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A B S T R A C T

This thesis concerns the iteration of transcendental self-maps of the 

punctured plane C* := C \  {0}, that is, functions f  : C* —> C* that are 

holom orphic on C* and for w hich both zero and infinity are essential 

singularities. We focus on the escaping set of such functions, w hich  

consists of the points w hose orbit accumulates to zero an d /o r  infinity 

under iteration. The escaping set is closely related to the structure of 

the phase space due to its connection w ith the Julia set.

We introduce the concept of essential itinerary of an escaping point, 

w hich is a sequence that describes how  its orbit accumulates to the 

essential singularities, and plays a very important role throughout 

the thesis. This allows us to partition the escaping set into uncount- 

ably m any non-em pty subsets of points that escape in non-equivalent 

ways, the boundary of each of w hich is the Julia set. We combine the 

iterates of the m axim um  and m inim um  m odulus functions to define 

the fast escaping set for functions in this class and, for such functions, 

construct orbits w ith several types of annular itinerary, including fast 

escaping and arbitrarily slow ly escaping points.

N ext w e proceed to study in detail the class 3* of bounded-type 

transcendental self-maps of <C*, for w hich the escaping set is a sub­

set of the Julia set, so such functions do not have escaping Fatou 

components. We show  that, for finite com positions of transcenden­

tal self-maps of C* of finite order (and hence in 3*), every escaping 

point can be joined to one of the essential singularities by a curve 

of points that escape uniformly. Moreover, w e prove that, for every 

essential itinerary, the corresponding escaping set contains a Cantor 

bouquet and, in particular, uncountably m any such curves.

Finally, in the last part of the thesis w e direct our attention to the 

functions that do have escaping Fatou components. We give the first ex­

plicit examples of transcendental self-maps of C* w ith  Baker domains 

and escaping wandering domains and use approximation theory to cons­

truct functions w ith escaping Fatou com ponents that have any pre­

scribed essential itinerary.

v
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INTRODUCTION

The material in this thesis belongs to the research area know n as 

Complex Dynamics, w hich lies in the intersection between Dynamical 

Systems and Complex Analysis. The iteration of rational and trans­

cendental entire functions has been w idely  studied since the early 

20th century. However, the iteration of transcendental self-m aps of 

the punctured plane, that is, holomorphic self-m aps of C* := C \  {0} 

that have two essential singularities, at zero and infinity, has received 

m uch less attention. In this thesis w e study the escaping set of such  

functions, w hich consists of the points that accumulate at zero a n d /or  

infinity under iteration.

1.1 A N  IN T R O D U C T IO N  TO COMPLEX DYNAM ICS

Com plex Dynamics concerns the iteration of a holom orphic function  

on a Riemann surface S, usually a subset of the Riemann sphere 

C : = C U  {oo}. If f : S C C —)■ S is holom orphic and C \  S consists of 

essential singularities, then conjugating by a M obius transformation, 

w e can reduce to the follow ing three cases:

• S =  C := C U {oo} and f  is a rational map;

• S =  C and f  is a transcendental entire function;

• S =  C* := C \  {0} and f  has essential singularities at both zero  

and infinity.

By Picard's theorem, there are no holomorphic self-m aps of S C C 

where C \  S consists of three or more essential singularities. Observe 

that, for the same reason, holomorphic self-m aps of C* have no om it­

ted values in C*. We may also consider the iteration of transcendental 

meromorphic functions on C, for which infinity is an essential singula­

rity and the poles form a discrete set. The texts [Bea9i; CG93; Milo6; 

Ste93] are basic references on the iteration of holom orphic functions;
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see [Ber93] for a survey on the iteration of transcendental entire and 

meromorphic functions.

The dynamical partition

Given a holom orphic function f : S —> S, where S is <C, C or C*, and a 

point zo G S, w e consider the sequence given by its iterates

f n (zo) := (f o - •  of)(zo) for n  e  N ,

and, for n  =  0, w e define f°(zo) := zo- Throughout the thesis, w e use 

the notation N o  for the set N  U {0}. We define the (forward) orbit of a 

point zo G S to be the set

0 + (zo,f) := {z e  S : z  =  fn (zo) for som e n  e  N o}

and the backward orbit of zo G C to be the set

0 - (zo, f) •'= {z G S : zo — f71 (z) for som e n  e  N }.

We also define the grand orbit of zo <E S to be the set

0 (zo,f) := {z € S : f m (z) =  fn (zo) for som e m ,n  € N }.

We say that a set X C S is (forward) invariant under f  if f(X) C X. 

If, moreover, f -1  (X) C X, then w e say that X is completely invariant 

under f . Grand orbits are the smallest completely invariant sets that 

w e can partition the phase space, or set of initial conditions, S into. 

However, w e w ill be interested in another partition that arises from  

the dynamics.

We define the Fatou set of f, or stable set, as

F(f) := { z  e  S : {fn } neN is a normal family in a neighbourhood of z}

and w e define the Julia set of f, or chaotic set, as its complement, 

J(f) := S \  F(f). Alternatively, w e can define F(f) as the set of points 

where the family of iterates of f  are equicontinuous. Thus, the Fatou 

set is open and the Julia set is closed.
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The sets F(f) and J(f) are nam ed after Pierre Fatou (1878 -  1929) 

and Gaston Julia (1893 “  1978)- M otivated by the 1918 Grand Prix of 

the Academ ie des Sciences in Paris which was to be awarded for a 

study of iteration from a global point of view, both of these French 

mathematicians produced long memoirs on the use of M ontel's nor­

mal families in the iteration of holomorphic functions [Fati9; Juli8]. 

Previously, Schroder and Cayley had studied the dynam ics of N ew ­

ton's m ethod applied to a cubic polynom ial but failed to give a global 

description because this involves what w e now  know to be a fractal 

Julia set. A lthough Fatou ended up not subm itting his work and Julia 

w as awarded the prize, their works laid the foundations of what we  

now  call Complex Dynamics. You can read about the beginnings of 

this research area in [Ale94].

Both Fatou and Julia studied the iteration of rational functions in 

their m emoirs and later on Fatou [Fat26] also studied the iteration of 

transcendental entire functions. However, it was not until 1953 that 

Radstrom [Rad53] considered the iteration of holomorphic self-maps 

of C*. In this section w e outline the basic properties of the iteration of 

rational functions, transcendental entire functions and transcendental 

self-maps of C*, and in Section 1.3 w e describe the aspects of research 

which are specific to holomorphic self-maps of C*.

The Fatou and Julia sets are both com pletely invariant and satisfy 

F(fn ) =  F(f) and J(fn ) =  J(f) for n  6  N  (see [Ber93, Section 1.2] 

for the proofs of the elementary properties of the Fatou and Julia 

sets). The Julia set has the dichotom y that either J(f) =  S or J(f) 

has em pty interior, and there are examples of functions for which  

J(f) =  S in the three classes described above. We say that zo G S is a 

(finite) exceptional value if 0 ~(zo, f)  is finite. Rational functions have at 

m ost two such values w hile transcendental entire functions have at 

m ost one and transcendental self-maps of C* have none. If zo G J(f) 

is not an exceptional value, then w e have J(f) =  0 ~(zo,f) .  It follows 

from M ontel's theorem and the existence of repelling periodic points 

in J(f) (that w e w ill discuss in the next section) that if zo G J(f) and 

U is an open neighbourhood of zo, then for any compact set K C S 

which contains no exceptional values, there exists N =  N(K) G N  

such that fn (U) D K for all n  ^  N. We refer to this property as the 

blowing-up property of the Julia set.
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Periodic orbits

We say that a point zo 6 S is a fixed point of f  if f(zo) =  zo and we 

say that zo is a periodic point of f  (of period p £ N )  if fp (zo) =  zq and 

f k(zo) ^  zq for 0 <  k <  p. Observe that periodic points of period p 

can be regarded as fixed points of the map f p . If there exists n e N  

such that fn (zo) is a periodic point but zo is not periodic, then w e say 

that zo is a preperiodic point of f.

Given a periodic cycle {zo,zi , . . . ,  Zp_i} C C of f  of period p £ N ;  

that is, f  (zic) =  zic+i for 0 <  k <  p — 1 and f ( z p _ i ) =  zo, we define 

the multiplier of this orbit as

p-1
A := (fp )'(zk) =  J^Jf'(zj)  

j=o

where 0 ^  k <  p. Observe that the second equality follows easily from  

the chain rule. The multiplier of a periodic cycle is invariant under 

conformal conjugation, so if a periodic cycle contains infinity, we can 

conjugate f  by a M obius transformation and reduce to the case above. 

We also refer to A as the multiplier of each point zjc, 0 <  k <  p, in the 

orbit. N ote that for fixed points the multiplier is just the derivative 

of the function at that point. Then, according to the multiplier, we  

classify periodic orbits into the following types:

• w e say that {zo ,zi , . . .  ,Zp_i} is a (super)attmcting periodic orbit 

if |A| <  1 (A =  0), and then there exists a neighbourhood Uk of 

each point Zk, 0 <  k <  p, such that for all z  £ Uk, f np (z) -*  Zk 

as n  oo;

• w e say that (zo, z i , . . . ,  Zp_i} is a repelling periodic orbit if |A| >  1, 

and then there exists a neighbourhood Uk of each point Zk, 

0 <  k <  p, such that for all z  €  Uk \  {zk}/ there exists a value 

n  =  n(z) £  N  such that f np (z) ^ Uk,'

• w e  s a y  th a t  { z o , z i , . . . , Z p _ i } i s  a n  indifferent (or neutral) p e r i o d ic  

o rb it  i f  |A| =  1, a n d  t h e n  w e  c a n  fu r th er  c la s s i f y  t h e  orb it  in to:

-  a rationally indifferent (or parabolic) periodic orbit if A =  e2m0 

w ith 0 £  Q;

-  an irrationally indifferent periodic orbit if A =  e2m0 with  

0 £ R \ Q .
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Observe that attracting periodic orbits are in the Fatou set, w hile  

repelling and rationally indifferent periodic points are in the Julia 

set. Irrationally indifferent periodic orbits can lie in either F(f) or J(f) 

depending on the arithmetic properties of the number 0 £  1R \ Q .

Both Fatou and Julia showed that, for rational functions, J(f) is the 

closure of the set of repelling periodic points of f . For transcendental 

entire functions, this fact is due to Baker [Bak68] and, for transcen­

dental self-m aps of C*, this was proved by Bhattacharyya [Bha69]. 

Results on the existence of periodic points can be used to show  that 

J(f) is an infinite set and it then follow s that J(f) is a perfect set.

We m entioned before that the set J(f) is chaotic. To justify this w e  

use the definition given by Devaney [Dev86]: a dynamical system  

f : X —> X is said to be chaotic if it has the follow ing three properties:

• f  has sensitive dependence on initial conditions; that is, there exists 

6 >  0 such that for any p £ X and any open neighbourhood U  

of p, there exist q £ U and n  ^  0 such that |fn (p) — fn (q)| >  8;

• f  is topologically transitive; that is, for every pair of non-em pty  

open sets U, V c X, there exists n  £ N  such that f n (U) n V ^  0;

• periodic orbits are dense in X.

Observe that our previous discussion im plies that the restriction of f  

to J (f ) satisfies these three properties.

Classification of the Fatou components

We now  turn our attention to the Fatou set. We refer to the connected  

components of the Fatou set as Fatou components. Let U be a Fatou 

com ponent and denote by U n , n  £ N , the Fatou com ponent that 

contains fn (U). For rational functions, w e have f(U) =  U i . Herring 

[Her98] showed that, for transcendental entire functions and transcen­

dental self-maps of C*, U i \  f  (U) consists of at m ost one point, which  

need not be an omitted value. Moreover, he showed that, for transcen­

dental self-maps of C*, if Ui is doubly connected, then f  (U) =  U i .

We say that a Fatou com ponent U is periodic if Up =  U for som e  

p £ N  and w e say that U is preperiodic if U is not periodic but Un 

is periodic for som e n  £  N . Suppose that U is an invariant Fatou
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component of f  (otherwise consider an iterate fp). Then U can be 

classified into the following types:

• l i  is an (immediate) basin of attraction: there exists an attracting 

fixed point zo € l l  and for all z  £ U, fn (z) —>> zo as n  -»• oo;

• U is a parabolic basin of attraction (or a Lean domain): there exists 

a parabolic fixed point zo £ 3U w ith multiplier A =  1 and for 

all z  £ U, fn (z) -*> zo as n  —>• oo;

• U is a Siegel disc: there exists an irrationally indifferent fixed 

point zo € U w ith multiplier A =  e27t10 for som e 0 £  R  \  Q 

and there exists a biholomorphic function 4):U —> D  such that 

4>(f(cj>—1 (z))) =  e27tl0z  for all z  £ D;

• U is a Herman ring: there exists a biholomorphic function 

(j) : U —> A for som e annulus A := (z £ C : 1 <  |z| <  r) such 

that 4>(f(4>_1 (z))) =  e27tx0z  for som e 0 £  R \ Q  and all z  £ A;

• U is a Baker domain: there exists an essential singularity a  £ d ll 

and for all z  £ U, fn (z) —> a  as n  —>■ oo.

It follows easily from the m axim um  principle that Herman rings must 

contain a pole or an essential singularity inside their bounded com­

plementary component, and hence entire functions do not have Her­

man rings. Since Baker domains require the presence of an essential 

singularity, rational functions do not have Baker domains.

We say that a Fatou com ponent U is a wandering domain if U is nei­

ther periodic nor preperiodic or, in our previous notation, if U m =  U n 

im plies m  =  n . Fatou conjectured that rational functions do not have 

wandering dom ains but was not able to discard this possibility. Af­

ter the papers of Fatou [Fatiq] and Cremer [Cre32] studying peri­

odic Fatou components, w e have to wait for over 50 years until Sul­

livan's celebrated 'no wandering domains' theorem [S11I85], in  which  

he proved Fatou's conjecture. However, transcendental entire func­

tions and transcendental self-maps of C* do have wandering domains 

(see [Bak63; Baky6] and [Kotqo] respectively).

Following Sullivan's result, Eremenko and Lyubich [EL84] and Gold­

berg and Keen [GK86] proved, independently, that if f  is a transcen­

dental entire function of finite type (see definition later), then F(f) has 

no wandering domains. The analogous statement for transcendental
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self-m aps of C* was proved, also independently, by Keen [Kee88] and 

Kotus [Kot87] (see also [Mak8y] and [Fanqi]).

Fatou [Fati9] proved that a rational function can have at m ost 

two com pletely invariant Fatou components. For transcendental en­

tire functions, Baker [Bak7o] showed that there can be at m ost one 

com pletely invariant Fatou com ponent and Bhattacharyya [Bha83] 

adapted Baker's arguments to <C*. Later on, Hinkkanen [Hin94] gave 

an alternative proof of this result for C*.

Singularities of the inverse function

There is a very strong connection between the Fatou com ponents of f  

and the singularities of the inverse function f  ~ \  We denote by s in g( f~1) 

the set of singularities of f -1 w hich consists of the follow ing two  

kinds of points:

• v € S is a critical value of f  if there exists a critical point c £ S 

(that is, f'(c) =  0) such that v =  f  (c);

• a £ S is a (finite) asymptotic value of f  if there exists a curve 

y  : [0, +oo) —»• S (an asymptotic path over a) such that y( t)  —> a  as 

t  -*  +cx) where oc is an essential singularity of f  and f  (y(t)) —> a  

as t  —y +oo.

Of course, rational functions do not have asymptotic values and have 

a finite number of critical values. In the entire case, w e define the 

Speiser class of finite-type transcendental entire functions by

S := {f transcendental entire function : # s in g ( f - 1 ) <  +oo}.

N ote that, for transcendental self-maps of € * , asymptotic paths can 

either tend to zero or to infinity. The follow ing results relate Fatou 

components and singular values of a function f :

• if ( U o , U i , . . . , U p _ i )  is a cycle of im m ediate basins of attrac­

tion or a cycle of parabolic basins of attraction, then there exists 

0 ^  k <  p such that Uk D sing(f“ 1) f  0;

• if (Uo, U i , . . . ,  Up_ i } is a cycle of Siegel discs or a cycle of Her­

m an rings, then 0Uk c  0 + (sing(f_1 ) , f)  for all 0 ^  k <  p.
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The connection betw een Baker domains and wandering domains and 

the singularities of the inverse is more subtle (see, for instance, [BW91; 

EL92; BD99; MR13]).

1.2 THE ESCAPING SET

For an entire function f, w e define the escaping set of f  as the set of 

points that tend to infinity under iteration; that is,

1(f) := {z £ C : fn (z) —y 00 as n  —y 00}.

Despite being com pletely different from the topological point of view, 

the investigation of the properties of the escaping set has provided  

important insight into the Julia set of both polynom ials and transcen­

dental entire functions.

The escaping set of polynomials

For polynom ials, the escaping set consists of the basin of attraction 

of infinity, w hich is an unbounded connected open set in F(f), and 

its boundary is J(f). In this setting, the complem ent of 1(f) is known  

as the filled Julia set, K(f). In the Orsay notes [DH84], Douady and 

Hubbard carried out an extensive study of the dynamics of quadratic 

polynom ials. One of the m ain tools used there are external rays: given  

a connected filled Julia set K(f), w e can define the Bottcher map

cPK(f) : C \ K ( f )  -y  C \ D ,

w hich is conformal, and then, for every 0 £ [0,1), define the external 

ray of argument 0 as

Re(T):=<PK(V r e 27rte), f o r r > 1 .

The external ray Re is said to land if there exists zq £  K(f) such that 

R© ( t )  -y  z q  as r -y  1. By Caratheodory's theorem, if K(f) is locally 

connected, then all external rays land. Thus the fact that external rays 

are organised by the dynamics f(Re) =  R^e (mod 1)/ where d =  deg P, 

leads to a combinatorial description of the Julia set.
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The escaping set of transcendental entire functions

For transcendental entire functions, the escaping set also plays a very  

important role although the nature of the set is m uch more com pli­

cated. It w as first studied by Eremenko [Ere89] w h o used Wiman- 

Valiron theory to show  that, for a transcendental entire function f,

(11) l ( f ) n j ( f ) ^ 0 ;

(12) J(f) =  01(f);

(13) the components of 1(f) are unbounded.

We often refer to properties (Ii), (I2) and (I3) as Eremenko's properties. 

N ote that property (Ii) contrasts strongly w ith the situation for poly­

nom ials, whereas property (I2) is com m on for both polynom ials and 

transcendental entire functions. In the same paper, Eremenko conjec­

tured that, for transcendental entire functions, property (I3) can be 

strengthened to say that all the com ponents of the escaping set are 

also unbounded and this remains an open question.

A  stronger version of Eremenko's conjecture states that, for a tran­

scendental entire function, every escaping point a can be joined to 

infinity by a curve of points that escape uniformly. Such curves are 

called ray tails and their m aximal extensions are called dynamic rays 

(see Definition 3.54) in analogy to the polynom ial case.

Devaney and Krych [DK84] showed that for certain m aps in the 

exponential family

EA( z ) : = A e z, A £  C*,

nam ely if A £  (0, 1/ e ) ,  the Julia set of EA consists of dynam ic rays 

that they called hairs (see Figure 1). Devaney and Tangerman [DT86] 

proved that the same holds for certain functions of finite type, that 

is, functions w ith finitely m any singular values, satisfying additional 

technical conditions, such as the sine family SA(z) =  A sin(z), A £  (0, 1). 

They coined the term Cantor bouquet to describe the Julia set of these 

functions. They first defined a Cantor N-bouquet, w here N £  IN, to be  

a subset of J(f) hom eom orphic to the product of a Cantor set I n  and 

the half-line [0,+oo) satisfying that I n ,  C I n 2 if N i <  N2, and then  

they defined a Cantor bouquet to be an increasing union of Cantor 

N-bouquets as N —> 00.
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Figure 1: Cantor bouquet in the phase space of the function f (z) = z + l +e z 
originally studied by Fatou.

A arts and  O versteegen [AO93] in troduced  a slightly different defi­

n ition  of a C antor bou q u e t in  term s of a topological object called 

a straight brush (see D efinition 3.68) tha t allow s the com parison of 

Julia sets of different functions, for exam ple, show ing that they are 

hom eom orphic  an d  are equivalently  em bedded  in the plane.

The Eremenko-Lyubich class B

Erem enko and  Lyubich [EL92] stud ied  the dynam ics of functions in 

the class

B := {f trancenden ta l entire  function : s in g (f_ 1 ) is bounded},

w hich  includes all the functions in  the class S and  m any  m ore; we 

say th a t these functions have bounded type. They show ed that, besides 

E rem enko 's p roperties (Ii), (I2) and  (13), functions in the class B  ad ­

ditionally  satisfy

(I4) 1(f) C J(f);

or, in  o ther w ords, they have no Baker dom ains and  no escaping 

w andering  dom ains. In term s of Iversen 's classification of singulari­

ties [Iveiq.] (see also [BE95]), functions in  the class B  have a direct 

logarithmic singularity over infinity: if R >  0 is sufficiently large tha t 

s in g (f_ 1 ) C D (0, R) and  W  := C \  D (0, R), then  each connected com ­

ponen t V of the set V := f -1 (W) is an  u nbounded  Jordan  dom ain  

called a (logarithmic) tract of f, and  the restriction f |V : V —>■ VV is a
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universal covering map. To study the properties of the escaping set of 

functions in the class B, Eremenko and Lyubich introduced a logarith­

m ic change of variables in a neighbourhood of infinity, also know n  

as logarithmic coordinates. Take R >  0 so that |f(0)| <  R; if w e define 

O' := exp-1  V and H := exp-1 W , then there exists a holom orphic 

function F : T —>• H such that the follow ing diagram commutes:

Such a function F is called a logarithmic transform of f  and the restric­

tion F|T : T -> H is a conformal isom orphism  for every com ponent 

T of O' (also called a tract of F). U sing this, Eremenko and Lyubich 

showed that functions in  the class B  have a strong expansivity property 

(see Lemma 3.21), w hich enabled them to prove (I4).

To study the dynam ics of F, it is useful to consider the set of points 

w hose orbit under F is contained in T and use symbolic dynamics to 

describe their orbits: to every point z, w e can associate a sequence of 

tracts (Tn ), the external address of z, so that Fn (z) €  Tn for n  €  No-  

Then the iteration of F in this set corresponds to the iteration of the 

Bernoulli shift map cr given by (Tn ) (Tn + i ) on the set of infinite 

sequences TN°.

Functions in the class B satisfy m any other useful properties. For 

instance, they are bounded on a path to infinity, and hence all their 

Fatou com ponents are sim ply connected, by Baker [Bak84], and it 

follows from a theorem of Heins [Heiq8] that they have lower order 

(see definition in Section 3.1) at least a half.

In 2011, Rottenfufier, Riickert, Rempe and Schleicher [RRRS11] pro­

ved that the stronger version of Eremenko's conjecture holds for trans­

cendental entire functions of bounded type and finite order or, more 

generally, for finite com positions of such functions. Roughly speak­

ing, w e say that an entire function has finite order if the m axim um  

m odulus of f  in the disc D (0,r ) does not grow faster than exp(rk) as 

r —y -boo for som e k e  IN. In the second part of [RRRS11], the authors 

show  that there is a function in the class B  for w hich  every path- 

connected com ponent of J(f) (and thus 1(f)) is bounded, and hence 

the stronger version of Eremenko's conjecture fails in  !B. The positive
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result from [RRRSn] w as proved independently by Baranski [Baroy] 

for functions of disjoint type, that is, transcendental entire functions 

for which the Fatou set consists of a single com pletely invariant com ­

ponent that is a basin of attraction. Later on, Baranski, Jarque and 

Rempe [BJR12] proved that, actually, the Julia set of the functions 

considered in [RRRS11] contains a Cantor bouquet.

The fast escaping set

Key progress on Eremenko's conjecture w as obtained by studying the 

fast escaping set defined by

A(f)  := {z e  C : 3« € N 0, |fn + ( (z)| ^  M n (R,f) for all n  e  N o},

where M(r,f)  =  max|z|=T |f(z)| and R >  0 is chosen to be sufficiently 

large so that M n (R,f) —> +cx> as n  —> 00.

The set A(f),  w hich consists of the points that escape about as fast 

as possible, was introduced by Bergweiler and Hinkkanen [BH99] 

and shares som e properties w ith 1(f), for example, J(f) n A(f) /  0 

and J(f) =  3A(f) (see [BH99] and [RSo5b]). But it also has som e m uch  

nicer properties. Rippon and Stallard showed that all the components 

of A(f)  are unbounded, and hence 1(f) has at least one unbounded  

component. For the class of functions from [RRRS11], Rippon, Rempe 

and Stallard [RRS10] proved that, under an additional condition, the 

dynamic rays in J(f) are in A(f) apart from possibly their finite end­

point. The paper [RS12] gives a compilation of results about the fast 

escaping set.

For every transcendental entire function, the Julia set also contains 

points that escape arbitrarily slowly; that is, for any sequence (r^) of 

positive real numbers such that rn —> +00 as n  —> 00, there is z  G J (f) 

such that |fn (z)| ^  rn for all n  G N  sufficiently large. This follows, 

for example, from the construction in [RS15]. In that paper, Rippon 

and Stallard study a partition of the plane into annuli that are defined  

using the iterates of the m axim um  m odulus function M.(r,f) starting 

w ith a sufficiently large r >  0. To each point z  G 1(f), they associate a 

sequence of natural numbers (sn ), the annular itinerary, that describes 

to w hich annulus the nth  iterate of z  belongs. Rather surprisingly, 

they then show  that, for every transcendental entire function, almost
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every possible sequence is the annular itinerary of a point in 1(f). For 

the class of functions studied in  [RRSio], J(f) consists of dynam ic rays 

and the slow  escaping points are a subset of the endpoints of these 

rays.

The escaping set of other classes of functions

To conclude this section, w e define the escaping set for other classes 

of functions that are not entire. If f  is a transcendental meromorphic 

function, then w e define the escaping set of f  by

1(f) : = { z g €  : f n (z) is  d e fin ed  for  n  G N  a n d  f n (z) —» oo as n  —»• oo}.

N ote that if f  is a holomorphic self-map of <C* w ith an essential singu­

larity at infinity and a single pole at the origin that is om itted, then w e  

can use the sam e definition of 1(f) as for entire functions. D om inguez  

[Dom98] proved that the analogues of Eremenko's properties (Ii) and 

(I2) also hold in this setting; that is, 1(f) D J(f) f  0 and J(f) =  31(f). 

However, in this case the components of 1(f) need not be unbounded  

but, if they are bounded, then they need to have the pole at zero in  

their closure.

For transcendental self-m aps of C*, the escaping set is given by

1(f) :=  ( z g C *  : cu (z ,f)  C ( 0 ,00}}

where cu(z,f) is the classical om ega-lim it set

o> (z,f) :=  p |  ( f k (z) : k ^ n } ,  
n6N

and the closure is taken in C. Very little has been proved about this 

set, w hich forms the focus of our thesis.

1.3 HOLOM ORPHIC SELF-M APS OF THE PU NCT URED PLANE

In this section we describe the properties of the iteration of transcen­

dental self-maps of C* and the larger class of holom orphic self-maps 

of <C*. Let f  : <C* —» C* be a holomorphic function and suppose that
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f  is not a rational function. Then w e can assum e without loss of gene­

rality that infinity is an essential singularity and f  can be classified 

into one of the follow ing three classes according to the nature of the 

point zero:

1. zero is a regular point and f  is a transcendental entire function, 

and hence f(z) =  zn exp(g(z)), where n  ^  0 and g is a non­

constant entire function;

2. zero is a pole and f  is a transcendental meromorphic function, 

and hence f(z) =  zn exp(g(z)), where n  <  0 and g is a non­

constant entire function;

3. zero is an essential singularity, and hence

f  (z) =  zn exp(g(z) + h ( l / z ) ) ,  (1.1)

where n  G Z  and g, h  are non-constant entire functions.

The expressions for the function f  above follow  from the fact that the 

function lo g (f(z ) /z n ) is holomorphic in C* (see [Rad33, p. 88] and 

[Bha69, Section 1.2] for the details).

The number n  G Z  in the cases 1-3 above is called the index of f, 

written in d (f) =  n , and equals the index (or w inding number) of f(y )  

w ith respect to the origin, where y  is any positively oriented simple 

closed curve around the origin.

If f  is a holomorphic self-map of <C*, then there exists a transcen­

dental entire function f  that is semiconjugated to f  by the exponential 

function; that is,

exp o f  =  f  o e x p .

Such a function f  is called a lift of f  and is unique up to the addition  

of m ultiples of 2m; that is, f  (z) +  2km  is also a lift of f  for any k e Z .  

For example, if f(z) =  zn exp(z +  1/z )  w ith n  G Z , then the entire 

function f(z) =  n z  +  ez +  e~z = n z  +  2 cosh(z) is a lift of f. If f  is a lift 

of f, then

f  (z +  2km) =  f  (z) +  in d (f) • 2km  (1.2)

for all z  G C and k G Z . Bergweiler [Berg^] showed that if f  is a 

holomorphic self-map of C* and f  is a lift of f, then J(f) =  exp-1 J(f).
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Examples o f holomorphic self-maps o f <C*

Transcendental self-m aps of C* arise in a na tu ra l w ay in  m any  ins­

tances, for exam ple, w hen  you com plexify circle m aps, like the so- 

called Arnol'd standard family, by  perfo rm ing  analytic continuation:

fct|3 (0 ) =  0 +  a  +  (3 sin 0 (m od 2n), 0 <  cx ^  271, (3 ^ 0,

for 0 £ R , has as com plexification (see, for exam ple, [Fag99]):

fctp(z) =  ze t a e (3(z_1/z /̂2 , 0 ^  a  ^  271, (3 ^ 0,

for z  £ <C*; th a t is, f a |3 (et0 ) =  exfoc£ ^  for all 0 £ 1R (see F igure 4). We 

refer to the functions as the complex standard fam ily.

Figure 2 : Phase space of the function f a p from the complex standard family, 
with oc =  3.1, 3 — 0.8 (left) and oc =  3.1, 3 = 5  (right).

Fagella [Fag99] show ed th a t for m aps in  the com plex s tan d ard  

fam ily there exists an  invarian t set of dynam ic rays tha t are o rgan­

ised by som e sym bolic dynam ics and  consists of po in ts  that, except 

possib ly  the finite endpoin ts, escape exponentially  fast. For p a ram e­

ters w ith  rational ro ta tion  num bers, tha t is, in  the so-called A rnoFd 

tongues, she characterised  som e bifurcations in  term s of sets of hairs 

a ttach ing  to the un it circle. Finally, she also show ed that, for som e 

irra tional ro ta tion  num bers, the Fatou set contains a H erm an  ring.

The m aps in  the com plex s tandard  fam ily belong  to the class of 

ho lom orphic  self-m aps of <C* th a t are of the form

f(z) =  zn exp(P(z) +  Q (1/z )) ( i -3)
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where n  £  Z  and P, Q are polynom ials. Such m aps were considered 

for the first time by Keen [Kee88; Kee89] w ho showed that they have 

a finite number of singular values. Later on w e w ill see that tran­

scendental self-maps of C* of finite order are precisely of this form. 

Finite type holom orphic self-maps of C* were also studied in [Kee88; 

Kot87; M ak9i], where the authors investigated the space of functions 

that are topologically conjugated to a given transcendental self-map 

of C*.

Properties of the Fatou set

One of the m ain differences between the iteration of transcenden­

tal entire functions and transcendental self-maps of <C* lies in the 

topology of their Fatou components. Baker [Bak87, Theorem 1] (see 

also [Mak87] and [Fan9i]) showed that if f  is a holomorphic self-map 

of C* that is not a rational function, then the components of F(f) are 

either sim ply connected or doubly connected, and there is at m ost 

one doubly connected component, w hich m ust separate zero from  

infinity. This contrasts w ith the fact that, for transcendental entire 

functions, Baker [Bak84] proved that every m ultiply connected Fatou 

com ponent is a wandering dom ain w hose iterates escape to infinity.

Another difference between iteration in C and in <C* is that, in 

the entire case, m ultiply connected Fatou components are bounded  

w hile, for transcendental self-maps of C*, doubly connected Fatou 

com ponents may be bounded or unbounded. We say that a set X is 

unbounded in C* if X n { 0,oo} f  0, where X is the closure of X in <C. 

Baker showed that the functions

f(z) =  e x p (a z — oc/z), 0 <  a  <  1/2, (1.4)

have a doubly connected Fatou component w ith both zero and infin­

ity in its boundary (see [Bak87, Theorem 2]).

Later on, Baker and D om inguez [BD98] classified the doubly con­

nected Fatou components of holomorphic self-maps of C* that are 

bounded in C*. Let U be such a Fatou component of a function f. 

Then there are three possibilities:

• U is an invariant Flerman ring;
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• U is a preperiodic Fatou component;

• U is a wandering domain.

The first case can only occur if |ind(f)[ =  1, w hile the second and 

third cases can only occur if ind(f) =  0. Therefore, if ind(f) ^ {0, ± 1}, 

the bounded Fatou com ponents of f  are all sim ply connected (see 

[Mak9i]).

Since it was not clear whether the doubly connected Fatou com po­

nent w as bounded or not for the previous exam ples in  the literature, 

Baker and Dom inguez provided exam ples of functions of each of the 

three kinds and showed that their doubly connected Fatou com po­

nents are bounded [BD98, Theorems 5, 6 and 7]. For instance, they 

constructed a function w ith  an attracting basin that has a doubly con­

nected preimage that is bounded in C*.

Baker and D om inguez [BD98] also discussed the case of unbounded  

doubly connected Fatou components. They observed that it is possi­

ble to have periodic Fatou components that are doubly unbounded, 

and gave as an example (1.4) w hose Fatou set is connected and hence 

unbounded in <C*, and com pletely invariant.

Baker [Bak8y] used approximation theory to construct the first ex­

ample of a holom orphic self-map of C* (which w as entire) w ith  a 

wandering dom ain that escapes to infinity. The first exam ples of trans­

cendental self-maps of <C* w ith a wandering dom ain are due to Kotus 

[Kot9o], where the wandering dom ain accumulates to zero or infin­

ity, or alternates between both of them. In the sam e paper, Kotus 

also constructed an exam ple w ith  an infinite lim it set by adapting  

the techniques from [EL92]. M ukham edshin [M uk9i] used quasicon- 

formal surgery to glue together two transcendental entire functions, 

each w ith  a Siegel disc and a wandering dom ain, and thus create a 

transcendental self-map of C* w ith a Herman ring and two wander­

ing dom ains, one escaping to zero and the other one to infinity. And  

finally, the m ost recent examples are due to Baker and Dom inguez  

[BD98] w ho constructed examples of transcendental self-map of C* 

w ith doubly connected wandering dom ains that escape to infinity  

and can be chosen to be bounded or unbounded in C*.

The only previous exam ples of Baker dom ains of transcendental 

self-maps of C* that the author is aware of are due to Kotus [Kot9o]. 

She used approximation theory to construct tw o functions w ith  in­
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variant hyperbolic Baker domains escaping to zero and to infinity 

respectively.

Properties of the Julia set

Regarding the properties of the Julia set, Baker and Dom inguez [BD98] 

proved that, if f is a transcendental self-map of C*, then all the com ­

ponents of J(f) are unbounded in C*. N ote that, in particular, this 

im plies that J (f) does not have singleton components. This contrasts 

w ith the follow ing result from Dom inguez [Dom97] (see also [Beroo]), 

w ho proved that if a transcendental entire function has a m ultiply 

connected Fatou component, then buried singleton components are 

dense in  J(f); a com ponent of J(f) is called buried if it does not m eet 

the boundary of any Fatou com ponent of f. However, Kisaka [K1S98] 

showed that this phenom enon is specific to transcendental entire func­

tions w ith  m ultiply connected Fatou components. H e proved that, for 

a transcendental entire function f, all the components of J(f) are un­

bounded if and only if f has no m ultiply connected Fatou component.

For transcendental entire or meromorphic functions, the Julia set 

has either one or uncountably m any components (see, for example, 

Baker and Dom inguez [BDoo]). Baker and D om inguez [BD98] proved 

that, if f  is a holomorphic self-map of <C* that is not a rational func­

tion, then J (f) fi C* has either one or infinitely m any components (in 

[BDoo], it w as remarked that, in the latter case, there are uncount­

ably m any components). This im plies that, if the closure of J(f) in €  

has two components, then J (f) n C* has infinitely m any components. 

Thus, one of the follow ing three cases holds:

• both J(f) n C* and its closure in C are connected;

• J(f) n  C* has infinitely m any components and its closure in €  is 

connected;

• J(f) n  C* has infinitely m any components and its closure in  C 

has two components.

Note that w e write J (f) n C* because in  the case that f is a transcenden­

tal entire function, J (f) may contain the origin. Baker and Dom inguez  

[BD98] also gave examples of functions in each of these three cases.
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In terms of measure, Kotus [Kot87] proved that, under certain con­

ditions, the Julia set of holom orphic self-m aps of C* has Lebesgue 

measure zero. In [Fan93], Fang show ed that, for m aps of the form  

f(z) =  zn exp(zp +  1/ z q), n  £ Z , p, q ^  1, the Julia set J(f) has posi­

tive measure.

Very little work has been carried out on the escaping set of a gen­

eral transcendental self-map of C*, although Fang [Fan98] introduced  

the follow ing subsets of 1(f)

I0(f) := (z £  C* : f n (z) -*  0 as n  -»  oo},

Ioo(f) •= {z £  C* : f n (z) —>■ oo as n  —y oo),

and showed that they satisfy the analogues of Eremenko's properties, 

nam ely

io(f) nj(f) ^ 0, ioo(f) n j(f) ±  0, JCf) =  aio(f) = aiooCf).

For this, Fang used Wiman-Valiron theory in the sam e w ay that Ere­
m enko did for the entire case.

1.4 STRUCTURE OF THE THESIS

The escaping set of transcendental entire functions has been w idely  

studied in recent years. However, there were very few  results on the 

escaping set of transcendental self-m aps of <C* and they only con­

cerned points in the subsets Io(f) and Ioo(f) of 1(f), w hich consists of 

points that accumulate at (0,00} in  any possible way. The goal of this 

thesis is to study the escaping set of transcendental self-m aps of <C* 

in  greater detail and extend the recent research on the escaping set of 

transcendental entire functions to this class of functions.

In Chapter 2, w e introduce the notion of essential itinerary of a point 

z  £ 1(f) for a transcendental self-map f  of C*, w hich is a sequence  

e £ {0, oo}N° that describes how  the orbit of z  accumulates to {0,00}. 

Then, for every sequence e £ {0, oo}N°, w e define a com pletely in­

variant set Ie (f) Q 1(f) that consists of all the points w h ose essen­

tial itinerary is, eventually, crn (e) for som e n  £  INo, where a  is the 

Bernoulli shift map. A ny two such sets are either equal or disjoint. 

Thus, w e obtain a partition of 1(f) into uncountably m any disjoint
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sets of the form Ie (f) for som e e £ {0,oo}N°. N ote that the sets Io(f) 

and Ioo(f) correspond to the cases where e is the constant sequence 0 

and oo, respectively.

We prove the analogues of Eremenko's properties for each of the 

sets Ie (f), e £  {0,oo}N°; namely, w e show  that, for each sequence 

e £ (0,oo}N°, Ie (f) IT J(f) 7̂  0, J(f) =  3Ie (f) and all the components 

of the set Ie (f) are unbounded in C*. N ote that, in particular, this 

means that there is an uncountable collection of disjoint sets w hose  

boundary is the Julia set.

To that end, for each sequence e £ {0,oo}N°, w e introduce the fast 

escaping set w ith  essential itinerary e of a transcendental self-map f  

of C*, A e (f) Q Ie ( f )/ combining the iterates of the m axim um  and m in­

im um  m odulus functions. We also adapt the construction of annular 

itineraries from [RS15], which allows us to construct fast escaping 

points, and also points that have almost every admissible itinerary 

w ith respect to an annular partition (An }n ez  defined using the iter­

ates of the m axim um  and m inim um  m odulus functions.

In Chapter 3, w e focus on the escaping points in the Julia sets of 

transcendental self-maps of C*. We introduce the class 13* of transcen­

dental self-m aps of C* of bounded type, and prove that, for functions 

f £ 23*, w e have 1(f) C J(f). We show that finite order functions in C* 

are of the form f(z) =  zn exp(P(z) +  Q (1 /z ))  where n  £ Z  and P, Q 

are polynom ials, and hence belong to the class 23*. We also show that 

if g, h  £ 23, the Eremenko-Lyubich class of transcendental entire func­

tions, then the function f(z) =  exp(g(z) + h ( 1/z ))  is in 23*. We adapt 

the techniques from [RRRS11] to prove that, for finite com positions 

of transcendental self-maps of C* of finite order, every point in 1(f) 
can be joined to zero or infinity by a ray tail (this generalises the work 

done in m y masters thesis [M arn] w hich relates to the special sub­

sets I0(f) and Ioo(f) of 1(f)). In particular, if a transcendental entire 

function is the lift of such a function, it follows that points w hose real 

parts escape can be joined to infinity by a ray tail; note that these func­

tions are not in the class 23. We also prove that all periodic external 

addresses correspond to a non-em pty dynamic ray that lands. Finally, 

w e show  that for every sequence e £ (0, cx>}N°, the set Ie(f) contains a 

Cantor bouquet and, in particular, uncountably m any ray tails.

In Chapter 4, w e focus on the escaping points in the Fatou set of 

transcendental self-maps of C*. We provide the first explicit examples
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of transcendental self-m aps of the punctured plane w ith  a wandering  

dom ain and also w ith a Baker domain. In order to prove that our 

example has a wandering domain, w e prove a general result w hich  

im plies that a function has a bounded wandering dom ain and is of 

independent interest. For every sequence e £ (0,oo}]No, w e use ap­

proximation theory to construct transcendental self-m aps of C* w ith  

wandering dom ains and, if e is periodic, w ith Baker dom ains in  Ie (f). 

We also construct transcendental entire and meromorphic functions 

that are holomorphic self-maps of C* and have several types of escap­

ing Fatou components.

In the first paper concerning the iteration of holomorphic self-m aps 

of C*, Radstrom [Rad53] described his goal as follows:

The theory of iteration developed by Fatou and Julia is concerned with 

rational and entire functions. What is the most general class of analytic 

functions to which the main results of this theory can be extended?

In Chapter 5, w e describe the works of Herring [Her95] and Bolsch 

[B0I97] on the iteration of functions that are holom orphic outside a 

small set of (generalised) essential singularities that are no longer 

isolated. For instance, these classes of functions include the iterates of 

transcendental meromorphic functions, that have infinite (countable) 

sets of essential singularities, like f(z) =  exp (tan z). Bolsch did not 

study the escaping set of such functions, and Herring only considered  

the subsets of the escaping set I(f, oc) consisting of the points that 

accumulate at a given essential singularity oc of f . The author regards 

this thesis as a step towards understanding the escaping set of more 

general functions, and plans to work on the escaping set of these  

classes of functions in the future.

In this direction, recently Nicks and Sixsmith [NS16] have adapted  

our definition of the fast escaping set in C* to study the iteration 

of quasiregular functions of punctured space, that is, quasiregular 

functions f  : R d \  S -» R d \  S where d >  2 and S C R d U {00} is a 

finite set that coincides w ith  the set of essential singularities of f .
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In this chapter w e study the structure of the escaping set of transcen­

dental self-maps of C*. We introduce the notion of essential itinerary 

and prove the analogues of Eremenko's properties. In particular, w e  

show  that there is an uncountable collection of disjoint subsets of the 

escaping set each of w hich has the Julia set as its boundary. We define 

the fast escaping set for this class of functions by combining the iter­

ates of the m axim um  and m inim um  m odulus functions. We also use  

the m axim um  and m inim um  m odulus functions to define an annular 

partition of C* and then construct points w ith several types of annu­

lar itineraries w ith  respect to that partition, including fast escaping  

points but also arbitrarily slow ly escaping points.

2.1 IN T R O D U C TIO N  A N D  M A IN  RESULTS

Recall that, for transcendental self-maps of C*, w e define the escaping 

set by

1(f) := { z e  C* : co(z,f) C (0, oo}},

where tu(z,f) := D nG N ^k(z ) • k ^  n} and the closure is taken in  C. 

The set 1(f) contains points that escape to zero as w ell as to infinity, 

defined as follows:

I0 (f) := { z e C *  : f n (z) -> 0 as n  -> oo}, 

loo(f) •= {z € C* : fH'fz) -> oo as n  —> oo}.

The set 1(f) also contains points that escape from C* by jumping in­

finitely m any times between a neighbourhood of zero and a neigh­

bourhood of infinity. The sets Iq (f) and Ioo(f) were studied by Fang 

[Fan98] w ho proved the analogues of Eremenko's properties (Ii) and  

(I2) described in Section 1.2, nam ely that

io ( f )n j ( f )  y  0, Io o (f)n j(f) ^ 0  and J(f) = ai0(f) =  aioo(f)/
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by using Wiman-Valiron theory in the w ay that Eremenko did for 

the entire case. But the full set of escaping points 1(f) has not been  

previously studied.

To classify the various types of escaping orbits we introduce the 

follow ing concept.

D efin ition  2.1 (Essential itinerary). Let f  be a transcendental self-map 

of <C*. We define the essential itinerary of a point z  G 1(f) to be the 

sym bol sequence e =  (en ) G (0,oo}N° such that

for all n  G N .

We now  introduce the set of points that escape w ith a particular 

essential itinerary.

D efin ition  2.2 (Escaping set). For each sequence e G {0, oo}N °, the set 

of escaping points w hose essential itinerary is exactly e,

where cr denotes the Bernoulli shift map. Finally, for e G {0, oo}N°, w e  

denote by Ie (f) the set of escaping points w hose essential itinerary is, 

eventually, a shift of e,

Ie (f)  := {z  €  1(f) : 3f ,k  G N o , Vn ^  0, |fn+£(z)| >  1 <£> en+ic =  00}, 

or, equivalently,

0, if |fn (z)| <  1, 

00, i f | f n ( z ) |> l ,

Ie/0 := (z G 1(f) : Vn ^  0, |fn (z)| >  1 <£> en =  00},

and, for £,k G N o , w e define

l - e'k :=  {z e  1( f ) : Vn »  0, |fn+£(z ) |> l  en+lc=oo} =  r ‘ ( l“'k0(e,( f ) ) ,

M f ) := U U I7 e'k ( f ) =  U U
£G]Nq kGNo 1̂ -GNo
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We introduce a notion of fast escaping set related to an essential 

itinerary e, defined using the iterates of the m axim um  and m inim um  

m odulus functions

M (r,f) := max |f(z)| <  +00 and m (r,f) := m in |f(z)| >  0,
\z\=r \z\=r

w hich are defined for r >  0.

D efin ition  2.3 (Fast escaping set). Let f  be a transcendental self-map  

of <C*. We define the fast escaping set with respect to the essential itinerary 

e =  (en ) £ (0 ,oo}N°, A e (f), as follows. First, let R >  0 be sufficiently 

large so that the sequence (Rn ) defined by Ro := R, if eo =  00, or 

Ro := 1 /R , if eo =  0, and, for n  >  0,

• Rn := m(Rn_ i ), if en =  0,

• Rn ’=  M-(Rn—1), if en =  OO,

accumulates to {0,00}. Then, A 7 £,0(f,R), f 6 Z , is defined to be the 

set of z  £ C* such that

• |fn+€(z ) K  Rn , i f  en =  0,

• |fu+€(z)| ^  Rn , if en =  00,

for all n  £  N o  such that n  + 1 £  N ,  where R >  0 . For f G Z  and 

k S N 0/ w e put A r £'k(f,R) := A ; £'(°e) (f, R) C 17{'k(f). Finally, we  

define

Ae(f):=|J IJ A 7 £'k (f,R).
z  keNo

We denote by A (f) the fast escaping set of f, that is, the set of all points 

that are fast escaping w ith respect to som e essential itinerary.

The sets A e (f), e £ {0, oo}N°, and A (f) are independent of the value 

of R >  0 used to define them  provided that R is large enough, and  

A e (f) C Ie (f) (see Lemmas 2.14 and 2.16).

Observe that if f(z) =  zn exp(g(z) +  h ( l /z ) )  w ith  n  G Z  and g ,h  

non-constant entire functions, then the behaviour of f  in  a neighbour­

hood of infinity depends m ainly on that of the entire function g w hile  

the behaviour near zero depends m ainly on that of h.

We begin by proving an analogue of property (Ii), nam ely that 

Ie (f) fl J(f) and indeed A e(f) fi J(f) are non-em pty for any essential
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itinerary e. We follow  the approach of Rippon and Stallard in [RS15] 

where they proved the existence of points escaping to infinity at dif­

ferent rates by constructing points w ith  different annular itineraries.

Theorem  2.4. Let f  be a transcendental self-map of C*. For each sequence 

e £ (0, oo}N°, we have A e (f) fl J(f) ^  0 and hence Ie (f) H J(f) ^  0.

Our notation for annular itineraries is as follows. Let R+ >  0 and 

R_ >  0 be, respectively, large enough and small enough such that, for 

all r >  R+, M(r) >  r and, for all 0 <  r <  R_, w e have m(r) <  r. Then 

define

A 0 := A(R_, R+) =  (z € C* : R_ <  |z| ^  R+} 

and the sequences of annuli

A n := (z € C* : M n_1 (R+) <  |z| <  M 7X(R+)}, for n  >  0; 

An : = { z £ C *  : m _ n (R_) <  |z| <  m _n_1 (R_)}, f o r n < 0.

Each point z  £ 1(f) has an associated annular itinerary (sn ) € Z N° 

w ith respect to the partition {An)n e z  such that f n (z) £  A Sn for all 

n  G N o . We prove a covering result (see Theorem 2.18) which allows 

us to construct orbits w ith certain annular itineraries, including the 

ones listed in Theorem 2.6 below.

Remark 2.3. In this thesis w e deal w ith two kinds of itineraries for 

escaping points that should not be confused: essential itineraries 

(en ) G {0,oo}N°, which describe how  an escaping point accumulates 

to the two essential singularities, and annular itineraries (sn ) G Z N°, 

which depend on the partition {A n}nez -  For large values of n , the 

sym bols en =  0 and en =  00 correspond, respectively, to negative 

and positive terms sn in the annular itinerary.

Theorem  2.6. Let f  be a transcendental self-map of C*. Given an annular 

partition {A n }nez  defined as above with R+, 1 /R _  sufficiently large, we 

can construct points with the following itineraries:

• fast escaping itineraries;

• periodic itineraries;

• bounded itineraries (uncountably many);

• unbounded non-escaping itineraries (uncountably many);

• arbitrarily slowly escaping itineraries.
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N ote that our proof uses a different annular covering lem m a to 

those used in [RS15] and, in  this setting, w e are able to avoid the ex­

ceptional sets w hich feature in [RS15, Theorem 1.1 and Theorem 1.2].

We now  state a result in the spirit of property (I2) but for any es­

sential itinerary e. For the special cases of Io(f) and Ioo(f), this is due  

to Fang and it also follows from the results in [BDH01].

Theorem  2.7. Let f  be a transcendental self-map of C*. For each sequence 

e £  {0,oo}N°, we have J(f) =  9A e (f) =  9Ie (f). Also J(f) =  9A (f) =  

91(f).
Since there are uncountably m any non-equivalent essential itine­

raries (see Remark 2.i3(ii)), this m eans, in particular, that there is an 

uncountable collection of disjoint sets, each of w hich has the Julia set 

as its boundary.

We also prove the analogue of property (I3) for any essential itine­

rary. W hen w e say that a set X is unbounded in <C*, w e m ean that 

X n {0,00} 7̂  0, where X is the closure of X in  <C.

Theorem  2.8. Let f  be a transcendental self-map of C*. For each sequence 

e £  (0, oo}N°, the connected components of Ie (f) are unbounded in C*, and 

hence the connected components of 1(f) are unbounded in C*.

Finally w e show  that, as for transcendental entire functions, the 

components of A (f) are all unbounded.

Theorem  2.9. Let f  be a transcendental self-map of C*. For each sequence 

e G (0, oo}N°, the connected components of A e(f) are unbounded, and hence 

the connected components of A (f) are unbounded.

Structure of the chapter. In Section 2.2 w e  prove the basic proper­

ties of M(r) and m(r) that w e are going to need later. The discussion  

about the notions of essential itinerary and the fast escaping set is in  

Section 2.3. Section 2.4 is devoted to the construction of the annular 

itineraries and the proof of Theorem 2.6. The m ain result in  this sec­

tion, Theorem 2.18, in fact allows you to construct m any more types 

of orbits than the ones listed in the statement of Theorem 2.6. In Sec­

tion 2.5 w e prove Theorems 2.4, 2.7 and 2.8 w hich are the analogues 

of Eremenko's properties (Ii), (I2) and (I3) in  C*. In doing so w e also 

show  that the com ponents of the fast escaping set are unbounded  

(see Theorem 2.9), and that if a Fatou com ponent U intersects the fast 

escaping set A (f) then U C A (f) (see Theorem 2.21).
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2.2 THE M AXIM UM  A N D  M IN IM U M  M ODULUS FUNC TIO NS

Before proving the annular covering results, w e need som e basic prop­

erties of the m axim um  and m inim um  m odulus functions for transcen­

dental self-m aps of C*. N ote that w e w ill not usually make explicit 

the dependence on f  and w e w ill just write M(r) and m (r). As a con­

sequence of the m axim um  m odulus principle, both M(r) and m(r) 

are unim odal functions. In the following lemma w e summarise their 

main properties. Throughout this section w e w ill only prove the state­

ments for M(r) w hen r —> +00, and the other three statements for 

M.(r) w hen r —> 0 and for m(r) w hen r —»■ + 0 0  and r —> 0 can be 

deduced from these by using the fact that if f(z) =  f( l  /z )  then

Lemma 2.10. Let f  be a transcendental self-map of C*. The functions M.(r) 

and m(r) satisfy the following properties:

... logM (r) logm (r)
(1) — :----------—y “j-oo, — -----------—y —00 cis v  —y -boo, utiu

lo g r  logr

M i l  _> _ TO, M i l  _  +0o as r  0;
lo g r  logr

(ii) logM (r) and — logm (r) are convex functions of logr;

(iii) there exists R°° =  R°°(f) >  0 such that

M.(rk) ^  M.(r)k, m (rk) ^  m (r)k /or every r  ^  R°°, k >  1,

and there exists R° =  R° (f) >  0 such that

M (rk) ^  M.(r)k, m (rk) ^  m (r)k/or every r ^  R°, k >  1;

1 M.(kr) m(kr)
(to )  j o t  k >  I ,  —— —y “b o o ,  — 7—— —y 0  us r  —y “bOO, UTLu

J M(r) m(r)

M(kr) m(kr) .
"Mtrf mfiT +°° fls r ’

Proof (i) This property follows from the fact that 

log M(r)
—z ----------> + 0 0  as r —» + 0 0

logr
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for transcendental entire functions (see [Lev96, Theorem 1 on p. 3]) 

using that f(z) =  zn exp(g(z) +  h (1/z ) ) ,  where n  G Z  and g ,h  are 

non-constant entire functions (see (1.1)), so

lim  =  lim  log  M (r, foo) _  +
r—>+00 lo g r  r-^+00 lo g r

where foo (z) =  zn exp g(z).

(ii) This m eans that cj>(t) =  log M. (exp t) is a convex function of t  

and the property is usually referred to as the Hadamard three circles 

theorem, see [AM53]. Observe that in the hypothesis of that theorem  

you only need that the function is analytic in an annulus ri <  \z\ <  r2 

and it therefore applies to holom orphic self-maps of C*.

(iii) See [RS09, Lemma 2.2] or [BRSi3, Theorem 2.2] for the anal­

ogous result for transcendental entire functions. We reproduce the 

proof here for completeness.

Let (j)(t) =  lo g M (e x p t). By property (i), 4>(t)/t +00 as t  +00,

so w e can take t i ^  to >  0 large enough that

4>(t0) >  0 and ^  f o r t ^ t i .
t  to

Let 4>' denote the right derivative of cj). Then, by property (ii) and the 

previous inequality,

t  — to t

H ence cf>(t)/t is an increasing function for t  >  t i . Thus, if k >  1, then  

4^jkt) ^  cj)£t)̂  4>(lct) ^  kcj>(t),

for t  ^  t i . Taking exponentials on both sides w e get the result, w ith  

Roo =  exp t i .

(iv) For every value of r >  1 w e can write kr =  rc, where

. lo g k  +  lo g r
c =  c(r) =  — ----------—  >  1.

logr

By property (iii), for r large enough,

M(kr) M (rc) ^ M(r) c

M(r) M(r) M(r)



THE E S C A P IN G  SET

and then, using property (i),

log  (M (r)c_1) =  (c — 1) log M(r) =  i0g  ]VL(r) ->■ + 0 0  as r ^  + 0 0 ,  

so
M(kr)
— — - — > + 0 0  as r ->  + 0 0 . ■
M.(r)

The follow ing result compares the iterates of M.(r) and m(r) w ith  

those of their 'relaxed' versions p(r) =  eM (r) and v(r) =  m(r) /e ,  

where 0 <  e <  1. The analogous property for entire functions was 

used by Rippon and Stallard in [RSi2, Theorem 2.9].

Lemma 2.11. Let f  be a transcendental self-map of C*, and define 

p(r) =  £M.(t) and v(r) =  m (r)/£ , where 0 <  £ <  1. Then there exists 

Ri (f, £) >  0 such that, for r  ^  Ri (f, e),

(in (r) ^  M n (£r) and v n (r) <  m n (£r) f o r n  >  0,

and, for 0 <  r ^  1/R i (f, e),

pn (r) ^  M n (r/£) and v n (r) <  m TL[r/e) f o r n  >  0.

Proof Let R be large enough that M(£r) ^  er for all r ^  R. By pro­

perty (iv) in  Lemma 2.10, w ith k =  1 /£ , there is R' ^  R such that,

1 ,^  -=■ for r ^  R ,
M(£r) £2

and therefore

p(r) =  £M(r) ^  -M (£r) ^  r for r ^  R'.
£

Hence, pn (r) ^  M n (£r) for all n  € N  and r ^  R'. If R" >  0 is 

the constant required for the corresponding inequality with m(r) 

and v(r), then w e define S := max{R', R"}. If S' >  0 is the constant 

such that the second pair of inequalities hold for 0 <  r <  S', then w e  

put Ri (f, e) := max{S, 1 / S '}. ■

Finally let us prove a property of M.(r) and m(r) that w ill be used  

later in the construction of the annular itineraries.
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Lemma 2.12. Let f  be a transcendental self-map of C*, and define 

p(r) =  eM (r) and v(r) =  m (r)/£ , where 0 <  e <  1. Then there exists 

R2 (f/ e) >  0 such that, for r  ^  R2(f, e),

^  <  £|xn (r ) f or n  >  0,

and, for 0 <  r ^  1 /R 2(f/ e)/

m n - l  >  f or n  >  0.

Proof Consider p.(r) =  e2M(r) and let Ri (f, £2) >  0 be the constant 

defined in Lemma 2.11. Then

jXn (r) ^  M n (£2r)

for all n  G N  and r ^  Ri (f, £2). N ow  let R >  Ri (f, £2) be large enough  

that r <  M.(£2r) for all r ^  R. Then, applying M.n_1 to both sides of 

the inequality r ^  M.(£2t), w e get

M n_1 (r) <  M.n (£2r) <  p.n (r)

for r ^  R. Hence,

M.n —1 (r) <  pn (r) =  £2M (p n_1 (r)) <  £2M.(pn_1 (r)) =  £M-n (r)

for all n  €  N  and r ^  R. If R' >  0 is the constant required for the 

corresponding inequality w ith m(r) and v(r), then the required result 

holds w ith R2 (f, £) := max{R, 1 /R'}. ■

2.3 THE ESCAPING A N D  FAST ESCAPIN G SETS

In this section w e discuss som e basic properties of the escaping and  

fast escaping sets of transcendental self-m aps of C*. Recall that in  

Definition 2.1 w e defined the essential itinerary of an escaping point 

z e 1(f) to be the sym bol sequence e =  (en ) e  {0, oo}N° such that

_ /  0, if |fn (z)| ^  1, 
— \

{ 00, if |fn (z) | >  1,
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and Ie (f) denotes the set of points w hose essential itinerary is, even­

tually, a shift of e, that is,

Ie(f) := {z € 1(f) : 3C,k e  N 0, Vn s  N 0, |fn + t(z)| >  1 -s- en+k =  oo}.

Remark 2.13. (i) Observe that w e used the unit circle to define the

boundaries of neighbourhoods of zero and infinity but w e could  

have used any circle {z : |z| =  R} w ith R >  0, because the orbits 

of escaping points are eventually as close as we want to the 

essential singularities.

(ii) For e 7̂  e', the sets Ie (f) and Ie'(f) are either equal or disjoint. 

In fact, w e have Ie (f) =  Ie'(f) if and only if crm (e) =  an (e') 

for som e m ,n  €  N o , where a  denotes the Bernoulli shift map. 

In this case w e say that e is equivalent to e' and write e =  e'. 

However, it is easy to see that there are uncountably many non­

equivalent essential itineraries.

(iii) We use the notation eoei . . .  ep_ i ,  p € N o , to denote the peri­

odic sequence of period p w hich consists of e o e i . . . e p_i 

repeated infinitely often. This notation w ill be used for annu­

lar itineraries as well.

Recall that in Definition 2.3 w e defined the fast escaping set, A (f), 

by iterating a combination of M.(r) and m(r) on Ro >  0 following an 

essential itinerary e. In order for this set to be well defined, w e first 

need to guarantee that the sequence (Rn ) escapes to (0, +00} provided 

that Ro is sufficiently large, if eo =  00, or sufficiently small, if eo =  0.

Lemma 2.14. Let f  be a transcendental self-map ofC*.  There is R(f) >  0 so 

large that, for every e €  (0, oo}N, if  the sequence (Rn ) is as in Definition 2.3, 

where R >  R(f), then

(i) M(r) >  r2 and 1/m (r) >  r2, if r >  R(f), and 1/M (r) <  r2 and 

m (r) < r 2, i f  0 <  r <  1 /R (f), and hence Rn -»> (0, +00} a s n —»> 00;

(ii) if  R' >  R and (R.fJ is the sequence defined using R' as in Definition 2.3, 

then, for all n  e N o , R^ >  Rn , if =  00, and R^ <  Rn, z /en =  0.

It follows that A e (f) C Ie (f).

Proof Since M(r) and l/m (r )  grow faster than any power of r (see 

Lemma 2.io(i)), w e can take R(f) >  0 large enough that (i) holds.
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Moreover, by Lemma 2.io(ii), w e can choose R(f) sufficiently large so  

that, in addition,

• the function M.(r) is m onotonically increasing on (R (f),+oo) 

and m onotonically decreasing on (0,1 /R (f));

• the function m(r) is m onotonically decreasing on (R (f),+oo) 

and m onotonically increasing on (0,1 /R (f)).

Thus, if R' >  R, the sequence (RJJ w ill heat the sequence (Rn )/ that is, 

for all tl G N o , R^ >  Rn , if en =  oo, and R^ <  Rn , if en =  0. ■

Let R >  R(f), where R(f) is the constant from Lemma 2.14. The fast 

escaping set with respect to the essential itinerary e =  (en ) G {0,oo}N° 

w as defined in  Section 2.1 to be

A e ( f ) : = U  U  A e £,k(f' R)'
IcSINo

where the set Ae */k(f, R), called a level of A e (f), consists of the points 

z  G C* such that,

• |fn+£(z)| <  Rn, if en+k =  0,

• |fn+£(z)| ^  Rn , if en + k =  00,

for all n  G N o  such that n  +  f 6 N o- For Ae £,k(f, R), the sequence 

(Rn ) is defined by Ro := R, if =  00, and Ro := 1/R  >  m(R), if 

eic =  0, and, for n  >  0,

• Rn ;=  m(Rn- i ), if e n +k =  0,

• Rn := M(Rn- i ), if en +k =  00.

Observe that the sets A ^£,k(f, R) =  A _£'° , (f, R) are closed. A lso,(7 j
note that, in these definitions, w e could have chosen 0 <  R <

and then taken R0 =  R, if ek =  0, and R0 =  1/R  <  M(R), if =  00.

Lemma 2.15. Let f  be a transcendental self-map of C*, and let e G (0, oo}N°, 

R >  R(f), where R(f) is as defined in Lemma 2.14, t  e  Z  and k G N o . Then 

we have A7 £/k(f,R) C A 7 e_1,k+1 (f,R) and hence
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Proof. Let (Rn) be the sequence defined by Ro := R, if = oo,
and Ro := 1 /R, if = 0, and, for n > 0,

• Rn •— m(Rn-1 ), if £n+k ~  0,

• Rn M(Rn_ i), if en+k = oo,

and let (Rn) be the sequence defined by Ro := R, if e^+i = oo,
and Ro := 1 /R, if ek+i = 0, and, for n  > 0,

• Rn •— TTl(Rn—1 ), if On+k+1 = 0,

• Rn '= M(Rn—1 )/ if On+k+1 = OO.

By Lemma 2.i4(i) and (ii), Rn+i > Rn > R(f)/ if en+k+i = oo, and
Rn+i < Rn < 1/R(f), if en+k+i = 0, for all n G No.

Suppose that zo € A7 £,k(f,R); then

• |fTL_,_£(zo)| < Rn, if en+k = o,

• I f n + € ( z 0) l ^  Rn, if On+k — OO,

for all n e  No such that n + i  G No, and therefore

• |f^+£+1 (z0)| < Rn+1 < Rn, if en+k+l = 0,

• |fn+£+1 (z0)| ^ Rn+1 > Rn/ if en+k+l = °°/

for all n e No such that n + f + 1 G No, and thus zo € A7 £_1,k+1 (f, R)- 
Observe that if I < 0, then points in both of the sets A7 £,k(f, R) 
and A7 l-1/k+1(f,R) must satisfy respectively the conditions above 
for each iterate fn(zo), n  £ No- If £ > 0, then points in A^£,k(f, R) 
must satisfy a condition on f£(zo) while for points in A7 £-l,k+1 (f, R), 
the iterate f£(zo) is arbitrary.

Finally, if i  < 0, then A 7 £,k(f,R) Q Ae'k_£(f,R) and, therefore, we 
can define A e (f) using only the level sets A ~̂£,k(f, R) with I G No- ■

The following lemma shows that the sets A e (f) (and hence also A (f)) 
are independent of R, as mentioned in Section 2.1, and completely in­
variant under f. The sets A e (f) are also invariant under shifts of e; 
that is, A a(e)(f) = A e (f).

Lemma 2.16. Let f  he a transcendental self-map of C*. For each sequence 

e G (0,oo}N°, the set Ae(f) is completely invariant under f, shift invariant 

and independent of R, provided that R > R(f), where R(f) is the constant 

from Lemma 2.14. Hence the set A(f) is completely invariant and indepen­

dent of R.
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Proof. We first show  that the set A e (f ) is com pletely invariant under f, 

that is,

f (A e (f)) C A e (f) and f 1 (A e (f)) C A e (f).

The left-hand inclusion holds because f (A 7 £,k(f,R )) C A 7 t+1/k(f,R), 

w hich follows easily from the definition of the levels of A e (f). To 

prove the right-hand inclusion, w e note that, by Lemma 2.15, w e can 

suppose that £ G N  and in that case

f - ' ( A 7 ‘'k (f,R )) =  A “ e_1,k(f, R).

We now  show  that the set A e (f) is shift invariant, that is, w e prove 

that A ff(ej(f) =  A e (f). First,

Ar(«)(f)=U U Âe)(f'R)=U U Ae{'k+1(f-R)
te z  keN0 £eZ keNo

= U U A 7''k( f ,R ) c A e (f).
te z  k^i

In the other direction, by Lemma 2.15,

A e (f) =  U U A r £'k ( f ,R ) c  U u A 7 {_1'k+1( f ,R ) = A „ (e)(f).
k6No k£lNo

We give the details that A e (f) is independent of R for the case 

where there exists a sequence (nk) such that RUk -7  +00 as k -> 00. 

Otherwise Rn —»■ 0 as n  —> 00 and the argument is similar.

Suppose that R7 >  R >  R(f) and let (Rn.) and (R (Jbe the sequences gi­

ven by Definition 2.3 starting w ith R and R7 respectively. By Lemma 2.14, 

w e have that R^ —>• {0,+ oo} as n  00 and A 7 £'k(f,R 7) C A 7 £'k(f,R) 

for £ G Z , k G N o- Hence,

U U Aee'k(f,R') c |j U Are'k(f>R)-
kGNo kGNo

In the other direction, w e use the fact that w e have assum ed that 

there is a sequence (nk) such that RUk —> +00 as k -»• 00. Let m  G N o
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be such that Rm >  R'. If e is the symbol sequence e preceded by the 

string e0 . . .  em_ i , then

A 7 £’k(f,R ') 2  A 7 £-k (f,Rm ) =  A - t'k+m (f,Rm ) 2  AT(£- m)'k(f,R) 

and, since crm (e) =  e, by the shift invariance property, w e have

U U V^ftR') 2 U U A7(£“m)'k(tR) 2 U U Ae£'k(f,R)
t e Z keN o kGNo l e Z k £ N 0

Therefore A e (f) is independent of the value of R used to define it. ■

Since A e (f ) is shift invariant, if e, e' G {0, oo}N ° and A e'(f) n  Ie (f ) 7̂  0/ 

then A e'(f) =  A e (f), by Remark 2.13(h).

We w ill continue studying the dynamical and topological proper­

ties of A (f) in Section 2.5.

2 .4  A N N U L A R  ITINERARIES FOR C *

In this section, w e study annular itineraries for our class of functions.

By Lemma 2.10, there exist R+, R_ >  0, respectively, large and small

enough such that M n (R+ ) —» +00  and m n (R _) —>• 0 as n  —> 00.

We define Ao :=  A (R _ , R+) and

A n :=  {z  G C* : M n_1 (R+) <  |z| ^  M n (R +)} for n  >  0 ,

A n :=  { z  €  C* : m _ n (R _) ^  |z| <  m _7X_1 (R _)}  for n  <  0 ,

so that {A n }nGz  is a partition of <C*. Each point z  € 1 (f) has an 

associated annular itinerary ( s n ) G Z N ° such that f n (z) G A Sn for 

all n  G N o - N ote that this sequence depends on the values R_ and 

R+ used to define the partition. By construction, it follows from the 

m axim um  m odulus principle that

S n + 1  ^  S n  “t" 1,  i f  Sn  >  0 /

S n + 1  ^  Sn  1,  i f  Sn  <  0.

To create escaping orbits w ith certain types of annular itineraries we 

w ill use the follow ing version of a well-known result.
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Lemma 2.17. Let {C n }n € N 0 be compact sets in C* and f  : C* ->• C* be 

a continuous function such that

f (C n )  2  cn+1 for n  €  N 0•

Then there exists £ such that f n (C) £ Cn for n  €  No-

In our construction, the compact sets {Cn }n en\j0 w ill be compact 

annuli Bn C A n w ith som e covering properties. More precisely, w e  

w ill have that Bn C int A n for n  G Z  \ { —1, 0, 1}.

Theorem  2.18. Let f  be a transcendental self-map of C*. If {An }nez is 

the set of annuli defined above, then there exists a sequence of closed annuli 

{Bn)n<EZ such that Bn Q A n for all n  G Z , with the following covering 

properties:

• if  n  >  0, f/zere exists an integer kn ^  1 such that f(B n ) 2  Bk 

for  kn ^  k <  n +  1,

® ^  0/ ifisYS sx-TS'ts ctn kpp ^  1 sxtch tfodi f  j — Bk

for n  — 1 <  k <  kn,

and |km| ^  |kn | when |m| >  |n| and m ,n  have the same sign. Moreover, 

|km| —> oo as |m| -»  oo.

N ote that the sequence (km ) depends on the growth of the function  

m(r) as r —̂ +00 (when m  >  0) and on that of M.(r) as r —» 0 (when  

m  <  0).

We compare Theorem 2.18 w ith the corresponding result for trans­

cendental entire functions [RS15, Theorem 1.1]. In that setting, there 

is a subsequence (nj) such that f(B nj) B^ for 0 ^  k ^  nj +  1 w ith  

at m ost one exception while, in our case, all f(B n ) cover the other B^ 

w ith 0 <  k ^  tl +  1 i f n > 0. A lso, the proof in [RS15] is significantly 

more involved than ours due to the possible presence of zeros of the 

function and m ultiply connected Fatou com ponents, and it requires 

the use of several new  covering lemmas.

In order to prove Theorem 2.18, w e use the follow ing recent cover­

ing result due to Bergweiler, Rippon and Stallard (see [BRS13, Theo­

rem 3.3]). Here [z, w ]q  stands for the hyperbolic distance betw een the 

points z  and w  relative to JQ, where D  is a hyperbolic domain; that is, 

D. has at least two finite boundary points.
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Lemma 2.19. There exists an absolute constant 6 >  0 such that i fR'  > R 
and f : A(R,R') —>• C* is analytic, then, for all zi,z2 € A(R,R') such that

[z i , z 2 ] a ( r ,r ')  < 5 and |f(z2)| ^  2|f(zi)|,

we have

f(A(R,R/)) 2  A(|f(zi )|,|f(z2)|).

Now we prove Theorem 2.18.

Proof of Theorem 2.18. If A(s) = A[e,  j ) ,  0 < £ < 1, and C =  {z:  |z| = 1}, 
then the hyperbolic length of C with respect to A(e) is

^A(e)(C) =
7T2

lo g ( iA )

(see [BMo7, Example 12.1]). Since the hyperbolic length is invari­
ant under conformal transformations, the hyperbolic length of the 
circle (z : |z| =  r} with respect to A(sr, r̂) is also — 7r2/log£. We 
choose 0 < e < 1 to be sufficiently small that

7T2
log(l/e) < 6,

where 8 is the absolute constant of Lemma 2.19.

Let p(r) =  £M(r) and let R2 (f, e) be the constant in Lemma 2.12. 

Then w e claim that there exists Ro =  Ro(L £) >  R2 (f, £) > 0  such that 

if R+ ^  Ro, then

M n_1 (R+) <  £Hn (R+) <  nn (R+) <  -n " (R + ) <  M n (R+) (2.1)
£

for all n  >  1 (see Figure 3). N ote that if n  =  1 the first three in­

equalities in  (2.1) hold w hile the last one becom es an equality. Indeed 

Lemma 2.12 ensures that the first inequality is satisfied. The two m id­

dle inequalities are clear because 0 <  £ <  1, and the last one is due 

to the fact that the function p(r) is increasing for large values of r 

and p71-1 (R+) <  M ^ ^ R + j .

Let Bo := Ao and, for n  >  0, define

Bn : = A ( e n n (R+), i |x n (R+)) C An .
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iin (R+) nn + ,(R+)

M n_1 (R+ ) M n (R+) M n + 1 (R+ )

Figure 3 : Construction in the proof of Theorem 2.18.

The sam e k ind  of a rgum en t can be used  to construct >  0 and  

annu li Bn for n  <  0 in  an  analogous way, u sing  the  iterates of the 

function v (r) =  m (r ) /e  w ith  initial term  r  =  R_.

Take z \ , z i  G Bn such th a t \z\ | =  \zz\ — pn (R+) and

|f(z,)| =  m (n n (R+ )), |f(z2)| =  M (H n (R+ )).

This is possible by (2.1). O ur choice of e ensures th a t [z^,zz]Bn < & 

and , for R+ large enough, the  condition  |f (2:2) I ^  2 |f (z i) | is trivially  

satisfied.

Finally, observe that if R+ is large enough, we can m ake sure  that, 

for every n  >  0, m (p n (R+)) <  R+ . Then Lem m a 2.19 tells us tha t

f(Bn) 2 A(|f(z,)|,|f(z2)|) =  A ( m (n n (R+)), M ( ^ ( R + ) ) )

n+1
2 A ( R +, l ^ +’ (R+)) 2  |J Bi

j = n̂

w ith  kn ^  1, as requ ired  for the case n  >  0 . The p roof tha t Bn satisfies 

the corresponding  covering p roperties for n  <  0 is analogous. ■

Remark 2.20. N ote tha t B _ i , Bo and  B1 are the  only annu li in  {Bn }n € z  

th a t are no t com pactly  contained  in the correspond ing  annu lu s  An 

because we have p(R+ ) /e  =  M(R+). In o u r construction  Bo is excep­

tional because f(Bo) does no t necessarily cover any  Bn (not even it­

self) w hereas all the o thers at least cover them selves an d  the follow ing 

one.
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Theorem 2.6 describes what types of orbits can be found using the 

covering properties of the annuli Bn that w e just constructed.

Proof of Theorem 2.6. By Lemma 2.17, if f(B Sn) D BSn+1, for all n  >  0, 

then there is a point zo G BSo C A So such that f n (zo) G BSn C A Sn/ 

for all n  >  0.

We w ill now  describe sequences that produce the various types of 

annular itinerary listed in Theorem 2.6, w ith diagrams to illustrate 

each of these.

• The partition {An }nez is convenient for describing fast escaping 

points that escape to one of the essential singularities. These 

correspond to annular itineraries where sn+i =  sn + 1 , if e =  00, 

or sn + i =  sn — 1, if e =  0, for n  arbitrarily large.

f  f  f  f
• • • ^ A_2 ** ~ A _ i Ao Ai ^ A2 ^ • • •

• In order to construct a point w ith a periodic annular itinerary 

s =  siS 2-- *sn w e require that st+ i G ( k i , . . .,S i +  1} \  {0}, 

if st+i >  0, or s i+ i 6 {si -  l , . . . , k i } \ { 0 } ,  if si+ i <  0, for 

all 1 <  i  ^  n.

• We can construct bounded itineraries whose entries are all sn 
or sn+1 that are not periodic as follows. We can always choose 
to stay in the same annulus (every Bn covers itself) or go one 
level up or down.

f

f ^  An A n + 1

f

The claim that there are uncoimtably many such itineraries fol­
lows from the fact that at each step we always have two choices. 
Thus there is a bijection between this set and 2N° = [0, 1].
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• Unbounded non-escaping itineraries are those for w hich there 

is a sequence (n^) such that |snJ  -»  oo as k —> oo and another 

sequence (mjJ such that for all k €  N o , Im^l <  R for som e  

R >  0.

f f f

f

We are able to construct uncountably m any such itineraries be­

cause w e can always map to the next annulus or map back to 

either Bi o r B _ i.

• Let e e {0, oo}1No and (rn ) be a sequence of positive real numbers 

such that

rn >  1 en =  oo for all n  e N o ,

and

| lo g rn | —> +oo as n  —> oo.

Then w e can construct a point z q  G Ie (f) such that |fn (zo)| <  r^, 

if en =  oo, or |fn (zo)| >  rn , if en =  0, for all n  e  N o  sufficiently 

large. To do so, note that each Bn covers itself, so  w e can choose 

to stay in Bn, n  >  0, for as m any iterates as w e need so that 

M (p n (R+ )) <  rn and then w e can choose to jump to Bn + i .

■(*) f { * )  f -Cf) f -Cf) f
An ^  An+1 >■ An_j_2  ̂An-|_3 > ■  • • •

This concludes the proof of Theorem 2.6. ■

2.5 EREMENKO'S PROPERTIES

In the previous section, w e proved the existence of points that escape 

as fast as possible to infinity and to zero but w e are interested in hav­

ing general fast escaping points in the sense of Definition 2.3, which  

includes points that jump infinitely m any tim es betw een a neighbour­

hood of infinity and a neighbourhood of zero. For this, w e w ill m o­
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dify the construction used to prove Theorem 2.18 in order to mix the 

iterates of M(r) and m (r).

Proof of Theorem 2.4. Let e =  (en ) e {0,oo}N° be an essential itinerary 

and let Ro >  0 be chosen sufficiently large or small according to 

whether eo =  00 or eo =  0. Consider the sequence given by, for n  >  0,

• Rn =  M(Rn_ i ), if en =  00,

• Rn =  m(Rn_ i ), if en =  0.

We w ill show  that there is a point z  such that, for all n  £  N o ,

• If^tz)! ^  Rn , if en =  00,

• |f * ( z ) |< R n , i f  en =  0.

Hence z  € A c (f) (note that here i  =  k =  0). For this w e will also 

require an auxiliary sequence (Rn ) that combines the iterates 

of p(r) =  eM.(r) and v(r) =  m (r)/e , where 0 <  e <  1, according 

to the essential itinerary e e (0, oo}N . Let Ro =  p(Ro) >  Ro, if eo =  °°, 

and Ro =  v(Ro) <  Ro, if e0 =  0, so that the sequence (Rn ) has a head  

start on (Rn )- For n  >  0, let

• Rn =  n(Rn- i ), if en =  00,

• Rn — "v(Rn—1), if — 0.

Lemma 2.14 guarantees that if Ro >  R(f) or Ro <  1/R (f), then the 

sequence (Rn ) accumulates to {0,oo} according to the essential itine­

rary e. For 0 <  e <  1, let R(f, e) ^  R(f) be such that, for instance, 

er2 >  r3//2 for all r >  R(f, e) and r2/e  <  r3/ 2 for all 0 <  r <  1 /R (f, e). 

Then the sequence (Rn ) also escapes provided that Ro >  R(f, e) or 

0 <  R0 <  1/R (f, e).

Proceeding in the same w ay as in the proof of Theorem 2.18, we  

define a sequence of closed annuli (Bn ) such that f(B n ) 2  Bn+i- 

First, for n  >  0, w e put
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w here 0 <  £ <  1 has been chosen suitably small. N ext w e argue as in  

Lemma 2.12 to combine the iterates of M(r) and m (r), assum ing that 

the value of r is large enough or small enough, to obtain, for n  >  0,

Rn <  £2M.(Rn— 1 ), if Sn — OO, . *
 -  (2.3)

m(Rn- i  ) /e 2 <  Rn , if en =  0.

We prove (2.3) by induction. The base case n  =  1 holds provided that 

the number Ro (and hence R i) is large enough, or small enough:

Ri <  £2M(R0) =  £2M (£Ri ), if ei = 0 0  and eo =  00,

Ri <  £2M(R0) =  £2M(Ri / i ) ,  if ei = 0 0  and eo =  0,

m(£Ri ) / t 2 =  m (R o)/e2 <  Ri, if ei =  0 and eo =  00,

m (R -|/£)/£2 =  m (R o)/£2 <  Ri, if e-| =  0 and eo =  0.

Let en =  00 and en+i =  0, and suppose Rn <  £2M(Rn- i  )• Then,

m(Rn ) = m (e M (R n- i ) )  <  £2m (e2M(Rn- i )) <  £2m(Rn ) =  £2Rn+ i,

as required. N ote that the first inequality here is due to the fact that 

m(r) <  £2m(£r) for 0 <  t  <  1 and r >  0 sufficiently large (see 

Lemma 2.io(iv)), w hile in  the second inequality w e use the induction  

hypothesis. The other three possible combinations of en and en+i 

follow  similarly.

Thus, w e have, for n  >  0, by (2.2) and (2.3),

Bn Q A(Rn , M(Rn )) C C \ D ( 0, Rn ), if — 00,

Bn C A(m (Rn ), Rn) ^  D (0,R n ), if cn =  0.

Thus, taking z-\,Z2 €  Bn such that |zi I =  IZ2I =  Rn and

|f(zi )| =  m(Rn ) and |f(z2)| =  M(Rn ),

and applying Lemma 2.19 w e deduce that f(B n ) always covers Bn+i 

and therefore, by Lemma 2.17, A e (f) 7̂  0.

Finally, Baker showed that transcendental self-m aps of C* can only  

have one doubly connected Fatou component, w hich separates zero 

from infinity [Bak87, Theorem 1]. Thus, Bn n  J(f) ^ 0  for all n  large
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enough and, since J(f) is a backward invariant closed set, we have 

A e ( f ) n j ( f ) ^ 0. ■

N ext w e prove Theorems 2.7 and 2.8 w hich correspond to prop­

erties (I2) and (I3) proved by Eremenko in [Ere89] for transcendental 

entire functions. To that end, in Theorem 2.9 w e show that, for a trans­

cendental self-map of €* , the components of the fast escaping set are 

unbounded in C*. Before this, w e prove Theorem 2.21 which con­

cerns fast escaping Fatou components and is of independent interest 

as well as being a key ingredient of the proof of Theorem 2.7.

Theorem  2.21. Let f  be a transcendental self-map of C*. If U is a Fatou 

component of I such that U n A e £,k(f,R) ^  $ for some R >  0, t  ^  1, 

k € N o  and e e {0, oo}N°, then U C A 7 £,k(f, R).

N ote that if t  <  1, then A 7 €,k(f) C  A 7 1,k-C+1 (f), by Lemma 2.15, 

so w e can apply Theorem 2.21 to the set A 7 1,1c~^+1 (f). To prove The­

orem 2.21 w e w ill use the following version of a distortion lemma 

of Baker [Bak88] (see also [Ber93, Lemma 7] and [RSoo, Theorem 3]) 

adapted to <C*.

Lemma 2.22. Let f  be a transcendental self-map of C* and let U  be a Fatou 

component that is in 1(f). Let K be a compact subset of U. Then there exist 

constants C >  1 and no e  N o  such that

\ r ( z , ) \ ^ c \ i n (z2)\

for all z i , Z2 € K and n  ^  no-

Proof Let U n := f n (U) for all n  6 N o ,  which are not necessarily 

distinct. Recall that [z,w ]q is the hyperbolic distance between two  

points z  and w  in a hyperbolic dom ain Cl; w e use pq [z ) to denote 

the hyperbolic density in  Cl. By Theorem 2.4 and Theorem 2.9, w e  

can choose two connected subsets Xo and Xoo of A (f) D J(f) w hose  

closure in  <C contains, respectively, zero and infinity, and such that 

G :=  <C* \  (Xo U Xoo) is sim ply connected. For all z \ , z 2 €  K,
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where Tn is a hyperbolic geodesic in  G joining f n ( z i ) to fn (z2). Since 

the set G is sim ply connected, there exists a constant c >  0 such that, 

for sufficiently large R >  0,

This follows from [CG93, Theorem 4.3 in Chapter I] for z  near zero. 

Observe that, for z  near infinity, taking g(z) := 1/z ,  w e obtain

Let no 6 N o  be such that both points f n ( z i ), fn (z2) are contained in  

D (0, 1/R) or C \ D ( 0,R) for all n  ^  n'0. Thus, if |fn (z2)| <  |fn (zi )|, w e

We now  prove Theorem 2.21 concerning fast escaping Fatou com ­

ponents of transcendental self-maps of C*.

Proof of Theorem 2.21. Suppose first that U is sim ply connected. We 

can assume, w ithout loss of generality, that k =  0, otherwise take 

a shift of e. We can also assum e that there is a sequence (n3 ) such  

that enj =  00, as the proof is similar in the other case.

Let R >  R(f) and consider the sequence of real num bers (Rn ) that 

starts w ith Ro := R, if eo =  00, or Ro := 1 /R , if eo =  0, and is defined  

iteratively by Rn =  M.(Rn_ i ) as in  Definition 2.3, w here M(r) is M(r) 

or m(r) according to e. If zq €  U n  A 7 *'°(f, R), then

Pg 00 ^  r i  f° r M >  R an(i  M <  1 /R*\z\

pG(z) =  Pg(G)(g(^))lg/(z)l =
Pg(G) 0 / z )  C|z| _  C 

|z|2 ^  |z|2 _  |z|

have
rlfnU-i)l

- d r  =  c ln lfn(zi)| 
|f TX(z2) f[fn(z1),fn(z2)]G >

J|fn(z2)| r
Hence,

and |fn (zi )| <  C|fn (z2)| for n  ^  no as required.

|fnj+e(z0)l ^  M n*(Ro) =  Rn, for j €  N 0. (2.4)

Suppose now  that there is zi e  U \  A ^£,0(f, R). By normality, the 

essential itineraries of zo and zi need to coincide eventually, that is, 

there is L € N o  such that f L+£(zo) and f L+£(z-|) have the same es­
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sential itinerary, and L is the smallest value w ith this property. Now, 

either there is L' ^  L such that

\fL'+e{z-\ )i <  R l', if eL/ =  oo, or |fL/+£(zi )| >  R l', if e-v — 0,

or, for all n  ^  L,

|fn+£ (zi )| ^  Rn , if en =  oo, or |fn+£(zi )| <  Rn , if en =  0.

N ote that, since zi Ae £,° (f, R), if L =  0, then the first case applies. 

If L >  0 and w e are in the second case, then, by continuity, there 

exists Z2 G f L+£_1 (U) w ith the same essential itinerary as f L+£_1 (zo) 

and such that

|z2| <  Rl- i , if eL- i  =  oo, or |z2| >  Ri_-i, if eL- i  =  0.

Hence, w e can suppose that the first case applies and, if necessary, 

continue the argument w ith the iterates of the point Z2 instead of 

those of f L+£_1 ( z i ). Thus, by Lemma 2.14(h), there is N =  n m ^  L 

for som e m  e  N o  and c >  1 such that

R(f) <  |fN + l(z ,) | =  M n (R0) 1/c =  R j/C =: K

and hence, by the definition of M.(r),

|fn*+£(zi)| =  |fn i—N (fN+£(z ,) ) | < M n) - N (R j/c ) for Uj >  N.

(2-5)
We can suppose that K is larger than the constant R =  R°°(f) from  

Lemma 2.io(iii). Then, combining equations (2.4) and (2.5), w e obtain

|fn i+ t(zo)l >  M ni(Ro) _  M ni~ N (M N (R0)) _  M n i - N (KC)
|fnf+ *(zi)| ^  M ni - N (R}/C) M n i - N (K) _  M n) - N (K)

for all Uj >  N. This contradicts Lemma 2.22 because, applying Lem­

ma 2.io(iii) repeatedly,

>  ( I r W  =  {M ni_ N (K))c-1 _> +00 as j -  00.
M n j - N ( K )  Mni - N(K) V

Therefore U C A 7 *'°(f,R) and, since A ^ ,0(f, R) is closed, w e have 

th a tU C  A e t 0 (f,R).
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Finally, if U is not sim ply connected, then f  (U) is sim ply connec­

ted since f  can only have one m ultiply connected Fatou com po­

nent [Bak87, Theorem 1]. A s f (A 7 *'k(f,R )) C A 7 €+1,k(f,R ), in this 

case f(U ) n A 7 £+1,k(f,R) 7̂ 0 and using the same argument as above 

w e conclude that f(U ) C A ^ +1,k(f, R). Since w e supposed that t  ^  1, 

in  this case w e also have

u  C f " 1 ( A - £+kk(f,R )) =  A~*'k(f,R)

as required. ■

N ow  w e can prove Theorem 2.7, w hich says that, for each 

sequence e G (0,oo}N°, w e have that J(f) =  3A e (f) =  3Ie (f) and  

also J(f) =  3A (f) =  31(f).

Proof of Theorem 2.7. Take z  G J(f), and let V be a neighbourhood of z. 

Consider a point z \  G A e (f) C 1(f). Since the family of iterates of f  

is not normal in  V, by MonteTs theorem w e can find a preim age z* 

of zi in V; that is, f k (z*) =  zi for som e k >  1. Since A c (f) and 1(f) 

are com pletely invariant, z* G A e (f) Q 1(f). Thus J(f) C A e (f). But 

in tA e(f) C in tl( f)  C F(f) because periodic points are dense in  J(f). 

So J(f) C 3Ae(f).
The opposite inclusion follows from Theorem 2.21. If there exists a 

point z  G 3A e (f) fl F(f), then there w ould be points arbitrarily close 

to z  in  A e (f) but since F(f) is open the w hole Fatou com ponent w ould  

be in A e (f). Hence 3A e (f) C J(f).

The facts that J(f) =  3Ie (f) for each essential itinerary e G (0, oo}N° 

and J(f) =  3A (f) =  31(f) are proved similarly. ■

Observe that (A e (f)) and {Ie (f)} contain uncountable collections of 

disjoint sets all sharing the same boundary, w hich is precisely the 

Julia set J(f). Baker, D om inguez and Herring [BDH01] had show n  

previously that if f  is a meromorphic function w ith  a certain set of 

essential singularities E then the set of points escaping to one particu­

lar e G E, nam ely I(f, e), satisfies that 3I(f, e) =  J(f). This im plies that 

in  our setting 3Io(f) =  3Ioo(f) =  J(f) which w as also show n by Fang 

[Fan98]. Our result show s that this property holds for Ie (f) for any 

essential itinerary e G (0, oo}N ° .

N ext w e prove Theorem 2.8. Recall that a set X is unbounded in  C* 

if x n (0,00} 7̂ 0.
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Proof of Theorem 2.8. Suppose to the contrary that X is a component 

of Ie (f) that is bounded away from zero and infinity. Then there is a 

topological annulus A in the complem ent of Ie (f) separating X from  

both zero and infinity. Since the points in A have orbits that m iss the 

infinite set Ie (f), A C F(f) by M ontel's theorem. Let K be the compo­

nent of <C* \  A containing X. By Theorem 2.7, w e have K n J(f) f  0 
and hence A m ust be contained in a m ultiply connected component 

of F(f). But Baker and D om inguez [BD98] showed that such com­

ponents m ust be doubly connected and separate zero from infinity 

which is a contradiction to the fact that A is doubly connected and 

separates a com ponent of J(f) from both zero and infinity.

The last claim in the statement of the theorem follows from the fact 

that every connected com ponent of 1(f) contains at least one compo­

nent of Ie (f) for som e e € (0, oo}N°, and hence it m ust be unbounded  

as well. ■

Before proving Theorem 2.9 w e need the following lemma concern­

ing preim ages of unbounded closed sets under transcendental self­

m aps of <C*.

Lemma 2.23. Let f b e a  transcendental self-map of C*, and let X C C* be an 

unbounded continuum. Then all the components o f f ~ ] (X) are unbounded.

Proof. Let W  be a connected component of f -1 (X). Since f  is contin­

uous and X is closed, f _1 (X) is also closed. Assum e, to the contrary, 

that W  is bounded. Then, by [N ew 6i, p. 143], there exists an annulus 

A D W , w hose boundary consists of Jordan curves in  C* \  f -1 (X). 

Since f  is an open m apping, f(A ) is a connected open set in <C* and 

9f  (A) C f  (3A), w hich does not m eet X. Thus X C f  (A), which contra­

dicts the fact that X is unbounded. ■

Finally w e prove Theorem 2.9 w hich says that the connected com po­

nents of A (f) are all unbounded. N ote that, in particular, this implies 

that 1(f) has at least one component w hich has zero in its closure and 

one com ponent (possibly the same component) which has infinity in 

its closure.

Proof of Theorem 2.9. Let zo G A e (f), then zo €  A 7 *,k(f,R) for som e 

I  E Z , k E N o  and R >  0. By Lemma 2.15, it is enough to consider 

the case i  E N , and, by Lemma 2.23, if f £(zo) lies in an unbounded
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com ponent X of A e(f), then f  *(X) is also im boim ded, and thus w e  

can assum e that 1 =  0. Furthermore, since A 7 £'k (f,R) =  A - w \ ( f ,R ) ,cr [ e )
w e can also suppose that k =  0. Fix n  E N o  and suppose that en =  oo, 

that is,

|fn (z0) l> R n  =  M(Rn_ 1).

Consider the finite sequence of closed sets

Xn /j : = f ^ ( C \ D ( 0 , R n )), j =  1 , . . . , n ,

which, by Lemma 2.23, are unbounded in C*. One of the connected  

com ponents of Xn,j m ust contain the point (zo); w e denote this 

com ponent by LU/j .

N ow  there are two cases to consider: either

(i) en_ i =  00 and If71-1 (z0)| >  M(Rn_ 2) =  Rn- i ,  or

(ii) en_ i =  0 and |fn_1 (z0)| <  m(Rn_ 2) =  Rn- i  •

In case (i), LU/i cannot contain points of m odulus less than Rn- i . 

O therwise if w  is such that |w| <  Rn_ i and f  (w) E Ln/o =  C \  D (0, Rn ) 

then w e w ould get a contradiction w ith  the fact that Rn =  M(Rn_ i ) 

but |f(w )| >  Rn . Similarly, in case (ii), if |fn_1 (zo)| <  Rn- i  w e cannot 

have points in  Lnj  that have m odulus larger than Rn- i  •

Now, iterating this procedure, for every n  E N o ,  w e deduce that 

Ln =  LU/n is a closed connected set w hich is contained in C \  D (0, Ro), 

if eo =  00, or in  D(0, Ro), if eo =  0. Observe that

Ln+1 Q Lu .

Otherwise there w ould  exist w  E Ln + i such that w  <£ Ln which  

m eans that

|fn+1 (w)| >  Rn + i ,  if en =  00,

| f t l+ l  (w j| i f  =  Qf

but

|fn (w)| <  Rn , if en =  00,

|fn ( w ) |> R n , if e n  =  0,
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which is a contradiction. Therefore (Ln U{eo)) is a nested sequence of 

continua all containing zo and eo, and hence

K =  f ]  (Ln U {e0})
nGN

is also a continuum  in C which contains zo and eo- Let F be the 

connected com ponent of K \{e o )  that contains z q . Then T is closed  

and unbounded. Here w e are using the following result from contin­

uum  theory: if Eo is a continuum  in <C, Ei is a closed subset of Eq 

and C is a com ponent of Eo \  Ei, then C m eets Ei [N ew 6i, p. 84]. 

Since F C A e (f), the theorem is proved. ■
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In this chapter w e study the escaping set of functions in the class 23*, 

that is, transcendental self-m aps of C* for w hich the set of singular 

values is bounded in C*. For functions in the class 23*, escaping points 

lie in  their Julia set. We prove that if f  is a com position of finite or­

der transcendental self-m aps of C* (and hence, in the class 23*), then  

every escaping point of f  can be connected to one of the essential 

singularities by a curve of points that escape uniform ly Moreover, 

for every sequence e G {0, oo}N°, w e show  that the set Ie (f) contains 

an absorbing Cantor bouquet. We also show  the existence of periodic 

dynam ic rays, w hich m ust land.

3.1 IN TR O D U C TIO N  A N D  M A IN  RESULTS

In the punctured plane, the analogue of the Eremenko-Lyubich class 23 

is the class

23* := (ftransc. self-map of C* : s in g(f_ 1 ) is bounded away from 0,00}

w hich consists of bounded-type transcendental self-m aps of C*. We 

prove the follow ing result for functions in the class 23*.

Theorem  3.1. Let f  G 23*. Then 1(f) C J(f).

Recall that Kotus[Kot9o] showed that transcendental self-m aps of C* 

can have Baker dom ains and wandering domains; w e w ill construct 

more exam ples of functions w ith  escaping Fatou com ponents in the 

next chapter. It remains an open question whether functions in the 

class 23* can have wandering domains outside the escaping set, as is 

the case for entire functions in the class 23 [Bisi5, Theorem 17.1].

It is a natural question to ask about the relationship between entire 

functions in  the class 23 and transcendental self-m aps of C* in the 

class 23*. Keen [Kee88] showed that if P and Q are polynom ials and  

n  e  Z , then the function f(z) =  zTLexp(P(z) +  Q (l/z ) )  has a finite

51
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number of singular values and hence belongs to the class 3 *. The 

next theorem extends this results to all functions in the class 23 w hen  

n  =  0.

Theorem  3.2. Let g and h  be entire functions in the class 23. Then the 

function f(z) =  exp(g(z) +  h ( l /z ) )  is in the class 3 *.

In the previous chapter w e discussed the properties of the maxi­

m um  and m inim um  m odulus functions; for r >  0, w e define

M (r,f) := m a x |f(z ) | and m (r,f) := m in |f(z)|.
\z\=r \z\=r

In contrast to the situation for entire functions, there is a strong rela­

tion between the bounded-type condition for holomorphic self-maps 

of <C* and their order of growth. To be more precise, recall that the 

order and lower order of an entire function f  can be defined, respec­

tively, as

p ( f ) : = l im Su p l0 g l° g M M )  and A(f) := lim in f W M .
lo g r  r->+oo logr

If f  is a transcendental self-map of C*, then we also need to take into 

account the essential singularity at zero. Hence the order of growth is 

given by two quantities:

Po8(f) := lim sup  (f) ;= ^  jog jog  1 /m f o f l
r ^ +0f  logr  r_,0 r l o g l / r

We say that f  has finite order if both poo(f) <  +00 and po(f) <  +00. 

Likewise, w e can define two quantities associated w ith the lower or­

der of such functions, Aqo (f) and Ao (f), by replacing lim  sup by lim  inf 

in the expression above. A n important property of entire functions 

f  € 3  is that A(f) ^ 1/2  [BE95; Lan95] (see also [RSo5a, Lemma 3.5]). 

The next result shows that, surprisingly, the lower order of a function 

in C* always equals its order. Moreover, if the order is finite, then it 

is an integer.

Theorem  3.3. Let f  be a transcendental self-map of C*. Then Ao(f) =  Po(f) 

and Aoo(f) =  poo(f)- If f  has finite order, then f(z) = z Ti exp(P(z) +  Q O /z))  

where n e Z  and P, Q  are polynomials, and therefore po(f), Poo(f) € Z  and 

f  G 3 *. In particular, Ao(f),Aoo(f) ^  1.
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Rottenfufier, Riickert, Rem pe an d  Schleicher [R R R Sn, Theorem  1.2] 

proved  tha t the stronger version of E rem enko 's conjecture ho lds for 

transcenden tal entire functions of b o u n d ed  type a n d  finite o rder or, 

m ore generally, a finite com position  of such  functions: every esca­

p ing  po in t can be jo ined to infinity  by a curve of po in ts  th a t escape 

uniform ly; such  curves are called ray tails and  their m axim al exten­

sions are called dynamic rays. This resu lt w as proved  independen tly  

by Baranski [Baroy, Theorem  C] for disjoint-type functions, that is, 

transcenden tal entire  functions for w hich the Fatou set consists of 

a com pletely invarian t com ponent w hich is a basin  of attraction. In 

general, it is no t know n w hether such  dynam ic rays m u st be sm ooth.

Figure 4 : Period 8  cycle of rays landing on a repelling period 4  orbit in 
the unit circle for the function f a p (z) =  zeia e^ z - 1 / z ) / 2 from the 
Arnol'd standard family, with oc =  0.19725 and (3 =  0.48348.

We prove the existence of dynam ic rays for transcenden tal self­

m aps of <C* by  adap ting  the construction of [RRRS11] to ou r setting. 

We use the no tation  f ^  —* {0,00} to m ean  that, u n d e r iteration  by f, 

all the poin ts in  y  escape to zero, escape to infinity  o r accum ulate at 

bo th  of them  and  now here else.

Theorem 3.4. Let f  be a transcendental self-map of <C* of finite order or, 

more generally, a finite composition of such functions. Then every point 

z  G 1(f) can be connected to either zero or infinity by a curve y  such that 

f  y  —► {0,00} uniformly in the spherical metric as n  —» 00.
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N ote that in the statement of Theorem 3.4 there is no assum ption of 

bounded type. This is because finite order transcendental self-maps 

of C* are always in the class 23* (see Lemma 3.35).

Remark 3.5. In the masters thesis [M arn], w e showed that points in  

the sets Io(f) and Ioo(f) can be joined to zero and infinity, respectively, 

by ray tails. Theorem 3.4 generalises this result to all points in 1(f).

Bergweiler [Ber95] proved that if f  is a lift of a holomorphic self­

map f  of C*, then J(f) =  exp-1 J(f). Seeing this result one might 

think that every result about entire functions could be extended to 

self-m aps of C* via their lifts. Unfortunately, this is not possible. In 

particular, a lift of a map of bounded type is never of bounded type, 

its singular set is contained in a vertical band and so, w e cannot apply 

directly the results from [RRRS11]. However, Theorem 3.4 allows to 

construct dynam ic rays for certain entire functions that are not in 

the class 23, but project to functions in the class 23* satisfying the 

hypothesis of Theorem 3.4.

Corollary 3.6. Let f  be an entire transcendental function of finite order 

such that there exists k e  Z  so that f  (z +  2m ) =  f  (z) +  k2m  for all z  e  C, 

or a finite composition of such functions. Then every point z  e 1(f) with 

| Re fn (z)| —» +00 as n  —y 00 can be connected to infinity by a curve of 

points that escape uniformly.

The m ain tool to prove Theorem 3.4 is the use of logarithmic coor­

dinates, introduced by Eremenko and Lyubich [EL92], and the expan­

sivity of logarithmic transforms. The orbit of escaping points eventu­

ally enters the tracts (unbounded Jordan dom ains which are m apped  

to a neighbourhood of zero or infinity) and remains there. We par­

tition each tract into fundamental domains and consider itineraries on  

them; see Section 3.5 for the precise definitions. Observe that the pre­

vious theorem contains no claim of w hich dynam ic rays actually exist. 

Our next result shows that, under the hypothesis of Theorem 3.4, 

there is a unique dynamic ray for every sequence of fundamental do­

mains that contains only finitely m any symbols. Here P(f) denotes 

the postsingular set of f  w hich is the closure of the union of all the 

(forward) iterates of sin g(f_ 1 ). We say that a dynamic ray y  lands if 

y  \  y  is a single point.

Theorem  3.7. Let f  be a transcendental self-map of C* of finite order or, 

more generally, a finite composition of such functions, and let (Dn ) be an
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admissible sequence of fundamental domains of 1 containing finitely many 

symbols. Then the function f  has a unique non-empty dynamic ray y  with 

itinerary (D n ). Furthermore, i / ( D n ) is periodic and the set P(f) is bounded 

in <C*, then the dynamic ray y  lands.

Observe that, for example, Theorem 3.7 im plies that every funda­

mental dom ain contains exactly one invariant dynam ic ray In the 

previous chapter w e studied a partition of 1(f) into non-em pty sets 

Ie (f), for e G {0, o o f 10 (see Theorem 2.4). Since there are uncountably 

m any disjoint sets Ie (f), it follows from Theorem 3.4 that 1(f) contains 

uncountably m any ray tails. However, each of the sets Ie (f) should be 

regarded as the analogue of the w hole of 1(f) for a transcendental en­

tire function f. Thus, w e follow  the m ethods of Barahski, Jarque and 

Rempe [BJR12] to prove that, in fact, under the hypothesis of Theo­

rem 3.4, each set Ie (f) contains an absorbing Cantor bouquet and, in  

particular, uncountably m any ray tails.

Theorem  3.8. Let f  be a transcendental self-map of C* of finite order or, 

more generally, a finite composition of such functions. For each sequence 

e € (0, oo}N°, there exists a Cantor bouquet Xe C Ie (f) and, in particular, 

the set Ie (f) contains uncountably many ray tails.

Although Theorem 3.4 is stated in terms of functions of finite order, 

its proof is more general and applies to a class of functions satisfy­

ing certain good geometry properties (see Definition 3.28). Rempe, Rip- 

pon and Stallard showed that, assum ing an extra condition (namely, 

that the tracts have what they call bounded gulfs), the ray tails con­

structed in [RRRS11] consist of fast escaping points [RRS10, Theo­

rem 1.2]. It seem s likely that similar conditions w ould  im ply that the 

dynamic rays that w e construct here are also fast escaping in the sense  

described in the previous chapter.

Remark 3.9. Lasse Rempe-Gillen (private communication) pointed out 

that Theorem 3.4 may also be proved using random iteration as de­

scribed in the last paragraph of [RRRS11, Section 5] by taking, for 

R >  0 sufficiently large,

J f(z ) , if |f(z)| >  R, f  f ( 1/z ) , if |f ( l /z ) | >  R,
f i ( z ) : = <  f2 (z ) := <

l l / f ( z ) ,  if |f(z)| <  1/R; 11/ f ( 1/z ) , if |f ( l /z ) | <  1/R;
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which both have a logarithmic transform in the class 2Hog and then 

apply the results of [RRRS11] to a non-autonom ous sequence of these 

two functions. However, it seem s natural to provide a direct proof.

Structure o f the chapter. Roughly speaking, the first half of the chap­

ter is devoted to describing the basic properties of functions in the 

class 23* and in the second half w e investigate the existence of dy­

namic rays for these functions. In Section 3.2, w e study what is the re­

lation between the classes 23 and 23*; the proof of Theorem 3.2 is there. 

In Section 3.3, w e describe the geometry of logarithmic coordinates 

of functions in the class 23* and give the proof of Theorem 3.1. Finite 

order functions are introduced in Section 3.4, where w e prove Theo­

rem 3.3, and are show n to be examples of functions w ith  good geo­

metry. In Section 3.5, w e introduce external addresses and describe 

their relation w ith  essential itineraries. In contrast to what happens 

in the entire case, in our setting the Bernoulli shift map is a sub­

shift of finite type, where only som e sequences are admissible. In 

Section 3.6, w e show  that if an external address s is periodic, then the 

set J_s(F) consisting of all points w hose external address is s contains 

an unbounded continuum  of fast escaping points - this is used later 

to prove Theorem 3.7 in Section 3.9. Dynamic rays are introduced 

in Section 3.7. Finally the proofs of Theorem 3.4 and Theorem 3.8 

are sketched in Section 3.8 and Section 3.9, respectively, focusing on  

the differences w ith  the proofs of [RRRS11, Theorem 1.2] and [BJR12, 

Theorem 1.6], w hich concern entire functions.

3.2 FU N C T IO N S IN  THE CLASS 23*

Let f  be a transcendental entire function or a transcendental self-map 

of C*. Recall that v e  C is a critical value of f  if v =  f (c )  with  

f ' (c) =  0, and a  € C is an asymptotic value of f  if there is a continu­

ous injective curve y  : (0, + 0 0 ) -»  C (the asymptotic path) such that 

y  (t)  -*  a  as t  —> + 00 , where oc is an essential singularity of f , and 

f  (y(iO ) a - Let C P (f) denote the set of critical point of f. The set 

of singularities of the inverse function, s in g (f- 1 ), consists of the crit-
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ical values of f , C V (f ) :=  f  (C P (f )) , and the finite asymptotic values 

of f , A V (f ), that is

s in g (f - ' ) = C V (f )  U A V (f).

In C*, by finite asymptotic value w e m ean that a £  {0,oo}. For 

transcendental self-m aps of C*, w e can decom pose AV(f) as

A V (f ) = A V 0 (f)U A V oo(f)/

depending on whether a e  AV(f) has an asymptotic path y  to zero 

or to infinity. N ote that the set AVo(f) fi AVoo(f) m ay be non-empty. 

Finally, w e define the singular set of f, S(f), and the postsingular set 

of f, P(f), as

S(f) := sing(f_ 1 ), P(f) := ( J  f ^ s i n g t f - 1)).
nCN

We say that f  has bounded type if S(f) is bounded. Similarly, w e say 

that f  has finite type if S(f) is finite.

The next result relates the singular set and the postsingular set of a 

transcendental self-map f  of C* w ith  the corresponding sets of a lift f  

of f . Recall that a lift of f  is a transcendental entire function f  so that 

exp of =  f  o exp. The proof is straightforward and w e om it it.

Lemma 3.10. Let f  be a transcendental self-map of C* and let f  be a lift off.  

Then S(f) =  exp-1 (S(f)) and P(f) C exp-1 (P(f)).

Recall that if f  is a holom orphic self-map of C*, w e define ind(f) 

to be the index of f(y ) w ith respect to the origin, w here y  is any 

positively oriented sim ple closed curve around the origin. Observe 

that, in the hypothesis of the previous lemma, if |ind(f)| =  1, then 

P(f) =  exp-1 (P (f)).

The following lemma is a basic property about the singular values 

of the com position of two functions.

Lemma 3.11. Let f  and g be meromorphic functions in C. Then we have 

that CP(g o f) =  CP(f) U f -1 (C P(g)), CV(g o f)  C g(C V (f)) UCV(g) 

and A V (g o f) =  g(A V (f))U A V (g).
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Proof. By the chain rule, (g o f)'(z )  =  g '(f (z ))f '(z ) , and thus

C P ( g o f ) = C P ( f ) U f - , (C P(g))/

C V (g o f) =  (g o f) (C P (g o f) )

£  (g ° f )C P (f)  U g(CP(g))

=  g (C V (f))u C V (g ).

Observe that the set f -1 (CP(g)) may be empty, and hence the other 

inclusion does not hold in general.

Finally, if y  is an asymptotic path of g o f  w ith asymptotic value a, 

then either f (y ( t ) ) )  4  b e  AV(f) as t  ->• +00, where g(b) =  a, or 

f(y ) is an asymptotic path of g and a G AV(g). Therefore w e have 

A V (g o f)  C g(AV(f)) UAV(g) and the opposite inclusion follows 

easily. ■

Let 23 and 23* be the bounded-type classes defined in Section 2.1. 

Observe that, by Lemma 3.11, both 23 and 23* are closed under com­

position. Recall that Theorem 3.2 establishes a way to construct func­

tions in 23* from functions in 23. To prove this theorem, w e need the 

following preliminary result.

Proposition 3.12. Let f(z) =  zn exp(g(z) -1- h (1/z ) )  with n  G Z  and let 

g, h  be non-constant entire functions. If the functions foo (z ) := zn exp (g (z)) 

and io[z)  := zn exp (—h(z)) as well as 1 /foo and 1 / f 0 have bounded type, 

then f  €  !B*.

N ote that if n  >  0, then foo and fo are transcendental entire func­

tions, w hile if n  <  0, then they are meromorphic functions on C with  

a pole at the origin (which is omitted).

Proof of Proposition 3.12. We can express

f(z) =  zTle x p (g (z )+ h (1 /z ))  =  foo(z) • e x p (h (l/z )) .

Suppose that foo(z) tends to a finite value a G €  as z  -»■ 00 along an 

asymptotic path y .  Then f  (z) -*  eH 0̂  ̂a as z  —> 00 along y . Conversely, 

if f(z) tends to a finite value a G C as z  —> 00 along an asymptotic 

path y , then f(z) —> a /e H(°) as z  —> 00 along y . Hence w e have 

AVoo(f) =  eh*0' • AV(foo).
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Differentiating f, w e obtain

or, equivalently,

Z2 fooiz)

zf ' (z)  =  h /(1 /z ) z f^ (z )
f ( z )  Z  f o o ( z )  *

It follow s from [EL92, Lemma 1], w hich is proved by an application  

of Koebe's 1/4-theorem  to the inverse of a logarithmic transform of f  

(see also Lemma 3.21), that if f  €  23, then there is a constant Ro >  0 

such that

f ' ( z )
m

and hence

>  4 ^ ( log lf (z )l - l ° g Ro) for z  e  D (0,R 0), (3.1)

rjf := lim  inf
R—̂+00

f ' ( z )
f ( z )

: |f(z)| >  R > =  +00. (3*2)

If n  <  0, the function foo is meromorphic but, since the pole at z  =  0 

is om itted and sin g(f“ 1) is bounded away from the origin, the proof 

of Lemma 3.21 can be adapted to obtain inequality (3.1) in  this case 

as well. Suppose that foo has bounded type, then

inf | foofc)
foo(z)

Since foo is entire, the com ponents of the set (z G C : |foo(z)l >  R) are 

all unbounded and tend to infinity as R -> +00 in  the sense that their 

distance from the origin tends to infinity. Therefore, since

e x p (h (l/z ) )  -»  exp(h(0)) and — as z  -> 00,

there exists M , N >  0 such that if |f(z)| >  R and |z| ^  1 then

|foo(z)l = exp (Re h ( l /z ) )  M

and so, the quantity

f ' ( z )

R>  —  and h ' d / z ) < N ,

inf
f ( z )

: |f(z)|> R , |z|^ 1 fo o M
'foo(z)

: | f o o ( z ) l > - i -M. J
N
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tends to +00 as R -> +00. Hence, CV(f) cannot contain a sequence of 

critical values w hose critical points are in C \  D  that accumulate at 

infinity, because if f  (z) is a critical value, then w e have z f ' ( z ) /f  (z) =  0. 

Similarly, in  a neighbourhood of zero, the quantity

inf f'(z)
f(z)

^  inf foM
fo(z)

—  N '

tends to +00 as R -*  +00, and thus f  has no critical values accumu­

lating to zero w hose critical points are in D . Finally, since w e are 

assum ing that the functions 1 / f ^  and 1 / f 0 have bounded type too, 

0 £  sin g(f^ )' U s in g (fo 1)' and therefore the quantities

inf f 'W
m

: | f ( z ) |< l  |z |^ l , inf | f'(z)
f(z)

: |f(z)|> R , |z|< 1

tend to +00 as R —> +00. Hence f  € IB’

Sixsmith [Sixiq] showed that if f  ^ IB, then r[f =  0, where rjf is 

the quantity defined in (3.2), and thus provided an alternative charac­

terisation of functions in the class IB. This was later generalised by 

Rempe-Gillen and Sixsmith in [RS15].

Theorem 3.2 states that if g ,h  are in the class IB, then the func­

tion f(z) =  exp(g(z) +  h ( l /z ) )  is in class IB*. Thus, it can be used to 

produce examples of functions in the class IB* from functions in the 

class IB (see Example 3.15). Recall that Keen proved that if g ,h  are 

polynom ials and n  €  Z , then f(z) =  zn exp(g(z) + h ( l / z ) )  is in the 

class IB* as w ell (see Proposition 3.34 and Lemma 3.35).

Proof of Theorem 3.2. Let foo =  exp o g where g e  IB. By Lemma 3.11,

AV(foo) =  AV(exp) Uexp(AV(g)) =  exp(AV(g)) U{0},

CP(foe) =  CP(g) U g - ’ (CP(exp)) =  CP(g) U g " 1 (0) =  CP(g),

and both CV(foo) =  exp(CV(g)) and AV(foo) are bounded in C. On 

the other hand,

AV(1/foo) =  A V (exp)U exp(A V (-g)) =  exp (-A V (g ))  U{0}, 

C P ( 1 / fo o ) = C P ( - g )= C P ( g ) ,
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and therefore CV (1 /foo) =  exp (— CV(g)) and AV(1 /foo) are bounded  

in C too. Similarly, since h e ! B , the functions fo(z) =  exp (—h(z)) and  

1 /fo  have bounded type. Therefore foo and fo satisfy the hypothesis  

of Proposition 3.12 and so the function f(z) =  exp(g(z) +  h (1/z ) )  is 

in the class 23*. ■

Remark 3.13. Observe that if n  ^  0 and f(z) =  zn exp(g(z)) w ith  

g e  23, then the set CV(f) may accumulate at zero (n >  0) or to infinity  

(n <  0) despite the fact that CV(g) is bounded. Thus, Theorem 3.2 is 

optimal.

Remark 3.14. The converse of Theorem 3.2 is not true in general, as the 

critical values of g can be unbounded in a vertical band and the criti­

cal values of foo be bounded in an annulus. For example, observe that 

the Fatou function g(z) =  z  +  1 +  e~z  is not in the class 23, w hile the 

function f(z) =  exp(g(z) +  1/z )  is in the class 23* by Proposition 3.12 

as C V (e9) =  {e2} and AV (e9) =  {0}.

Example 3.15. We give a couple of exam ples of functions in the class 23* 

constructed from functions in the class 23 using Theorem 3.2.

(i) The function f(z) =  e x p (s in z /z +  1/z )  is in the class 23* and the 

set s in g(f_ 1 ) contains infinitely m any points that accumulate at 

z  =  1.

(ii) The function f(z) =  exp (exp z +  1/z )  is in the class 23* and has 

a finite asymptotic value a =  1.

3.3 LOGARITHM IC COORDINATES FOR THE CLASS 23*

Let f  be a transcendental entire function or a transcendental self-map  

of C*. Let a e  C and let D ( a ,  r) denote the disc centred at a of 

radius r in  the spherical metric. For r >  0, choose U (r ) to be a 

connected com ponent of f _1 ( D ( a ,  r ))  such that if 0 <  t i  <  T2, 

then U ( r i ) C U (r2 ). We say that U is a logarithmic singularity over a  

if

f  : U (r ) D ( a ,r )  \ { a )

is a universal covering for som e r >  0 (see [Ivei4] f° r a classification 

of the singularities of the inverse function). Transcendental self-m aps 

of C* have logarithmic singularities over both zero and infinity.
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D efin ition  3.16 (Logarithmic tract). Let f  e B* and let A  C C be a 

topological annulus bounded away from zero and infinity that con­

tains the set S ( f ) .  Denote W  :=  Wo U Woo, where Wo and W ^ are 

the com ponents of C * \  A w hose closure in <C contains, respectively, 

zero and infinity. A  (logarithmic) tract of f  is a connected component 

of the set V =  f " 1 (W 0 ) U f " 1 (Woo).

N ote that if V is a tract of f, then the map f : V -* W i is a universal 

covering, where i  G {0,00}. The following lemma is a well-known clas­

sification of the coverings of the punctured disk D* := D  \  {0} [Hat02] 

(see also [For9i]). If X is a Riemann surface, w e say that two holomor- 

phic coverings p i : Xi —> X and P2 : X2 —> X of X are equivalent if 

there exists a conformal map P21 : X2 -> X7 such that p2 =  pi o p 2i .

Lemma 3.17 (Coverings of D *). Let U C C  and let f  : U —> D* be a 

holomorphic covering. Then either U is conformally equivalent to D* and 

f  is equivalent to z d, or U is simply connected and f  is a universal covering 

and hence equivalent to the exponential map.

In particular, the closure of each tract in C contains only one of the 

essential singularities. N ow  we are going to introduce a logarithmic 

change of variables.

D efin ition  3.18 (Logarithmic coordinates). Let f  G B* and consider 

the sets 7 :=  exp-1 (V) and H := exp-1 (W) =  Ho U Hqo where 

Hq =  exp-1 (Wo) and Hqo =  exp-1 (Woo) contain, respectively, a left 

and a right half-plane. A  logarithmic transform of f  is a continuous 

function F : 7 —> H which makes the following diagram commute.

The connected components of 7 are called tracts of F and can be clas­

sified into four types:

j  =  o S u f f u 3 i u r ,

where the lower index indicates if the tracts have zero or infinity in 

their closure and the upper index indicates if they are m apped to Ho 

or Hoo by F. We define T0 := 7$ U and 7 *, := 7£, U 7£ .
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In the entire case, often the expressions Tift' and "logarithmic trans­

form' are used interchangeably to refer to F w hich is defined on 7 

on ly  In this thesis w e reserve the word lift for an entire function f  

such that exp of =  f  o exp.

Remark 3.19. Observe that w e can obtain F as the restriction of a lift f  

of f  to the set X  However, since F is only defined on  7, w e can add a 

different integer m ultiple of 27ti to F on each tract T, and hence F is 

not necessarily the restriction of a transcendental entire function f .

Theorem  3.20. If f  € 23*, then a logarithmic transform F : 7 -»  H of f  

satisfies the following properties:

(a) the set H is the union of two disjoint 2ni-periodic Jordan domains Ho 

and Hqo containing, respectively, a left and a right half-plane;

(b) every component of 7 is an unbounded Jordan domain whose points 

have real part either bounded from below and unbounded from above 

or unbounded from below and bounded from above;

(c) the components of 7 have disjoint closures and accumulate only at 

zero and infinity;

(d) for every component T of 7, the function F|T : T -> H is a conformal 

isomorphism;

(e) for every component T of 7, the function expjT is injective;

(f) the set 7 is invariant under translation by 27il.

Moreover, there exists a curve 8 C  C* \  V joining zero to infinity, where 

V =  exp X

Proof These properties follow  easily from the fact that the exponen­

tial map is a holomorphic cover and, in particular, a local hom eom or- 

phism. The fact that there exists a curve 8 C C* \  V joining zero to 

infinity is a straightforward consequence of (b) and (c) in the case 

that V consists of finitely many tracts. Otherwise, this follow s from  

Caratheodory's theorem and the fact that V is locally connected (see 

[BF15, Lemma 2.1]). Hence, w e can define a continuous branch of the 

logarithm on C* \  8. ■

We denote by B i og the class of holomorphic functions F : 7 —> H 

satisfying properties (a) to (f) in Theorem 3.20, regardless of whether
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Figure 5 : Logarithmic coordinates for a function f  e B * .

or no t they  com e from  a function f  e  B*. The m ain  advantage of 

w orking  in  the class “B i o  g from  [RRRSi 1 ] or, in o u r case, the class B g, 

is tha t such  functions satisfy the follow ing expansivity property (3 .3 ) 

w hich  im plies th a t po in ts in  1(f) eventually  escape at an  exponential 

rate.

Lemma 3.21. Let F : T —»■ H be a function in the class B{og. There exists 

R >  0 sufficiently large such that i f  | Re F(z)| ^  R, then

|F ' ( z ) |> L |R e F(z ) |_ R .
471

In particular, there exists Ro =  Ro(l:) > 0  so that

|F '(z)| ^  2 for all z  e  7  such that \ Re F(z)| ^  Ro- (3 -3)
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See [EL92, Lemma 1] for the original result for entire functions. The 

proof relies on properties (a), (d) and (e) of logarithmic transforms, 

w hich are com m on in both settings, and Koebe's 1/4-theorem .

Sullivan [SUI85] proved that rational m aps have no wandering  

domain. Following this result, Keen [Kee88], Kotus [Kot87] and Maki- 

enko [Mak87] proved independently that transcendental self-maps 

of <C* w ith finitely m any singular values have no wandering domains. 

In [Kot87], Kotus also show ed that finite-type m aps in  <C* have no  

Baker domains. Here w e show  that bounded-type transcendental self­

m aps of C* have no escaping Fatou com ponents by adapting the 

proof that Eremenko and Lyubich gave for the class B [EL92, The­

orem 1].

Proof of Theorem 3.1. Suppose to the contrary that there exists a point 

zo  G F(f) n 1(f). Then, by normality, there exists som e Ro >  0 so that 

Bo :=  B(zo, Ro) Q F(f) fi 1(f). Since Bo C 1(f), there exists No C N o  

such that the sets Bn  f n (Bo), n  G N ,  are contained in the set of 

tracts V of f  for all n  ^  No; w e can assume w ithout loss of generality 

that No =  0. Let Co be a connected com ponent of exp-1 (Bo) and put 

Cn  :=  Fn (Co) for n  G N .  For every R >  0, there exists N =  N (R) G N o  

such that

Cn C {z G C : |Rez| >  R} f o r a l l n > N .

Take any point Co £ Co and, for all n  >  0, set Cn •’=  FrL(Co) £ Cn and 

dn := dist(Cn/ 3Cn). Then Koebe's 1/4-theorem  im plies that

< W i >  i d n |F'{Cn)l for all n  6  N .

Since | Re F(Cn)I —> +00 as n  -» 00, by Lemma 3.21, w e have 

|F; (Cn)l +00 and hence dn —» +00. But this contradicts property

(e) of functions in  the class B fog because 7 does not contain any ver­

tical segm ent of length 271. Thus F(f) n 1(f) =  0 and 1(f) C J(f). ■

By property (a) in Theorem 3.20, if F : T ->• H is in the class B fog, 

then the set H contains the union of two half-planes of the form

h £ : = { z € C  : | Re z| >  R} =  U H  J

for som e R >  0. We call F normalised if H =  for som e R >  0 and

the function F satisfies the expansivity property (3.3).
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D efin ition  3.22 (Normalisation). We say that a logarithmic transform  

F : 7 H in B \og is normalised if 7 n { z  G C : Re z  =  0} =  0, the 

set H =  H r  for som e R >  0, and the expansivity property (3.3) is 

satisfied in H. We denote this class of functions by

Logarithmic transforms of transcendental entire functions can be 

norm alised so that H is the right half-plane H . In contrast, in the 

punctured plane, w hen w e say that F is normalised w e need to specify 

the constant R. The next lemma show s that w e can always assume that 

F is in the class by restricting the function to a smaller set.

Lemma 3.23. Let F : 7 H he a function in the class B* . There exists 

a constant R =  R(F) >  0 such that H r  C H and the restriction of F to 

F_1 (H r )  is a normalised logarithmic transform.

Proof Suppose that F is not normalised. Let {Bn}nez; denote the con­

nected com ponents of the set C \  exp-1 (6), where 6 is the curve from  

Theorem 3.20. For n  € Z , the sets

x n =  To n Bn n H + and Yn =  7^  n Bn n H “

are bounded and hence their im ages F(Xn ) and F(Yn ) have bounded  

real part. A ll the sets F(Xn ) and F(Yn ), n e Z ,  are vertical translates of 

F(Xo) and F(Yo) and hence F(To D H + ) and F(Too n H - ) have bounded  

real part. Therefore, there exists Ri >  0 sufficiently large such that

(F(To n H + )  u f ( t tc n r ) ) n  =  0.

Then, if Ro =  Ro(F) >  0 is the constant from Lemma 3.21 so that 

|F'(z)| >  2 if | Re F(z)| >  Ro, it is enough to put R := max{Ro, Ri}. ■

The follow ing lem m a is a stronger version of the expansivity prop- 

erty (3.3) for functions in B{™g, and says that escaping orbits eventu­

ally separate at an exponential rate. The proof of [RRRS11, Lemma 

3.1] can be adapted easily to prove this lemma.

Lemma 3.24. Let F : 7 —>■ H be in the class Bf™ with H =  H r  for some 

R >  0. If T is a tract of F and z ,w  G T are such that |z —w| ^  Sn, then

|F(z) — F(w)| ^  exp ^ Zg7tW^  * (min(|Re F(z)|, |Re F (w )|} -R ).
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N ext we in troduce a subclass of 23 {og consisting of the functions 

F : 7  —» H for w hich  the im age F(T) covers the w hole 7 ,  w hich  have 

nicer properties.

D efin ition 3.25 (Disjoint type). We say tha t a function F : T -> H in 

the class 23 [ og is of disjoint type i f  7  C H.

If f  G 23* an d  A =  C* \  W  is an  annu lus contain ing S (f), then  

f(C* \  V) C A, w here V =  f _1 (W). In the case tha t f  has a logarithm ic 

transform  F th a t is of disjoint type  (w ith H =  exp-1 (W)), we have 

A C C* \  V and  f(A) C A. H ence A C F(f) and  it follows from  the 

classification of Fatou com ponents that, in  th is situation , F(f) consists 

of a single doub ly  connected com ponent U w hich  is the im m ediate  

basin  of a ttraction  of an  a ttracting  fixed po in t in  A.

Remark 3.26. Independen tly  of [RRRS11], B aranski show ed th a t the 

Julia set of bounded -type  m aps in  the class 23 consists of disjoint hairs 

that are hom eom orphic  to [0, +00) (we call them  dynam ic rays) and  

tha t the endpo in ts of these hairs are the only po in ts in  J(f) accessible 

from  F(f) [Baroy, Theorem  C].

Example 3.27. The function f(z) =  ex p (0 .3 ( z +  1 /z ) )  is in  the class 23* 

and  has a logarithm ic transform  of disjoint type  (see F igure 6).

Figure 6: Phase space of the function f(z) =  exp(0.3(z +  1/z)) which has 
a disjoint-type logarithmic transform (see Example 3 .2 7 ). In or­
ange, the basin of attraction of the fixed point z q  ~  2.2373. Scale: 
z e  [-16,16] +  i[—16,16] (left), z e [-0.3,0.3] +  i[—0.3,0.3] (right).

Som etim es tracts exhibit better geom etric p roperties  th a t m ake them  

easier to study. In the next section we will see th a t th is is the case for 

transcenden tal self-m aps of C* of finite order.



D Y N A M IC  RAYS OF B O U N D E D -T Y P E  F U N C T IO N S

D efin ition 3.28 (Good geom etry properties). Let F e  23 {og and let T 

be a tract of F.

(a) We say that T has bounded wiggling if there exist K >  1 and 

p >  0 such that for every zo € T, every point z  on the hyperbolic 

geodesic of T that connects zo to 00 satisfies

I Re z| >  l |R e  z o | - p .

In the case K =  1 and p =  0 w e say that T has no wiggling. A  

function F £  23fog has uniformly bounded wiggling if the w iggling  

of all tracts of F is bounded by the same constants K, p.

(b) We say that T has bounded slope if there exist constants oc, (3 >  0 

such that

| Im z — Im w| <  <xmax{| Re z|, | Re w|} +  |3

for all z ,w  G T. Equivalently, T contains a curve y  : [0,oo) —> T 

such that |F(y(t))| —» ±00 and

v |I m y (t ) |
lim sup  — r-r <  00.

t_>oo I Re y (t) |

We say that T has zero slope if this limit is zero.

We say F has good geometry if the tracts of F have bounded slope and 

uniform ly bounded w iggling.

Remark 3.29. (i) Observe that it is enough that a tract T from Ta/

oc G (0, oo}, has bounded slope to ensure that all tracts in  Ta do. 

We can use the same constants (a , (3) for Too and To: if they have 

bounded slope w ith different values (oci, f31) and (0C2, $2) it is 

enough to take oc := m axja i, oc2} and |3 := max{|3i , (32).

(ii) If F, G G 23̂  and G has bounded slope, then G o F has bounded  

slope w ith the same constants as G.
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3 .4  O R D E R  O F G R O W T H  I N  C*

Recall that the order of an entire function is defined to be the infim um  

of p G ]R U {oo} such that l o g | f ( z ) |  =  0 ( |z |p) as z  -4  00. Equiva­

lently,
lo g  lo g  M (r , f)

where

p (f)  =  l im s u p
r^+00  lo g  r

M.(r,f) := m ax|f(z)| <  +00.
|z |=r

Polynom ials have order zero and the function exp(zk), k G N , has 

order k. There are also transcendental entire functions of order zero 

and of infinite order.

W hen w e deal w ith holom orphic self-m aps of € * , controlling the 

growth requires us to study how  |f(z)| tends to zero or infinity w hen  

z  approaches zero or infinity. Observe that if f  is such map, then 1 / f  

is also holom orphic on C*, and

m (r,f) := m in |f(z)| =  - — \  ■ >  0.
|z |= r  M (r ,1 /f)

A s before, for simplicity, w e w ill write M (r) and m(r) w hen it is clear 

w hat the function f  is.

A  priori, the notion of order of growth in this context involves the 

following four quantities:

p“ ax(f) := limsupLW M , p ^ f )  := l i m s u p i S S ^ M i ,
r—>+00 r—>+00

p S * (f)  =  l i m s u p ^ ^ l i ,  p ^ ( f )  := U m s u p M ^ l l l .
r->0 5 r—>0 6

However, if an entire function f  has no zeros, then p(f) =  p(l / f )  as a 

consequence of the fact that you can write the order in  terms of the 

Nevanlinna characteristic function T(R,f):

p(f) =  lim sup  —^ l (T/-f ) 
lo g r

and Jensen's formula says that

T (r, f ) =  T(r, 1 /f) + lo g |f (0 ) |
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(see section 1.2 of [Hay64]). It follows from the general expression of 

a transcendental self-map of <C*

f(z) =  zn exp(g(z) +  h (1 /z )),

w ith  n e Z  and g, h  non-constant entire functions that

lo g |f(z )| =  n lo g |z | +  Re g(z) -f- Re h (0) +  o (1) as z  -4  00,

and therefore

log M.(r, f ) =  log M.(r, e9) 4- 0 (logr) as z  - 4  00. (3.4)

N ote that in a neighbourhood of infinity the term h (l /z )  is not rele­

vant and the same happens w ith g(z) in a neighbourhood of the ori­

gin. Then, putting (3.4) into the four order quantities defined above 

and using Jensen's formula w e obtain

Pmax(f) =  PSaxte9) =  p(e9) =  p£n(e9) =  p£n(f) (3-5)

and, similarly, at zero

Pmax(f) =  Pmax(eh) =  Pi^) =  PS£n(eh) =  pSdn(f)r

so, in fact, the order of growth of f  involves only two quantities.

D efin ition  3.30 (Order of growth). Let f  be a transcendental self-map 

of C* of the form

f(z) =  zn e x p (g (z )+ h (1 /z ))

w ith  n  G Z  and g, h  non-constant entire functions. We say that f  has 

finite order if both quantities

Poo(f) := p(e9) and p0 (f)  :=  p (e H)

are finite.

Example 3.31. The functions f  (z) =  zn exp(P(z) 4- Q (1 /z ) ) , w ith n e Z  

and P, Q polynom ials, are transcendental self-maps of C* of finite or­

der and poo(f) =  degP  and p0 (f) =  deg Q.
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Remark 3.32. Keen [Kee88] defined the order of transcendental self­

m aps of C* using

M (r,f) =  max |f(z)| and m (r,f) =  m in |f(z)|
z G  3A r z € 0A r

for r >  0, where A r := {z G C : 1 / r  <  |z| <  r}. It follows from the 

m axim um  principle that M (r, f) and m (r, f) are respectively the m axi­

m um  and m inim um  of |f(z)| in the w hole annulus A r (in the same 

way that, for an entire function, w e have M(r) =  m axzGD(0/T) |f(z)|). 

In our notation,

M (r,f) =  max{M (r), M (1/r)}  and m (r,f) =  m in{m (r), m (1/r)}.

N ext w e w ill see that, in  fact, every holom orphic self-map of <C* 

that has finite order necessarily has to be of the form given in  Exam­

ple 3.31. We w ill begin by stating a classical result concerning entire 

functions of finite order due to Polya [P0I25]; see also [Hay64, Theo­

rem 2.9].

Lemma 3.33. If f  is a non-constant entire function of finite order with no 

zeros, then f(z) =  exp(h(z)) and h  is a polynomial.

U sing Lemma 3.33, w e obtain the following.

Proposition 3.34. Every transcendental self-map of C* of finite order is of 

the form

f  (z) = z n ex p (P (z )+  Q (l/z ))

for some n  G Z  and P, Q G C[z].

Keen proved the stronger result that every topological conjugacy 

class of analytic self-maps of C* contains a function of this form  

[Kee89, Theorem 1], but w e give a direct proof of Proposition 3.34 

for completeness.

Proof We know that every transcendental self-map of C* is of the 

form

f  (z) =  zn exp(g(z) +  h (1 /z ))  

for som e n G Z  and g, h  non-constant entire functions. Thus, by (3.5),

p (e 9 ) =  poo(f) <  + 0 0
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and so it follows from Lemma 3.33 that g has to be a polynomial. On 

the other hand,

P (e h ) =  p o (f)  <  + 0 0

and so h  has to be a polynom ial as well. ■

Keen also showed that, in C*, finite order im plies finite type [Kee89, 

Proposition 2]. This is very different to what happens for the entire 

case, where w e have functions of finite order in the class T> that are 

not in the Speiser class § of finite-type transcendental entire functions. 

A n example of such a function is given by s in (z )/z  which has order 

one and infinitely m any critical values in any open interval in R  con­

taining the origin. We state Keen's result for future reference.

Lemma 3.35. Let f  be a transcendental self-map ofC*.  If I has finite order 

with poo(f) =  p and po(f) =  q, then sing(f_1 ) consists of at most p +  q 

critical values together with the asymptotic values zero and infinity.

Finally, w e show  that the tracts of finite order functions have a fairly 

sim ple geometry.

Proposition 3.36. Let f  be a transcendental self-map of C* of finite order 

and let F e  be a logarithmic transform off.  Then f  has a finite number 

of tracts and the tracts of F have zero slope and can be chosen to have no 

wiggling.

Proof. Suppose that poo(f) =  P and po(f) =  q w ith p, q ^  1. Then, by 

Proposition 3.34,

f(z) =  zn exp(P(z) +  Q (l /z ) ) ,

where n  G Z  and P, Q are, respectively, polynom ials of degree p, q. 

We focus on the tracts w hose closure in <C contains infinity; the case 

where the closure contains zero is similar. We have

|f(z)| =  exp(Re (azp ) +  o(Re (zp ))) as z  -4  00, (3.6)

where a  e C*. Let cj> =  arg(a). For large values of R, the tracts of f  

defined by |f(z)| >  R are contained in the sectors determined by the 

preim ages of the imaginary axis by the map azp, that is, the radial 

lines of angle (kzr +  tc/2  — <f))/p, k e  Z . Tracts that map to a neigh­

bourhood of infinity lie in the sectors containing the radial lines of
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angle [ Ik n  — cj))/p, 0 <  k <  p, w hile  tracts tha t m ap  to a ne ighbou r­

hood  of zero lie in  the sectors contain ing  the rad ia l lines of angle 

((2k +  1 )7t — ((O/p, 0 ^  k  <  p. The preim ages of rad ia l lines by  the ex­

ponen tia l function are horizon tal lines an d  hence the tracts of F are 

contained  in  horizontal bands an d  have zero slope.

Finally, since the boundaries of the tracts tend  asym ptotically  to 

these horizon tal lines, the tracts of F can be chosen to have no w ig ­

gling if R is sufficiently large. ■

It follows from  Proposition  3.34 that, in  the  p u n c tu red  plane, func­

tions of finite o rder (as well as en tire  functions of finite o rder w ith  no  

zeros) can only have in teger o rders po(f) an d  p o o ( f ) .  There are alw ays 

exactly 2poc(f) asym ptotic  pa ths to infinity corresponding , asym p to t­

ically, to the preim ages of the positive (asym ptotic value infinity) or 

negative (asym ptotic value zero) real line by z d w here  d =  P o o ( f ) .  

Therefore the asym ptotic  pa th s a lternate  as you go a ro u n d  a circle 

of large rad iu s  (see F igure 7). Similarly, in  a neighbourhood  of zero 

there are 2po(f) asym ptotic  pa th s  w ith  the sam e structure. Each of 

these asym ptotic  pa th s  is contained  in  a logarithm ic tract and  vice 

versa.

Figure 7 : Logarithmic tracts of functions of finite order with Poo(f) =  3 and 
P o ( f ) = 2  (left) and infinite order (right). The colour of every point 
z G C* has been chosen according to the modulus (luminosity) 
and argument (hue) of f(z).

A nother basic p ro p erty  of entire  functions in  the  class B  is tha t 

they  have lower o rder greater th an  or equal to 1 /2  [Hei48] (see also 

[RSo3a, Lem m a 3.5]). This is due  to the fact th a t f  is b o u n d e d  on a 

p a th  6 to infinity. N ote tha t 8 can be chosen to be any  p a th  th a t lies
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in the com plem ent of the set of tracts of f . Recall that the lower order 

of an entire function is

M f) : = lim in f l0 g l° gMfr- f ) .
r->+oo logT

If f  is a transcendental self-map of C* w e consider

A0O( f) := U m in f l0 g l° g M (r ' f) and A0(f) := U m in f l0 g l° g 1 {™ (r' f ) .
v ' r—H-oo lo g r  r—>0 log 1 /r

Recall that Theorem 3.3  in Section 3 .1  states that, in this setting, 

A0(f) =  po(f) and Aoo(f) =  poo(f). To prove this, w e shall use the 

Borel-Caratheodory theorem in the form given in  [Val49, Theorem 8].

Lemma 3.37 (Borel-Caratheodory theorem). Let f  be a transcendental 

entire function and define, for r  >  0,

B(r,f) := m inR e f(z), A (r,f) := max Re f(z).
\z \= t \z \= r

Then, there is ro =  ro(f) >  0 and C = C(f) > 0  such that 

B(t) < M(r) <  J L ( 4 A ( R )  +  C)

for all R > r  >  ro-

Proof of Theorem 3 .3 . Let f  (z) =  zn exp(g(z) +  h ( l /z ) )  w ith n  6 Z  and 

g, h  non-constant entire functions. We treat separately the cases where 

the function f  has finite order and infinite order. For sim plicity we  

only consider poo If) and Aoo(f); the proof for po(f) and Ao(f) is com­

pletely analogous.

Suppose that poo(f) =  V <  + °°- Then, by Proposition 3 .3 4 , g is a 

polynom ial and, by (3 .6 ),

Aoo(f) =  lim in f lo g l° g ^ -r' f > =
r—>+00 logr  r—>-+oo logr

Since arp , a  >  0, is an increasing function for r  >  0, it is clear that 

A 00(f) =  Poo(f).

N ow  suppose that poo(f) =  + 0 0 . We use Lemma 3 .3 7  w ith R =  2r: 

there is C >  0 and ro >  0 such that

M (r/ 9) <  2 (4A (2r, g) +  C) f o r a l lr > r o .
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Therefore, since g is a transcendental entire function, w e have

limmf1°g1A(r'9) >liminfl0g^(r/2'9) - lim jgS^gl =+op
r->+oo lo g r  r—>+oo lo g r  r-^+oo lo g r

and so Aoo(f) =  +00. ■

Observe that if F £ then the tracts of F in each of the sets To 

and Too can be ordered w ith respect to the vertical position around 

infinity. Therefore it makes sense to speak about a tract being in be­

tween two other tracts. This ordering is know n as the lexicographic 

order and w e w ill come back to it later (see Definition 3.45).

3 .5  SYMBOLIC DYNAM ICS A N D  COMBINATORICS

M aps in the class !B{og are defined on a set T, w hich is a union of 

tracts, and, therefore, the orbits of som e points in  T are truncated if 

Fk(z) ^ T for som e k £  N . We denote by J(F) the set of points that 

can be iterated infinitely m any times by F.

D efin ition 3.38 (Julia set of F). Let F : T -> H be a map in class ®{og. 

We define the Julia set of F to be

J(F) : = { z g T  : Fn (z) is defined and in T for all n  £ N o},

and, for K >  0, w e put

JK (F ) : = { z €  J  : | Re Fn (z) | > K  for all n €  N o).

A s w e w ill see in the follow ing lemma, the reason w h y  J (F) is called  

the Julia set of F is that points in J(F) project to points in  J(f) by the 

exponential map. However, note that in the case that F £ !BJog is 

a logarithmic transform of a function f  £ ®*, there exists an entire 

function f  that is a lift of f, and then J(F) C J(f) =  exp-1 J(f) by a 

result of Bergweiler [Ber95].

Lemma 3.39. Let f  he a transcendental self-map of C* and let F £ be 

a logarithmic transform off .  I f?  £  then exp J(F) C J(f) and, i f f  is 

of disjoint type, then exp J(F) =  J(f).

Proof Suppose to the contrary that zo € expJ(F) n  F(f) ^  0. Then, 

proceeding as in the proof of Theorem 3.1, w e get a contradiction



D Y N A M IC  RAYS OF B O U N D E D -T Y P E  F U N C T IO N S

between the expansivity of F given by (3.3) and the fact that 7 does not 

contain vertical segm ents of length 2n. N ote that in the normalised  

case w e use the expansivity of F w ith respect to the Euclidean metric, 

that is, |F'(z)| ^  2 for all z  G 7 (see Lemma 3.21), while in the disjoint- 

type case w e use the expansivity w ith respect to the hyperbolic metric 

on H because 7 is compactly contained in H.

If F is of disjoint type, the inclusion J(f) C expJ(F) follows from  

the fact that f(C* \V )  C A and hence F(f) consists of the immediate 

basin of attraction of an attracting fixed point in C* \  V, and so

Recall that in Definition 2.1 w e defined the essential itinerary of a 

point z  G 1(f) to be the sym bol sequence e — (en ) G {0,oo}N° such  

that

for all n  G N o.

We now  introduce the escaping set for a map F in the class 23fog, 

w hich is a subset of the Julia set of F.

D efin ition  3.40 (Escaping set of F). Let F : 7 —> H be a map in the 

class 23 J0g. We define the escaping set of F to be

1(F) := (z G J(F) : lim  |Re Fn (z)| =  +00} =  J(F) f iex p -1 1(f).
n->oo

In terms of F, a point z  G 1(F) has essential itinerary e =  (en ) G (0, oo}N ° 

if Re Fn (z) ^  0 if and only if en =  0 for all n  G N o.

Observe that exp 1(F) C 1(f) and, in  fact, every point in 1(f) even­

tually enters exp 1(F). As w ith J(F), if f  is a transcendental self-map 

of C* and f  is a lift of f, then 1(F) C 1(f) but, in general, these sets are 

different, as f  m ay have points that escape in the imaginary direction 

w hich correspond to bounded orbits for f.

For every function F G 23Jog, w e denote by A  (respectively Aq, A™, 

^00, A-00) the symbolic alphabet consisting of all tracts in 7  (respectively 

7$, 7^ , 7^ , 7™; see Definition 3.18). We associate a symbol sequence

J(f) = C * \  (J f~ n (C * \V )
n € N

as required.

f
0, if |fn (z)| <  1,



3-5  SYM BO LIC D Y N A M IC S A N D  C O M B IN A T O R IC S

(Tn ) G *AN° to each point z  G J(F) that describes to w hich tract the 

iterate Fn (z) belongs for all n  € N o-

D efin ition  3.41 (External address of F). Let F € ®{og and le tz G j(F ) .  

We define the external address of z, addrp(z), to be the sym bol se­

quence s =  (Tn ) G A.N° such that FTL(z) G Tn for all n  G N o-

Remark 3.42. Let F be a norm alised logarithmic transform. Then the 

Bernoulli shift map a  : A1'10 —> A N° m apping the external address (Tn ) 

to (Tn + i ) is a subshift of finite type on the set

a No =  (yLg° x  a n ) u  (a % x  a n ) u  {a °0 x  a n ) u  ( a ^  x  a n ),

where, if eo, e i G {0,00}, the setA eJ x  A N consists of the sequences in  

A No w hose first sym bol is in AeJ. Observe that the transition graph 

of o’ is

A §° x  A N — > A £ x  A n O

 ------ A0̂  x  A N

and, in particular, not all sequences in A N° are external addresses of 

points in J(F).

We now  introduce the notion of adm issible external address. Only 

adm issible external addresses can be the external address of a point 

inJ(F).

D efin ition  3.43 (Adm issible external address). We say that an exter­

nal address s G A N° is admissible if s belongs to the set

I e := n  : T*  € for a11 n  €
n € N

for som e e =  (en ) G (0, oo}N ° . In this case, w e say that the external

address s has essential itinerary e. We denote by L  the set of all adm is­

sible external addresses.

N ote that, if w e define

A q := A q LI A"q and A ^  \=  A ^  U A™

then an external address s =  (Tn.) G L  has essential itinerary e =  (e-n.) 

provided that Tn  G A q if and only if en  =  0. In terms of essential
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itineraries, the corresponding transition graph is the complete graph 

on two vertices,

0 M o  x  X

If F G “Biogr then z  G 1(F) has essential itinerary e if and only if 

addr(z) has essential itinerary e. However, if F is not normalised, 

these two sequences may be different for a certain number of iterates 

(see Lemma 3.59).

For every adm issible external address, w e introduce the set of points 

that have that external address. Note that som etim es w e use the term  

external address to denote a general sequence in L, w ithout being  

necessarily the external address of any point z  G J(F). Therefore, som e  

of the follow ing sets may be empty. In Definition 2.2, for e G {0, oo}N °, 

w e defined I?'°(f) to be the set of escaping points w hose essential 

itinerary is exactly e and w e defined Ie (f) to be the set of escaping 

points w hose essential itinerary is eventually a shift of e.

D efin ition  3.44 (Subsets of J(F)). Let F be a function in the class 23{og. 

For s G L  and K >  0, w e define the sets

Js(F) := {z G J(F) : addrF( z ) = s } ,

J i f f )  :=  Js(F) n  Jk (F) and I£(F) :=  J*(F) n  1(F). For e e  {0,o o }N » and 

K >  0, w e define the sets

Je(F) := {z  e J(F) : addrF(z) € L e} =  | J  J,(F),
sSZe

Je(F) := J e (F )n jK(F) and Ie (F) := Je (F)n 1(F). If F is normalised, then 

I e (F )= J (F )n e x p - , (l° '°(f)).

There is a natural w ay to order the tracts w ith respect to the vertical 

position that they are attached to infinity. Using this, w e can endow  

the set of sequences L e w ith the lexicographic order.

D efin ition  3.45 (Lexicographic order). Let F : T ->• H be a map in the 

class . If T,T' are components of Too, then w e say that T <  T' if 

T; is in the upper connected component of the intersection of a right 

half-plane and the complem ent of T. If T,T' are components of To, 

then w e say that T <  T' if T' is in the lower connected component of
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the intersection of a left half-plane and the com plem ent of T. Finally, 

if s ,s '  € L e for som e e G (0, oo}N°, then w e say that s <  s' if there is 

k G N o  such that Tn =  for all n  <  k and <  T£.

The set L e endow ed w ith the lexicographic order is a totally or­

dered space. Observe that, since the function F preserves orientation, 

if H <  Tz in Too and T is a com ponent of To, then w ith the lexico­

graphic ordering w e have F̂ -1 (Ti) <  Fpj-1 (T2).

Som etim es it w ill be useful to consider a partition of the tracts 

of a function in  the class ¥>* (and its logarithmic transforms) into  

fundamental domains. The follow ing term inology w as introduced by 

Rempe in [Remo8].

D efin ition  3.46 (Fundamental domain). Let f  G T>* and let F : T —> H 

be a logarithmic transform of f  that is in the class 23fog. Let 5 C <C* \  V 

be the curve joining zero to infinity from Theorem 3.20.

(i) The set exp-1 8 defines infinitely m any fundamental strips Sn , 

n  G Z . Every tract of F is contained in  a fundam ental strip.

(ii) For each tract Tn of F, the restriction F(Ta : Tn ->• H is a one-to-one 

covering of either Ho or H ^. Hence, the set F j ^ ( H \e x p _1 6) 

has infinitely m any com ponents FU/t C Tn, i  G Z , that w e call 

fundamental domains of F.

(iii) Similarly, the preim ages f -1 (6) divide each tract Vn of f  into 

infinitely m any sets D n/t =  expFm/i C Vn , i  g  Z , for som e  

m  G Z , that w e call fundamental domains of f.

N ote that som etim es w e w ill refer to a sequence of fundam ental 

dom ains using only one subindex w hen w e do not need to specify  

whether two fundamental dom ains are a subset of the sam e tract or 

not.

Since the orbit of every point in J(F) avoids exp-1 (8), w e can de­

fine external addresses in terms of fundam ental dom ains rather than 

tracts. This is the approach followed, for exam ple, by Benini and Fag- 

ella [BF15]. However, since the image of each fundam ental dom ain is 

contained in a fundamental strip, the fundam ental dom ain Fn is de­

termined by the tract Tn that contains Fn and the fundam ental strip 

containing the next tract Tn + i . Thus, considering external addresses
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Figure 8: Fundamental domains of a function f in the class 23*.

of fundam en ta l dom ains does no t add  m ore inform ation  to the sym ­

bolic dynam ics of F.

We can also consider external addresses for functions f  G 23* rather 

than  for their logarithm ic transform s. In this case, specifying the se­

quence of tracts in  V does no t cap ture  the w hole com binatorics of f; 

w e define the external addresses of f  in  term s of fundam enta l d o ­

m ains. Let yif denote the sym bolic alphabet consisting of the funda­

m ental dom ains of f .

D efin ition  3.47 (External address of f). Let f  G 23* and  let F G ® Jog be 

a periodic logarithm ic transform  of f. If z =  exp w , w here w  G J(F), we 

define the external address (under f) of z, a d d rf  (z), to be the sym bol 

sequence t  =  (Dn ) G .A1̂ 0 such th a t fn (z) G D n for all n  G N o .

The next lem m a describes the correspondence betw een external 

addresses of f an d  external addresses of a logarithm ic transform  F 

of f  (see [BFi5, Lem m a 2.9]).

Lem m a 3.48. Let f  G 23* and let F G 23£og be a logarithmic transform of f .  

I f  z  =  exp w, then the external address a d d rf  (z) =  (Dn ) is uniquely deter­

mined by the external address addrp(w ) =  (Tn ). Conversely, i f  we have 

a d d r f (z) =  (D n ), then addrp(w ) =  (Tn ) is unique up to replacing To by 

a 2k.ni-translate of To for some k G Z.

Proof Let (Tn ) be a sequence of tracts of F, then  the sequence of fun­

dam en tal dom ains (Dn ) C V is given by D n =  exp Fn w hich, in tu rn , 

is de te rm ined  by Tn and  Tn + i .

O n the o ther hand , if (Dn ) is a sequence of fundam en ta l dom ains 

of f, then  the tract To D Lo, w here  expFo =  Do, is given by the 

choice of the logarithm ic transform  F, w hich  is un ique u p  to add ition
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of integer m ultiples of 2m , and the rest of tracts in the sequence (Tn ) 

are determ ined by the fact that Tn is the only tract in  the fundamental 

strip F(Fn_ i ) containing a com ponent of exp-1 (D n ). ■

We say that a sequence of fundamental dom ains (D n ) of f  is ad­

missible if it corresponds to an adm issible external address s G L. In 

this chapter w e use external addresses in terms of tracts m ostly and 

restrict the use of fundamental dom ains to the tim es w hen w e need  

them, in order to keep the notation simple.

3.6 U N B O U N D E D  C O N T IN U A  IN  THE JULIA SET

A priori, the set Js(F) may be em pty for som e external addresses 

i n s  G I .  Recall that Rippon and Stallard [RSo5b] show ed that, for a 

general transcendental entire function f, the com ponents of the fast es­

caping set A(f) C 1(f) are all unbounded. U sing similar ideas, Rempe 

showed that if f G 23 (and the same argument works for class 23iog), 
then every tract T contains an unbounded closed connected set A con­

sisting of points that escape w ithin T [Remo8, Theorem 2.4]. Som e­

tim es w e refer to an unbounded closed connected set X C C as 

an unbounded continuum; note, however, that such set is not a conti­

nuum  in C as it is not compact, but X U {00} is a continuum  in C (see 

Lemma 3.50).

Although [Remo8, Theorem 2.4] only concerns points that escape 

w ithin a tract, if s G A1'10 is a periodic external address, then it fol­

low s that Js (F) contains an unbounded continuum  of escaping points. 

Indeed, if s =  T0T1 . . .T p_ i has period p G N  and T^, 0 <  k <  p, 

are tracts of F, then there is a tract T of Fp contained in To such that 

Fkm  c  Tic, 1 <  k <  p, and the result follows from applying [Remo8, 

Theorem 2.4] to Fp in T.

It w as remarked in [BJR12, p. 2107] that if s G A N° contains only  

finitely m any symbols, then [Remo8, Theorem 2.4] can be adapted  

to show  that Js_(F) f=- 0 and hence Js (F) contains an unbounded conti­

nuum  A; see [BF15, Proposition 2.11] for a detailed proof of this result. 

In [Remoy], Rempe showed that the set A  can be chosen to be forward 

invariant. Later on, [BRS08, Theorem 1.1] generalised the result of
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Rempe for transcendental meromorphic functions in C w ith tracts 

(not necessarily in  the class 23).

For transcendental self-maps of <C*, the components of the fast es­

caping set are unbounded in C* (see Theorem 2.9). We recall that a set 

X C  C* is unbounded if its closure X in C contains zero or infinity. The 

follow ing lem m a is a combination of Theorems 2.4 and 2.9 and fol­

low s from the constructions in their proofs. Recall that Ie'°(f) Q Ie (f) 

is the set of escaping points w hose essential itinerary is exactly e.

Lemma 3.49. Let f  be a transcendental self-map of C*. For each essential 

itinerary e =  (en ) G {0,oo}N°, there exists an unbounded closed connected 

set A e C  Ie'°(f) which consists of fast escaping points and whose closure 

A e in C contains zero or infinity depending on the value of e0.

Lemma 3.49 im plies that the set Je (F) contains at least one un­

bounded component. The goal of this section is to show  that, under 

certain hypotheses, the set J§ (F) contains an unbounded continuum. 

We begin by stating the boundary bum ping theorem [Nad92, Theo­

rem 5.6] (see also [RRRS11, Theorem A.4]) which im plies that if X C  C 

is a compact connected set containing zero or infinity and E =  X n  C ,  

then every com ponent of E is unbounded in C*.

Lemma 3.50 (Boundary bum ping theorem). Let X be a non-empty com­

pact connected metric space and let E c  X be non-empty. If C is a connected 

component of E, then dC n 3E ^  0 (where boundaries are taken relative 

toX).

First w e show  that if (F) 7̂  0 for sufficiently large K >  0, then the 

set JsjF) contains an unbounded continuum. The following proposi­

tion is the analogue of [RRRS11, Lemma 3.3] for the class 23* . We 

include the proof for completeness.

Proposition 3.51. Let F G 23 [og. There exists K-| (F) ^  0  such that if 

K ^  Ki (F),/or every s e L, if  zo € jJ(F), then there exists an unbounded 

closed connected set A C  Js(F) with dist (zo, A) <  27r.

Proof We may assume w ithout loss of generality that F is normalised 

w ith H =  H r  for som e R >  0. Let Ki (F) >  0 be large enough that 

if K ^  Ki (F), then all bounded components of H n 7 are in the 

vertical band Vk {z G C : | Re z| <  K). N ote that the set Vk can only  

intersect a finite number of tracts in each fundamental strip.
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Let Y C  C be an unbounded continuum  such that Y \  B(Fk(zo),27t) 

has exactly one unbounded component. In that case w e denote this 

com ponent by Xk(Y). Let s =  (Tn ) e  L. For all k ^  1, w e have that 

0 ~h Xk(Tic) Q H and hence Fj^ i m aps Xk(Tk) into T ^ -i. By the 

expansivity property (3.3), since dist(Fk(zo),Xk(Tk)) =  27t, w e have 

that dist(Fk-1 (z0) , ( X k(Tk))) <  rr and Xk_ , (F^’_, (Xk(Tk))) j i  0. 

Thus w e can define the sets

A k := XoCFfJ (■ • • (Xk_ , (FjJ_, (Xk(Tk))))  • • • ))  for k >  1,

and w e put Ao := Xo (To). Observe that here w e are using the fact that 

s e L  because FjJ is only defined in one of the two com ponents of H.

Let Ak denote the closure of Ak in C which is a continuum. By 

construction, Ak+i Q Ak and dist(zo, Ak) ^  n, thus

A ' := P | A k
k^O

is a continuum  in <C and A' \ { 0,oo} has a com ponent A such that 

dist(zo,A ) <  271. Finally, by Lemma 3.50, the set A is unbounded  

inC * . ■

Next w e show  that, as in  the entire case, if an external address 

s € l  has only finitely m any sym bols, then the set Js (F) contains an 

unbounded continuum. N ote that in  contrast to the previous propo­

sition, now  w e need to show  that Js(F) ^  0. We use the follow ­

ing lemma w hich is the analogue of [BF15, Proposition 2.6] for the 

class 3*.

Lemma 3.52. Let F e  23£og have good geometry and let $  he a finite union 

of fundamental domains of F. Then for any K >  0 sufficiently large,

F - ’ ( { z e C  : |R e z | =  K } ) n S - C { z e C  : |R e z |< K } .

In the follow ing proposition w e adapt the proof of [BF15, Proposi­

tion 2.11] to our setting. This is based on the ideas of [Remo8, Theo­

rem 2.4] and w ill be used later to prove Theorem 3.7.

Proposition 3.53. Let F e  3{og• There exists K2 (f) >  0 such that if  

K ^  K2 (F) and s €  L contains finitely many different symbols, then the 

set jJ(F) contains a continuum whose points have unbounded real part.



D Y N A M IC  RAYS OF B O U N D E D -T Y P E  F U N C T IO N S

Proof. Suppose that s =  (Tn ) contains N different sym bols for tracts 

T f ,. . . , T̂ j from 7, N e  N , and choose fundamental dom ains F?k C  

T?, 1 <  j ^  N, so that F(F?k) D Tk . Let 7 denote the finite collection 

of fundamental dom ains {F?k} i< ^ N  and assume that K2 =  1<2(F) >  

0 is sufficiently large that Lemma 3.52 holds for 7 and K >  K2(F). 

Then define (Fn ) to be the sequence of fundamental domains from 7 

satisfying Fn C  Tn and Tn + i lies in F(Fn ).

Let Xo be the unbounded com ponent of Fo n  H k and, for each 

n  >  0, let Xn be the unique unbounded component of

TpJ (• • • (T fL , (Fn) n  h ±)  n  h ± )  • • •) n  H ±

where Fj 1̂ is the branch of F-1 that m aps the fundamental strip 

F(Fn ) C  H in w hich Fn + i lies to the fundamental dom ain Fn C  Tn . 

N ote that since F is entire, Fj^ m aps unbounded sets to unbounded  

sets.

Lemma 3.52 tells us that F-1 (3H k ) f l 5  C C \ a n d  therefore 

for each Fn e  7, necessarily Fn n 3H k 7̂  0. Furthermore, if Y is 

an unbounded continuum  w ith  Y n 3H k 7̂  0, then, by Lemma 3.52, 

Fj 1̂ (Y) fl 3H k 7̂  0. Thus, since Fn fi 3H k 7̂  0, w e have that 

Xn n 3H k 7̂  0 for all n  G N o-

As before, let Xn be the closures of Xn in C and define

X ':=  f |  Xn
IcG N o

w hich is an unbounded continuum. Since all the unbounded continua 

Xn. intersect 3H , X' \ { 0, 00} has a component X that intersects 3H k 

and is unbounded by Lemma 3.50. ■

In particular, Proposition 3.33 covers all the periodic external ad­

dresses in L. Observe that by considering external addresses that 

consist of fundamental domains instead of tracts w e w ould obtain 

the result that for all such sequences containing only finitely m any 

different fundamental domains of f  there is an unbounded contin­

uum  consisting of escaping points w hose orbit lies in that sequence 

of fundamental domains.
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3 .7  P R O P E R T I E S  OF D Y N A M I C  R A Y S

In Theorem 3.1 w e showed that bounded-type functions have no es­

caping Fatou components. Instead, escaping points often lie in  curves 

tending to the essential singularities called dynamic rays or, som e­

tim es, hairs such that in  every unbounded proper subset of them, a 

ray tail, points escape uniformly. We say that a dynam ic ray is broken 

if one of its forward iterates contains a critical point; this concept was 

introduced in [BF15, Definition 2.2].

D efin ition 3.54 (Dynamic ray). Let f  be a transcendental self-map 

of <C*. A  ray tail of f  is an injective curve

y  : [0,-f-oo) -► 1(f)

such that f n  ( y ( t ) )  —> {0,oo}  as t  —)■ + 0 0  for all n  G N o  and also 

f n ( y ( t ) )  -> {0,oo} uniform ly in t  as n  —> 00. A  dynamic ray of f  is a 

maximal injective curve

y  : (0,+ o o )  1(f)

such that Yl[t,+oo) is a ray tail for every t  >  0. Similarly, w e can define 

ray tails for any logarithmic transform F of f, w hich is only defined  

on the set 7, and dynam ic rays for any lift f  of f . We shall abuse the 

notation and use y  for both the ray as a set and its parametrization.

We say that a dynam ic ray y  is broken if f n (y) contains a critical 

point for n  G N o- A  non-broken ray y  is said to land if y  \  y  consists 

of a single point or, in other words, if y (t)  has a lim it as t  -> 0. We 

say that a dynamic ray y  is periodic if there exists p G N  such that 

fP  ( y )  =  y .  If f  ( y )  =  y ,  then w e say that y  is an invariant dynam ic ray.

Example 3.55. We give a couple of straightforward exam ples of dy­

namic rays in C*.

(i) The positive real line is an invariant dynam ic ray for the func­

tion f  (z) =  exp(z + 1  /z ) , and points escape to infinity under iter­

ation. This is an exam ple of a broken ray because the function f  

has a critical point at z  =  1.

(ii) If w e now  consider the function g(z) =  exp(—z + 1  /z ) , the posi­

tive real line is again forward invariant but z  =  1 is a repelling
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fixed po in t of g. In this case, the in tervals (0, 1) and  (l,+ o o ) 

form  a cycle of 2-periodic non-broken dynam ic rays.

O bserve tha t dynam ic rays can land  at an essential singularity  and  

the lim its of y ( t)  as t  —> 0 and  t  ->• +00 m ay even coincide. The d y ­

nam ic ray from  the follow ing exam ple is non-broken  and  goes from  

zero to infinity.

Example 3.56. The positive real line is an  invarian t non-broken d y n a­

m ic ray for the function f(z) =  z e x p (z 2 +  exp(—1/ z 2)) (see Figure 9).

Figure 9: On the left, phase space of the function f(z )= z  exp (z2 + e x p (—1 /z 2)) 
from Example 3.56. On the right, the graph of the restriction of 
this function to the positive real line.

x -------
x*exp(x*x+exp(-1/(x*x))) -------

Since the  exponential function is a local hom eom orphism , we have 

the follow ing correspondence betw een dynam ic rays of transcenden­

tal self-m aps of C* and  those of their lifts.

Lem m a 3.57. Let f  be a transcendental self-map of C* and let f  be a lift 

of f .  Then y  is a dynamic ray o f f  if  and only i f  any connected component y  

0 /e x p -1 y  is a dynamic ray of f .  Furthermore, y  lands or is broken if  and 

only if  y  lands or is broken, respectively.

It is a w ell-know n resu lt for entire functions tha t if the postsingu lar 

set is b o u n d ed  then  all periodic dynam ic rays land. This w as first 

p roved for the exponential fam ily [SZo3b; Remo6]. Rem pe proved a 

m ore general version of the resu lt for R iem ann surfaces tha t applies to 

m aps in  the classes ¥> and  ¥>* [Remo8, Theorem  B.i]; see also [Deni.4., 

Theorem  1.1] for an  alternative proof of this resu lt for the class B. The 

sam e techniques im ply  the follow ing resu lt in  ou r setting.
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Proposition 3.58. Let f  £ B* with postsingular set P(f) bounded away 

from zero and infinity. Then all periodic dynamic rays of f  land, and the 

landing points are either repelling or parabolic periodic points off.

N ext w e show  that, since points in ray tails escape uniformly, each 

dynam ic ray is contained in a set Ie (f) for som e essential itinerary 

e e { 0 ,o o } N°.

Lemma 3.59. Let f  be a transcendental self-map ofC* and let y  be a dyna­

mic ray off .  Then, for every ray tail y '  C  y ,  there is I £ N o  such that all 

the points in f €( y ')  have the same essential itinerary. Hence, there exists an 

essential itinerary e £ (0, oo}N ° such that y C  I e (f).

Proof. By definition, ray tails escape uniform ly and hence, if y '  is a 

ray tail, there is £ £ IN such that f n ( y ')  H S 1 =  0 for all n  ^  I. Then, 

all points in f l {y')  have the sam e essential itinerary; that is, in the 

notation of Section 2.1, y '  C  I e ° ( f )  for som e e £  {0, oo}N °.

N ow  suppose that y  is a dynam ic ray w ith  z-j £  y  n  Iei (f) and 

Z2 £ y  fl Ie2(f). Then there is a ray tail y ' D {zi,Z2} and i £ N  

such that all points in f £(y') have the sam e essential itinerary. Thus, 

e! =  e2 a n d y  C  Ie i(f) =  Ie2(f). ■

Actually, since all the im ages of a dynam ic ray are unbounded  

in  <C*, dynamic rays are asymptotically contained in  tracts w hich are 

preim ages of the neighbourhood W  of the set {0,00}. Furthermore, 

each dynam ic ray is asymptotically contained in exactly one of the 

fundamental dom ains of the function F.

In the following proposition w e show that, in order to prove Theo­

rem 3.4, w e only require that every escaping point has an iterate that 

is on a ray tail (see [RRRS11, Proposition 2.3]).

Proposition 3.60. Let f  be a transcendental self-map of C* and let zo £  1(f). 

Suppose that some iterate f k (zo), k  £ INo, is on a ray tail y k off .  Then ei­

ther zo is on a ray tail, or there is some n  <  k  such that f n (zo) belongs to 

a ray tail that contains an asymptotic value off.

Proof. Suppose that y k : [0,oo) —» C* is a parametrization of such a 

ray tail and y k(0) =  fk (zo). Let y k_i : [0,T) —> C* be a m aximal lift 

of y k such that y k_i (0) =  f k_1 (z0) and f (yk_i (t)) =  y k (t). If T =  00,
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then Yic-i (t) m ust tend to zero or infinity as t  —> +00, otherwise w e  

w ould have Y k -i (t) —> a G C* as t  —>• +00, so

f(a ) =  f  ( lim  Y k- i  ( t ) ) =  lim  f  (Yk-i (t)) =  lim  Yk(t) €  {0,oo}
y t —>+00 J  t —̂-f~oo t-»+oo

which is a contradiction. Thus, f^k -1 ^(zo) is on a ray tail. N ow  con­

sider the case that T <  00 and let

w : =  lim  Y k -i (t) G £ .
t —>T

Again, it cannot happen that f(w ) €  {0,oo} because Yk(T) w ould be 

an asymptotic value, so f(w ) =  Yk(to) for som e to G [0,oo). In this 

case, Yk—i could be extended, contradicting its maximality. N ote that 

if w  was a critical point w e w ould need to choose a branch of f _ 1 . 

Thus, w  e  {0,00} and Yk(T) is an asymptotic value of f  (possibly zero 

or infinity). Then either we have a ray tail Y k-i Q f -1 (Yk) Q 1(f) con­

necting f (k_1)(z) to one of the essential singularities or Yk contains 

an asymptotic value. The result follows from applying the above rea­

soning inductively. ■

N ote that Proposition 3.60 can also be proved by applying its ver­

sion for entire functions to a lift f  of f  and then use the correspon­

dence from Lemma 3.57.

We conclude this section by stating a result about escaping points 

that follows from the expansivity property (3.3) in Lemma 3.21 (see 

[RRRS11, Lemma 3.2] for the analogous result for entire functions).

Lemma 3.61. Let F : 7 -¥  H be in the class !B*J- with H =  for some 

R >  0. If z , w  G ]s{L)for some external address s and z ^ w ,  then

lim  max{|Re Fk(z)|, |Re Fk (w)|) =  +00. (3.7)
k—>+00

Observe that (3.7) does not im ply that neither the point z  nor w  

escape because both points may have an unbounded orbit but w ith a 

subsequence where their iterates are bounded. In the next section we 

w ill introduce a condition for F (see Definition 3.62) w hich implies 

that, in the situation of Lemma 3.61, both points z  and w  escape, and 

hence all points in  Js (F) except possibly one m ust escape.

Lemma 3.24, Lemma 3.61 and Proposition 3.31 correspond, respec­

tively, to Lemma 3.1, Lemma 3.2 and Theorem 3.3 in [RRRS11, Sec­
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tion 3] and constitute the main tools to prove Theorem 3.4 in the next 

section.

3.8 ESCAPIN G  PO IN TS A N D  DYNAM IC RAYS

In this section w e adapt the results in [RRRS11, Sections 4 and 5] 

to our setting. Since the proof Theorem 3.4 follow s closely that of 

[RRRSn, Theorem 1.2], w e only sketch it and em phasize the diffe­

rences between them.

The head-start condition is designed so that every escaping point 

is m apped eventually to a ray tail and hence w e are able to apply  

Proposition 3.60 and conclude that either the point itself is in  a ray 

tail or som e iterate is in a ray tail that contains a singular value.

D efin ition  3.62 (Head-start condition). Let F : 7 —► H be a function in  

the class ££og. We first define the head-start condition for tracts, then  

for external addresses and finally for logarithmic transforms.

• Let T,T' be two tracts in 7 and let cp : R + —► R + be a (not 

necessarily strictly) m onotonically increasing continuous func­

tion w ith  cp(x) >  x  for all x  G R +. We say that the pair (T,T') 

satisfies the head-start condition for cp if, for all z ,w  G T w ith  

F(z), H w ) e V ,

| Re w| >  cp(|Re z|) =>» |Re F(w)| >  (p(|Re F(z)|).

• We say that an external address s =  (Tn ) G £  satisfies the head- 

start condition for <p if all consecutive pairs of tracts (Tn ,Tn + i ) 

satisfy the head-start condition for cp, and if for all distinct 

z ,w  G Js.(F), there is M  G N o  such that either |Re FM (z)| >  

cp(|Re FM (w)|) or |Re FM (w)| >  cp(|Re FM(z)|).

• We say that F satisfies a head-start condition if every external ad­

dress of F satisfies the head-start condition for som e cp. If the 

same function cp can be chosen for all external addresses, w e  

say that F satisfies the uniform head-start condition for cp.

Notice that in the second part w e require that the head-start con­

dition cannot be a void condition for any itinerary. Furthermore, if
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| Re FM(z)| >  cpQRe FM(w)|) and the head-start condition is satisfied 

for all consecutive pairs of tracts (Tn ,Tn.+ i ) for n  ^  M, then w e have 

| Re Fn (z)| >  <p(| Re Fn (w)|) for all n  >  M.

The head-start condition allows us to order the points in J_s(F) by 

the growth of the absolute value of their real parts.

D efin ition  3.63 (Speed ordering). Let s G I  be an external address 

satisfying the head-start condition for a function cp. For z, w e  Js.(F), 

w e say that z  >- w  if there exists K e  N o  such that |Re FK(z)| >  

cp(| Re FK(w)|). We extend this order to the closure Js(F) in  C by the 

convention that 0,00 >- z  for all z  € Js (F).

N ote that although a dynamic ray may contain both zero and infi­

nity in its closure in C, ray tails are a subset of T and hence their 

closure contains either zero or infinity.

The head-start condition implies that the speed ordering is a total 

order on the set J_s(F): if there were two values M.i,M.2 G N o such  

that | Re FM  ̂(z)| >  cp(|Re FM* (w)|) and | Re FMMw)l >  cp(|Re FMMz)|) 

then w e w ould get a contradiction because once w e are in one of these 

situations and the head-start condition is satisfied then it is preserved 

by iteration, that is, for example, if |Re FMl (z)| >  cp(|Re FMl (w)|), 

then | Re Fn (z)| >  cp(|Re Fn (w)|) for all n  >  M-i. Therefore z >- w  if 

and only if there exists no G N o such that |Re Fn (z)| >  |Re Fn (w)| 

for all n  >  no, and hence the speed ordering does not depend on the 

choice of the function cp.

Lemma 3.64. Let s G L e, e G (0, oo}N°, be an external address that satisfies 

the head-start condition for a function cp. Then the order topology induced 

by the speed ordering y  on J_§ (F) coincides with its topology as a subset of <C 

and, in particular, every connected component of JsjF) is an arc.

Moreover, there exists K' >  0 independent of s such that Jk (F) is either 

empty or contained in the unique unbounded component of Js (F), which 

is an arc to the essential singularity eo all of whose points escape except 

possibly its finite endpoint.

Proof. The first part follows from the fact that the identity map 

id  : JsjF) -> (Js.(F),-<) is a hom eom orphism  (see [RRRS11, Theo­

rem 4.4]). Indeed, for all a  G Js (F), the sets

(a, +00)^ := {z G Js(F) : a -< z}, ( -0 0 ,  a)^  . -  {z G Js(F) : z  ^  a},
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are open sets in JsJF) w ith the subspace topology of <C: let k G N o be  

m inim al w ith  the property that |Re Fk(a)| >  (p(|Re Fk(z)|) then, by  

continuity, this inequality holds in a neighbourhood of z. Since J_§ (F) 

w ith the order topology is Hausdorff, the map id -1 is continuous as 

well. The theorem follow s from the order characterisation of the arc 

(see [RRRSix, Theorem A5]).

For the second part, if K ^  Ki (F), where Ki (F) ^  0 is the constant 

from Proposition 3.51, and jJ(F) 7̂  0, then Jk (F) has an unbounded  

com ponent A which is an arc to infinity. Since eo is the largest elem ent 

of Js (F) in the speed ordering, the set Js(F) has only one unbounded  

component. U sing the head-start condition, it can be show n that if 

z ,w  G Js.(F) and w  y  z  then w  G Is(F) (see [RRRS11, Corollary 4.5]). 

Finally, the fact that jJ  (F) C  A for som e K' >  K follow s from the 

expansivity of F (see [RRRS11, Proposition 4.6]). ■

A s in the entire case, the following theorem can be deduced from  

Lemma 3.64 (see [RRRS11, Theorem 4.2]).

Theorem  3.65. Let F G 23Jog satisfy a head-start condition. Then, for every 

escaping point z, there exists lc G N o  such that Fk(z) is on a ray tail y . This 

ray tail is the unique arc in J(F) connecting Fk(z) to either zero or infinity 

(up to reparametrization).

Observe that Theorem 3.65 together w ith  Proposition 3.60 im ply  

that if f  is a transcendental self-map of C* and z  G 1(f), then either z  

is on a ray tail or there is som e n  <  k such that fn (z) belongs to a ray 

tail that contains an asymptotic value of f .

Previously w e have seen that if f  has finite order then any loga­

rithmic transforms F of f  has good geom etry in the sense of Defini­

tion 3.28. To complete the proof of Theorem 3.4 w e show  that func­

tions w ith good geom etry satisfy a head-start condition.

Theorem  3.66. Let F e  SJog he a function with good geometry. Then the 

function ¥ satisfies a linear head-start condition.

Proof. Let s G I  be an external address and suppose that F has 

bounded slope with constants [oc, (3). Then the orbits of any two  

points z ,w  G Js(F) eventually separate far enough one from the other.
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More precisely, if K ^  1, there exist a constant 5 =  5(ct, (3, K) > 0  such  

that if \z — w\ >  8, then either

| Re Fn (z)| >  K|Re Fn (w)| +  | z - w |

or the sam e condition, exchanging the roles of z  and w , holds for 

all n  ^  1 (see [RRRSn, Lemma 5.2]). Hence the external address s 

satisfies the second part of the head-start condition w ith the linear 

function (p(x) =  Kx +  8.

It remains to check that if s =  (Tn ), then for all k € N o  and for all 

z ,w  G Tic such that F(z),F(w) G Tk+i, w e have

| Re w| >  K|Re z| +  8 =* | Re F(w)| >  K|Re F(z)| +  8.

We om it the technical computations from this proof, which are iden­

tical to the ones for the entire case, and just observe that this follows 

from the fact that the tracts of F have uniform ly bounded w iggling  

w ith constants K and p for som e |x >  0 if and only if the conditions

I Re w | >  K| Re z| -F M /

|Im  F(z) — Im F(w)| ^  ocmax{|Re F(z)|, |Re F (w )|}+  |3

im ply that |Re F(w)| >  K|Re F(z)| +  M ' whenever z ,w  e  T, for som e  

M / >  0. Hence F satisfies the uniform linear head-start condition w ith  

constants K and M. for som e M. >  0 (see [RRRS11, Proposition 5.4]).

■

Finally w e prove Theorem 3.4 concerning the existence of dynamic 

rays for com positions of finite order transcendental self-maps of <C*.

Proof of Theorem 3.4. Let f  1 , . . . ,  fn be finite order transcendental self­

m aps of <C* for som e n  ^  1. By Theorem 3.3, the functions ft are in the 

class B*. Com posing the functions ft w ith affine changes of variable, 

w e can assum e that each ft has a normalised logarithmic transform  

F t : Ti ->• Hjjr. e  for som e Rt >  0.

By Proposition 3.36, each Ft has good geometry and hence, by Theo­

rem 3.66, they all satisfy linear head-start conditions. Just as for func­

tions in B i0g, linear head-start conditions are preserved by compo­

sition in B{og (see [RRRS11, Lemma 5.7]). If Fi has bounded slope
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and all Ft satisfy uniform linear head-start conditions, then the func­

tion F :=  Fn o • • • o Fi G B{og, w hich is a logarithmic transform of 

f  =  f n o • • • ° fi G B*, has bounded slope and satisfies a uniform  

linear head-start condition w hen restricted to a suitable set of tracts.

Finally, w e can apply Theorem 3.65 and Proposition 3.60 to con­

clude that every point z  G 1(f) is on a ray tail that joins z  to either 

zero or infinity. ■

Remark 3.67. The proof of Theorem 3.4 relies on norm alised logarith­

mic transforms. However, it is possible to carry out the sam e ideas 

using only disjoint-type functions, so that the resulting function F is 

also of disjoint type (see [RRRS11, Theorem 5.10] and [Baro7, Theo­

rem C]).

3.9 PERIODIC RAYS A N D  CANTOR BOUQUETS

In Section 3.6 w e observed that the set J^(F) may be em pty for som e  

s G L. For transcendental entire functions in the exponential fam­

ily, fx(z) =  Aez, A ^  0, there is a characterization of w hich external 

addresses give rise to hairs, and this led to the notion of exponen­

tially bounded (or admissible) external addresses in that context (see 

[SZo3a]). In particular, every periodic external address is exponen­

tially bounded. Observe that the term adm issible has a different m ean­

ing in this context.

Baranski, Jarque and Rempe [BJR12] studied the set of dynam ic 

rays for the functions considered in [RRRS11] and [Baro7], and showed  

that they have uncountably m any rays organised in  a Cantor bouquet 

(see Definition 3.68). In this section w e adapt their techniques to study  

the set of dynamic rays constructed in Section 3.8.

We begin by proving Theorem 3.7, w hich states that if f  G B* satis­

fies the hypothesis of Theorem 3.4 and t  =  (D n ) is an adm issible ex­

ternal address of f  which contains finitely m any sym bols, then f  has a 

unique (non-empty) dynamic ray w ith that external address. Further­

more, if (Dn ) is periodic and the postsingular set P(f) is bounded, 

then the dynam ic ray lands.

Proof of Theorem 3.7. By Proposition 3.53, there exists an unbounded  

continuum  A  C  V of escaping points w ith external address t  =  (Dn ).
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Let F be a periodic logarithmic transform of f, and let s =  (Tn ) be the 

external address that corresponds to the sequence of fundamental 

domains (Dn ) of f  by Lemma 3.48. By Theorem 3.4, the set Js(F) is 

a dynam ic ray y ,  and the projection y  =  e x p y  is a dynamic ray of f  

w ith external address t  =  (D n ). Finally, by Lemma 3.58, since P(f) is 

bounded, all periodic rays land. ■

Theorem 3.7 im plies, for example, that each fundamental domain D 

of f  contains exactly one invariant ray because the constant external 

address t  =  (Dn ) w ith D n =  D for all n  G N o is unique.

In Lemma 3.49, which sum marized som e results from Chapter 2, 

w e saw that if f  is any transcendental self-map of C* and e € {0, oo}N°, 

then the set Ie '°(f)  contains an unbounded closed connected sub­

set A e. Furthermore, if f  G B* and satisfies the hypothesis of The­

orem 3.4, then Theorem 3.7 im plies that the set l2 '°(f)  contains a ray 

tail; note that a dynam ic ray may intersect the unit circle and hence 

contain points that are not in Ie,0(f). Therefore, in this case, since 

the set (0, oo}N° has uncountably m any non-equivalent sequences e 

and two such sequences give disjoint sets I e (f), the escaping set 1(f) 

contains uncountably m any rays.

As stated in the introduction, a stronger result is true, nam ely The­

orem 3.8, w hich states that for every essential itinerary e € {0, oo}]No, 

the set Ie'°(f) contains a Cantor bouquet and, in particular, uncount­

ably m any hairs. With the goal in m ind of proving this theorem, w e  

start by giving a precise definition of a Cantor bouquet (see [AO93, 

Definition 1.2]).

D efin ition  3.68 (Cantor bouquet). A  set B C [0, +00) x  (IR \  Q) is 

called a straight brush if the following properties are satisfied:

(a) The set B is a closed subset of R 2.

(b) For every point (x ,y) G B, there exists a value ty >  0 such that 

{x : (x ,y) G B } =  [ty,+oo).

(c) The set {y : (x ,y) G B for som e x) is dense in R \ Q .  Moreover, 

for every (x ,y) G B, there exist two sequences of hairs attached 

respectively at |3n ,y n G R \ Q  such that |3n <  y <  y n for all 

n  G N , and (3n ,y n ->• y  and tp n, t Yn -> t-y as n  ->• 00.
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The set [ty ,+oo) x (y) is called the hair attached at y  and the point 

(ty ,y )  is called its endpoint. A  Cantor bouquet is a set X C C that is the 

im age of a straight brush under a hom eom orphism  of C or <C*.

First w e are going to show  that, for each sequence e e  {0,oo}N°, 

the set J(F) contains an absorbing set Xe consisting of hairs such that 

every point in  the set Ie (F) enters Xe after finitely m any iterations 

(see [RRRSn, Theorem 4.7]). Recall that, for e e  (0, oo}N°, w e defined  

the set

J e (F ):= {z e J (F )  : addrF(z) € £ e} = (J
s £ Z e

It w ill be helpful to use the follow ing notation: for each e e  (0, oo}N°, 

w e define the set of sequences

Z% := U  <j*(Ze)
TIC N

and the set

J J (F ):= { z € j(F )  : addrF(z) 6 L j }  =  |J Jffn(e)(F),
n e N

w hich is forward invariant.

Proposition 3.69. Suppose that F €  B fog satisfies a head-start condition. 

Then, for every e e  {0,oo}N°, there exists a closed subset Xe Q J j  (F) with 

the following properties:

(a) F(Xe) C Xe.

(b) The connected components o f Xe are closed arcs to infinity all of whose 

points except possibly its endpoint escape.

(c) Every point in Ie (F) enters the set Xe after finitely many iterations.

If the function F is of disjoint type, then we may choose Xe =  (F) and

if  F is 2ni-periodic, then X e can also be chosen to be Ini-periodic.

Proof. Let X' be the union of all unbounded com ponents of the set 

Je (F), and define the set

Xe:= U X̂ (e)-
new
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Since unbounded components of J(F) map to unbounded components 

of J(F) by F, w e have F(X') C X ^ ej and hence Xe is forward invariant.

By Lemma 3.50, the closure Xe in <C is the connected component of 

JJ(F) U{oo} that contains infinity and hence the set Xe is closed. By 

Lemma 3.64, the set Xe consists of arcs to infinity all of w hose points 

except possibly its endpoint escape.

Let K' >  0 be the constant from Lemma 3.64, independent of s e  L, 

so that Jp(F) is either em pty or contained in the unbounded com po­

nent of Js.(F), w hich is contained in  Xe if s e  L f .  Then (c) follows 

from the fact that points in Ie (F) enter a set j£n(e)(F) C Xe/ n  E N ,  

after finitely m any iterations.

Finally, recall from Definition 3.18 that functions in the class 23{og 

are of the form F : 7 —>• Ho U Hqo, where the sets Ho and contain, 

respectively, a left and a right half-plane. If F is of disjoint type, then

Je(F) U {00} =  [J P | ^F|T(J (• " F|TP 2 P itP t  (^ en)) •• ■) U {°°}) ,
Tl£]N

w hich is a im ion of nested intersections of unbounded continua, hence 

every com ponent of Je (F) is an unbounded continuum  and w e can 

choose Xe =  Je(F). If F is a 27ri-periodic function, then the set X' is 

also 27ii-periodic. ■

Following [BJR12], the strategy to prove Theorem 3.8 w ill be, for 

each essential itinerary e e  {0, oo}N°, to compactify the space of ad­

m issible external addresses L e by adding a circle of addresses at infinity 

to show  that the set X' (and hence Xe) contains a Cantor bouquet.

Lemma 3.70. For every e e  {0,oo}N°, there exists a totally ordered set 

§ e D L e/ where the order on Se agrees with the lexicographic order on L e, 

such that

(a) with the order topology, the set § e is homeomorphic to R  U {—00, +00};

(b) the set L e is dense in § e.

The construction of Se is achieved by defining intermediate entries of 

each set w ith  eo,e-\ 6  {0,oo}, that is, sym bols which correspond 

to entries in between pairs of adjacent tracts as w ell as to limits of 

sequences of tracts. We then add intermediate external addresses to the 

set L e, that is, finite sequences of the form s =  TqT| . . .  Tn_ i Sn , where
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Tj €  7ej+1, 0 <  j <  n , and Sn is an intermediate entry of the set 7% ^. 

We refer to [BJRi2, Section 5] for the details.

We can then define a topology on the set He •= Heo U  § e that agrees 

w ith the induced topology on H and such that He is hom eom orphic  

to the closed unit disc. Then, in this topology, the closure Xe of the 

set Xe from Proposition 3.69 is a comb, a compactification of a straight 

brush, w ith the arc Se as base.

D efin ition  3.71 (Comb). A  comb is a continuum  X containing an arc B, 

called the base of the comb, such that

(a) the closure of every component of X \  B is an arc w ith exactly 

one endpoint in the base B;

(b) the intersection of the closures of any two hairs is empty;

(c) the set X \  B is dense in X.

The fact that a Cantor bouquet consists of uncountably m any hairs 

com es from the fact that a perfect set is uncountable. We introduce 

now  the concept of (one-sided) hairy arc, a comb w here every hair is  

accumulated by other hairs.

D efin ition  3.72 (Hairy arc). A  hairy arc is a comb w ith  base B and an 

order ^  on B such that if b G B and x belongs to the hair attached 

at b, then there exist sequences (x+) and (x~), attached respectively 

at points b + ,b “  €  B, such that b “  -< b -< b+ and x ~ ,x j  -»  x  as 

n  —>■ 00. A  one-sided hairy arc is a hairy arc w ith  all its hairs attached 

to the same side of the base.

Given a straight brush, it is easy to see that w e can add a base 

to obtain a hairy arc. Aarts and Oversteegen showed that one-sided  

hairy arcs (and, in particular, straight brushes) are all ambiently homeo­

morphic to each other, that is, they can be m apped to each other by a 

hom eom orphism  of C, and hence the converse of the previous state­

m ent is also true [AO93, Theorem 4.1].

Lemma 3.73. Let X be a one-sided hairy arc with base B. Then there is a 

homeomorphism of C that maps X \  B to a straight brush.

In order to show  that Xe contains a Cantor bouquet, w e prove that 

every hair in X' is accumulated by hairs of the sam e set from both  

sides. To do so, w e adapt the proof of [BJR12, Proposition 7.3].
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Proposition 3.74. Let F : 7 —> H be a Ini-periodic function in the class 

23fog, and let e e  (0, oo}N° and t  >  0. Then there exists t '  >  t  such 

that for every zo 6 Je (F), there exist sequences (z“ ), (z j )  C JJ(F) with 

addresses addr[z~ ) <  addr[zo) <  addr{z+) for a l i n e  IN and z ~ ,z +  —> zo 

as n  —> 00.

Proof Let Ro be the constant from Lemma 3.21 so that Hjjr C  H and 

|F'(z)| ^  2 for |Re z| ^  Ro- Let n  e  N ,  and let cpn : Hen ->■ Heo be the 

branch of F- n  that m aps Fn (zo) to z q .  Set x' := max{R, t}  +  7i and, for 

n e N ,  define

z t  :=  <Pn(Fn (z0 ) ± 2m ) € Je(F).

Then addr(z“ ) <  addr(zo) <  addr(z+) for all n . Finally, since F is 

expanding w ith respect to the Euclidean metric on IHjjr, the maps cpn 

are contractions and z j  -> zo as n  -» 00. ■

N ote that given any logarithmic transform F of a function f  e  23* 

w e can m odify it to obtain a periodic logarithmic transform F of f  by 

adding a suitable m ultiple of 2m  to F on each of its tracts.

Finally w e sketch the proof of Theorem 3.8. The main idea is to use  

the existence of a potential function p that "straightens' the brush X' 

(see [BJR12, Proposition 7.1]).

Proof of Theorem 3.8. Let F e  23 {og be 2m -periodic and satisfy a uni­

form head-start condition and let X' denote the union of the un­

bounded com ponents of Je (F) as in  Proposition 3.69. For each se­

quence e e  (0, oo}N°, consider the set

Ze := (z e  Xg : p(F  ̂(z)) ^  K for a l l ) e  N o ) U Se,

where p is a 2m -periodic continuous function that is strictly increasing 

on the hairs and such that p(zn) —>+00 if and only if | Re Zn I ->+00. 

Then, there exists R >  0 sufficiently large so that

J?(F) £ Ze C Xc

and hence Ze is a comb. Then Proposition 3.74 together w ith the 

fact that F satisfies a uniform head-start condition im ply that Ze is 

a hairy arc and, by Lemma 3.73, there is a hom eom orphism  from  

C \{ e o )  to C that m aps Ze \  § e to a straight brush. We can choose 

the set Xe from Proposition 3.69 to be 27ri-periodic and so both Je (F)
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and exp(Je (F)) contain an absorbing Cantor bouquet. N ote that all 

the points in exp(Je (F)) belong to Ie'°(f) except, possibly, the finite 

endpoints of the hairs.

Finally, if F is of disjoint type, then the closure of Je (F) in He is a 

one-sided hairy arc, and hence both Je (F) and exp(Je (F)) are Cantor 

bouquets. ■
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In this chapter w e use approximation theory to construct examples 

of transcendental self-maps of C* w ith  escaping wandering dom ains 

and Baker dom ains that accumulate at (0,00} in  any possible way and  

also give the first explicit exam ples, in closed form, of transcendental 

self-maps of C* lhat have escaping Fatou components. Our results 

provide com pletely new  examples of transcendental entire functions 

w ith escaping Fatou components.

4.1 IN T R O D U C TIO N  A N D  M A IN  RESULTS

Here w e are concerned w ith  escaping points in  the Fatou set. By nor­

mality, if a Fatou component U  contains a point in  1(f), then U C 1(f). 

Moreover, any two points in an escaping Fatou com ponent U have, 

eventually, the same essential itinerary and hence w e can associate 

an essential itinerary to U  w hich is unique up to equivalence. If f  is a 

transcendental self-map of C*, w e have proved that Ie (f) (T J(f) f  0 for 

each sequence e € (0, oo}N ° (see Theorem 2.4). Therefore it is a natural 

question whether for each e G (0, oo)N ° w e can find a transcendental 

self-map of <C* w ith a Fatou com ponent in Ie (f).

In the Introduction, w e m entioned that several people used  approx­

im ation theory to provide examples of transcendental self-m aps of C* 

w ith escaping wandering domains. However, in our notation, all the 

previous examples had essential itinerary e G {00,0, 00O}. The follow ­

ing result provides exam ples of transcendental self-m aps of C* that 

have an escaping wandering dom ain w ith any prescribed essential 

itinerary e G {0, oo}N° . In particular, w e obtain wandering dom ains 

w hose essential itinerary is not periodic.

Theorem  4.1. For each sequence e G (0, oo}N ° and n  G Z , there exists a 

transcendental self-map f  of C* such that ind(f) =  n  and Ie (f) contains a 

wandering domain.
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A  result of Cowen [Cow8i] on holomorphic self-maps of D  w hose  

Denjoy-Wolff point lies on 0D  led to the follow ing classification of 

Baker dom ains by Fagella and Henriksen [FH06], where U / f  is the 

Riemann surface obtained by identifying points of U that belong to 

the same orbit under f :

• a Baker dom ain U is hyperbolic if U / f  is conformally equivalent 

to (z G C : —s <  Im z <  s } /Z  for som e s >  0;

• a Baker dom ain U is simply parabolic if U / f  is conformally equi­

valent to {z G C : Im z >  0}/Z;

• a Baker dom ain U is doubly parabolic if U / f  is conformally equi­

valent to C /Z .

N ote that this classification does not require f  to be entire and is 

valid also for Baker dom ains of transcendental self-maps of C*. Konig 

[Kon99] provided a geometric characterisation for each of these types 

(see Lemma 4.11). It is known that if U is a doubly parabolic Baker 

domain, then f |U is not univalent, but if U is a hyperbolic or sim­

ply parabolic Baker domain, then f  \u  can be either univalent or mul- 

tivalent. Several examples of each type had been constructed, and 

recently Bergweiler and Zheng completed the table of examples by 

constructing a transcendental entire function w ith a sim ply parabolic 

Baker dom ain in which the function is not univalent [BZ12, Theo­

rem 1.1].

The only previous examples of Baker dom ains of transcendental 

self-m aps of C* that the author is aware of are due to Kotus [Kot9o], 

where she used approximation theory to construct two functions w ith  

invariant hyperbolic Baker domains escaping to zero and to infin­

ity respectively. The follow ing theorem provides examples of func­

tions w ith  Baker domains that have any periodic essential itinerary 

e G {0, oo}N ° .

Theorem  4.2. For each periodic sequence e G {0, oo}N ° and n  G Z , there 

exists a transcendental self-map f  of C* such that in d (f) =  n  and Ie (f) 

contains a hyperbolic Baker domain.

We also give the first explicit examples of transcendental self-maps 

of C* w ith  wandering dom ains and Baker domains. They all have the 

property that in a neighbourhood of infinity they behave like known
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examples of transcendental entire functions w ith wandering dom ains 

and Baker domains; see Section 2 for the details.

Example 4.3. The following transcendental self-maps of C* have es­

caping Fatou components:

(i) The function f  (z) =  zexp  has a bounded wandering

dom ain in  which points escape to infinity (see Example 4.4).

(ii) The function f(z) =  2zexp (exp (—z) +  1/z )  has a hyperbolic 

Baker dom ain in w hich points escape to infinity that contains a 

right half-plane (see Example 4.12).

(iii) The function f(z) =  zexp  ((e~z 4-1 ) / z)  has a doubly parabolic 

Baker dom ain in  w hich points escape to infinity that contains a 

right half-plane (see Example 4.13).

It seem s hard to find explicit examples of functions w ith  Baker 

dom ains and wandering dom ains w ith any given essential itinerary, 

but it w ould be interesting to have an explicit exam ple of a function  

w ith an escaping Fatou com ponent that accumulates to both zero and  

infinity. It also seem s difficult to find explicit exam ples of functions 

w ith sim ply parabolic Baker domains.

If f  is a transcendental self-map of C* w ith a wandering dom ain, 

then any lift f  of f  has a wandering dom ain, w hile if f  has a Baker 

domain, then f  has either a Baker dom ain (of the sam e type) or a 

wandering dom ain (see Lemmas 4.7 and 4.14).

Finally, observe that our constructions using approximation theory  

also provide new  examples of transcendental entire functions w ith no  

zeros in <C* that have wandering dom ains and Baker domains.

Structure of the chapter. In Sections 4.2 and 4.3 w e prove that the 

functions from Example 4.3 have the escaping Fatou com ponents that 

w e state. In Section 4.4 w e introduce the tools from approximation 

theory that w e w ill use in the proof of Theorem 4.1 in Section 4.5, 

and Theorem 4.2 in Section 4.6, to construct transcendental self-m aps 

of C* w ith escaping wandering domains and Baker dom ains, respec­

tively. In Section 4.6 w e also construct transcendental entire and mero- 

morphic functions that are self-maps of C* and have Baker domains.
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4 . 2  E X P L I C I T  F U N C T I O N S  W I T H  W A N D E R I N G  D O M A I N S

As m entioned  before, the au tho r is no t aw are of any previous explicit 

exam ples of transcenden tal self-m aps of C* w ith  w andering  dom ains 

or Baker dom ains as all such  functions w ere constructed  using  ap ­

proxim ation  theory.

K otus [Kot9o] show ed th a t transcenden tal self-m aps of C* can have 

escaping w andering  dom ains by constructing exam ples of such func­

tions using  approx im ation  theory. H ere we give an  explicit exam ple 

of such a function by m odifying a transcenden tal entire function that 

has a w andering  dom ain.

Example 4.4. The function f(z) =  z e x p ( ^ p  +  ^ r )  is a transcendental 

self-m ap of <C* w hich  has a bo u n d ed  w andering  dom ain  that escapes 

to infinity (see F igure 10).

Figure 1 0 : Phase space of the function f(z) =  zexp ( ^ ^  +  from Exam­
ple 4 .4  which has a wandering domain. On the right, the wander­
ing domain for large values of Re z.

Baker [Bak84, Exam ple 5.3] (see also [RS08, Exam ple 2]) s tud ied  the 

dynam ics of the transcenden tal entire  function fi (z) =  z +  s in z  +  I n  

th a t has a w andering  dom ain  containing the po in t z =  n  th a t escapes 

to infinity. O bserve tha t the function f  from  Exam ple 4.4 satisfies that

f(z) =  z +  s in z  +  27t +  o (l)  as R ez  — +00 (4.1)

in  a horizon tal b an d  defined by |Im z| <  K for som e K >  0.

We first prove a general resu lt w hich gives a sufficient condition 

tha t im plies tha t a function has a b o u n d ed  w andering  dom ain  (see
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Figure 11) using  som e of the ideas from  [RS08, Lem m a 7(c)]. G iven 

a doub ly  connected open  set A, w e define the inner boundary , 3^  A, 

and  the ou ter boundary , 3out A, of A to  be the b o u n d a ry  of the  b o u n d ed  

and  u n b o u n d ed  com plem entary  com ponents of A respectively

Lem m a 4.5. Let f  be a function that is holomorphic on C*, let M  be an 

affine map, let A b e  a doubly connected closed set in C* with bounded com­

plementary component B, and let C C B  be compact. Put

A n := M n (A), Bn :=  M n (B) and Cn :=  M n (C) / o r n e N 0,

• A n U Bn C C* for  n  e  N o,

• the sets {Bn }n eN0 are painuise disjoint,

• f ( 3in A n ) C Cn+1 f o r n e  N 0,

•  f  (3out Art) Q (A n +1 u Brt+l )C for  H G N 0.

Then f  has wandering domains {UrJncNo such that

3in A n Q U n and 3U n G A n f o r n e  N q .

and suppose that

f

Figure 1 1 : Sketch of the construction in Lemma 4 .5 .

In o rder to prove this lem m a, we first need  the follow ing resu lt on 

lim it functions of ho lom orphic  iterated  function  system s by Keen and  

Lakic [KL03, Theorem  1].
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Lemma 4.6. Let X b e  a subdomain of the unit disc D . Then all limit func­

tions of any sequence of functions (Fn ) of the form

Fn :=  f n  ° f n - 1  °  ’ ' * °  f 2 °  f  1 for TI G N ,

where fn : D  —> X is a holomorphic function for all n  G N , are constant 

functions in X if and only i fX=flD.

We now  proceed to prove Lemma 4.5.

Proof of Lemma 4.5. Since f(B n ) C Cn + i C Bn + i,  the iterates of f  on  

each set Bn om it more than three points and hence, by Montel's the­

orem, the sets {Bn }nGN0 are all contained in F(f). For n  G N o , let U n 

denote the Fatou component of f  that contains Bn . We now  show that 

the functions

<Dk(z) := M - k(fk (z)) for k 6 N 0,

form a normal family in U n for all n  G No- 

Suppose first that the Fatou components {UTt}nGi\j0 are not distinct. 

Then there are two sets Bm and Bm+P w ith m  G N o  and p >  0 

w hich lie in the same Fatou components l i m =  U m+P. Then, since 

fp (Bm) C Bm+p and Bn —»• oo as n  -> oo, U m m ust be periodic and 

in 1(f), and hence a Baker domain.

Let zm € Bm and let K be any compact connected subset of U m 

such that K D Bm. Then by Baker's distortion lemma (see Lemma 2.22), 

there exist constants C(K) >  1 and no G N o  such that

|fk(z)| <  C(K)|fk(zm)| for z G K, k ^  n 0.

Since M , and hence M - k , is an affine transformation, M.- k  preserves 

the ratios of distances, so

|0 k(z)| =  |M - k(fk(z))| <  C (K )|M -k(fk(zm ))| =  C(K)|z^|

where z ^  G Bm satisfies M k (z(a ) =  f k (zm). Hence the family {0 k)keNo 

is locally uniform ly bounded on U m, and hence is normal on Um.

Suppose next that the Fatou components {Un }nG]N0 are disjoint. In 

this case w e consider the sequence of functions

cpk(z) := M —*k+1 * (f(M k (z))) for k e  N 0,
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w hich are defined on Un/ for n  G N o . Then 

<Dk(z) =  (epic-1 o • • • o cp! o <po)(z) =  M _ k (fk (z)) for k G N 0. (4-2) 

Since the Fatou com ponents {Un }n e]|sj0 are pairwise disjoint and

fk(Un) c  u n+lc,

w e deduce that

f k(u n ) n Bn+k+, =  0

and hence

® k(Un ) fl Bn+1 =  0 for k ,n  G N 0.

Thus {®k}keN0 is normal on each Un , by MonteTs theorem, as re­

quired.

N ow  take n  G N o , and let {®kj}jeiN0 be a locally uniform ly conver­

gent subsequence of {®ic)keN0 on b n - N ote that

Mk(Bn ) =  Bn+lc so f(M k(Bn )) C Cn+k+,

and hence, for k G N o ,

<Pk(Bn) =  M-<k + ,>(f(Mk(Bn ))) C M-<k+1>(Cn+k+1) =  Cn .

We can now  apply Lemma 4.6, after a Riemann m apping from Bn to 

the open unit disc D , to deduce from (4.2) that there exists a n G Bn 

such that, for all z  G U n,

(z) ocn as j ->• 00.

To complete the proof that Un is bounded by dout A n for all n  G N ,  

suppose to the contrary that there is a point zo G 0Out A n that lies in 

U n for som e n  G N . Let y  C U n be a curve that joins zo to a point 

zi G Bn . Since y  is compact, ®kj (y) —>> oc as j —> 00 w hich contradicts 

the fact that f k (y) fi 9out An+k ^  0 for all k G N  (this follows from  

the hypothesis that f ( 30Ut An ) C (An + i U Bn + i )c for n  G N o). Thus, 

a u n C A n for all n  G N , and so the proof is complete. ■



E S C A P I N G  F A T O U  C O M P O N E N T S

We now  use Lem m a 4.5 to show  that the function f  from  Exam­

ple 4.4 has a b o u n d ed  w andering  dom ain  th a t escapes to infinity 

along the positive real axis.

Proof o f Example 4.4. The entire  function g (z) =  z +  s in z  has super- 

a ttracting  fixed po in ts a t the  odd  m ultip les of n. For n  € N o , take 

Bn := D ((2n  +  1 )n,x)  and  Cn :=  D ((2n  +  1 ) n ,r /2 ) for som e r  >  0

sufficiently sm all tha t g(Bn ) C Cn an d  p u t

Rn : = { z e C  : |R e z — (2n  +  1 )7t| ^  3n / 2, |Im z| ^  3}.

It follows from  a stra igh tfo rw ard  com putation  tha t g (3 Rn ) C R^ for

all n  G N o  (see F igure 12).

-10

-15
-4n  -3n -2n 0 2 n 3 n  4n 5n 6nn n

Figure 1 2 : Rectangle Ro and its image under g(z) =  z +  sinz.

Then, by (4 .1 ), there exists N e  N o  such tha t f(Bn ) C Cn + i and  

f ( 3k n ) C R^+1 for all n  >  N. Thus, we can app ly  Lem m a 4.5 to  f 

w ith  M (z) =  z +  27t and  A n := Rn \  Bn for n  >  N and  conclude that 

the function f  has w andering  dom ains Un that contain  Bn and  w hose 

b o u n d a ry  is contained in Rn . ■

The next lem m a relates the w andering  dom ains of a transcendental 

self-m ap of C* an d  a lift of it.

Lemma 4.7. Let f  be a transcendental self-map of C* and let f  be a lift of f .  

Then, if  U is a wandering domain of f ,  every component of ex  p _1 (U) is a 

wandering domain o f f  which must be simply connected.
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Proof. By a result of Bergweiler [Ber95], every com ponent of exp-1  (U) 

is a Fatou com ponent of f. Let Uo be a com ponent of exp-1 (U) and 

suppose to the contrary that there exist m ,n  6  N o , m  /  n , and a 

point zo € f m (Uo) n f n (U0). Then, there exists points zi,Z 2 € Uo 

such that

f m (eZl) =  e x p fm ( z i ) =  expzo =  e x p frt(z2) =  f n (eZ2).

Since eZl, eZ2 e  U, this contradicts the assum ption that U is a wander­

ing dom ain of f. Hence Uo is a wandering dom ain of f.

Finally, by [Bak87, Theorem 1], the Fatou com ponent U is either 

sim ply connected or doubly connected and surrounds the origin. Since 

the exponential function is periodic, taking a suitable branch of the 

logarithm one can show that the com ponents of exp-1 (U) are sim ply  

connected. ■

Remark 4.8. Observe that the converse of Lemma 4.7 does not hold. If 

f  is a transcendental self-map of C* w ith an attracting fixed point zo 

and A  is the imm ediate basin of attraction of zo, then there is a lift f  

of f  such that a com ponent of exp-1 (A) is a wandering domain.

If a transcendental self-map of C* has an escaping wandering do­

main, then w e can use the previous lem m a to obtain automatically  

an example of a transcendental entire function w ith  an escaping wan­

dering domain.

Example 4.9. The transcendental entire function f(z) =  z +  +  j g ,  

w hich is a lift of the function f  from Example 4.4, has infinitely m any  

grand orbits of bounded wandering dom ains that escape to infinity.

4.3 EXPLICIT FU NC T IO N S WITH BAKER D O M A IN S

We now  turn our attention to Baker domains. A s w e m entioned in the 

introduction, Baker dom ains can be classified into hyperbolic, sim ply  

parabolic and doubly parabolic according to the Riemann surface U / f  

obtained by identifying the points of the Baker dom ain U  that belong  

to the same orbit under iteration by the function f. Konig [Kon99] 

introduced the follow ing notation.

D efin ition  4.10 (Conformal conjugacy). Let U C C be a dom ain and 

let f : U -> U be analytic. Then a dom ain V C U i s  absorbing (or funda-
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mental) for f  if V is sim ply connected, f(V) C V and for each com­

pact set K C U, there exists N =  N k such that f N (K) C V. Let 

H  := {z € C : R ez >  0}. The triple (V, (J>,T) is called a conformal 

conjugacy (or eventual conjugacy) of f  in  U if

(a) V is absorbing for f;

(b) (J): U —> D. e  (H , C} is analytic and univalent in V;

(c) T : Cl —»• Cl is a bijection and 4>(V) is absorbing for T;

(d) (Mf(z)) =  T(c|>(z)) for z G l l .

In this situation w e write f  ~ T.

Observe that properties (b) and (d) im ply that f  is univalent in  

V. Konig also provided the following geometrical characterization of 

the three types of Baker domains [Kon99, Theorem 3]. This charac­

terisation is also valid for any sim ply connected Baker domain of a 

transcendental self-map of C*.

Lemma 4.11. Let U be a p-periodic Baker domain of a meromorphic func­

tion f  in which f np — 00 and on which f? has a conformal conjugacy. For 

zo E U, put

, , |f(n+1'1>(zo) —f ni’ (zo)l
C n - C n l Z o ) : -  9 U )  •

Then exactly one of the following cases holds:

(a) U is hyperbolic and fp ~ Ti (z) := Az with A >  1, which is equivalent to

cn >  c for zo E U, n  e N , where c =  c(f) >  0.

(b) U is simply parabolic and V? ~ T2(z) := z  ±  i, which is equivalent to

lim  inf cn >  0 for zo G U, but inf lim su p c n =  0;
n ->°° z0€U n —̂ oo

(c) U is doubly parabolic and fp ~ T3 (z) := z + 1 , which is equivalent to

lim  cn — 0 for zo G U.
n —>-oo
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z 4- 1

c

z  +  i

(a) U hyperbolic  (b) U sim ply parabolic  (c) U doub ly  parabolic  

Figure 13: Classification of Baker domains with their absorbing domains.

We now  give a couple of explicit exam ples of transcenden tal self­

m aps of C*, w ith  a hyperbolic  and  a doub ly  parabolic  Baker dom ain , 

respectively.

Example 4.12. For every A >  1, the  function f A(z) =  A zexp(e-Z + 1 /z )  

is a transcenden tal self-m ap of C* w hich  has an  invarian t, sim ply  

connected, hyperbolic  Baker dom ain  U C C* \  R _  w hose b o u n d ary  

contains bo th  zero and  infinity, an d  the po in ts in  U escape to infinity 

(see Figure 14).

Proof o f Example 4.12. First observe that

f A(z) =  Azexp (e~ z +  l )

=  A z ( l + e - z +  l e - 2z +  . - - )  (1 +  1 +  ^  +  . . . )  (4-3)

— Az (l + O (1)) as Rez —► 00.

H ence f A m aps H r  :=  {z 6 C : R ez  >  R} in to  itself, for R >  0 suffi­

ciently large, so H r  C U, w here U is an  invarian t Fatou  com ponent 

of f  A. Also, for real x >  0,

f A(x) =  Ax exp (e~x +  £) >  Ax >  x

so f A (x) —y 00 as n  —>■ 00. H ence, U is an invarian t Baker dom ain  of f  

w hich  contains (0, +00), so its bo u n d ary  contains zero an d  infinity.



1 1 2  E S C A P I N G  F A T O U  C O M P O N E N T S

To show  that U is a hyperbolic Baker dom ain , consider zo G U. By 

the contraction p ro p erty  of the hyperbolic m etric in  U, the  orbit of zo 

escapes to infinity  in H r . H ence, by (4.3) and  since 0 6 U c,

|fn+ 1( z o ) - f n (zo)l Afn (zo) (1 + 0  ( f n ^ y ) )  - f n (zp)

Cn d is t ( fn (zo ),3U) ^  |fn (z0)|

1 1 ° H )>  A — 1 — 7— — -  as n  00,
|fn (zo)l

so

lim  inf cn ^  A — 1 > 0,n—>-oo

an d  hence U is hyperbolic.

Finally, observe th a t the negative real axis is invarian t under f, so 

(—00,0 ) fi U =  0 and  hence U is sim ply connected. ■

Figure 14: Phase space of the function fz{z) — 2zexp(e z +  1/z) from Exam­
ple 4.12. On the right, zoom of a neighbourhood of zero.

The function  f  (z) =  2z e x p (e ~ z +  1 /z )  has a repelling  fixed po in t in 

the negative real line. If we choose h(z) =  1 / z 2 instead  of 1 /z , then  

f(z) =  2z e x p (e _z + 1  / z 2) has the positive real axis in  a Baker dom ain  

w hile the  negative real axis is in the fast escaping set.

We now  give a second explicit exam ple of transcendental self-m ap 

of C* w ith  a Baker dom ain  w hich, in this case, is doubly  parabolic.

Example 4.13. The function f(z) =  zex p  ((e- z  +  1 )/z) is a transcen­

den tal self-m ap of C* w hich has an invariant, sim ply connected, d o u ­

b ly  parabolic  Baker dom ain  U C C * \  R _  w hose b o u n d ary  contains 

bo th  zero and  infinity, and  the po in ts in  U escape to infinity (see Fig­

u re  15).
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Proof of Example 4.13. Looking at the power series expansion of f, w e  

have

f(z) =  z e x p ( ^  +  l )

= z(' + V  + 2 T +  O + z + IijH )

= Z 0 + z + O ( f ) )  aS ^eZ °°-

Therefore f  m aps the right half-plane H r  := {z e  C : Re z  >  R} into 

itself for sufficiently large values of R >  0 and H r  is contained in  an 

invariant Baker dom ain U of f, in which R e fn (z) —»■ +00 as u  —> 00. 

Since f  (x) >  x for all x  >  0, the positive real axis lies in  U. Let zo €  U, 

then

fn+1 ( z o ) - f n (z o )= fn (zo) ^ 1 + 0  - f n (^o) =  0 ( l )  as n  —» 00

and, if R is as above,

d ist(fn (zo), 31-1) ^  R e fn (zo) — R a s n ^  00,

so

r +1(z o ) - f" (z o ) | „ 0 (1 )
n d ist(fn (zo ),3U) ^ R e f n (zo) —R °°*

Thus, by Lemma 4.11, the Baker dom ain U is doubly parabolic.

Finally, observe that, for x e  (—cx),0), f n (x) —> 00 along the nega­

tive real axis as n  —>• 00, so (—00 ,0) n  U =  0 and hence U is sim ply  

connected. ■

Lemma 4.14. Let f  be a transcendental self-map of C* and let f  be a lift 

of f. Then, if  U  is a Baker domain of f, every component U r, k €  Z , of 

exp-1 (U) is either a (preimage of a) Baker domain or a wandering domain 

off.  Moreover, if  U is simply connected and U r is a Baker domain, then 

U r is hyperbolic, simply parabolic or doubly parabolic if  and only if  U  is 

hyperbolic, simply parabolic or doubly parabolic, respectively.

Proof By [Ber95], every com ponent of exp-1 (U) is a Fatou com po­

nent of f. Moreover, since exp-1 (1(f)) C 1(f), U r is either a Baker 

domain, a preimage of a Baker dom ain or an escaping wandering 

dom ain of f .
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Figure 15: Phase space of the function f(z) =  zexp ((e z +  1 )/z) from Exam­
ple 4.13. On the right, zoom of a neighbourhood of zero.

Suppose tha t U has period  p ^  1 and  is periodic. Then the 

Baker dom ain  has period  q w ith  p | q. Let (V, (j), T) be a conform al 

conjugacy of f q in  U. Then (V, <f>, T) is a conform al conjugacy of f  q 

in  Ujc, w here V is the com ponent of exp-1 V that lies in and  

$  =  4) o exp. Thus, the Baker dom ains U and  are of the sam e 

type. ■

As before, we use Lem m a 4.14 to prov ide exam ples of transcenden­

tal entire functions w ith  Baker dom ains and  w andering  dom ains.

Example 4.15. The entire function f  (z) = ln  A+z+exp(—ez )+ e_z , w hich 

is a lift of the function f  from  Exam ple 4.12, has an  invarian t hyper­

bolic Baker dom ain  that contains the real line.

Example 4.16. The entire function f(z) =  z +  exPgZe-  ̂ +  e z, w hich 

is a lift of the function f  from  Exam ple 4.13, has an  invarian t doubly  

parabolic  Baker dom ain  th a t contains the real line.

4.4 P R E L I M I N A R I E S  O N  A P P R O X I M A T I O N  T H E O R Y

In this section w e state the results from  approxim ation  theory  that 

w ill be used  in  Sections 4.5 and  4.6 to construct exam ples of functions 

w ith  w andering  dom ains and  Baker dom ains, respectively. We follow 

the term inology from  [Gai8y, C hapter IV], and  in troduce W eierstrass 

an d  C arlem an sets. Recall tha t if F C C is a closed set, then  A(F) de-
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notes the set of continuous functions f  : F —>• C that are holom orphic 

in  the interior of F.

D efin ition 4.17 (Weierstrass set). We say that a closed set F C C is 

a Weierstrass set in C if each f  €  A(F) can be approximated by entire 

functions uniformly on F; that is, for every e >  0, there is an entire 

function g for which

|f(z) — g(z)| <  e for all z  6  F.

The next result is due to Arakelyan and provides a characterisation 

of Weierstrass sets [Ara64]. In the case that F C C is compact and C \  F 

is connected, then it follows from M ergelyan's theorem [Gai87, Theo­

rem 1 on p. 97] that functions in A(F) can be uniform ly approximated  

on F by polynom ials.

Lemma 4.18 (Arakelyan's theorem). A  closed set F C C is a Weierstrass 

set if and only if  the following two conditions are satisfied:

(Ki) C \F  is connected;

(K2) < c \ f  is locally connected at infinity.

If in addition both the set F and the function f  €  A (f) are symmetric 

w ith respect to the real line, then the approximating function g can 

be chosen to be symmetric as w ell (see [Gaui3, Section 2]).

Som etimes w e may want to approximate a function in A (f) so that 

the error is bounded by a given strictly positive function e : C —>■ R + 

that is not constant, and e(z) may tend to zero as z  —► 00.

D efin ition  4.19 (Carleman set). We say that a closed set F C C is 

a Carleman set in C if every function f  e  A(F) admits tangential ap­

proximation on F by entire functions; that is, for every strictly positive  

function e G C(F), there is an entire function g for w hich

|f(z) — g(z)| <  e(z) for all z  G F.

It is clear that Carleman sets are a special case of Weierstrass sets 

and hence conditions (K i) and (K2) are necessary. Nersesyan's theo­

rem gives sufficient conditions for tangential approximation [Neryi].

Lemma 4.20 (Nersesyan's theorem). A closed set F is a Carleman set in C 

if  and only if conditions (Ki), (K2) and
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(A) for every compact set K C C there exists a neighbourhood V of infinity 

in C such that no component o f i n t f  intersects both K and V,

are satisfied.

Note that there is also a symmetric version of this result: if the set 

F and the functions f  and e are in addition symmetric w ith respect 

to R  then the entire function g can be chosen to be symmetric w ith  

respect to R  [Gaui3, Section 2].

In som e cases, depending on the geom etry of the set F and the de­

cay of the error function £, w e can perform tangential approximation 

on Weierstrass sets w ithout needing condition (A); the next result can 

be found in [Gai87, Corollary in p.162].

Lemma 4.21. Suppose F C C is a closed set satisfying conditions (Ki ) and 

(Kz) that lies in a sector

Woe : = { z e £  : |argz| <  oc/2},

for some 0 <  oc ^  27t. Suppose e(t) is a real function that is continuous and 

positive for t  ^  0 and satisfies

'+00
t - ( 7 T / < x ) - l  l 0 g g ( - t ) d t  >  — O O .

.  1

Then every function f  e  A(F) admits e-approximation on the set F with 

e[z) =  e(|z|)/or z  €  F.

4.5 CO N STRUC TIO N OF FU NC T IO N S WITH W ANDERING D O M AINS

To prove Theorem 4.1 w e m odify Baker's construction of a holomor- 

phic self-map of C* w ith a wandering dom ain escaping to infinity 

[Bak87, Theorem 4] to create instead a transcendental self-map of C* 

w ith a wandering domain that accumulates to zero and to infinity 

according to a prescribed essential itinerary e e  {0, oo}N° and with  

index n  e  Z .

Proof of Theorem 4.1. We construct two entire functions g and h  us­

ing Nersesyan's theorem so that the function f(z) =  zn exp(g(z) +  

h (l /z ) ) ,  w hich is a transcendental self-map of C*, has the following  

properties:
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• there is a bi-infinite sequence of annuli sectors {Am}m eZ\{0} tha t 

accum ulate at zero an d  infinity  and  in tegers s(m ) € Z  \ { 0}, for 

m  G Z  \ { 0}, such th a t f(A m ) C A s(m ) for all m  G Z ;

• the discs B+ :=  D (2 , 1/ 4 ) and  B_ :=  1/B +  =  D (32/ 63, 4 / 63 ) 

b o th  m ap  strictly inside them selves u n d e r f, f(B +) C in tB + 

and  f(B _) C intB__;

• there is a bi-infinite sequence of closed discs {Bm }m eZ\(0} such  

th a t f(B m ) C in tB +/ if m  >  0 , an d  f(B m ) C in tB _ , if m  <  0 .

H ere s(m ) :=  7t(7r-1 (m) -I-1) an d  the m ap n  : N  — » Z  \  {0} is an  

ordering  of the sets {Am}m e]N according to the sequence e; tha t is, 

7i(k) is the position  of the  k th  com ponent in the  orb it of the w andering  

dom ain. M ore form ally, we define

|#{f G N o  : =  oo for I <  k} +  1, if =  oo,
(4 -4 )

— #{£ G N o  : =  0 for t < k} — 1, if =  0,

for k G N  (see Figure 16).

- 2

B_

- 1

f

Figure 1 6 : Sketch of the construction in the proof of Theorem 4.1.

By M ontel's theorem , the dom ains {Am}m eZ\ {0}, {Bm}m eZ\ {0} and  

B+ ,B _  are all contained in  the Fatou set. Since f(B +) C in tB + , the 

function f  has an  a ttracting  fixed po in t in  B+ and  the sets {Bm}m e]N 

are contained in  the p reim ages of the im m ediate  basin  of a ttraction
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of this fixed point. Likewise, the sets {B_m}meN belong to the basin 
of attraction of an attracting fixed point in B_. Observe that in order 
to show that Ai is contained in a wandering domain that escapes 
following the essential itinerary e we need to prove that every Am is 
contained in a different Fatou component.

Now let us construct the entire functions g and h so that the func­
tion f(z) = zn exp(g(z) + h(l/z)) has the properties stated above. 
Note that in this construction logz denotes the principal branch of 
the logarithm with — n <  argz< n. Let 0 < R < 7r/2  and set, for 
m > 0, define

Am := {z G C : -R ^ arg(z) < R, km < |z| < kme2R},

Bm •— D((km + 1 km)/2, 1/ 8),

where km is any sequence of positive real numbers such that km > 5/2  
and km+i > km + 1/4 for all m G N. We define A_m := 1 /Am and 
B_m := 1/Bm for all m G N. Note that log Am is a square of side 2R 
centred at a point that we denote by am G R. Hence, log Am contains 
the disc D(am, R) for all m G Z \  {0}. The set

F:=D(07T)UB+ U U  (AmUBm)
m>0

which consists of a countable union of disjoint compact sets is a Car­
leman set.

Let 6+, 5_ > 0 be such that |w — ln2| < 6+ and |w — ln32/63| < 8_ 
imply, respectively, that |ew — 2| < 1/8 and |ew —32/631 < 2/63. Let 
K := min{R/4,5±/4}. By Lemma 4 .20, there is an entire function g that 
satisfies the following conditions:

\g(z) -  as(m) - nlogz| < R/4, if z G Am with m > 0,

< lg(z) — ln2 —nlogz| < 8+/4, if zG (J BmUB+,
m>0

|g(z)| < K, ifzeD tO ,!),
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Similarly, there is an entire function h that satisfies the following con­
ditions:

f

|h(z) — as(_m) — nlog(1/z)| < R/4, if z G Am with m > 0,

< |h (z) — In 32/63 — n l o g ( l / z ) |  < 6-/4, if z G  [J BmUB+,
m>0

 ̂ |h (z ) |< K , if z  G D (0, 1).

Therefore, since the sets B_ and Am, m < 0, are contained in D (0,1) 
and the sets B+ and Am, m > 0, are contained in C \  D(0,1), the 
function logf(z) = g[z) + h (1/z) + n logz satisfies

/
I log f (z) -  as (m) I < R/2, if z G Am with m ^ 0,

 ̂ |lo g f(z )-ln 2 | < 6+/2, if z G |J  BmUB+,
m>0

| logf(z) — In32/63| < 6_/2, if z G (J Bm U B_,
< m<0

and hence f has the required mapping properties.
Finally, note that this construction is symmetric with respect to the 

real line and hence all Fatou components of f that intersect the real 
line will be symmetric too. Thus, since transcendental self-maps of C* 
cannot have doubly connected Fatou components that do not sur­
round the origin [Bak87, Theorem l], the Fatou components contain­
ing the sets {Am}mGZ\{0} are pairwise disjoint and A^q) is contained 
in a wandering domain in Ie (f). ■

4.6 CO NSTRUCTION OF FU NC T IO N S W ITH BAKER D O M A IN S

In this section we construct holomorphic self-maps of C* with Baker 
domains. The construction is split into two cases: first, we deal with 
the cases that the function f is a transcendental entire or meromorphic 
function, that is, f(z) = zn exp(g(z)) where n G Z and g is a non­
constant entire function (see Theorem 4 .24), and then we deal with 
the case that the function f is a transcendental self-map of <C*, that is, 
f(z) = zn exp(g(z) +h(l/z)) where n  G Z and g,h are non-constant
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entire functions (see Theorem  4.2). For transcenden tal self-m aps of <C*, 

w e are able to construct functions w ith  Baker dom ains tha t have any  

given periodic essential itinerary  e G {0, oo}N° .
To th a t end , w e use Lem m a 4.21 to obtain  entire  functions g and, 

if necessary, h  so tha t the function f  has a Baker dom ain. After this 

approx im ation  process, the resu lting  function f  w ill behave as the 

function T*(z) =  Az, A >  1, in  a certain  half-plane W. We first require 

the follow ing resu lt tha t estim ates the asym ptotic distance betw een 

the boundaries of log W  and  log T* (W ) C log W.

Lemma 4.22. Let W  =  {z G C : R ez ^  2} and, for  A >  1, let T a ( z ) =  Az. 

For r  >  0, let 6(r) denote the vertical distance between the curves 31o g W  

and 3 lo g T \(W) C log W  along the vertical line Vr :=  (z G C : R ez =  r}. 

Then 6(r) ~ 2 (A — 1 )e~ r as r —> +00.

Proof. Since lo g z  =  In |z| +  ia rg (z ) , the quan tity  5 (r) equals the dif­

ference betw een the argum ents of the  po in ts zi,Z2 w ith  Im zk  >  0, 

k G {1, 2}, w here  the vertical lines 3W  and  3T(W ) intersect the circle 

exp Vr of rad iu s  er (see Figure 17).

log

Figure 1 7 : Definition of the function S(r). 

Since a rg z i,a rg Z 2  —»■ tt/ 2  as r  —> + 0 0 , we have

xr  ̂ 2 2A6 r  =  a rc c o s  arccos —
er er

71 2

2
7i 2A \ 2 (A — 1)

as r  -4 + 0 0 , as required .
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Given N € N  and a periodic sequence e =  eoei • • • e ^ - i  € {0, oo}N°, 

let p , q e N  denote

p =  p(e) := #{k €  N o  : =  oo for k <  N},
(4-5)

q =  q(e) := #{k € N o  : e\c =  0 for k <  N},

so that p +  q =  N. We want to construct a holomorphic function  

f  : <C* -»  C* w ith  an N-cycle of Baker dom ains that has com ponents 

U?0, 0 <  i  <  p, and I lf , 0 <  i  <  q, in  which

f  |u?° “ *■ 00 and ff^o —> 0 locally uniform ly as u  —̂ oo.

In the case that zero is not an essential singularity of f, then q =  0 

and N =  p. N ote that the closure of a Baker dom ain in  <C may contain 

both zero and infinity.

For p e  N  and X C C*, w e define

t f c  := { z e C *  : zv €  X, |argz| <  7r/p}.

In order to construct a function w ith  an N-periodic Baker dom ain  

that has p components around zero or infinity, w e w ill semiconjugate 

the function T\ that w e want to approximate in the half-plane W  by 

the pth root function:

w—̂ -»w
A i ,

zP zP

^  y w .
■A/p

N ext w e look at the effect of this semiconjugation on the function 6.

Lemma 4.23. Let W  and T a ,  A >  1, be as in Lemma 4.22. For p € N  and 

A >  1, define the function T a / P ( z ) := [zP ) on t f w  and, for r  >  0, 

let 6p (r) denote the vertical distance between the curves 9 log  t fW  and 

9 logTa/P ( V W )  C log V W along the vertical line Vr := (z e  C : R ez  =  r}. 

Then 6P (r) -  2 (A — 1 )e-p r /p  a s r  -4  +00.

Proof The function z  zP m aps the circle of radius eT to the circle of 

radius epr w hile the function z  h»- { /z d ivides the argument of points 

on that circle by p, so
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and hence, by Lemma 4.22, 6P (r) ~ 2 (A — 1 )e pr/p  as r -> +00. ■

In the follow ing theorem w e construct transcendental entire or mero- 

morphic fim ctions that are self-maps of C* and have Baker domains 

in w hich points escape to infinity. These functions are of the form  

f(z) =  z n exp(g(z)) where n e Z  and g is a non-constant entire func­

tion.

Theorem  4.24. For every N e  N  and n  e  Z , there exists a holomorphic

self-map f  of C* with ind(f) =  n  that is a transcendental entire function, if

n  ^  0, or a transcendental meromorphicfunction, i f n  <  0, and has a cycle 

of hyperbolic Baker domains of period N.

Proof Let ci>n := e27tt/N ancj define

Vm := cu{J y /W  C C \ D  for 0 <  m  <  N,

where W  is the closed half-plane from Lemma 4.22. We denote by V 

the union of all Vm for 0 ^  m  <  N, and let R := ]R_, if N is odd, or 

R := {z €  C* : argz =  7t(l — 1 /N )}, if N is even. Then put

d := min{( V l  -  1 ) /3, dist(V, R )/4}, (4.6)

and define the closed connected set

B := {z €  C : dist (z, V) >  d and dist (z, R) ^  d}, (4.7)

w hich satisfies B' := D ( l , d) C intB (see Figure 18).

Observe that the closed set F := B U V satisfies the hypothesis of 

Lemma 4.21; nam ely C \  F is connected and C \  F is locally connected  

at infinity, and F C W a w ith a  =  27t. We now  define a function g on F:

 ̂  ̂ f lo g  ^ / a ( z / )N ̂  — n lo g  z, for z  6 Vm, 0 <  m  <  N,

[ —n lo g z , f o r z e B ,
(4.8)

where w e have taken an analytic branch of the logarithm defined on  

C* \  R and hence on F. Then g G A(F).

For r >  0, w e define the positive continuous function

e(r) m inid', k (N+1), r (N+1)} (4 -9)
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Figure 18: Sketch of the construction in the proof of Theorem 4.24 with N = 3. 
The sets B and Vm/ 0 ^  m < N, are shaded in grey.

w here  the constan t d ' >  0 is so sm all th a t \ez — 1| <  d for |z| <  d ' 

an d  the constan t k >  0 is so large that, for all z  € logT^(W ) w ith  

R ez  <  k, the disc D (z,k~^N+1)) is com pactly  contained  in  log W  and, 

m oreover, if 8m (r) is the function from  Lem m a 4.23, then

for som e constants C G R  an d  r'0 ^  t q ,  by Lem m a 4.21 (w ith oc = In ), 

there is an  entire function g such that

e(r) <  8m (ln(Ar)) for r  ^  k, (4.10)

w hich  is possible since

SN(ln(Ar))~gLJl as r  —> +00.

Since e satisfies

d r >  —00

|g ( z ) - g ( z ) | <  e(|z|) for all z e  F. (4.11)

We p u t

f(z) :=  exp(g(z)) =  zn exp(g(z)) exp(g(z) -  g(z)). (4.12)
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By Lemma 4.23 and (4.8-4.15), f  (Vm) C Vm +i for 0 <  m  <  N — 1 and 

f ( V n —1 ) Q Vo and, by (4.6-4.15), f(B) C  D (1,d ). Hence each set Vm 

is contained in an N-periodic Fatou com ponent U m for 0 <  m  <  N 

and B is contained in the immediate basin of attraction of an attract­

ing fixed point that lies in B'. It follow s that the Fatou components 

Um are all sim ply connected.

To conclude the proof of Theorem 4.24, it only remains to check 

that the Fatou com ponents U m/ 0 <  m  <  N, are hyperbolic Baker 

domains. Due to symmetry, it suffices to deal w ith the case m  =  0. 

Let zo €  Uo- Since Vo C Uo is an absorbing region, w e can assume 

without loss of generality that zo € Vo and |zol is sufficiently large. 

For n  G N , let

e n  : =  g ( f n-1 ( z o ) )  -  g ( f n_1 ( z o ) )  

which, by (4.15), satisfies

|enl <  e(|fn _ 1 (zo)l) a s n - ^ o o .

For n  G N , define

c n :=  Y 1 exP ek =  exp Y _  ek/
0<k^n 0<k^n

w hich represents the quotient fTl(zo )/(zn exp(g(zo))). Using the tri­

angle inequality, w e obtain

|Cn | <  exp Z | e k | <  exp Z £(|fk_1 (zo)D- (4-13)
0<k^n 0<k^n

Next, w e are going to show that |Cn | is bounded above for all n  G N . 

To that end, w e find a lower bound for |fk(zo)| for k G N  assuming, if 

necessary, that |zol =  10 is sufficiently large. Put K := ( \/A — 1 )/2  >  0. 

Then |Ci | >  1/K for tq >  0 sufficiently large and, by (4.12) and (4.8),

|f(z0)| =  V aIzqIICtI ^  ~ ^ To =  fJ-r0,
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w ith p. := \/X /K  >  1. Hence, by induction and the sym m etry proper­

ties of the sets Vm, 0 ^  m  <  N,

|fk(z0)| ^  pkro for k e  N . (4-H)

In particular, zo £ 1(f) so, by normality, the periodic Fatou com po­

nents U m/ 0 <  m  <  N, are Baker dom ains. We deduce by (4.13), (4.9) 

and (4.14) that |Cn | <  es for all rt € N ,  where S <  +00 is the sum  of 

the follow ing geometric series

s - = y  - =  — —  y  (—f i.kr^N+l „N+1 Z _  \ ,|N— (pkr0)N+1 r^+1 ^  VPN+V  r^+1(pN+1-1)'

N ext w e use the characterisation of Lemma 4.11 to show  that the 

Baker dom ains are hyperbolic. For n  G N , define

_  , ' | f tn + 1 )N ( z o ) - f n N (zo)|
n CnlZOJ distff̂ NfZoJ/aU) '

We have

fUN (Zo) =  C-aM ^ A nNZQ =  C-aM^ZO for U G N  

and therefore

|f (n+1)N(zo) — f n N (zo)l ~ CooAn (A— l)|zol as n  -> 00,

w here Coo '•= lim n .̂oo Cn . A lso, d ist(fn N (zo ),3Uo) <  es An |zol and 

hence if c := (A — 1 )/2  >  0, w e have cn (zo) >  c for all n  G N . Thus, 

by Lemma 4.11, the Baker dom ain Uo is hyperbolic. This com pletes 

the proof of Theorem 4.24. ■

Finally w e prove Theorem 4.2 in  which w e construct a function f  

that is a transcendental self-map of C* w ith  ind(f) =  n  that has a 

cycle of hyperbolic Baker dom ains in  Ie (f), where e is any prescribed 

periodic essential itinerary e G {0, oo}N°.

Proof of Theorem 4.2. Let N G N  be the period of e and let p, q G N o  

denote, respectively, the number of sym bols 0 and 00 in the sequence
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eoei . . .  eN -1 , where p +  q =  N; see (4.5). We m odify the proof of 

Theorem 4.24 to obtain a transcendental self-map of C* of the form

f(z) : = z n exp(g(z)zN+' + h ( l / z ) / z N+')

that has a hyperbolic Baker dom ain U in Ie (f), where the entire func­

tions g, h  w ill be constructed using approximation theory  

We start by defining a collection of p sets {V“ }o^m<p/ w hose clo­

sure in C contains infinity. Put u)p := e27U/p once again and define

V £  := c v ^ V W Q  C \ D ( 0,p ) for 0 <  m  <  p,

where W  is the half-plane from Lemma 4.22 and p := 1 +  ( y / l — 1) / 6. 

We denote by Vqo the union of all V ^ , 0 ^  m  <  p.

A s before, w e define a set Boo that w ill be contained in an im ­

mediate basin of attraction of f  and put Rqo =  1R -, if p is odd, or 

Roo = { z  £  C* : argz =  7i(l — 1 /p )}, if p is even. Then, let

doo := min{( a/2  — 1 ) /6 , dist(Voo, Roo)/4},

and define the closed connected set

Boo *=  {z G C ; dist (z, Vx,) ^  doo and dist (z, R©o ) ^ d o o } \ D ( 0,p),

w hich compactly contains the disc B^ := D ((l +  \ / 2) / 2, ( v^2 — 1 )/6 ). 

Finally, w e define the disc D := D (0, 1/p ), which is contained in D . 

We w ill construct the function g by approximating it on the closed  

set Fqo :=  Voo U Boo U D, which satisfies the hypothesis of Lemma 4.21; 

nam ely C \  Fq© is connected and C \  Fqo is locally connected at infinity, 

and Fqo C W a w ith  ot =  In  (see Figure 19).

Similarly, w e define a set Bo and a collection of q unbounded sets 

{Vm}o^m<q by using the same procedure as above, just replacing p 

by q, and then, if Vo is the union of all V ^ , 0 <  m  <  q, w e put 

Fo := Vo U Bo U D. The Fatou set of the function f  w ill contain all the 

sets V ~ , 0 <  m  <  p, and all the sets V ^  := 1 /Vj^, 0 <  m  <  q, which  

are unbounded in C*.

In order to define the functions g G A (Fqo) and h  G A(Fo), we 

first introduce som e notation to describe how  g and h  map the com­

ponents of Vqo and Vo, respectively; w e use the same notation as in



4.6 C O N S T R U C T I O N  OF F U N C T I O N S  W I T H  B A K E R  D O M A I N S 127

Figure 1 9 : Sketch of the construction of the entire function g in the proof 
of Theorem 4 .2  with e — 0000OO 00. The sets D, Boo and 
0  ^  m  < p, are shaded in grey.

T heorem  4.1. Let n  : { 0 , . . . , N — 1} -» {—q , . . . , —1, 1, . .  .,p }  deno te  the 

function given by, for 0 ^  k <  N,

The function n  is an  o rdering  of the com ponents of Vqo U 1 /Vo accord­

ing to the  sequence e. Suppose tha t V is the starting  com ponent; that 

is, V =  V^, if eo =  0, an d  V =  Vg0, if eo =  00. Then

w hich  describes the im age of the com ponent V ^ , if m  >  0, and  V * , 

if m  <  0, so tha t the function f  to be constructed  has a Baker dom ain  

th a t has essential itinerary  e. M ore form ally, for 0 ^  m  <  p,

#{£ e  N o  : ee =  00 for £ <  k} +  1, if =  00,

#{f g N q  : e* =  0 for £ <  k}—1, if =  0.

For m  6 {—q , . . . ,  — 1, 1, . . . ,  p}, we define the function

s(m ):= 7 t(7 r 1 (m) + 1  (m od N )),
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and, for 0 <  m  <  q,

f (V°) c
V °s(_ m), if s(—m ) <  0.

We now  give the details of the construction of the entire function g 
from the function g G A(Foo). For z  G Vj£, 0 <  m  <  p, w e put

f (log  (cu;(m) t/ a (zA u^ ) p )  - n l o g z )  / z N+1, if s(m ) >  0, 
g(z) := <

[ ( log  (cup mV ^ /M z/cu^ yp) - n l o g z )  / z N+1, if s(m ) <  0,

for z G Boo, w e put g(z) := (log(l +  ( y/1—1) / 2 ) — n lo g z ) /z N+1 and, 

for z € D , w e put g(z) := 0, where w e have taken an analytic branch 

of the logarithm defined on C* \  Roo and hence on Voo U (see Fig­

ure 19). Then g G A(Foo). For r >  0, w e define the positive continuous 

function £00 by

£oo(r) := m in{d^, k“ (N+1), r_(N+1)}/(2rN+1)

where the constant >  0 is so small that |ez — 11 <  doo for \z\ <  d^  

and the constant koo >  0 is so large that, for all z  € logT \(W ) w ith  

R ez <  koo, the disc D (z ,k ^ /N+1 is compactly contained in lo g W  

and, moreover, if 5n (t) is the function from Lemma 4.23, then

£00(r) • 2rN+1 <  5n (ln(Ar)) for r ^  koo,

which, as before, is possible since

c n ^ 2 (A— 1)
SN (ln(Ar)) -  ]sĵ n tn" as r + 0°-

Since £00 satisfies

'+00
r 3/ 2 In £00 (r) dt >  —00, 

by Lemma 4.21 (with oc =  In), there is an entire function g such that

£oo(W) for Z G V qo U B oo,
lg(z) — g(z)| <  { (4.15)

1/2 for z  G D.
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Similarly, w e can construct an  en tire  function h  th a t approx im ates 

a function h €  A(Fo) so th a t the function

f(z) := zn exp(g(z)zN + 1 +  h ( l / z ) / z N + 1)

=  z71 exp(g (z)zN+1) e x p (h ( l /z ) /z N+1 )•

• exp((g(z) -  g(z))zN+1) exp((h(z) -  h ( z ) ) /z N+1)

has the desired  properties. O bserve tha t if z  € Vqo U Bqo, then  1/ z  E D 

and  if 1/ z  € Vo U Bo, then  z e D .  Thus, h ( l / z )  =  0 for z  G Vqo U Boo 

and

|h ( l / z ) / z N + ' +  ( g ( z ) - g ( z ) ) z N+l +  (h(z) -  h .(z))/zN+11 <

0 + l/(2|zjN+1) + 1 / ( 2 | z | n + 1  ) = 1/lzlN+1

for z E Vqo U Bqq. Therefore, by  Lem m a 4.23, each com ponent of the 

set Voo U 1 /Vo is contained  in an  N -periodic Fatou com ponent an d  the 

sets Bqq and  1/Bo are contained  in  the im m ediate  basins of a ttraction  

of tw o attracting  fixed po in ts tha t lie in  B ^  and  Bq, respectively (see 

F igure 20; here  Bo =  1/Bq and  Bq =  1 /Bq).

'oo

Figure 20: Sketch of the construction of the function f in the proof of Theo­
rem 4.2 with e -  0000OO00. The sets Boo, Bq and V“ , 0 ^  m  < p, 
and V ^, 0 ^  m < q, are shaded in grey.

Finally, a sim ilar argum en t to that in  the p roof of Theorem  4.24 

show s that the  Fatou com ponents tha t we have constructed  are h y ­

perbolic Baker dom ains; we om it the details. ■
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Radstrom [Rad53] solved the question of w hat was the m ost general 

class of holom orphic self-maps to w hich the m ain results of the itera­

tion theory of Fatou and Julia could be extended. However, the theory  

of Fatou and Julia can be extended to the iteration of functions that 

are not holomorphic self-maps. For instance, the iteration of transcen­

dental meromorphic functions has been w idely  studied (see [Ber93]). 

In this chapter w e describe the research done on the escaping set 

of meromorphic functions w ith several essential singularities w hich  

w ould be a natural continuation of this thesis.

5.1 ITERATION OF M EROM ORPHIC FU N C T IO N S

We say that f  is a transcendental meromorphic function (in C) if f  has 

an essential singularity at infinity and is holom orphic in  C except for 

a discrete set of poles Bo(f) := f -1  (00) c  C; see [Ber93] for a survey 

on the iteration of meromorphic functions. Perhaps the best know n  

example of a transcendental meromorphic function is the tangent 

function, which has poles at the odd m ultiples of n /2. The m ain differ­

ence between the iteration of transcendental entire functions and that 

of transcendental meromorphic functions is the existence of points in  

the set

B(f) := U  f _TL(oo),
riGN

w hich have a truncated orbit under iteration by f. N ote that B(f) is 

always countable.

Let f  be a transcendental meromorphic function that is not entire. 

If infinity is an exceptional value of f, then since meromorphic func­

tions have at m ost two exceptional values, f  has a single pole that is 

om itted and hence is conjugated to a holom orphic self-map of C* of 

the form f(z) =  zn exp(g(z)) where n  <  0 and g is a non-constant en­

tire function; w e discussed the iteration of such functions in  Chapter 1.
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Otherwise, f  has at least two poles or one pole that is not omitted, and 

w e denote this set of functions by Moo- However, observe that, unlike 

for entire functions, the set Moo is not closed under composition; w e  

shall discuss this fact in the next section.

Baker, Kotus and Lii studied the iteration of meromorphic func­

tions in the series of papers [BKLcjia; BKL90; BKL9ib; BKL92]. For 

functions f  G Moo/ w e define the Fatou set F(f) in the usual way  

but adding the requirement that for z G F(f), f n (z) is defined for all 

n  G N . Then, since B(f) contains infinitely m any points (in fact, the 

set f - 2 (Bo) is already infinite), it follows from MonteTs theorem that 

j(f) =  C \F ( f )  =  B lf). Recall that O -(z 0,f )  =  {z  G C : z 0 =  f n (z) 

for som e n  G N }. In [BKL9ia], the authors showed that if zo G C 

is not an exceptional value, then J(f) C Q~[zo, f ) '  and hence J(f) is 

perfect and J(f) =  B(f)'.

The iteration of T a ( z ) := Atanz, A G R \ { 0}, was considered for 

the first time by Devaney and Keen [DK89] w ho showed that either 

JOa) =  R , if |A| ^  1, or JOa) C R  is a Cantor set, if 0 <  |A| <  1. Later, 

Keen and Kotus [KK97] studied the dynamics of T\ for A G C* (see 

also [Jia9i]).

We can also consider the iteration of transcendental meromorphic 

functions in C*, that is, functions that have two essential singularities, 

at zero and infinity, and are holomorphic in C* except for discrete sets 

of zeros and poles. Such functions are to transcendental self-maps 

of C* what transcendental meromorphic functions are to transcen­

dental entire functions. Examples of these functions are given by

f(z) =  m ( z + 1 / z )  or g(z) =  m (z)ffi(l/z )

where m  and m  are transcendental meromorphic functions (in C). 

If f  is a transcendental meromorphic function in C* that has a finite 

number of zeros and poles, then f  is of the form

f(z) =  R(z) exp(g(z) +  H(1/z ))

where R is a rational function and g, h  are non-constant entire func­

tions. The iteration of transcendental meromorphic functions in <C* 

should be related to the iteration of transcendental self-maps of <C* 

that w e study in  this thesis, in the same way that the iteration of
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transcendental meromorphic functions (in C) is related to the itera­

tion of transcendental entire functions. We plan to study the escaping 

set of such functions in the course of studying more general classes 

of meromorphic functions, described in the next section.

5.2 THE WORKS OF BOLSCH A N D  HERRING

In general, the com position of two transcendental meromorphic func­

tions f, g is not a transcendental meromorphic function because the 

poles of the first function f  becom e essential singularities of the com ­

position g o f . N ote that these points may not be isolated singularities, 

so here w e are using the term essential singularity in a w ider sense to 

denote any obstruction to analytic continuation that is not a pole.

Far less is know n about the iteration of meromorphic functions 

w ith more than one essential singularity. In this direction, in their 

theses, Bolsch [B0I97] (supervised by Prof. Pommerenke) and Her­

ring [Her95] (supervised by Prof. Baker) proposed, independently, 

two generalisations of transcendental meromorphic functions w ith  

several essential singularities for w hich the Fatou and Julia theory 

extends, w ith appropriate modifications.

Bolsch's class X

Bolsch introduced the follow ing class of meromorphic functions

there is a compact countable set E(f) C (C such that I 

f  is meromorphic in C \  E (f) but in  no proper superset J

w hich is the sm allest class that is closed under com position and con­

tains the set of transcendental meromorphic functions (in €*) that 

w e denoted by Moo earlier. N ote that originally Bolsch denoted this 

class by S but this could be confused w ith the Speiser class of finite 

type transcendental entire functions, so instead w e follow  the nota­

tion from [BDHoi].

In [B0I96], the author showed that if f  6 X  is not a M obius trans­

formation, then the repelling cycles of f  are dense in J(f). Later on, in  

[B0I99], Bolsch studied how  Fatou components map to each other un­
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der iteration by meromorphic functions and, for f  e  X , proved that 

if U and U' are Fatou components of f  such that f(U ) C U', then 

U / \  U contains at m ost two points (see also [Her98]). H e also proved 

that, more generally, if E(f) is a set of capacity zero, then the Fatou 

com ponents of f  are simply, doubly or infinitely connected.

Herring's class M

Herring studied the iteration of what he called meromorphic func­

tions outside a small set. H e introduced the class

there is a compact totally disconnected set E(f) C C 
such that f  is meromorphic in C \  E(f) and 

the cluster set C(f,<C \  E(f), ex.) =  C for all oc G E(f); 

if E(f) =  0, then f  is neither constant nor univalent

If E C C is a compact totally disconnected set and f  : <C \  E —» C is 

a meromorphic function, w e define the cluster set of f  at oc 6  E with  

respect to the set C \  E by

there is (zn) C C \  E such that I 

Zn —̂ oc and f(zn ) -4 w  as n  ^  oo J

The class M is closed under com position and contains the class X. 

For every compact totally disconnected set E C C it is possible to 

construct a function f  e M w ith E(f) =  E and, under som e additional 

hypothesis on E C <C, every function that is meromorphic in C \  E 

and has essential singularities at every point of E is in the class M  

(see [BDHoi; BDH04]).

Herring also studied the following subclasses of M consisting of 

functions that satisfy a k-Picard property and that are closed under 

composition. For k ^  2, he defined

M0>k := ( f  € M : E(f) * ® “ d * *  ^  *  6 E(f) 8nd 
[ open set U 5 a , # €  \ f ( U \ E ( f ) )  <  k

C ( f ,C \E ,a )  := < w e t

M : = <
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note that X  c MT>2- Finally, som e of the results from [BDH01] were 

proven for the following class of finite-type functions

MS := (f  G M : sin g(f- 1 ) is finite}

that is the analogue of the Speiser class S. They adapted the tech­

niques from [EL92] to show  that functions in  MS have no Baker do­

m ains and they also proved a 'no wandering domains' theorem for a 

subclass of MS.

5.3 THE ESCAPING SET OF A MEROM ORPHIC F U N C T IO N

Dom inguez [Dom98] defined the escaping set of a transcendental 

meromorphic function f  by

1(f) := {z  g C : f n (z) ^  00 for all n  G N  and f n (z) —» 00 as n  —> 00}

and proved that the analogues of Eremenko's properties (Ii) and (I2) 

hold in this setting, nam ely

l ( f ) n j ( f ) ^ 0  and J( f ) =  91(f).

She also observed that property (I3) does not necessarily hold, that is, 

the com ponents of 1(f) may be bounded even in the case that f  has a 

single pole.

For a transcendental meromorphic function f  in  C*, w e can define 

the escaping set by

1(f) :=  { z e C *  : f n (z) £  (0,00} for all n  G N  and cu(z, f) C (0,00}}

and, similarly, w e can adapt Definition 2.2 to define sets Ie (f) Q 1(f), 

for e G {0, oo}N°. It w ould be interesting to study the properties of 

such sets and, in particular, see whether analogues of properties (Ii) 

and (I2) hold in this setting as well.

Regarding the iteration of meromorphic functions w ith  several es­

sential singularities, very little is know n about the escaping set. If
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f  : C \  E(f) -> C is a meromorphic function and E(f) consists of essen­

tial singularities of f, then w e define

1(f) := { z  e  C \E ( f )  : fn (z) ^  E(f) for all n  e  N  and o>(z,f) C E(f)}.

There is no m ention of 1(f) in the works of Bolsch. In [BDHoi], the 

authors considered the follow ing subsets of 1(f) for functions f  in the 

class M. For oc G E(f), they defined

I (f ,a ):= {z  € C \E ( f )  : f n (z) ^  E(f) f o r n  £ N  a n d f n (z) -> oc as n  -»■ 00}

and, for f  € k ^  2, proved that these sets satisfy the properties 

(Ii) and (I2):

J ( f )n l( f ,c t ) ^ 0  and J(f) =  0I(f,oc).

N ote that if E(f) =  {0,00} and f  is a transcendental self-map of C*, 

then l(f,0) =  I0(f) and I(f,oo) =  Ioo(f)- However, the approach that 

w e follow  in this thesis takes into consideration every possible way of 

accumulating to E(f). It w ould be interesting to investigate whether 

the notion of essential itinerary can be adapted to study the escaping 

set of functions in the classes X  or M and see if Eremenko's properties 

(Ii) and (I2) hold for more general subsets of 1(f).
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Leau domain, 6 
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logarithmic singularity, 61 

logarithmic tract, 62 

logarithmic transform, 62 

lower order, 52, 74

meromorphic function, 1 

multiplier, 4

orbit, 2 

order, 32

parabolic basin of attraction, 6 

parabolic periodic orbit, 4 

periodic dynam ic ray, 83 

periodic point, 4 

periodic ray, 93 
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punctured plane, 1
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Siegel disc, 6 

singular set, 37 

speed ordering, 90 

Speiser class, 7, 72 

straight brush, 94 
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topological transitivity, 3

unbounded continuum, 81 

unbounded set in  C*, 27, 82 
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wandering domain, 6
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(an ) Sequence given by do, <11,0.2,...

A (f) Fast escaping set of a function f  (see Section 1.2)

A e (f ) Set of fast escaping points of a transcendental self-map

of C* w ith essential itinerary e (see Definition 2.3)

A ^ 'k(f, R) Level of the fast escaping set A e (f ) (see Definition 2.3)

A(F) Class of continuous functions f  : F —>• C that are holomor­

phic in  int F

AV(f) Set of asymptotic values of a function f  (see Section 1.1)

AVcx(f) Set of asymptotic values of a transcendental self-map f

of C* w ith  asymptotic path to oc €  (0,00} (see Section3.2)

!B Eremenko-Lyubich class of bounded-type transcenden­

tal entire functions (see Section 1.2)

T>* Class of bounded-type transcendental self-m aps of the

punctured plane (see Section 3.1)

B(f) Set of poles and prepoles of a transcendental meromor­

phic function f  (see Section 5.1)

C Complex plane

<C Riemann sphere C U {00}

C* Punctured plane C \  {0}

C(f, X, oc) Cluster set of a function f  at a point oc w ith respect to a 

set X (see Section 5.2)

C(X) Class of continuous functions f : X -> C

C[z] Set of polynom ials in z  w ith com plex coefficients
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CP(f) Set of critical points of a function f  (see Section 1.1)

CV(f) Set of critical values of a function f  (see Section 1.1)

D  Unit disc {z  G C : \z\ <  1}

dist(X, Y) Euclidean distance between two sets X, Y C C

D(zo, R) Disc of radius R >  0 centered at zq , (z G C : \z — z q \ <  R}

E(f) Set of essential singularities of a function f  G M

Ea (z) Exponential family E  ̂(z) =  A exp z  for A G C*

f  Lift of a function f  (f is not unique)

f -1 Inverse of a function f

f  ~ g f(r) ~ g(r) asr  —>• +00 means that f(r)/g(r) -> 1 asr —>• +00

TL
f n nth  iterate of a function f  given by f  o • • • of for n  G N

f  |x Restriction of a function f  to a set X

E(f) Fatou set of a function f  (see Section 1.1)

H  Right half-plane {z G C : Re z  >  0}

H r  Right half-plane {z G C : Re z  >  R} for R >  0

H ^  Set (z G C : |Rez| >  R} for R >  0 consisting of the union

of a left half-plane and a right half-plane

1(f) Escaping set of a function f  (see Section 1.2)

Ie (f) Set of escaping points of a transcendental self-map of <C*

w ith  essential itinerary e (see Definition 2.2)

le e,k(f) Subset of the escaping set Ie (f) consisting of points z  such

that f €(z) has essential itinerary (Tk (e) (see Definition 2.2)

int X Interior of a set X

Im z  Imaginary part of a point z  G C

J(f) Julia set of a function f  (see Section 1.1)

X  Bolsch's class of meromorphic functions outside a closed

countable set of essential singularities (see Section 5.2)
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M(r, f ) M axmimum m odulus of a function f  on the circle of radi­

us t  >  0, also written M.(r)

m (r, f ) M inim um  m odulus of a function f  on the circle of radius

r >  0, also written m(r)

M Herring's class of meromorphic functions outside a small

set of essential singularities (see Section 5.2)

MT^ Class of functions in M that satisfy a k-Picard property

(see Section 5.2)

MS Class of finite-type functions in M  (see Section 5.2)

M qo Class of transcendental meromorphic functions (in C) (see

Section 5.1)

N  Set of natural numbers 1, 2, 3, . . .

N o  Set of non-negative integers N  U  {0}

0 (g(r)) f(r) =  0 (g(r)) as r —y +00 means that there is C >  0 such

that |f(r)| ^  C|g(r)| for all r >  0 sufficiently large

0 + (zo, f ) Forward orbit of a point zo under iteration by a function f

0 “  (zo, f ) Backward orbit of a point zo under iteration by a function f

0 (zo, f) Grand orbit of a point zo under iteration by a function f

Q Set of rational numbers p /q  w ith p, q G Z

P(f) Postsingular set of a function f  (see Section 3.2)

Re z  Real part of a point z  G C

§ Speiser class of finite-type transcendental entire functions

(see Section 1.1)

S(f) Set of singular values of a function f  (see Section 1.1)

sin g(f- 1 ) Set of inverse function singularities of a function f  (see Section 1.1)

T\ (z) Tangent family Ta (z ) =  A tan z for A G C*

X Closure of a set X in C
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X Closure of a set X in C

XN° Set of all sequences of elem ents of a set X

3X Boundary of a set X

3in X Inner boundary of a doubly connected set X

0out X Outer boundary of a doubly connected set X

Z  Set of integer numbers . . . ,  —1, 0, 1, . . .

A(f) Lower order of an entire function f  (see Section 3.1)

p(f) Order of an entire function f  (see Section 3.1)

Pa(f) Order of a transcendental self-map f  of C* at oc G {0,00} 

(see Definition 3.30)

pn (z) Hyperbolic density in a dom ain Cl

cu(zo, f) Omega-limit set of the orbit of a point zo under iteration

by a function f

#X Cardinality of a set X

[z, w] iq Hyperbolic distance from z to w  in a dom ain Cl


