence of profound DSS or
critical DSS over the study period but there was a small but statistically significant decline
in the prevalence of recurrent shock (linear trend tests: p values were 0.34, 0.03, 0.65 for

profound DSS, recurrent shock and critical DSS, respectively) (Figure 4.3).
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Children with DSS
assessed for eligibility
(n=1810)

Excluded (n = 104)

- Not dengue (n = 19)

- Unknown serology and PCR result (n = 72)

- Incomplete fluid information (n = 10)

- Major/Unusual bleeding occurred early {(n = 3)

A

Analysis population
{n = 1706)

Not in fluid trial (n = 1207) In fiuid trial (n = 499)
[Primary analysis population]

Figure 4.2. Flow-chart of the analysis for profound DSS.

Assessment of missing values Amongst all 1706 cases, 4% (75) of participants had at
least one missing value in one or more candidate predictors. The number of missing values
per individual ranged from O to 2. HCT and PLT were the two most frequently missing

predictors with 1% missing values.

72



Chapter 4. Prognostic models for profound DSS amongst children with DSS

Outcome
Profound DSS
Recurrent shock
Critical DSS
Death

%df all dengue shock syndrome (DSS) cases

76 91 104 182 162 324 268
2003 2004 2005 2006 2007 "~2008 2009
Year

Figure 4.3. Frequency of adverse clinical outcomes over timefor patients enrolled in the obsenutional
study (n = 1207). The numbers shown below the line graphs indicate the total number of DSS cases

enrolled in the study each year.
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Table 4.3. Baseline characteristics and outcomes of study participants in DF cohort.

Characteristics

Demographic characteristics
Age [year]
Gender: Female

Clinical features at presentation with shock

Weight [kg]

Day ofillness [day]
Temperature > 38°C
Pulse rate [per min]
Systolic BP [mmHg]
Pulse pressure [mmHg]
Haemodynamic index

- Group 1

- Group 2

- Group 3

Haemorrhage

- None

- Skin only

- Mucose

Abdominal tenderness: Yes
Liver size [cm]

HCT [%]

PLT [1000 cell/mm3]
AST [IU/1]

RT-PCR performed

- DENV-1

- DENV-2

- DENV-3

- DENV4

- Mixed

- Negative

Outcomes

Used colloid: Yes

At least 2 colloid boluses
Total colloid volume [ml/kg]
Survival status: Died
Major complications: Yes
Inotropic drug: Yes
Recurrent shock: Yes
Profound DSS: Yes
Critical DSS: Yes

Summary statistics

n
1207 10
1207 562
1207 29
1207 5
1206 108
1207 120
1207 90
1207 20
1207

829
300
78
1207
398
769
40
1205 787
1195 2
1186 50
1188 38
910 133
1167
658
281
19
7
8
194
1207 544
1207 218
544 19
1207 7
1207 17
1207 54
1207 433
1207 222
1207 57

Observational study (n = 1207)

(7-12)
(47)

(21-38)
(5-6)

)
(100-140)
(85-100)
(15-20)

(69)
(25)
(6)

(33)
(64)

3)

(65)
(1-2)
(47-52)
(26-54)
(89-218)

(56)
(24)
2
M
()
(17

(45)
(18)
(12-25)
(M

M

“)
(36)
(18)
©)

All patients (n = 1706)

n

1706
1706

1706
1706
1705
1706
1706
1706
1706

1706

1701
1683
1683
1683
1021
1635

1706
1706

958
1706
1706
1706
1706
1706
1706

10
810

27
5
149
120
90
20

1146
438
122

489
1144
73
1228

49
41
125

672
363

46
109

436

958
355
25
8
28
74
593
364
83

Summary statistics

(7-12)
(47)

(20-35)
(4-6)

©)
(100-130)
(80-100)
(15-20)

(67)
(26)
@)

(29)
(67)

C))

(72)
(1-2)
(46-52)
(28-60)
(80-206)

(41)
(22)
(€)
()
(M
@7n

(56)
21)
(15-29)
«1)
2

4)
(35)
(21
O]

Summary statistics are median (IQR) for continuous variables and frequency (%) for categorical variables.

Abbreviations: AST = aspartate aminotransferase, RT-PCR = reverse transcriptase polymerase chain reaction,

DENY = dengue virus, DSS = dengue shock syndrome.
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4.3.2 Analysis of profound DSS
Univariate analysis

Apart from bleeding, abdominal tehderness, liver size and platelet count, all other parame-
ters assessed showed significant associations with profound DSS in the univariate analysis
of the observational study population (Table 4.4). Results based on all 1706 patients were

largely consistent.

Multivariable analysis

Linearity and additivity assessments As shown in Table 4.5, flexible spline functions
showed a significant improvement for modelling the day of illness and HCT while linear
terms seemed to be adequate for other covariates. Consistent with these findings, plots
showing the estimated adjusted association of covariates with outcome from a generalized
additive model (GAM) also indicated potential non-linearity in the relationships between
day of illness and HCT with severity of disease (Figure 4.4). However, these non-linear
associations were driven by rare patiénts with highly unusual covariate values. Indeed, for
the day of illness at shock, the increase of severity from day 7 onwards just represents the
high proportion of profound DSS amongst 4 unusual patients who had shock later_:ﬂ,fhan.
day 7 (2 out of 4 had profound DSS). Similarly, for HCT, the high proportion of profound
'DSS amongst 5 patients who had HCT less than 40% (3 out of 5 cases had profound DSS)
may distort the relationship'between HCT and severity. Of note, 2 out of these profound
DSS cases had received intravenous fluid before enrolment into the study. The plots from
a GAM-ﬁt without theée 9 unusual cases estimated a linear association with outcome, i.e.
confirmed the adequacy of ﬂle simple model (Figure 4.5). Because the déy of illness at
shock and HCT values of the unusual cases appeared correct and plausible, they were
not excluded from the analysis even though these cases are not typical for dengue shock
-patients. However, due to their low number, they do not provide convincing evidence for
a non-linear association.

The assessment of pre-defined interaction terms revealed a significant interaction be-
tween haemodynamic index and gender (Table 4.5). Haemodynamic index is a categorical

variable created by categorizing and combining systolic ‘blood pressure and pulse pres-
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sure. To exclude that the interaction is an artifact from categorization in the definition
‘ of haemodynamic index categories, alternative models which included systolic BP and
pulse pressure as continuous covariates were fitted. This revealed thaf the interaction
between haemodynamic index and gender can be explained by >the interaction between
systolic BP and gender and that the interaction remained when systolic BP was modelled
as a continuous variable (p values of interaction tests are 0.05 and 0.02 for patients in
the observational study including all subjects or only those with positive systolic BP only, -
respectively; of note, for the analysis of all subjects, systolic BP was modeled with 2 vari-
ables: continuous systolic BP and an indicator of zero systolic BP).

Based on these considerations, no non-linear terms were added to the multivariable
logisﬁc regression model but I added an interaction term between haemodynamic index

- and gender.
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Table 4.4. Univariate effects of candidate predictors on profound DSS estimatedfrom univariate logistic

regression models.

Covariate Observational study (n = 1207) All patients (n = 1706)
OR 95% Cl p value OR 95% Cl1 p value

Age [+1 year] 0.85 (0.81, 0.89) <0.01 0.83 (0.80, 0.86) <0.01

Gender 0.04 0.07

- Female 1.00 1.00

- Male 0.74  (0.55, 0.99) 0.80 (0.64, 1.02)

Weight [+5 kg] 0.84  (0.78, 0.90) <0.01 0.83 (0.77, 0.88) <0.01

Day of'illness [+1 day] 0.73 (0.62, 0.87) <0.01 0.72 (0.63, 0.82) <0.01

Temperature [+1°C] 1.47 (1.07, 1.99) 0.02 149 (1.16, 1.90) <0.01

Pulse rate [+10 per min] 1.14  (1.10, 1.19) <0.01 111 (1.07, 1.14) <0.01

Systolic BP [+5 mmHg] 092  (0.90, 0.94) <0.01 0.93 (0.91, 0.95) <0.01

Pulse pressure [+5 mmHg] 0.61 (0.55, 0.68) <0.01 0.67 (0.61,0.74) <0.01

Haemodynamic index <0.01 <0.01

- Group 1 1.00 1.00

- Group 2 1.67  (1.19, 2.32) 1.62 (1.24,2.11)

- Group 3 5.06  (3.11, 8.23) 3.76  (2.53, 5.57)

Haemorrhage 0.43 0.02

- None 1.00 1.00

- Skin only 0.82  (0.60, 1.12) 0.80 (0.62, 1.05)

- Mucosal 0.98 (0.41, 2.11) 1.57  (0.90, 2.68)

Abdominal tenderness 0.29 0.21

- Yes 1.00 1.00

-No 1.18 (0.87, 1.59) 1.19 (091, 1.56)

Liver size [+1 cm] 1.04  (0.89, 1.21) 0.65 1.03 (091, 1.17) 0.62

HCT[+1 %] 1.07  (1.03, 1.11) <0.01 1.06 (1.02, 1.09) <0.01

PLT [+ 10,000 cell/mm3] 1.03 (1.00, 1.07) 0.07 1.02 (0.99, 1.05) 0.19

PLT [per 10-fold increase] 1.58 (0.91, 2.76) 0.11 142 (091, 2.22) 0.13

AST [+1 TU1] 1.00  (1.00, 1.00) <0.01 1.00 (1.00, 1.00) <0.01

AST [per 2 times increase] 1.25 (1.07, 1.45) <0.01 1.27 (1.10, 1.47) <0.01

RT-PCR result 0.23 0.04

- DENV-1 1.00 1.00

- DENV-2 1.15 (0.81, 1.61) 1.22  (0.88, 1.69)

- DENV-3 246 (090, 6.25) 292 (1.48,5.71)

- DENV4 3.17 (0.62, 14.54) 1.28  (0.68, 2.39)

- Mixed 0.60  (0.03, 3.43) 0.56 (0.03, 3.08)

The analyses in all patients were adjusted for the randomized treatment assignment. Patients with negative
RT-PCT were excluded in the analysis for RT-PCR.

Abbreviations: OR = odds ratio, Cl = confidence interval, BP - blood pressure, HCT = haematocrit, PIT -
platelet count, AST = aspartate aminotransferase, RT-PCR = reverse transcriptase polymerase chain reaction,

DENY = dengue virus.
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Table 4.5. Linearity and additivity tests in the pre-defined logistic regression model for
profound DSS (n = 1207).

Predictor Deviance df p value
Linearity tests (compared to a quadratic function)

Age 1.40 1 0.24
Weight <0.01 1 0.98
Day of illness 2.51 1 0.11
Pulse rate 0.44 1 0.51
Temperature 0.57 1 0.45
HCT 4.35 1 0.04
PLT 0.13 1 0.72
Linearity tests (compared to a natural cubic spline with 4 degrees of freedom)
Age 683 3 0.08
Weight 436 3 0.22
Day of illness 846 3 0.04
Pulse rate 1.29 3 0.73
Temperature 2.83 3 0.42
HCT 799 3 0.05
PLT 0.41 3 0.94
Additivity tests (interaction tests)

Age and all other covariates 16.7 14 0.27
Day of illness at shock and all other covariates 222 14 0.07
Haemodynamic index and all other covariates 356 24 0.06
Haemodynamic index and sex 99 2 0.01
Systolic BP and gender3 6.1 2 0.05
Systolic BP and genderb 5.7 1 0.02

a Systolic BP includes continuous systolic BP and indicator of zero systolic BP, model on all pa-
tients in the observational study.

b Systolic BP just includes continuous systolic BP, model on patients in the observational study
with positive systolic BP.
Abbreviations: HCT = haematocrit, PLT = platelet count, BP = blood pressure.
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Figure 4.5. Plots of estimated component smooth functions for day of illness and haematocrit from
a generalized addictive model (GAM) fit for profound DSS after removal of 9 patients with day of
illness > 7 or haematocrit values < 40%. Dots correspond to individual partial residuals; solid lines
correspond to spline functions estimated by GAM; gray areas correspond to point-wise 95% confidence

intervals of the estimated values.

The full and reduced logistic regression model The multivariable models assessing
relationships for the predefined candidate predictors with the primary outcome on the pri-
mary analysis population and on all patients are summarized in Table 4.6 & 4.7. Younger
age, earlier day of illness at shock, faster pulse rate, higher temperature, higher haemat-
ocrit and worse haemodynamic status in females were all associated with profound DSS.
These predictors were also chosen by the reduced model based on stepwise variable selec-
tion or best subset selection using AIC which both selected the same variables (Table 4.6

&4.7).
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Table 4.6. Adjusted effects of candidate predictors on profound DSS estimated from the full logistic
regression model and the reduced model with stepwise variable selection based onAIC (n = 1207).

Covariate Full model Reduced model

OR 95% C1 pvalue OR 95% Cl p value
Age [+1 year] 0.86  (0.80, 0.93) <0.01 0.87 (0.83, 0.92) <0.01
Weight [+5 kg] 1.03  (0.92, 1.14) 0.59 - - -
Day of'illness [+1 day] 0.79 (0.65, 0.94) 0.01 0.78 (0.65, 0.94) <0.01
Temperature [+1°C] 1.58  (1.12,2.21) 0.01 1.59 (1.12, 2.20) <0.01
Pulse rate [+10 per min] 1.08  (1.03, 1.13) <0.01 1.07 (1.03, 1.13) <0.01
Haemorrhage 0.81 -
- None 1.00 -
- Skin only 0.94 (0.67, 1.33) - -
- Mucosal 1.22  (0.47, 2.89) - -
Abdominal tenderness 0.91 -
- Yes 1.00 -
-No 1.02  (0.70, 1.47) - -
Liver size [+1 cm] 0.96 (0.80, 1.16) 0.69 - - -
HCT[+1 %] 1.07  (1.03, 1.12) <0.01 1.07 (1.03, 1.12) <0.01
PLT [+10,000 cell/mm3] 1.02  (0.98, 1.06) 0.24 - - -
Gender
- Female 1.00 1.00
- Male 1.14  (0.75, 1.73) 1.17  (0.78, 1.77)
Haemodynamic index - females
- Group 1 1.00 1.00
- Group 2 vs. group 1 2.57  (1.59, 4.15) 2.55 (1.58,4.12)
- Group 3 vs. group 1 3.01 (1.43, 6.36) 3.06 (l.46, 6.45)
Haemodynamic index - males
- Group 1 1.00 1.00
- Group 2 vs. group 1 0.82 (046, 1.41) 0.79 (0.45, 1.36)
- Group 3 vs. group |1 1.60  (0.70, 3.61) 1.55  (0.67, 3.49)

95% confidence intervalsfor the reduced model do not take into account the uncertainty of model selection,
p valuesfor gender and haemodynamic index are not provided due to interaction.
Abbreviations: OR = odds ratio, Cl = confidence interval, HCT = haematoait, PLT — platelet count, AIC =

Akaike information criterion.
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Table 4.7. Adjusted effects of candidate predictors on profound DSS estimated from the full logistic
regression model and the reduced model with stepwise variable selection based on AICfor all patients (n

= 1706).

Candidate predictors Full model Reduced model

OR 95% Cl pvalue OR 95% C1 p value
Age [+1 year] 0.82  (0.77, 0.87) <0.01 0.84 (0.80, 0.88) <0.01
Weight [+5 kg] 1.05 (0.96, 1.16) 0.27 - - -
Day of'illness [+1 day] 0.74 (0.64, 0.85) <0.01 0.74 (0.65, 0.86) <0.01
Temperature [+1°C] 1.50 (1.14, 1.96) <0.01 1.50 (1.14, 1.95) <0.01
Pulse rate [+10 per min] 1.04 (1.00, 1.08) 0.08 1.04 (1.00, 1.08) 0.08
Haemorrhage 0.02 0.02.
- None 1.00 1.00
- Skin only 0.96 (0.72, 1.28) 0.94 (0.71, 1.25)
- Mucosal 2.16 (1.17,3.91) 2.19  (1.20, 3.95)
Abdominal tenderness 0.47 -
- Yes 1.00 -
-No 0.89 (0.65, 1.23) - -
Liver size [+1 cm] 0.98 (0.85, 1.13) 0.79 - - -
HCT[+1 %] 1.07 (1.03, 1.11) <0.01 1.07 (1.03, 1.11) <0.01
PLT [+10,000 cell/mm3] 1.01  (0.98, 1.04) 0.53
Gender
- Female 1.00 1.00
- Male 1.13  (0.81, 1.58) 1.16 (0.84, 1.62)
Haemodynamic index - females
- Group 1 1.00 1.00
- Group 2 vs. group 1 213 (1.44,3.14) 211 (1.43, 3.10)
- Group 3 vs. group 1 294 (1.59, 5.44) 293  (1.59, 5.43)
Haemodynamic index - males
- Group 1 1.00 1.00
- Group 2 vs. group 1 1.06  (0.69, 1.61) 1.02  (0.66, 1.53)
- Group 3 vs. group 1 1.15  (0.56, 2.31) 1.12  (0.55, 2.26)

These analyses were adjusted for the randomized treatment assignment. 95% confidence intervals for the
reduced model do not take into account the uncertainty of model selection,

p valuesfor gender and haemodynamic index are notprovided due to interaction.

Abbreviations: OR = odds ratio, Cl = confidence interval, HCT = haematocrit, PLT = platelet count, AIC =

Akaike information criterion.
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Model performance As described in Table 4.8, all approaches have similar overall per-
formance, in terms of the Brier score. However; their Brier scores are close to Brier scores
.of non-informative models that assign the incidence of the outcome as the predicted risk
for all patients (estimaﬁed Brier score of non-informative models in temporal validation is
0.12; median [IQR] Brier score of non-informative models in internal validation is 0.15
-[0.14-0.16]). Of note, Brier scores in temporal validation are lower than in internal vali-
dation, which may be explained by the lower outcome incidence in the test set in temporal
validation (incidence of profound DSS in test set is 0.15 in temi)oral validation; in inter-
nal validation, median [IQR] outcome incidence is 0.18 [0.16-0.21]). Th_e reduced models
had very similar performance characteristics to the full model in terms of discrimination
and calibration. Both models showed acceptable discrimination for both temporal and in-
ternal validation with an AUC of at least 0.69. Calibration in internal validation was also
satisfactory. However, in temporal validation, models developed using data from the 939
patients enrolled beforé 2009 tended to overestimate the risk of profound DSS for ﬂle 268
patients enrolled in 2009 (i.e. the observed incidence of this outcome in the test set was
15% compared to an average predicted risk of 21% in both the full and reduced models)
(Table 4.8 & Figure 4.6). The reduced model performed better than, or as well as, al-
ternative logistic':‘models and more sophisticated models including lasso, GAM, CART and
boosting (Table 4.8). While several alternative models showed satisfactory performance,

CART showed quite poor results.
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Figure 4.6. Calibration plots for temporal validation of the full logistic model (panel A) and the
reduced model with variable selection based on AIC (panel B) for profound DSS. Model development
was on patients enrolled before 2009 (n —939), validation on patients enrolled in 2009 (n = 268).
Black triangfes show average predicted versus observed riskfor 5 patient strata of equal size grouped
according to their predicted risk. Corresponding vertical lines show 95% confidence intervals. The
black line corresponds to a non-parametric smoother of the predicted versus observed values. The
red dashed reference line corresponds to the ideal relationship. Each panel also describes temporal
validated performance of each model (left upper corner) and the distribution of observed values (at
the bottom).
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Chapter 4. Prognostic models for profound DSS amongst children with DSS

‘The score chart

A simpliﬁed score chart for clinical use based on the reduced model was developed fol-
lowing the procedures described in section Model preséntation, and is shown in Figure
4.7. The base model was the reduced logistic model (stepwise model selection using
AIC) displayed in Table 4.6. However, results in Table 4.6 give lower risk predictions in
males with haemodynamic index group 2 compared to group 1. As the corresponding dif-
ference in estimates is small, non-significant, and clinically implausible, haemodynamic
index groups 1 and 2 in males were pooled, and then the logistic model was refitted prior
to deriving the point score. Of note, this score chart was derived without any adjust-
ment for mis-calibration. However, this adjustment could have been done by applying the
internally-validated calibration intercept and slppe to the linear predictors before deriving
. the final score.

This score chart assigns points to each predictor value and the total point sum is then
translated to the predicted risk of a sevel:e outcome. For example, the total point sum for
a 10-year-old girl who presents on day 6 of i]lness. with a pulse rate of 100 beats/min,
a temperature of 37.5°C, a haematocrit of 44% and a haemodynamic index of 1 is 11
(5+2+1+2+1+0), and therefore, her estimated risk of developing profound shock during
hospitalization is less than 10%. Based on this low estimated risk and taking into account
the available resources and clinical expertise, the treating physician may dvecide to keep

-this patient in his/her health facility with an appropriate monit_oring schedule rather than
to refer the pétient to a higher level hospital. |

The adequacy of this score chart was evaluated by comparing risk predictions from
the score chart to those from the logistic model with AIC model selection for patients in
the observational study. ‘The median (IQR)- of the differences between these two risk-
estimation approaches was 0.018 (0.004, 0.035) and the range was -0.093 to 0.126. The
largest differences occurred in patients with intermediate predicted risks (Figure 4.8 &

4.9).
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Point score

Risk factor Categories Points  Risk factor Categories Points
Age [years| 15- age  Temperature [°C] <375 0
37.5- 379
38.0- 38.4 3
38.5- 38.9 5
>39 6
Day of illness <4 7  Haematocrit [%q <40 0
4 5 40-44 1
5 4 45-49 4
6 2 50-54 7
£7 0 55-59 9
>60 10
Pulse [per min] <90 0  Hemodynamic Index
90- 109 1 For females 1 0
110-129 2 2 7
130-149 3 3 8
150-169 4
170-189 5 For males lor2 1
Rapid, thready 6 3 4
Risk estimation
Total score 510 15 20 25 30 35 40 45 50
' 1 i i i i 1 i i
" 1 1 I | S -1 1 r — — 1
Predicted risk [%] 0 10 20 30 40 50 60 70 80 90 100

Figure 4.7. Score-chartfor prediction ofprofound DSS. The upper panel assigns a point scorefor each
riskfactor while the lower panel assigns the predicted risk ofdeveloping profound shock based on the

total point sum for all riskfactors.
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Risks estimated from the score chart

Figure 4.8. Scatter plot ofrisks estimatedfrom the score chart versus the logistic regression model

Figure 4.9. Bland-Altman plot of differences between risks estimated by the score chart and those esti-
mated by the logistic modelfor profound DSS withAkaike information criterion (AIC) model selection

(and without pooling the haemodynamic index categories in males).
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4.3.3 Analysis of recurrent shock

Results from the analysis of recurrent shock were consistent with results from the analy-
sis of profound DSS and for both outcomes; there was a significant interaction between
haemodynamic index and gender (Table 4.9). Independent risk factors of recurrent shock
were younger age, earlier day of illness at shock, higher temperature, faster pulse rate,
| higher haematocrit and worse haemodynamic status in females. The prediction model
for recurrent shock based on these risk factors had a moderate performance and AUC,
calibration-in-the-large, and calibration slope' in internal validétion were 0.64, -0.003,
0.86 (for the full model) and 0.65, -0.004, 0.93 (for the reduced model with stepwise
variable selection based on AIC), respectively (Table 4.10).

This dataset also provides an opportunity to externally assesé the performapce of a
prognostic model developed by Huy et al. (2013a). Their model aimed to predict the
‘occurrence of reéurrent shock based on five variables: day of illness at hospital admission,
presence of purpura/ecchymosis and ascites/pleural effusion at shock, as V‘vell as platelet
count and pulse pressure at shock. For the DF data, the model equation of Huy ef al.
(2013a) yielded an AUC of 0.54 (95% confidence interval: 0.50-0.57) and substantially
under-estimated the true risk of recurrent shock (average predicted risk 15% compared to

an 6bserved risk of 36%).
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Table 4.9. Adjusted effects of candidate predictors for recurrent shock estimatedfrom logistic models for

patients in the observational study and all patients.

Covariate

Age [+1 year]

Weight [+5 kg]

Day of illness [+1 day]
Temperature [+1°C]
Pulse rate [+10 per min]
Haemorrhage

- None

- Skin only

- Mucosal

Abdominal tenderness

- Yes

-No

Liver size [+1 cm]

HCT [+1 %]

PLT [+10,000 cell/mm3]
Gender

- Female

- Male

Haemodynamic index - females
- Group 1

- Group 2 vs. group 1

- Group 3 vs. group 1
Haemodynamic index - males
- Group 1

- Group 2 vs. group 1

- Group 3 vs. group 1

Observational study

OR
0.90
1.00
0.78
1.85
1.07

1.00
0.96
1.02

1.00
0.95
1.05
1.07
1.00

1.00
1.42

1.00
1.86
1.51

1.00
0.77
0.65

95% Cl
(0.85, 0.96)
(0.92, 1.08)
(0.68, 0.91)
(1.39, 2.48)
(1.02, 1.11)

(0.73, 1.26)
(0.47, 2.14)

(0.71, 1.28)
(0.91, 1.22)
(1.03, 1.11)
(0.96, 1.03)

(1.04,

1.95)

(1.24, 2.79)
(0.75, 3.05)

(0.50, 1.16)
(0.30, 1.41)

p value
<0.01
0.96
<0.01
<0.01
<0.01
0.95

0.76

0.49
<0.01
0.86

OR
0.86
1.03
0.75
1.79
1.05

1.00
0.97
1.57

1.00
1.00
1.03
1.07
0.99

1.00
1.40

1.00
1.77
1.74

1.00
0.91
0.56

All patients

95% Cl1
(0.82, 0.91)
(0.96, 1.11)
(0.66, 0.84)
(141, 2.28)
(1.01, 1.08)

(0.76, 1.23)
(0.90, 2.71)

(0.77, 1.31)
0.91, 1.17)
(1.04, 1.10)
(0.97, 1.02)

(1.07, 1.83)

(1.26, 2.50)
(0.98, 3.11)

(0.64, 1.28)
(0.29, 1.08)

p value
<0.01
0.46
<0.01
<0.01
0.01
0.19

0.98

0.63
<0.01
0.69

Interaction tests between gender and haemodynamic index were significant in both models (p<0.01 in both

models), p valuesfor gender and haemodynamic index are not provided due to interaction.

The analyses in all patients were adjustedfor the randomized treatment assignment.

Abbreviations: OR = odds ratio, Cl = confidence interval, HCT = haematocrit, PLT = platelet count.
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4.3.4 Analysis of critical DSS

The numbers of patients experiencing critical DSS in the observational study and in the
whole patient population were 57/1207 (5%) and 83/1706 (5%), respectively. The mul-
tivariable analysis of this outcome in the observational study patients identified similar
risk factors as for the profound DSS (Table 4.11) except that pulse rate was not an in-
dependent risk factor, and there was no evidence of an interaction between gender and

haemodynamic index.

Table 4.11. Adjusted effects of candidate predictors on critical DSS estimatedfrom logistic models

for patients in the observational study andfor all patients.

Covariate Observational study All patients
OR 95% C1 p value OR 95% Cl1 p value

- Age [+1 year] 0.73  (0.62, 0.86) <0.01 0.72 (0.62, 0.82) <0.01

Gender 0.09 0.03

- Female 1.00 1.00

- Male 0.59 (0.32, 1.08) 0.59 (0.36, 0.96)

Weight [+5 kg] 0.96 (0.73, 1.22) 0.73 1.00 (0.80, 1.24) 0.97

Day of illness [+1 day] 0.71 (0.49, 1.00) 0.05 0.77 (0.59, 1.01) 0.06

Temperature [+1°C] 1.51 (0.84, 2.54) 0.16 1.83 (1.20,2.72) <0.01

Pulse rate [+10 per min] 0.97 (0.87, 1.06) 0.48 098 (0.90, 1.06) 0.62

Haemodynamic index 0.04 0.23

- Group 1 1.00 1.00

- Group 2 1.00 (0.47, 1.99) 1.04 (0.59, 1.81)

- Group 3 336 (1.26,9.18) 2.13  (0.89, 5.12)

Haemorrhage 0.63 0.17

- None 1.00 1.00

- Skin only 0.75 (0.41, 1.39) 0.89 (0.53, 1.51)

- Mucosal 1.06 (0.14, 5.01) 242 (0.80, 6.52)

Abdominal tenderness 0.78 0.44

-Yes 1.00 1.00

-No 1.10 (0.56, 2.10) 1.26  (0.70, 2.23)

Liver size [+1 cm] 1.00  (0.71, 1.41) 0.99 1.13 (0.86, 1.49) 0.38

HCT[+1 %] 1.10  (1.02, 1.19) 0.01 1.09 (1.02, 1.16) <0.01

PLT [+10,000 cell/mm3] 1.04 (0.99, 1.10) 0.10 1.04 (1.00, 1.09) 0.06

Interaction tests between gender and haemodynamic index were not significantfor both models (p=0.45
and 0.85, respectively). The analyses in all patients were adjustedfor the randomized treatment assign-
ment.

Abbreviations: OR = odds ratio, Cl = confidence interval, HCT = haematocrit, PLT = platelet count.
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4.3.5 Analysis of total volume of colloid

Results from Cox regression identified the same risk factors for the higher volume of col-
loid required (Table 4.12 & 4.13). These results were also in agreement with the analysis
of primary endpoint, at least in the direction of potential effects of pre-defined covariates
on outcome.

Table 4.12. Adjusted effects of candidate predictors on the total volume of colloid estimated from
Cox modelsfor patients in observational study (n = 1207).

Covariate Model 1 Model 2

HR 95% C1 pvalue HR 95% C1 p value
Age [+1 year] 1.06 (1.03, 1.09) <0.01 1.06 (1.03, 1.09) <0.01
Gender 0.78 0.75
- Female 1.00 1.00
- Male 1.02  (0.90, 1.15) 1.02  (0.90, 1.15)
Weight [+5 kg] 1.04 (1.00, 1.07) 0.07 1.03 (0.99, 1.07) 0.09
Day of'illness [+1 day] 1.11  (1.04, 1.18) <0.01 1.11 (1.04, 1.18) <0.01
Temperature [+1°C] 0.85 (0.74, 0.98) 0.02 0.82 (0.71, 0.94) <0.01
Pulse rate [+ 10 per min] 0.96  (0.94, 0.98) <0.01 0.96 (0.94, 0.98) <0.01
Haemodynamic index <0.01 <0.01
- Group 1 1.00 1.00
- Group 2 0.90 (0.78, 1.03) 0.89 (0.78, 1.02)
- Group 3 0.55 (0.42, 0.71) 0.57 (0.44, 0.74)
Haemorrhage 0.67 0.62
- None 1.00 1.00
- Skin only 1.06  (0.93, 1.20) 1.06 (0.93, 1.20)
- Mucosal 1.06  (0.76, 1.48) 0.98 (0.71, 1.37)
Abdominal tenderness 0.24 0.18
-Yes 1.00 1.00
-No 1.08 (0.95, 1.24) 1.10  (0.96, 1.25)
Liver size [+1 cm] 1.02  (0.96, 1.09) 0.55 1.01 (0.95, 1.08) 0.68
HCT[+1 %] 0.97 (0.96, 0.98) <0.01 0.97 (0.96, 0.98) <0.01

PLT [+10,000 cell/mm3] 1.00 (0.98, 1.01) 0.58 1.00 (0.98, 1.01) 0.72

Outcome of who died were either treated as right-censored observations (model 1) or replaced by the
maximum observed outcome plus 1 (model 2).

Abbreviations: HR = hazards ratio, Cl — confidence inten al, HCT = haematocrit, PLT = platelet count.
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Table 4.13. Adjusted effects of candidate predictors on the total volume of colloid estimated from
Cox regression models for all patients (n = 1706).

Covariate Model 1 Model 2

HR 95% C1 pvalue HR 95% C1 p value
Age [+1 year] 1.07 (1.05, 1.10) <0.01 1.07 (1.05, 1.10) <0.01
Gender 0.40 0.36
- Female 1.00 1.00
- Male 1.04 (0.94, 1.15) 1.05 (0.95, 1.16)
Weight [+5 kg] 1.05 (1.01, 1.08) 0.01 1.04 (1.00, 1.08) 0.03
Day of'illness [+1 day] 1.13  (1.07, 1.18) <0.01 1.12 (1.07, 1.18) <0.01
Temperature [+1°C] 0.82 (0.73, 0.92) <0.01 0.78 (0.70, 0.88) <0.01
Pulse rate [+10 per min] 0.97 (0.95, 0.98) <0.01 0.96 (0.95,0.98) <0.01
Haemodynamic index <0.01 <0.01
- Group 1 1.00 1.00
- Group 2 0.92 (0.82, 1.03) 0.92 (0.82, 1.03)
- Group 3 0.63  (0.50, 0.78) 0.66 (0.53, 0.82)
Haemorrhage 0.84 0.69
- None 1.00 1.00
- Skin only 1.03  (0.92, 1.15) 1.03  (0.92, 1.15)
- Mucosal 1.00 (0.78, 1.29) 0.94 (0.73, 1.21)
Abdominal tenderness 0.69 0.53
-Yes 1.00 1.00
-No 1.03 (091, 1.16) 1.04 (0.92, 1.18)
Liver size [+1 cm] 1.01  (0.96, 1.07) 0.72  1.00 (0.95, 1.06) 0.95
HCT[+1%] 0.97 (0.96, 0.98) <0.01 0.97 (0.96, 0.98) <0.01

PLT [+10,000 cell/mm3] 0.99 (0.97, 1.00) 0.05 0.99 (0.98, 1.00) 0.09

Outcome of who died were either treated as right-censored observations (model 1) or replaced by the
maximum observed outcome plus 1 (model 2). These analyses were adjustedfor the randomized treat-

ment assignment.

Abbreviations: HR = hazards ratio, Cl = confidence interval, HCT = haematocrit, PLT = platelet count.
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4.4 Discussion

This chapter evaluated risk factors for poor outcomes in children with DSS. Younger age,
~ earlier day of illness, higher temperature, faster pulse rate, higher haematocrit, and a
worse haemodynamic status (in females) at onset of shock Were associated with a higher
risk of developing profound DSS, the primary outcome of this study. The results for sec-
ondary outcomes including recurrent shock, critical DSS and total volume of colloid, were
largely consistent with the primary analysis. A robust prediction model for profound shock
was developed and presented as a simple score-chért designed to assist decision-making
in clinical practice. |

The pathognomonic feature of the vasculopathy associated with severe dengue is an
increase in intrinsic vascular permeability resulting in a transient capillary leak syndrome.
Cardiovascular decompensation occurs when plasma losses exceed the capacity for up-
_ regulation of the normal compensatory mechanisms that maintain plasma volume;;x;vithin
well-circumscribed limits (Trung and Wills, 2010). Several studies have demonstrated a
greater risk for vascular leakage and development of DSS among children compared to
adults (Anders et al., 2011; Guzman et al., 2002; Hammond et al., 2005; Dinh The et al.,
2012), probably related to higher intrinsic permeability with younger age (Gamble et al,,
2000), and a relationship with severity of shock is the1:efore to be expected. Similarly ear-
lier presentation with DSS implies more severe capillary leakage that quickly overwhelms
the capacity for compensation, énd this is consistent with the associations demoﬁstrated
between profound shock and other markers of leakage severity such as higher haematocrit
and more severe haemodynamic compromise at presentation. Higher temperature at on-
set of shock was also associated with profound shock; 9% of caseé had a temperature of 38
degfees or more at presentation irrespecti\}e of the day of illness (Chapter 3) possibly in-
dicating a greater viral burden or a more intense immune response in these cases. Several
of these factors, and others such as aspartate aminotransferase identified in the univariate
analysis, have also been identified as risk factors for development of shock and/or more
se{/ere dengue disease generally (Anders et al., 2011 ; Potts et al., 2010a; Srikiatkhachorn
~and Green, 2010).

Interestingly no significant relationship between platelet count and shock severity was
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found, although other studies have indicated a strong association with leakage severity
- (Wills et al., 2009). However, it is probable that the profound thrombocytopénia already
present at enrolment maskéd any additional effects, and that a very large sample size
would be required to detect differences between severity groupé. Similarly the absence
- of any relationship between abdominal tenderness or liver size and shock severity likely
reﬂeéts the fact that these parameters are closely linked with development >of shock per
se. |
Female gehder has been identified previously as an independent predictor of mortality
in children with DSS, possibly reflecting higher intrinsic vascular permeability and thus
greater susceptibility to capillary leak syndrome in females than males (Anders et al;,
2011). In this study, there was a difference in the effect of initial haemodynamic status
by gender in the analysis of profound DSS and recurrent shock but not with the more
- restricted definition of critical DSS. Potentially the higher intrinsic permeability in female
- subjects does influence the severity of leakage but only up to a critical point; when haemo-
dynamic collapse finally occurs all subjects do badly and the differential effect of gender
is obscured. Of note however, in the analysis of the secondary outcome of critical DSS, the
event rate was lower and hence the statistical power to identify associations was reduced.
The final clinical prediction mbdél provides a reliable tdol to predict development of -
profound shock among DSS cases. The candidate predictors and primary outcome were
prospectively defined, and the model was carefully developed and validated following
standard methbdology expected to minimize optimistic and/or spuridus results (Harrell,
2001; Steyerberg, 2010). The final full model showed good calibration and discrimina-
tion, with an AUC of 0.74 (0.65, 0.82) for temporal validation, and performed favourably
compared to a number of alternative modelling strategies. In temporal validation, all the
statistical models tended to overestimate the average risk of profound DSS in patients re-
cruited in 2009 by about 5%, comparéd to models developed on patients recruited earlier
during the'study-period. There was no systematic linear time-trends in the risk for pro?
+ found DSS over time aﬁd the same recruitment protocol and treatment regime were used
throughout the study. However, the observed risk in 2009 was the lowest over the entire
observation period (Figure 4.3). Alﬂlough the over-estimation in 2009 could be a chance

finding it is also possible that some undefined change did occur, only becoming apparent
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in 2009, but if so, the overall effect was minor.

The final model was simplified to a score chart. While this approach results in a mild
loss of precision (Steyerberg, 2010), a chart is easier to understand than a regression
formula or a nomogram, and allows clinicians to rapidly assess a patient’s risk of progres-
sion. There is no clear-cut risk stratification or a‘decision rule based on the final prognostic
model, since such a rule would require careful evaluation of costs and benefits, together
with a defined interventioh strategy for high-risk patients. Currently no such strategy
exists, and effective management reliés on careful monitoring and assiduous supportive
care. In these circumstances experienced doctors are better equipped to decide on a par-
ticular therapeutic regimen, and the contribution of the current prognostic model is to
provide physicians with guidance on the likely risk for developing profound shock. Ideaily
all DSS cases should be managed in a high-dependency unit (HDU)_dr ICU, but such facil-
ities are limited especially in dengue-endemic areas, and given the very large numbers of
potentially severe cases encountered daily, it can be difficult to prioritise individual cases.
Using this score physicians may elect to monitor high-risk patients closely in a local HDU
or ICU setting, or may choose to transfer them early to tertiary-level facilities, allowing
more effective use of available staff and equipment for the remaining DSS cases. In the
wider context, a prediction model such as this could be useful for identification of target
populations for studies evaluating novel interventions for DSS (Simmons et al., 2012a).

Regarding prediction model for recurrent shock, the model developed in this project
differs from the recent prediction model for recurrent shock developed by Huy et al.
(2013a) in several respects, even though both models were based on Vietnamese children
with DSS. Data of 1207 patients from a single hospital was used in this study whereas
| the study by Huy et al combined data of 444 patients from two very different health care
settings (a preventive health-care centre of a small province and a large referral hospital
in a big city) but did not report site-specific summaries. That model identified admission
day, purpura/ecchymosis, ascites/pleural effusion, platelet count and pulse pressure, as
risk factors for recurrent shock (Huy et al.,, 2013a); whereas identified risk factors for
recurrent shock in this study were younger age, earlier day of illness at shock, higher
temperature, faster pulse rate, higher haematocrit and worse haemodynamic status in fe-

_males. It is difficult to compare the models, as the reported proportions of patients with
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purpura/ecchymosis (36% in Huy’s study vs. 3% in this study) and ascites/pleural effu-
-sion (44% in Huy’s study vs. 1% in this study) were markedly différent. Of note all data in
this study were collected withih 2 hours of onset of shock, while the timing of data .collec-
tion in Huy’s study was not clearly specified; the high incidence of features that typically
develop after initiation of fluid resuscitation suggests that timing of data collection may
- be relevant, and may explain why application of Huy’s model to this dataset showed only
low discrimination (AUC 0.54) for the prediction of recurrent shock.

One potential limitation of this study relates to the deﬁnition of t;he clinical outcomes,
some of which may be considered subjective. HoWever, management of DSS in endemic
areas is generally protocol driven, following a long-established precedent established by
the World Health Organization (World Health Organization, 1997), and adherence to lo-
cal management guidelines is typically very gbod in Vietnam. In addition, results from
analysis of recurrent and profound shock were largely consistent with the analysis of crit-
ical DSS, which is less prone to clinician bias. Furthermore, in the context of DSS where
prompt diagnosis with immediate fluid resuscitation is very effective (World Health Orga-
nization, 2009), .the occurrence of hard outcomes such as death or major complications
depends heavily on local expertise and the facilities of the healthcare system (Gibbons
and Vaughn, 2002). Although the definition of prbfound DSS in this study might be a ‘
robust assessment of the overall ‘severity of DSS, physicians applying these results must
understand the provided reasoning as well as the potential pitfalls inhereﬁt in this type of
analysis. ' ‘

: Develbping a prognostic model using data from a single hospital with better exper-
tise and facilities than many local healthcare facilities may be considered another lim-
itation of the study, potentially restricting genéralizability outside the primary context.
However, as all the risk factors identified are clinically plausible, the model might also
discriminate effectively in other settings. To adjust the model to provincial hospitals in

* Vietnam, where the distribution of predictors would likely be very similar to this study,
simple re-calibration of the interéept of the current prognostic model to take into account
differences in outcome prevalence may be sufficient, and such a re-calibration could be
performed with a much smaller éample size (Steyerberg, 2010). However, re-calibration

or re-estimation of the regression coefficients may be required to adapt the current model
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to settings with markedly different patient characteristics, facilities or management guide-
lines (Steyerberg, 2010). Further work is needed to assess the performance of the model
in a Vériety of hospitalé and clinics within the region, as well as more broadly across
healthcare systems in parts of the world where dengue infection is less common.

In summary, this chapter identiﬁéd several clinical and laboratory risk factors of severe
outcome amongst children with DSS. Based on these predictors, a simple score chart for
- profound DSS prediction was derived. This score-chart, which is simple to understand and
easy to apply, could play a valuable role in triage and management of children with DSS in
endemic aréas, although precise prediction alone cannot improve clinical decision-making

or overall outcomes.
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Prognostic models for DSS in

hospitalized children with dengue

Summary |

This chapter describes risk factors for DSS and presents a prognostic model for progression

to DSS amongst hospitalized children with dengue using baseline information only.
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Chapter 5. Prognostic models for DSS in hospitalized children with dengue
5.1 Introduction

In contrast to the previous two chapters, which studied the DF cohort of children with
dengue shock syndrome (DSS), this chapter examines the broader MD cohort of hos-
pitalized children with dengue and investigates risk factors for progression to DSS. As
described in Chapter 1, several earlier studies aimed to identify risk factors for severe
outcomes amongst patients with dengue. Howeizer, only a few studies also tried to incor-
porate the identified risk factors into clinical prediction models in order to provide useful
tools for clinical préctice. Moreover, most of these studies looked at DHF rather than DSS
as the primary oﬁtcome, included only small sample sizes, and used non-standardized
modeling strategies.

In this study, we aimed to assess the predictive ability of several clinical and labora-
tory \}ariables which are commonly available in endemic countries like Vietnam for the
outcome of progression to DSS and to incorporate these variables into a prediction model

using a large dataset of children hospitalized with dengue infection.

5.2 Methods

This chapter utilized data from the MD cohort. Detailed information related to study
design, study participants, dengue diagnostics, general statistical analyses (descriptive
analysis, treatment of missing values) and rhodeling strategy are described in Chapter 2. I
present here definitions of the primary study population, clinical outcomes and candidate

predictors and several specific statistical methods used in this chapter.

5.2.1 Study population

The primary study population included only patients with laboratory-confirmed dengue
who were enrolled before day 5 of illness and did not experience DSS on the day of
enrolment. Patients enrolled at a later day of illness were excluded as DSS most frequently
occurs on day 5 or 6 of illness (Chapter 3). However, all patients regardless of the day of

illness at enrolment were included in the descriptive analyses.
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'5.2.2 Clinical outcomes and candidate predictors

in this study, the primary outcome of interest is the occufrence of DSS. In addition, the fol-
lowing clinical outcomes during hqspitalization were described: referral to the pediatric
intensive care unit (PICU), new bleeding, requirement for intravenous fluids, the platelet
" nadir, the day of the platelét nadir, the maximum haematocrit (HCT), the day of the maxi-
mum HCT, and the overall haemoconcentration. Deﬁniﬁons .of these clinical outcomes are

described in Table 5.1.

Table 5.1. Definition of clinical outcomes.

Clinical outcome Deﬁmtlons
‘Dengue shock syndrome = WHO definition (World Health Organization, 2009)
" Referral to the PICU Being referred to the PICU
Newbleeding = Havmg new bleeding during hospltahzatlon -
Platelet nadir ' The minimum PLT count from day 3 to day 8 of ﬂlness (set to
missing if <3 PLT values were available for a subJect)
Day of platelet nadir ~~* The day of illness at which the platelet nadir was reached -
Maximum HCT " The maximum HCT value from day 3 to day 8 (set to mlssmg if -
. <3 HCT values were available for a subject)
Day of 1 maximum HCT a The day of ﬂlness at which the maximum HC'I‘ was reached

Overall haemoconcentration The overall haemoconcentration was defined as the percentage
change of the maximum HCT from day 3 to 8 compared to the
normal HCT for a specific patient. The normal HCT for a specific
patient was defined as the HCT value at follow-up (after day 14 of
illness). If this was not available, the minimum HCT value before

-day 2 of illness (provided the PLT count at the same time was
> 200,000 cells/mm?) or the population value (37% for children
from 5 to 10 years old, 38.5% for females more than 10 years old,
40% for males more than 10 years old) was used.

Abbreviations: PICU = paediatric intensive care unit, HCT = haematocrit, PLT = platelet count.

Table 5.2 describes candidate predictors measured at the time of enrolment into the
cohort. These predictors included the presence of WHO warning signs (World Health Or-
ganization, 2009; Alexander et al., 2011) and other clinical signs and symptoms that were
identified as risk factors of severe dengue in previoﬁs studies (Huy et al., 2013a). Serotype
and immune status were only included in univariate analyses but not in the multivariable
analysis as‘ they were missing in a large number of participants and in general they would

not be available to the treating physician in clinical practice.
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Table 5.2. List of candidate predictors.

Predictor Unit or possible values Type

Age Year Continuous
Gender Female/Male Binary
Weight Kg Continuous
Day of illness Day of illness at enrolment Continuous
History of tiredness Yes/No Binary
History of vomiting Yes/No Binary
Tourniquet test Negative/Equivocal/Positive Categorical
Temperature Body temperature [°C] measured in the axilla Continuous
Pulse rate Beats per minute Continuous
Systolic blood pressure mmHg Continuous
Mucosal bleeding Yes/No Binary
Abdominal pain Yes/No Binary
Palpable liver Yes/No Binary
Haematocrit Haematocrit value [%)] Continuous
Platelet count Platelet count [cells per mm3] Continuous

5.2.3 Statistical analysis

As described in detail in Chapter 2, logistic regression was the statistical model of choice
for all univariate and multivariable analyses. All candidate predictors were included in
both univariate and multivariable analyses. The univariate analysis was based on the
complete-case dataset, whereas I used multiple imputation for the multivariable analyses.

Details regarding the calculation of multivariable analyses and the chosen strategy for
the development of the prognostic model for DSS are described in Chapter 2. Linearity
assessment was performed for all continuous variables. Furthermore, I tested for possible
interactions between gender and day of illness at enrolment, gender and all other covari-
ates, and day of illness with all other covariates. Regarding model validation, I used a)
10-times 10-fold cross-validation and b) temporal validation, where the original dataset
was split into a training set including 1663 patients enrolled before 2008, and a test set
including 638 patients enrolled from 2008 onwards. For multiple imputation analysis, I
followed current recommendations on how to perform these analyses on multiple impu-

tation datasets (White et al., 2011) as detailed in Chapter 2 (Sections 2.2.3).
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5.3 Results

5.3.1 General description

Children hospitalized with
clinical dengue infection
(n=3044)

Excluded (n = 446)

- Not enough information (n = 2)

- Not dengue (n = 213)

- Unknown serology and PCR result (n = 215)
- Shock occurred on day of enroiment (n = 16)

4

Children with
confirmed dengue infection
(n = 2598)

Excluded (n = 297)
- Day of iliness at enrolment was missing (n = 1)
- Being enrolied after day 4 of illness (n = 296)

Analysis population
(n=2301) -

Figure 5.1. Flow-chart of the analysis for DSS developmeht.

A total of 3044 children were enrolled into the MD cohort and 2598 of them had a
laboratory confirmed dengue diagnosis. Amongst these, 2301 patients were enrolled on

day 4 of illness or earlier and formed the primary analysis population (Figure 5.1).

Baseline characteristics

Characteristics of study participants.at enrolment are summarized in Table 5.3. There
were more males than females enrolled in this study and the median age was 12 years
- (IQR 10-13 years, range 5-16 years). Almost all patients were admitted to the Hospital
for Tropical Diseases (HTD) within the first 4 days of illness (2411/2598, 94%). Most
patients were then enrolled into the study within two days from hbspital admission (67%
on admission, 26% after 1 day, 6% after 2 days). The delay in enrolment of patient into
the study may be explained by the fact that most study doctors were also treating doctors
at the wérd and extremely busy, especially during the dengue season. Another explanation

is the fact that 206 (24% of 852 patients who were enrolled late) patients were admitted
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on Satﬁrday and Sunday, and therefore be enrolled one or two days later as study patients
were only enrolled on weekdays.

As expected, most patients still had fever at enrolment (96% patients had body tem-
perature > 38°C). In general, haemodynamic parameters including pulse rate and systolic
BP were still within the normal range. There was one case with a éystolic BP of 199
mmHg; however, this high blood pressure may not be attributable to dengue infection as
the patient also had an underlying congenital heart disease.

At the time of enrolment, platelet values were quite low, whereas haematocrit values
were slightly higher than the normal range. In patients whose follow-up platielet count
after 14 days of illness was available, the platelet counts at enrolment were decreased by
a median of 59% (IQR, 43% - 69%) compare to follow-up values; whereas, the level of
haemoconcentration at enrolment was minimal (median 3%; IQR -3% to 10%).

Most cases were infected with DENV-1 and DENV-2. Amongst cases whose serology

status could be determmed many (79%, 1601/2030) were secondary infections.
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Table 5.3. Characteristics ofparticipants at study enrolment.

Characteristics

Age [years]
Gender: Female
Weight [kg]
Day of illness at enrolment
-1

-2

-3

-4

-5

-6

-7

Days from

admission to enrolment

History of headache: Yes
History of muscle pain: Yes
History of tiredness: Yes
History of diarrhea: Yes
History of cough: Yes
History of vomiting: Yes
Temperature [°C]
Temperature > 38°C
Tourniquet test

- Negative

- Equivocal

- Positive

Pulse [per min]

Systolic BP [mmHg]
Bleeding

- None

- Skin only

- Mucosal

Abdominal pain: Yes

Patients with dengue
(n = 2598)

n
2597
2598
2592
2597

2596

2597
2586
2594
2591
2594
2591
2596
2596
2582

2593
2595
2537

2586

Summary statistics

12
1068
35.0

12
351
908

1030
286

1746
682
143

23

1853
584
2201
238
398
940
39.0
2492

1279
532
771
100

90

1759
578
200
556

106

(10-13)
(41)
(27.0-42.0)
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(30)
(100-120)
(90-100)
(69)

(23)

(8)

(22)

Patients with dengue
before day 5 (n = 2301)
Summary statistics

n
2300
2301
2296
2301

2299

2301
2290
2298
2295
2298
2295
2299
2299
2289

2297
2298
2244

2291

12
939
34.5

12
351
908

1030

1564
603
117

15

1627
507
1936
196
351
832
39.0
2210

1164
458
667
100

93

1615
471
158
465

(10-13)
(41)
(27.0-42.0)



Chapter 5. Prognostic models for DSS in hospitalized children with dengue

Palpable liver: Yes
Liver size below

the costal margin [cm]
HCT [%]
Haemoconcentration [%]a
PLT [1000 cells/mm 3]
PLT change [%]b
Serotype

- DENV-1

- DENV-2

- DENV-3

- DENV-+4

- Mixed

- Negative

Immune status

- Primary

- Possible primary

- Secondary

- Unclassifiable

2575
256

2554
2553
2553
1009
2430

2567

256
1

39.6
2.6
129

-58.6

1116
583
219
176
9
327

141
288
1601
537

(10)
(1-2)

(37.3-42.1)
(-3.1-9.7)
(92-174)
(-69.6- -43.4)

(46)
(24)
)
(7)
«1)
(13)

)

(1)
(62)
2D

2279
217

2259
2258
2258

894
2152

2271

217
1

39.5
2.0
134

-56.7

956
553
195
169

8
271

114
271
1419
467

(10)
(1-2)

(37.2-42.0)
(-3.3-9.0)
(97-178)
(-67.6- -41.9)

(44)
(26)
©)
(®)
«1l)
(13)

(&)

(12)
(63)
1)

Summary statistics are median (IQR)for continuous variables andfrequency (% )for categorical variables.

a Haemoconcentration was defined as the percentage change in the haematocrit value at enrolment com-

pared to normal haematocrit (follow-up value or early value or population value).

b Comparing tofollow-up value.

Abbreviations: IQR = interquartile range, HCT = haematocrit, PLT = platelet count, DENV = dengue

virus.

Clinical outcomes

During hospitalization, 200 cases (8%) were referred to the PICU for more intense mon-

itoring and management (Table 5.4). Among 2598 patients with dengue, 156 (6%) pa-

tients developed DSS (55/156 or 35% ofthem were females) and there was no systematic

time trend in the incidence of DSS over the study period (linear trend test: p value was

0.57). Even though DSS occurred on any day from day 3 to 8 of illness, the most critical

period was from day 4 to day 6 (90% of DSS cases). In most cases, DSS happened within

3 days from enrolment (94%).

New bleeding occurred in 42% of cases, but in only 11% of these cases (120/1071)

was the bleeding site mucosal. Among cases with mucosal bleeding, the most frequent

bleeding sites were nose (66/120) and gum (35/120), with less frequent sites being gas-
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trointestinal (16/120) and vaginal (5/120). Haemorrhage into the spinal cord occurred
in 1 case. '
~ The platelet nadir commonly occurred around day 6 with a median nadir value of
64,000 (IQR: 41,000-98,_000) célls/mm3. Many patienté also had their highést haema-
tocrit value on the same day with a median level of 44% (IQR 41%-47%) and a corre-
sponding median maximum haemoconcentration of 13% (IQR 6% — 22%). o

In general, the distributions ofbaéeline characteristics and clinical outcomes in cases

enrolled before day 5 were similar to those of all patients with dengue (Table 5.3 & 5.4).

Assessment of missing values

Amongst éases enrolled before day 5 of illnéss, 7% (171/2301) of participants had at least
one missing value in one or more candidate predictors. The number of missing values
per individual ranged from 0 to 6. HCT and PLT were the two most frequently missing
predictors with 2% missing values.

The absence .of several variables was found to be related to observed values of other
variables: Tourniquet test results tended to be more frequently missing in cases who did
not report tiredness, and the liver size below the costal margin was more often missing in
cases enrolled earlier and cases with lower HCT values at enrolment. |

As perforrﬁing a complete case analyses would require ignoring 7% of data, and the
MCAR assumption might be untenable in this situation, further multivaﬁable analyses
were based on imputed data sets using muitiple imputation. B ;

As described in detailed in Section 2.2.3 of Chapter 2, I created 20 imputed datasets
using the MICE algorithm. Plots of the mean and variance of the imputations per stream
bjr the iteration number suggested that the MICE algorithm had convérged, as the vari-
ance between imputation streams was no larger than the variance within each stream
without any observable trends. The imputed data were also reasonable as their values

and distributions were similar to observed data.
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Table 5.4. Clinical outcomes of study participants during hospitalization.

Characteristics

DSS: Yes

Day of illness at shock

-3

-4

-5

-6

-7

-8

Days from enrolment to shock

-5

Referred to PICU: Yes

Bleeding during hospitalization
-No

- Skin only

- Mucosal

- Other

Received IV fluid: Yes

Total volume of IV fluids [ml/kg]
- Patients without DSS

- Patients with DSS

Platelet nadir [1000 cells/mm3]
Day of platelet nadir

Maximum haematocrit [%]

Day of maximum haematocrit
Overall haemoconcentration [%]

Patients with dengue
(n = 2598)
Summary statistics

n
2598
156

156

2598
2583

2597
1850
1710

140
2569
2569
2573
2573
2572

156

33
70
38
11

75
49
23
8

1
200

1508
951
120

4

1859

20.8
129.1
64

6

44

6

13

(6)

(D
1)
(45)
24)
)
(M

(48)
31
(15)
©)
(M
®)

(38)
(37
©)

(<1
(72)

(14.3-33.3)
(98.8-164.5)
(41-98)
(5-7)
(41-47)
(5-6)

(6-22)

Patients with dengue
before day S (n = 2301)

n
2301
143

143

2301
2288

2300
1657
1528

129
2279
2279
2283
2283
2282

Summary statistics

143

33
70
28

65
46
23
8

1
179

1333
842
110

3

1664

21.7
129.1
65

6

44

5

13

(6)

(M
(23)

(49)
(20)
(6)
(M

(45)
(32)
(16)
Q)
Q)
®)

(58)
(37
(5)

«l)
(72)

(14.3-35.7)
(100.0-165.0)
(41-99)

(5-7)

(41-47)

(4-6)

(6-22)

Summary statistics are median (IQR) for continuous variables and frequency (%) for categorical variables. Total

volume ofIVfluids for patients with DSS includedfluid given after development of DSS.

Abbreviations: DSS = dengue shock syndrome, N = intravenous.
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5.3.2 Risk factors of DSS
Univariate analysis

In univariate analyses, significant risk factors for developing DSS were male gender, a his- .
tory of vomiting, higher temperature, abdominal pain, a palpable liver and lower platelet
counts (Table 5.5). Regarding immune status, no case with a definite primary depgl_le '
infection developed DSS whereas 84/1419 (6%) cases with definite secondary infections

progressed to DSS.
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Multivariable analysis

The linearity assessment suggested that linear terms were sufficient for all continuous
candidate predictors except that there was some indication of non-linearity for the effect
of age on the development of DSS, as displayed in Figure 5.2. However, the displayed
non-linearity for age was not strong and linearity tests mostiy did not reach statistical
significance. There was also no evidence of any interactions between gender or day of
illness with any other variables (Table 5.6). Thus, no non-linear terms or interactions

were added to the pre-defined multivariable model.

Table 5.6. Linearity and additivity tests in the pre-defined multivariable logistic regression

modelfor the development of DSS using complete-case and multiple imputation analyses.

Complete case analysis Multiple imputation

Deviance df p value p value
Linearity tests (compared to a quadratic function)
Age 3.94 1 0.05 0.06
Weight 0.88 1 0.35 0.37
Temperature 0.10 1 0.75 0.75
Pulse 0.35 1 0.56 0.52
Systolic BP 0.01 1 0.91 0.76
HCT 0.50 1 0.48 0.50
PLT 1.13 1 0.29 0.25
Linearity tests (compared to a natural cubic spline with 4 degrees of freedom)
Age 530 3 0.15 0.12
Weight 698 3 0.07 0.16
Temperature 512 3 0.16 0.14
Pulse 1.47 3 0.69 0.59
Systolic BP 3.17 3 0.37 0.55
HCT 218 3 0.54 0.64
PLT 290 3 0.41 0.39
Additivity assessment (interaction tests)
Gender vs. others 1239 15 0.65 0.80
Day of illness vs. others 13.82 15 0.54 0.30
Gender vs. age 0.01 1 0.91 0.87

Abbreviations: BP = blood pressure, HCT = haematocrit, PLT = platelet count.
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In the multivariable analysis using all pre-defined candidate predictors, identified risk
factors for developing DSS included male gender, enrolment at an earlier day of illness,
vomiting, higher temperature, a palpable liver, and a lower platelet count. This result
was consistent between the complete-case analysis and the analysis based on multiple
imputation (Table 5.7). In both univariate and multivariable analyses, there was evidence
of a protective effect of being female (Table 5.5 & 5.7). However, this effect no longer
reached statistical significance when I re-did the univariate and multivariable analyses on

all 2598 patients with dengue infection regardless of the day of enrolment (Table 5.10).

Table 5.7. Adjusted effect of candidate predictors on the development of DSS amongst cases enrolled
before day 5 ofillness in complete-case and multiple imputation analyses (n = 2301).

Covariate Complete-case analysis Multiple imputation analysis
OR 95% C1 pvalue OR 95% C1  p value
Age [+1 year] 0.92 (0.83, 1.01) 0.09 0.94 (0.85, 1.04) 0.22
Gender: Females 0.64 (0.43, 0.94) 0.02 0.65 (0.44, 0.94) 0.02
Weight [+1 kg] 1.00 (0.98, 1.02) 091 099 (0.97, 1.02) 0.61
Day of illness 0.67 (0.51, 0.88) <0.01 0.68 (0.52, 0.88) <0.01
History of tiredness: Yes 0.92  (0.56, 1.59) 0.76  0.88 (0.54, 1.43) 0.61
History of vomiting: Yes 2.17 (1.51, 3.14) <0.01 2.19 (1.53,3.13) <0.01
Tourniquet test 0.46 0.47
- Negative 1.00 1.00
- Equivocal 1.05 (0.64, 1.66) .11 (0.70, 1.76)
- Positive 0.78 (0.50, 1.21) 0.82  (0.54, 1.25)
Temperature [+1°C] 1.45 (1.10, 1.91) <0.01 1.39 (1.07, 1.82) 0.02
Pulse [+ 10 per min] 1.03  (0.85, 1.23) 0.79 1.03 (0.86, 1.23) 0.79
Systolic BP [+ 10 mmHg] 0.99 (0.77, 1.23) 0.90 1.01 (0.81, 1.25) 0.94
Mucosal bleeding: Yes 1.09 (0.52, 2.06) 0.81 1.17 (0.61, 2.25) 0.63
Abdominal pain: Yes 1.12 (0.69, 1.79) 0.63 1.05 (0.66, 1.67) 0.83
Palpable liver: Yes 1.74  (0.99, 2.98) 0.05 1.74 (1.02, 2.98) 0.04
HCT [+1 %] 1.02  (0.98, 1.07) 028 1.03 (0.98, 1.07) 0.23

PLT [+10,000 cells/mm3] 0.89 (0.85,0.92)  <0.01 0.89 (0.86,0.93)  <0.01

Abbreviations: BP = blood pressure, HCT = haematocrit, PLT = platelet count, OR = odds ratio, Cl =

confidence inter\>al.

5.3.3 Prediction models

Age, gender, day of illness, history of vomiting, temperature, palpable liver and platelet
count were retained in the logistic regression model with stepwise variable selection (Table

5.8). The same predictors and similar effect sizes were chosen by the complete-case and
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the multiple imputation analysis.

Table 5.8. Reduced model for the development of DSS with variable selection (complete-case and

multiple imputation).

Covariate Complete-case analysis Multiple imputation analysis

OR 95% C1 pvalue OR 95% C1  p value
Age [+1 year] 0.92 (0.85, 1.00) 0.04 093 (0.86, 1.01) 0.09
Gender: Female 0.63 (0.43, 0.92) 0.02 0.64 (0.44, 0.92) 0.02
Day of illness 0.68 (0.52, 0.90) <0.01 0.69 (0.53,0.89) 0.01
History of vomiting: Yes 2.19 (1.53, 3.16) <0.01 2.19 (1.54,3.11) <0.01
Temperature [+1°C] 1.43  (1.10, 1.86) <0.01 136 (1.05, 1.75) 0.02
Palpable liver: Yes 1.78 (1.08, 2.83) 0.02 1.76 (1.11, 2.80) 0.02

PLT [+10,000 cells/mm3] 0.89 (0.85,0.92) <0.01 0.89 (0.86,0.93)  <0.01

95% confidence intervals and p values do not take into account the uncertainty of model selection.

Abbreviations: PLT = platelet count, OR = odds ratio, Cl = confidence interval.

In both temporal and internal validation, CART was inferior whereas all the other
models had similar performance. The reduced logistic regression models with variable
selection performed comparably to the full logistic model, and there were no big differ-
ences in performance between models with and without gender as a covariate. In internal
validation, all models (except for CART) had moderate AUC and good calibration. How-
ever, there was an indication of over-fitting in temporal validation when discrimination of
all models was substantially lower and miscalibration was apparent for logistic regression
models. As the incidence of DSS between training and test sets were similar (91/1552
or 6% and 43/634 or 7% for training and test set, respectively), the poor model perfor-
mance in temporal validation may be explained by the relatively low effective sample size
in both the training and the test set which could have led to over-fitting and unstable coef-
ficient estimates in the training set and imprecise estimates of performance in the test set.
Another explanation could be the existence of interactions between some risk factors (for
example age, gender, or day of illness at enrolment) and time, which could be investigated
by appropriate interaction tests in the statistical model using data from all patients. The
results were similar between complete case and multiple imputation analyses (Table 5.9).

Applying the reduced logistic regression model (complete case analysis, including gen-
der as a covariate) on the original dataset yielded a skewed distribution of subject-specific

predicted risks (median 0.045, IQR 0.026 - 0.079). Figure 5.3 displays the number of
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true positive and false positive cases depending on the chosen risk threshold for classify-
ing subjects as likely to progress to DSS or not. For a low risk threshold, the number of
false positive cases is quite high. For example, at a risk threshold of 5%, 108/134 (81%) of
cases with DSS would be correctly classified; however, the number of false positive cases
would be eight times higher (894 cases). For a higher risk threshold, the number of false
positive cases is decreased at the cost of missing true positive cases. For example, at a risk
threshold of 20%, there are only 46 false positive cases but only 17/134 (13%) of cases
with DSS would be detected by the model.

As the relatively low incidence of DSS and the moderate performance ofthe prediction
model jointly indicate that the presented prediction model is of limited clinical useful-

ness, I decided not to simplify the model for clinical use, e.g. to create a score chart or

nomogram.
Quantity
—a True positive
False positive
0.00 0.05 0.10 0.20 0.30 0.40 0.50

Risk threshold

Figure 5.3. The number of true positive and false positive cases when the reduced logistic regression
model (including gender and based on complete-case analysis) is applied on the original dataset us-
ing different risk thresholds for classification. Rugs at the bottom correspond to the distribution of
predicted risks. The two vertical lines correspond to risk thresholds of 5% and 20%.
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Table 5.9. Performance  different prediction models for development DS based a1 complete-case and multiple imputation analysis.

80 og

th

—
L4

bo

—<g

SIS

T wmpos v

°3
°®

© 0%

les]
o=

Chapter 5.

Lo
to

° 88
o go o <

co
to

g o0=g]
= 8@

ISR

R
-

o5

o052, 0«

v

sO
LO

co
1

°IQ

090 OC%

ot

LO
co

co

°0 >

IZ

Lo
Os

Prognostic models for DSS in hospitalized children

Lo
tv

Os
CN

o
LO

&

CN
LO

v
LO

[0}

CN
Lo

so
CN

-1

Os
CN

a

5
L

=99 © 28

co

00

s3
-a

3

Kle]

o o

Lo

o

SO Os
o to

1%
e} OO
<0

0

©°3
o 2°

- og
- 25

to o

o v 9
o009 ©

o
@

@17
A ng

Lo v

LO
co

g

10 4+

So e

g

117

W o x 6B o

to LO
0 so
d 0
V to
0 Lo
0 d
to G-
0 tq
0 0
to LO
o to
0 0
to Co
0 to
0 0
to CN
0 to
0 0
to LO
0 to
0 0
g
to
(OJN0)
?
i
.S
m <

CN
tv

Lo"

tv
LO

52 <

2

= 88

©oBg ©
cor o

SO
N

1
(€]

co
co

22 OCF

»
OO: OOGZ

°g5 © 58

co
to

1

&ET

I
co

co
LO

co
tv

o
LO

o Q2

o
LO

= B8

Os
1

v
N

© 35

CN

co

tv
rH

9

SO
o

-
S og

Qo3

o oo
=}

o °3

to

with dengue

g8

(=]

co
SO

Os
to

v

Os
SO

=

112

odl U e

ooy

Nelel

iv
tv

00

T-1

I
oS

G"
co

=

Moo & —— Bib3 S kb

5 =0

Re
g'w&?mo

£

& <o

s ol runU3GR

>
<

2|

&

g S N+

¥

TR gl ince v

3> o9 ©>r

&7]

4

a w.',l)gml-
s galroidoe B

172G Ycole)

§0$
S
s
f I
@ -S3
Ry
% &
2

Y ¢

& va %
U s goll 2~



Chapter 5. Prognostic models for DSS in hospitalized children with dengue

5.4 Discussion

This chapter identified male gender, enrolment at an earlier day of illness, a history of
vomiting, higher tempefature, a palpable liver, and lower platelet counts at enrolment as
- risk factors for DSS amdngst children hospitalized with dengue infection. Based on these
identified factors, I déveloped prediction models for DSS with moderate performance but
rather limited -clinica] usefulness.

The incidence of DSS in this study (6%) was lower cofnpared to previous studies (An-
ders et al., 2011; Alexander et al., 2011; Giraldo et al., 2011; Gupta et al., 2011; Chuan-
sumrit et al., 2010; Mena Lora et al., 2014) where this number varied from 10% to 20%.
This could be because this cohort aimed to include pafient who were hospitalized early
(within 3-4 days of illness) whereas other studies‘assessed a more general population of
pétients hospitalized with dengue. Another explanation is the fact that patients who were
very sick at hospital admission would not have been included in this study, as they are
- referred directly to the PICU rather than the general hospital ward where this study took
place. ' ‘

In agreement with the current literature, thrombocytopehia and clinical warning signs
including vomiting énd a palpable liver were idéntiﬁed as predictors of DSS in this analysis
(World Health Organization, 2009; Huy et al., 2013b). In addition, higher temperature at _

- enrolment was also independently associated with an elevated risk of DSS, which might
- be explained by fhe positive correlation between temperature and viral load (Tsai et al.,
2013; Vaughn et al., 1997). | ’ .

.In this study, there was 114/2271 (5%) cases classified as primary dengue and none of
them developed DSS later; whereas 45/271 (17%) of possible prirhary cases and 84/ 1419
(6%) of secondary cases developed DSS. However, this result should be interpreted with
caution because the immune status classification was based only on IgG result and was
expected to be imprecise in detecting secondary infection (Section 2.1.3 of Chapter 2). In
an attempt to verify the classification used in this study, I also assessed immune status of
participants using a new classiﬁcat-ion algorithm has been developing in our unit, which
based on IgM/IgG ratio and allows cut-off value to véry over time. Amongst 628 cases -

whose immune status can be determined using both method, most cases with primary
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(32/42, 76%) and possible primary infection (67/96, 70%) in the current system were
also classified as primary in the new system; however, only 55% (162/297) secondary
cases in the current system were classified as secondary in the new systeni.

Enrolment at én earlier day of illness was associated with a significantly higher risk
of DSS in multivariable but not univariate analyses. However, this could be an artifact
attributable to the adjustment for other clinical signs and symptoms at enrolment, espe-
cially platelet count, in the multivariable analysis. By adjusting for platelet count, the
reported odds ratio corresponds to the comparison of two sﬁbjects who were enrolled on
two consecutive days of illness but had the same platelet count on their respective days of
enrolment. As platelet count is known to decrease over time during dengue illness (Dinh
The et al., 2012), the subject enrolled earlier would have a lower platelét count relative to
their day of enrolment and, as platelet count is strongly invérsely associated with thé risk
of DSS development, this might explain the reported effect.

In this study, there was a significant relationship between male gendef iﬁand‘a higher
risk of developing DSS, which is in contradiction to evidence from previous epidemiologic -
studies (Huy et al., 2013b). However, this »association was only significant in the primary
study population of patients enrolled before day 5 of illness but not in all engglled patients
with confirmed dengue. Of note, in the DF cohort, females were more likely to be admitted
on the day of DSS than males (% of cases admitted on the day of DSS were 49% for females
and 41% for males, Chi-squared test p value was <0.01). As “severe” cases, who might
develop DSS shortly after hospital admission, were underrepresented in the MD study,
“severe” females might also be underrepresented which could explain our results. Further
research is required to shed light on the role of gender in dengue infection.

Amongst all developed prediction models in this analysis, the reduced logistic regres-
éion model based on the full logistic regression model with all pre-defined candidate pre-
dictors and stepwise variable selection was the model with the best trade-off between
transparency/simplicity and accuracy. Unfortunately, the clinical usefulness of this model
nevertheless appears to be rather limited even though it achieved a moderate performance
in both temporal and internal validation. To be useful in clinical practice, a prediction
model would need to be able to correctly identify most subjects who subsequently develop

DSS. However, as illustrated in Figure 5.3, this would mandate a very low risk threshold
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which would imply that the number of true positives would be swamped by the much
larger number of false positives.

As the current model was carefully developed based on a relatively large sample size,
the limited usefulness of the derived prognostic models could indicate that readily avail-
able baseline characteristics and warning signs are in general insufficient for reliable pre-
diction of DSS in hospitalized patients. Novel markers with higher predictive value might
be required in order to achieve a better prediction model. However, to identify novel
predictors, which are not routinely collected currently, and implement them in clinical
practice might require a lot of time and effort. An alternative approach would be to try to
incorporate longitudinal information of risk factors, which are often already available in

clinical practice. This is examined in the next chapter.

5.5 Appendix

Table 5.10. Unadjusted and adjusted effect of candidate predictors on the development of DSS
amongst all patients with dengue (complete-case analysis amongst n=2598 subjects amongst
which n=2186 had complete data).

Covariate Complete-case analysis Multiple imputation analysis
OR 95% Cl pvalue OR 95% C1  p value
Age [+1 year] 0.97 (0.90, 1.04) 0.34 091 (0.83, 1.01) 0.07
Gender: Female 0.77 (0.55, 1.07) 0.12 0.73 (0.51, 1.05) 0.09
Weight [+1 kg] 0.99 (0.98, 1.01) 0.34 1.00 (0.98, 1.02) 0.98
Day of illness 0.89 (0.74, 1.07) 021 0.65 (0.52, 0.81) <0.01
History of tiredness: Yes 0.93 (0.61, 1.48) 0.76  0.87 (0.54, 1.46) 0.58
History of vomiting: Yes 2.34  (1.69, 3.26) <0.01 2.17 (1.53,3.09) <0.01
Tourniquet test 0.89 0.58
- Negative 1.00 1.00
- Equivocal 1.09 (0.71, 1.65) 1.03  (0.65, 1.60)
- Positive 1.07 (0.73, 1.56) 0.82 (0.54, 1.24)
Temperature [+1°C] 1.35 (1.06, 1.71) 0.01 145 (1.11, 1.88) <0.01
Pulse [+10 per min] 1.08 (0.92, 1.26) 035 1.02 (0.85, 1.21) 0.86
Systolic BP [+10 mmHg] 1.03  (0.83, 1.24) 0.79 1.01 (0.80, 1.24) 0.94
Mucosal bleeding: Yes 1.10  (0.58, 1.91) 0.75 093 (0.47, 1.70) 0.82
Abdominal pain: Yes 1.70  (1.18, 2.40) <0.01 120 (0.76, 1.85) 0.43
Palpable liver: Yes 242 (1.57,3.62) <0.01 1.70 (1.00, 2.83) 0.05
HCT[+1 %] 1.02  (0.98, 1.06) 024 1.02 (0.98, 1.07) 0.32

PLT [+10000 cells/mm3] 0.92 (0.89, 0.95) <0.01 0.89 (0.85,0.92) <0.01
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Chapter 6

Dynamic prognostic models in acute

diseases

Summary

This chapter provides an overview of current approaches to developing and assessing dy-
namic prediction models. Differences between acute and chronic disease settings and
their implications for statistical modelling are discussed. The chapter.concludes with a
case study which describes and compares severél dynamic prediction méjdels for the de-

velopment of DSS in hospitalized dengue patients.
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6.1 Introduction to dynamic prognostic models

As discussed in Chai)ter 1 (Section 1.3.1), dynamic prediction models allow predicting the
future course of the disease at follow-up time points based on the updated longitudinal
informatibn. In many settings, such models provide more accurate predictions compared
to baseline models (Lemeshow et al., 1988; Christensen et al., 1993; Hughes et al., 1992;
.Rué et al., 2001; Karp et al., 2004). Dynamic prediction may also be appealing for clini-
cians as it mimics the iteration of obtaining information and updating prognosis based on

this new information, a task that physicians routinely do every day in clinical practice.

6.2 Modelling approaches to dynamic prediction models

A naive strategy to obtain a dynamic prediction is to apply a baseline model sequentially
over time by simply plugging in the time-updated covariate values. Even though this
strategy might work better than a traidiﬁonal baseline model in some settings of chronic
diseases '(Kar‘p et ai., 2004), it is conceptually inappropriate as baseline models should
only be used to provide predictions for future patienté from the same time origin as that
used in the model development (Hughes et al!, 1992). |
Let Y (u) denote the event status of the outcome of interest at time u, i.e. Y (u) = 1 if
the outcome occurred at or before time  and Y(u)=0 othérwise, and let Z(t) denote the
value of the time-varying predictor variables at time ¢. Then the goal of dynamic prediction
modelling, which is to predict the conditional probability of the event occurrence of YV
up to a future time point u depending on the patient history Z up to the current time
point ¢, can be written as m(u|t) = P(Y(u) = 1|Z(s) for s < ¢t and Y(¢) = 0) (Van
Houwelingen and Putter, 2012). I wﬂl schematically denote this conditional probability
by [Y'|Z]. Fundamentally, there are two ways to obtain this c'onditional probability: eithef
one can model the conditional probability ditectly, or one can model the joint probability
[Y, Z] first apd then get the quantity of ipterest from the joint model, i.e. [Y|Z] = ——[7]—
_In the conditional approach, one can base the conditional probability of interest 7(u|t) on
either (1) the complete history of the time-dependent covariates up to the current time
“t,or (2) a subéet or some aspects of the history of time-dependent covariates up to time

t. Even though approach (1) is often desired, approach (2) is easier to conduct and, if
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the relevant aspects of the history of time-dependent covariates up to time ¢ are chosen

carefully, usually adequate (Pepe and Conper, 1997; Diggle et al., 2002).

6.2.1 Conditioning on the complete underlying hisfory of the longitudinal

process

One model that falls in this category is the Cox proportional hazards regression model
with time-dependent covariates (Cox, 1972) that models the hazard rate of an event at

time ¢, A(t), as follows:

| g(t|Z,~(t)) = Ao(t) exp (B1W; + ﬁzZi(t))

where Ag(t) is the baseline hazard at ﬁme t, W; are the time-fixed covariates of subject
i, Zi(t) denotes the longitudinal time-dependent covariate values of subject 7 at time ¢
(which can also include all observed past values, lagged values, or changes of the lonéimf
dinal process); and f1, 3, are the corresponding vectors of regression coefficients.

For parameter estimation, values of Z; at all observed event times are required (Collett,
2003). As these values might not be available in practice where longitudinal variables arei
only collected at discrete time points, they have to be imputed, for example by usmg
the “last observation carried forward” method or linear interpolau'bn between consecnéive
observed values (Collett, 2003). Moreover, as only longitudinal values at observed event
times afe used in the model estimation stage, this approach discards a lot of information
(Altman and De Stavola, 1994), especially when the frequency of events is low.

Based on this model, the dynamic prediction for the event status at the future time u
given the current history at time ¢ of subject i can be approximated by the probability of

having an event at time u given that the subject is event-free at time t, which is defined as

Pr(¥i(u) = 1[Yi(t) = 0, Wi, Zi(0),...., Zi(t) = 1 -

where S;(t) is the survival function of subject i at time t.
As survival function in time-dependent Cox proportional hazards regression model
depends on all values of time-dependent covariates from baseline to the time point of

interest, the right hand side of the above equation depends on future values of Z; from
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time ¢ to time u, which are not available at time ¢. Therefore, dynamic prediction at a
specific time point depends not oﬁly on the entire longitudinal coizarjate proﬁle up to th¢
current time #, but also on fhe future unobserved evolution of the longitudinal process
.up to time w. Dynamic predictions must thus rely on aséumptions regarding the futufe
development of the longitudinal markers, for example that they remain constant (Altrhaﬁ
and De Stavola, 1994). This also leads to a cdnceptual difficulty when applying this type of
model with internal time-dependent covariates, especially when the event is death, as the
existence of a covariate value is contingent upon the survival of the paﬁent up to that time
poiht (Fisher and.Lifl, 1999). While these are major issues, time-dependent Cox regression
models are also easy to fit in standard statistical software, for example using the coxph
bfunction in the R library survival, and have been applied to develop dynamic prediction
models in various séttings (Christensen et al., 1993; Karp et al., 2004; Hartmann et al., -

2012).

6.2.2 Conditioning on some aspects of the history of the longitudinal pro-

Cess

' In this approach, certain aspects of the history of the longitudinal process which are“con-
sidered most relevant to outcome prediction, for example all observed past valﬁes, the
current value, previous values or the change in these values, are used to obtained dynamic
predictions. Each of these aspects could be modelled using either the person-interval or

the partly conditional modelling approach outlined below.

Person-interval approach

In this approach, the follow-up time of eaéh Iparticipant is split into intervals and' then
information regarding covariate values at or before the inteﬁal, and outcome occurrence
during each interval are used for parameter esﬁmaﬁon. Different models have been pro-
posed depending on how person-intervals are defined. One splitting strategy is to divide
individual follow-up times into short, distinct intervals of équal length (Wu and Ware,
1979; Cupples et al., 1988; Ruttimann and Pollack, 1991; Hughes et al., 1992). Start-
ing points of the interval can be defined either as times when repeated measurements

are recordéd (Wu and Ware, 1979; Cupples et al., 1988; Ruttimann and Pollack, 1991;
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Hughes et al., 1992) or as consecutive starting points at equal distance according to the
pre-defined ihterval 1ehgth (Hughes et al., 1992). Another splitting strategy is to divide
individual follow-up time into intervals of equal length that start at a pre-defined time
point, landmark time ¢1,57, and stop at t1,5s +w where w is the pre-defined window of pre-
diction (Van Houwelingen and Putter, 2012). In this landmarking approach, the derived
intervals from the same individual may be distinct or may overlap, depending on whether
the prediction window is smaller or larger than the gap between landmark points. Another
splitting strategy which might result in interVals of variable length is to define the inter-
vals to start at measurement time points and to end at the next consecutive measurement
time points (Murtaugh et al., 1994). A simple illustration of these splitting strategies is
presented in Figure 6.1. When biomarker values are measured at regular time points and
the length of the interval is set equal to the gap between consecutive measurement points, -
all of these splitting strategies lead to the same intervals. |

‘Given the interval, logistic regression or Cox regression models can be used to model
the outcome of interest within that interval conditional on past covariate values. In prin-
ciple, the relationship between covariates and outcome can vary across different intervals,
and one can also use all observed longitudinal values up to the currént interval resulting

in a very general model as proposed by Wu and Ware (1979): e

. t .
logit {Pr(Yis = 1|Wi, Zi )} = B + BOW: + Y p89 2,5
; 2

where Y;; is the outcome of subject ¢ during interval ¢, W; are fixed time-independent
covariates, Z; ; is the observed value of repeated measurement of subject 7 at the beginning
of interval ¢ , Ziy is the collection of all repeated measurements Z; ; of subject ¢ until time
t (j <), and By, f1, B2 are the corresponding regression coefficients.

In this model, two assumptions are made: (1) both current measurements and earlier
measurements of potential risk factors contribute to the overall linear predictor of the risk
- score in an additive way and (2) the same intervéls are selected for each participant, which
essentially requires that all patients be assessed at the same time points. This approach
uses all observed repeated measurements but does not require rich longitudinal data.

However, two main drawbacks of this apprbach are that it (1) involves a large number of
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Figure 6.1. Hlustration of different strategies to define intervals in person-interval and partly con-
ditional modelling approaches. Red dots correspond to time points when repeated measurements are
recorded; the black dot corresponds to the time when the event occurs.

parameters, which might be difficult to estimate with a limited sample size, and that it
(2) provides different logistic models with different numbers of parameters for each time
point of assessment.

Additional assﬁmptions aré required to reduce the number of parameters in the ap-
proach described above, for example one can assume regression coefficients to be the
same in all intervals (Ruttimann and Pollack, 1991) or time-varying according to sim-
ple linear functions only (Wu and Ware, 1979). Ruttimann and Pollack (1991) further
reduced the number of parameters by applying likelihood ratio tests in a stepwise back-
wards procedure. By assuming that the relationship between covariates and outcome is

independent of the time intefval, data from all intervals can be pooled together as if the

126



Chapter 6. Dynamic prognostic models in acute diseases

~ information recorded in each interval is new observation (Cupples ét al., 1988; Hughes
et al., 1992; Murtaugh et al., 1994). Further assuming that only the current values of
the longitudinal markers are relevant to outcome pfediction results in a very simple and
straightforward model which is just a standard logistic fegression or Cox regression model

applied to this pooled dataset

logit {Pr(Yis = 1|Wi, Zit)} = Bo + BiWi + BaZis
AMu|Ws, Z; 1) = Ao(u) exp {B1W; + B2Z;iz}

_A clear strength of this approach is that it is both easy to interpret and “dynamic”: it
is easy because it uses the same model at each time point and the dynamic updating can
easily be implemented by plugging the current values of the risk factors into the model.
However, its assumptions may be implausible in the setting of rapidly progressive diseases
or if the prediction intervals are long.

A more recent approach in this category is the landmarking method, which propbses
to fit standard models to individuals still at risk at the landmark time point ¢z, and ap-
plies administrative censoring at the time horizon ¢75s + w (Van Houwelingen and Putter,
2012). Specifically, the main idea is to fit a standard Cox model to a big dataset that stacks
all at-risk datasets from each landmark point. Based on this, we can get an approkimate
risk prediction for an individual at a certain time horizon u = t1j + w given their risk
factors at landmark point ¢13s. This landmarking approach is somewhat similar to the
above approaches except that it allows baseline hazards and/or regression coefficients to
depend on the landmark point by fitting separate models for different landmark points.
The approach uses either a Cox model stratified by the landmark points (if different base-
line hazards for each landmark point are desired) or an analysis involving delayed entry
(if a common baseline hazard is desired). Furthermore, as the person-intervals in the
landmarking approach can be overlapping, naive standard error of estimated regression

“coefficients will be too narrow, and therefore, they have to be corrected, for example by
using sandwich estimators of the covariance matrix (Van Houwelingen and Putter, 2012).

Obtaining dynamic predictions from all of the above models is relatively straightfor-

ward. Specifically, they can be obtained by either plugging-in estimated param‘eters and

individual covariate information into the logistic model, or by using the formula
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_ Siw)
S@ |

=1-—exp {f /t" Ao(s) exp(B1W; + ﬁ2Zi,t)d5}

mi(ut) =1

=1-exp{- exp(BiWi + B2Zit)(Ho(u) — Ho(t))}

where Hg (t) is the cumulative hazard ‘function at time ¢ for a Cox model.

As these models, except for landmarking, involve splitting the follow-up time into
relative short periods, these models might only be appropriate for short-term prediction
within fhe pre-defined interval and extrapolation beyond that intérval can lead to mislead-
ing results (Hughes et al., 1992). In the landmarking approach, short-term or long-term
prediction can be obtained by édjusting‘ the prediction 'window.. Several dynamic models
using this person-interval approach have been derived and claimed to perform better than
baseline prediction models (Ruttimann and Pollack, 1991; Hughes et al., 1992; Murtaugh
" et al., 1994). As an example, the updated natural history prediction model for primary
biliary cirrhosis was developed based on this approach (Murtaugh et al., 1994) and is

available as an online tool for use in clinical practice (Mayo Clinic, 2015).

Partly conditional models approach

Unlike the person-interval approach, partly conditional models always involve splitting
follow-up time ihto overlapping intervals which stért at each repeated measurement point
and last till the end of the follow-up time (Figure 6.1). In addition, partly conditional‘ A
survival models as propoéed by Zheng and Heagerty (Zheng and Heagerty, 2005) also
require to reset the time clock to zero at the beginning of each interval.

Similar to the person-interval approach, logistic regression or Cox regression models
can be used to model the outcome of interest in each interval. However, as described in
(Pepe et al., 1999), the main feature of this approach is that it allows model parameters

to depend on both the timing of the desired prediction and the timing of the predictoré:

logit {Pr(Yi(u) = 1|Yi(t) = 0, Wi, Z; 1)} = Bo(u, t) + Bu(u, )W; + Ba(u, ) Zi

it (u|Ws, Zi ) = Ao(u,t) exp (B1(u, t)Wi + Ba(u, t) Zi )
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~Of note, the time-varying regression coefficients can be assumed to follow some smooth
parametric functions, such as fegression splines, which may involve both » and ¢. Fur-
thermore, as intervals from the same individual are overlapping, correction for standard
errors of the regression coefficients is required, preferably by using generalized estimating
equation with an independence working correlation structure. As in the person-interval
approach, the most general model in this setting is to fit totally different models at each
time point t of measurement (Wagner et al., 1994; Rué et al., 2001). Further assump-
tions are required to simplify the model, for example, it is often sensible to only allow the
intércept to depend on the time of the measurement (Lemeshow et al., 1994).
Dynamic prediction in this approach can be obtained in the same manner as in the
person-interval approach. However, as the intervals are not restricted within a short pre-

defined period, long-term prediction is possible for all models in this appfoach.

6.2.3 Approaches based on joint models

Even though the conditional modelling approaches described in the Sections 6.2.1 and
6.2.2 are easily interpretable and can be relatively easily implemented with standard sta-
tistical software, they rely only'on observed values of the longitudinal process, ,‘yv‘hich
-ignores the potential effect of measurement error, and they do not model the longitudinal
data explicitly. Thus, it is not possible to formulate directly an association between the
outcome and an underlying characteristic of the patient’s entire covariate profile such as a
constant slope of decline. Fortunately, these shortcomings can be resolved within the joint
modelling framework. Joint models of a time-to-event or binary outcomes and longifudi-
nal data have received a lot of attention in the statistical literature during the last years.
~ The main purpose of this approach is to model the joint distribution of the outcome and
the longitudinal data simultaneously (Verbeke and Davidian, 2008).

Essentially, joint modelling approaches use classical longitudinal models for the longi-
tudinal data and logistic regression or survival analysis for the outcome but rather than
being separate models, the two models are linked. In principle, the model for the out-
corﬁe and the model for the longitudinal data can be linked in three different ways: (1)
using observed values of the longitudinal process as covariates in the model for thé out-

come, (2) a two-stage approach in which first a longitudinal model is fitted (ignoring

129



Chapter 6. Dynamic prognostic models in acute diseases

the potential informative censoring induced by the oﬁtcorne model) and then fitted val-
‘ues from that longitudinal model are used as covariates in the main outcome model, 3)
using a shared latent structure for the two sub-models (Lawrence Goﬁld et al.,, 2014).
Even though the ﬁrét two approaches are easy to implement with standard statistical soﬁ-
ware, they are somewhat ad-hoc and thus might produce biased results (Sweeting and
Thompsoil, 2011). In contrast, ,thé third approach specifies a proper probability model for
the joint distribution of observed 1ongitudina1 and outcome data and is thus amenable to
" established statistical estimation methods such as maximum likelihood estirhation. There-
fore; most of the current research in this field focuses on this third approach, where the
sﬁared latent structure that links the main outcome model and the longitudinal processes
model is either deﬁned via shared random effeéts (shared random-effect models, SREM,
(Wulfsohn and Tsiatis, 1997)) of via a lateht class membership (joint latent class model,
JLCM, (Proust-Lima and Taylor, 2009)).

In both SREM and JLCM approaches, -the frequently used submodels for fhe longitudi-
nal data ahd the main outcome, respectively, are the linear mixed effects model and the
Cox proportional hazards model (for time-to-event outcomes) or logistic regression (for
binary outcomes). Both approaches require the longitudinal and the outcome processes to
be independent conditional on either the shared random effects (in SREM) or the latent
class structure (in JLCM). JLCMs require a heterogeneous population of subjects that can
be classified into multiple classes with different average longitudinal profiles and risks of
outcome, while they do not rely on any specific assumptions regafding the relationship be-
tween the risk of the outcome and the longitﬁdinal data in the model for the main outcome
(Proust-Lima et al., 2014). In contrast, SREMs require assumptions regarding the effect of
longitudinal data on the risk of the main outcome in the model for the main outcome. As
the number of observed longitudinal measurements per individual decrease, parameter
estimation in SREM becomes more sensitive to the assurﬁptions regarding the distribu-
tion of the random effect (Rizopoulos et al., 2008); however, sparsity of longitudinal data
might also a problem for the JLCM. |

Parameters iﬁ both SREM and JLCM can be estimated ﬁsing maximum likelihood esti-
mation (Rizopoulos, 2012; Proust-Lima and Taylor, 2009). Methods for parameter estima-

tion in shared random-effects joint models include approximate methods and likelihood-
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based approaches using the EM algorithm (Tsiatis and Davidian, 2004). The more precise
likelihood-based approaches are computationally intensive. Likelihood estimation for joint
latent class models is more tractable because a closed-form of the (mixture) log-likehood
can be derived and the parameters of interest can be estimated using standard maxi-
mum likelihood procedures (Proust-Lima and Téylor, 2009). Nevertheless, care must be
taken as the likelihood function frequently has multiple maxima. Moreover, the model
requires at least a verification of the latent class assumption. Parameters in SREM can
also be estimated using a Bayesian approach (Faucett and Thomas, 1996). Within the
Bayesian framework, computational implementation might be easier without the neces-
sity of asymptotic approximations, and in situation where joint models are very complex
and frequentist methods are infeasible, Bayesian approaches could provide a practical
approach to solving the problem (Lawrence Gould et al., 2014).

A main advantage of joint models is that they model the joint distribution of longimdi-
nal risk factor and outcomes efficiently and eliminate measurement error while prd@iding
valid inference. In both approaches, dynamic predictions can be obtained in the same
way (Proust-Lima et al., 2014) and, in case of a survival model for the main outcome, the

prediction is given by the following formulas:

G
n(ult) =Y Pr(T; < ulT; > t,¢; = g, Wi; 0)Pr(c; = g|T; > t, Zi(t), Wi; 6)
g=1 ’

w(ult) = | Pr(Ty < s> 6.5 Wa0) f4ITs 2 1,24(0), Wi 6)d

.Where the first quantity in both formulas is the probability of outcome OcCurrence
within the period (¢,u) given the class membership (in JLCV, first formula) or the ran-
dom effects (in SREM, second formula), and the second quantity is the probability that
a subject belongs to a certain class (in JLCM) given current informatioﬁ or the density
- of random effects given current information (in SREM). More speciﬁéally, in the above
- formulas, T; is the event time, ¢; is the group membership (in a JLCM), b; is the random
effect (in a SREM), Z; denotes 1ongitudina1 covaﬁates, W; denotes fixed covariates from
both longitudinal and survival models, and 6 denotes all model parameters (including
‘regression coefficients).

In practice, one can calculate dynamic predictions from joint models by plugging-in pa-
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rameter estimates and empirical Bayes estimates for random effects into an approximated
~version of the above formula. Corresponding standard errors and confidence intervals
for predictions can be obtained by approximating the distribution of dynamic predictions
using Monte Carlo simulation (Rizopoulos, 2012). |
Joint ﬁodels have been successfully applied to address prognostic questions in several
clinical settings including the prediction of relapse of >prostate cancer based on longitudi-
nal post-treatment PSA measurements (Proust-Lima and Taylor, 2009) and the prediction
“of rupture of the abdominal aortic aneurysm (AAA) based on AAA diameter measurement
via ultrasound (Sweeting and Thompson, 2011). However, the resulting models and pre-
dictions are difficult to interpret for a clinical audience. Moreover, these models appear to
be most suitable for rich datasets with extensive longitudinal data and one (or a low num-
-ber) of different longitudinal markers only. Current research includes novel suggestions
to develop joint models with more than one longitudinal marker (Andrinopoulou et al.,

"2014; Rizopoulos and Ghosh, 2011).

6.3 Assessment of dynamic prognostic models

Ivn'genera_l, all performance criteria described in Section 2.2.3 can be used to assess dy-
- namic prognostic models. Amongst theni, the Brier score (for overall performance) and
the AUC (for discrimination) are the most frequently used criteria (Schoop et al., 2008,
2011; Zheng and Heagerty, 2007; Rizopoulos, 2011; 'Blanéhe et al., 2014). ’Fo.r prédic-
tion models using baseline information only, model performance only depends on the
prediction window. However, in the dynamié prediction framework, model performance
depends on both the time point of the prediction and the prediction window. There-
fore, plots which describe changes in performance 6f each model depending on either the
prediction time point for a specific predictfon window, or depending on the prediction
window at a specific prediétidn time point can be used to compare performance between
models (Proust-Lima and Taylor, 2009). In additioﬁ, as updated predictions are iny rele-
vant to observations still af risk, performance assessment at each prediction time point in
the dynamic prediction scheme is restricted to the at-risk population at that time (Schoop

et al., 2008).
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When the outcome of interest is the time to an event of interest, both baseline and
dynamic prediction frameworks have to take into account censoring, as contributions to
the Brier score or AUC from individﬁals who are censored before the future time of interest
u cannot be defined. When censoring is assumed to be independent of the time to event
and the longitudinal processes, the inverse probability of censoring weighting technique
(Graf et al., 1999; Blanche et al., 2014) can be used to make the population of non-
censored individuals (up to a future time u) representative of the whole at-risk population
at prediction time ¢ by up-weighting their contributions to the performance measure with

weights defined as

IT>w) It <T <uwl;
G(ult) G(Tilt)

wi(u,t) =

where Tz is the individual observed follow-up time, d; is the individual event indig_ator
(1 if event occur, O if being censored), G(ult) is the probability of not being censoréd at
time u given not being censored af time ¢, G(T;|t) is the individual probability of not being
censored at the end of follow-up time given not being censored at time ¢.

As in the traditional framework, developing a prediction model on a large dataset and
then validating it on an external dataset is also recommended for dynamic prediction inod-
els (Proust-Lima et al:, 2014). When external validation is impossible, internal validation
using e.g. cross-validation can be used to correct for optimism; however, this strategy is

-computational intensive for complex dynamic models such as joint models.

6.4 Differences between acute and chronic disease settings (and

implications for modelling)

Chronic diseases are disgases with a long duration and slow progression, such as éancer,
cardiovascular or liver diseases. In contrast, acute diseases progress rapidly within a short
duration, as is the case for many infectious diseases and in emergency care. Regarding
dynamic prediction modelling, it is interesting to note that complex approaches (joint
models) have been developed and applied mainly for chronic diseases (Proust-Lima and

Taylor, 2009; Rizopoulos, 2012; Sweeting and Thompson, 2011), whereas, simpler ap-
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proaches (conditional models) have been applied iﬁ both acute (Ruttimann and Pollack, |
1991; Rué et al., 2001; Lemeshow et al., 1988, 1994; Wagner et al., 1994) and chronic set-
tings (Chﬁstensen et al., 1993; Hughes et al., 1992; Wu and Ware, 1979; Hartmann et al.,
2012; Cupples et al.,. 1988; Murtaugh et al., 1994; Van Houwelingen and Putter, 2012).
This divergence in the application of dynamic models suggests that there are differences
between the chronic and the acute disease settings, which may; affect the development

and application of dynamic prediction models.

6.4.1 Time origin, prediction horizon, and outcome of interest

One iinportant feature of acute diseases is that the disease (especially in infectious -dis-
eases) often has a clear time origin (time of infection, for example) and only lasts for a
certain period. After that. time, the disease usually resolves and the patient fully recovers.
Therefore, the prediction horizon in this setting is restricted to a specific period where
the event of interest may occur, and predictions beyond that period are of no interest.
As time evolves, the cﬁnically useful time horizon of predictions decreases, and in some
sense, long-term predictions converge to short-term predictions. Of ﬁote, early predictibn
is key in acute diseases as predictions at a late time point allow only for a very limited
remaining time window for possible interventions. Therefore, in acute disease settings,
the prediction time is restricted to a specific period in the early phase of the disease in
order to be clinically useful.

In contrast, chronic diseases usually have no clear time origin as the disease can
progress slowly while in a “hidden” state before becoming clinically apparent (Liestg 1
and Andersen, 2002). Therefore, the time origin in this settiﬁg is usually defined as.the
time of diagnosis, the start date of an intervention or even the somewhat arbitrary time
point when the patient was enrolled into a prognostic study. Furthermore, the definition
of “cure” is vague in this setting and usually refers to some arbitrary fixed time interval,.
for example, “recurrence-free survival for >5 year” (Van Houwelingen and Putter, 2012).
Thus predictions at any time point of the disease for a fixed prediction horizon may be
clinically useful in this setting accepting that the patient will still suffer from the chronic
disease at the end of the prediction period; |

In addition, as “cure” is clearly defined in most acute diseases and many patients are
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hospitalized for treatment or at least under clbsé observation as outpatients during the
entire disease period, censoring is often not a major issue in acute diseases. Also, the
.observed follow-up duration is usually the same for all s’ubjeéts. In contrast, in chronic
diseases which require long-term follow-up of patients, losses to follow-up are an impor-
tant problem and the validity of statistical models may depend heavily on the amount and
mechanism of censoring (Fitzmaurice et él., 2004).

These differences between the two settings might also affect the decision regarding
the outcome of interest, and the statistical model for that outcome. For example, in acute
diseases, the outcome is often a binary indicator of the dccurrence of a disease event of
interest at any time point during the relatively short disease course. Hence, a logistic
model is the model of choice. In contrast, in chronic diseases with longer and often
unequal follow-up of patients, the time to an outcome might be more relevant and a-

survival regression model could be a reasonable model.

6.4.2 Repeated measurement

As many acute diseases require hospitalization for monitoring and treatment, longitudi-
nal information is usually recorded regularly with a common schedule for all patients,
resulting in balanced and complete longitudinal data. However, for the chronic sgfﬁng,
longitudinal data is more irregularly collected and individual paﬁents may delay or miss
scheduled follow-up visits. On the other hand, as the course of disease is relatively short,
the number of repeated measurements per patient is often limited in the acute setting.
These differences may affect how longitudinal data are modelled. For example in the
person-interval approaches described in Section 6.2.2, models developed 'in the chronic
setting may depend on how each person-interval is defined; whereas this may not be
an important issue in the acute setting as the longitudinal dataset is balanced and thus
different interval splitting strategies lead to the same result. Oﬁe the other hand, limita-
tions regarding the number of repeated measurement per patients may restrict the use of

complex and flexible models such as joint models in the acute setting.
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6.4.3 Relationship between outcome and time-dependent covariates

In acute diseases, the whole time course of disease can often be virtually divided into dif-
ferent latenf phases: onset, critical and recovery phases, and outcomes of patients may be
very different between these phases. As a result, the assumpticn ofa time-independenf re-
lationship between the outcome and time-depéndent covariates may not hold in the acute
setting, but in chronic diseases which are fnore stable over time, the assumption may b_e
valid. Furthermore, in acute diseases the current value of a biomarker, which may reflect
the current response of a patient to treatment, could be the most relevant predictor for
outcome from that time point onwards. Howevér, as disease progress is slow in chronic
diseases, it is usually reasonable to argue that the whole trajectory of repeated measure-
ment is required to predict oﬁtcome accuratcly. In practice, these differences might affect
how the relationship between outcome and time-dependent covariates is specified in dy-

namic prediction models.

6.4.4 | Competing risks

As such illnesses evolve over avlong time span, progression of a specific chronic disease
‘can be complicated by the pfesence of other diseases. Therefore, many types of event
may occur and some of them may affect the occurrence of the main event of interest.
This “competing risks” pfoblem would require épecial consideration in the modelling steps
in order to provide vélid predictions (Wolbers et al., 2009). However, in acute vdisease
settings, competing risks are rare and often biologically implausible; therefore, this issue

can be ignored thn developing prediction models in this sétting.

6.4.5 Clinical usefulness

As acute diseases often require prompt management decisions within a short time, a prog-
nostic model must be easy to interpret and easy to use, in order to be widely used in
clinical practice. From this practical point of view, complex models such as joint models
might be inferior to simpler models, as it is difficult not only to explain them to a non-
statistical audience but also to rctrieve outcome predictions. This drawback méy hamper

the implementation of such models in the field of acute diseases.

136



Chapter 6. Dynamic prognostic models in acute diseases

6.5 Case study: dynamic prediction models for the develop-

ment of DSS in hospitalized dengue patients

In chapter 5, a prediction model for the development of DSS with 7 covariates includ-
Ving age, gender, day of illness, history of vomiting, temperature, having a palpable liver,
and platelet count was derived using data from 2301 children hospitalized with dengue
infection. However, this model oﬁly had a moderate pérformance in both temporal and
internal validation. Of note, platelet count, a wéll-known risk factor of DSS, was recorded
daily in that study. Therefore, there is an opportunity to assess whether integrating this
longitudinal information can improve the performance of the baseline model presented in

the previous chapter.

6.5.1 Description of data

For the purpose of this cases study, only patients who enrolled into the MD cohort on day 3
of illness were included. The main reason for this is that including all patients would both
comi:licate statistical modelling and clinical interpretation ofa dynémic prediction model.
The previous baseline model involves several clinical Signs and symptoms, which are time-
dependent. However, the information regarding these covériates was only collectﬂe\duat the
single timé point of enrolment. Including only individuals who enrolled on the same day of
illness unifies the time scale from disease onset (which is the most clinically relevant scale)
and the time scale from enrolment. Hence signs and symptoms can simply be regarded as
baseline covariates and there is no need to iﬁodel time-varying signs and symptoms and °
- their effect on outcome, which would require strong and untestable assumptions as only
a siﬁgle measurement per pétient is available. In addition, even thoﬁgh there were more
patients enrolled on day 4 than day 3 of illness, the time point at day 3 was still chosen,
as it is more useful to obtain prediction of DSS development from day 3 onwards rather
than from day 4 which is too close to the time that DSS often occurs.

Amongst all 908 confirmed dengue patients from the MD cohort who enrolled on day
3, 17 patients did not have a platelet count at enrolment and were excluded from the

analysis. Therefore, the final analysis included data at enrolment and updated platelet

counts from 891 patients.
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Clinical outcome

. In total, 59 cases (59/891, 7%) developed DSS (Table 6.1). While DSS can occur at any
time from day 4 to day 8 of illness, most patients developed DSS within the first 2 days
- after enrolment (day 4-5 of illness). For patients who did not develop DSS, a few were
discharged early but 95% remained in the hospital until illness day 7 or later (Table 6.1).

There are two clinical outcomes of interest in this case study: (1) whether a patient
progresses to DSS at all, and (2) whether a patient progresses to DSS on the following day
given the present state of the pafient. The former question refers to long-term prediction,
Vs}hile the latter refers to short-term prediction. The course of dengue infection only lasts
for 1-2 weeks and in the dataset only a single DSS case occurred after day 7 of illness.
Based on this I chose days 3-6 of illness as the rélevant predicti.on time points. Further-
more, it is reasonable in this setting to assume that patients will not develop DSS after
hospital discharge. Therefore, rather than using'the real follow-up time of each patient,
which would imply that the patient’s disease statﬁs afte'r-discharge is unknown, I reset
the follow-up times for all patients discharged without DSS to 6 days éfter enrolment (i.e.
day 9 of illness). Let T; be the day bf illness on which DSS occurred (which was on day 8
or earlier for all subjects) for subjects with DSS, and day 9 for subjects without DSS. The
long-term outcome can be rephrased in terms 'of. follow-up time as (T; < 8); therefore,
the long-term prediction made at time ¢ (with ¢t < 6) is Pr(T; < 8|T; > t). Similarly, the

short-term prediction at time ¢ is Pr(T; = ¢+ 1|T; > t) fort < 6.

Longitudinal data

Longitudinal data in this s"cudy'includes daily platelet counts of each- patient until DSS
‘development or discharge. The majority of subjects had 4-6 measurements but for patients
who developed DSS, most of them only had 1-3 measurements (Table 6.1). Amongst all
patients, 35 (4%) caseé had at least one missing platelet count within their series (31/35

had only 1 missing value, 4/35 cases had 2 missing values).
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Table 6.1. Outcome and number ofplatelet counts per patient in this case study (n = 891).

Characteristics N (%)
DSS 59 (7
Day of DSS

- Day 4 of illness 22 (37)
- Day 5 of illness 21 (36)
- Day 6 of illness 10 (17)
- Day 7 of illness 58
- Day 8 of'illness 1 2
Day of discharge (in patients without DSS)

- Day 4 - 6 ofillness 41 5)
- Day 7- 8 ofillness 428 (51)
- Day 9 of illness or later 363 (44)
Number of platelet count measurements per patient

-1to3 75 ®
-4t0 6 704 (79)
-7t09 112 (12)
Number of platelet count measurements before DSS (in patients with DSS)

-1 22 (37)
2 21 (36)
-3 11 (19
4 4 ()
-5 L

Other covariates

In this analysis, the baseline variables that were identified as risk factors of DSS according
to the analysis of Chapter 5 were also included: age, gender, history of vomiting, tem-
perature, and having a palpable liver. There were 14/891 (1.6%) cases with at least one
missing value for these covariates (1 for temperature, 11 for liver size, 2 for history of
vomiting). As the number of missing values was low, I chose to impute these missing
values by using the category with the highest frequency for categorical variables and the

median of observed values for continuous variables.

6.5.2 Exploratory analysis of repeated platelet counts and their potential

benefit for the prediction of DSS development

Figure 6.2 describes the trajectories of the platelet count over the course of disease for

all patients included in this analysis. On average, the platelet count tended to decrease
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initially until about day 6, and then slowly returned to the normal level when the disease
resolved.

Interestingly platelet counts in patients who developed DSS tended to be lower than
in patients who did not have DSS, and this difference was most pronounced on the day
before DSS occurrence (Figure 6.3). This observation suggests that the platelet value on
the current day or the change from the previous day may relate to the occurrence of DSS

on the next day.

500.i

6
Day of illness

Figure 6.2. Individual trajectories ofplatelet counts from day 3 to day 9 of illness amongst all 891

patients in this analysis (grey lines). The black line displays a loess scatterplot smoother

To investigate the relationship between the risk of DSS development and the platelet
count on a specific day of illness further, patients still at risk on that day (i.e. those
without DSS until that day) were split into groups of equal size, based on their platelet
values (current or previous values, or current change). Then, the average platelet count
and average change was calculated in each group and compared to the percentage of
subjects who developed DSS on the next day or overall in that group, respectively. These
values are displayed in Figures 6.4 and 6.5, which show a negative relationship between
the current platelet count and the change in the platelet count from the previous day with
both the short-term and long-term occurrence of DSS. Based on these observations, the

current platelet count or the change from the previous day could be relevant to predicting
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DSS on day 4 (n=22) DSSonday5S(n=2 1 )
200
DSS on day 6 (n= 10) DSS on day 7 (n=15)
loo-
3 4 5 6 7 8 5 6 7 8 9

9 3 4
Day of illness

Figure 6.3. Trajectories ofplatelet counts for all patients who developed DSS from day 4 to day 7 of

illness (black lines and dots) and 20 randomly chosen patients who did not have DSS (grey lines and
dots).

the occurrence of DSS over time. As the change in platelet count cannot be determined at
the time of enrolment, the current platelet count was the main variable of interest in the

development of dynamic prediction models in the following section.
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Figure 6.5. Relationship between changes in platelet countfrom the previous day (value on the current
day minus value on the previous day) and the risk of long-term outcome (overall DSS occurrence) or
short-term outcome (DSS occurrence on the following day) amongst patients still at risk on day 4 and
5 of'illness. For each population at risk, individuals were grouped into 5 groups of equal size based on
the observed changes in their platelet counts. The dots display the mean change and the observed risk

of the outcome in each patient group, n refers to the total sample size of each at-risk population.

6.5.3 Dynamic prediction modelling - model specification and assessment
Model specification

I compared a baseline model, which included only the platelet count at enrolment, to
several dynamic prediction models for the risk of a short or long-term outcome (DSS oc-
currence on the next day or overall DSS occurrence, respectively) based on the approaches
to model development described in Section 6.2. The candidate dynamic prediction mod-
els covered a model using the person-interval approach (for short-term outcome only),
two partly conditional models which included either the current platelet value alone or
the current value and the change from the previous value, and ajoint model. A detailed

specification of the models is provided below.
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The specification of the models is based on the following notation:

o t denotes the day of illness (predictions at time ¢ = 3,4, 5,6 are desired to predict

the short-term outcome at time ¢ + 1 and the long-term outcome after time ¢).

o T; denotes the day of illness on which DSS occurred in patient 7 (which was on day

8 or earlier for all subjects) and day 9 for subjects without DSS.

o W; is the vector of time-fixed covariates for patient ; (age, gender, history of vomit-

ing, temperature, and having a palpable liver).

e Z;(t) is the observed platelet count at day t. The observed count at enrolment is
denoted by both Z;(3) to emphasize its usage as a time-dependent value and Z; 3 to

emphasize its usage-as a baseline covariate.

o Ai(t) = Zi(t) — Zi(t — 1) is the change in platelet count from the previous day. The
change is onl;f defined from illness day 4 onwards as values before day 3 are not

available.

o The discrete time hazard on day ¢ is denoted by A(t) and defined as A(t) = Pr(T; =

t|T; >t 1). Xo(t) refers to the baseline hazard.

o All regression‘coefﬁcients are denoted by 3 with corresponding subscripts. Regres-

sion coefficients that depend on time are denoted by 3(t)..

Models for short-term prediction (DSS on the next day) As the baseline model, a
traditional discrete time Cox proportional hazards regression model was used which de-

pended only on baseline information:

Pr(T; =t +1|T; > t,W;, Z; 3) = 1 — exp{— exp (Bo(t) + B1Wi + B2Z; 3)}

This is denoted as the baseline Cox model in the following paragraphs.
The person-interval model split the folldw-up time of each patient into distinct intervals
of length one day and applied a binary regression model with a time-varying intercept to

the pooled data from all intervals:
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G{Pr(T = t+ 1Ts > £, Wi, Z(0))} = folt) -+ Wi + BoZi(2)

g() in the formula above denotes the link function for which I chose the complemen-
tary log-log link. This implies that the fitted model is equivalent to a discrete time Cox
proportional hazards model with a time-dependent covariate (Singér and Wi]lett; 2003).

The partly conditional model splits the follow-up time of each patient into overlapping
intervals starting from the prediction time point ¢y to the maximum follow-up of day 9.
The foﬂowing Cox regression model was fitted to the pooled data set of information from

these intervals

Pr(Ty =t +1|Ts > t > to,W;, Zilto) = 1 — exp{— exp (8{”(1) + BuVi + B Zilto)) |

“This is a discrete time Cox model with time-independent covariates stratified by the
" prediction time point ¢ (i.e. allowing for separate baseline hazards for each t). This
model is referred to as “partly conditional sur:vival model (1)”.

A second partly conditional model (“partly conditional survival model (2)”) was also
investigated to assess whether adding the change in the piatelet coﬁnt as a covariate

improves prediction. Specifically, this model has the following form:

Pr(T; =t + 1|T; > t > to, W;, Zi(to), Ai(to))

=1- exp{— exp (ﬂ((,t")(t) + B1Wi + B2Zi(to) + ﬂsAi(fo))}

As the change is only available from day 4 onwards, this model was only fitted to
prediction time points ¢y with ¢y > 4. v
~ Finally, a joint model was ﬁtted; Based on Figure 6.2, the trajectory of platelet count
for each patient could be modelled by a linear mixed effects model with a quadratic func-
tion for platelet count over time and allowing for individual variation by using random
intercept and slope terms. Moreover, platelet count is known to depend on gender and

age. Hence, the longitudinal sub-model of the joint model was defined as follows:
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Platelet;(t) = Z; (t) + &i(t)

= o + ap,1Age; + apaGender; + axt + ast? + ao,i + a1,:t + €i(t)

Here, Z}(t) denotes the “true” platelet value without measurement error ¢;(t) and
the random effects ag; and a;; are assumed to have a joint bivariate normal distribution
independent of measurement error ¢;(t). The survival sub-model of the joint model is a
Cox regression model that included the true current platelet count (without measurement

error) as a covariate

Pr(T; = t+ 1|T; > t, W;, Z£(t)) = Mot + 1) exp(Bi Wi + S22 (t))

In this model, the log baseline hazard function was modelled using regression splines

with knot locations chosen automatically by the statistical software (Rizopoulos, 2010).

Models for long-term prediction (DSS on any subsequent day). For the model in-
cluding baseline information only; I chose a binary regression model (the baseline binary

model) with an intercept that varies by day of illness:

g{Pr(T; < 8|T; > t,W;, Zi3)} = Bo(t) + PrWi + B2Zi3

For this model and all subsequent models, g() denotes the complementary log-log link
for consistency reasons with the partly conditional model for short-term survival described
above. Of note, person-interval models are not designed for long-term prediction and
hence were not implemented for this purpose.

The partly conditional binary models split the follow-up time of each patient into over-
lapping intervals starting from the prediction time points t to the maximum follow-up
of day 9. They then applied a binary regression model to the pooled data including the
current platelet count (partly conditional binary model (1)) or the current count and the
change from the previous day (partly conditional binary mbdel (2), only for illness day 4

onwards) leading to the following models:
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g{Pr(T; < 8T > t, Wi, Z;(t))} = Bo(t) + BiWi + B2 Zi(t)

and

g{Pr(T; < 8T > ¢, W;, Zi(t))} = Bo(t) + BrWi + B2Zi(t) + BsAi(?)

Finally, the joint model described above can also be used for long-term prediction.

Model estimation

As prediction times of interest were day 3, 4, 5, and 6, only data of repeated measurement
up to day 6 of illness were used to estimate parameters in all models. When the ob-
sérved platelet count at predictic;n time t was missing, its value was substituted by the last
non-missing observed value up to that time point (the‘ “last observatio‘;"éarried forward”
imputatioh method (Collett, 2003)). All models were estimated W1th1n the likelihood
framework. ' ’

In this setting, time is discrete leading to many ties, i.e. DSS events recorded on the
same day. Therefore, instead of using standard continuous—time»sun@yal model, I used
discrete-time approaches for all survival models throughout, except for‘ the survival sub-
model of the joint model (as this feature has not yet been implemented in current statis-
_ tical software). Similar to the person-interval approach of dynamic prediction modelling,

fitting a discrete-time survival model requires splitting the folloW-up time of each subject _
into short time intervals and then using the pooled dataset for model estimation. The
statisﬁcal model of choice in this case is binary regression model with a complementary
‘log-log link which can be estimated using standard software for generalized linear models
(Singer and Willett, 2003). Hence, the main functioh for fitting the models was the func-
tion glm() which fits generalized linear models in the statistical software R (R Core Team,b
2014).
Generalized estimating equations with an independence working correlation structure,
as implemented in package geepack (Halekoh and Hg jsgaard, 2006), were used to correct
the estimated standard errors in the baseline binary fegression model and partly condi-

tional models. Finally, the joint model was fitted using package JM (Rizopoulos, 2010).
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Prediction and model assessment

Short-term and long-term predictions are straightforward to obtain from the respective
short- and long-term prediction models other than the joint model. For the joint medel,
both short—teﬁh and long-term predictions were obtained by plugging-in parameter esti-
matee and empirical Bayes estimates for random effects into an approximated function of
the dynamic predictive distribution, as described in Section 6.2.3'and implemented in the
aforementioned R package JM. If a patient’s platelet count at a prediction time point was
_missing, then this patient was excluded from the respective data set for predictions.

- Between days 3-6 of illness the performance of short- and long-term predictions of all
models amongst patients at risk (i.e. those without DSS at or before the prediction time
point) was evaluated with the Brier score and the érea under the I}OC curve (AUC). As no
independent data is aveilable for external validation, internal validation on the original

dataset with 10-fold cross validation was used to correct for optimism.

6.5.4 Dynamic prediction modelling - results

Tables 6.2 and 6.3 summarize the estimated regression coefficients for each developed
model. The effects of time-fixed covariates on oﬁteomes were similar between models.
However, the effects of the baseline platelet count on outcomes were smaller than the
corresponding effects of the current platelet' count. The results also showed a bigger
effect of the current platelet count on short-term outcome in the joint model compared
to person-interval and partly conditional survival models, which can be explained by the

attenuation effect of measurement error.
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Table 6.3. Estimated coefficients (Est) and corresponding standard errors (SE) from fitted models for
long-term prediction of DSS.

Covariate Baseline binary Partly conditional Partly conditional
model binary model (1)  binary model (2)
Est SE Est SE Est SE
Age [+ 1year] -0.02 0.05 -0.04 0.05 -0.01 0.07
Gender: Females -0.38 032 -047 0.32  -0.57 0.42
History of vomiting: Yes 0.85 033 090 033 0.77 0.42
Temperature [+1°C] 0.43 0.18 0.44 0.18  0.43 0.21
Palpable liver: Yes 0.63 049 046 048 0.64 0.60
PLT (baseline) [+10,000 cells/mm3] -0.05 0.03
PLT (current) [+10,000 cells/mm3] -0.11 0.03 -0.11 0.04
PLT (change) [+10,000 cells/mm3] -0.09 0.03

The baseline model included the baseline platelet count only with a time-varying intercept whereas all other models
used the currentplatelet count as a covariate. The partly conditional binary model (2) additionally included the

change in the platelet countfrom the previous day and was fitted to data from day 4 onwards only.

The Brier score and the AUC at different prediction time points are displayed for all
models in Figures 6.6 and 6.7 (short-term prediction) and Figures 6.8 and 6.9 (long-
term prediction). In terms of overall performance, the Brier score revealed no apparent
differences between models. In terms of discrimination, AUCs were higher for short-term
prediction compared to long-term prediction. The baseline models were inferior to all
other models for both short-term and long-term prediction. Furthermore, AUCs of the
baseline models for short-term prediction tended to decline as the prediction time point
increased whereas the performance of other models was relatively stable over time, which
suggests a decrease in the relevance of the day 3 platelet count on short-term prognosis
at later time points. Differences in discrimination between other models, which required
updated platelet counts, were minimal. Adding the change in platelet count from the
previous day to the model in addition to the current platelet count seemed to increase
discrimination of these models; however, the improvement was not remarkable. Of note,
assessing performance of a single model over time based on long-term predictions might

be misleading as the prediction horizon differs for different prediction time points.
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Brier score for short-term prediction
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+ Baseline Cox model
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* Partly conditional survival model (1)

¢ Partly conditional survival model (2)

~  Joint model

Time of prediction (day of illness)

Figure 6.6. Brier scorefor short-term prediction (probability of having DSS on the next day) of each
model at each prediction time. All values were corrected for optimism via 10-fold cross validation.
Partly conditional swvival model (1) only used the current platelet count whereas partly conditional
swvival model (2) included both the current value and the change from the previous value as covari-
ates. Predictions for the partly conditional survival model (2) are only available from illness day 4

onwards.

AUC for short-term prediction

& Person-interval model
£ Pardly conditional survival model (1)
Partly conditional survival model (2)

Joint model

E025H

Time of prediction (day of illness)

Figure 6.7. Area under the ROC cwve (AUQ) for short-term prediction (probability of having DSS on
the next day) of each model at each prediction time. All values were correctedfor optimism via 10-fold
cross validation. Partly conditional survival model (1) only used current platelet count while partly
conditional survival model (2) included the current value of the platelet count and the change in value
from the previous day as covariates. Predictionsfor the partly conditional swvival model (2) are only

available from illness day 4 onwards.
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6.6 Discussion

To date, the majority of dynamic prediction models have been developed for chronic dis-
eases. In this chapter, I contrasted several aspects of chronic versus acute diseases which
affect the choice of the most appropriate statistical model. The period during which an
~acute disease evolves is usually much shorter énd patients are often under close obser-
vation throughout the‘disease. As a consequence, the resulting dataset is more likely to
contain balanced longitudinal data collected at the same discrete time points for each
patient, to include the same duration of follow-up for each pétient which is sufficient to
cbnclusively assess the outcome of the disease, and to have little missing data. In this
sense, the development of dynamic prediction models in acute diseases might be consid- .
ered to be easier than in chronic diseases. However, due to the limitations in the amount
of available longitudinal data and the dynamic nature of the disease, developing sophis-
ticated and flexible models such as joint models is not always possible in acute diseases,
-and if it is, there is no guarantee that these models would ‘pen‘orr.n better than simpler
ones. |
Based on the presentéd case study of dynamic prediction modelling in hospitalized
dengue patients where DSS was the outcome of interest, several observations can be made. .
First, as 10ngitudiha1 data was balanced, it was quite éasy and useful to exploreﬂ the po-
tential value of longitudinal information by stratifying patients based on the prediction
time and using simple graphical tools. Second, the case study clearly demonstrated the
usefulness of dynamic prediction modelling as all investigatecllvdynamic models outper-
formed the models that included baseline information only. This is in accordance with
similar findings for many other diseases (Lemeshow et al., 1988; Christensen et al., 1993;
Hughes et al., 1992; Rué et al., 2001; Karp et al., 2004). Third, all the dynamic models
investigated had a similar performance and the simpler conditional models even tended
to have a slightly superior performance than the joint model. This suggests that in the
acute setting where longitudirial data is often balanced but also limited, simple approaches
(conditional models) are indeed preferred to complex models. Of note, I included only
one longitudinal covariate in the case study as changes in symptoms over time were not

recorded in the MD study. However, extensions to more than one longitudinal covariate
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are straightforward in the conditional setting whereas joint modelling is challenging for
multivariate longitudinal data and publicly available software implementations to fit such
models are currently lacking.

Specific to dengue infection, this case study provides evidence that the current platelet
value or the change in value from the previous day could be used to improve prediction
of the occurrence of DSS, especially for short-term predictioﬁ. While reliable long-term
predictions would be desirable, short-term predicﬁoné could still be useful in supporting
the day-to-day management of patients, for example the décision whether daily outpatieht
follow-up is sufficient for a patient or they requiré hospitalization. A limitation of the
present dataset is that the sample size and the number of DSS cases was too small to draw
definite conclusions. This also prevented the exploration of more complex models with
time-varying coefficients for the longitudinal platelet count or non-linear platelet effects.

In conclusion, this chapter suggests that dynamic prediction modélis based on condi-
tional models, which are relatively straightforward to implement, can iﬁﬁprove prediction
in acute diseases where longitudinal data is frequently routinely collected. In dengue, a
large international cohort study which collects detailed longitudinal laboratory data as
well as _signs and symptoms of dengue patients is currently recruiting (Jaenisch et al.,
2013). The resulting data set will open up an opportunity for dynami; prediction mod-
elling which could lead to improved case management and the early idé;lltiﬁcation of cases

likely to deVelop DSS.
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6.7 Appendix
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Figure 6.8. Brier score for long-term prediction (overall DSS occurrence) of each model at each
prediction time. All values were coirectedfor optimism via 10-fold cross validation. Partly conditional
binary model (1) only used the current platelet count whereas partly conditional binary model (2)
included both the current value and the changefrom the previous value as covariates. Predictions for
the partly conditional binary model (2) are only availablefrom illness day 4 onwards.
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Figure 6.9. Area under the ROC curve (AUC) for long-term prediction (overall DSS occurrence) of
each model at each prediction time. All values were correctedfor optimism via 10-fold cross validation.

Partly conditional binary model (1) only used cwrent platelet count while partly conditional binary
model (2) included both current value and change in value from previous day of platelet count as
covariates. Predictions for the partly conditional binary model (2) are only available from illness day

4 onwards.
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Conclusions

7.1 Contributions of this thesis

7.1.1 Clinical contributions

This thesis provides the first comprehensive description'of children with dengue shock
syndrome (DSS) based on a large cohort of children admitted to a single institution with
established DSS. The description provides a solid basis for further research in order to
achieve a better understanding of the disease. The results demonstrate that case fatality
~ in children with established DSS is very low if diagnosis is prompt, and the patient is
‘immediately admitted to an intensive care unit and carefuily managed by an experienced
team of clinicians and nurses. Clinicians working in other settihgs, especially those newly
exposed to this disease, could use this experience to improve outcome for their patients.
This thesis also identified several risk factors a) for profound DSS amongst children
with DSS, and b) for thé development of DSS amongst children hospitalized with dengue.
These findings not only provide empirical evidence for experienced clinicians, who may
already recognize these factors in their clinical practice, but also provide useful prognostic
guidance for clinicians less familiar with the disease. As most of the risk factors identified
are readily available in clinical practice, these findings could be very useful for clinicians
~ in regions where resources are limited. |
A major contribution of the present thesis is development of the two prognostic models
for profound DSS in children with DSS and for progression to DSS in children hospitalized

with dengue. A simple score chart was derived from the prediction model for profound

155



Chapter 7. Conclusions

DSS which can be applied in clinical practice, for example to prioritise patient triage,
and in research, for example to identify the target population for studies evaluating new
interventions fof DSS.

In addition, the case study in chapter 6 of this thesis provides preliminary evidence that
a patient’s current platelet count is a better predictor of DSS than the enroiment value and

that dynamic prediction modelling can improve prognostic modelling in dengue.

7.1.2 Statistical contributions

Even though guidelines and standard recommendation for the development of prediction
models based on baseline covariates are available V(Harirell, 2001; Steyerberg, 2010), ex-
plicitly developing a prognostic model in a specific disease still poses challenges. This
thesis provides ease studies that iHustrete how fo develop prognostic models for dengue,
a task that required special considerations regarding the choice of the‘outcdome and co-
variates of interest, treatment of missing data, and the pdtential relevance of dynanﬁc
predictions. These case studies are useful fdr researchers interested in the topic but unfa-
miliar with prognostic modelling techniques or dengue.
Dynamic prediction models allow the usage .of accruing longitudinalvinformation to
'update predictions ahd are the topic of active ongoingistatistical research.” This thesis
provides the first systematic comparison of acute and chronic diseases with respect to
‘dynamic predictive modelling. Several differences between the two settings were iden-
tified regarding the choice of the time origin, prediction horizon, and outcome of inter-
est; the frequency and regularity of repeated measurement; thei expeeted relationship
‘between outcome and time-dependent covariates; the possibility of competing risks; and
the importance of simple and rapid prognostic algorithms. These differences sﬁggest that
conditional models which are simpler to develop and interpret than joint models might
be preferable in the acute setﬁng. This recommendation was supported by a case study
which comparing different approaches to integfating daily platelet counts into a dynamic

prediction model for the development of DSS.
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7.2 Suggestions for future research

Findings ﬁom this thesis suggest further research to investigate the role of risk factors,
such as platelet count, haematocrit level and gender, on the pathogenesis of the disease.
An interesting finding is that platelet count and haematocrit levels might have different
relevance at different stageé of the disease: platelet count is an important risk factor for
developing DS$ in the early stage whereas once a patient has progressed to DSS, haemat-
ocrit is more important as an indicator of further progression of the disease. Furthermore,
changes in platelet counts over time also relate to changes in the likelihood of developing
DSS. As the main underlying pathophysiological abnormality in DSS is plasma leakage
(Simmons et al., 2012a), these findings suggest a possible role for platelets in the in-
duction of plasma leakage, a phenomenon supported by the recent work by Hottz et al.
(2013). Haematocrit levels, by cohstrast, are likely to reflect the extént 4of plaéma leak-
age but not to be involved at a mechanistic level. Further research is?équired to cleaﬂy
determine the roles of these factors in the pathophysiology of the diséasé. In addition,
further research is required to confirm the role of gender with respect to the risk of pro-
gression to DSS, health-seeking behaviof, and the observed interaction between gender
and haemodynamic parameters on the risk of progression from DSS to;;rofound DSS.

The simple scoré chart for prediction of p;rofound DSS developed i;;éhapter 4 has the
potenﬁal to be a valuable prediction tool for clinicians. However, this score chart was
based on a prediction model using data from a single hospital only with moderate per-
formance. Continuing research is required to further assess this score in clinical practice.
This includes independent validation studiés to assess the performance of the score chart

- in other settings and subsequent studies to assess the impact of score-chart guided man-
agement of DSS patients on outcomes and costs, ideally in a comparative trial (Moons
et al., 2009).

The case study in chapter 6 suggests the value of dynamic models for predicting DSS
based on longitudinal data. Howevef, this case study was based on a dataset with a rel-
atively low number of DSS events and lacked longitudinal data for laboratory markers
and signs and symptoms other than the platelet count. Hence, this case study contributes

only as proof-of-concept analysis. A large ongoing prospective multi-centre study within
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the International Research Consortium on Dengue Risk Assessinent, Management, and
Surveillance (Jaenisch et al., 2013) is currently collecting extensive longitudinal data on
a large number of dengue patients. The resulting dataset should provide an excellent op-
portunity to develop a powerful dynamic prédiction model using the approaches outlined

in this thesis.
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