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Abstract
Economic and safe management of operating nuclear power plants can be highly 

dependent on the structural integrity assessments for safety critical pressure vessels and 

piping components. In engineering fracture assessment procedures the full (3-D) residual 

stress field at a welded joint is usually simplified by considering a representative one

dimensional profile through the wall-thickness of the stress tensor component acting 

normal to the crack face. The stress intensity factor, calculated from this estimated 

through-thickness stress profile, is used directly in the fracture assessment. Therefore, 

assessments of defects in welds can be highly sensitive to the through-thickness residual 

stress profiles assumed in the calculations. There is a need for reliable characterisation of 

residual stresses in welded structures such as in stainless steel girth welded pipes as there 

are a lot of discrepancies in the current methodologies used. For example, bounding 

residual profiles found in fitness for service assessment procedures have been based on 

examination of residual stress measurements, finite element weld simulation and expert 

judgment. This approach suffers from the drawback that the upper bound curve can 

increase as more measurements and data scatter are obtained. The consequence of this is 

that structural integrity assessments of defective plant can be over-conservative by a large 

margin, and may lead to unnecessary and costly repair or inspection.

This thesis illustrates how a neural network model, can be developed and applied to 

predict through-thickness residual stress profiles in austenitic stainless steel pipe girth 

welds for simplified fracture assessments. The model is validated by comparing predictions 

with new experimental measurements made using neutron diffraction and contour method. 

The new measurements were undertaken by fabricating six pipe girth welds with a range of 

wall-thickness, weld heat input and weld groove geometries. The robustness of the



developed artificial neural network (ANN) approach is demonstrated by sensitivity studies 

in input variables and training data. The performance and suitability of the ANN approach 

is discussed by comparison with stress profiles recommended in defect assessment 

procedures. This is followed by an evaluation of whether the use of neural network 

bounding profiles can lead to non-conservative estimates of stress intensity factor in 

fracture assessments. The neural network approach shows sufficient potential to be 

developed into an alternative prediction tool for use in fracture assessment of welded 

components.
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Chapter 1 

Introduction

1.1 Background

Fusion welding is the most widely used joining process in the power generation, 

petrochemical and construction industries. Over the past decade, characterisation of 

welding-induced residual stresses in pressure vessel and piping systems has received 

increasing attention from mechanical engineering research communities owing to its 

impact on the economy and safety of operating plant. The application of heat during a 

welding process results in complex transient temperature fields and can introduce high 

magnitude residual stresses in the component upon cooling. This can have an adverse 

effect on the lifetime and performance of welded components, as the presence of tensile 

residual stresses can be detrimental leading to crack initiation and growth, for example 

from stress corrosion cracking or creep, and an increased risk of catastrophic failure by 

fracture [1].

Residual stresses are generated as a result of some form of displacement misfit; for 

example owing to differential thermal expansion or localised plastic deformation [2]. In 

multi-pass welds, the weldment is subjected to transient thermal-mechanical cyclic loading 

conditions that may harden or soften the material. Quantifying the magnitude and 

distribution of residual stresses in these components with high certainty is a challenging 

task because of the large number of interacting factors such as welding parameters, 

geometry, composition, microstructure, phase transformations, and the thermal and 

mechanical properties of the weld and parent materials, [3] and [4]. Therefore management
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of residual stresses in the design, manufacture and operation of functional plants still 

represent a major challenge for engineers.

Whenever defects (flaws or cracks) in power plant components are discovered 

during construction or routine inspection of high value or safety critical structures, an 

assessment of the life, integrity and safety of the structure may be required. The method of 

assessment used depends on the industry concerned. Fracture mechanics based assessment 

procedures, such as R6 [4] account for the interaction of primary and secondary loads 

where stresses due to mechanical loading such as pressure, self-weight or long range 

structural constraint are categorised as primary loads and those due to temperature 

variation and welding residual stress are considered as secondary loads. The outcome of 

this engineering critical assessment will determine whether defects are repaired, 

components replaced or whether a rigorous inspection regime need to be implemented to 

monitor further degradation.

For instance, EDF Energy recently temporarily shut down four advanced gas 

cooled nuclear reactors (AGR) of similar design as a precautionary measure after finding a 

large defect associated with a non-stress relieved stainless steel girth weld in one of the 

boilers at Heysham 1 power station [5]. Evidently the origin and structural significance of 

this defect with respect to the safety of the plant needs to assessed before the reactors can 

be taken back on line. Such assessments rely upon predictive models which have been 

extensively validated [6]. Figure 1.1 provides an overview of nuclear power stations 

currently operating in the UK with their net capacity and lifetime. Interestingly seven out 

of sixteen stations entered decommissioning after 1997, resulting in a decline of the 

generation of UK’s electricity by nuclear power. Therefore, life extension of the UK’s 

AGRs may potentially save billions of pounds for the economy. On the other hand, safety 

of operating power plants is of paramount importance as unexpected structural failure can 

lead to disasters and should be avoided at any cost.



Station Reactor type NET rapacity in Year 
Megawatts (MW) commissioned Age in years

Hunterston B 2 AGRs 890 1976 37
Hinkley Point B 2 AGRs 870 1976 37
Harfepooi 2 AGRs 1,180 1983 30
Heysham 1 2 AGRs 1,160 1983 30
Dungeness B 2 AGRs 1,040 1983 30
Heysham 2 2 AGRs 1,220 1988 25
Torness 2 AGRs 1,190 1986 25
Sizewell B 1 PWR 1,191 1995 18

^Torness

Hunterston ©

© Hartlepool

Heysham ^

O Sizewell

Hinkley Point © „1 © Dungeness

Figure 1.1. Details of the operating nuclear power stations in the United Kingdom [6]

For through-thickness measurement of residual stresses in a component, non

destructive techniques based on diffraction particularly neutron diffraction and synchrotron 

X-ray diffraction are usually employed. Likewise deep hole drilling, sectioning and the 

contour method techniques are the most frequently applied destructive methods to 

determine the magnitude and distribution of residual stresses through the wall thickness. In 

spite of the fact that a diverse range of techniques is available for measuring residual 

stresses, all methods have their respective advantages and disadvantages. A general 

classification of techniques is to group them as destructive, semi-destructive and non

destructive. Destructive and semi- destructive methods employ an inverse process to 

calculate the relaxed stresses during cutting or drilling operations performed on the 

specimen. In semi-destructive methods, only a small portion of material is destroyed while 

the remaining part of the component stays intact. Non-destructive techniques do not alter 

the component and commonly consist of diffraction based methods that apply the principle 

of Bragg’s law.



Structural integrity assessment codes such as BS7910 [7], R6 [4] and API 579 [8] 

simplify the three dimensional residual stress field at a welded joint by selecting an 

idealized one-dimensional stress distribution along a line through the wall thickness. 

Bounding profiles recommended in BS7910 and the R6 procedure for defect assessments 

have been developed based on examination of residual stress measurements accumulated 

over many years, finite element weld simulation and expert judgment. This approach 

suffers from the drawback that the upper bound curve can increase as more measurements 

are obtained. The consequence of this is that structural integrity assessments of defective 

plant can be overly conservative by a large margin, and may lead to unnecessary and costly 

repair or inspection.

Finite element (FE) modelling of the welding process is increasingly being used to 

provide a full field residual stress characterisation by simulating the complex interaction 

between heat flow arid material properties over a wide range of temperatures [9]. However, 

the final residual stress distributions can be biased by the analyst’s judgements in 

appropriate assumptions, boundary conditions and modelling procedures. Moreover, the 

FE simulations are complex because of the large number of interacting factors that need to 

be considered and importantly model predictions need to be validated with experimental 

measurements for safety-critical applications.

With rapid development in measurement techniques such as neutron diffraction, the 

contour method and incremental deep hole drilling (IDHD), higher quality and more 

reliable data are becoming available characterising through-thickness residual stress 

profiles in weldments. Thus there is an opportunity to utilize the increasing database of 

high quality measurement data.
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Artificial neural networks (ANNs) [10] are flexible non-linear models based on 

empirical regression that can be applied to multi-variate, noisy datasets to discover 

complex relationships, which is particularly useful when there is a large set of example 

data available for training and where it is difficult to provide a physically-based modelling 

solution. ANNs can offer very high processing speed, have the ability to learn and 

generalize solutions from a set of specific examples to solve problems in pattern 

recognition, data analysis, optimization, classification and control [11]. In this thesis, a 

novel method based on artificial neural networks is developed to predict through-thickness 

residual stress profiles for austenitic stainless steel pipe girth welds and validated using 

new experimental measurements.
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1.2 Objectives

The objective of this thesis is to address the research question, “Can artificial neural 

networks trained using historical measurements be used to characterise generic though- 

wall residual stresses profiles in austenitic stainless steel pipe girth welds?” The work 

includes:

• Development of an ANN approach for predicting through thickness residual stress 

profiles in pipe girth welds using historical experimental measurements for 

training.

• Validation of the method by acquiring new high quality measurements using 

multiple experimental techniques such as neutron diffraction and the contour 

method.

• Studies that demonstrate the robustness of the developed ANN approach.

• Development of upper bound profiles using the artificial neural network that are 

more realistic than profiles currently in use.

6



1.3 Layout of the Thesis

The work commences with a review of the literature relevant to addressing the 

research question. Chapter 3 presents residual stress results from neutron diffraction and 

contour method measurements on six new as-welded pipe girth welds that are later used for 

validating the new modelling approach. The ANN modelling is described in Chapter 4 

elucidating how the network is trained, selection of governing input parameters and how 

the modelling results compare with the validation residual stress measurements. Chapter 5 

discusses how the ANN prediction can be used to define upper bound residual stress 

profiles. The conservatism of the ANN profiles is evaluated by inspecting the variation in 

stress intensity factor for postulated defects of increasing size and comparing the results 

with stress intensity factors based on measured profiles and the simplified bounding 

solutions given in current assessment codes. This chapter concludes with a general 

discussion illustrating the scope of the project and how the profiles can be used in 

structural integrity assessments. Finally, conclusions are presented in Chapter 6 with ideas 

for future work.
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Chapter 2 

Literature review

2.1 Residual stresses

2.1.1 Introduction to residual stresses

Residual stresses are defined as the stresses that exist within the material in the absence of 

any external loads or constraints and are self-equilibrating in nature i.e. resultant force and 

moment generated must be zero in the structure. Residual stresses are introduced as a 

consequence of fabrication processes such as welding, machining, forming and also as a 

result of heat treatment, impact and abrasion. Residual stresses are generated as a result of 

some form of misfit; for example owing to differential thermal expansion or localised 

plastic deformation [2]. The residual stresses introduced during fabrication of structures 

can combine with tensile structural loads and may lead to unexpected or premature 

failures. The presence of tensile residual stresses in components can be detrimental leading 

to crack initiation and growth, for example from stress corrosion cracking or creep, and an 

increased risk of catastrophic failure by fracture [1].

Residual stresses have been classified as type I, II and III [12] according to the length scale 

over which they equilibrate. Type I refers to the macro-stresses that develop in a 

component on a scale several times larger than the grain size of the material or the scale of 

the structure typically of the order of several millimetres. Type II and type III are the 

micro-residual stresses that vary on a length-scale of an individual grain and within a 

single grain respectively. Type II stresses are generally present in polycrystalline or multi

phase materials as inter-granular stresses resulting from plastic anisotropy and type III



stresses are associated often with point defects and dislocations appearing in individual 

grains. In structural integrity assessments of power plant welds containing macroscopic 

defects the focus is on Type I stresses rather than the role of Type II and III residual 

stresses in determining micro-structural behaviour and initiation of cracking [13]. Figure

2.1 gives an illustration of the different types of residual stresses and typical examples of 

misfits that can cause macro and micro stresses [14].

Macrostresses

Peeniny

Microstresses

EM
Thermal Stresses

Cold Hole Expansion
Loading Strssses

D
Bending

□ i n *

Transformation Stresses

Welding
Intsrgranular Stresses

Figure 2.1. Illustration of different type of residual macro and micro stresses (process on 

the left, misfit in the centre and the resulting stress pattern on the right) [14].
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2.1.2 Welding induced residual stresses

Fusion welding is the most widely used joining process for power generation, 

petrochemical and construction industries. It involves localised melting of the surfaces to 

be joined with or without the addition of molten filler metal. The application of heat during 

a welding process results in complex transient temperature fields which can introduce high 

magnitude tensile residual stresses in the component upon cooling. This can have an 

adverse effect on the lifetime and performance of welded components thereby affecting the 

economic and safe management of operating power plants as tensile residual stress can 

accelerate brittle fracture, buckling, stress corrosion cracking and creep, and reduce the 

fatigue life [15], [16] and [17].

The major factors that determine what residual stresses are present in welded components 

are as follows [3],

• The material properties of the weld and parent materials, including composition, 

microstructure, thermal properties and mechanical properties.

• The geometry of the parts being fabricated.

• The welding procedure including joint preparation, the welding parameters and the 

pass sequence in multi pass welds (final weld capping passes are critical as it can 

have a significant influence on the end through-thickness stress profile).

• The restraints applied to parts being welded with the aid of external fixtures.

• Initial stress state prior to welding.

• Local geometrical features such as weld start and stop positions.

• Micro-structural changes and associated phase transformation.

10



Moreover, in multi-pass welds, earlier passes and the heat affected zone in the near 

vicinity undergo thermal cyclic loading from subsequent passes causing complex material 

hardening/softening behaviour in the weldment [18]. The welding physics (e.g. arc and 

weld pool phenomena) also contribute to the final residual stress distribution. The complex 

interaction of these physical processes [13] is schematically represented in Figure 2.2. 

Residual stresses arising from fusion welding are considered to involve a combination of 

thermal, mechanical and metallurgical processes. Quantifying accurately the magnitude 

and distribution of residual stresses in a welded joint is a challenging task due to the 

complex interaction of many variables and non-linear nature. Presently, it is 

computationally challenging to account for all these factors and therefore simplifying 

assumptions are often required for arriving at acceptable results.

Electromagnetism

• Arc pressure
• Electromaqnetic foroes 
   ►
<---------------------

• Weld pool evaporation
• Weld pool depression

Fluid Flow 
Mass Transport

1 Arc power
■ Arc efficiency \  \ *  Temperatures
■ Power density distribution

* Surface tensions
* Buoyancy forces
* Temperatures

* Filler metal addition 
Weld pool depression 

• Weld pool composition 
Pool convection patterns

Thermal Analysis < -

Temperatures Latent Heat 
Phase properties

-► Metallurgy

Phase compositions 
Phase fractions

Thermal cycles • S tresses 
Cooing rates • Deformation energy

• Temperatures
• Phase fractions 

Phase properties

Phase Transformations
> Volume changes
* Shear deformations 
’ Transformation plasticity

Mechanical Analysis

Figure 2.2. Schematic representation of interactions of physical processes in arc welding 

[13].
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2.2 Residual stresses of stainless steel components in Nuclear 

Power Plants (NPPs)

Welding is still the major joining and repair technology for Nuclear Power Plant (NPP) 

components. The nuclear power industry places much emphasis on developing materials 

with better weldability and optimisation of process parameters and consumables [19]. 

Welding processes such as GTAW (Gas Tungsten Arc Welding), MMAW (Manual Metal 

Arc Welding), SAW (Submerged Arc Welding) and Narrow gap TIG (Tungsten Inert Gas) 

continue to dominate. Residual stresses are introduced inherently, to varying degrees, by 

these processes. The magnitude and distribution of residual stresses are strongly influenced 

by the geometry of the structure [20]. Residual stress distributions can be classified 

according to the geometry type and are generally grouped into the following categories [4],

1. Pipe butt welded joints

2. Pipe seam welds

3. Plate butt welded joints

4. T-butt welded joints

5. Repair welds

6. Closure welds

Circumferential butt welds are extensively used in pressure vessels, boilers, steam 

headers, Superheater and Reheater tubing applications which require high creep strength 

and thermal fatigue resistance [21].

Stainless steels can be broadly divided into five categories: ferritic, martensitic,

austenitic, duplex (ferritic and austenitic) and precipitation hardened stainless steels.

Austenitic steels represent the largest in terms of production within the group and can be

used in service at temperatures of upto about 650 °C. The austenite structure is retained at

room temperature by adding nickel as the major alloying element (>8 wt %). Type AISI
12



316 stainless steel is a modification of the basic stainless steel (18% Cr 8% Ni-Grade 304), 

with molybdenum (2-3%) which substantially improves the general corrosion resistance of 

the alloy, in particular resistance to pitting corrosion [22].

Other elements commonly found within these alloys include manganese, nitrogen and 

carbon. Type 316L is a low carbon alloy containing a maximum of 0.03% C whereas Type 

316H has higher carbon content (0.04-0.1%C). Esshete 1250 is an austenitic stainless steel 

with high manganese content (6.5%), with added vanadium and niobium to enhance creep 

strength is mostly used in boiler components.

Carbon strongly favours the formation of austenite and also forms carbides: such as 

M3C, M7C3 and M23C6, where M is any strong carbide forming metal (in this case 

chromium). M23C6 is the most critical carbide in austenitic stainless steels since it can have 

a large effect on both corrosion and creep properties of the alloy [23]. M23C6 can be re

dissolved on heating the steel to the solutionizing temperature (1050-1150°C) followed by 

quenching to produce a ‘precipitate free’ steel. However M23C6 is re-precipitated 

preferentially in the grain boundaries at 550-750°C. This can lead to chromium depletion 

adjacent to the grain boundaries rendering the alloy sensitive to intergranular corrosion, 

also known as 'weld decay'. Therefore it explains why post weld heat treatment of 

austenitic steels is not a practical solution to relieve residual stresses from welding and 

hence welds not subjected to heat treatment in plant applications. On the other hand, phase 

transformations have a critical influence on the magnitude and distribution of residual 

stresses especially in ferritic and martensitic steels making post weld heat treatment an 

indispensable part of the fabrication process. For example, Paddea et al. [24] studied the 

variation of residual stress distributions in ferritic-martensitic steel before and after post 

weld heat treatment. The peak tensile residual stresses in the vicinity of the heat affected 

zone were reported to reduce from 600 MPa to 120 MPa after post weld heat treatment.
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However, this thesis focuses on characterising residual stresses in circumferentially welded 

pipes made of austenitic stainless steel.

2.2.1 Magnitude and distribution of residual stresses in weldments

The magnitude and distribution of residual stresses in weldments are strongly 

dependent on the geometry, external or self-restraint during welding, the material 

properties, the heat input and welding process. Restraint in a welded joint is predominantly 

influenced by the use of fabrication aids such as tack-welds, jigs and the pass sequence in 

the case of multi-pass welds. A reasonable assumption as per BS-7910 [7] is to consider a 

maximum tensile stress equivalent to the yield strength of the weld or parent material. The 

tensile stresses will be of magnitude approximately equal to the yield if the following 

conditions are met [3].

• There is restraint against the free thermal contraction of the heated material

• The thermal contraction strain from the softening temperature to ambient or pre

heat temperature is greater than the yield strain of the material. This is defined in 

the equation below,

cc(Ts - T o) > < j y / E ,  (1)

where a is the coefficient of thermal expansion; Ts the softening temperature; T0 

the ambient or pre-heat temperature; E  the Young’s modulus; cry the yield strength 

at ambient or preheat temperature.

Figure 2.3 shows the through-thickness distribution of residual stresses measured at 

the weld-centre line of a steel butt welded plate 60 mm thick along the three different 

orthogonal directions with no external restraint [25]. It can be seen that residual stress 

distributions in the three orthogonal directions are entirely different. This can be attributed 

to differences in restraint. The effect of bending and membrane restraint on the transverse
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residual stresses in austenitic stainless steel welded plate is demonstrated in Figure 2.4 

[26].
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Figure 2.3. Through-thickness distribution of residual stresses measured at the weld-centre 

line of a steel butt welded plate, where ox, ay and oz are the stresses along longitudinal, 

transverse and through-thickness directions respectively [25].
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Circumferentially butt welded pipes are subjected to bending restraint across the 

weld due to the curvature of the parts being joined and also the interaction between 

circumferential membrane stresses and axial bending stresses which are both functions of 

the radial displacements of the pipe wall [27].

2.2.2 Residual stresses in austenitic steel girth welded pipes

A comprehensive range of residual stress measurements [18] were acquired in 

austenitic stainless steel pipe girth welds 1 0 -2 0  years ago by the UK nuclear industry for 

the purpose of validating finite element residual stress simulations. Extensive residual 

stress measurements were performed in ten girth welded pipes 16-110 mm thick, made 

from various grades of AISI Type 316 austenitic stainless steel. The welded pipes cover a 

wide range of electrical heat input (E=  1- 2.4 kJ/mm) defined as P/v where P is the weld 

arc power and v is the advance rate, R/t ratio (mean radius over thickness) in the range 1.8- 

25, fabricated using different welding processes such as MMAW (Manual Metal Arc 

Welding), TIG (Tungsten Inert Gas) and SAW (Submerged Arc Welding) (see Table 2.1 

for the details of girth welded pipes and stress measurements). A range of residual stress 

profiles were recommended for structural integrity assessment of non-stress relieved 

austenitic stainless steel welded pipes and the effect of different profile assumptions on the 

outcome of fracture assessments was illustrated. A more detailed critique about the paper is 

presented in section 2.4.3.

Ogawa et al. [28] measured the residual stress distributions on a 40 mm thick girth

welded pipe made of austenitic stainless steel. The component consisted of two 316

stainless steel pipe sections joined together with a nickel based alloy using a single-V

groove weld preparation. Maximum hoop residual stresses of magnitude 350 MPa were

observed at a distance of 10 mm from the outer surface and the minimum stresses were

observed close to the inside diameter. The axial residual stresses were found to be similar
16



in profile to the hoop but about 100 MPa lower in magnitude. Haigh et al. [29] 

investigated the evolution in residual stress profile by fabricating two austenitic stainless 

steel pipes with one having weld metal deposited up to half the pipe wall thickness and the 

latter with up to full wall thickness. The study was meant for the understanding of 

intermediate residual stresses generated partway through the welding process and evolution 

in residual stress profile on filling the weld.
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Table 2.1 Details of austenitic stainless steel girth welded pipes and stress measurements 

reported in [18]. Notations: t -  thickness, R/t -  Radius to thickness ratio, E- electrical heat

input, E - electrical heat input per unit thickness, Q - net heat input, <7-0 .2% ps yield strength 

(0.2% proof stress), cri%ps, (1% proof stress), <710% ps (10% proof stress).
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2.3 Residual stress -  Measurement and Modelling

2.3.1 Measurement of residual stresses

There is a diverse range of techniques available for measuring residual strains in 

welded components. The most commonly used measurement techniques are based on the 

strain relaxation principle (semi-destructive or destructive) or diffraction methods usually 

non-destructive. Other methods rely on the optical, acoustic and magnetic properties of the 

materials. A classification of the residual stress measurement techniques is presented in 

Table 2.2.

Table 2.2. Classification of residual stress measurement techniques, [30] and [31].

Measurement Technique Stress profile 

ID, 2D or 3D

Penetration Surface/
Through-thickness

Non-destructive

(1) Neutron diffraction 3D < 60 mm Through-thickness

(2) Synchrotron diffraction 3D < 20 mm Through-thickness

(3) X-ray diffraction 2D < 5 pm Surface

(4) Magnetic ID < 3 mm Near Surface

(5) Ultrasonic ID > 10 mm Through-thickness

(6) Raman ID < 1 pm Surface

Semi-Destructive

(1) Incremental Hole drilling 2D 1 mm Near Surface
(2) Deep-hole drilling 2D 750 mm Through-thickness

(3) Ring coring 2D <25 mm Near Surface

(4) Incremental deep 2D Through-thickness

hole drilling

Destructive

(1) Sectioning 2D 100 mm Through-thickness

(2) Slitting 2D >100 mm Through-thickness

(3) SadTs boring 2D Through-thickness

(4) BRSL 2D 50 mm Through-thickness

(5) Contour method 2D < 1000 mm Through-thickness
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Methods based on strain relaxation

The techniques relevant to pipe girth welds and the methods used to characterise 

residual stresses in this study are described in this section.

Incremental centre hole drilling (ICHD)

These techniques measure the strain relaxation due to material removal by using 

strain gauges on the surface of the specimen. Incremental hole drilling [32] is widely used 

for surface and near-surface residual stress measurement. The measurement procedure is 

relatively simple and the standardised version is available in ASTM Standard Test Method 

E837 [33]. A strain gauge rosette is first bonded to the surface of the component. A small 

hole at the centre of the strain gauge rosette is then introduced in a series of small steps and 

the relaxed strains are measured in all three directions. The magnitude and directions of the 

in-plane principal stresses are calculated from these strains as a function of drilled depth. 

The method can be performed in-situ and applied to a wide range of materials. However 

the use hole drilling method is limited by the measurement depth that can be achieved and 

is affected by plasticity when measuring stresses close to the yield strength of the material 

[34].

Block removal splitting and layering (BRSL) method

The BRSL method [35] can be used to measure residual stresses through the thickness in 

thick sections but destroys the sample in the process. The steps for undertaking BRSL 

measurements are described as [36]

• Block removal: removal of a block of material at the location where the residual 

stresses are to be measured

• Splitting: the block is split into two halves in such a way that the mid-plane is 

parallel to the inside and outside surfaces
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• Layering: the process consists of removal of the layers parallel to the splitting 

plane from each of the halves followed by measuring the changes in dimensions 

for each layer.

The BRSL technique has produced measurements with an overall accuracy of ±50 MPa 

[37] in circumferential butt welded pipes but in recent years has become obsolete. The 

technique is not used in this dissertation but published BRSL measurements [18] are 

included in the training data for the ANN.

Deep hole drilling (DHD) method

The deep hole drilling technique developed at the University of Bristol is mainly applied 

to thick-section components. It is a semi-destructive method [38-40] as only a small core 

(sizes ranging from 5 - 2 0  mm in diameter) is removed from the component during 

measurement. The DHD method determines the residual stresses by measuring the change 

in distortions of a reference hole in a component after a column of material containing the 

reference hole at the axis is removed. Figure 2.5 shows various stages of the method [41], 

in the first step front and back bushes are attached on the specimen and in the second step, 

a small reference hole is drilled through the component at the location of interest. The 

diameter of the reference hole is accurately measured in step 3 using an air probe at 

different angular positions and at equal intervals around the hole axis. In step 4, a column 

of material coaxial to the reference hole at the axis is trepanned free of the component by 

using an electro-discharge machining technique. Finally step 5 consists of re-measuring the 

reference hole diameter using an air probe. Trepanning the column containing the 

reference hole releases residual stresses and the relaxation of the reference hole diameter is 

used to determine the in-plane strains and residual stress distribution.
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Specimen----

Back Bush

Step 1. Attach front and back bushes on the specimen step  2. Reference hole is drilled through the component

Air-Probe

Step 3. Measure the diameter of the hole using an air probe Step 4. EDM trepanning of the core

Step 5. Re-measure the diameter of the reference hole 

Figure 2.5. Various stages of the deep hole drilling technique [41].

Deep hole-drilling can be used for residual stress measurements over a wide range 

of materials and is not sensitive to the material microstructure. It has been successfully 

applied to measure residual stresses in complex geometries including pipe welded 

components, [28] and [42]. The DHD technique is capable of measuring two in-plane 

components of the stress tensor as a function of distance through the thickness and can be 

performed in-situ. Although the DHD technique has been successful in many cases there is 

evidence that suggests the method could fail in some cases, especially where the stresses 

are high and above 50% of the yield strength of the material [43, 44]. Hossain [43] 

reported the significance of plasticity in the residual stress distribution using the DHD 

technique. The incremental deep hole drilling (IDHD) technique [44, 45] was proposed to 

rectify this problem by trepanning the hole incrementally and using the intermediate
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relaxation data after data each increment rather than measuring the hole diameter before 

and after trepanning in one cut. The IDHD approach has the advantage of measuring the 

deformation of the core without the need to account for the thermal effects during cutting. 

However the stresses are only determined at a limited number of intervals unlike the 

conventional DHD technique.

Contour method

The contour method, first proposed by Prime in 2000 [46, 47] is a destructive technique 

capable of measuring residual stresses in thick sections. It is based on Bueckner’s principle 

[48], according to “If a cracked body subject to external loading or prescribed 

displacements at the boundary has forces applied to the crack surfaces to close the crack 

together, these forces must be equivalent to the stress distribution in an un-cracked body of 

the same geometry subject to the same external loading”. The contour method measures a 

2-D cross-sectional map of residual stress acting normal to the cross section of interest in a 

body and has been successfully applied in welds [49-50]. The component of interest is cut 

using wire electric discharge machining (EDM) and the deformation contours of the 

resulting relaxed cut surfaces are measured and used to back-calculate the residual stresses 

acting normal to the cut plane.

Figure 2.6 shows the superposition principle applied to determine residual stresses 

in a sectioned component. Illustration A (figure 2.6 from [52]) shows the original stress 

state in the undisturbed part. The newly formed surface deforms as residual stresses are 

released by the cut along the plane of interest, which is evident in illustration B. The 

surface distortion is measured and in step C the stresses required to force back the 

deformed surface to the uncut state are calculated analytically using finite element 

simulation. Assuming elastic conditions, superimposing the partially relaxed stress state in
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B with the change in stress from C gives the original stress distribution at the plane normal 

to the cut.

= B: Part cut in two

1.00
0.79
0.57
0.36
0.14

-0.07
-0.29
-0.50

A: Original Stress

x fully relaxed (= 0) on surface

^starting
+ C: Forced back flat

from stress free)

<tx on surface = original crx

Figure 2.6. Bueckner’s superposition principle applied to determine residual stresses in a 

sectioned part [52].

24



The contour method provides a full cross-sectional map of residual stress and is 

implemented by undertaking four steps: specimen cutting, measuring the surface 

deformation, data processing and finite element modelling (extensively discussed in [53]). 

The contour method has been validated to some extent through comparison with results 

from other residual stress measurement techniques such as neutron diffraction, synchrotron 

X-ray diffraction and slitting in welded components [54-57]. The contour method uses 

standard workshop equipment and is increasingly being used for stress measurements in 

thick section welds as it is not influenced by large grain size and crystallographic texture 

which can compromise diffraction techniques. Specimen cutting is one of the crucial steps 

in the implementation of this method because cutting artefacts can result in significant 

measurements errors. Any deformation during the cut is assumed to have occurred as a 

result of the elastic relaxation of residual stresses acting normal to the surface prior to the 

cut. Hence the component must be cut using a machining technique that follows a defined 

surface profile and has minimum kerf (width of the channel of material removed during 

cutting), does not introduce further residual stresses and plastic deformation.

When the internal stresses are sufficiently high the cutting step inherently holds the 

risk of introducing errors in measured stresses owing to plasticity and bulging effects [58]. 

Traore et al. [59] studied ways of mitigating and estimating plasticity induced errors in 

contour method measurements. The “skim" cutting mode is preferred for performing 

contour cuts as it is a relatively low energy regime, which provides a low roughness, 

minimises the thickness of the EDM affected layer and cutting induced stresses [60]. The 

contour method has been recently used for measurement of multiple stress components by 

performing more than one cut [61] or by combining with other methods, for example X-ray 

diffraction [62].

The application of the contour method in complex geometries such as cylinders is 

more challenging. In the two step approach introduced by Pagliaro et al. [52] for measuring
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hoop stresses, the first axial-radial cut is meant to sever the cylinder which relaxes the 

hoop through wall bending moment. The amount the pipe springs open or closed during 

the cut is measured with the help of strain gauges and used to determine average bending 

moment stresses along the cylinder. In the second step, the conventional contour cut is 

employed to measure the remaining hoop stresses. This stress field is superimposed upon 

the bending stress to determine the total hoop stress in the cylinder. Recently, a one-step 

method [62] was applied by cutting the diametrically opposite walls of a cylinder 

lengthways simultaneously into two half cylinders. The deformation of both the cut 

surfaces was measured simultaneously relative to a single reference plane and analysed 

using a common coordinate system thus accounting for the release of the bending moment 

both along the length and through the thickness of the cylinder. The one step approach has 

been implemented to measure the hoop residual stresses in butt welded pipes in the present 

work.

Following the cut, the deformation of the cut surfaces is measured using a 

coordinate measuring machine (CMM). The raw data then need to be aligned, averaged 

and smoothed after the removal of outliers. As the surface deformation of the two cut 

half s are measured in different coordinate system, data alignment is necessary before it is 

interpolated into a common grid system or known as ‘averaging’. This step essentially 

cancels out the shear stress affects and other sources of errors such as local cutting 

irregularities. The averaged data then needs to be ‘smoothed’ to minimise the noise and 

accomplished using a bivariate spline fitting [63]. A bivariate spline consists of piecewise 

polynomials joined at specific locations called ‘knots’ and the fitting process minimises the 

error between the data points. The smoothing process is determined by the density of the 

knots where the optimum fit is achieved by carrying out a least squares analysis. Low knot 

spacing tends to over-fit the data and too large a knot spacing may result in over

smoothing the averaged data causing a loss of spatial resolution in areas where high stress
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gradients are present. In this study, a knot spacing of 7 mm x 7 mm was consistently used 

as it was reported to give more plausible results in a circumferentially welded P91 pipe 

[64]. Limitations of the contour method include the inability to measure stresses very near 

to the surface and that it can’t be performed in-situ and results in the destruction of the 

component.

Methods based on diffraction X-ray, synchrotron X-ray and neutron diffraction

Diffraction based techniques [65-70] measure the shift in diffraction peak positions which 

can be related to changes in inter-planar spacing by Bragg’s law through knowledge of the 

incident wavelength and scattering angle. The crystallographic planes are defined by miller 

indices denoted as (hk t ) .  When X-rays are scattered from a crystalline material they can 

constructively interfere, generating a diffracted beam.

For a given set of crystallographic planes defined by (h k I) Bragg’s equation [71] is given

by,

2dhki sin OhM = n l (2)

with dhtd being the diffraction angle for a family of lattice planes, dhki is the inter-planar 

spacing and X is the wavelength. A schematic illustration of Bragg’s law for diffraction 

techniques is shown in Figure 2.7.
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Figure 2.7. Schematic illustration o f Bragg’s law for diffraction techniques [72]

Laboratory X-ray diffraction [65] is generally used to perform surface or near

surface stress measurements due to its low beam penetration. Sub surface diffraction based 

residual stress measurements can be achieved using either neutrons or high energy X-rays 

at dedicated large scale facilities. Synchrotron X-ray diffraction [66] uses a high energy X- 

ray beam from a synchrotron source capable of achieving high depth of penetration. For 

example, the photon energies of the synchrotron beam used in the European Synchrotron 

Radiation Facility (ESRF), Grenoble possess energy levels of more than 150 keV and can 

penetrate several centimetres of steel.

Neutron diffraction [73] can characterise residual stresses in welded structures with 

a spatial resolution of less than a millimetre and large depth of penetration. Measurements 

can be made in two types of facility. Reactor sources produce a monochromatic beam of 

neutrons of given wavelength diffracted through a diffraction angle (20) and is used to 

calculate the change in lattice spacing. On the other hand at pulsed sources, a fixed 

diffraction angle is used and time of flight used to determine the change in lattice spacing. 

All the neutron diffraction work presented in this dissertation has been performed using the



monochromatic diffractometer, SALSA at the ILL Grenoble, France and techniques 

relevant to this instrument are discussed below in more detail.

The presence of residual stresses results in deviation of lattice spacing from its 

stress free value (dohki). The strained lattice spacing (dhki) can be identified from the shift in 

diffraction peak position from its stress free value dohki Determining reliable values of dohki 

is very important in neutron diffraction measurements as a small change in the value can 

result in significant errors in measurements. Changes in material composition, texture, 

grain size and inter-granular strains are examples of different factors which can affect the 

stress-free lattice parameter [74]. Thus it is essential to have an accurate measure of stress 

free reference. In general, ‘stress-free’ measurements are performed on ‘stress-free’ cubes 

or combs extracted from the component of interest, stress-free powder or filings that are 

representative of the material or far field measurements (at a position known to contain a 

negligible level of stresses) or by applying a force moment balance approach [75, 76].

The crystallographic strain is determined using the expression,

£ _ dhM — dQhkl
do hid

Modifying equation (3), the strain e in axial, hoop and radial directions can be calculated 

from the measured diffraction peaks and averaged stress free reference using the equation,

(<?-6L >)x —
£ = 360 x loooooo (4)

Tan (*x— ) I, 360 J

The strains in the three different directions {exx, %, fe) can be converted into three 

dimensional stresses fax, <J-z) assuming isotropic elasticity using the equations of 

generalized Hooke’s law,
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(5)

[(l-V ,„)£>y+VJ„ (£ „+ £ J2)] (6)

(l + V'31l)(l — 2V31l)
[ (1 “ V3H ) £ zz +V/31l(^xc + ^ ) ] (7)

where Em and Vm is the diffraction elastic Young’s modulus and Poisson’s ratio.

The uncertainties in the stresses can be calculated using the given set of equations

Neutron diffraction is capable of measuring elastic strains in a wide range of materials with 

complex shapes and in relatively thick samples non-destructively. In the present work, 

neutron diffraction is the sole non-destructive technique used to characterise residual 

stresses in girth welded pipes.

Challenges in experimental measurements

Experimental methods are used to quantify residual stress levels in components of 

interest and/or to validate numerical models simulating the fabrication process or changes. 

However, there is no single method which is deemed to be the ‘best’ for measuring

i

(Ao\. )2 + (A<7„ + Ao-w + A <r„ )2 (10)
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residual stresses. In order to select an appropriate method the following issues need to be 

addressed [77]:

• Measurement characteristics such as information on the spatial resolution and 

distribution, penetration, stress type and uncertainty of each technique.

• Practical issues such as the cost, availability of equipment, measurement time and 

existence of a standard procedure and the level of expertise required.

• Material issues such as the composition, geometry, properties including thermal 

conductivity and crystalline nature, and specimen preparation required for using a 

particular technique.

• Reliability of near surface measurements as many of the techniques have 

limitations when approaching close to the edge of components.

• Agreement between results using different measurement techniques as there may be 

variation due to sample geometry, plasticity effects, texture, reliable stress free 

reference and limitations within the experimental techniques.
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It is a good practice to undertake multiple experimental measurements at the same 

position to characterise residual stresses in weldments in order to validate numerical 

models and for increasing confidence in the acquired experimental data using diverse 

techniques as given in R6 section III.5 [4]. For example, in a recent study conducted by 

Woo et al. [78], neutron diffraction, contour method and deep hole drilling measurements 

were performed to characterise through-thickness residual stresses in ferritic steel welds 

with low and high heat inputs. Reasonable agreement was observed between neutron 

diffraction and contour method measurement but in a few cases the difference in the 

measured stresses was more than 200 MPa. To conclude, a perfect agreement of measured 

stresses using different techniques is not realistically possible in welds due to the reasons 

mentioned and undertaking multiple measurements is desirable to increase the confidence 

in the results.
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2.3.2 Modelling of residual stresses

Over the past decade, numerical modelling has been applied with increasing 

frequency to predict residual stresses in welded components. Whilst numerical modelling 

is an attractive tool, the results essentially need to be validated with experimental 

measurements for safety-critical applications as prescribed in R6 section III.5 [4]. Residual 

stresses in welds are often difficult to simulate using computational techniques because of 

the complex interacting factors and variables involved, for example Asadi and Goldak [79] 

identified about 300 parameters that can affect weld deformation and residual stress 

behaviour using a computational weld mechanics framework.

Finite element (FE) modelling [80-82] provides a full field residual stress 

characterisation by simulating the complex interaction between heat flow and material 

properties over a wide range of temperatures. However, the final residual stress 

distributions are strongly dependent on the modelling assumptions and procedures used by 

the analyst. Moreover, the full 3-dimensional moving heat source FE simulations required 

to give most accurate results are complex and expensive, and for multi-pass welds at the 

limit of current computing capabilities.

International round robin activities have been carried out in order to benchmark 

weld residual stress modelling techniques. For example, the NeT (European Network on 

Neutron Techniques Standardisation for Structural Integrity) was founded in 2002 to 

develop experimental and numerical techniques for the reliable characterisation of residual 

stress in welds. NeT has dedicated Task Groups (TG) undertaking modelling studies in 

AISI 316L austenitic stainless steel, such as the TGI: a single finite length weld bead laid 

on the surface of a plate specimen and TG4: three superimposed weld beads in a finite 

length slot specimen.
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An Accurate thermal analysis modelling (heat flow and heat source model), a 

representative material hardening constitutive model, means of simulating material phase 

transformation effects and application of appropriate mechanical boundary conditions are 

the main requirements for predicting welding induced residual stress. A mixed isotropic- 

kinematic hardening model is more pragmatic and available in commercial finite element 

packages such as ABAQUS [83]. This has been demonstrated by Smith et al. [84] where 

most accurate predictions of through-thickness residual stresses in a three pass groove 

welded in austenitic stainless steel specimen were those based on Lemaitre-Chaboche 

mixed hardening model [79] as shown in Figure 2.8. It is interesting to note that there is a 

considerable difference (about 100 MPa or more) between the predictions based on 

different hardening models illustrating the importance of assumptions and models used.
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Figure 2.8. Comparison of predicted and measured stresses in a three pass austenitic 

stainless steel groove weld plate of dimensions (200 x 180 x 25) mm with a 10 mm deep 

groove [84].

There is an abundance of FE simulation results published in the literature linked to NeT 

research activities [86-90]. Figure 2.9 shows the comparison of measured and predicted 

stresses using diverse techniques at the weld centre line along the thickness of the NeT- 

TG1 single bead on plate specimen [90].
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Figure 2.9. Comparison of measured and predicted (a) longitudinal stresses (b) transverse 

stresses along line BD through the plate thickness, and mid-width and mid-length in the 

weld bead of NeT- TGI specimen; plate dimensions 120 mm x 80 mm x 17 mm with a 

weld length of 60 mm [91].
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The single weld bead on plate specimen should have been relatively simple to 

model using finite element methods. However, the weld bead is laid onto a relatively thin 

plate and the weld bead was much shorter than the length of the plate. The predicted 

stresses are highly sensitive to the finite element modelling assumptions and boundary 

conditions for this case, thus making this a challenging benchmark problem. It is evident 

from Figure 2.10 that there is considerable scatter observed in the modelled results. Hence, 

the confidence in FE predictions is questionable in complex multi-pass welds such as girth 

welded pipes. An example of the mismatch between the prediction and measurement 

which can arise is illustrated in Figure 2.10 [92] for a pipe weld where residual stress 

predictions are compared with contour and neutron measurements. The axial restraint 

imposed on the model was an important analysis parameter since significant distortion was 

found during welding. However, the agreement was relatively poor even when the axial 

restraint was employed and resulted in under-prediction of stress close to the outer surface.
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Figure 2.10. Comparison of measured and predicted (a) hoop stresses (b) axial stresses 

along the weld centre line of the STYLE pipe girth weld MU4-1 (t= 25 mm, R/t = 4.5, E= 

1.0 kJ/mm; ND -  neutron diffraction, IDHD -  incremental deep hole drilling) [92].
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In order to improve the consistency and reliability of predicted results in weld 

modelling a set of guidelines [93] has been introduced recently into the R6 procedure [4]. 

Although challenging and expensive, finite element modelling has been used for many 

years to simulate residual stress profiles in pipe girth welds, for example see [94, 95-98] 

and for repair welds [99, 100]. Comprehensive information is required for carrying out 

finite element simulations. For example, surface and weld bead profiles, physical and 

thermo-physical properties from room temperature up to the melting point, measured 

tensile stress-strain data for weld and parent material, welding parameters for all beads 

deposited (electrical power, arc time, torch advance rate, traverse length and start dwell 

time) and fabrication details permitting analysts to choose appropriate boundary 

conditions. Moreover, the analyst should be highly skilled and possess competent 

experience in modelling of residual stresses in welds. Thus, at present, application of the 

FE method to predict residual stresses in welded components is driven by need rather than 

being a mainstream design tool. Computational requirements and time required for 

carrying out the analysis are significantly high. In this scenario the opportunity to use 

historical measured residual stress data to characterise residual stresses using an ANN 

modelling is attractive.

39



2.4 Structural Integrity Assessment

Residual stresses can have a large impact in damage tolerance assessments. A 

thorough understanding is needed of how they may affect component life estimates [101]. 

By quantifying residual stresses to known levels, strategies can be implemented, to reduce 

design and operation costs of power plant components or to conduct inspection regimes for 

structures thereby improving their life. When assessing the integrity of a defective 

structure such as a girth welded pipe, all sources of loading which may increase the risk of 

failure should be taken into account [4, 7]. Loads can be categorized as primary or 

secondary where primary loads are those that contribute to plastic collapse, as opposed to 

the secondary loads which do not. Stresses due to the mechanical loading such as pressure, 

applied force, self-weight, or long-range structural constraint are categorized as primary 

loads [4, 101]. Stresses due to temperature variation or welding residual stress are often 

classified as secondary.

Bouchard and Withers [102] have proposed a residual stress decomposition 

technique for characterizing residual stress distribution by decomposing into membrane, 

bending, and self-equilibrated components of stress. The decomposition procedure can be 

particularly useful in identifying contributions of process parameters and joint restraint 

deepening the understanding of its role in fracture assessments. A weld residual stress 

profile is defined to be a detailed through-wall description of component of the residual 

stress tensor along a line in a body, for example oz shown in Figure 2.11. It can be 

mathematically decomposed into three simple components of macro-stress; a membrane 

component om, a through-wall bending component O b  and a self-equilibrated component o Se 

expressed as follows [103] (see Figure 2.12);
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t2Ay
6 my

( 11)

where f  denote the net axial force acting across the thickness t, Ay = width of strip, my =

Figure 2.11. Axial stress field along a wall section decomposed into the membrane, 

bending and self-equilibrated components [103].

Stress decomposition can help to identify the contributions of welding process 

parameters and the restraint conditions thus allowing different components of stress to be 

treated in the most effective way in fracture assessments [103]. For R6 [4] fracture 

assessment purposes, the decomposed components of through-wall residual stresses are 

further classified as either long range, medium range or short range depending upon the 

elastic follow up. Accurate assessments of defects (cracks or flaws) in structures require 

reliable characterisation of the residual stress field present. For most practical situations 

determining weld residual stress profiles using measurements on mock-up components is 

the last resort option because of time, cost, innate scatter and reliability issues [104]. 

Instead a simple bounding characterisation approach is applied where a conservative 

description of the residual stress distribution in a specific class of weld is selected from 

published compendia.

X
bending moment, t is the wall thickness and o — is the axial stress distribution across the

thickness.
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2.4.1 Codes and Standards

Assessments of defects in components are performed by many industries to help 

develop and optimise new defect tolerant designs or to support the management of existing 

structures. Assessment codes and standards provide various upper bound through-thickness 

residual stress profiles for as-welded joints. The stress profiles are categorised with respect 

to the welding direction, i.e. longitudinal component parallel to the welding direction and 

transverse component normal to the plane of welding. For a pipe girth weld, longitudinal 

and transverse component of stresses correspond to the hoop and axial directions 

respectively. Widely used codes and standards include R6 [4], BS7910 [7] and API-579 

ASME FFS-1 [8] are given as follows.

R6: Fracture mechanics based defect assessment procedure developed by the nuclear 

power generation industry in the UK which is maintained by EDF Energy in collaboration 

with AMEC, Rolls Royce, and TWI. The procedure is continuously updated based on 

recent research findings.

R6 Section 1.5 draws attention to the classification of stresses for use in 

assessments and requires that all stresses should be classified into primary or secondary 

stresses. As stated in R6; primary stresses are those which contribute to collapse, such as 

applied loads or pressures and secondary stresses are those that are self-equilibrating across 

the section, that is, the net force or bending moment across a section due to the secondary 

stresses is zero. R6 accounts for the treatment of secondary stresses including short or 

medium range welding residual stresses. The residual stress profile of as-welded 

components along the wall thickness is defined in Section II.7.5 at various levels of 

sophistication. Level 1, the simplest characterisation approach, assumes a uniformly 

distributed tensile residual stress equal in magnitude to the mean material yield strength. 

Level 2 approach defines an upper bound profile of the residual stress through the wall- 

thickness based on published compendia of analytical results for different classes of welds.
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A library of residual stress distributions for as-welded components commonly analysed in 

defect assessments is given in R6 Section IV.4. Both R6 level 1 and level 2 approaches are 

considered to be very conservative. The R6 level 3 approach gives a more realistic 

description of the residual stress field. It involves non-linear analytical modelling of the 

welding process sufficiently corroborated by experimental measurements as described in 

Section III. 15 of the R6 Procedure.

API-579 ASME FFS-1: The API (American Petroleum Institute) and ASME (American 

Society of Mechanical Engineers) jointly introduced the standard for structural integrity 

assessments. Annex E of the procedure provides guidance on determining the magnitude 

and distribution of residual stresses in as-welded components. The profiles recommended 

in API provide an upper bound solution resulting from extensive finite element analysis 

and study of results available in literature. The stress profiles recommended in API are 

estimated based on welding heat input per unit volume where as other codes commonly use 

the welding heat input per unit area as one of the critical parameters.

BS7910: BS7910 (Guide to Methods for Assessing the Acceptability of flaws in Metallic 

Structures) is a British standard in which residual stress data and guidance is closely linked 

to the R6. Level 1, the simplest characterisation within BS7910, assumes the tensile 

residual stress at a welded joint equal to the yield strength of the material at room 

temperature. If the defect is located partly in weld metal and partly in parent metal, the 

residual stress should be assumed to be equal to the greater of the room temperature yield 

strengths of the weld or parent metal. For a defect located in a plane parallel to the welding

direction, the residual stress should be assumed to be equal to the lesser of the yield
;

strengths of the weld or parent metal. Annex Q of BS7910 provides guidance on treatment 

of residual stress distributions in girth welds for Level 2 analyses.
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2.4.2 Fracture Assessment

Linear elastic fracture mechanics assessment for actual or postulated defects in 

structures of interest requires evaluation of the stress intensity factor arising from both 

primary and secondary loads, including residual stress. In Engineering Fracture 

Assessment (EFA) procedures the full (3-D) residual stress field at a welded joint is 

usually simplified by considering a representative one-dimensional profile through the 

wall-thickness of the stress tensor component acting normal to the crack face. The stress 

intensity factor (SIF) [105,106], calculated from this estimated through-thickness stress 

profile is used directly in the fracture assessment [4]. The evaluation of the stress intensity 

factor resulting from welding induced residual stress has become an indispensable part of 

structural integrity assessment procedures as the accuracy of the calculated stress intensity 

factor has a deciding influence on the outcome of fracture assessments [107-109].

The concept of a two-criterion Failure Assessment Diagram (FAD) to describe the 

interaction between fracture and plastic collapse is discussed below. Plastic collapse is 

controlled by overall plasticity in the defective section and fast fracture by the local crack- 

tip stress-strain fields. Figure 2.12 illustrates the assessment curve of the R6 FAD, the X- 

axis represents the parameter Lr, which denotes nearness to plastic collapse and Y-axis 

represents the parameter Kr, which measures the nearness to brittle fracture. The ‘Failure 

Assessment Curve’ (FAC) divides the assessed area into a safe and an unsafe region. 

Failure is avoided if the assessment point (Lr, Kr) lies within the curve and if the failure 

avoidance criterion is violated, remedial action needs to be taken which may include 

carrying out a more realistic fracture analysis with less conservative assumptions. Kr and Lr 

parameters are defined by equations (12) and (13),
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Figure. 2.12. Assessment curve of the R6 FAD [4]

Keffective is the mode I effective stress intensity factor and Kmat the material 

toughness. The shape of the general FAD curve for the elastic regime (L r < 0.7) is almost 

flat (K r  is about 1), meaning that the elastic crack driving force is the dominating factor. 

However, for L r > 0.7, K r decreases with a steep curve around L r =  1 which shows that the 

elastic part of the crack driving force is not so dominant. The FAD was originally designed 

for a load-controlled situation. However, in a displacement controlled situation, plastic 

collapse (L r)  plays a very important role. The definition of plastic collapse can affect the 

determination of the L r parameter and should be carefully chosen [4]. A review of the 

treatment of residual stresses in structural integrity assessment of welded structures has 

been discussed by many authors [107-110].
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The effect of residual stress and primary loads on structural integrity cannot be 

considered independently due to their interaction. Moreover, interaction of residual stress

because of the effect of plasticity [4]. Almost all procedures including R6 [4], BS7910 [7]

calculating an effective stress intensity factor that incorporates secondary stresses as 

described in BS7910 [7] and in the R6 procedure [4]. The general approach involves 

including an additive term, p  factor in the Kr parameter. The p  factor is used to calculate 

the effective stress intensity factor and under combined primary and secondary load 

conditions, Kx is calculated from:

where Kj is the elastic stress intensity factor due to the secondary loads, and p  is a factor 

covering interactions of residual stress with primary loads.

The V factor is a newly introduced parameter in the R6 [4] to provide an alternative to the

and primary loads in a structure cannot be estimated by a simple addition of these factors

and API [8] provide some guidelines on how to treat the interaction of residual stress with

primary load. These interactions can be of complex nature and it is usually simplified by

effective (14)

p  factor, for treating plasticity effects under combined primary and secondary loads given

by (15),

mat mat

(15)
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2.4.3 Parametric studies

Dong [111] provided parametric equations based on a comprehensive set of finite 

element simulations for estimating through thickness distribution of residual stress in pipe 

welds based on extensive programme of analytical work sponsored by the US Materials 

Properties council (MPC) and industrial partners. Other outputs from this programme can 

be found in [112-115] and were later incorporated into API579-1/ASME FFS-1. Dong 

[111] classified the through-thickness transverse residual stress distributions in pipe girth 

welds as global bending, local bending and self-equilibrating (see Figure 2.13). Pipe 

thickness and radius to thickness ratio were considered as the two most important 

parameters that govern the transition from one type to another. However weld heat input 

was not explicitly modelled in this work. Recently, Dong [115] suggested areas of 

improvement in residual stress profiles insisting heat input should be treated as a 

continuous function rather than discrete categories in terms of low, medium and high heat 

input ranges.
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Brickstad and Josefson [116] developed a numerical weld simulation procedure for 

determining the residual stress field in multi-pass pipe butt welds by carrying out a non

linear FE analysis. Recommendations are provided for through thickness variation of axial 

and hoop residual stresses while assessing the growth of surface flaws in austenitic 

stainless steel pipe girth welds. Bradford [117] developed prescriptions defining more 

realistic axial and hoop residual stress profiles based on a set of axi-symmetric finite 

element simulations identifying geometry and weld heat input as the governing parameters. 

The electrical weld heat input per unit thickness was considered for the prescription. The 

drawback of this approach is that the magnitude of the tensile residual stresses is under

predicted near the inside surface and the profile doesn’t provide a good fit to the measured 

stresses close to the outer surface. Bouchard and Bradford [118] later addressed some of 

the short comings of the Bradford [117] finite element based prescription by proposing 

profiles that are more accurate compared with the measurements and simple to evaluate. 

The only drawback of the revised profiles was that they did not conservatively bound the 

stresses at the outer surface. Figure 2.14 reproduces the comparison of recommended 

through-wall residual stress profiles available for a typical stainless steel pipe girth weld 

(denoted as SP19) presented in [18]. Details of mock-up SP19 can be found in Table 2.1.
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Figure 2.14. (a) Axial and (b) hoop residual stress profiles for the pipe girth weld SP19 (t = 

19.6 mm, R/t=  10.5 mm, E  = 1.4 kJ/mm) [18].

Bouchard [18] refined the prescription introduced by Bradford and Bouchard using 

a parametric function that represents the through-wall residual stress profiles of austenitic 

stainless steel pipe girth welds taking into account the pipe geometry (wall thickness), 

material properties (parent metal yield strength) and welding process (net heat input). The 

new formulations have been validated for a range of weld groove geometries and weld 

processes for a thickness range of 16-110 mm and electrical heat inputs in the range of 1.0-

2.4 KJ/mm for austenitic steel girth welds.
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The parametric function presented in [18] for axial stress profiles can be expressed as a

combination o f  three stress components: membrane, bending and self-equilibrating:

< 7axial
\ l y

r x ^  1 - 2 - + a s in ^ [ 1 — 8— >/2 p—  a -  — 
4 n  6

(16)

where — = fractional distance through thickness from bore of pipe, R is the mean pipe

radius, a y is the 1% proof stress of the parent material, and a , p are free parameters to be 

determined by fitting to measured data and optimised “by eye”.

a  = Q(-1.25xl0“8Q3 +5.42xl0_6Q2 -8 .67x l0_4Q + 5.11xl0“2) (17)

P =8.4 xlO-3Q - 0.34 (18)

valid for 10 J/mm2 < Q < 160 J/mm2, where Q , the net heat input per unit thickness of 

pipe, is defined by Q = kE, k is the weld process efficiency and E is the electrical heat 

input per unit thickness per unit run length. Figure 2.15 shows the axial stress profile using 

the Bouchard formulation (denoted as New Formulation) in comparison with experimental 

measurements and the Bradford Prescription [18].

51



500
R6 Rev 4 (Level 2) 
Bradford Prescription 
New Formulation 
Deep Hole (Weld CL) 
Deep Hole (HAZ)

400 -

— /*m ■■ ^  Bk ■■
300 -

S ' 2 00 -

100

0 A I0.6 0.8,0.2
<  - 1 0 0 -

-200 -

-300 -

-400
x/t (from inner surface)

Figure 2.15. Comparison of experimental measurements and axial residual stress profiles 

[18].

The formulation is used in the R6 level 3 approach for fracture assessments of “structurally 

significant” defects in non-stress relieved austenitic stainless steel girth welds, where the 

weld material overmatched the parent in terms of tensile properties. Figure 2.16 presents 

the axial stress profiles based on equation (16) for varying heat inputs of a pipe having 

R/t=10.

52



160 J/mm* *2 
135 J/mm**2 
110 J/mm**2 
85 J/mm**2 
60 J/mm**2 
35 J/mm**2 
10 J/mm**2

0.8 1

0.6

(0
0.4 -

o'
Co
ra

CL

qinou
CO

73
3

0.3 0.5 0.7 0.8 0.9
- 0.2 -

- 0.6 -

- 0.8 -

x/t (from inner surface)

Figure 2.16. Axial residual stress profiles using Bouchard’s formulation (R/t = 10) [18].

The curve fitting parameters were optimised judgementally to ensure that the 

profiles represent the large zone of tensile residual stress usually observed towards the 

outer surface of thick section welds and tensile stresses near the inside diameter. Since the 

prescription ensures axial force equilibrium is satisfied along a radial line, the resulting 

parametric profiles have a large zone of compression in the central region of the wall 

thickness. The consequence of this is that the stress intensity factor may be under

estimated for deep surface breaking cracks leading to potential non-conservatism in 

fracture assessments. The R6 procedure recommends that adequate sensitivity studies 

covering all sources of uncertainty such as material properties and heat input must be 

performed when using this formulation.
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The Bouchard formulation [18] for hoop residual stress profiles can be expressed as a

combination o f the membrane stress and sine function.

hoop = J  (0.65—7 ) sin
? > 7 r( l X

T  \6 ~ ~ t)
+  (0 .3 5 + 7 7 )  , (19)

Gy is the 1% proof stress of the weld material, and 77 is the free parameter optimised by

‘eye’.

77 =4.79x10_3£)

valid for 10 J/mm2 < Q < 136 J/mm2

(20)

Figure 2.17 shows the hoop stress profile using Bouchard formulation (denoted as New 

Formulation) in comparison with experimental measurements and Bradford Prescription 

and Figure 2.18 presents the hoop stress profiles for varying heat inputs of a pipe having 

R/t=10.
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Figure 2.17. Comparison of experimental measurements and hoop residual stress profiles 

[18].
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Figure 2.18. Hoop residual stress profiles using Bouchard’s formulation (R/t = 10) [18].

The profiles in the hoop direction are considered to provide a more realistic description of 

the residual stresses and which are less conservative than the R6 level 2 upper bound 

profiles and Bradford prescription. However the formulation slightly over-predicts the 

residual stresses along the hoop direction particularly near to the inside surface as evident 

in the Figure 2.17.
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2.4.4 Statistically based stress profiles

Weld residual stress profiles using statistical techniques have been developed 

recently using a Bayesian approach [119] and heuristic method [120-122] based on the 

combination of weighted least squares and the application of expert judgement. Both of 

these methods have achieved limited success in determining upper bound stress profiles to 

known confidence levels. Development of statistically based more accurate and reliable 

weld residual stress profiles requires detailed knowledge about the measured specimen and 

location of measurements. Best estimated residual stress profiles of multiple independent 

stress measurements using Bayesian statistics [123] can be achieved in two different levels. 

Level 0 calculates the Bayesian mean of stress measurements that are made at the same 

location. Level 1 fits an analytical model that reasonably represents the measurements 

taking into account all experimental data irrespective of whether measurements are made at 

the same locations. Level 0 and Level 1 approaches use Bayesian statistics and hold the 

advantage that it is less affected by outliers, can incorporate sources of prior information 

about measurements and allows analysts to include their personal judgements.

Nadri et al. [124] developed a statistical framework (see Figure 2.19) to analyse 

residual stress data at various levels of complexities depending on its spatial distribution. 

The modelling and statistical treatment of residual stress distributions in an edge welded 

stainless steel beam is also reported by Nadri et al. [125, 126]. Nadri et al. [127] applied 

this technique to analyse pipe girth residual stress data and found that it is not sufficiently 

rigorous and suggested ways of improving the analysis methodology. It consists of refining 

the statistical approach developed by Nadri [124-127] taking into account the instrumental 

resolution function, measurement uncertainties, enhanced treatment of stress components 

and by giving equal weight to each through-wall profile of the measured stresses [128].
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Figure 2.19. Statistical framework for analysing residual stress data developed by Nadri 

[124].

The Bayesian duff-data approach based on Baye’s theorem applies a probability 

distribution of the measured datasets to determine the mean. It is capable of dealing with 

‘duff data’ where there are relatively few data points. The approach assumes that if there

are n independent stress measurements < jk , k  =1,2,3 n and their uncertainties crok from

various laboratories larger than the stated error bars can be represented as a Gaussian 

distribution. Using the Bayesian duff-data approach the following posterior probability can 

be defined as given in equation (21).

ln^Pr ob{X I {<jk , <7k -z cm})J = const+ y  In
k~ 1

Where erf is the error function given by 

2 *
erf (x) = — j=  f exp(-72 )dt (22)

f n  j0

1
X - m

A X  -  Ck 
erf ̂

CTO k 72
(21)
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Within the statistical framework of Nadri [124], the Bayesian analytical method 

(Level 1) is an extension of the Level 0 approach used to analyse multiple stress 

measurements along a straight line. The method fits an analytical model function to 

experimental data using a least squares technique by minimising the sum of squared 

difference between measured and predicted data defined by,

where Fk is the analytical model function to be fitted to experimental data

Fk = F(Dk; aj), k=1,2 n

Rk is the residual

n is the number of experimental data points 

Dk are the corresponding experimental data points 

ok are the uncertainties of the experimental data 

aj are the M unknown parameters in the analytical model

Similar to the Bayesian duff data approach, the analytical method leads to the following 

posterior probability,

The effect of spatial resolution is taken into account by incorporating the 

instrument resolution function in the level 1 approach as it may underestimate stresses at

(23)

Rk

In [Pr ob(X  / <ta)] = const + ̂ l n (24)

locations where there is a considerable variation. The analytical model is smeared with the

instrument resolution function H(y) resulting in the formation of a new analytical model Fk

defined as,
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Fk = Oj* f(y )H (y k  -  y)dy + y/ (25)

Where f(y) is the analytical model

<J> is an experimental scaling constant that may be proportional to the time for which 

experiment was conducted.

y/ is the background signal and ̂  is the position of measurement.

Wimpory et al. [129] observed that although the above Bayesian approach is less 

affected by outliers, care must be taken as in the case of where there are few data points in 

the average, a strong bias can occur towards data points with a relatively small quoted 

uncertainty. Moreover, this approach gives a large band of uncertainty which is not 

practically feasible to use in developing upper bound stress profiles. The stress profiles 

using Bayesian analysis approach provide more realistic bounding estimates of stress 

intensity factor than those currently used, but the results to date are insufficiently rigorous 

and conservative for inclusion into fracture assessment codes [128].

2.5 Summary

This chapter reviews the work reported in literature describing residual stresses and its role 

in structural integrity assessment. Various measurement techniques used to characterise 

residual stresses is described. The critical evaluation of various analytical models and finite 

element method is also discussed. The next chapter provide a detailed description of the 

residual stress measurements undertaken in newly fabricated girth welded pipes using 

neutron diffraction and contour method.
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Chapter 3 

Experimental characterisation of new 

pipe girth welds

3.1 Introduction

This chapter describes the fabrication process, characterisation studies and 

experimental measurements performed in butt welded stainless steel pipes. Measurements 

of residual stress were made by neutron diffraction performed using the SALSA instrument 

[130], ILL, Grenoble, France and the Contour method [47] using the in-house facility at 

The Open University, UK. The range of measurements provided extensive new data for 

supporting and validating the ANN approach developed in this dissertation for predicting 

through-wall residual stress profiles in welded pipes described in Chapter 4.

There are limited published measurements available describing through-wall 

distributions of residual stresses in stainless steel pipe butt welds, mostly collated in [18]. 

Other published sources rarely provide sufficient data related to the welding procedure 

such as the heat input. The data reported in [18] comprised measurements made in ten 

different components fabricated from austenitic stainless steel using various welding 

processes with net heat input (Q = 0.8 - 2.2 kJ/mm), wall thickness (t=  16 - 110 mm) and 

pipe mean radius to thickness ratio (R/t = 1.8 - 25). The experimental data were acquired 

1 0 - 2 0  years ago by the UK nuclear industry for the purpose of validating finite element 

residual stress simulations.
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All residual stress measurement techniques have limitations and associated 

uncertainties. For example, BRSL (see section 2.3.1) has low spatial resolution, neutron 

diffraction is very dependent on obtaining reliable stress-free lattice parameter data (which 

can be challenging for weld metal where the composition, texture and grain size vary) and 

DHD (described in section 2.3.1) has limited spatial resolution and the specific technique 

used at that time was susceptible to plasticity induced errors. The uncertainties associated 

with the historical data are estimated to be in the order of ± 50 MPa [41, 131] and could be 

more where the magnitude of stress is significantly high. Most of the mock-ups were made 

using Manual Metal Arc Welding (MMAW) with a J-prep and hence there is a lack of data 

representing TIG weldments with a V groove weld preparation. Moreover, there were very 

few experimental measurements in the dataset using neutron diffraction and none with the 

contour method. Figure 3.1 depicts the range of net heat inputs and thickness of welded 

pipes for which measurements are reported in [18]. It is evident from the figure that there 

are data gaps in the reported measurements especially in the region of pipes having 

relatively low wall-thickness which are highly sensitive to welding heat input.
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Figure 3.1. Range of austenitic stainless steel pipe girth weld mock-ups expressed as a 

function of net heat input and thickness [18] for which residual stress measurements have 

been published.

The purpose of this chapter is to present new residual stress measurements in 

austenitic stainless steel pipe welds to help fill the gaps in heat input, wall-thickness and 

R/t parameter space. Three half-inch thick pipe girth welds of outer diameter 265 mm 

were fabricated and residual stress measured using neutron diffraction and the contour 

method to extend the database of measurements in thin pipes. Three heat inputs were 

chosen to assess the effect of heat input. The data from these pipes were intended to add to 

the training data set and also for validation of the ANN approach. Welded pipes (MU4-1 

and MU4-3) were measured by participating in the EU funded project STYLE [132] 

(thickness 25 mm and outer diameter 250 mm) and a welded pipe made from Esshete 

1250 pipe (35 mm thick and 180 mm OD) was made available by EDF Energy. Figure 3.2 

shows how the new set of welded pipes add to the published dataset presented in terms of 

heat input, component thickness and R/t ratio.
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Figure 3.2. Combined range of stainless steel welded pipe components for which published 

residual stress data [18] were available with the new welded components (High, Med, 

Low, MU4-1, MU4-3 and ES) presented in terms of heat input, pipe thickness and R/t 

ratio.

This chapter first describes the set of half inch thick welded pipes and 

characterisation studies undertaken on each of the specimens. Neutron diffraction and 

contour method measurements performed on these pipes are discussed and compared with 

each other. The fabrication of STYLE project pipes (MU4-1 and MU4-3) is then discussed 

followed by the characterisation studies and critical comparison of stress profiles using 

diverse measurement techniques. Finally, studies performed on the Esshete pipe weld are 

discussed with particular emphasis on the measurement of axial residual stresses using the 

contour method. The chapter ends with a general discussion of findings based on 

comparisons of stress profiles using different measurement techniques at weld centre line 

(WCL) and heat affected zone (HAZ) locations.
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3.2 Set of half-inch thick pipe girth welds

3.2.1 Manufacturing history and characterisation studies

A set of 3 butt-welded pipe components with dimensions 300 mm long, 265 mm 

outer diameter (OD) and 12.7 mm thick were fabricated from AISI Type 316L austenitic 

stainless steel under carefully controlled conditions at University of Manchester. The 

specimens were solution heat treated prior to welding at a temperature of 1060° C for one 

hour and air cooled to remove stresses induced due to the manufacturing process. The 

average parent metal yield strength (YS defined as the 1% proof stress) was 320 MPa and 

the chemical composition is given in Table 3.1. The welds had a single V-type side-wall 

preparation with a groove angle of 75° (schematic shown in Figure 3.3) and were made 

using a manual Tungsten inert gas (TIG) process with 316L filler wire. Three pipe welds 

were made using different electrical heat inputs of 0.7 kJ/mm (low), 1.0 kJ/mm (medium) 

and 1.2 kJ/mm (high) whilst the interpass temperature was maintained below 150° C.

Table 3.1. Chemical composition of the parent material

Composition C Si Mn P S Cr Ni Mo N
%

0.02 0.51 0.94 0.034 0.00 16.7 11.1 2.07 0.061

12.7

i
T

2

Figure 3.3. Weld groove preparation of half inch thick mock-ups.
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A slot (i.e. a window) was machined in each of the pipes to facilitate neutron 

diffraction residual stress measurements, by reducing neutron beam attenuation and 

measurement time. The extracted ‘plug’ of material was used for metallurgical analysis 

and hardness measurements, as well as for preparing ‘stress-free’ reference specimens 

(denoted do specimens) for the diffraction measurements. The macrographs and hardness 

maps were used to compare the measured residual stress distributions with the 

corresponding metallurgical zones i.e. the WCL and HAZ across the welded joints.

The surfaces to be examined were prepared following standard metallographic 

sample procedures which included grinding down to 4000 grit using silicon carbide paper 

and polishing in two steps using soft nap cloth coated with 3p and lp  diamond suspension. 

To reveal the weld macrographs and microstructures, the polished surfaces were etched 

electrolytically using 5% oxalic acid at 6V for 30 s. Macroscopic photos were taken using 

a Nikon Digital SLR camera and the microstructures at various locations using a Leica 

DMI5000 microscope. Hardness measurements were performed using a Vickers (HV) 

indenter, applying a load of 5 kg, using an automated Struers Duramin-A-300 hardness 

tester. The measurements were undertaken on several straight lines at intervals of 0.5 mm 

or 1 mm depending on the sample dimension with the spacing of 1 mm. The same 

procedure was repeated for the STYLE and Esshete pipe welds (discussed later in the 

chapter).
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The weld macrographs and hardness maps of the half inch pipes are illustrated in 

Figure 3.4. In all three mock-ups, a similar pattern was observed with maximum hardness 

in the region close to the weld root. The magnitude of peak hardness was between 240 - 

260 HV5 observed in the region near to the weld root and minimum of about 150 HV5 in 

the parent material. In the weld metal region, some of the weld passes would have been 

partially hardenened by subsequent passes. These regions are evident especially at the root 

of the weld where there is significant increase in hardness. In all three mock-ups, a 

decrease in the hardness values was observed moving from the weld to the HAZ. 

Moreover, there is a marked decrease in hardness moving towards the parent material, with 

typical values being -200 HV5 in the HAZ, and -160 HV5 in the parent metal. The 

microstructural examination (see Figure 3.5) shows the presence of a dendritic structure in 

the weld.
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Figure 3.4. Weld macrographs and hardness maps of (a) Low (b) Medium and (c) High 

heat input butt welded half inch thick pipes.
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(a) (b)

Figure 3.5. Microstructural analysis at the fusion boundary of (a) Low, (b) Medium and (c) 

High heat input pipes.
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3.2.2 Measurement of residual stress by neutron diffraction in the half inch 

thick welded pipes

Experimental Procedure

Neutron diffraction is a frequently used non-destructive method for measuring 

residual stresses because of the appreciable depth of penetration that can be achieved 

which is of the order of several centimetres in stainless steel structures and because it can 

provide full residual stress field tensor data. For these reasons, neutron diffraction was 

used to measure the residual elastic strain through the thickness of the girth welded pipes at 

various locations of interest. The neutron experiments were conducted in two sessions, 

wherein the through-wall distributions of as-welded residual stresses of the two welded 

pipes MU4-1 and MU4-3 were measured in the first cycle, and the three half inch pipes in 

the second. In both experiments, neutrons with a wavelength 1.648 A were collimated to a 

nominal gauge volume of (2.3 x 2.3 x 2.3) mm3 and for analysis of the {311} reflection a 

diffraction angle of approximately 99° was obtained. The {311} reflection was chosen as it 

is less dependent on plastic strain for metals with face centred cubic crystal structure [133].

The pipe was aligned such that the beam came through the window and measured 

the hoop component of strain at the specified measurement points. The pipe was set-up 

differently on the instrument hexapod stage to do measurements of axial and radial strain 

components, and hoop strain component at the same positions. The same experimental 

procedure was followed for both cycles of experiments. A schematic illustration of the 

different orientations of the pipe while performing the neutron measurements is given in 

Figure 3.6.
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(C)

Figure 3.6. Schematic illustration of (a) setup of SALSA diffractometer, different 

orientations of the pipe while performing the strain measurements in the (b) hoop, (c) axial 

and radial directions.

An access window of dimensions 35 mm x 50 mm was machined in each of the 

half inch thick pipes using a die sink EDM process in preparation for neutron diffraction 

residual stress measurements. The residual strains were measured using neutrons at 

approximately 90° offset to the weld start-stop location.
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Radial

Axial

HoopMachined window 
35 mm * 50 mm112.7 mm

265 mm

300 mm

Figure 3.7. Schematic illustrating the location of the machined window in the half inch 

thick girth weld.

The LAMP (Large Array Manipulation Program) [134] was used for the treatment 

of data obtained from neutron scattering experiments. An example of the diffraction peak 

obtained with an exposure time of 15 min in the low heat input pipe along the axial 

direction is given in Figure 3.8.

97.5 98.5 99.0 99.5 100.0 100.5

Scattering angle 6 (degrees)

Figure 3.8. Example of diffraction peak in the low heat input pipe along the axial direction.
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For stress free reference measurements, pins of weld and HAZ metal were 

extracted from the plug of material removed to create the window, with dimensions 5 mm 

x 5 mm x 12.7 mm (see Figure 3.9 (b)). Position dependent values for the stress free lattice 

parameter were determined by interpolating between fifteen measurements on each pin 

using a polynomial function. Position dependent values were also used to calculate the 

through wall stresses at locations between the WCL and HAZ (2 mm and 4.5 mm away 

from the weld centre-line) and HAZ stress free values for points further away from the 

HAZ (i.e. 10 mm and 14 mm away from the weld centre-line). The shift in the scattering 

angle observed in the stress free reference measurements at the WCL and HAZ locations is 

shown in Figure 3.10. It should be noted that the scatter registered in the stress free 

references at the WCL is significantly higher than in HAZ location.
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12.7

Figure 3.9. Schematic of (a) measurement array of neutron points in each of the half inch 

thick pipes and (b) stress free reference material extracted in the form of cylindrical pins.
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Figure 3.10. Variation of scattering angle in the stress free reference measurements of the 

low, medium and high heat input pipes at the WCL and HAZ locations.

Maps of stresses measured by neutron diffraction

The maps of measured stress acting in the axial direction in the low, medium and 

high heat input girth welds are presented in Figures 3.11-3.13. High tensile stresses were
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concentrated at a distance of 2 mm away from the weld centre line in the low heat input 

pipe, and gradually decreased with increasing distance from the WCL. In the case of the 

high heat input pipe, the maximum stresses were observed to be offset from the WCL 

which was in a state of compression through the entire though-thickness. The results 

reported were unexpected as high axial stresses concentrated around the WCL are reported 

in [18]. Furthermore, the magnitude of tensile stresses is expected to decrease moving 

further away from the WCL towards the HAZ and into the parent material. However, peak 

stresses were observed away from the WCL in all low, medium and high heat input pipes 

with the WCL predominantly being in a state of compression. Overall, the highest tensile 

stresses were found in the low heat input pipe having a magnitude of 300 MPa, followed 

by the high heat input mock-up with less than 200 MPa and the medium pipe with about 

150 MPa.
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Distance from weld centre line (mm)

Figure 3.11. Map of axial residual stress measured by neutron diffraction in the low heat 

input pipe using neutron diffraction. Crosses denote actual measurement points.
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Figure 3.12. Axial stress map for the medium heat input welded pipe measured using 

neutron diffraction.
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Figure 3.13. Axial stress map of high heat input welded pipe using neutron diffraction.
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Maps of measured hoop residual stress in the low, medium and high mock-ups 

(Figures 3.14 - 3.16) exhibit the same trends, as the axial stress maps, having high 

magnitude compressive stresses along the weld centre line at all through-wall positions. 

High magnitude compressive stresses are commonly observed near the weld root in the 

hoop direction as reported in [18], but it is unusual to find the final weld capping passes in 

compression. The maximum stresses observed were at a distance of 3 mm away from the 

WCL in the low, medium and high heat input pipe whereas comparatively lower 

magnitude stresses were found to exist in the medium heat input pipe. Overall, the highest 

tensile stresses were found in the low heat input pipe of about 600 MPa, closely followed 

by the high heat input pipe with less than 500 MPa and the medium heat input pipe of 

about 300 MPa. Interestingly, higher stresses were observed in the HAZ when compared 

with the WCL which was consistently in a state of compression in all cases. This has never 

been reported before in austenitic stainless steel welds which questions about the present 

results.

Distance from weld centre line (mm)

Figure 3.14. Map of hoop residual stress measured by neutron diffraction in the low heat 

input pipe using neutron diffraction. Crosses denote actual measurement points.
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Figure 3.15. Hoop stress map for the medium heat input welded pipe measured using 

neutron diffraction.
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Figure 3.16. Hoop stress map for high heat input welded pipe using measured neutron 

diffraction.
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Through-thickness line profiles of measured residual stresses at the WCL and 

HAZ

The axial, hoop and radial stress profiles at the WCL and HAZ of the three pipes are 

shown in Figures 3.17-3.19. There is no obvious pattern found in the nature of the axial 

stress profiles at the WCL and HAZ with respect to the different heat inputs used for 

welding. Likewise no effect is evident in the hoop stress profiles. Furthermore, substantial 

radial stresses were measured at the WCL (see Figure 3.19) in all three pipes. This is 

unrealistic considering that the wall-thickness of the pipes is less than 13 mm. For further 

investigation, the radial stresses were forced to zero assuming a state of plane stress as the 

pipes are relatively thin, and the resulting axial and hoop residual stress profiles examined.

-400  1 i i i | i i i i ] i —i i—i | i i l l  | i i—i—i—|—i—i t—i |—i—r
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Figure 3.17. Through wall axial stress distributions in the low, medium and high heat input 

pipes measured at the WCL and HAZ.
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Figure 3.18. Through wall hoop stress distributions in the low, medium and heat input 

pipes measured at the WCL and HAZ.

Figure 3.19. Through wall radial stress distributions in the low, medium and high heat 

input pipes measured at the WCL and HAZ.
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The stress profiles assuming zero radial stresses in the three mock-ups are 

illustrated in Figures 3.20 and 3.21. In the axial direction, a specific pattern was obvious in 

all the stress profiles in accordance with the variation in heat inputs. The low heat input 

pipe had significantly lower stresses at the inner diameter along the WCL that peaked near 

8 mm from the inside surface and therefore displayed the highest magnitude tensile and 

compressive stresses out of the three pipes. The high heat input pipe was least compressive 

at the ID and had a minimal change in the magnitude progressing towards the OD. As 

expected, the medium heat input pipe had an intermediate profile when compared to the 

low and high heat input pipes. There was less variation in axial stresses at the HAZ 

between three mock-ups. In the hoop direction, the peak stresses at the WCL of all the 

mock-ups were about 100 MPa. In the HAZ, the low heat input pipe had the highest tensile 

stresses close to the outer surface and a similar pattern was also found in the medium heat 

input pipe with the magnitude of stresses lower by about 100 MPa. In general, the stresses 

observed in all three pipes seemed to be more realistic when based on a plane stress 

assumption. However, it is essential to compare the stress profiles with an independent 

technique to gain confidence in the corrected neutron measurements.
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Figure 3.20. Axial stress distributions based on assumed plane stress conditions in the low, 

medium and high heat input pipes measured at (a) the WCL and (b) the HAZ.
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Figure 3.21. Hoop stress distributions based on assumed plane stress conditions in the low, 

medium and high heat input pipes measured at (a) the WCL and (b) the HAZ.
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3.2.3 Contour method residual stress measurements of the half inch thick pipes

The contour method can be applied to measure a full 2-D cross sectional map of the 

hoop residual stresses present in thick cylindrical components [52, 62]. The ‘skim’ mode 

of WEDM (Wire Electro Discharge Machining) was implemented for the contour cuts 

because this promotes a good surface finish and the relatively low electrical energy, 

minimises changes in material and the residual stresses near to the cut surfaces. The 

distribution of hoop stress of the component of interest can be determined by performing a 

cut along a radial-axial plane using the approach reported [62] by cutting the pipe 

lengthways into two halves severing both the opposite thicknesses simultaneously (see 

Figure 3.22). A specially designed jig was used to securely clamp the pipe to prevent any 

opening or closure of the component during the cut. Extensive cutting trials were 

conducted on 300 series stainless steel material replicating the pipe geometry to optimise 

the cutting parameters prior to the contour cut.

(a) Wire EDM Cutting direction

Top c u t surface W ire

4  m m  diam eter 
s ta rt pilot holes

specim en

Bottom cut surface

Jig used —  

fo r  c lam ping

Nozzle

Figure 3.22. (a) Schematic of wire EDM and the resulting cut surfaces (b) Trial cuts 

performed in pipes (a) and (b) represent the approach reported in [62] to undertake contour 

cuts in pipes.

The measurement cut was made using a ‘skim cut’ setting of the Agie Charmille 

F440S wire EDM with a 0.25 mm diameter brass wire. Start pilot holes (4 mm diameter)
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were drilled 15 mm from one end of the pipe to reduce opening of the cut flanks and 

thereby reduce the risk of introducing significant plasticity at the cut tip. The same cutting 

mode was used to undertake contour cuts in all the six pipes with minor modifications 

made to the WEDM parameters to account for the variation in wall thickness and 

geometry.

Coordinate measuring machines (CMM) with contact and non-contact probing 

mechanisms are commonly used for contour surface measurements in large engineering 

components. The surface deformation contours of the mating cut surfaces were measured 

using a common coordinate system [62] that holds the advantage of having the hoop 

bending moment across the pipe automatically included in the residual stress distribution 

along with the variation through the length of the pipe. The surface contours were 

measured in a temperature controlled environment using a Mitutoyo Crysta plus coordinate 

measuring machine (CMM) (see Figure 3.23). A touch probe system with 3 mm diameter 

ruby tip was used to provide a 0.5 mm x 0.5 mm grid of data in all the six pipes.

Figure 3.23. (a) Mitutoyo Crysta Plus 574 coordinate measurement machine (b) Cut pipe 

measured using the CMM.

(a) (b)
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The datasets corresponding to the cut surfaces were aligned by translation and 

rotation of one dataset, since they were measured in different local coordinate systems, 

mapped onto a common grid system before averaging, to eliminate shear effects. The 

averaged data were then cleaned to remove outliers and smoothed by curve fitting using a 

3D cubic spline based algorithm [135]. A knot spacing of 7 mm was consistently used in 

all mock-ups as it was found to provide an optimum spline fit to the measured data of a 

P91 pipe [136].

For each measured pipe, an undeformed 3D model of one half of pipe was created 

using ABAQUS FE software [83] based on the measured perimeters of the cut faces. An 

example of one of the 3-D FE models of the pipe is illustrated in Figure 3.24. Linear 

hexahedral reduced integration elements (C3D8R) were used with a fine mesh of 1mm size 

at the cut surfaces and progressively coarsened around the pipe circumference as shown in 

Figure 3.24. The opposite of the averaged normal displacements were applied as boundary 

conditions to the cut faces of the model and rigid body motion restrained by using three 

additional displacement constraints. To back calculate the released residual stresses acting 

normal to the cut surface, a linear elastic FE analysis was carried out using isotropic 

material properties (Young’s modulus and Poisson’s ratio).
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U.

Figure 3.24. 3-D FE model of one half of a cut pipe used for back-calculating released 

residual stress using the contour method.
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Determination of 2D Hoop stress maps using contour method

The ‘Low’, ‘Med’ and ‘High’ half inch pipes were severed using a single 

diametral-axial wire EDM cut. All of the cuts were of high quality (good surface finish and 

minimal artefacts). An identical procedure was implemented for undertaking contour 

method measurements in the STYLE (MU4-1 and MU4-3) and Esshete mock-up (see 

later).

The hoop stress distributions over the top and bottom surfaces of the half inch pipes 

are illustrated in Figure 3.25-3.27 with the respective WCL and HAZ locations marked up 

which were used to obtain through thickness line profiles. The stress distributions on both 

sides were found to agree with each other in all the three mock-ups. High tensile stresses 

can be observed near the outer surface whereas stresses are compressive towards the inner 

surface in the region of the weld. However, the low heat input mock up displayed a wide 

tensile region at the weld and zones of tensile stress away from the weld are also evident. 

The stress distributions in top and bottom surface of the medium heat input mock-ups 

agree with the regions of high tensile and compressive stress gradients clearly seen away 

from the weld. In the high heat input pipes, peak tensile stresses observed at the WCL of 

top surface was higher than what was observed in bottom cut surface and is associated with 

the localised effect of capping passes. In general, the results of the three pipes are very 

realistic and can be used to identify the effect of varying heat inputs on the residual stress 

field in thin walled cylinders.
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Figure 3.25. Cross-sectional view on a diametral-axial plane of a 3D finite element model 

of the low heat input pipe girth weld (R/t = 10, t = 12.7 mm, heat input = 0.7 

kJ/mm) showing a contour map of inferred hoop residual stresses on the pipe wall cut 

surfaces that have been relieved during a contour residual stress measurement.
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Figure 3.26. Cross-sectional view on a diametral-axial plane of a 3D finite element model 

of the medium heat input pipe girth weld (R/t = 10, t = 12.7 mm, heat input = 1.0 

kJ/mm) showing a contour map of inferred hoop residual stresses on the pipe wall cut 

surfaces that have been relieved during a contour residual stress measurement.
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Figure 3.27. Cross-sectional view on a diametral-axial plane of a 3D finite element model 

of the high heat input pipe girth weld (R/t = 10, t = 12.7 mm, heat input = 1.2 

kJ/mm) showing a contour map of inferred hoop residual stresses on the pipe wall cut 

surfaces that have been relieved during a contour residual stress measurement.
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Hoop residual stress line profiles at the WCL and HAZ

The through-thickness hoop residual stress profiles obtained using the contour 

method at the WCL and HAZ are compared in the low, medium and high heat input mock- 

ups in Figures 3.28-3.30. The stress profiles measured at the top WCL and bottom WCL 

are found to be in excellent agreement in the low heat input pipe (see Figure 3.28). A 

similar pattern is observed in the case of the top and bottom HAZ profiles with nearly the 

same magnitude as at the WCL. The similar magnitude of stresses found at the WCL and 

HAZ is associated with the uniformly wide tensile region at the WCL and HAZ locations 

as shown in the 2D contour method map of hoop stresses (see Figure 3.25). A peak stress 

close to 400 MPa was found near the through wall position (x/t) = 0.8 in all the stress 

profiles apart from the HAZ bottom profile having a maximum tensile stress of 300 MPa.
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Figure 3.28. Hoop residual stress distributions at the WCL and HAZ measured using the 

contour method in the Low heat input pipe.
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The hoop stress profiles in the medium heat input pipe (see Figure 3.29) resemble 

the trend observed in the ‘Low’ heat input pipe. Peak stresses of 400 MPa are observed at 

the WCL at through thickness position (x/t) = 0.7 and more than 200 MPa at the same 

position in the HAZ locations. The variation between the WCL and HAZ stress profiles is 

more evident in the high heat input mock-up (see Figure 3.30) and also there is a difference 

of 100 MPa in the peak stresses between the top and bottom cut surfaces at the WCL 

locations. However the HAZ profiles are in good agreement and closely match with each 

other in most of the through-thickness positions.
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Figure 3.29. Hoop residual stress distributions at the WCL and HAZ measured using the 

contour method in the Medium heat input pipe.
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Figure 3.30. Hoop residual stress distributions at the WCL and HAZ measured using the 

contour method in the High heat input pipe.

Comparison of hoop residual stress profiles measured using different 

techniques

The hoop residual stress profiles determined using neutron diffraction based on 

plane stress assumption and the contour method are compared at the WCL and HAZ 

locations in the three half inch thick mock-ups (illustrated in Figures 3.31-3.33). A 

difference of up to 100 MPa between measurements is not unusual as it is challenging to 

obtain reliable residual stress measurements in complex welded structures. In the low heat 

input pipe, the agreement between the measurements is poor at the WCL (see Figure 3.31) 

and the locations where there is some sort of resemblance is only at the measurement 

points close to the ID and to the outer surface. However, in the HAZ location (see Figure 

3.32), fair agreement is found apart from a mismatch at points near the outside diameter 

where the neutron measurements suggest the presence of tensile stresses 400 MPa greater 

than the contour results.
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Figure 3.31. Comparison of hoop residual stress distributions at the WCL measured using 

neutron diffraction and the contour method in the low heat input pipe (Low).

600
Neutron 

Contour top 

Contour bottom
400

CO
CL
2  200
tn cn d)v_
(/)
Q_

§ -200

-400

-600
0.8 1.00.60.0 0.2 0.4

x/t (from inner surface)

Figure 3.32. Comparison of hoop residual stress distributions at the HAZ measured using 

neutron diffraction and the contour method in the low heat input pipe (Low).
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In the medium heat input pipe, discrepancies between the neutron and contour 

measurements are again evident at the WCL (see Figure 3.33) where there is a maximum 

difference of about 600 MPa at through wall position x/t = 0.6. Interestingly in the HAZ 

(see Figure 3.34), the results are conformable though the contour measurements are giving 

higher tensile stresses than neutron diffraction in the mid thickness region of the order of 

100 MPa. Noticeably, the Medium heat input pipe had lower magnitude stresses present at 

the HAZ compared to the Low heat input pipe.
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Figure 3.33. Comparison of hoop residual stress distributions at the WCL measured using 

neutron diffraction and the contour method in the medium heat input pipe (Med).
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Figure 3.34. Comparison of hoop residual stress distributions at the HAZ measured using 

neutron diffraction and the contour method in the medium heat input pipe (Med).

In high heat input pipe (see Figures 3.35 and 3.36), a consistent pattern is observed 

as no agreement is found between the neutron and contour measurements at the WCL and 

some compatibility at the HAZ. The hoop stress reaches a maximum of 400 MPa at 

through wall position (x/t) = 0.6 and then decreases to less than 100 MPa approaching the 

outer surface. Neutron measurement values are constantly near the zero mark throughout 

the entire wall thickness at the WCL. This suggests that the neutron diffraction 

measurements at the WCL are not reliable because this pattern has never been observed in 

any previously published data [18].
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Figure 3.35. Comparison of hoop residual stress distributions at the WCL measured using 

neutron diffraction and the contour method in the high heat input pipe (High).
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Figure 3.36. Comparison of hoop residual stress distributions at the HAZ measured using 

neutron diffraction and the contour method in the high heat input pipe (High).
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Overall, the neutron diffraction residual stress measurements are in poor agreement 

with the contour measurements at the WCL and in reasonable agreement at the HAZ 

locations. There is more than one reason to believe that the neutron results might be 

incorrect at the WCL. First, the neutron measurements do not satisfy equilibrium 

conditions with significant radial stresses seen in all the three mock-ups and which do not 

tend to zero at the surfaces. Secondly, the HAZ residual stress profiles determined using 

neutron diffraction are consistently in agreement with the contour method measurements at 

both the top and bottom cut surfaces of the pipes. Moreover the pattern of WCL stress 

profiles found using neutron diffraction is very different from the historical measurements 

of austenitic stainless steel pipes reported [18]. Last but not the least, neutron 

measurements are highly susceptible to errors associated with stress free reference 

measurements in austenitic steel welds due to large grain size, plasticity, texture and the 

presence of inter-granular stresses [12, 73, 137].
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3.3 Style welded pipe components MU4-1 and MU4-3

3.3.1 Manufacturing history and characterisation studies

STYLE (Structural integrity for lifetime management of non-RPV components) was a 

EURATOM Framework 7 funded project [132] which aimed to improve and optimise 

methods of structural integrity assessment in the ageing and lifetime management of 

reactor coolant pressure boundary components. Two girth welded austenitic stainless 

steel pipe components MU4-1 and MU4-3 were made in the STYLE project by the Institut 

de Soudure. The pipes were heat treated at 1040 °C followed by rapid cooling prior to 

welding. Two butt-welded pipe specimens with dimensions (320 mm long, 250 mm OD 

and 25 mm thick) were fabricated from AISI Type 316L austenitic stainless steel under 

carefully controlled conditions. The welds had a V-type bevel side-wall preparation an 

unusual wide groove (see Figure 3.37) and were made with a backing plate (removed after 

welding) using an automated GTAW process. The pipes were made using electrical heat 

inputs of 1.0 kJ/mm (108 passes) and 2.5 kJ/mm (58 passes) with an inter-pass temperature 

of 150° C. The weld pass sequence in the mock-ups is schematically illustrated in Figure 

3.38. The chemical composition of the weld filler metal is given in Table 3.2.

20

25

5 L a i

Figure 3.37. Weld groove preparation of STYLE pipes MU4-1 and MU4-3.
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(a) (b)

Figure 3.38.Weld pass sequence of STYLE pipe components (a) MU4-1 and (b) MU4-3.

The average parent metal yield strength (1% proof stress) was 290 MPa and weld filler 

wire made of type 316L having yield strength of about 450 MPa giving overmatched yield 

properties. The general layout and photographs of MU4-1 during welding is shown in 

Figure 3.39.

Table 3.2. Chemical composition of the filler metal used for GTAW process.

Composition C Si Mn P S Cr Ni Mo Cu
%________________________________________________________________________

0.01 0.86 1.6 0.02 0.00 18.2 11.1 2.6 0.1

Figure 3.39. General layout and photographs of STYLE pipe MU4-1 during welding.
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Macrographs and hardness maps of welded pipes MU4-1, and MU4-3 are 

illustrated in Figures 3.40 and 3.41. In MU4-1, a decrease in hardness values was observed 

moving from the weld centre line to the heat affected zone. The macros show the width of 

the fusion zone became smaller (-12 mm) than the initial gap of 20 mm which is 

considered to be very wide. The weld hardness increases at the root and this hardened zone 

extends into the parent material. The hot spots in the hardness maps are associated with 

each individual weld bead and the last capping pass is evident in both welds as it is 

comparatively softer and similar to the parent material. There is a notable decrease in 

hardness towards the parent metal, with typical values being -220 HV5 in the HAZ, and 

-160 HV5 in the parent metal. The magnitude of hardness values of the weld metal in 

MU4-3 was substantially lower than MU4-1. This could result from fewer weld passes 

deposited in MU4-3 resulting in less cyclic strain hardening. The microstructure is 

consistently observed as dendritic in the weld metal, see Figure 3.42.

Figure 3.40. (a) Weld macrograph and (b) hardness map of MU4-1 mock up.
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(a)

Figure 3.41. (a) Weld macrograph and (b) Hardness map of MU4-3 mock pipes.

(a) (b)

lOO^im 200|im

Figure 3.42. Microstructural analysis at the fusion boundary of (a) low heat input MU4-1 

b) high heat input MU4-3 pipe components.
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3.3.2 Neutron diffraction residual stress measurements in the STYLE welded  

pipes MU4-1 and MU4-3

An equivalent experimental procedure to that decribed in section 3.2.2 was followed for 

the neutron diffraction stress measurements in the STYLE pipes MU4-1 and MU4-3. An 

access window of dimensions 35 mm x 50 mm was machined in each pipe using a wire 

EDM process in preparation for neutron diffraction residual stress measurements. The 

circumferential position of the access slot (window) was determined away from deep hole 

drilling residual stress (DH) measurement locations and the weld start stop position (SS) as 

shown in Figure 3.43.

Radial

“ *• Axial 

HoopMachined window 
35 mm * 50 mm Machined windowmm

250 mm

DH

320 mm

Figure 3.43. Schematic illustration of the location of the machined window in the pipe 

MU4-1.

Small cubes of HAZ and weld metal (four of each) with dimensions 5 mm x 5 mm 

x 5 mm were extracted from the removed window of material to measure the reference 

stress-free lattice parameter (do). A schematic diagram of the measurement array o f 22 

points in each pipe weldment and the location of the stress-free reference cubes at the 

WCL and HAZ are shown in Figure 3.44.
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Figure 3.44. Schematic of neutron measurement positions in (a) MU4-1 and (b) MU4-3 

girth weld, and (c) stress free reference cubes locations.

Owing to long neutron path lengths the diffraction measurements in the first few 

millimeters near the inner and outer diameter of the mock-ups MU4-1 and MU4-3, the 

quality of the diffraction peaks observed were relatively poor. Figure 3.45 shows an 

example of a poor quality diffraction peak measured along the axial direction.
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Figure 3.45. Diffraction peak near the inside diameter of MU4-1 along axial direction.

The through-wall stress profiles in the axial direction at the WCL and HAZ in 

MU4-1 (low heat input girth weld) and MU4-3 (high heat input girth weld) are illustrated 

in Figures 3.46-3.48. In MU4-1, the stress profiles at the WCL exhibit more scatter 

compared to the HAZ. The axial stress distributions in MU4-3 (high heat input girth weld) 

at the WCL and HAZ follow similar patterns with the exception that the profile at the 

WCL falls into compression adjacent to the outer surface. The stress profiles of the two 

pipes are compared, whilst some scatter is observed in the axial stress profiles for both 

pipes at the WCL location, the stress profiles have a similar shape. At the HAZ location, 

the axial profiles show the same trend but the high heat input weld has a higher tensile 

magnitude, inferring the presence of a membrane stress.

A similar pattern is observed in the hoop stress profiles in Figure 3.47. The 

maximum stresses are located at through wall position x/t = 0.8, from the inner surface, in 

both axial and hoop stress profiles. High magnitude compressive stresses are observed 

approaching the inner surface at WCL in the hoop direction of MU4-3 whereas the stresses 

in the HAZ remain tensile. The hoop stress profiles at the WCL have a similar shape with 

the high heat input distribution being slightly more tensile. Whereas at the HAZ location 

the high heat input profile is about 200 MPa more tensile. The radial stress profiles follow 

a different pattern with higher tensile stresses at the inner diameter in both WCL and HAZ



locations. A divergent pattern in the WCL and HAZ stress patterns is also observed in the 

radial direction towards the outer surface.
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Figure 3.46. Axial stress distributions in the low heat input (MU4-1) and high heat input 

(MU4-3) pipes measured at the (a) the WCL and (b) the HAZ.
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Figure 3.47. Hoop stress distributions in the low heat input (MU4-1) and high heat input 

(MU4-3) pipes measured at the (a) the WCL and (b) the HAZ.
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Figure 3.48. Radial stress distributions in the low heat input (MU4-1) and high heat input 

(MU4-3) pipes measured at the (a) the WCL and (b) the HAZ.
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3.3.3 Contour method residual stress measurements of STYLE pipe weldments 

MU4-1 and MU4-3

The experimental procedure described in section 3.2.3 was used to undertake contour 

measurements in weldments MU4-1 and MU4-3. The results including 2D stress maps in 

the hoop direction and line profiles at the WCL and HAZ are discussed in the following 

sections.

Determination of 2D hoop residual stress maps using the contour method

Maps of measured residual hoop stress in pipes MU4-1 and MU4-3 are presented in 

Figures 3.49 and 3.50. The distributions of measured stress on the top and bottom cut faces 

were in excellent agreement with each other exhibiting a wide region of tensile stress 

prevailing at the outside surface and compressive stress near the inside surface. This could 

be linked with the wide weld preparation employed in the STYLE weldments. However, 

the wide region of tensile and compressive stresses in the weld is not evident in the MU4-3 

which was made using a higher heat input and less number of passes. Zones of high stress 

gradients were observed away from the weld and could be associated with the wire EDM 

cutting issues.
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Figure 3.49. Cross-sectional view on a diametral-axial plane of a 3D finite element model 

of the MU4-1 pipe girth weld (R/t = 4.5, t = 25 mm, heat input = 1.0 kJ/mm) showing a 

contour map of inferred hoop residual stresses on the pipe wall cut surfaces that have been 

relieved during a contour residual stress measurement.
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Figure 3.50. Cross-sectional view on a diametral-axial plane of a 3D finite element model 

of the MU4-3 pipe girth weld (R = 4.5, t = 25 mm, heat input = 2.5 kJ/mm) showing a 

contour map of inferred hoop residual stresses on the pipe wall cut surfaces that have been 

relieved during a contour residual stress measurement.

Hoop residual stress line profiles at WCL and HAZ

The residual through-wall line profiles of hoop stresses measured using the contour method 

in pipes MU4-1 and MU4-3 are given in Figures 3.51 and 3.52. Very good agreement is 

found between the top and bottom hoop stress profiles determined both at the WCL and 

HAZ in mock-up MU4-1 (see Figure 3.51). The peak stresses observed at the inside and 

outside surface are significantly higher at the WCL compared to the HAZ indicating the 

presence of high bending stresses along the WCL. Compressive stresses of over 500 MPa 

were found at through wall position (x/t) = 0.2 at the WCL and stresses were found to 

increase steadily moving towards the outer surface. The pattern found at the HAZ was
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similar with the magnitude of peak stresses being lower in magnitude by about 200 MPa 

both in tension and compression.

Excellent agreement was found between the top and bottom WCL and HAZ hoop 

stress profiles in the high heat input mock-up MU4-3 (see Figure 3.52). In this mock-up, 

the peak stresses in compression were of substantially lower magnitude than found in 

MU4-1 both at the WCL and HAZ suggesting the presence of low bending stresses. The 

peak stresses for both pipe welds were found to exist at the outer surface having magnitude 

of about 400 MPa and 200 MPa at the WCL and HAZ respectively. Overall, the results 

look very convincing and are next compared with the neutron diffraction measurements 

performed on both pipes.
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Figure 3.51. Hoop residual stress distributions at the WCL and HAZ measured using the 

contour method in the low heat input pipe (MU4-1).
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Figure 3.52. Hoop stress distributions at the WCL and HAZ measured contour method in 

the high heat input pipe (MU4-3).
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Comparison of residual stress profiles measured using different techniques

Comparisons of measured through-wall line profiles of residual stress acting in the 

hoop direction measured using neutron diffraction and the contour method at the WCL and 

HAZ locations in mock-up MU4-1 are illustrated in Figures 3.53 and 3.54. Excellent 

agreement is found between the neutron and contour method results for the top and bottom 

cut surfaces at the WCL (see Figure 3.53). Interestingly, compressive hoop stresses of the 

level measured in MU4-1 are not evident in published data. The presence of these high 

compressive stresses near the inside surface is judged likely to be the result of the specific 

weld procedure employed for both MU4-1 and MU4-3; that is an unusually wide weld 

preparation was used with a backing plate removed by grinding after the fabrication 

process.
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The agreement between the measurements from through wall position (x/t) = 0.2 to 

0.8, is very good considering the innate scatter associated with welding residual stresses in 

rather complicated structures such as girth welded pipes. The difference at the inside 

surface may be due to the result of insufficient neutron flux required to penetrate the 25 

mm thick mock-up where the diffraction peaks was found to be poor. However, most of 

the points are in good agreement and with each other indicate peak stresses both in tension 

and compression.
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Figure 3.53. Comparison of hoop residual stress distributions at the WCL measured using 

neutron diffraction and the contour method in the low heat input pipe (MU4-1).

114



Figure 3.54 shows the comparison of hoop residual stress profiles using different 

techniques at the HAZ location for MU4-1. The agreement is excellent except for the 

mismatch approaching the inside surface at (x/t) = 0.2, where the neutron measurements 

are inferring more tensile stresses of the order of 100 MPa. However, the measurement 

points are in good agreement from through-wall position x/t = 0.3 to the outer surface. 

Overall, the nature of the though-thickness stress profile measured using the two 

techniques is similar and the agreement can be deemed as ‘good’.
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Figure 3.54. Comparison of hoop residual stress distributions at the HAZ measured using 

neutron diffraction and the contour method in the low heat input pipe (MU4-1).
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In MU4-3 (high heat input pipe) the agreement between measurements was poor at 

some points especially near the outer surface (x/t > 0.7) where the neutron diffraction 

measurements are noticeably lower than the contour measurement (see Figure 3.55). The 

radial stresses determined using neutron diffraction (see Figure 3.48 (a)) at the three points 

near the outside surface are high, of the order of 300 MPa, at the outermost point. This 

suggests the neutron measurements that may be unreliable here because radial stresses at 

the surface are expected to be close to zero and the high radial stress results may be 

associated with uncertainties in stress-free lattice parameter measurements for the 

austenitic weld metal owing to compositional variations, texture, large grain sizes or 

plasticity [12, 73, 137]. Despite this the ageement at points along through wall positions 

(x/t) = 0.2 -  0.7 is fairly good and the peak stresses are captured well by both techniques. 

Noticeably, the neutron measurement is inferring higher compressive stresses near to the 

inside surface. As mentioned before, compressive hoop stresses measured in MU4-3 near 

the inside surface are not evident in any published historical measurement data [18] and 

this is likely to be the result of the specific weld procedure employed. Overall, the 

agreement in results from the two measurement techniques can be considered to be good 

excluding the points near to the outer surface.
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Figure 3.55. Comparison of hoop residual stress distributions at the Weld Centre Line 

(WCL) measured using neutron and the contour method in the high heat input pipe (MU4-

3).
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In the HAZ location (see Figure 3.56) the agreement between neutron and contour 

measurement is favourable though the latter is suggesting the presence of lower stress 

magnitude at most of the measurement locations. The mismatch is about 100 MPa in some 

points and as mentioned before, this is a common observation when comparing stress 

measurements using different techniques in multi-pass weldments. In general, 

measurements in MU4-1 (low heat input pipe) made using two diverse techniques agree 

better with each other than those measured in than MU4-3 (high heat input pipe).
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Figure 3.56. Comparison of hoop residual stress distributions at the HAZ measured using 

neutron and the contour method in the high heat input pipe (MU4-3).
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3.4 Esshete 1250 pipe

3.4.1 Manufacturing history and characterisation studies

A series of butt-welded pipe test components were fabricated by TWI (The Welding 

Institute) [138] from Esshete 1250, which is an austenitic stainless steel with added 

vanadium and niobium to increase its high temperature strength. The chemical composition 

of the Esshete material is described in Table 3.3. The pipe sections were solution heat 

treated and quenched before welding; and thus introduced quench residual stresses in the 

sections. The manufacturing history of the welded Esshete pipe is schematically illustrated 

in Figure 3.57. The dimensions of the mock-up were 200 mm long with an outer diameter 

of 180 mm and 35 mm thick. The root and subsequent weld passes were deposited using 

manual TIG and MMA processes respectively and the root pass protrusion was removed 

by grinding after the completion of welding. As several welds were made in series, the 

pipe assembly was cut into a number of similar components with a girth weld at the mid

length of each. The weld groove preparation and pass sequence of Esshete mock up is 

illustrated in Figure 3.58. The chemical composition of the filler material is shown in Table 

3.4. The Esshete mock-up supplied to the Open University for contour method 

measurement was made with an average welding heat input of 1.8 KJ/mm. The yield 

strength (1% proof stress) at room temperature of the Esshete 1250 parent metal and weld 

metal were 370 MPa and 564 MPa, respectively. Additionally conventional deep hole 

drilling (DHD), and incremental deep hole drilling (iDHD) were performed at the 

University of Bristol. Neutron measurements were not possible in this mock-up owing to 

high wall thickness.

Table 3.3. Chemical composition of the Esshete material.

Composition
%

C Si Mn P S Cr Ni Mo N

0.097 0.45 6.23 0.025 0.0037 14.71 9.38 0.95 0.061

W Co V Cu Sa Nb B A1
0.01 0.045 0.28 0.13 0.005 0.092 0.004 0.004

119



Table 3.4. Chemical composition o f the Esshete filler metal.

Composition C Si Mn P S Cr Ni Mo Nb V
%___________________________________________________________

0.1 0.4 5.5 0.03 0.01 16.5 9.0 1 0.8 0.3

(a) (b)

Welding using 
TIG and MMAW

Cutting the 
pipe assembly

Machining to 
final dimensions

Rough machining 
of pipe section

Grinding (to remove 
root pass protrusion)

Solution heat treatment 
followed by water quenching

Figure 3.57. (a) Photograph of the Esshete 1250 pipe assembly containing series of girth 

welds (b) Manufacturing history of the welded Esshete pipe weldments [17, 18].

(a) (b)
W  \  30* /  V '

\  55 /
, " T 1 /J-i  ^  / - i

! - 1 , 1 -  I —

Figure. 3.58. (a) Weld groove preparation (b) Schematic showing weld pass sequence in 

the Esshete 1250 pipe.
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Maximum hardness values in the Esshete mock-up were observed near the weld 

root region and the variation of hardness with respect to individual weld beads was evident 

in the map shown in Figure 3.59. Hardness values as high as 300 HV5 were observed near 

the weld root and found to decrease when moving away both along the length and through

thickness directions. The hardness values reduced to 160 HV5 approaching the parent 

material. The Esshete material has enhanced material properties such as higher yield 

strength than Type 316L stainless steel and hence there is a difference in the hardness 

values found compared to the other pipes discussed earlier. A dendritic microstructure was 

observed in the weld metal and elongated grains in the HAZ as illustrated in Figure 3.60.
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Figure 3.59. Weld macrographs and Hardness maps of Esshete weldment.

200urn

Figure 3.60. Microstructural analysis at the fusion boundary of of Esshete material.
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3.4.2 Contour method residual stress measurements of Esshete 1250 pipe 

weldm ent

Determination of hoop stresses using contour method

The hoop stresses in the Esshete weldment were determined following the same procedure 

described in section 3.2.3. A map of measured hoop stress on a cross-section of the mock- 

up is presented in Figure 3.61. High tensile residual stresses can be observed near the outer 

surface whereas stresses are compressive towards the inner surface in the region of the 

weld. Regions of tensile hoop stress at mid-wall were also observed remote from the weld 

and are probably the consequence of the solution heat treatment of the pipe (involving a 

water quench) prior to welding.

HAZ bottomHAZ top

WCL bottomWCLtop

Bottom cut 
surfaceTop cut surface

Figure 3.61. Cross-sectional view on a diametral-axial plane of a 3D finite element model 

of the Esshete pipe girth weld (R/t = 2.1, t = 35 mm, heat input = 1.8 kJ/mm) showing a 

contour map of inferred hoop residual stresses on the pipe wall cut surfaces that have been 

relieved during a contour residual stress measurement.
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Hoop residual stress line profiles at the WCL and in the HAZ

Hoop residual stress profiles at the WCL and HAZ determined in the top and bottom cut 

surfaces are shown in Figure 3.62. The distribution and magnitude of residual stresses 

observed across the top cut surface of the pipe was similar to the bottom surface with high 

tensile stresses near the outer circumference falling to compression at the inner surface in 

the vicinity of the weld. Comparing the profiles at the WCL for the top face with the 

bottom suggests a difference (up to 100 MPa) in distribution approaching the outer surface; 

this could be associated with variations in the exact capping weld bead lay-up from top to 

bottom of the pipe (for eg. proximity of the start and stop positions). The HAZ profiles are 

also in good agreement with each other and indicate the presence of lower magnitude 

stresses at both the inside and outside surface than the WCL.
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Figure 3.62. Hoop residual stress distributions at the WCL and HAZ measured using the 

contour method in the Esshete pipe.
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The contour method results for the WCL are compared with incremental deep hole 

drilling reported in [139] in Figure 3.63. The pattern of the stress profile measured by the 

IDHD method (for through-wall position x/t > 0.3) is similar to the measured profile from 

the contour method. But the results for x/t < 0.3 sharply deviate from each other. The 

IDHD results have been deemed unreliable in this region when was realised that the 

measurement passed through a weld defect.
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Figure 3.63. Comparison of hoop residual stress distributions at the WCL measured using 

IDHD and the contour method in the Esshete pipe weldment.

Determination of axial stresses using contour method

In the contour method, multiple cuts can be employed to measure more than one stress 

component [61]. In this work, an attempt to measure the axial stress component of the 

Esshete pipe was made by using a wire EDM cut across diametral-hoop plane XY as 

shown in Figure 3.64. The cut was performed at the WCL on one of the remaining half 

pipes following the contour method EDM cut for the hoop stress measurement. Sacrificial 

material was machined to mate with both the top and bottom of the half pipe as shown in 

Figure 3.65 to ensure a good quality cut surface with minimum artefacts. The surface 

deformation contours were measured using a Zeiss Eclipse laser non-contact coordinate
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measuring machine with a point density spacing of 0.25 mm x 0.25 mm. The data analysis 

procedure employed was similar to that for the hoop stress measurement with additional 

steps implemented to account for the stress relaxation effects from the previous cut (along 

XZ plane). This was accomplished by applying the displacement boundary conditions 

applied to FE model created for determining the hoop stresses.

Figure 3.64 Schematic illustration of the location and plane of the performed contour cut 

for the measurement of axial stresses at the weld centre line in the Esshete weld.

Direction of ED M  cutting

H i
-Top sacrificial layer

Bottom sacrificial layer

Figure 3.65. Schematic representation of the sacrificial layers attached on the Esshete 

mock-up for determination of 2D stresses along axial direction at the WCL.
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A map showing the measured axial stress distribution at the WCL is illustrated in 

Figure 3.66. The axial stress residual profiles were averaged around a sector extending 45° 

on either side of the normal YY as shown in Figure 3.67; this is representative of the 

‘Average’ profile. The axial stress profiles determined along different through-thickness 

positions at 12°, 24°, 36°.... 168° with respect to the flat edge (XX) in the clockwise 

direction are compared with each other and the averaged stress profile at the WCL of the 

Esshete pipe in Figure 3.68. Significant ‘scatter’ was observed in the measured data using 

the contour method ranging from 100 MPa to more than 200 MPa at many locations. This 

is the first time that the variation of through-thickness stresses around the circumference 

has been studied at the weld centre line of a girth welded pipe. The patterns of stress 

profiles matched closely with each other with a peak compressive stress of 250 MPa found 

at x/t = 0.3 with a peak tensile stresses close to 300 MPa at x/t = 0.65 - 0.85. The 

magnitude of stresses found to decrease approaching the outer surface with a magnitude of 

less than 100 MPa for all the stress profiles.
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x/mm

Figure 3.66. Cross-sectional view on a diametral-hoop plane of a 3D finite element model 

of the Esshete pipe girth weld (R/t = 2.1, t = 35 mm, heat input =1 . 8  KJ/mm) showing a 

contour map of inferred axial residual stresses at the weld centre-line on the pipe wall cut 

surfaces that have been relieved during a contour residual stress measurement.

XX12°

4 5 °4 5 °

YY

Figure 3.67. Schematic illustration of the location of through-thickness stress profiles in 

the Esshete weld.
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Figure 3.68. Comparison of axial stress profiles at various locations (12 deg., 24 deg., 36

deg 168 deg. and averaged stress profile across 45 deg across both sides of YY) at the

WCL of the Esshete pipe.

The residual stress results from the IDHD measurement reported in [139] are 

compared with the contour measurement in Figure 3.66. The trend observed in results from 

the IDHD method (for through-wall position x/t > 0.3) is similar to the measured axial 

stress profile from the contour method for through-wall position x/t > 0.3. However, the 

results for x/t < 0.3 does not match up with the contour method measurements as the IDHD 

results were unreliable in this region as mentioned earlier.
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Figure 3.69. Comparison of axial stress distributions at the Weld Centre Line (WCL) 

measured using IDHD and contour method in the Esshete pipe.

3.5 General Discussion

The experimental measurements acquired at the WCL and HAZ locations in the hoop 

direction using different techniques in all the six mock-ups are compared in Figures 3.70- 

3.73. For convenience sake, measurements along the hoop direction at the WCL in the half 

inch thick pipes are compared first followed by measurements in the same pipes at the 

HAZ locations. In Figure 3.70, fair agreement is found between the measurements up to 

the through-wall position x/t = 0.5 and all the neutron measurements advance to a state of 

zero stress approaching the outer surface. The contour measurements however carry on 

reaching a peak tensile stress of 400 MPa at through wall position x/t = 0.7 and then 

decrease moving towards the outside diameter. The lack of agreement between the 

measurements is prevalent in the through thickness range (x/t) = 0.5 -  0.9. On the other 

hand, good agreement is found between the measurements reported in the HAZ location 

(see Figure 3.71) for the same pipes with a difference of 200 MPa in the peak stresses 

which can be attributed to the variation in heat inputs.

130



03
Q.

c/)
C/)
I
to
CLOO
X

600

400 -

200  -

0 -

-200  -

-400 -

-600

£
•  * 
M

-     ^  _
*  JL +0O

* , . + < >  X

* * P i *  * *
$

f
0

t—i—i—i—I—i—i—i—i—|—i—i—i—i—|—i—i—i—i—|—i—i—I—r

^ Low neutron

J  Med neutron

High neutron 

Low contour top
0 Low Contour bottom
+  Med Contour top
1 Med Contour bottom
*  High Contour top
o  High Contour bottom

0.0 0.2 0.4 0.6 0.8
x/t (from inner surface)

1.0

Figure 3.70. Comparison of hoop residual stress distributions at the WCL measured using 

neutron diffraction and the contour method in the thin pipes (Low, Med and high).
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Figure 3.71. Comparison of hoop residual stress distributions at the HAZ measured using 

neutron diffraction and the contour method in the thin pipes (Low, Med and high).
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The measurements in the hoop direction for the thicker pipes (MU4-1 MU4-3 and 

Esshete) at the WCL and HAZ are compared in Figures 3.72 and 3.73 respectively. The 

measurements obtained in the WCL (see Figure 3.72) of the three pipes exhibit very good 

agreement in spite of the wide scatter observed particularly in the neutron measurements. 

Emphasis should be given to the fact that very high compressive stresses (~ 500 MPa) 

were observed in the region close to the inside diameter in all three pipes. The STYLE 

pipes MU4-1 and MU4-3 were made with unusually wide weld prep with a backing plate 

removed after welding. The high compressive stresses reported in each of these weldments 

are believed to be the effect of the specific weld procedure used during fabrication. The 

yield strength of the Esshete weld material (564 MPa 1% PS) is higher than the STYLE 

pipes weld filler and therefore it is plausible to have compressive stresses of the magnitude 

reported for the Esshete pipe. The neutron measurement points near the outside surface of 

the high heat input pipe MU4-3 are judged to be of deviant nature and believed to be the 

effect of an incorrect stress free reference used. In contrast, the agreement between contour 

method measurements in all three mock-ups is satisfactory and the slight variations likely 

to be associated with the differences in geometry and the welding heat inputs employed to 

fabricate the components. In the HAZ location (see Figure 3.73), a high level of 

consistency was observed with the exception of neutron measurements in the high heat 

input mock-up MU4-3 inferring the presence of slightly higher tensile stresses. However, 

the agreement in general is quite good and especially for the contour measurements.
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Figure 3.72. Comparison of hoop residual stress distributions at the WCL measured using 

neutron diffraction and the contour method in the thick pipes (MU4-1, MU4-3 and 

Esshete).
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Figure 3.73. Comparison of hoop residual stress distributions at the HAZ measured using 

neutron diffraction and the contour method in the thick pipes (MU4-1, MU4-3 and 

Esshete).
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The axial residual stresses in the six pipes (MU4-1 MU4-3, Esshete, Low, Med and 

High) are compared at the WCL and HAZ locations in Figures 3.74 and 3.75. A wide 

scatter was observed especially at the WCL (see Figure 3.74) although the stress profiles in 

MU4-1, MU4-3 and Esshete show a similar shape. However the stress profiles in the low, 

medium and high heat input pipes do not seem to have any correlation with the thicker 

mock-ups; note the state of compression approaching the outer surface. The measurements 

at the HAZ location (see Figure 3.75) display comparatively less scatter. Thus the variation 

of stresses with respect to change in heat input and geometry has a greater influence in the 

axial direction than the hoop.
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Figure 3.74. Comparison of axial residual stress distributions at the WCL measured using 

neutron diffraction and the contour method in all mock-ups (MU4-1, MU4-3, Esshete, 

Low, Med and High).
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Figure 3.75. Comparison of axial residual stress distributions at the HAZ measured using 

neutron diffraction and the contour method in all mock-ups (MU4-1, MU4-3,Esshete, Low, 

Med and High).
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3.6 Conclusions

The findings reported in this chapter can be summarised as follows,

• Six new pipe weldments have been fabricated with a range of wall thickness, weld 

heat input and weld groove geometries. Cross-sections for each weldment have 

been examined and the microstructure characterised by microscopy and hardness 

mapping.

• Residual stresses in each of the girth welded mock-ups were measured by neutron 

diffraction using the SALSA neutron diffractometer at the ILL (France) and the 

contour method using the in-house facility at the Open University, UK.

• The measured residual stress profiles obtained using different techniques have been 

compared with each other at WCL and HAZ locations. Significant scatter is 

observed among the residual stress profiles especially with the neutron diffraction 

measurements and the spread of measured data from different techniques can be 

more than 200 MPa in many cases which is associated with the typical nature of 

residual stresses in multi-pass welds.

• The measurements reported using different techniques showed high level of 

agreement in the respective pipes with the exception of stress profiles measured 

using neutron diffraction along the WCL in the half inch thick pipe welds. The 

discrepancy associated with the neutron measurements is believed to be associated 

with uncertainties in stress-free lattice parameter measurements for austenitic weld 

metal owing to compositional variations, texture, large grain sizes or plasticity.

• Measurement of axial stress profiles using the contour method was successfully 

attempted in the Esshete girth weld by employing multiple cuts. Several through- 

thickness line profiles were extracted along the circumference and compared. The 

scatter observed in the measured data at the weld centre line ranged from 100 MPa 

to more than 200 MPa.



• Overall, contour method measurements were found to provide more consistent 

results than neutron diffraction especially in the weld metal.

The measurements acquired from the girth welded pipes are of high quality and will be 

used to support the development and validation of the neural network approach for 

predicting residual stress profiles for use in integrity assessments of defective structures 

discussed in the coming chapter.
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Chapter 4 

Neural network modelling

4.1 Background

The human brain is considered to be very unique as it can perform astonishing tasks on 

a day to day basis, possesses phenomenal power to leam and understand complex 

activities. Artificial neural network (ANN) is a field of computation that seeks inspiration 

from the brain and tries to reproduce some of its amazing characteristics. By adopting a 

brain style computation, there are many advantages over computers such as parallelism, 

noise tolerance, ability to leam and generalise patterns as described in [140]. ANNs have 

the potential to deal with non-linear multi-variable systems with a high level of noise, 

where developing an analytical model is either not feasible, or too time consuming.

4.1.1 Theory

According to the world of computing, Artificial Neural Networks (ANN) is a class 

of algorithms that has the ability to leam and generalize non-linear systems thus making it 

conducive for solving problems in real life scenarios. A neural network can be ‘trained’ 

using historical data or a set of example input and output data. The training process can be 

defined as a search for the optimum non-linear relationship between the input and output 

data and is computationally intensive. Once the network is trained the estimation of outputs 

for any unseen set of inputs can be performed rapidly. The training process consists of 

adapting a set of coefficients (referred to as weights and biases) which in combination with 

the activation or transfer function relate the input to the output via a suitable algorithm
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such as back-propagation [141]. The fitting of a network function to a set o f data continues 

until it reaches a minimal state of the error function, such as the sum of the squares error. 

For multilayer networks [142] the search for the minimum error generally occurs in an 

iterative fashion starting with some random values assigned to the weights. The basic 

procedure to train an ANN structure is to use a database of observations and then evaluate 

the predictive capacity of the developed model on previously unseen data. The main 

disadvantages of using neural networks are the reliance on good training data, inability to 

extrapolate into new regions of input space, susceptibility to overfitting and the need for 

adequate training data.

Single and multi-layer networks

An ANN comprises processing elements, or building blocks, called neurons arranged in 

hierarchical groups and operate in a parallel manner to generate outputs for several inputs. 

A simple model of a neural network with one neuron is shown in Figure 4.1.

output

x,kp

Figure 4.1 Structure of a single layer neural network.

The input signal x , ( x i ,  X2, X3 . . .  xp) is first multiplied by a parameter w* known as a 

weight (parameter which is analogous to the synaptic strength of a biological neuron) and 

is then summed up with all the weighted input signals to give a total input to the neuron 

given by equation (1),

p
a  = y \  w x i  (1)

(= i
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The net output from a neuron is given by z = / (a) where/ represents a non-linear 

function and is known as an activation or transfer function. The weights can be of either 

sign (excitatory or inhibitory) and are optimised during the training process by minimizing 

a regularised error function based on the network output.

A feed-forward network is described as a non-linear mathematical function which 

transforms a group of inputs into outputs to produce a mapping and is governed by the 

parameters called weights. The feed-forward network used in this study consists of 2 layers 

of neurons interconnected as shown in Figure 4.2. The first layer is referred to as ‘hidden 

layer’ and its neurons as hidden units or processing units. The numbers of hidden units 

greatly influence the complexity of the network and their activation function which is non

linear, could either be a tank or logh function. The hidden layer greatly contribute in 

helping the model to identify complex interactions between the variables.

InputInputInput Input

neurons

^  output J

Hidden layer

Figure 4.2. A two layer feed-forward network identical to the one used in this study.
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In a Multi-Layer Perceptron (see Figure 4.2), a neuron (node) of each layer is

connected to a neuron of the next layer through a synaptic weight and bias. The output of

the input variables is fed to the hidden layer and the output of the hidden layer is then

progressively fed to the output layer. The error function can be regarded geometrically as

an error surface resting over a weight space, as schematically indicated in Figure 4.3. The

network training is a search process to determine the minimum of the error surface. An 
\ » 

absolute minimum of the error function, indicated by the weight vector WA is called a

global minimum and there may also exist other minima’s, such as the one corresponding to

the weight vector W B which is referred to as local minima [11]. Many algorithms

performing the minimization of the error function make use of the derivatives of the error

function with respect to the weights in the network. These derivatives form the components

of the gradient vector YE(w) of the error function, which gives the gradient of the error

surface at an arbitrary point, as indicated in Figure 4.3. The approach of using direct

gradient descent has improved in recent years by the development of more sophisticated

search algorithms such as scaled conjugate gradients [143] which provide a significantly

faster convergence. It is generally agreed that there is a considerable benefit to use the

gradient information during training, for instance calculation of the Hessian matrix or

second order derivatives of the error function with respect to the weight matrix play an

important role in a number of advanced network algorithms.
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VE

Figure 4.3. Schematic illustration of the error function E(w) as a surface resting over the 

weight space (space spanned by values of the weight and bias W= {wi,W2,...wn}. The 

weight vector and WB corresponds to the global and local minimum of the error 

function [128].

4.1.2 Practical aspects of neural network training 

Overfitting

The phenomenon of overfitting occurs when the network gives a relatively small error with 

respect to the training data, but is poor in generalising the underlying trend in the data and 

therefore gives poor predictions for new or unseen set of data. There is a possibility of 

overfitting the data as the functions used in neural networks are very flexible. Overfitting 

can be avoided by controlling bias and variance, by adding penalty terms to the error 

function to promote the network mapping to have appropriate smoothness properties, also 

known as regularization [10].

Choice of input variables

There is a natural tendency to include a maximum number of variables to train the network 

in order to make it more robust. However, in pattern recognition problems it was identified 

that simply discarding some of the input variables could actually lead to improved 

generalization ability. This is because the size of the training dataset required to specify a
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mapping would generally grow exponentially with the dimensionality of the input space. 

This paradoxical phenomenon is known as the curse of dimensionality [144].

Pre and post processing of data

It is considered to be advantageous to apply pre-processing transformations to the raw data 

before it is presented to a network as well as post-processing to give the required output 

values of the network (see Figure 4.4) [145]. The pre-processing and post-processing steps 

may consist of simple fixed transformations such as normalising the values to a range 

between -1 to +1. For practical applications, data pre-processing can often have a 

significant effect on generalization performance as it may involve a reduction in the 

dimensionality of the input data.

Input data

Pre-processing

Neural netw ork

Post-processing

O utput data

Figure 4.4. Pre-processing and post-processing transformations applied to the data. 

Committee model

The models with a different number of hidden units will give different predictions as the 

complexity largely depends on the number of hidden units. It is a common practice in the 

training process to have many different networks and then to select the best, on the basis of 

performance on an independent validation set. The drawback with the above approach 

being all the effort put in training the remaining networks is of no purpose and the network 

with the best performance during training may not perform the best with the test data. This
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can be overcome by combining the networks together to form a committee This approach 

can be useful as it can lead to significant improvements in the predictions on new data, 

with additional computational effort. In fact, the performance of a committee of networks 

can be better than the performance of the best single network used in isolation [145, 146].

Software implementation and applications

There are various neural network software packages available in the market, ranging from 

simple demonstration software to large commercial packages supporting a range of 

network architectures and training algorithms such as in MATLAB and PYTHON. These 

software programs can be very useful for quick prototyping, possess sophisticated 

graphical interfaces and provide an easy way to gain hands-on experience with neural 

networks. Neural networks can also be implemented in high level programming languages 

such as C, PASCAL and FORTRAN. Neural network algorithms are relatively 

straightforward to implement, and much of the effort of developer is often devoted to 

application specific requirements and the user interface.

Neural networks are used to solve problems in a wide range of applications such as 

optimization, control, signal processing, classification, pattern recognition and stock 

market prediction. Neural network modelling has been successfully implemented for 

estimation of retained austenite in austempered ductile irons [147], stock market 

forecasting [148], prediction of daily global solar irradiation data [149], fatigue life 

prediction of composite materials [150], austenite formation in steels [151], decoding litho- 

facies boundaries from well-log data [152], sediment classification of downhole log data 

[153], forecasting pre-processed daily solar radiation time series [154] and subset 

simulation for reliability analysis [155].
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4.1.3 Artificial neural network modelling of residual stresses

Artificial Neural Network (ANN) and support vector regression models [156, 157] 

have been applied to predict residual stresses in dissimilar metal welding but have not been 

validated using experimental measurements. A simple three layer neural network model 

has been developed by Dimitrui et.al. [158] for determining residual stresses in a ball 

bearing as a function of contact pressure, hoop stress, number of revolutions, inner ring 

temperature and depth. ANN have been successfully implemented to predict the welding 

response for wide variety of geometric and process parameter combinations [159] and to 

determine the residual stress distribution [160, 161] without having to perform the full 

finite element analysis.

Recently, a hybrid model based on finite element and a neural network have been 

developed to predict welding induced residual stresses in butt welding [162, 163]. The data 

sets from the FE model were used to train the neuro-hybrid models using arc efficiency, 

welding speed, voltage and current as input parameters and the predicted stress values were 

validated using X-ray diffraction with an rms error of less than 5 %. Na et al. [164] 

predicted the residual stresses of dissimilar pipe welds at nuclear power plants using R/t, 

heat input, yield stress of weld metal and constraint of welded pipes as input variables to 

observe an rms error of less than 5 % when compared with a parametric finite element 

analysis. Toparli et al. [165] used residual stress data calculated from finite element 

analysis in cylindrical steel bars to train a neural network and validated it using finite 

element simulations. Recently Toktas et al. [166] presented an artificial neural network 

based solution to determine the hoop stress encircling a split-sleeve cold expanded fastener 

hole by using training data generated from an analytical fourier series method. Toktas et al. 

[166] reported that the ANN approach was able to provide realistic information about the 

stress distributions with the analysis carried out at a faster pace.
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4.2 Rational for this work

With rapid development in destructive and non-destructive experimental techniques 

to characterise residual stresses in welded structures, there are now sufficient historical 

data available for welds. In this work, an abundance of published measurement data for 

austenitic stainless girth welded pipes were available and thus paved the way for applying 

artificial neural networks to analyse residual stress data. In the present study, through

thickness residual stress profiles of pipe girth welds are acquired using multiple 

experimental techniques for comparison and validation of a neural network approach. 

Owing to the geometry and thickness, neutron diffraction and contour method were chosen 

to be the most appropriate methods. Despite the evidence found in literature, researchers 

have not extensively validated the methods developed based on the application of the 

neural networks related to residual stress prediction. Furthermore, acquiring high quality 

residual stress data for a specific class of material or geometry could be difficult.

4.2.1 Training and validation

A Multi-layer Perceptron (MLP) [142] network architecture chosen for the 

regression model was undertaken in the MATLAB neural network toolbox [167]. The 

multilayer perceptron structure has a particularly simple topology consisting of two layers 

of weights, with full connectivity between inputs and hidden units and between hidden 

units and the outputs. In principle, it is not essential to consider other architectures, since 

the 2 layer network already has universal approximation capabilities [10] and was used in 

this study.

A feed-forward artificial neural network can be considered as a set of nonlinear

mathematical functions which transform a set of input variables into an output. The

transformation process is in effect governed by a set of parameters called weights whose

values are determined based on a set of examples of input and output data. The process of
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determining these parameters is called training, and may be more computationally 

intensive than simulating the output for a given dataset. ‘Weights’ control the influence of 

the inputs on neurons, and are continuously changing during the training, to optimize the 

relationship between the variables.

Back-propagation algorithm [141] based training of feed-forward networks is a 

process of minimisation of an error function. In this, the network output performance is 

quantified in terms of the difference between the predicted values and true target values 

applied to a set of training data. However, for a given problem, it is difficult to say which 

training function is most suitable as it depends on many factors such as the complexity of 

the problem, number of data points, number of weights and biases [168]. Levenberg 

Marquadt is one of the fastest algorithms used for training the neural networks but perform 

poorly in pattern recognition problems. Improved gradient descent based search 

algorithms such as scaled conjugate gradients [143], are capable of providing convergence 

at a rate comparable to Levenberg-Marquadt. However, both algorithms were attempted in 

this study and the Scaled conjugate gradient algorithm was able to give consistent solutions 

than the Levenberg Marquadt.

The use of a nonlinear transfer function makes a network capable of storing non

linear relationships between the input and the output. It is found empirically that using a 

tanh activation function in the hidden layer could be beneficial as it can result in faster 

convergence rate than the logsig function [10]. However in this study, it was found that the 

log-sig activation function could give better solutions when used in tandem with the 

histogram method (discussed later in section 4.2.2) not accounting for the processing time 

required. The non-linear capability of the network was implemented by using the logh 

transfer function between the input and hidden layer and a linear function was used 

between the hidden layer and the output layer. The net output y from the output layer is 

represented by equation (2) as,
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y  = '^iWk,logh Wjtp,+ bj +bk (2)j
where wp is the weight matrix of the hidden layer, w^the weight matrix of the output layer, 

bj the bias vector of the hidden layer, bk the bias vector of the output layer, i the number of 

input variables and j  was the number of hidden nodes. An illustration of the transfer 

functions used in hidden layer and output is shown in Figure 4.5.

The dataset initially used for training comprises measurements made in eight 

different mock-ups of nuclear plant welded pipes made from AISI Type 316 austenitic 

stainless steel having various weld groove geometries and using mainly manual metal arc 

(MMA) and submerged arc (SAW) welding processes. The welded pipes cover a wide 

range of electrical heat input (E = 1-2.4 KJ/mm), wall thickness (16-110 mm) and R/t ratio 

(1.8-25). Historical residual stress measurement data for the weld centre-line and heat 

affected zone (HAZ), collated in [18], were used to train the ANN taking into account the 

pipe geometry, welding process, heat input, yield strength and through wall position.

The network parameters used in this study are illustrated in Table 4.1. The input 

parameters were presented to the network in the most simplified manner in view of the 

dimensionality phenomenon [144] which states that the size of the training set required to 

specify a mapping can grow exponentially with the dimensionality of the input space. This 

suggests that removing some of the input variables can actually improve the generalisation 

ability of the network. All the input values were scaled between -1 and 1 by using a simple

a a

-1 f  -1

a=logsig(p) a=purelin(p)

Figure 4.5. Transfer functions used in the first and second layers.
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transformation; normalised input = 2 x (input -  minimum input) / (maximum input -  

minimum input) -  1.

Table 4.1. Details o f ANN parameters used in this study

Network type Feedforward back-propagation

Training function Scaled conjugate gradient (TRAINSCG)

Input parameters x/t -  through thickness position 

R/t -  mean radius over thickness 

T = thickness

Q -  Net heat input (KJ/mm)

Output parameter Residual stress (axial or hoop) normalised 

by the yield strength of the material

Number of hidden units 4, 5 and 6

Number of hidden layer 1

Hidden layer function Log-sig

Output layer function Purlin

Performance function MSE (mean squared error)

The number of neurons in the hidden layer and training functions were optimised in 

the preliminary stages based on the minimum ‘sum of the squares’ error (i.e. square of the 

difference of output and target value). The data were configured and presented to a series 

of MLP networks with optimised set of parameters. For example, in order to optimize the 

number of neurons in the hidden layer, the ANN was characterized while altering the 

number of neurons from 4 to 6 where 5 neurons in the hidden layer was found to give 

consistently low values of ‘sum of squares’ error as given in Table 4.2.
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Table 4.2. Optimisation of the number of neurons in the hidden layer based on the sum of 

squares error.

Training
function

Stress
component

Number of 
neurons in the 
hidden layer

Sum of 
squares 

error

4 32.46

Scaled Axial 5 28.52
Conjugate
Gradient 6 31.34
fSCG'i

4 32.71

Hoop 5 28.38

6 27.55

The normalised axial and hoop stresses were post-processed using the histogram 

method to give the desired output using the respective yield strength (1% PS) of parent and 

weld material. Hence the yield strength of the material is indirectly accounted by 

normalising the stress values during training though it is not included as an input 

parameter.

The measurement density of DHD data points used for training was significantly 

higher than measurements performed by other techniques. This difference was nullified by 

reducing the density of DHD measurement points by a factor of 10 using the interpolation 

tool in MATLAB ensuring any sort of bias is eluded in the data treatment. An illustration 

of the data reduction in DHD measurements performed in the mock-up S501d is shown in 

Figure 4.6. However there wasn’t any noticeable difference in the magnitude of predictions 

using the modified dataset as shown in Figure 4.7 and considerable computational time 

was saved.
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■*- Interpolated data points 

♦ Original data points
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Figure 4.6. An illustration of the data reduction in DHD measurement points performed 

using the interpolation tool in MATLAB for mock-up S501d.

  ■     v v. I V.O V.*» U.3 U.O
x/t (from inner surface) ^  (from |nner surface)

Figure 4.7. A comparison of the ANN predicted stress profiles using (a) raw data and (b) 

reduced data using interpolation tool for a low heat input pipe girth weld (MU4-1).
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4.2.2 Generalisation

The generalisation ability is assessed based on the amount of information stored in 

the network. Good generalisation ability of the network is characterised by its ability to 

infer the underlying structure of the data rather than by any noise present. There is 

evidence to suggest that generalisation performance depends more on the magnitude of the 

weights [10]. ANNs sometimes perform poorly when the ‘weights’ are reported to have 

implausibly large values in order to fit the details in the training data. A simple way to 

implement regularisation is to use a weight decay term in the error function. A more 

sophisticated basis for regularisation can be found in the Bayesian evidence approach for 

training [169]. Instead of finding a unique value of the network weights and biases 

corresponding to the optimised value, the Bayesian technique marginalises over all 

possible combinations of the weights, assuming that the resulting weight matrix has a 

posterior probability distribution centered close to or at the maximum likelihood solution 

[170].

In fact, the Bayesian approach is a simple extension of the maximum likelihood 

model selection which embodies the principle of Occam’s razor that states the importance 

of preferring simpler models over complex ones. This approach is particularly useful for 

network weight regularisation, optimisation of hyper-parameters and additionally it is 

possible to estimate confidence bounds on the output predictions [171]. Full 

implementation of the Bayesian technique requires the computation of the Hessian matrix 

(second order partial derivatives of the weight matrix) and was not included in the present 

work.

The generalisation ability of the output prediction was assessed by the Bayesian 

error function E(w), which is defined by the sum of the squares error function and a term
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that accounts for the weight matrix. The expression for E(w) is given by the equation (3) 

as,

E(w) = pEs + o.E r (3)

where p  is the hyper parameter controlling the variance in noise, a is the hyper parameter 

controlling the weight decay or the regularisation coefficient

£* = i]T { x -0 (> ,w )} 2 (4)
£  Z=1

2

\wi\ (5)
^  i=1

and p  is the input vector, w the weight vector, x the target value and o the output. Estimated 

values of a and p  were used for the studies (More details of the neural network hyper

parameters can be found in appendix 1).

Bayesian methods offer a number of important features to the application of neural 

networks. They allow different models (e.g. networks with different numbers of hidden 

units) to be compared using only the training data. A Bayesian approach automatically 

penalizes highly complex models and helps to select the optimal model without resorting 

to the use of independent data for validation or ‘cross-validation’. The regularisation term 

favours small values of network weights and biases thereby decreasing the susceptibility of 

the model to over-fit noise in the training data. The hyper-parameters are usually inferred 

from the data and largely influence the simplicity of the model. The use of over-complex 

models compared with simpler models is not justified according to the Bayesian approach 

[169, 170]. For minimizing the error for a particular weight vector, the effective value of 

the regularisation parameter depends strongly on the a/p ratio. This is because for a 

succession of training sets with number of patterns N, the first term Es becomes more 

dominant with increasing N  whilst the second term Er is independent of N.

i K
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The network was trained using a Scaled Conjugate Gradient (SCG) training regime 

and a committee of networks was formed by running 250 independent training sessions 

starting at different randomly chosen points on the error surface. A range of networks was 

classified conforming to the minimum value of the error function and the histogram of the 

output distribution is presented as a contour plot. A histogram was mainly developed to 

manage scatter within the neural network predictions and to provide best estimate of the 

stresses. The 10% of predictions with lowest Bayesian error were determined from a 

committee of 250 networks and the histogram of output distribution was divided into 10 

segments. Model predictions expressed as a contour plot generated from the histograms of 

network outputs are compared with other experimental measurements to assess the 

performance of the ANN. The histogram network was developed to improve the 

consistency of predictions as the training process starts at random points in the weight 

matrix and hence gives a different set of adapted weights and bias during convergence each 

time the model is run.

Residual stresses evidently exhibit a high degree of scatter especially in welds 

[104]; creating a sufficiently large committee of networks and determining the optimum 

network output using the error function is arguably an effective way of increasing 

confidence in model predictions. The histogram network can also provide a reliable 

prediction interval of the estimated stress distributions. This is considered to be a novel 

contribution in the field of application of neural networks and can serve the purpose of 

accounting for uncertainty in the predictions. A rigorous way to estimate uncertainty in the 

ANN predictions is to examine both the modelling and measurement uncertainty 

separately. The disadvantages of using such an approach is that as the modelling 

uncertainty is ideally calculated from the inverse Hessian of the weight matrix, there are 

computational difficulties due to the complexity involved and it is extremely time 

consuming. Moreover, the measurement uncertainty of the experimental technique is often
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an estimated value and may not be necessarily accurate in most cases. The ANN prediction 

presented is intended to provide a decisive best estimate of stresses and is validated by 

comparing predictions with new experimental measurements at the WCL and HAZ 

locations in a range of welded pipes.



4.3 Validation of the ANN approach

Validation is an integral part of implementing ANN based approaches for any 

pattern recognition problem i.e. how well it can generalise or predict for a new set of data. 

The dataset used for validation should be ideally different from the training dataset but 

within the same process parameter space. ANNs are unable to extrapolate into new regions 

of the input data space. Their generalisation ability is usually assessed based on the 

performance in predicting validation data.

4.3.1 Validation using weld centre line measurement data

The WCL experimental data used to train and validate the ANN are summarized in 

Table 4.3. Residual stresses were performed along both axial and hoop directions. The 

reason for not including radial stresses is because they are usually of low magnitude in 

pipe girth welds and are rarely considered in defect tolerance assessments of conventional 

welds.
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Table 4.3. WCL experimental data used for training and validation o f  the ANN.

Mock-ups Net heat input 
kJ/mm

R/t t
(mm)

Yield stress (p,w) 
(MPa)

Experimental
measurements

Training

1 WeldC 2.2 25 15.9 338,476 BRSL
2 SP19 1.12 10.5 19.6 272,446 Neutron
3 SP37 1.76 5.3 37 328,446 DHD
4 S5VOR 1.92 2.8 65 328,446 DHD
5 S501d 1.12 2.8 65 328, 446 DHD
6 S5New 0.8 2.8 65 328,446 DHD
7 S5NG 1.32 3.0 62 328,446 DHD
8 RR 1.8 1.8 110 274,483 DHD

Validation
1 MU4-1 0.8 4.5 25 290, 450 Neutron, Contour
2 MU4-3 1.5 4.5 25 290, 450 Neutron, Contour
3 Esshete 1.6 2.1 35 370, 564 Contour

♦wherep, w are the parent and weld material yield strength at 1% proof stress.



Residual stress measurements made in the validation mock-ups are discussed in 

Chapter 3 (sections 33  and 3.4T The ANN prediction for residual stresses in the axial 

direction of MU4-1 (low heat input mock up) is compared with neutron measurements and 

Incremental Deep Hole Drilling (performed at the University of Bristol) in Figure 4.8. The 

agreement between neutron measurements and the model prediction is promising 

considering the wide scatter observed in the data. IDHD compressive stresses of about 300 

MPa at x/t < 0.3 are outside the ANN predicted region. In general, the ANN best estimate 

stresses match well with the neutron measurements but not the IDHD measurements.
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Figure 4.8. ANN model prediction of axial stress distribution of the STYLE pipe butt weld 

MU4-1 at the WCL (Input parameters: R/t = 4.5, t = 25 mm and Q = 0.8 kJ/mm).
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The ANN prediction for hoop stresses at the WCL is compared with validation 

measurements made by neutron diffraction, IDHD and the contour method, for both the top 

and bottom of the pipe as shown in Figure 4.9. Agreement between the neutron and 

contour experimental measurements is excellent but some mismatch is seen with IDHD 

measurements in the through wall position (x/t) = 0.2 - 0.7. However, the ANN prediction 

is substantially more tensile towards the inner surface of the pipe and a disagreement of 

about 400 MPa is observed at x/t = 0.2. This is explained as follows, compressive hoop 

stresses of the level measured in MU4-1 (more than 500 MPa) are not evident in any of the 

training data. The presence of high compressive stresses near the inside surface is likely to 

be the result of the specific weld procedure employed for MU4-1 and MU4-3 (with a wide 

weld preparation and backing plate). Despite this the ANN is in favourable agreement with 

the measurements from mid thickness to the outer radius position, and at all positions over

predicts the tensile magnitude of stresses.
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Figure 4.9. ANN model prediction of hoop stress distribution of the STYLE pipe butt weld 

M U4-1 at the WCL (Input parameters: R/t = 4.5, t = 25 mm and Q = 0.8 kJ/mm).

Predicted and measured axial residual stress profiles for MU4-3 are illustrated in 

Figure 4.10. The ANN histogram map is compared with the neutron measurements in the 

axial direction where reasonable agreement is seen up to the through-wall position x/t = 

0.7. However the disagreement of more than 200 MPa is observed from x/t > 0.7 

approaching the outer surface. The hoop stress measurements (see Figure 4.11) deviate 

from the ANN map for (x/t) < 0.3 in the same manner as MU4-1; this is to be expected 

because the pipe was welded in the same way. The hoop stress measurements near the 

outer surface (x/t) > 0.7 are noticeably lower than the contour measurements which closely 

follow the ANN predictions. A similar trend is observed in the axial stress measurements 

approaching the outer radius of the weld. The lower magnitude of axial and hoop stresses 

measured by neutron diffraction for (x/t) > 0.7 may be associated with uncertainties in the 

stress-free lattice parameter measurements for austenitic weld metal. But the consistency of
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the neural network predictions is verified by the contour method measurements of both top 

and bottom cut surface carried out in the hoop direction (see Figure 4.11).
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Figure 4.10. ANN model prediction of axial stress distribution of the STYLE pipe butt 

weld MU4-3 at the WCL (Input parameters R/t = 4.5, t = 25 mm and Q = 1.5 kJ/mm).
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Figure 4.11. ANN model prediction of hoop stress distribution of the STYLE pipe butt 

weld MU4-3 at the WCL (Input parameters R/t = 4.5, t = 25 mm and Q = 1.5 kJ/mm).

In Figure 4.12, the ANN prediction for the Esshete pipe is compared with the contour 

method measurements done at the WCL. A map of axial stress distribution at the WCL was 

obtained and the lines profiles were extracted at 36°, 90°and 144°, and an averaged profile 

(see section 3.4.2L The predicted stress profile matches well with the contour method 

measurements up to through wall position (x/t) = 0.8. The measured stress profiles then 

falls into a state of compression approaching the outside diameter. However, the model 

prediction was seen to continue with a slightly higher magnitude of tensile stresses and the 

disparity is clearly seen at the through thickness positions close to the outer surface. This 

inability to follow the measured stress profile close to the outer surface is considered to be 

a major limitation of the ANN approach and the mismatch in predicted and measured stress 

distribution close to the outer surface is likely to be associated with a lower density of 

surface measurement data used to train the ANN.
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Figure 4.12. ANN model prediction of axial stress distribution of the Esshete pipe butt 

weld at the weld centre line (Input parameters R/t = 2.1, t = 35 mm and Q = 1.6 kJ/mm).
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Additionally the hoop stress profiles predicted by the ANN approach for the 

Esshete mock-up are in good agreement with the measurements made using the contour 

method (see Figure 4.13). The ANN model slightly over predicted the stresses close to the 

inside surface and also the region near the outside surface but the mismatch observed is not 

more than 200 MPa.
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Figure 4.13. ANN model prediction of hoop stress distribution of the Esshete pipe butt 

weld at the weld centre line (Input parameters R/t = 2.1, t = 35 mm and Q = 1.6 kJ/mm).
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4.3.2 Validation using heat affected zone measurement data

The HAZ experimental data used to train and validate the ANN are summarized in 

Table 4.4. Residual stress measurements were performed along both axial and hoop 

directions. The details of only six mock-ups were included in the training dataset for HAZ 

profiles compared to eight for the WCL dataset.

Table 4.4. Process parameter envelope of training data in heat affected zone.

Mock-ups Net heat input 
kJ/mm

R/t t
(mm)

Yield stress (p,w) 
(MPa)

Experimental
measurements

Training

1 SP19 1.12 10.5 19.6 272, 446 Neutron
2 OU20 1.36 3.8 20 264, 446 Neutron
3 SP37 1.76 5.3 37 328, 446 DHD
4 S5VOR 1.92 2.8 65 328, 446 DHD
5 S5New _ 0.8 2.8 65 328,446 DHD
6 S5NG 1.32 3.0 62 328,446 DHD

Validation
1 MU4-1 0.8 4.5 25 290,450 Neutron, Contour
2 MU4-3 1.5 4.5 25 290,450 Neutron, Contour
3 Esshete 1.6 2.1 35 370, 564 Contour

♦where p, w are the parent and weld material yield strength at 1% proof stress.



ANN model prediction of the axial stress distribution in the MU4-1 HAZ (low heat 

input mock up) is compared with the neutron measurements in Figure 4.14. Very good 

agreement was seen in the measured and modelled stresses with the exception of the region 

close to the inside diameter. Only two neutron measurements points were found outside of 

the ANN prediction band. Note, the WCL profile for the same mock-up was also found to 

be in good agreement with the ANN prediction (see Figure 4.8). However, the overall 

pattern of through-thickness stress profiles predicted by the ANN in the HAZ was quite 

different from the WCL profile. This shows that the ANN predicted region varies 

depending upon the training data used and is able to capture the underlying pattern.
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Figure 4.14. ANN model prediction of the axial stress distribution in the STYLE pipe butt 

weld MU4-1 at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q = 0.8 kJ/mm).

In the hoop direction (see Figure 4.15), the comparison between the contour

method measurements and the ANN prediction for STYLE MU4-1 shows a mismatch of

more than 200 MPa. But the neutron measurements agree well with the ANN prediction at
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all the through thickness locations. The spread of the ANN prediction was significantly 

higher than previous results (of the order of 200 MPa or more ) and is believed to be the 

result of insufficient training data in the HAZ location where only the data points from six 

mock-ups were used compared with eight for the WCL.
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Figure 4.15. ANN model prediction of hoop stress distribution of the STYLE pipe butt 

weld MU4-1 at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q = 0.8 kJ/mm).
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The model prediction comparison with neutron measurements described in section

3.3.2 for the axial direction of the MU4-3 mock up (see Figure 4.16) shows under

prediction of the stresses at many points in the through thickness range (x/t) = 0.4 - 0.8 by 

a margin of more than 100 MPa. Despite the difference, the ANN prediction closely 

follows the pattern observed in the neutron measurements. This is one of the rare cases 

where the ANN has under-predicted the stresses continuously for three or more points in 

the through-thickness direction.
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Figure 4.16. ANN model prediction of axial stress distribution of the STYLE pipe butt 

weld MU4-3 at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q = 1.5 kJ/mm).
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In the case of the hoop stress profile (see Figure 4.17) the ANN prediction was 

found to be consistent with the measured stresses using the contour method. The neutron 

measurements infer the presence of higher stresses at through wall position (x/t) = 0.6 - 0.8 

what is suspected to be an issue with the stress free reference measurement as this was also 

observed in the axial stress distribution in Figure 4.16 (see section 3.3.2).
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Figure 4.17. ANN model prediction of hoop stress distribution of the STYLE pipe butt 

weld MU4-3 at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q = 1.5 kJ/mm).

169



The ANN model prediction is in favourable agreement with contour measurements 

performed in the hoop direction for the Esshete pipe weld (see Figure 4.18). The agreement 

is especially good up to the through thickness range (x/t) < 0.8 and thereafter the stresses 

characterised using the contour method indicates a decrease approaching the outside 

diameter in both top and bottom cut faces. However, the ANN prediction fails to capture 

this decrease where a maximum difference of about 300 MPa was observed at the surface. 

This could be due to inadequate training data as pointed out earlier for the HAZ profiles.
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Figure 4.18. ANN model prediction of hoop stress distribution of the Esshete pipe butt 

weld at the HAZ (Input parameters R/t = 2.1, t = 35 mm and Q = 1.6 kJ/mm).
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4.4 Sensitivity studies of input variables used in the model

The sensitivity studies presented here are mainly intended to demonstrate the 

robustness of the ANN approach by considering input parameters at the boundaries of the 

training dataset. Since the test data need to be essentially independent of the training data, 

input parameters resembling three hypothetical pipe welds (HI, H2 and H3) were 

considered for this study. For the sake of understanding, it is assumed that pipe welds 

having the same geometry made using the same welding parameters will have same 

residual stress profiles. However, this may not be the case in actual scenarios and the 

motivation here to evaluate the predictive capacity of the ANN and to understand how 

biased the end results can be depending on the chosen points in the process parameter 

space. Three hypothetical mock-ups and their representation in the existing process 

parameter space of WCL training data are shown in Figure 4.19.
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Figure 4.19. Process parameter space of WCL training data used for sensitivity studies. 

Hypothetical pipe welds denoted as HI (Input parameters R/t = 24, t = 20 mm and Q = 

2.12 kJ/mm), H2 (Input parameters R/t = 3, t = 105 mm and Q = 1.8 kJ/mm) and H3 (Input 

parameters R/t = 25, t = 40 mm and Q = 1.85 kJ/mm).
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4.4.1 Effect of Heat input (Q)

To study the effect of heat input in the ANN prediction, a hypothetical pipe weld 

(HI) having very similar input parameters of mock up Weld C was considered. The reason 

for choosing the mock up resembling Weld C is because it had the maximum heat input in 

the WCL data set used for training. Moreover, the hoop stress distribution determined 

using the BRSL technique was very different from what was observed in other mock ups. 

A tensile stress close to the yield strength of the material was reported in Weld C. 

Presumably, the ANN predictions in the validation dataset didn’t have an identical stress 

distribution as Weld C probably because the heat input used for welding the pipes was not 

as high. The predicted stresses using ANN for the hypothetical pipe weld (HI) are 

presented in Figure 4.21. The region of prediction is wide near the inner surface where 

there are inadequate data reported for training and the input parameters of HI lie just 

within the boundaries of the process parameter space. The ANN prediction closely matches 

the BRSL measurements at all the through thickness positions. It is pleasing to see the 

predicted band of best estimate stresses following the nature of the BRSL measurements. 

Even though the BRSL measurements themselves may not be accurate as they were 

performed several years back and nowadays the technique is rarely in use, there is no better 

example to demonstrate the robustness of the ANN approach.
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Figure 4.20. Sensitivity studies on the effect of heat input in the model prediction of hoop 

stress distribution of the Hypothetical pipe weld (HI) at the WCL (Input parameters R/t = 

24, t = 20 mm and Q = 2.12 kJ/mm).

4.4.2 Effect of thickness (t)

The effect of thickness on the resulting best estimate stresses predicted by the ANN 

is demonstrated by considering a hypothetical pipe weld (H2) that has very similar 

characteristics to mock up RR. This mock-up was chosen as it was 110 mm thick and 

distant from other mock ups with respect to the thickness parameter in the training dataset. 

The predicted stress profile is shown in Figure 4.21 where a strong bias was seen to occur 

to the stress profile of the RR mock up. The flat region of the predicted best estimate 

stresses in the through wall thickness range (x/t) = 0 - 0.4 is a characteristic feature of the 

RR mock up and is clearly seen in the predicted data.
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Figure 4.21. Sensitivity studies on the effect of thickness in the model distribution of hoop 

stress distribution the Hypothetical pipe weld (H2) at the WCL (Input parameters R/t = 3, t 

= 105 mm and Q = 1.8 kJ/mm).

4.4.3 Effect of R /t ratio

The effect of R/t ratio is illustrated in Figure 4.22. For demonstrating the robustness 

o f the developed approach, a hypothetical pipe weld (H3) resembling Weld C considered 

as it had the highest value of R/t. The other parameters were however somewhat different. 

Despite this the predicted output is strongly biased to the stress profile reported in Weld C. 

However the scatter of the predicted output is much higher compared to Figure 4.15 and is 

arguably because of the difference in the other input parameters. Therefore it can be seen 

that the predicted results have a strong bias to the training data particularly with identical 

input parameters and are highly data dependent. These studies are particularly useful in 

understanding the efficacy of the developed ANN approach.
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Figure 4.22. Sensitivity studies on the effect of R/t in the model distribution of hoop stress 

distribution of the Hypothetical pipe weld (H3) at the WCL (Input parameters R/t = 25, t = 

40 mm and Q = 1.85 kJ/mm).
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4.5 Sensitivity studies in the training data

The sensitivity studies presented here were undertaken mainly to verify whether the ANN 

prediction can improve with addition of new experimental data in the training dataset. The 

database of experimental measurements is expected to grow in future and the full potential 

of the ANN approach can only be realised if studies can show that the predictions can 

improve with more measurement data included in training. To evaluate this, studies are 

performed in three levels.

1. The effect of adding new training data within and outside the process parameter 

space is examined. Although it is well-known that the ANNs cannot extrapolate 

outside the input parameter space, these studies are particularly useful for 

understanding their limitations.

2. The stress profiles of all mock-ups in the hoop direction at the WCL and HAZ are 

re-evaluated with the addition of acquired data from the half inch thick pipes (low 

and high), and compared with the old predictions discussed in section 4.3.1

3. All the measured data i.e. for training and validation are used extensively for 

training with the exclusion of the data for which the output is generated. These 

studies were used to compare stress profiles in MU4-1, MU4-3 and Esshete mock- 

ups along the hoop direction in the WCL locations. Additionally, the data used for 

training the ANN initially were swapped with the validation data and the stress 

profiles in mock-ups SP37, S501d, S5New and S5VOR are simulated.
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4.5.1 Training with additional measurements in half inch thick pipes

The modified WCL experimental data used to train and validate the ANN are summarized 

in Table 4.5.

Table 4.5. Modified process parameter envelope of training data in weld centre line.

Mock-ups Net heat input 
kJ/mm

R/t t
(mm)

Yield stress (p,w) 
(MPa)

Experimental
measurements

Training

1 WeldC 2.2 25 15.9 338,476 BRSL
2 SP19 1.12 10.5 19.6 272,446 Neutron
3 SP37 1.76 5.3 37 328, 446 DHD
4 S5VOR 1.92 2.8 65 328, 446 DHD
5 S501d 1.12 2.8 65 328, 446 DHD
6 S5New 0.8 2.8 65 328, 446 DHD
7 S5NG 1.32 3.0 62 328,446 DHD
8 RR 1.8 1.8 110 274, 483 DHD
9 Low 0.7 10 12.7 320, 450 Contour
10 High 1.2 10 12.7 320, 450 Contour

Validation
1 MU4-1 0.8 4.5 25 290, 450 Neutron, Contour
2 MU4-3 1.5 4.5 25 290, 450 Neutron, Contour
3 Esshete 1.6 2.1 35 370, 564 Contour
4 Med 1.0 10 12.7 320, 450 Contour

♦where p, w are the parent and weld material yield strength at 1% proof stress.
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The model prediction of hoop stress for the medium heat input pipe using the initial 

training dataset, without including the low and high heat input pipes (Table 4.3) is 

compared with the predictions using the modified training data given in Table 4.5. Figure 

4.23 (a) shows the poor performance of ANN in predicting the stress profile without 

having been trained with the stress profiles in pipes of that geometry. On the other hand, 

the predicted stresses in the hoop direction of the medium heat input pipe (see Figure 4.23 

(b)) are in good agreement with the contour measurements at the top and bottom surfaces. 

The ANN marginally under-predicts the stresses at some points in the range (x/t) = 0.6 - 

0.8.
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Figure 4.23. ANN model prediction of hoop stress distribution of the medium heat input 

pipe butt weld at the WCL (Input parameters R/t = 10, t =12.7 mm and Q = 1.0 kJ/mm) 

using (a) Initial training data given in Table 4.3 and (b) Modified training data given in 

Table 4.5.

The model prediction of the hoop stress distribution in the HAZ location of the 

medium heat input girth weld using the different training datasets are compared with the 

contour measurement at the top and bottom cut surface in Figure 4.24. Both model 

predictions in (a) and (b) showed good agreement with the measurements for most of the 

through thickness positions. It is worth noting that the magnitude of stresses were not very 

high (< 200MPa) and the difference in model predictions illustrating the learning
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capabilities of the ANN was not effectively identified. The only drawback of the model 

prediction is the inability to follow the contour method measurements approaching the 

outer surface.
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Figure 4.24. ANN model prediction of axial stress distribution of the medium heat input 

pipe butt weld at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q = 1.5 kJ/mm) 

using (a) Initial training data given in Table 4.4 and (b) Modified training data given in 

Table 4.6.

The comparison of the ANN prediction for the MU4-1 using the initial set of 

training data (Table 4.3) and the new set with the measurement data of low and high heat 

input mock-ups (see Table 4.5) is illustrated in Figure 4.25. There was a noticeable 

difference found in the predicted stresses where the spread of the prediction band was seen 

to narrow down with the addition of the new set of data. The same phenomenon repeated 

in the high heat input mock-up MU4-3 (Figure 4.26) with minor differences in the peak 

tensile and compressive stresses. This was again consistently observed in the predicted 

stresses of the Esshete mock-up (see Figure 4.27). In general, the ANN predictions were 

not found to improve with the addition of new WCL data.
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Figure 4.25. Comparison of ANN model prediction of hoop stress distribution in the 

STYLE pipe butt weld MU4-1 at the WCL (Input parameters R/t = 4.5, t = 25 mm and Q = 

0.8 kJ/mm) using (a) Initial training data given in Table 4.3 and (b) Modified training data 

given in Table 4.5.
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Figure 4.26. Comparison of ANN model prediction of hoop stress distribution in the 

STYLE pipe butt weld MU4-3 at the WCL (Input parameters R/t = 4.5, t = 25 mm and Q =

1.5 kJ/mm) using (a) Initial training data given in Table 4.3 and (b) Modified training data 

given in Table 4.5.
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capabilities of the ANN was not effectively identified. The only drawback of the model 

prediction is the inability to follow the contour method measurements approaching the 

outer surface.
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Figure 4.24. ANN model prediction of axial stress distribution of the medium heat input 

pipe butt weld at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q = 1.5 kJ/mm) 

using (a) Initial training data given in Table 4.4 and (b) Modified training data given in 

Table 4.6.

The comparison of the ANN prediction for the MU4-1 using the initial set of 

training data (Table 4.3) and the new set with the measurement data of low and high heat 

input mock-ups (see Table 4.5) is illustrated in Figure 4.25. There was a noticeable 

difference found in the predicted stresses where the spread of the prediction band was seen 

to narrow down with the addition of the new set of data. The same phenomenon repeated 

in the high heat input mock-up MU4-3 (Figure 4.26) with minor differences in the peak 

tensile and compressive stresses. This was again consistently observed in the predicted 

stresses of the Esshete mock-up (see Figure 4.27). In general, the ANN predictions were 

not found to improve with the addition of new WCL data.
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Figure 4.25. Comparison of ANN model prediction of hoop stress distribution in the 

STYLE pipe butt weld MU4-1 at the WCL (Input parameters R/t = 4.5, t = 25 mm and Q = 

0.8 kJ/mm) using (a) Initial training data given in Table 4.3 and (b) Modified training data 

given in Table 4.5.
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Figure 4.26. Comparison of ANN model prediction of hoop stress distribution in the 

STYLE pipe butt weld MU4-3 at the WCL (Input parameters R/t = 4.5, t = 25 mm and Q =

1.5 kJ/mm) using (a) Initial training data given in Table 4.3 and (b) Modified training data 

given in Table 4.5.
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Figure 4.27. Comparison of ANN model prediction of hoop stress distribution in the 

Esshete pipe butt weld at the WCL (Input parameters R/t = 2.1, t = 35 mm and Q = 1.6 

kJ/mm) using (a) Initial training data given in Table 4.2 and (b) Modified training data 

given in Table 4.4.

The modified HAZ experimental data with additional data of the half inch thick pipes are 

summarized in Table 4.6.

Table 4.6. Process parameter envelope of training data in heat affected zone.

Mock-ups Net heat input 

kJ/mm

R/t t

(mm)

Yield stress (p,w) 

(MPa)

Experimental

measurements

Training

1 SP19 1.12 10.5 19.6 272, 446 Neutron

2 OU20 1.36 3.8 20 264, 446 Neutron

3 SP37 1.76 5.3 37 328, 446 DHD

4 S5VOR 1.92 2.8 65 328, 446 DHD

5 S5New 0.8 2.8 65 328, 446 DHD

6 S5NG 1.32 3.0 62 328, 446 DHD

7 Low 0.7 10 12.7 320, 450 Contour

8 High 1.2 10 12.7 320, 450 Contour

Validation

1 MU4-1 0.8 4.5 25 290, 450 Neutron, Contour
2 MU4-3 1.5 4.5 25 290, 450 Neutron, Contour

3 Esshete 1.6 2.1 35 370, 564 Contour

4 Med 1.0 10 12.7 320, 450 Contour

♦where p, w are the parent and weld material yield strength at 1 % proof stress.
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The initial set of predictions (using Table 4.4) is compared with new predictions 

using the modified training dataset (Table 4.6) in Figures 4.28 -  4.31. In Figure 4.28, the 

ANN prediction using the training data was found to give better results as the prediction 

band seem to match the experimental measurements and the discrepancy at the inside 

surface was found to diminish. The ANN prediction was in excellent agreement with the 

neutron measurements and found to be in reasonable agreement with the contour 

measurements besides the differences seen at the inside and outside diameter. The ANN 

predictions were found to improve in the high heat input girth weld (see Figure 4.29) as the 

disparity with the neutron measurements at through wall positions (x/t) = 0.5 -  0.8 was 

found to decrease. In Figure 4.30, the ANN predictions provided a very similar stress 

distribution where as in the through-thickness range (x/t) = 0.15 -  0.5, the old prediction 

seems to be in better agreement.

Overall, there was considerable improvement in prediction of stress profiles in the HAZ 

location compared to the WCL. However, the improvement is not very obvious in all cases 

and more evidence need to be presented to justify that adding new experimental 

measurements in the training dataset can improve the ANN prediction using the discussed 

approach.
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Figure 4.28. Comparison of ANN model prediction of hoop stress distribution in the 

STYLE pipe butt weld MU4-1 at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q = 

0.8 kJ/mm) using (a) Initial training data given in Table 4.4 and (b) Modified training data 

given in Table 4.6.
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Figure 4.29. Comparison of ANN model prediction of hoop stress distribution in the 

STYLE pipe butt weld (MU4-3) at the HAZ (Input parameters R/t = 4.5, t = 25 mm and Q 

= 1.5 kJ/mm) using (a) Initial training data given in Table 4.4 and (b) Modified training 

data given in Table 4.6.
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Figure 4.30. Comparison of ANN model prediction of hoop stress distribution in the 

Esshete pipe butt weld at the HAZ (Input parameters R/t = 2.1, t = 35 mm and Q = 1.6 

kJ/mm) using (a) Initial training data given in Table 4.4 and (b) Modified training data 

given in Table 4.6.

4.5.2 Training using all-inclusive measurem ent data

The studies reported in section 4.5.1 were not conclusive enough to show that 

adding new experimental data can improve the ANN model predictions. There was slight 

improvement in the predictions after adding the data of two half inch thick pipes for 

training at the HAZ location and this encouraged to perform further investigation. One of 

the major drawbacks of the model prediction has been its inability to predict the stresses 

close to the inside surface along the hoop direction in the girth welded pipes MU4-1, MU4- 

3 and Esshete. It can be argued that the magnitude of compressive stresses observed in 

most of the validation mock-ups is not evident in the training data and hence it is 

inappropriate to question the performance of the ANN as extrapolation beyond the process 

parameter space is outside its scope. However, there is a sufficient amount of new data 

accumulated in the WCL along the hoop direction in girth welded pipes and by adding all 

o f them in the training dataset, with only the exclusion of data for which the output is 

simulated, the efficacy of the developed approach can be determined. This is performed in 

three cases (Girth welded pipes MU4-1, MU4-3 and Esshete) and is compared with the
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predictions using the initial training data. The old predictions are compared with the new in 

Figure 4.31. There is a significant improvement in the model predictions reducing the 

discrepancy by about 100 MPa at the inside surface mainly due to the inclusion of MU4-3 

and Esshete pipe data in the training. This difference in magnitude is remarkable 

considering the range of residual stress distributions in austenitic stainless steel pipe girth 

welds.
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Figure 4.31. Comparison of ANN model prediction of hoop stress distribution in the low 

heat input pipe butt weld (MU4-1) at the HAZ (Input parameters R/t = 4.5, t = 25 mm and 

Q = 0.8 kJ/mm) using (a) Initial training data given in Table 4.3 and (b) all-inclusive 

measurement data at the WCL location.
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The next case is illustrated in Figure 4.32 where a similar kind of improvement is 

evident with the ANN prediction giving better agreement with the contour method 

measurements close to the inside surface. This is also repeated in the case of Esshete pipe 

weld (see Figure 4.33) where the ANN model prediction is seen to come closer to the 

contour method measurements close to the inside diameter. The mean line profile of the 

best estimate stresses using the ANN predictions are compared with each other in Figure 

4.34. The difference in predictions close to the ID is about 100 MPa in MU4-1 weldment 

and more than that with the case of MU4-3 and Esshete pipes. This is considered to be a 

significant change considering the magnitude of hoop residual stresses in girth welded 

pipes. Overall, the improvement is consistent and has demonstrated repeatability in all the 

three cases.
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Figure 4.32. Comparison of ANN model prediction of hoop stress distribution in the high 

heat input pipe butt weld (MU4-3) at the heat affected zone (Input parameters R/t = 4.5, t = 

25 mm and Q = 1.5 kJ/mm) using (a) Initial training data given in Table 4.3 and (b) all- 

inclusive measurement data at the WCL location.
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Figure 4.33. Comparison of ANN model prediction of hoop stress distribution in the 

Esshete pipe butt weld at the FIAZ (Input parameters R/t = 2.1, t = 35 mm and Q = 1.6 

kJ/mm) using (a) Initial training data given in Table 4.3 and (b) all-inclusive measurement 

data at the WCL location.
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Figure 4.34. Comparison of mean profile from the ANN model prediction of hoop stress 

distribution in the pipe butt weld (a) MU4-1 (b) MU4-3 and (c) Esshete using initial 

training data (denoted as ‘mean 1’) given in Table 4.3 and all-inclusive measurement data 

(denoted as ‘mean 2 ’) at the WCL location.

As a final test criterion, the data initially used for training is swapped with the 

validation data and the performance of the ANN is evaluated. Note, all the measurements 

reported were used for training with the exclusion of the dataset for which the stress profile 

is modelled. A total of four cases were considered and the results are shown in Figure 4.35. 

Very good agreement was seen between the DHD measurements and the model predictions 

in all the four cases which increases the confidence in predictions of the ANN approach. 

The ANN predictions were able to capture the peak stresses and it is interesting to see that 

the ANN has not under-predicted the stresses close to the inside surface in any of the four 

cases.
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Figure 4.35. Comparison of ANN model prediction of hoop stress distribution at the weld 

centre line in the four validation mock-ups included for training at the outset, (a) SP37 

mock-up (Input parameters R/t = 5.3, t = 37 mm and Q = 1.76 kJ/mm), (b) S501d mock-up 

(Input parameters R/t = 2.8, t = 65 mm and Q = 0.8 kJ/mm), (c) S5New mock-up (Input 

parameters R/t = 2.8, t = 65 mm and Q = 1.12 kJ/mm) and (d) SVOR mock-up (Input 

parameters R/t = 2.8, t = 65 mm and Q = 1.92 kJ/mm).
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4.6 General discussion

The ANN approach has been validated by comparing the predicted profiles with a 

comprehensive range of new experimental measurements using neutron diffraction and the 

contour method at the WCL and HAZ locations. The robustness of the developed approach 

is demonstrated by sensitivity studies performed in hypothetical pipes HI, H2 and H3. The 

sensitivity studies performed using different training datasets provide additional examples 

of validation and shows how the predictions can improve with the addition of more 

experimental data. Interestingly, in most cases the ANN model rarely under-predicts the 

tensile magnitude of the measured stresses by a large margin. This is a useful characteristic 

if ANN residual stress profiles are to be used in fracture assessments for safety critical 

structures. The advantage of the ANN method for defining through-wall residual stress 

profiles compared with computational weld mechanics or measurement approaches is that 

the information required to train the model is straightforward and historical measured data 

can be used. A drawback is that the weldment for which a prediction is to be made must 

fall within the range of weld types used to train the model. For the application of the ANN 

approach in structural integrity assessment, it is essential to have a consistent solution for 

the upper bound profiles and the associated stress intensity factors must be more realistic 

and less conservative than the profiles currently in use. This is discussed in the next 

chapter where the development of ANN upper bound profiles determined from the best 

estimate prediction are presented, following a critical evaluation by comparison with the 

profiles used in API and R6 fracture assessment codes.
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4.7 Conclusions

The findings described in the chapter are summarized as follows,

• A neural network model has been developed that can characterise the through-wall 

distribution of residual stress of a stainless steel pipe girth weld, providing the 

weldment type lies within the boundary of the training data envelope used.

• The histogram network developed can provide a reliable prediction interval of the 

estimated stress distributions and is considered to be a novel contribution in the 

field of application of neural networks.

• The ANN approach has been validated by comparing predicted profiles with a 

comprehensive range of new experimental measurements using neutron diffraction 

and contour method in the weld centre line and heat affected zone locations.

• In most of the cases, ANN over predicted the tensile stresses in the welded pipes 

and has under-predicted the stresses only on few occasions.

• The robustness of the developed approach is demonstrated by sensitivity studies in 

input variables by considering few examples of extreme cases in hypothetical pipes.

• The sensitivity of the ANN model to the training data is illustrated by providing a 

number of case studies that demonstrate that adding more experimental data can 

improve the predictions significantly.

The next chapter describes how the ANN approach can be applied to define residual

stress profiles suitable for use in structural integrity assessments.
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Chapter 5 

Application to structural integrity

5.1 Introduction

Structural integrity assessment codes have been developed to ensure economic and 

safe management of operating nuclear power plants, offshore industries and petrochemical 

industries. Structural integrity assessment codes such as R6 [4], BS7910 [7], and API 579 

[8] simplify the three dimensional residual stress field at a welded joint by selecting an 

idealized one dimensional stress distribution along a line through the wall thickness. Some 

of the bounding through-thickness profiles used in these procedures are designed based on 

expert judgment, examination of residual stress measurements that exhibit wide scatter and 

weld residual stress simulations. As a consequence, structural integrity assessment of 

defects in welded components can be overly conservative by a large margin, and may lead 

to unnecessary and costly repair or inspection. Hence development of new profiles that are 

more realistic is highly desirable. This chapter describes a new approach for developing 

upper bound profiles using artificial neural networks. The performance and suitability of 

the ANN upper bound profiles are discussed by comparison with stress profiles 

recommended in the API and R6 procedures and followed by an assessment of whether the 

use of neural network bounding profiles can lead to non-conservative estimates of stress 

intensity factor in fracture assessments.
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5.2 Development of upper bound profiles

5.2.1 Background

Defect assessment procedures such as BS7910, R6 and API-579 provide simplified 

estimates or upper bound profiles that can be used to characterize residual stresses present 

in a weld. The profiles recommended in API provide an upper bound solution resulting 

from extensive finite element analysis and study of results available in literature. The 

residual stress characterisation approaches in R6 are divided into three levels; the simplest 

being Level 1 where it assumes a uniformly distributed tensile residual stress equal in 

magnitude to the mean material yield strength. Level 2 is defined to be an upper bound 

profile of residual stress through the wall-thickness for a class of weld being considered. 

R6 Level 1 and Level 2 approaches are considered to be very conservative which paved the 

way for a Level 3. R6 Level 3 represents a more realistic description of the residual stress 

field developed based upon non-linear analytical modelling of the welding process coupled 

with experimental measurements.

The purpose of upper bound profiles is to bound experimental measurements

thereby exhibiting some level of conservatism to ensure a safe design. R6 level 2 profiles

are considered to be overly conservative whereas R6 level 3 (Bouchard’s formulation) and

API-579 profiles can be non-conservative especially in the axial direction. More realistic

formulations for through-thickness residual stress profiles in pipe girth welds have been

proposed recently by Bouchard [18], Dong [111] and Teng et al. [121] where the pipe

geometry (thickness and radius) and welding heat input are identified as critical governing

parameters. Teng et al. [120] has developed a heuristic approach for statistical analysis of

residual stress data that is based on the combination of weighted least squares and expert

judgment. Nadri et al. [127] used a statistical approach based on Bayes theorem to analyze

residual stress data to define parametric formulations that can predict hoop and axial

stresses in pipe girth welds. Overall these more realistic methods depend, to some extent,
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on expert judgment and may sometimes provide unreliable stress profiles thus emphasizing 

the need to develop new reliable and pragmatic upper bound profiles.

5.2.2 Upper bound profiles using ANN

In the previous chapter a novel application of artificial neural networks capable of 

predicting residual stress profiles in austenitic stainless steel pipe girth welds was 

illustrated where the network is trained using a set of baseline experimental residual stress 

data and then validated using previously unseen data. An upper bound curve was 

determined from the histogram network of output distributions that represent the best 

estimated stresses. Each individual network was trained with 250 independent training 

sessions using a Scaled Conjugate Gradient (SCG) training regime starting at different 

randomly chosen points on the error surface and the best 10% of predictions were 

determined among the committee of networks. A range of networks was classified 

conforming to the minimum Bayesian error and the histogram of the output was obtained 

as a distribution plot. The mean of the distribution plot was then calculated and one 

standard deviation (+lo) of the mean profile was obtained as illustrated in Figure 5.1. The 

artificial neural network upper bound (ANN UB) profile is calculated from the minimum 

of the +1<t of the mean profile and the yield stress of the material. It is important to note 

the approach used to calculate the ANN upper bound profile is fairly simple and the stress 

equilibrium condition (zero force over radial-hoop plane) along the axial direction is not 

fulfilled. This is because the upper bound stress profiles are defined by effectively adding 

a uniform stress value, based on one standard deviation.
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Figure 5.1. Representation of ANN upper bound axial residual stress profiles from the 

histogram network.

5.2.3 Comparison of different upper bound profiles

The stress profiles used in R6 and API-579 procedures are compared with the ANN 

upper bound profiles and the experimental measurements acquired in this study. For the 

sake of understanding ANN mean profiles are also included. In Figure 5.2, the neutron and 

incremental deep hole drilling (IDHD) measurements at the weld centre line of the low 

heat input girth weld (MU4-1) are compared with upper bound profiles in the axial 

direction. R6 level 2 bounds all the measurements of the low heat input girth weld but 

seems to be highly conservative, whereas R6 level 3 (Bouchard’s formulation) 

underestimates most of the measurements in the range x/t = 0.3 -  0.6 as shown in Figure 

5.2. In this particular case API-579 provides a comparatively better upper bound solution 

with respect to the neutron measurements. However the artificial neural network upper 

bound (ANN UB) profile bounds all the neutron measurements and is more realistic than 

the R6 level 2 profile. The IDHD measurements indicate the presence of slightly higher 

tensile stresses in the region x/t = 0.6 - 0.8 compared with the neutron measurements and is
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only bounded by the R6 level 2 profile. Noticeably, the ANN upper bound profile does not 

cover the high magnitude IDHD measurements mainly at x/t = 0.6 by about 50 MPa.

In the hoop direction (see Figure 5.3) the trend is somewhat different as none of the 

upper bound profiles could provide a realistic estimate of the stresses near the inside 

surface, a maximum difference of 400 MPa is observed. The profiles based on API 

underestimate the stresses slightly approaching the outer surface, R6 level 3 appears to be 

more realistic and effectively bounds the neutron, contour method and IDHD 

measurements. The artificial neural network upper bound profile (ANN UB) is more 

realistic than R6 level 2 but exhibits slight conservatism near the inside surface compared 

with the R6 level 3 and API-579 profiles.
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  ANN UB profile

IDHD

-  -  -  R6 Level 1

 -   R6 Level 2

  R6 Level 3
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Figure 5.2. Comparison of upper bound profiles in the weld centre line for the low heat 

input girth weld MU4-1 in the axial direction.

196



600

S

0  Neutron 

a  Contour top side

▼ Contour bottom side

IDHD

 A NN mean profile

  A NN UB profile

 R6 Level 1

R6 Level 2 

R6 Level 3 

A P I-579

-600 "  1 1 1 '  |  r ' r  T - r - p r  T H ' - r  | ' ' ' ' ~ T r -  i -  v t -

0.0 0.2 0.4  0.6 0.8 1.0
x/t (from inner surface)

Figure 5.3. Comparison of upper bound profiles in the weld centre line for the low heat

input girth weld MU4-1 in the hoop direction.

Neutron stress measurements in the axial direction at the weld centre line for the 

high heat input welded component (MU4-3) are compared with different upper bound 

profiles in Figure 5.4. The non-conservative region of the R6 level 3 profile was found to 

shift to the outer surface (x/t = 0.5 - 0.7) as shown in Figure 5.4. The API profile failed to 

bound all the measurements but overall was found to be reasonable whereas R6 level 2 was 

highly conservative for all the through thickness positions. Overall, the ANN upper bound 

profile was found to be the more consistent among all the upper bound profiles considering 

the scatter observed in neutron measurements and never underestimated the measurements 

at any point. For the hoop stress distribution (Figure 5.5) the trend observed is similar with 

the exception that the API upper bound profile was less conservative and incapable of 

bounding most of the neutron and contour method measurements approaching the outside 

surface where the difference was found to be as high as 200 MPa. The ANN profiles were 

more pragmatic than the R6 level 2 and level 3 profiles but continued to exhibit 

conservatism near the inside surface and were successful in providing bounding stress 

profiles.

197



200  -

2  100  -

w -100 -
-200 -

-300 -

#  Neutron

 ANN mean profile

  ANN UB profile

 R6 Level 1

  R6 Level 2

  R6 Level 3

- .......- A P I-579

0.2 0.4 0.6 0.8
x/t (from inner surface)

Figure 5.4. Comparison of upper bound profiles in the weld centre line for the high heat 

input girth weld MU4-3 in the axial direction.
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Figure 5.5. Comparison of upper bound profiles in the weld centre line for the high heat 

input girth weld MU4-3 in the hoop direction.

The stress profiles at the weld centre line measured using the contour method in the 

axial direction of the Esshete girth weld are compared with different upper bound profiles 

as shown in Figure 5.6. R6 level 2 appears to be over-conservative where as R6 level 3 is 

non conservative in the through-thickness range (x/t) = 0.2 -  0.7. API-579 profile under

estimates the stresses close to the inside surface by a large margin of about 300 MPa and 

tend to over-estimate the stresses close to the outside surface. The ANN upper bound 

profile seems to be the most realistic out of all the other profiles and effectively bounds all 

the contour method measurements. However the ANN profile over-estimates the stresses

close to the outside surface similar to the upper bound profile recommended in API-579.
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However, the pattern observed in the hoop direction (see Figure 5.7) is very different with 

the exemption of R6 level 1 and level 2 being overly conservative. The API profile slightly 

under-estimated the stresses in the through wall region (x/t) = 0.5 - 0.8. Interestingly, R6 

level 3 and the ANN upper bound profile matched closely at all positions and both were 

successful in providing bounding profiles that were realistic and less conservative.
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Figure 5.6. Comparison of upper bound profiles in the weld centre line of the Esshete girth 

weld in the axial direction.
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Figure 5.7. Comparison of upper bound profiles in the weld centre line of the Esshete girth 

weld in the hoop direction.

Figure 5.8 shows a comparison of upper bound stress profiles with the neutron 

measurements at the heat affected zone in the axial direction of the low energy girth weld 

(MU4-1). The R6 level 2 profile is highly conservative where as R6 level 3 profile under

estimates the measured stresses in the through-wall position range (x/t) = 0.2 - 0.6. The
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API-579 bounds all of the neutron measurements and the ANN upper bound profile gives 

the most realistic bounding estimate for most of the measured stresses. The same pattern is 

evident in the hoop stresses reported in the heat affected zone of the same mock-up (refer 

Figure 5.9). But in this case the R6 level 3 provides a better fit over the inner half of the 

wall thickness compared to the ANN bounding profile. Interestingly, the ANN UB profile 

exhibits a linear nature unlike the previous cases but nonetheless provides a more 

pragmatic bound than the R6 Level 2 and API-579 profiles.
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Figure 5.8. Comparison of upper bound profiles in the heat affected zone for the low heat 

input girth weld MU4-1 in the axial direction.
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Figure 5.9. Comparison of upper bound profiles in the heat affected zone for the low heat 

input girth weld MU4-1 in the hoop direction.

The upper bound profiles along the axial and hoop directions at the heat affected 

zone in the high heat girth weld (MU4-3) are compared in Figures 5.10 and 5.11
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respectively. In the axial direction (see Figure 5.10) the ANN upper bound profile fails to 

bound the neutron measurements in the through-wall thickness position (x/t) = 0.5 - 0.8 

with the maximum difference of 200 MPa at x/t = 0.6. The mean ANN like R6 level 3 

predominantly under-estimates the stresses at almost all the though thickness positions and 

API-579 upper bound profile seemed to be more realistic. In the hoop direction, the ANN 

upper bounds profile bounded most of the neutron and contour method measurements. In 

contrast, the API-579 profile provides non conservative estimates of stresses and the R6 

level 3 profile bounds all the measurements.
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Figure 5.10. Comparison of upper bound profiles in the heat affected zone for the high heat 

input girth weld MU4-3 in the axial direction.
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Figure 5.11. Comparison of upper bound profiles in the heat affected zone for the high heat 

input girth weld MU4-3 in the hoop direction.

The upper bound profiles for hoop stress in the heat affected zone of the Esshete 

pipe are compared with contour method residual stress measurements in Figure 5.12. In 

this case, R6 level 2 remains overly conservative where as R6 level 3 closely resembles the 

ANN upper bound profile. Both the R6 level 3 and the ANN upper bound profiles are 

conservative by about 200 MPa. The mean ANN profile and API-579 give the most 

realistic estimate of residual stresses measured using the contour method measurements.
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Figure 5.12. Comparison of upper bound profiles in the heat affected zone for the Esshete 

girth weld in the hoop direction.

5.3 Stress intensity factors for structural integrity assessment

5.3.1 Estimation of stress intensity factors

The stress intensity factor (i.e. elastic crack driving force) gives a true measure of the 

degree of conservatism in an “upper bound” residual stress profile for fracture mechanics 

assessment purposes. In fracture mechanics analyses of welded components, the accuracy 

or degree of conservatism in the calculated stress intensity factor associated with the 

residual stress field is critical. The ultimate test for an upper bound profile is whether it 

exceeds the stress intensity factor based on the measured profile. In this study the stress 

intensity factor (SIF) was calculated using R-Code [172] software assuming a surface 

breaking extended crack oriented in circumferential and axial directions at the internal 

location of the pipe. Table 5.1 illustrates the test conditions used to evaluate the stress 

intensity factors. The linear elastic stress intensity factors for internal surface-breaking 

fully circumferential and axial cracks (subjected to mode I loading) is examined at the 

weld centre line and heat affected zone of different welded pipes.
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Table 5.1. Conditions used to evaluate the stress intensity factors

SIF conditions

Structure type Hollow cylinder

Crack type Surface

Crack shape Extended

End constraints Unrestrained

Number of cracks Single

Orientation Circumferential and axial

Position Internal

Primary load factor 1

Depth of defect 5 mm

Polynomial order 3

Stress Axial and hoop

5.3.2 Comparison of stress intensity factors

Stress intensity factors based on functions fitted to experimental measurements and 

ANN upper bound profiles are compared with SIFs based upon upper bound profiles 

recommended in the R6 and API codes in Figures 5.13 -  5.18. In Figure 5.13, the SIFs 

based on R6 level 1 and R6 level 2 were found to be overly conservative for all the cases. 

For the circumferential crack in Figure 5.13 (a), R6 level 3 was found to give non

conservative estimates of SIFs for both internal and external cracks with a/t > 0.3. R6 level 

3 predicts a large zone of compressive stresses that peaks around x/t = 0.35 and hence the 

magnitude of the SIFs based on R6 level 3 are considerably lower than the SIFs based on 

neutron and IDHD measurements. SIFs from the API-579 profile were found to under- 

predict the SIFs based on neutron measurements for shallow cracks (< O.lt through-wall 

extent) whereas the SIFs based on the ANN upper bound profile were more realistic and 

overestimated the SIFs based on measured data for any crack length. In the case of axial

crack as illustrated in Figure 5.13 (b), the SIFs representing neutron, contour and IDHD
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measurements matched closely with each other. R6 level 1 and level 2 profiles were found 

to be very conservative followed by the ANN upper bound profile. The conservative nature 

of the ANN UB profile could be associated with the over-estimation of hoop stresses near 

the inside surface. The SIFs based on the ANN UB profile were observed to be more 

conservative than the R6 level 3 and API-579 but the difference was not substantial.
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Figure 5.13. Comparison of SIFs at the weld centre line of low heat input weld MU4-1 

based on measurements and upper bound profiles for: internal surface breaking (a) 

circumferential crack (b) axial crack.
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The SIFs based on measured data and upper bound profiles in MU4-3 are presented 

in Figure 5.14. The pattern observed in the SIF solutions in MU4-3 was consistent with 

the case of circumferential crack assumed at the internal location of MU4-1 (see Figure 

5.14 (a)). Both R6 level 3 and API underestimated the SIFs based on measured data 

whereas the ANN UB profile were able to provide more consistent bounding estimates of 

SIFs compared to measured data. In the case of axial cracks (see Figure 5.14 (b)), SIFs 

based on ANN UB profile and R6 level 3 are in close agreement and provided conservative 

bounding estimates of SIFs compared to measured data.
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Figure 5.14. Comparison of SIFs at the weld centre line of high heat input weld MU4-3 

based on measurements and upper bound profiles for: internal surface breaking (a) 

circumferential crack (b) axial crack.

The SIF solutions assuming a circumferential crack at the WCL location of the 

Esshete pipe weld are illustrated in Figure 5.15. The R6 level 1 and level 2 profiles are 

overly conservative by a large margin compared to SIFs based on the contour 

measurements at various locations. SIFs based on API underestimate the measured SIFs 

for shallow crack with a/t < 0.1 where as SIFs based on R6 level 3 underestimate for deep 

crack with a/t > 0.3 in the circumferential orientation. The SIFs based on ANN UB profile 

are consistent in providing pragmatic estimates of SIF solutions compared with the SIFs 

based on contour measured data. For the crack in the axial orientation, the same pattern
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was observed with R6 level 1 and level 2 profiles being overly conservative while close 

agreement seen between R6 level 3 and ANN upper bound profiles. SIFs based on API- 

579 was found to be least conservative compared to other upper bound profiles for axially 

oriented crack although the API upper bound profiles in the hoop direction was not able to 

bound all the experimental measurements reported. Overall, the SIFs based on ANN upper 

bound profiles in the axial direction were consistently better than the profiles 

recommended in the R6 and API codes. However for the axially oriented crack, the SIFs 

calculated from ANN UB profiles matched closely with R6 level 3 profiles but was found 

to be rather conservative compared to the SIFs based on API upper bound profiles.
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Figure 5.15. Comparison of SIFs at the weld centre line of Esshete butt welded pipe based 

on measurements and upper bound profiles for: internal surface breaking (a) 

circumferential crack (b) axial crack.

The SIF solutions at the HAZ location for internal surface breaking cracks in axial 

and circumferential orientation in different pipes are illustrated in Figures 5 .1 6 -5 .1 8 . In 

Figure 5.16 (a) and (b) SIFs based on upper bound profiles and experimental 

measurements are compared assuming a circumferentially oriented crack. The trend 

observed in the HAZ location is very similar to the WCL with SIFs based on ANN UB 

profiles overestimating the SIFs calculated from measured data in both cases. Along the 

hoop direction, the pattern is repeated with SIFs based on ANN UB profiles in good
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agreement with the R6 level 3 profiles. However, the ANN based bounding SIFs are more

conservative compared to the API profiles.
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Figure 5.16. Comparison of SIFs at the heat affected zone of low heat input weld MU4-1 

based on measurements and upper bound profiles for: internal surface breaking (a) 

circumferential crack (b) axial crack.
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In the case of MU4-3, the observations are very different as the SIFs based on 

neutron measurements are exceeding the SIFs calculated from R6 level 1 and 2 profiles for 

a/t < 0.2. But this is considered to be very unrealistic and it should be noted that the SIF 

solutions are heavily dependent on the polynomial fit used for the particular case and 

require careful extrapolation to the surfaces. The third order polynomial fit for the set of 

neutron measurement data is illustrated in Figure 5.19 and arguably, the discrepancy is due 

to the over extrapolation near the inner surface. Moreover, due to the lack of additional 

measurement data in the axial direction, there was no opportunity to compare with 

alternate measured SIFs. This is one of the limitations when using R-code software for 

calculating SIFs based upon neutron measurements where there are relatively few data 

points.
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Figure 5.17. Comparison of SIFs at the heat affected zone of high heat input weld MU4-3 

based on measurements and upper bound profiles for: internal surface breaking (a) 

circumferential crack (b) axial crack.

Comparison of SIF solutions in the hoop direction of the high heat input pipe weld 

(MU4-3) suggest that the SIFs based on API profiles can be non-conservative as shown in 

Figure 5.17 (b). The SIFs based on neutron measurements are significantly higher and are 

non-conservative for shallow and deep cracks. However, R6 level 3 and ANN UB profiles 

successfully demonstrated its consistency by over predicting the SIFs from measured data. 

The last case of SIFs is presented in Figure 5.18 considering an axial crack in the HAZ 

location of Esshete pipe. The ANN UB profiles were bounding the measured SIFs

212



effectively and thus appear to be the most realistic and reliable of all the upper bound 

profiles.
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Figure 5.18. Comparison of SIFs at the heat affected zone of Esshete butt welded pipe 

based on measurements and upper bound profiles for: surface breaking axially oriented 

internal cracks.
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Figure 5.19. Illustration of the third order polynomial fit used to determine the SIF 

solutions of neutron measurements along axial direction assuming an internal surface 

breaking extended crack in high heat input mock-up (MU4-3).
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5.4 General discussion

The ANN upper bound residual stress profiles were able to consistently bound the 

measured data consistently in WCL and HAZ locations in both axial and hoop directions. 

The stress intensity factor gives a true measure of the degree of conservatism in an “upper 

bound” stress profile and was evaluated in many cases. The SIFs based on ANN UB 

profiles were less conservative and consistent than SIFs based on any of the recommended 

profiles in the R6 and API codes. It is evident that the ANN UB profiles presented are 

suitable for use in structural integrity assessments because they will result in the crack 

driving force being overestimated for all of the cases presented. Moreover, the ANN based 

profiles have the advantage of providing location specific (WCL and HAZ) SIF results 

depending on the training data used where as R6 and API based profiles do not take into 

account the measurement location. It should be of interest that R6 level 2 profiles consider 

the key parameters such as welding heat input and pipe geometry only in a certain range. 

On the other hand, there is a risk that use of the R6 Level 3 profiles for deep cracks in the 

circumferential orientation or API-579 profiles for shallow cracks in the axial orientation 

can lead to non-conservative estimates of the SIFs which could cause the cracks to grow 

and potentially threaten the integrity of the structure. Interestingly, SIFs based on the ANN 

upper bound profiles are overestimated for any crack length, location and orientation. 

Furthermore there is scope for refining the approach used to develop the ANN upper bound 

profiles since the approach at present does not account for the uncertainty in modelling and 

experimental measurements used for training. Overall, the SIFs calculated from the ANN 

UB profiles were found to bound SIFs based upon polynomial functions fitted to measured 

data and hence they seem to be a promising candidate for use in fracture assessments 

instead of the profiles currently recommended in assessment codes.
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5.5 Conclusions

The findings reported in this chapter can be summarized as follows:

• An artificial neural network based method for providing upper bound residual stress 

profiles has been developed for stainless steel pipe butt welds.

• The artificial neural network upper bound profiles were found to be more realistic and 

consistent than profiles recommended in API 579 and the R6 Procedure both in axial 

and hoop directions.

• Stress intensity factor solutions were determined from different upper bound profiles 

for various cases and compared with the SIFs based on measured data. The ANN 

upper bound profiles were found to provide more pragmatic estimates of stress 

intensity factors than profiles recommended in assessment codes assuming a 

circumferentially and axially oriented surface breaking extended crack in three 

different mock-ups.
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Chapter 6 

Conclusions and Future work

Conclusions

The work described in this thesis presents a novel application of an artificial neural 

network that can predict through-wall residual stresses profiles in girth welded pipes. The 

ANN approach is validated by a comprehensive range of experimental measurements using 

neutron diffraction and the contour method acquired as part of this study. Sensitivity 

studies using the input parameters and training data performed demonstrated the efficacy 

of the developed ANN approach. The approach can be particularly useful as the 

information required to train the network is simple and the output is dependent largely on 

the training data. The ANN approach can be potentially used in fracture assessment of 

welded components. Upper bound profiles using the ANN model are presented and 

compared with the upper bound profiles currently recommended in structural integrity 

assessment codes such as R6 and API. The SIFs based on the upper bound profiles are 

critically assessed for internal and external surface breaking extended cracks for three 

different welds. Based on the studies conducted in this dissertation the following 

conclusions can be drawn:

• Six new pipe welds have been fabricated with a range of wall-thickness, weld heat 

input and weld groove geometries. Residual stresses in each of the girth welded 

mock-ups were measured by neutron diffraction using the SALSA neutron 

diffractometer at the ILL, France and the contour method using the in-house facility 

at The Open University, UK.
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The measured residual stress profiles have been compared with each other and 

good agreement was found in most of the cases. However, there was some 

discrepancy with the neutron measurements at the weld centre line of half inch 

thick pipes which is believed to be associated with uncertainties in stress-free 

lattice parameter measurements for austenitic weld metal owing to compositional 

variations, texture, large grain sizes or plasticity. Overall the contour method 

measurements provided more consistent results than the neutron measurements 

especially in the weld metal.

A novel approach based on the application of artificial neural networks has been 

developed that can characterise the through-wall distribution of residual stress at 

the centre-line of a stainless steel pipe girth weld, providing the weldment type lies 

within the boundary of the training data envelope used.

The best estimate prediction of stresses using ANN is validated by diverse 

experimental techniques such as neutron diffraction, incremental deep hole drilling 

and contour method measurements in four mock ups made of different geometry 

and welding parameters.

The ANN approach has been validated by comparing predicted profiles with a 

comprehensive range of new experimental measurements and the robustness of the 

developed approach has been demonstrated by performing sensitivity studies with 

input parameters and training data.

The training data sensitivity studies demonstrate that adding more experimental 

data can improve the predictions significantly. Therefore the ANN approach should 

be essentially linked with a large database of experimental measurements to realise 

its full potential.

An ANN based method for providing upper bound profiles has been developed that 

can consistently provide bounding through-thickness profiles relative to the 

experimental data.
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• The ANN upper bound profiles were found to be more realistic and consistent than 

profiles recommended in API 579 and the R6 procedure both in axial and hoop 

directions.

• Stress intensity factors were determined from different upper bound profiles for 

various cases using R-code software and compared with the SIFs based on 

measured data. The ANN upper bound profiles were found to provide more 

pragmatic estimates of stress intensity factors than profiles recommended in 

assessment codes assuming a circumferentially and axially oriented internal surface 

breaking extended crack in three different mock-ups.
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Future work

The findings in this project are expected to make a significant impact in the area of 

modelling and measurement of residual stresses as they can provide an alternative 

approach for prediction of residual stresses in welded components. Future potential 

research activities are described below,

1. Application of the neural network based method to a different material 

and/or weld geometry

• Ferritic steels are of special interest as predicting residual stresses has been 

notoriously difficult because of microstructural changes and phase 

transformation effects.

• Application of the method in a different weld geometry such as butt welded 

plates, T joints or nozzle welds. The governing input parameters needed to 

train the artificial neural network will have to be identified to determine the 

efficacy of the developed approach.

2. Analyse contour method measured data to train the NN to model a stress 

map

Experimental measurements using Contour method in six mock ups (STYLE mock-ups 

MU4-1 and MU4-3, Esshete and three half inch thick pipes) for determining the hoop 

stresses were performed in the PhD project. All six measurements results obtained are of 

high quality (for example, refer Figure 3.61) and hence the contour measured data can be 

used to train the ANN for modelling the 2-D hoop stress map of an arbitrary pipe of given 

geometry and weld parameters which is within the input parameter space. This is 

considered to be more challenging with the inclusion of more complex factors with 

particular attention to the modelling of weld fusion boundary profile. It would also hold the 

advantage of being the first mathematically modelled stress map of a weldment without 

use of the finite element approach.
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3. Implementation of the Bayesian technique

Future work developing the approach should consider full implementation of the Bayesian 

technique using an evidence framework [169] as it is desirable for optimising neural 

network parameters. This includes development of an iterative technique to optimise the 

network weights and hyper-parameters. Moreover it is possible to quantify modelling 

uncertainty by evaluating the inverse of the Hessian matrix of the regularised error 

function. In the Bayesian approach, a suitable prior distribution of weights is considered 

before observing the data instead of a single set of weights. The Bayesian technique holds 

several other advantages such as model comparison and automatically embodies Occam 

razor that penalizes over-complex models. Instead of considering a single solution to the 

problem, the Bayesian technique takes into account an entire distribution of solutions and 

does not require a separate cross-validation data set.

4. Software development

A funding of £2000 was secured for software development by winning The Open 

University enterprise competition held in July, 2013. The objective of the proof-of- 

principle study was to develop a software prototype capable of reading the input data for 

the excel spreadsheet, training the network followed by generating output for a given set of 

data provided by the user without having MATLAB application installed in the target 

machine. The attempt to create a software prototype was carried out by invoking the .NET 

assembly (made from MATLAB library) from the user interface through the DLL file. 

Figure 6.1 shows a screenshot of the developed user interface.

Role of Consultant

The user interface was developed by the consultant using Microsoft .NET technologies 

targeting Microsoft windows desktop operating system. The user interface takes input from 

the end user, invoke the MATLAB library to perform the analysis, feedback the user and
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store the analysis output. The format of the input and output files and the feedback display 

requirements was designed to cater the needs of the end user.
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Figure 6.1. Screenshot of the developed user interface.

Miscellaneous problem with integration

MATLAB doesn’t allow compiling a program that trains a neural net (Mathworks [173] 

prohibits for commercial reasons). However, this was identified in the final stages of the 

proof-of-principle study. Compiled programs can work with pre-trained neural nets, but 

this may not of much use as it is no longer dynamic. A possible way to get around this 

problem is to transform the Matlab function to python script and then create a .NET 

assembly. There are many Python open source alternatives for Matlab Neural Network 

Toolbox [167] such as Pybrain [174], neurolab [175] and FFnet [176]. It requires re

writing the Matlab code in python scripting language followed by optimisation and 

integration with the interface.
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Forthcoming activities

The neural network approach has the potential to be used in future fracture assessments of 

welded components and has generated significant interest among external industrial 

stakeholders. One of the possible routes for industrial application will be to include the 

prototype in the R-Code software [172], developed and maintained by EDF Energy. The 

database of residual stress measurements such as the one developed by VEQTER [177] 

should be essentially linked to the software to exploit its full potential.
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Appendix 1

Back-propagation algorithm and 
network hyper-parameters

Error Back-propagation algorithm

The back-propagation algorithm has been used in the training process of the ANN and is 

central to the work presented in this dissertation. The mathematical description of working 

of the algorithm as reproduced from [140].

Consider p as the number of input units and p the number of input patters p=  2 ,3 .....p 

For an input pattern p, the input to node j in the hidden layer is

h r k
a )

And the activation of the hidden node becomes

(2)

where g is the sigmoid function. Output unit is

h*='ZW'JVr'Lw'Jg(LwJtO  P)
j j k

Substituting in the activation function g,

(4)

Error function is defined as (5),

223



£ (W) = ± £
Z /V

r*  ^  u

g , - o , 2
/v G ,~ * ' ^ w<jg E w-»£

= \ l g ' -  £ L w* v
\  J

Using a gradient descent algorithm to determine weights (6),

a w  dEAWi1 = -r)— — = r)
o W i j

For sigmoid functions the derivatives can be expressed as (7) and (8)

sl=o^-o:)(gro: (B)

Weight changes from the hidden layer to the output layer giving,

A Wu
dWij

Applying chain rule we get (10),

AW,j = - t j —  = -rj
oWa
dE dE dV*,

dv ;

Finally change in weights is given by (11),

where S*  = g  ( t i ) 'L w l/S l‘= V ^ W o S -  (12)
i i

The back-propagation algorithm has the following steps,

(1) Initialise weights to small random numbers

(2) Choose a pattern ^  k from the training set

(3) Propagate the activation through the network: y "  = s ( /? r )= s (E ,w®iT') (i3)

(4) Compute the deltas for output layer M: ^  = g )^ g M -  y ^  (14)
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(5) Compute the deltas for the preceding layer by successively propagating the error 

backwards g m~' = g  ( /j”-1) wjT S") (15)

(6) Use Aw if = 10 uP^ate connections given as Aw,/™ = Aw,jold + Awy (16)

(7) Return to step 2 and repeat steps for next pattern

Network hyper-parameters

The hyper-parameters a (weight decay coefficient or regulariser) and /? (coefficient 

controlling the variance in noise) greatly influences the complexity of the ANN model. 

Large value of a will constraint the interpolant to be smooth and too low a value will cause 

overfitting of the data. Hence it is important to have a balance between the hyper

parameters as the Bayesian error function is a function of both a and /?. The values of 

hyper-parameters were determined using simplistic estimates as given in [169].

The optimum value of a and ft implies that the total misfit M — oEs + $Ed (17) satisfies the 

equation 2 M — N  (IS),

In which case a and ft should individually satisfy the condition a = — and /? = - i y  (19)
£T w  (T v

Where Es =
2 ,=i

(2i)
'=i

and p  is the input vector, w the weight vector, x  the target value, o the output, £7W standard 

deviation of weight vector and ov is the standard deviation of the output data.
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