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Abstract

Modified vaccinia virus Ankara (MVA) is a highly attenuated, replication defective strain of 

Vaccinia virus with the attributes of an optimal viral vaccine delivery system.

An improved vaccine for the prevention of tuberculosis (TB) is urgently required and until 

recently, the most advanced clinical candidate under development for use against TB was 

based on MVA vectoring a single mycobacterial antigen (MVA85A). Unfortunately, pre- 

clinical efficacy and potent immunogenicity in humans did not lead to improved protection 

in BCG vaccinated infants.

There are a number of design features to consider in the development of a recombinant 

MVA (rMVA)-based vaccine. The current study undertook to assess how these might 

impact upon the immunological potency of MVA vectoring TB antigens. Specifically, the 

influence of vaccinia promoter selection and leader sequences was assessed.

Vaccinia promoter selection influences antigen transcription and thereby expression. The 

relationship between antigen production, murine immunogenicity and protective efficacy 

was evaluated. The results support the conclusion that vaccinia promoter optimisation can 

increase immunological potency and efficacy.

Virally vectored antigens can be fused to sorting signals for optimised intracellular 

processing. The immunomodulatory effects of two leader sequences were compared. The 

results suggest that the sorting signal currently incorporated in virally vectored TB 

candidates, such as MVA85A, might be subject to further optimisation for the induction of 

enhanced T cell responses.

Overall, the results demonstrate that rMVA immunogenicity is intrinsically linked to the

precise nature of transgene insertion. The value of an optimised vaccinia promoter might

be to reduce the dose of rMVA required. Leader sequences represent an opportunity to

enhance the quality of the antigen-specific response for improved protection. It is
VI



concluded that both vaccinia promoter selection and leader sequence optimisation should 

be a feature of future rMVATB vaccine development.
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Chapter 1 Introduction

1.1 Vaccination

In 1798, Edward Jenner published his research describing inoculation with cowpox lesion 

matter to confer protection against smallpox (Jenner, 1798). At the end of the last century, 

live Vaccinia virus, a very close relative of cowpox virus was used as the vaccine in the 

World Health Organisation's Smallpox Eradication Programme (1966 -  1980). Jenner 

introduced the noun 'vaccine' to describe the cowpox material used as his inoculum, and 

subsequent use of the words 'vaccine', 'vaccination' and 'vaccinology' pay homage to his 

pioneering studies; vacca is Latin for cow. Jenner may not have been the first to use 

cowpox to achieve protection against smallpox; there is anecdotal evidence that an English 

farmer, named Benjamin Jesty, protected his family from smallpox via the same means 20 

years earlier. The practice of variolation (inoculation with smallpox lesion matter) had also 

been widely implemented and can be traced back to the ancient Chinese. Jenner, however, 

was the first to subject the phenomenon of immunisation to scientific investigation and 

reporting. In the subsequent 200 years of vaccinology research there have been many 

significant developments.

1.1.1 Major advances in the development of novel vaccines

The history of vaccination, and findings in the related fields of bacteriology, virology and 

immunology that have been pivotal to vaccine development, has been reviewed (Plotkin, 

2014; Plotkin and Plotkin, 2011). A brief overview is provided here and is summarised in 

Figure 1.1.
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In his publications relating to smallpox, Edward Jenner described the capacity for a 

naturally occurring, less virulent infection to confer protection against a related, but more 

deadly disease. Eighty years later, Louis Pasteur demonstrated that the same phenomenon 

could occur following artificial attenuation of the disease-causing agent; chickens were 

protected against cholera and cattle against anthrax. In 1885, the Pasteur laboratory 

applied induced attenuation to produce a rabies vaccine for post-exposure use in humans.

Fundamental to the development of vaccines has been the discovery of their causative 

agents. In 1877, Robert Koch published discussions on the causative agents of disease, 

giving rise to Koch's postulates: a set of 4 criteria through which to confirm the relationship 

between a microbe and an infectious disease. Between 1876 and 1884, Robert Koch 

identified the bacteria responsible for anthrax, tuberculosis (TB) and cholera. The discovery 

of these and other causative agents of disease was an important precursor to the 

development of effective vaccines; after the artificial attenuation work of Pasteur came the 

finding that whole-cell preparations of dead bacteria, killed by heat or chemical treatment, 

could be safely administered to confer protection against their live counterpart. In the late 

19th century, this process gave rise to bacterial vaccines against typhoid, cholera and 

plague.

Towards the turn of the 20th century, it was discovered that the bacterium responsible for 

diphtheria infection produced a toxin and that anti-toxin, i.e. the serum of a toxin- 

inoculated animal, was protective upon transfer to another animal. In 1907, Emil von 

Behring demonstrated improved efficacy with toxin - anti-toxin (TAT) mixtures and this was 

implemented for human use. In 1923, TAT was superseded by the use of formalin- 

inactivated toxin, or 'toxoid', the immunogenicity of which was later shown to be enhanced 

by the addition of aluminium salts (Glenny et o/., 1926). This was the first example of an 

adjuvanted vaccine, i.e. a vaccine to which a substance had been added to potentiate the 

immune response evoked to it.



The artificial attenuation work of Pasteur had been achieved using exposure to adverse 

conditions such as oxygen and/or heat. The first example of attenuation achieved via serial 

passage was provided by scientists Albert Calmette and Camille Guerin, who grew 

Mycobacterium bovis on artificial medium. After 230 passages, performed over a period of 

14 years, the bacillus of Calmette and Guerin (BCG) was less virulent and provided 

protection against M. tuberculosis in animal models. The M. bovis BCG vaccine strain was 

first used in humans in 1927 and later, evidence for its protective efficacy in children was 

described (Calmette, 1931).

The first viral vaccine to be attenuated by serial passage was a vaccine for Yellow Fever 

virus (Theiler and Smith, 1937). Viral vaccine development was later accelerated by the 

advent of methodology for large-scale propagation of viruses in vitro (Enders et al., 1949); 

the development of these improved tissue culture techniques led to the production of live 

attenuated vaccines against poliovirus, measles, rubella and mumps. A further 

development related to the culture of viruses in vitro was the ability to induce attenuation 

of RNA viruses via reassortment. This process was applied in the generation of vaccines 

against influenza and rotavirus, and more recently a new rotavirus vaccine (Clark et al., 

1996).

An alternative to the use of whole cell preparations has been the development of vaccines 

based on individual components of the disease-causing organism. The first examples of 

'subunit' vaccines were based on inactivated toxin (diphtheria and tetanus toxoid). More 

recent examples based on isolated proteins include vaccines for use against anthrax, 

pertussis and hepatitis B. There are also vaccines based on polysaccharides, e.g. for 

meningococci and pneumococci, which have been improved by conjugation to protein 

antigens. Another subunit combination, developed for use against cholera, comprises a 

killed whole cell (WC) preparation in combination with a cholera protein. Some virus

4



proteins, e.g. the LI protein of human papilloma virus (HPV), have increased 

immunogenicity on account of forming virus-like particles (VLP).

The most recent general development to impact on the field of vaccinology is the 

advancement of techniques related to genetic engineering. This has made possible the 

production of recombinant protein, as first demonstrated for hepatitis B surface antigen 

(Valenzuela et al., 1982). It has also been possible to deliver a subunit antigen for one 

infectious disease target using an unrelated organism as a recombinant delivery system. 

Thus far, one example has been licensed: a Yellow Fever Virus (YFV) carrying a Japanese 

encephalitis (JE) antigen.

An important consideration for more recent vaccine development efforts is safety. To date, 

smallpox remains the only disease to have been eradicated via vaccination; eradication was 

declared in 1979 (Fenner et al., 1988). Live Vaccinia virus was used as the vaccine and 

whilst clearly efficacious, it was observed to cause severe complications in some individuals, 

for example those with immunological disorders (Lane et al., 1969). Therefore, a safer 

alternative was required. Vaccinia virus Ankara was attenuated via serial passage on chick 

embryo fibroblast (CEF) cells. After more than 500 passages, the resultant strain was 

replication-defective in mammalian cells and non-pathogenic in animal models and was re

named Modified Vaccinia virus Ankara (MVA) (Mayr et al., 1978). Later, genomic analysis 

and marker rescue revealed the attenuation to be the result of multiple deletions and 

mutations (Meyer et al., 1991; Wyatt et al., 1998), all of which were confirmed when the 

MVA genome was sequenced (Antoine et al., 1998). Towards the end of the smallpox 

campaign, MVA was used to vaccinate over 120,000 individuals without the complications 

observed for the parent strain. Whilst the contribution of MVA to the eradication campaign 

may be unclear, it was demonstrated to be safe in all groups. Recently, MVA has been 

licensed for use as a smallpox vaccine in Europe (IMVANEX®, Bavarian Nordic) and Canada 

(IMVAMUNE, Bavarian Nordic).



1.1.2 Future goals for vaccinology research

As described above, there are now many effective vaccines available for the prevention of 

important human diseases and these are used in the World Health Organisation's Expanded 

Programme of Immunisation (EPI) (see Figure 1.1). However, vaccines are still required for 

prevention of the three biggest causes of morbidity and mortality: TB, HIV/AIDS and 

malaria. There are also vaccines under development for the immunotherapeutic treatment 

of cancers.

A vaccine forTB (M. bovis BCG) was developed and remains in use, but is now recognised to 

be only partially effective beyond adolescence and so an alternative is required (discussed 

further, below). It now known that for the majority of the vaccines successfully 

implemented to date, protective immunity is achieved via the induction of humoral 

responses, i.e. protective antibodies (Plotkin, 2010). For the outstanding vaccine targets, 

for which antigenic diversity and complexity of the pathogen/stages of the infectious 

disease are an issue, greater levels of cellular immunity are believed to be required. As 

such, it has become apparent that a thorough understanding of the protective immune 

response is an essential aspect of vaccinology research.

Humoral immunity

That an immunological component (antibodies) existed in blood serum became evident in 

1890, when von Behring and Kitasato performed serum transfer studies to confer 

protection against diphtheria. In 1931, Theiler demonstrated the neutralising properties of 

this component with regards to viral infectivity. Then in 1939, Tiselius and Kabat identified 

antibodies as gamma globulins.

Immunoglobulins (Ig) are produced by B cells - lymphocytes that mature in the bone 

marrow. They are glycoproteins comprising heavy and light chain elements the structure of 

which form a variable, antibody binding fragment (Fab) and a crystallisable fragment (Fc) 

which is constant (Schroeder and Cavacini, 2010). A schematic is shown in Figure 1.2A.



Variable region

Constant region

IFNy
TNFa

IFNy IL-4 IL-17 IL-10
TNFa IL-5 IL-22 TGFP
IL-2 IL-10

Figure 1.2 Components of the adaptive immune system. A) The structure o f 

immunoglobulin comprising heavy (red) and light (orange) chains. B) Principal T-cell 

subsets and the cytokines they secrete (IFNy; interferon gamma, TNFa; tum our 

necrosis factor alpha, IL; interleukin).

For the most part, Ig molecules are secreted, but they can also serve as a B cell surface 

receptor. Antibodies function by binding antigen at the variable region and then 

stimulating immunological pathways via Fc receptors (FcR); the m ajority o f cells 

contributing to  immune function expressed FcR. Five main classes o f Ig have been 

categorised based on differences in the structure o f the Fc fragment, tw o o f which (IgG and 

IgA) have sub-classes, also referred to  as isotypes (see Table 1.1). For each Fc type there is 

a complementary FcR capable o f activating or inhibiting immunological responses. 

Differences in the heavy chain confer differences in biological activity, since it is the heavy 

chain which defines the Fc portion, and thereby the FcR tha t w ill be bound and the role o f 

the Ig molecule w ith in  the immune system.

Arguably the most im portant class o f antibody, in the context o f vaccine induced

protection, is IgG. It is the most abundant and induction o f antigen-specific IgG is a

correlate o f protection fo r many vaccines (Plotkin, 2010). In addition to  influencing
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immune pathways, a vital role for IgG (as well as IgA) is to bind directly to toxins and 

viruses, thereby neutralising them by impeding subsequent interaction with the host.

Table 1.1 The 5 classes of immunoglobulin. A summary of the main characteristics 

and biological functions of human Ig classes. IgG and IgA are present as one of 4 and 

2 isotypes, respectively (Arnold et al., 2007; Schroeder and Cavacini, 2010).

■g
Heavy

chain
Function and characteristics

IgG y l Neutralises toxins and viruses.

y2 Binds complement; a serum enzyme system leading to 

pathogen destruction.

y3 Is the most abundant serum Ig, circulating at 10-15 mg/ml. 

Can be transferred across the placenta.

y4 As above, but does not bind complement.

IgA Secretory forms (IgAl and lgA2) provide mucosal immunity.

a l ,  a l Both associated with mucosal epithelia, tears, saliva and 

milk. Serum IgA consists predominantly of IgAl ( ~ 1 mg/ml).

IgM Associated with primary immune response.

Binds complement.

Serum Ig has a pentameric structure (~ 2.5 mg/ml). 

Also serves as a B cell receptor.

IgD
6

Low abundance in serum (< 30 pg/ml).

Is expressed on immature (differentiating) B cells, with IgM.

IgE Least abundant serum Ig (<  1 pg/ml).

e Associated with hypersensitivity, allergy and parasitic 

infections.
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Cell mediated immunity

It became apparent in the 1940's that some infectious diseases were not preventable by 

induction of antibody responses; it was shown that the delayed type hypersensitivity (DTH) 

reaction associated with skin tests could be induced after transfer of cells, but not by 

serum. In 1968, the T-cell lymphocyte was identified as having cell-cytotoxic properties 

that were induced upon cellular infection.

/
T cells are lymphocytes that mature in the thymus. They are diverse and are characterised 

by T-cell antigen surface receptors (TCR). The essential role of T cells is to recognise antigen 

that has been processed within a host cell; T cell receptors are only able to bind antigen in 

the form of a peptide fragment bound to a major histocompatibility complex (MHC) 

molecule.

There are two classes of MHC molecule. All cells, except for red blood cells, express MHC 

Class I. The role of this molecule is to bind antigen encountered within the cell, i.e. 

following infection with an intracellular pathogen. MHC Class II molecules bind antigen that 

has been endocytosed by the cell. They are expressed by 'professional' antigen presenting 

cells (APC) such as dendritic cells (DC), macrophages and B cells.

There are 2 main types of T cell, defined by the MHC receptors that they express. T cells 

expressing CD8 (CD8+ T cells) bind MHC Class I molecules. Upon activation, CD8+ T cells are 

effective in lysing infected cells directly and so are called cytotoxic T lymphocytes (CTL). T 

cells expressing CD4 (CD4+ T cells) bind MHC Class II. The role of CD4+ T cells, upon 

activation, is to release cytokines -  cell signalling molecules that stimulate further T cell 

function, macrophage activation and B cell antibody production. Thus, they are also known 

as T helper (Th) cells and can be further subdivided into Th-1, Th-2 and Th-17 subsets based 

on their cytokine secretory profile. Th-1 and Th-17 enhance inflammatory immune 

responses, while Th-2 promotes non-inflammatory responses. An essential contributor to 

the regulation of inflammation are another subset of CD4+ helper cells called regulatory T



cells (Treg) (Vignali et al., 2008). As well as lysing antigen-bearing cells directly, cytotoxic 

CD8+ cells are also able to release the effector cytokines IFNy and TNFa. A summary is 

shown in Figure 1.2B.

Each T cell subset can be further categorised according to its state of activation (Broere et 

al., 2011). 'Naive' T cells, having matured in the thymus, reside in the spleen and lymph 

nodes. Upon infection, antigen-loaded APC migrate to the lymphoid tissues where TCR and 

MHC-bound antigen interact. This leads to T cell activation and in this state T cells become 

effector cells (TE). Critical to the principle of vaccine-induced T cell immunity is the ability of 

some effector T cells to remain beyond antigen elimination, as these long-lasting 

populations contribute to immunological memory.

Effector memory cells (TEM) remain at the periphery, including mucosal sites, where they 

are able to encounter secondary infection and develop immediate effector function. 

Central memory cells (TCM) reside in the secondary lymphoid tissue (spleen and lymph 

nodes) where they can mount a recall response, which although delayed in terms of 

mounting effector functions has greater proliferative potential (Sallusto et al., 2010).

Induction of cell mediated immunity

For the outstanding vaccine targets, humoral responses may remain important for 

prevention of initial infection, but induction of cell-mediated immunity is now believed to 

be essential for effective infection control (Plotkin, 2010). Further, protection may depend 

upon the activation of particular T cell subsets, specifically, the induction of T cells offering 

protective effector function within which are subsets that will be programmed to have both 

effector memory and central memory function.

For any given vaccine target, antigen discovery is important; antigen-specific responses 

must confer protection. Sophisticated transcriptomic, proteomic and reverse vaccinology 

{in silico) approaches are being applied to identify novel vaccine antigens. However,
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beyond antigen selection, it is vaccine formulation and/or the delivery system employed 

that will determine the type of immune response that is promoted, thereby impacting on 

the potential success of the vaccine.

Adjuvant research has identified a number of compounds that can evoke humoral and 

cellular immunity; however, the ability to promote robust cellular immunity without 

adverse effects is a challenge (Reed et al., 2013). An alternative to adjuvanting protein 

subunits is to apply genetic engineering to the challenge of antigen delivery. There are 

vaccines under clinical development based on plasmid DNA and many recombinant 

organisms. In these vaccines the genetic code for the vaccine antigen is delivered for 

expression in the host, i.e. the vaccine recipient. This gives rise to intracellular 

manifestation of antigen, as would occur in intracellular pathogen infection. Thus, plasmid 

DNA and recombinant viral and bacterial vaccines are able to induce effective CD8+ CTL 

responses.

Plasmid DNA vaccines are simple to produce and induce both CD4+ and CD8+ T cell 

immunity (Maecker et al., 1998). The first demonstration of protective DNA vaccination 

was performed in mice immunised with an influenza antigen (Ulmer et al., 1993). Plasmid 

DNA vaccines have proved to be an excellent tool in pre-clinical research, and there are 

some examples licensed for veterinary use (Draper and Heeney, 2010). However, plasmid 

DNA alone has been found to be less immunogenic in larger animals and strategies are 

required for enhancing their efficacy (Saade and Petrovsky, 2012).

Responses to DNA-vectored antigen can be enhanced by co-administration with adjuvants,

or by advanced delivery techniques, e.g. gene gun technology. It is also possible to increase

T cell responses via heterologous prime-boosting. This was first demonstrated following a

DNA prime and MVA boost protocol in mice, which provided protection against malaria

(Schneider et al., 1998). High levels of antigen-specific CD8+ T cells were observed and

induction of similarly enhanced T cell responses were subsequently demonstrated in
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humans (McConkey et al., 2003). Currently, a vaccine candidate based on DNA-MVA 

immunisation is under clinical development for HIV (Munseri et al., 2015).

The benefit of recombinant bacterial or viral vectors is that, relative to plasmid DNA or 

protein subunits, they are antigenically diverse and highly immunogenic, without the need 

for additional adjuvants or specialised delivery methods. There are vaccines based on 

recombinant bacteria and viruses in clinical trials, but as yet, the only licensed vaccine is a 

recombinant YFV -  JE chimera. That bacterial vaccine vectors might not be as advanced as 

viral vectors may stem from their complexity and the need to render them safe for use in 

human subjects and concomitant release to the environment (da Silva et al., 2014). A 

greater number of viral vectored vaccines, meanwhile, are under development.

1.1.3 Viral Vector vaccines

A summary of the principal viral vaccine vectors currently under investigation is 

summarized in Table 1.2. As shown, a number of viral vectors are based on poxviruses.

The first viral vectored vaccines were based on live Vaccinia virus. Following the 

eradication of smallpox, and supported by recent advances in genetic engineering, Vaccinia 

virus was investigated as a tool for recombinant antigen expression. In the first instance, it 

was shown to be possible to introduce and express foreign genes in recombinant Vaccinia 

virus (rVV) (Mackett et al., 1982; Panicali and Paoletti, 1982). Soon after it was 

demonstrated that rVV could evoke protective, antigen-specific immune responses in an 

animal model of hepatitis B (Moss et al., 1984). Later, MVA was turned to as an alternative 

viral vector with an improved safety profile and was also demonstrated to be effective pre- 

clinically (Sutter et al., 1994).
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Table 1.2 Viruses used as vaccine vectors. The principal viral vector platforms under 
investigation for the development of novel vaccines.

Virus Family Viral Vector(s) Advantages and disadvantages*

DNA viruses

Poxviridae Vaccinia virus, Genome 130 -  280 kb.

MVA, NYVAC, Large capacity for foreign DNA (>25 kb).

ALVAC and FPV Safe history of use in humans/veterinary

applications.

Established platforms for product development.

fAnti-vector immunity may arise.

Adenoviridae Adenovirus Genome 36 -  38 kb.

Capacity for 7-8 kb foreign DNA.

Safe history of use in humans/veterinary 

applications.

Established platforms for product development. 

+Possible interference from pre-existing immunity.

RNA viruses

Rhabdoviridae VSV Genome 13 - 1 6  kb

+Limited capacity for foreign inserts.

Abbreviations: MVA, modified Vaccinia virus Ankara; NYVAC, Vaccinia virus 

attenuated via the deletion of 18 open reading frames; ALVAC, attenuated canarypox 

virus; FPV, fowlpox virus; VSV, Vesicular stomatitis virus.
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Vaccinia virus (VV) is a member of the orthopoxvirus genus within the Poxviridae family. 

Other poxviruses in use as viral vectors include attenuated canarypox virus (ALVAC), 

fowlpox virus (FPV) and a strain of W  attenuated by genetic manipulation (NYVAC). While 

none of these vectors have been licensed for human use, Phase I -  III clinical studies for a 

range of disease targets and cancer are ongoing, and there are examples of licensed 

veterinary vaccines based on ALVAC, FPV and VV (Draper and Heeney, 2010). Thus, 

poxviruses are an effective vaccine delivery platform and are amenable to large-scale 

production.

After poxviruses, the most commonly employed viral vector platform for the development 

of novel vaccines is adenovirus (Ad). Adenovirus naturally infects humans resulting in a 

range of clinical outcomes. The infection can be asymptomatic, cause common cold 

symptoms or, in some cases, severe respiratory disease. In common with poxviruses, 

Adenovirus exhibits a broad tropism, i.e. can infect a range of cell types. Like poxviruses, 

there are examples of rAd under Phase I -  III clinical development for bacterial, viral and 

parasitic diseases, as well as for cancer immunotherapy (Rollier et al., 2011). The capacity 

of recombinant poxviruses to carry foreign DNA may be greater, but the pay load for rAd 

may still amount to several antigens. In Ad vector methodology, genes are removed from 

the virus in order to render it replication deficient. A 'gutless' Ad vector may accommodate 

up to 8 kb of foreign DNA. To date, the most commonly used Ad virus serotype has been 

human Ad virus serotype 5 (AdHu5). Pre-existing immunity may be a disadvantage for this 

vector, but more recently this has been circumvented by using chimpanzee serotypes.

There are fewer examples of other viruses that have been used as viral vaccine vectors. A 

relatively recent example to come to prominence is based on Vesicular stomatitis virus 

(VSV). VSV is a member of the Rhabdoviridae family of viruses. It infects animals of 

agricultural importance (horses, cattle, pigs) and can cause a flu-like illness in humans. The 

virulence of VSV is associated with its glycoprotein (G). Cleverly, VSV G can be replaced
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with an alternative antigen with the effect that the virus is attenuated, induces little 

neutralising immunity against itself while promoting strong humoral and cell-mediated 

responses against a recombinant antigen (Roberts et al., 1999). Most recently, VSV viral 

vector technology has been implemented in a Phase III trial against Ebola virus disease 

(Camacho et al., 2015).

There are other viral vaccine vectors under investigation for which there is currently less 

clinical data through which to establish safety and efficacy. For each of these, there may 

also be other disadvantages such as potential to integrate into the human genome, reduced 

tropism and pre-existing immunity. They include Adeno-associated virus, Measles virus, 

Sendai virus and Baculovirus and have been subject to review (Brave et al., 2007; Liu, 2010; 

Tripp and Tompkins, 2014; Lira et al., 2014).

With many examples of MVA and Adenovirus having been tested in clinical studies, there is 

now detailed evidence for the type of T cell immunity they induce. Both are able to induce 

CD8+ responses that include effector memory and central memory functions (Rollier et al.,

2011). Thus, the responses are encouraging from the perspective of novel vaccine 

development.

1.1.4 Prospects and progress for MVA based vaccines

MVA is a highly attenuated, replication defective strain of vaccinia virus with attributes of

an optimal viral delivery system including; large capacity for foreign DNA, proven clinical

safety and ability to induce potent and long-lasting humoral and cell-mediated immune

responses which can be further complemented in heterologous prime-boost regimens.

Efficacy of rMVA based vaccines has been demonstrated in numerous pre-clinical and

clinical studies against a range of targets including HIV, malaria, tuberculosis and an array of

tumour associated antigens (Gomez et al., 2008; Harrop and Carroll, 2006). In addition to

its proven clinical safety and ability to elicit protective immunological responses, the

advantages of rMVA as a viral vaccine vector now extend to include established
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manufacturing processes (compliant with Good Manufacturing Practice; GMP), low costs of 

goods, ease of storage and clear requirements for regulatory submission (Hall and Carroll,

2012). That rMVA based vaccines are a reliable prospect is evident from the number of 

candidates in clinical development, with a number of institutions committed to rMVA based 

research (see Table 1.3).

Pre-existing and anti-vector immunity

As stated above (Table 1.2), anti-vector immunity may be the biggest disadvantage 

presented by the use of MVA as a viral vaccine vector. Pre-existing immunity has the 

potential to limit the efficacy of a viral vector and, following the eradication of smallpox, 

there was a widespread population with humoral immunity to vaccinia virus. However, 

with the cessation of global vaccination, this population has halved (Bray, 2003) and is 

decreasing. Even so, the effects of pre-existing vector immunity still require consideration 

in the context of multiple-immunisation regimes and in light of the number of rMVA 

vaccines under clinical study.

Pre-clinically, MVA has been shown to evoke less potent vector-specific immune responses 

than replication competent vaccinia, without compromising the strength of immune 

response elicited against a foreign antigen (Ramirez et al., 2000a). Recombinant MVA has 

also been shown to be effective under conditions of pre-existing immunity to the vector 

(Ramirez et al., 2000b; Redchenko et al., 2004). There are now clinical examples for 

immunogenic vaccine antigen delivery by rMVA against a background of MVA-specific 

antibody, pre-existing, or induced through repeated rMVA immunisation (Harrop et al., 

2007). rMVA's ability to induce transgene responses in the presence of pre-exiting MVA 

immunity in homologous prime boost regimens may be due in part to the rapid expression 

kinetics of Vaccinia virus promoters and a lack of requirement for cell to cell spread of the 

vector. For each novel rMVA product, however, the impact of pre-existing immunity on 

rMVA efficacy should be evaluated (Kannanganat et al., 2010).
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Table 1.3 Recombinant MVA in clinical development. Examples of clinical candidates 

under development by institutes active in the field of rMVA research.

Target Vaccine(s) Antigens
Clinical
Phase

Ref

University of Oxford (UK)

Tuberculosis MVA85A Ag85A II (Sheehan et 
al., 2015)

Seasonal MVA-NP+M1 NP+M1 II (Berthoud et
Influenza al., 2011)

Malaria MVA ME-TRAP ME-TRAP Mb (Sebastian and
MVAMSP1, MVA MSP1, AMA1, CS lla Gilbert, 2015)
AMA1, MVA CS

MVARH5, MVA PvDBP RH5, PvDBP la
HIV infection M VA.H IVconsv 14 conserved regions lb (Letourneau

(Clades A, B, C of the HIV-1 etal., 2007)
and D) proteome

Bavarian Nordic (Denmark)
Respiratory MVA-BN RSV RSV F, GP (x2), N, M2 1 NCT

Syncytial Virus 02419391

Ebola/Marburg MVA-BN Filo Zaire Ebola virus GP, III (Tapia et al.,
Virus Disease Sudan Ebola virus GP, 

Marburg virus GP, 
and Tai-Forest Ebola 

virus NP

2015)

Transgene (France)
Cancer; lung TG4010 MUC1 and IL-2 Mb (Quoix et al., 

2011)
HPV - induced TG4001 HPV16 E6, E7 and IL- lib (Brun et al.,

disease 2 2011)

Oxford Biomedica (UK)
Cancer; TroVax® 5T4 II (Harrop et al.,

colorectal, 2012)
mesothelioma,

ovarian.

National Institute of Health (USA)
Ebola Virus MVA Ebola Z Zaire Ebola virus GP lb (Zhou and

Disease Sullivan, 2015)

HIV MVA-CMDR
CRF01_AE gag, env 

and pol
1

(Earl et al., 
2009)

Abbreviations: Ag85A, mycobacterial mycolyl transferase 85A; AMA-1, apical membrane 

antigen 1; CMDR, Chiang Mai Double Recombinant; GP, glycoprotein; HPV, human 

papilloma virus; IL-2, interleukin 2; M l, matrix 1 protein; ME-TRAP, multiple epitope string 

fused to thrombospondin-related adhesion protein; MSP-1, merozoite surface protein 1; 
MUC1, mucin 1; NP, nucleoprotein; PvDBP, Plasmodium vivax Duffy-binding protein; RH5, 
reticulocyte binding protein-like homologue 5; RSV F, G, N, M2, respiratory syncytial virus 

fusion protein, nucleoprotein, and matrix protein 2; NCT02419391; clinical trial ID for a 

Phase I Trial to Evaluate Safety, Tolerability and Immunogenicity in Healthy Adult Subjects.
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Heterologous prime-boost regimens

The potential for heterologous prime-boosting to enhance rMVA efficacy, particularly for 

the improvement of immunisation strategies which require cell mediated immunity, is now 

well established. Recombinant MVA administered in prime-boost regimens involving 

plasmid DNA or alternative viral vectors has been demonstrated to drive strong T cell 

responses (McConkey et al., 2003) and may be more effective when rMVA boosts non-MVA 

prime (Vuola et al., 2005), although this may differ between vaccine targets. Heterologous 

prime-boost regimens are being pursued in a clinical setting for vaccines targeted against 

HIV (Iyer and Amara, 2014), malaria (Hill et al., 2010) and tuberculosis (Ottenhoff and 

Kaufmann, 2012).

Immunisation route

Route of administration is sometimes thought to be another feature of the immunisation 

protocol that can influence rMVA efficacy. Intramuscular (i.m) and intradermal (i.d) 

delivery are commonly used for rMVA delivery with the latter leading to higher immune 

responses in some pre-clinical studies, which is evidently a result of the increased number 

of professional antigen-presenting cell encountered at this site (Abadie et al., 2009). 

However, any benefit conferred by i.d immunisation is outweighed by its reduced 

practicality in the clinic and tendency for localised reaction. In any event, clinical 

comparison of rMVA i.d and i.m administration demonstrates no significant difference in 

immunogenicity (Berthoud et al., 2011; Harrop et al., 2006). Mucosal delivery may be 

advantageous for diseases in which the pathogen is first encountered at the mucosa and 

this is under investigation for rMVA targeting HIV (Maeto et al., 2014) and tuberculosis 

(Satti et al., 2014).

Summary

In conclusion, while vector immunity must remain a consideration for MVA-based vaccines, 

there are many more favourable characteristics and the opportunity to optimise its use.
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There are now a number of vaccines under clinical study and there have been 

developments in manufacturing platforms and bespoke cell lines for manufacture.

1.2 Rational design of recombinant MVA

The principal feature of a vaccine based on a recombinant MVA virus is the antigen, or 

antigens, it has been engineered to deliver. For a given target disease, these antigens must 

be capable of evoking an immune response that imparts long-lasting, protective immunity, 

otherwise the vaccine will not be effective. As described below, there are aspects of rMVA 

construction that may impact upon the ability of the vectored antigen(s) to achieve this. 

The development of optimised rMVA is, therefore, very important. Our current 

understanding of rMVA design and optimisation has been honed over three decades of 

recombinant Vaccinia virus research. Underpinning the research are background 

knowledge in poxvirus biology and advances in genetic engineering.

1.2.1 MVA life cycle and gene expression

MVA is a member of the orthopoxvirus genus within the Poxviridae family. The virus 

contains a single copy of double stranded DNA genome, approximately 178 kb in length 

(Antoine et al., 1998). Unlike other DNA viruses, vaccinia replication occurs exclusively in 

the host cell cytoplasm and uses virus encoded polymerases and transcription factors. In 

common with most other viruses, replication is controlled via tight temporal regulation of 

gene expression falling into specific categories - early, intermediate and late (Broyles, 

2003), with an additional, immediate-early class of genes more recently described 

(Assarsson et al., 2008; Yang et al., 2010). The infectious virion has packaged within it 

enzymes and transcription factors required for early gene expression so that viral 

messenger RNA (mRNA) transcripts are detectable within 20 minutes post-infection 

(Baldick and Moss, 1993). Under the tight regulation of vaccinia transcriptional promoters, 

the first genes to be expressed code for immune modulators and for enzymes and 

transcriptional factors required for intermediate expression. After viral DNA replication,

19



intermediate gene transcription is activated and viral late gene transcription factors are 

expressed to enable subsequent late gene expression to occur. The proteins and enzymes 

required for early transcription are expressed at late times so that they are encapsulated 

into progeny virus ready for the next round of replication. The majority of virus particles 

are then released during cell lysis. The tightly regulated cascade of viral early, intermediate 

and late transcription is shown in Figure 1.3. Also shown is the point at which replication is 

defective for MVA infecting non-permissive cell types.

Figure 1.3. MVA life cycle. The infectious MVA virion enters the cell and 

undergoes replication prior to the release of viral progeny. In non-permissive 

cells, there is a block in MVA replication.

As MVA replication is blocked in the final step of virus particle maturation, authentic gene

expression is still able to occur at all stages, a feature confirmed for high level expression of

recombinant genes (Sutter and Moss, 1992) capable of evoking an effective immune

response (Sutter et al., 1994). That MVA replicates in the host-cell cytoplasm with relative
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autonomy from the host cell nucleus represents another favourable characteristic of rMVA- 

based vaccines from the perspective of GM safety i.e. the lack of opportunity for insertion 

of viral DNA into the host genome.

Host range restriction

During the course of its attenuation in primary chick embryo fibroblasts (CEF), 

approximately 30 kb of the parent vaccinia genome was deleted rendering MVA replication 

defective in human and most other mammalian cells. Whilst the genetic basis for host 

range restriction has not been fully elucidated, it is known to involve multiple gene defects 

(Meyer et al., 1991; Wyatt et al., 1998). Initially, propagation of MVA was thought to 

require culture in CEF, but later other non-human cell lines permissive to MVA growth were 

identified, and one in particular, baby hamster kidney cells (BHK-21) were found to support 

efficient replication (Carroll and Moss, 1997; Drexler et al., 1998; Okeke et al., 2006) and 

production of rMVA (Carroll and Moss, 1997). The most common cell cultures now in use 

for in vitro manipulation of MVA are primary CEF and BHK-21. Additional designer avian 

cell lines have been developed for optimised scalability and robustness for product-scale 

amplification of MVA (Brown and Mehtali, 2010; Jordan et al., 2011; Jordan et al., 2009).

1.2.2 The first recombinant Vaccinia viruses

The first examples of recombinant Vaccinia virus used homologous recombination as the 

mechanism for gene transfer (Mackett et al., 1982; Panicali and Paoletti, 1982) and this is 

still the most widely used technique for generation of rMVA. Methods for constructing 

rMVA are discussed in more detail in Section 1.3. Briefly, MVA permissive cells are infected 

with wild type virus and then transfected with a transfer plasmid vectoring exogenous DNA. 

Homologous recombination into a specific site of the MVA genome is mediated by 

homologous sequences flanking the transgene (Earl et al., 2001b). In addition to the gene 

of interest, the transfer plasmid contains a vaccinia promoter for control of its expression 

and, dependent upon the precise nature of the protocol, a selection marker to aid isolation
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of recombinant virus. An example based on transient expression o f green fluorescent 

protein (GFP) (W yatt et al., 2008b) is shown in Figure 1.4. During MVA replication, 

homologous recombination between genomic and transfer plasmid DNA occurs at a 

frequency o f approximately 1:1000 (Kremer et al., 2012). Thus, when genomic DNA is 

repackaged to yield MVA progeny, a proportion o f the population, reflective o f this 

frequency, is recombinant. Purified recombinant virus must subsequently be prepared 

through a process enabling selective enrichment.

MVA R FlankMVA L Flank GFPDR DR.

Transfection with 
transfer plasmid DNA

Infection 
with MVA

Flost cell 
nucleus

Host cell 
cytoplasm Homologous

recombination

Virus
assembly

r Serial . 
\  passage f y

Recombinant MVA with Markerless
GFP and Ag recombinant MVA

Figure 1.4 Generation of rMVA. Permissive cells are infected w ith  MVA and then 

transfected w ith  transfer plasmid DNA carrying a recombinant cassette. In addition 

to  the antigen o f interest (Ag), the cassette contains a selection marker (GFP), 

vaccinia promoters fo r transgene expression (P) and left (L) and right (R) MVA 

homologous flanks through w ith  recombination into the MVA genome is mediated. 

Direct repeat (DR) sequences flanking GFP lead to  transient expression o f the marker.
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1.2.3 Selection markers

Since the first rVACV were generated in the early 1980s, there have been many technical 

advances relating to construction and isolation of recombinants. Early methods relied on 

insertion of the foreign gene into the thymidine kinase (TK) coding sequence via 

homologous recombination and enrichment on the basis of a TK-phenotype selected by 

using bromodeoxyuridine (Brdll) (Mackett et al., 1982, 1984; Panicali and Paoletti, 1982). 

Later, this method was combined with simultaneous insertion of the Escherichia coli Lac Z 

gene, coding for (3-galactosidase, so that recombinants could be further distinguished from 

TK-mutants arising under the cytotoxic influence of BrdU; lac Z recombinant plaques turn 

blue when grown in the presence of X-gal (Chakrabarti et al., 1985). Other genes added to 

transfer vectors to improve versatility in recombinant isolation include antibiotic resistance 

markers such as the E. coli neomycin gene (Franke et al., 1985) and xanthine-guanine 

phosphoribosyl transferase (gpt) gene (Falkner and Moss, 1988) and additional colour 

markers, green fluorescent protein (GFP) (Wu et al., 1995a) and E. coli (3-glucuronidase A 

gene {gus) (Carroll and Moss, 1995).

Where markers are not cross-reactive, it is possible to combine them for improved 

selection, as in the case of a gpt-gus fusion expressed under a single vaccinia promoter (Cao 

and Upton, 1997). Alternatively, they can be used simultaneously in the construction of 

recombinants containing multiple inserts. Another strategy for the isolation of 

recombinant vaccinia, developed using VACV, involves use of a modified parent strain with 

a deficiency restored by a gene included in the transfer vector (Blasco and Moss, 1995; 

Perkus et al., 1989).

When making rMVA products destined for clinical use, inclusion of a selection marker is not 

desirable. Several systems have been designed to allow for transient expression of marker 

genes, many employing a second recombination event for their removal (Falkner and Moss, 

1990; Scheiflinger et al., 1998; Wyatt et al., 2008b). Where recombinant protein is
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expressed on the surface of infected cells, selection markers may not be required at all if 

recombinant plaques can be immunostained and recombinant plaques visualised for 

isolation and further purification (Earl et al., 2001b). A popular approach in the 

development of rMVA based vaccines today is the use of transiently expressed fluorescent 

markers. A transfer plasmid vectoring transient GFP has been described (Wyatt et al., 

2008b) in which recombinant virus is plaque purified and then subjected to serial passage 

so that the GFP marker, located in between two direct repeat sequences, is eventually lost 

through a second recombination event.

1.2.4 Vaccinia promoter selection

As described above (Section 1.2.1), Vaccinia virus replication occurs in the host cell 

cytoplasm, using vaccinia-encoded proteins for genome replication and transcription. The 

role of the vaccinia promoter sequence is to bind one or more transcription factors in order 

to recruit RNA polymerase and initiate transcription. The expression of a foreign gene by a 

recombinant vaccinia virus (rVV) is, therefore, dependent upon insertion downstream of a 

vaccinia promoter.

An alternative promoter can be used, but the corresponding transcriptional machinery 

must be provided during viral replication. Such a system has been developed based on the 

bacteriophage T7 system. Briefly, cells are infected with a recombinant vaccinia virus 

expressing the bacteriophage T7 RNA polymerase and then co-transfected with a vector 

carrying the gene of interest flanked by T7 promoter and terminator sequences, thereby 

giving rise to T7-mediated gene expression (Fuerst etal., 1986). The same system has been 

implemented using attenuated vaccinia (Wyatt et al., 1995). The T7 system has been 

described as an optimised in vitro expression tool, but has yet to be widely reported as a 

means for driving vaccine antigen expression in vivo.

Vaccinia promoters, by virtue of the transcription initiation factors they bind (reviewed by 

(Broyles, 2003)), control the temporal regulation of gene expression and so can be classed



as early, intermediate or late (described in Section 1.2.1). They also affect the strength of 

gene expression. As described below, this is an important consideration in the design of a 

recombinant vaccine.

Vaccinia promoter structure

Vaccinia promoter studies employing a transgene encoding an enzyme, e.g. 

chloramphenicol acetyltransferase (CAT), have enabled promoters to be fully characterised. 

Following insertion, gene expression can be accurately measured via an assay for enzymatic 

activity (Mackett et al., 1984). The earliest promoter studies served to confirm the location 

of transcriptional regulatory regions within putative promoter sequences, and define their 

temporal category with regards to early or late expression (Weir and Moss, 1984). Among 

the first regulatory regions to be characterised was a 275 bp promoter sequence for a 

constitutively expressed protein of 7.5 kDa. This promoter (P7.5) was shown to contain 

tandem, independently-operating early and late promoter regions (Cochran etal., 1985).

Later, in depth mutagenesis studies identified in detail the promoter elements critical to 

expression activity for both early (Davison and Moss, 1989a), and late promoters (Davison 

and Moss, 1989b). Dissection of promoter sequences by individual base pair substitutions 

has revealed that early promotors comprise an A/T rich critical region of approximately 16 

bp, followed by a less critical region of 11-14 bp, beyond which is the initiation region 

(Figure 1.5A). Late promoters are also made up of 3 regions: a 20 bp A/T rich sequence, a 6 

bp spacer region and a highly conserved TAAAT sequence, within which transcription is 

initiated (Figure 1.5B). In the course of determining the significance of individual base pairs 

within the promoter, mutations capable of increasing transcriptional activity were 

identified, thus enabling the development of optimised promoters including the synthetic 

promoter (Psyn), which comprises optimised, overlapping early and late elements 

(Chakrabarti et al., 1997).
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Historically, vaccinia virus genes have been categorised as either 'early' or 'la te / according 

to the timing of their expression relative to viral DNA replication. An intermediate category 

of genes has since been described in which gene expression occurs at the onset of DNA 

replication and via a promoter that does not utilise the complete TAAAT initiator (Vos and 

Stunnenberg, 1988). Intermediate promoters have been characterised via mutational 

studies (Baldick et al., 1992) and shown to comprise a 14 bp A/T rich core element, a 10 -11 

bp spacer and then a critical (initiator) region with the sequence TAAA (Figure 1.5C).

More recently, early vaccinia genes have been further categorised to include an immediate- 

early subset (Assarsson et al., 2008; Yang et al., 2010), for which there has been an initial 

report of a potential consensus promoter sequence (Di Pilato et al., 2013).

A. Early promoter elements

16 bp A/T rich 11 bp 7 bp

Core Spacer Initiator

B. Late promoter elements

20 bp A/T rich 6 bp TAAAT

Core Spacer Initiator

C. Intermediate promoter elements

14 bp A/T rich 10-11 bp TAAA

Core Spacer Initiator

Figure 1.5 Conserved elements of vaccinia promoter sequences. All three temporal 
classes of promoter comprise three regions - the core, spacer and initiation region. 
The core sequence is rich in adenine/thymine (A/T) bases. The initiation region is the 

site at which transcription starts. The core region binds transcription factors and so 

has sequence requirements, alterations to which will affect promoter activity.

Vaccinia promoter selection for optimal immunogenicity

Intuitively, rW-based vaccines must strive for high levels of transgene expression to

increase the immunological potency of the vectored antigen. The first examples of rW
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preceded elucidation of vaccinia promoter sequences and so regulatory regions were 

selected on the basis of their association with proteins that were abundant at both the 

early and late stages of the virus life cycle, e.g. a constitutively expressed protein of 7.5 

kDa. These viruses were capable of inducing antigen-specific antibodies in animal models 

and induced protective immunity. The first examples demonstrated immunogenicity of 

influenza virus haemagglutinin (Panicali et al., 1983) and immunogenicity and protective 

pre-clinical efficacy for hepatitis B antigen (Moss etal., 1984; Smith et al., 1983).

Following the characterisation of vaccinia promoters, optimisation of expression might 

have focused on late promoter elements which can give rise to higher protein levels; late 

promoters are active at a time when DNA template and transcription factors are relatively 

abundant. However, rVV studies have shown that promoter kinetics, and in particular late- 

stage expression, can be detrimental to transgene immunogenicity. Coupar et al. 

investigated the immunogenicity of rVV vectoring influenza haemagglutinin (HA) under the 

control of three different promoters: PF (early), P7.5 (early/late) and P l l  (late). All induced 

antibody responses in mice, but the P l l  construct produced limited T cell responses 

despite driving the highest levels of expression (Coupar et al., 1986).

Vaccinia virus late-stage gene expression is now understood to be blocked in professional 

antigen presenting cells (APC). APC are vital for the induction of cell-mediated immunity as 

they process and present antigens to T cells. That APC are able to support the early stages 

of the VV life cycle, but block late-stage replication has been demonstrated for rVV in 

macrophages (Broder et al., 1994) and in dendritic cells (DC) (Bronte et al., 1997). It has 

also been shown that entry into DC may be less efficient for Vaccinia virus (Drillien et al., 

2000). As discussed above (see Section 1.1.2), a potential application for viral vaccine 

vector technology is to induce both humoral and cell-mediated immune responses, to 

counter those infectious diseases for which antibody-responses alone have proved 

insufficient. Late-stage expression may have a role in generating recombinant antigen in
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non-APC cell types, but early-stage expression is vital for the quality of the immune 

response required.

As already stated, in the course of developing rVV based viral vectors, MVA was selected as 

a potential alternative with an improved safety profile. MVA is replication deficient, but in 

non-permissive cells gene expression, including the expression of recombinant genes, is 

able to occur (Sutter and Moss, 1992). That MVA is replication-deficient arguably increases 

the need to maximise transgene expression. The first rMVA-based vaccine sought to 

achieve this by selecting the optimised, synthetic early/late promoter Psyn; a rMVA virus 

was constructed to express influenza virus antigens and was successful in inducing 

protective immunity in mice (Sutter et al., 1994). However, when Psyn was selected to 

drive expression of parainfluenza virus 3 (PIV3) antigens, the resultant rMVA replicated 

poorly in vitro, with the high level of gene expression apparently detrimental to viral fitness 

(Wyatt et al., 1996). Powerful promoters, therefore, can result in cytotoxic effects where, 

dependent upon the gene being expressed, the recombinant may be unstable. With a view 

to using a promoter optimised for expression and stability, Wyatt et al. developed a novel 

promoter of intermediate strength to Psyn and the weaker P7.5. Informed by earlier 

mutagenesis studies, the naturally occurring early/late promoter for vaccinia gene H5 was 

altered via two nucleotide substitutions to create modified H5 (mH5). An important 

observation for the activity of this promoter, as characterised via expression of 15- 

galactosidase, was that, while it was of intermediate strength to Psyn and P7.5, it delivered 

three-fold higher early expression relative to Psyn. As described above, this may be an 

advantageous feature for transgene expression in APC and induction of cellular immunity. 

Thus, promoter mH5 is favourable for expression, stability and immunogenicity. Indeed, 

the mH5 promoter has been used as a comparator in more recent vaccinia promoter 

optimisation studies (Becker et al., 2014; Orubu et al., 2012).
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It is evident that vaccinia promoter selection is important to the efficacy of rMVA-based 

vaccines from ongoing efforts to optimise vaccinia promoter usage. As early-stage 

expression is advantageous for the promotion of T cell mediated immune responses, recent 

rMVA studies have investigated promoters driving immediate-early expression. As yet, no 

particular promoter features, in terms of the DNA sequence, have been associated with 

immediate-early expression. Preliminary attempts at driving immediate-early expression 

have shown that it may correlate with enhanced CD8+ T cell responses (Baur et al., 2010; Di 

Pilato etal., 2013).

1.2.5 Immunomodulatory molecules

The effectiveness of MVA based vaccines may also be improved through insertion of 

immune co-factors (ICF), especially where it is important to steer the immune system 

towards a particular type of T-helper response. A key advantage of MVA as a viral vector 

for vaccine antigen delivery, is its capacity for recombinant DNA; theoretically 30 kb. The 

first ICF to be co-expressed in rVACV was IL-2 which was shown to have an attenuating 

effect in nude mice (Flexner et al., 1987; Ramshaw et al., 1987). Subsequently, rVACV co

expressing a range of immune enhancers have been constructed with a view to creating 

cytokine microenvironments in which favourable antigen-specific responses are activated. 

Many cytokines, e.g. IL-2 and IL-12, have anti-viral and anti-tumour activity, however, their 

toxic side effects can be severe when delivered systemically. Reports show that co

expression of a model tumour-associated antigen (TAA) and IL-12 by a rVACV can obviate 

the requirement for systemic delivery of toxic levels of IL-12 (Carroll et al., 1998). Co

expression of immune co-factors can offer a further dimension to safe and effective 

enhancement of rMVA based vaccines as has now been demonstrated in clinical studies 

(Dreicer et al., 2009; Liu et al., 2004; Ramlau et al., 2008), but for each construct, safety was 

required to be demonstrated.
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1.2.6 Antigen fusion strategies

Viral vaccine vectors and plasmid DNA vaccines carry antigens in the form of nucleic acid. 

To achieve effective delivery, the antigen must be expressed by the host cell, i.e. within the 

vaccine recipient. In order to achieve optimal secretion and presentation to immune cells, 

sorting signals or 'leader sequence' peptides can be expressed fused with the recombinant 

antigen, to direct them towards favourable intracellular trafficking pathways. Leader 

sequences that have been employed for this purpose include naturally occurring sorting 

signals taken from viral and bacterial genes. Eukaryotic genes have also provided a number 

of sequences and are more diverse, a product of their more complex protein trafficking 

which involves many intracellular compartments.

The first studies to investigate 'leader sequences' were principally aimed at investigating 

antigen processing and, in particular, the presentation of antigen peptides by major 

histocompatibility complex (MHC) class I and class II molecules (Bacik etal., 1994). In these 

studies, rVV provided a means of delivering leader sequence-antigen chimeras to 

investigate the role of the sorting signals themselves. However, the practical implications 

for virally vectored vaccine antigens were noted and explored. It was subsequently 

demonstrated that fusion of an endoplasmic reticulum targeting signal, derived from an 

adenovirus protein (E3/19k), could enhance CD8+ T cell responses to an influenza virus 

antigen (Restifo et al., 1995). Other examples of antigen fusions in rVV viral vaccine studies 

followed and, later, DNA provided a more efficient means of investigating antigen fusions. 

Established examples, the vectors they have been studied in, and their impact on transgene 

immunogenicity are listed in Table 1.4 and are summarised below.

Leader sequences reported to promote intracellular MHC II binding and, therefore, CD4+ 

responses, include the MHC ll-binding Invariant chain (li), the cytoplasmic tail sequence of 

CD1 antigen presentation molecule (CD1) and the lysosomal-associated membrane protein 

signal sequence (LAMP-1). These leaders direct proteins to intersect with the MHC II



pathway in the endoplasmic reticulum (ER), endosomes and late endosomes/lysosomes, 

respectively (Koch eta l., 2000; Niazi etal., 2007).

Table 1.4. Examples of leader usage in vaccine development studies. Established 

examples are listed in chronological order of their reporting.

Leader Vector Leader contribution Ref

LAMP- DNA ■ Rerouting to MHC II pathway, enhanced CD4+ (Wu et al.,
1 presentation 1995b)

rVV ■ HPV antigen retargeted to
endosomal/lysosomal compartments.

■ Improved immunogenicity

TPA DNA ■ Increased TB antigen expression in vitro. (Li et al.,
■ Increased Ab, Th-1 and Th-2 responses 1999)
■ Improved protective efficacy.

li DNA ■ Rerouting to MHC II pathway via endosomal (Koch et al.,
targeting 2000)

LAMP- DNA ■ Rerouting to MHC II pathway (Marques et

1 ■ Improved HIV antigen expression al., 2003)
■ Increased immunogenicity

TPA DNA ■ DNA vaccine design study showing higher (Wang et al.,
extracellular protein levels with TPA 2006)

BVP22 DNA ■ Both leaders used fused together (Mwangi et

al., 2007)
li ■ Enhanced priming and expansion to B and T

cell epitopes

CD1 DNA ■ Endosomal targeting - trafficking to MHC Class (Niazi et al.,
II pathway 2007)

Abbreviations: LAMP-1, lysosomal associated membrane protein -  1; rVV, recombinant
vaccinia virus; HPV, human papillomavirus; Ab, antibody; li, MHC Class II invariant chain,
BVP22, bovine herpesvirus 1 protein; CD1, cytoplasmic tail sequence of CD1 antigen
presentation molecule; TPA, human tissue plasminogen activator gene sorting signal.

The signal sequence of the human tissue plasminogen activator gene (TPA) targets protein 

to the ER for secretion. Use of TPA as a vaccine antigen fusion has been rationalised by 

studies demonstrating that it improves expression levels, immunogenicity and protective 

efficacy. It is commonly used in TB vaccines and is discussed further in Section 1.4.3.
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Ubiquitin (Ub) and M. tuberculosis heat shock protein 70 (HSP70) have been shown to 

promote presentation to the MHC I pathway and, therefore, promote CD8+ responses 

(Chen et al., 2000; Leifert et al., 2004). They achieve this by targeting antigen towards 

degradation pathways giving rise to peptides that are transported to the ER. There the 

peptides co-localise with MHC I molecules to which they can bind and be taken to the cell 

surface for presentation to CD8+ T cells.

Targeting antigen to the cell surface has proved effective as a means of enhancing antibody 

responses. This has been demonstrated using the transmembrane and cytoplasmic domain 

of Vesicular Stomatitis Virus glycoprotein (VSVg) fused to the C terminus of beta subunit of 

human chorionic gonadotropin (Srinivasan et al., 1995). Antibody responses, as well as 

CD8+ responses, have also been promoted by targeting antigen to the endosomal and 

lysosomal compartments using LAMP-1 (Wu etal., 1995b).

Another type of 'leader' sequence reported to influence the immunogenicity of 

recombinant vaccines is the BVP22 gene (bovine herpes virus 1 tegument protein). BVP22 is 

thought to promote intercellular trafficking, although the precise mechanism through 

which it achieves this is still under debate (Leifert et al., 2004; Mwangi et al., 2005).

A benefit of the antigen fusion approach is that findings are relevant to, and so can be 

exploited by, all vaccines based on in vivo expression. This includes viral vectors such as 

MVA and Ad as well as plasmid DNA vaccines.

1.2.7 Insertion site

Following the design of the recombinant antigen, the site of insertion into the MVA genome 

must be selected. In addition to the TK region described above, other sites targeted for 

exogenous DNA insertion are the haemagglutinin (HA) gene (Antoine et al., 1996), the more 

commonly used deletion (Del) sites formed during the course of MVA's attenuation (Sutter 

and Staib, 2003) and, most recently, intergenic regions (IGR) (Timm et al., 2006). Insertion
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into IGRs adjacent to essential MVA genes has been used as a strategy for generating stable 

rMVA where exogenous DNA has otherwise been observed to promote instability. In the 

event of a deletion or truncation, the essential genes are affected and the strain rendered 

unable to replicate; thus only full length recombinants are propagated (Manuel et al., 2010; 

Wyatt et al., 2009). A diagram of the MVA genome highlighting the positions of the 

Deletion sites commonly targeted for antigen insertion is shown in Figure 1.6.

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

MVA (177,923 bp) 
Hindlll restriction map

Figure 1.6 Hindlll restriction map of the MVA genome. Fragments forming after 

Hindlll restriction enzyme digest of the linear genome are labelled A -  0  in order of 

descending size. The positions of the six major genomic deletion sites arising during 

MVA's attenuation are indicated. The figure is adapted from a SeqBuilder (DNASTAR) 

file of the MVA DNA sequence (Accession number U94848).

1.3 Construction of recombinant MVA

Once the genetic configuration of a novel rMVA has been decided upon, the required 

sequence must be generated and inserted into the MVA genome. The first examples of 

recombinant vaccinia virus used homologous recombination as the mechanism for gene 

transfer (Mackett et al., 1982; Panicali and Paoletti, 1982) and this technique remains 

widely used (Kremer et al., 2012). However, bacterial artificial chromosome technology is 

another approach that is now in use and which has favourable attributes.
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1.3.1 Transfer plasmid methodology

As described above in Section 1.2.2, and in Figure 1.4, transfer plasmid methodology 

exploits the tendency for homologous DNA sequences to undergo recombination (Sigal and 

Alberts, 1972). Transfer plasmids contain the recombinant cassette destined for insertion 

in the MVA genome, flanked by sequences homologous to the intended site of insertion 

(Figure 1.7A). Recombination between the homologous sequences occurs when purified 

transfer plasmid DNA is transfected into MVA-infected cells.

The precise nature of the homologous flanks determines not only the site of insertion but 

also the orientation of the inserted sequence and the outcome of recombination in terms 

of any potential deletion of viral DNA (Figure 1.7B). The design of the intervening 

recombinant cassette determines the nature of the recombinant strain generated. Key 

features include the antigen to be inserted, the vaccinia promoter selected for control of its 

expression and a selection marker under the control of its own promoter; an example 

incorporating green fluorescent protein (GFP) is shown in Figure 1.7C. Where a markerless 

recombinant is required, transient expression can be achieved by inclusion of a direct 

repeat sequence that will lead to a further recombination event through which the marker 

will be removed (Figure 1.7D).

Transfer plasmids are based upon E. coli cloning vectors and so are readily propagated and 

isolated for repeat rounds of manipulation; they have an origin of replication (ori) enabling 

maintenance at high copy number and maintain selective pressure via an antibiotic 

resistance marker (Figure 1.7D). Using standard cloning methods (Green, 2012), any 

alteration can be made to the portion of the transfer plasmid representing the recombinant 

cassette, including introduction of N and/or C terminal fusions. These may be B cell 

epitopes to allow for immunodetection of expressed product, or leader sequences that will 

influence intracellular processing of the antigen upon its expression in MVA-infected cells.
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Figure 1.7 Main features of the transfer plasmid. A) In the linear, double-stranded DNA 

(dsDNA) o f the MVA genome, sequences to the le ft (L) and right (R) o f the insertion site are 

repeated in the transfer plasmid either side o f the recombinant cassette. B) If L and R are 

not directly adjacent, the intervening sequenced (hatched area) w ill be deleted upon 

recombination. C) The cassette contains the gene o f interest (GOI), a vaccinia prom oter (P) 

to  drive its expression and a selection marker (GFP) under the control o f its own prom oter. 

D) If a markerless recombinant is required, a direct repeat (DR) o f a portion o f the 

preceding flank is included. The transfer plasmid has an origin o f replication (ori) fo r use as 

an E. coli cloning vector, and an antib iotic resistance gene, e.g. ampicillin (Ampr).
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The transfer plasmid may also incorporate Gateway® cloning (ThermoFisher Scientific, USA) 

for rapid insertion of the gene of interest (Hartley et al., 2000). The Gateway® system 

employs a recombination mechanism based on lambda phage attachment sites to allow for 

movement of genes between plasmids without traditional cloning methods, i.e. restriction 

digest and ligation. According to Gateway® terminology, the transfer plasmid is converted 

to a Destination vector (pDEST) so that the gene of interest (GOI) can be received, in frame 

with existing N/C terminal fusions, from another plasmid termed an Entry vector (pENTR). 

A combination of antibiotic resistance markers and a copy of the ccdB lethal gene ensure 

that the desired plasmid is readily isolated following GOI insertion. Using the Gateway® 

system, transfer plasmids can be generated that are ready for any GOI to be efficiently 

introduced.

1.3.2 Bacterial Artificial Chromosomes

Bacterial artificial chromosomes are also E. coli cloning vectors, but they are based on a 

naturally occurring collection of functional segments known as the fertility factor, 'F'. The 

initial description of F was related to the apparent ability or inability of bacteria to 

participate in genetic exchange (Lederberg et al., 1952). Since then, F has been 

characterised as a replicon on an episomal plasmid (Wollman and Jacob, 1958), the 

constitutive components of which enable maintenance at one or two copies per cell, with 

faithful allocation to daughter cells upon replication (Ogura and Hiraga, 1983).

Advances in the understanding of F, in particular the role of individual regulatory genes in 

the control of replication and copy number, has informed the development of F-based 

vectors for cloning of extrachromosomal DNA at low copy number (Hosoda et al., 1990; 

O'Connor et al., 1989; O'Connor et al., 1986). A driver for this area of cloning has been the 

need to propagate large segments of DNA, which in a high copy number system would be 

prone to recombination events. In an application related to human genome sequencing, an 

F-based vector was developed for the cloning and stable maintenance of fragments up to
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300 kb. It was in this work that the term bacterial artificial chromosome (BAC) was 

introduced (Shizuya et al., 1992).

The advent of BAC vectors provided a new means with which to manipulate viral genomes. 

Briefly, the defining features of the BAC plasmid are introduced to the viral genome using 

transfer plasmid methodology. Having inserted the regulatory genes of the F replicon, along 

with an antibiotic resistance marker, extracted viral genomic DNA can be electroporated 

into E. coli to be maintained and propagated as a BAC vector. This affords the opportunity 

to further manipulate the viral genome within the bacterial cloning vector. To produce 

recombinant virus, the BAC DNA is isolated and transfected into eurkaryotic cells for 

expression and repackaging to virions.

The generation of viral recombinants using the BAC system was first demonstrated with 

baculovirus (Luckow et al., 1993) and then herpesvirus (Messerle et al., 1997) and 

cytomegalovirus recombinants (Borst et al., 1999). Application of BAC methodology to the 

manipulation of Vaccinia virus necessitated two additional aspects to accommodate 

features of the vaccinia virus life cycle. Firstly, a means through which to circularise the 

linear dsDNA vaccinia genome; only circular DNA can be transferred to E. coli for further 

propagation, and secondly, use of a helper virus to yield infective virions from transfected 

eurkaryotic cells (Domi and Moss, 2002). The approach has since been applied to MVA 

(Cottingham et al., 2008).

The principal advantage of BAC technology for the generation of rMVA is that it negates the 

need to plaque purify; upon repackaging, the resultant virus should represent a 

homogenous recombinant strain. The main disadvantage is the lengthy set-up time 

required for creating a BAC based MVA vector and the risk of contamination of the cloned 

genome with bacterial insertion sequences (Cottingham, 2012).
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1.3.3 Preparation of recombinant MVA for clinical use

Regardless of the methodology selected for construction, rMVA can be generated and 

amplified under regulated (GMP) conditions for use in clinical trials. Retention of the 

selection marker at this stage is undesirable, but it can be removed via a recombination 

event using either methodology (Cottingham and Gilbert, 2010; Wyatt et al., 2008b). 

Evidence that rMVA are amenable to downstream development and large scale production 

is provided by the range of diseases they are being developed for use against, of which TB is 

one.

1.4 Recombinant MVA for the prevention of tuberculosis

Tuberculosis (TB) ranks alongside HIV/AIDS as the leading cause of death attributable to an 

infectious disease. In 2014, 9.6 million people fell ill with TB and 1.5 million people died, of 

which 0.4 million were co-infected with HIV (WHO, 2015). In addition, it is estimated that a 

third of the global population may be latently infected with TB and at risk of reactivation of 

disease.

A number of first and second-line drugs are available for the treatment of TB, but 

treatment schedules are challenging; they are dependent upon early diagnosis and lengthy 

treatment regimens which require directly observed therapy (DOT) and follow up support 

(Zumla et al., 2013). Drug resistance screening is also vital as there are an increasing 

number of multi-drug resistant (MDR) and extensively-drug resistant (XDR) strains of M. 

tuberculosis emerging.

As described earlier, a vaccine for TB was developed in the 1920's and remains in use. BCG 

is based on a live, attenuated form of M. bovis and is administered to infants as part of the 

Expanded Programme of Immunisation (EPI). BCG, however, has variable efficacy in 

different populations, ranging from 0 -  80% (Fine, 1995); it is considered ineffective at 

preventing pulmonary TB in adults, but provides some protection against the most serious
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forms of TB in children. Another disadvantage of the BCG vaccine is that it is live and 

replication competent and so is contraindicated for HIV positive patients. Thus, in areas of 

high HIV incidence, where TB is also commonly prevalent, BCG is unsuitable for use in a 

proportion of those requiring protection.

While the combination of improved diagnosis and treatment has done much to control TB, 

eradication of the disease is generally accepted to be dependent upon licensure of a 

vaccine superior to BCG (Raviglione et al., 1995). As with other diseases, the natural 

immune response to TB disease has been studied with a view to developing a vaccine that 

will emulate it.

1.4.1 Tuberculosis disease and immunity

The aetiological agent of TB is Mycobacterium tuberculosis (Mtb). The bacterium is spread 

by the aerosol route when an individual with active disease is coughing. Mtb is an 

intracellular pathogen which in the lung invades professional phagocytic cells such as 

macrophages and dendritic cells. A consequence of the immune response to Mtb infection 

is the formation of granulomatous lesions, with the loss of healthy lung tissue.

In the first stages of infection, innate immunity promotes phagocytosis of Mtb as well as 

the recruitment of further phagocytes, which in turn are also infected (Ernst, 2012). This is 

the beginning of granuloma formation. After a short delay, an adaptive immune response 

commences with the induction of IL-12 release. Phagocytosis of mycobacteria is a strong 

inducer of IL-12 and leads to initiation of a Th-1 type response, characterised by IFNy 

release (Ladel et al., 1997). In the adaptive immune response, professional APC migrate to 

the draining lymph nodes where they present MHC-bound antigen to T cells. Antigen- 

specific T cells subsequently expand and home to the site of infection to promote 

downstream antimicrobial pathways, e.g. phagolysosome fusion. At this stage, the 

adaptive immune response further contributes to granuloma formation. Whilst
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immunopathology might ultimately be of detriment to the host, it is essential if 

dissemination of Mtb is to be prevented.

As Mtb is an intracellular pathogen, presentation by MHC Class II molecules and recognition 

by CD4+ T cells is the dominant feature of the immune response. In particular, Th-1 

immunity is induced and Th-l-type cytokines, IFNy and TNFa, are essential for the control 

of bacterial growth (Flynn, 2004). Mtb infection has also been shown to induce CD8+ T cell 

responses and it has been proposed that the relatively weaker ability of BCG to do the same 

might be a reason for its ineffectiveness (Ryan et al., 2009). Another subset of CD4+ helper 

cells with an essential role in controlling early Mtb infection are Th-17 cells. They are 

stimulated by IL-23 and release IL-17, a proinflammatory cytokine which serves to further 

mediate inflammation (Khader and Cooper, 2008).

An effective adaptive immune response is sufficient to arrest the growth of Mtb, but is not 

sterilising. At this stage an individual is asymptomatic and considered to have latent TB 

infection (LTBI). This occurs in the majority of cases, but approximately 10% of those 

infected will go on to develop disease at a later date. Reactivation can be triggered by 

immunosuppression due to age, malnutrition, HIV infection or other factors.

1.4.2 Strategies for an improved TB vaccine

While the immune response to Mtb, and to BCG vaccination, has been studied in order to 

characterise protective immunity, a correlate of protection has not been found (Ottenhoff 

et al., 2012). Th-1 immunity and IFNy release are considered central to the control of Mtb 

infection and so induction of this type of immune response has been the key readout in TB 

vaccine development to date, and will likely remain so. However, a more balanced 

CD4+/CD8+ T cell response is being viewed with increasing importance, as is the induction 

of antibody responses for blocking initial infection (Andersen and Woodworth, 2014).
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As the current TB vaccine, BCG, confers sufficient benefit to  remain in use, there are tw o 

approaches under study fo r the development o f a novel TB vaccine. Most o f the novel TB 

vaccines under development aim to improve upon the immune response induced by BCG 

by serving as a booster inoculation. Others strive to  replace or supplement BCG as a 

prim ing agent, fo r which booster vaccines may still be required. There are 13 vaccines 

currently under clinical study and they comprise live attenuated whole cell vaccines 

(including Nontuberculous mycobacteria (NTM) strains), recombinant protein in adjuvant 

and viral vectored vaccines (Figure 1.8). Of the vaccines delivering sub-units, the number o f 

antigens they deliver ranges from  1 - 4 .

Phase I Phase lla
> 2

Phase lib Phase III >
M. obuense (NTM)

RUTI 
(fragmented Mtb)

VPM 1002 
(Recombinant BCG)

MTBVAC 
(attenuated M tb)

H I IC31 
(Ag85B, ESAT-6)

M72 + AS01E 
(MTB32A and MTB39A)

Ad
(AgSSA)

H56 IC31 
(Ag85B, ESAT-6, 

Rv2660c)

Ad -  MVA 
(Ag85A)

H4 in IC31 
(Ag85B, TB10.4)

MVA
(Ag85A)

1D93 + GLA-SE 
(Rv2608, Rv3619, 

Rv3620, and Rvl813)

M. vaccae (NTM)

Mycobacterial whole 
cell or Extract

Protein in adjuvant
(antigens)

Viral Vector
(antigens)

Figure 1.8 The Global Clinical Pipeline for TB Vaccine Candidates. Adapted from  

'The Global Plan to  End TB 2016 -  2020', (StopTBPartnership, 2015). Adjuvants: 

IC31, antibacterial peptide (KLKL(5)KLK) plus synthetic oligodeoxynucleotide (ODNla) 

(O lafsdottir et al., 2009); AS01E, Monophosphoryl Lipid A (MPL) and QS-21 (Quillaja 

saponaria purified extract) liposome form ulation (Penn-Nicholson et al., 2015); GLA- 

SE, glucopyranosyl lipid adjuvant -stable emulsion (Baldwin et al., 2013)

TB vaccine antigens

M tb antigens can be referred to  by the ir gene number (denoted Rv) or, if well 

characterized, by the name commonly applied to  the gene product. In 1993, the WHO
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declared TB a global emergency driving an increase in TB vaccine research. Early TB vaccine 

candidates were focused on antigens that would be abundant and expressed in the initial 

stages of TB infection. These included secreted proteins of the Ag85 complex: Ag85A, 

Ag85B and Ag85C (mycolyl transferases essential for maintaining Mtb cell wall integrity), 

and early secretory antigenic target of 6 kDa (ESAT-6; Rv3875). Other antigens were 

identified on the basis of their immunodominance, e.g. TB10.4 (Rv0288), Mtb32 (Rv0125) 

and Mtb39 (Rvll96). Immunogenicity and efficacy studies in animal models confirmed the 

validity of these vaccine candidates (Skeiky and Sadoff, 2006).

Overall, the goal for novel TB vaccines is to prevent primary infection, latent TB infection 

and reactivation of latent infection. As this will require protective efficacy against multiple 

stages of diseases, it is generally agreed that single subunit approaches will be improved 

upon by combining multiple antigens. Hence, efforts to identify further TB vaccine antigens 

are ongoing, particularly those that will target later stages of disease. A strategy for 

identifying such antigens has been to perform in vitro transcriptomic studies in which 

conditions of latent TB are replicated (Bacon and Marsh, 2007). Latency antigen Rv2660c 

(Figure 1.8) was discovered through a combination of in vitro and in vivo transcriptional 

analyses and was incorporated into a formulation containing earlier stage antigens to 

create a multi-stage vaccine (Aagaard et al., 2011). In the multi-subunit vaccine ID93 

(Aeras/IDRI, USA), antigen Rvl813 is upregulated in latency (Baldwin et al., 2013). Another 

late-stage vaccine candidate demonstrating protective efficacy pre-clinically is the acyl 

transferase R vO lll (Vipond et al., 2006a; Vipond et al., 2006b). Formulated as plasmid 

DNA vaccine, R vO lll is protective is guinea pig models of aerosol infection and has been 

shown to contain a number of T cell epitopes as determined by murine immunogenicity 

studies and in vitro assays for human T cell epitope mapping.
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TB vaccine delivery systems

With regards to the optimal delivery system for subunit candidates, plasmid DNA is a 

valuable tool for pre-clinical research, but in larger animals is reliant on additional 

strategies for improving its effectiveness, e.g. use in heterologous prime-boost regimens or 

gene-gun approaches. DNA-viral vector boosting strategies have been investigated for use 

against TB, but there are currently no clinical TB vaccine candidates based on plasmid DNA.

The feasibility of a protein in adjuvant approach is made more difficult by the absence of 

licensed adjuvants for potentiation of cell mediated immune responses. All of the clinical 

candidates based on recombinant protein are combined with proprietary adjuvants, which 

in themselves represent a novel area of research. The examples currently under clinical 

study have been shown to evoke cell mediated responses relevant to protection against 

Mtb infection and are listed under Figure 1.8.

Modified BCG can serve as a bacterial vector for the delivery of TB vaccine antigens. The M. 

bovis BCG strain was attenuated by serial passage, during which 38 open reading frames 

were deleted from the genome (Behr et al., 1999). BCG can be modified to express 

antigens that have been deleted, or to overexpress antigens that have been retained. 

Currently, the only recombinant BCG under clinical development is modified to enhance 

endosomal escape (Kaufmann et al., 2014). A key objective of this approach is that the 

safety and protective efficacy of the parent BCG is improved; a BCG strain overexpressing 

Ag85A, Ag85B and Rv3407 was recently assessed in Phase I clinical trials, but development 

ceased after adverse events (reactivation of shingles).

For delivery of vaccine antigens that are expressed by BCG, viral vectors exhibit many 

favourable characteristics for use as a boosting agent. This includes the capacity to deliver 

large bacterial proteins and the ability to induce potent humoral and cell mediated immune 

responses. Of the many viral vectors available for vaccine antigen delivery (reviewed in
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Section 1.1.3), Ad and MVA are to the date the most widely evaluated (Rollier et al., 2011), 

and their ability to boost responses to BCG has been confirmed.

1.4.3 Optimisation of MVA for delivery of TB antigens

The first studies to evaluate Vaccinia virus for the delivery of TB antigens compared 

replication competent and attenuated viruses Antigen-specific antibody, CD4+ and CD8+ 

responses were induced by both rVV and rMVA carrying MPT64, and were greater following 

a prime with plasmid DNA vectoring the same antigen (Feng et al., 2001). A heterologous 

prime-boost of DNA-MVA vectoring TB antigens ESAT-6 and MPT63 also induced CD4+ and 

CD8+ responses in mice and was shown to provide protection against Mtb challenge 

(McShane et al., 2001).

Immunisation protocol and rMVA formulation

Used as a heterologous boost following immunisation with BCG, MVA vectoring the TB 

antigen Ag85A (MVA85A) boosts CD4+ and CD8+ responses in mice (Goonetilleke et al., 

2003) and humans (McShane et al., 2004). Until recently, MVA85A was the most clinically 

advanced TB vaccine. It has been proven safe and immunogenic in several groups, 

including infants, and can induce Th-1 and Th-17 responses which are regarded as 

important for protection against TB. In 2011, MVA85A became the first TB vaccine to enter 

an efficacy trial since BCG studies performed over 40 years prior. In the study, infants that 

had been immunised with BCG at birth were boosted with MVA85A or given a placebo. 

While the vaccine was demonstrated to be safe, no improvement upon the placebo was 

seen (Tameris et al., 2013).

As described above (Section 1.1.4), optimisation of MVA can include investigation of 

heterologous prime-boost regimens. Any MVA vaccine for TB will be used in a 

heterologous prime-boost schedule with BCG serving as the priming agent, but this can be 

enhanced by further heterologous boosting, as with Ad-MVA which is being investigated in
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humans (Figure 1.8, Phase I). Alternative routes of immunisation can also be explored and 

recently the delivery of MVA85 by the aerosol route has been assessed (Satti et al., 2014).

Heterologous prime-boost regimens and route of delivery are a means of optimising rMVA 

beyond its construction. Prior to this it should be optimised at the genetic level for optimal 

expression and delivery of the recombinant antigen(s).

Optimisation of expression

In the limited number of studies reporting rMVA delivery of M. tuberculosis antigen(s), only 

two promoters have been used; these are the natural 7.5kDa early/late promoter (P7.5) 

and PsynE/L (summarised in Table 1.5). Immunogenicity and protective efficacy have been 

demonstrated, but no reference is made to whether promoter activity has been optimal. In 

contrast, other vaccine fields have undertaken thorough assessment of promoter usage. A 

model tumour-associated antigen delivered via native vaccinia was evaluated with 11 

different promoters to inform rMVA design; a positive correlation between in vitro 

expression levels and protective efficacy was apparent, but strong late expression with 

PsynE/L was shown to have a negative impact by inducing unfavourable antigen processing 

characteristics (Bronte et al., 1997). In a study relating to parainfluenza virus, PsynE/L was 

found to have another detrimental effect, this time on the ability to generate high titre 

stocks. As an alternative to both PsynE/L and the weaker early/late P7.5, a novel promoter 

of intermediate strength (mH5) was generated and proven to provide optimal expression of 

the transgene (Wyatt et al., 1996).

Similar studies are required for novel rMVA vectoring TB antigens. The impact on in vitro 

expression may be expected to be similar, but it is unknown how this will affect the T cell 

responses thought to protect against TB disease. Investigation is warranted and is the 

subject of this study.

45



Table 1.5 Evaluation of rMVA for delivery M. tuberculosis antigens. All of the
studies listed were performed in mice. Dose refers to the amount of MVA delivered 

(PFU).

Antigen Route
Dose &  

Regimen
Immunogenicity findings Ref

Psyn (E/L)

ESAT-6 s.c 107 Antigens were expressed as a (Perera et
Ag85A MM fusion. al., 2009)
Ag85B Detectable immunogenicity
HSP65 against each, and protection

Mtb39A against Mtb challenge.

P7.5

MPT64 i.v 107 M M  gave measurable response, (Feng et
M M , DM DM response higher. al., 2001)

ESAT-6 i.d 106 No response from M M . DM (McShane
MPT63 M, MM gave a response and DDDM was et al.,
(fusion) DM,

DDDM
much improved (2 - 1 0  fold). 2001)

Ag85A i.v 106 As above. (McShane
As above et al.,

2002)

R v O lll i.d h-* o cn Only DDDM shown to be Rawkins
(generated by DM, effective. et al., (pers.

U.Oxf) DDDM comm)

Abbreviations: i.v, intravenous; s.c, sub-cutaneous; i.d, intradermal; D, DNA; M, MVA; 

U.Oxf, University of Oxford.

Optimised antigen processing

To date, published reports of rMVA delivering TB antigens have only described human 

tissue plasminogen activator (TPA) signal sequence as a leader and in one instance BVP22 

(Yao et al., 2009). The inclusion of TPA has been rationalized by studies demonstrating that 

it improves expression levels, immunogenicity and protective efficacy (Li et al., 1999; Malin 

et al., 2000). The exact mechanism by which TPA enhances the efficacy of TB vaccines is
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unknown, but it is speculated to involve enhanced secretion and uptake by antigen- 

presenting cells as a result of increased expression levels (Li et al., 1999). This subsequently 

leads to MHC Class II presentation and activation of CD4+ T cells, which is an essential 

component of TB protective immunity.

Protection against TB is now understood to require both CD4+ and CD8+ T-cell activation 

and for vaccines required to induce cellular immunity generally, phenotypically more 

diverse responses are evidently preferable; such as those achieved through heterologous 

prime boosting. Leader sequences promote stimulation of different immune responses 

and although they are not always discrete and consistent between antigens, leaders do 

appear to be a tool through which to diversify the response evoked to an antigen.

Not only should the effect of different leader sequences on the immunogenicity of TB 

antigens be investigated, but also the potential for different leader sequences to be 

combined in multiple-recombinant constructs, in order to traffic antigen to more than one 

route simultaneously. This could be evaluated in MVA, but the results would be of 

relevance to any recombinant vector, e.g. Adenovirus or plasmid DNA, both of which have 

been used in MVA heterologous prime-boost regimens. Investigation of this approach, 

using rMVA, is the subject of this study.

1.5 Hypotheses

MVA is an important vector in the field of TB vaccine development, but there have been 

few studies related to the optimisation of MVA-based vaccines for TB. To investigate the 

potential for MVA-based TB vaccines to be enhanced, independently of the vectored 

antigen or antigens, the following hypotheses were investigated:

>  Vaccinia promoter selection can influence the immunogenicity and protective efficacy 

of TB vaccine antigens vectored by MVA.
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>  The type of immune response evoked by an MVA-vectored antigen can be altered via 

the addition of leader sequences. Further, by targeting the antigen to multiple

pathways, the immune response can be made more diverse.

To test the above hypotheses, specific objectives for the study were to:

1. Design a panel of novel recombinant MVA viruses with which to test each hypothesis.

2. Create the required recombinant cassettes, ready for insertion into the MVA genome.

3. Generate purified stocks of each of the recombinant MVA viruses.

4. Evaluate the impact of vaccinia promoter selection on the immunogenicity and

protective efficacy of MVA based vaccines.

5. Investigate the potential for diversifying the immune responses to an antigen through 

the use of multiple leader sequences.
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Chapter 2 Materials and Methods

2.1 Construction of MVA Transfer plasmids

Transfer plasmids were created and purified using standard molecular cloning techniques 

(Green, 2012).

2.1.1 E. coli transformation

Chemically competent E. coli TOPIO (ThermoFisher Scientific) were transformed with 

plasmid DNA according to the manufacturer's instructions. Briefly, 1 pi of purified plasmid 

DNA or 5 pi of ligation reaction was added to a vial of competent cells. The E. coli were 

transformed via heat shock by incubating them at 42°C for 30 seconds and then transferring 

them to ice. Pre-warmed SOC medium (250 pi) was added and then the cells were 

incubated at 37°C, for 1 hour, with shaking at 225 rpm. Following transformation, £  coli 

were spread on agar and incubated at 37°C overnight.

2.1.2 E. coli culture

Transformed £  coli cells were cultured on Luria-Bertani (LB) agar or in LB broth 

(BioMerieux) and were selected for according to the antibiotic resistance conferred by 

plasmid uptake; the medium was supplemented with 100 pg/ml carbenicillin (a stable 

ampicillin analogue), 25 pg/ml chloramphenicol or 50 pg/ml Zeocin™.

£  coli clones were amplified in liquid culture by transferring a single colony from agar to 5 

ml LB broth. Cultures were incubated at 37°C with shaking at 300 rpm, for at least 7 hours 

and preferably overnight. Liquid cultures were inspected for advanced turbidity before 

separating £  coli from the medium. The bacteria were pelleted by centrifugation at 6000 x 

g for 10 minutes and the culture medium discarded.

2.1.3 Plasmid DNA purification

Plasmid DNA was extracted from transformed £  coli using QIAprep® plasmid Miniprep kits

(Qiagen) as per the manufacturer's instructions. Plasmid DNA was eluted in nuclease-free
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w ater and the concentration determ ined by spectrophotometry (Nanodrop 2000; 

ThermoFisher Scientific).

2.1.4 Gateway® cloning.

Gateway® cloning was used throughout the study and was carried out according to  the 

Gateway® Technology manual (ThermoFisher Scientific). A summary o f the process is 

presented in Figure 2.1.

a ttB J  g e n e  a ttB 2
D o n o r
V e c t o r

a ttP 2 C m R
a t tR l c c d B  a i(R 2

pDONRzeo

BP Clonase 
Reaction

g e n e

a t t L l

E n t r y
C lo n e

pENTR-gene

a ttL 2  a t t R l , a t t P l

I  E n t r y  1 I  D e s t i n a t i o n  1

1  C lo n e  1
+

1  V e c t o r  1

pTBD (empty)

LR Clonase 
Reaction

a ttP 2  a t tB i

D o n o r
V e c t o r

E x p r e s s io n
C lo n e

pTBD-Cene

Figure 2.1 Gateway® Cloning. The gene o f interest was introduced to the Gateway® 

system via the addition o f attB  sites to  e ither end o f the gene sequence. The gene 

was transferred to  an entry clone (pENTR) by mixing it w ith  pDONRzeo in a BP 

reaction so tha t attB  and attP  sites would recombine. Each o f the MVA transfer 

plasmids (pTBD) used in the study contained a Gateway® Destination cassette so tha t 

it would serve as a destination vector in an LR reaction; the gene o f interest was 

transferred from  the Entry clone to  the Destination vector via recombination of attL 

and attR  sites. Throughout, a combination o f the ccdB lethal gene and antib iotic 

resistance markers enabled selection o f the desired clones. The antib iotic resistance 

genes used by the system conferred resistance to  chloramphenicol (CmR), zeocin 

(ZeoR) and am picillin/carbenicillin (AmpR). (Figure adapted from 

www.therm ofisher.com ).

The addition of attB  sites to  the gene o f interest was achieved via PCR, i.e. inclusion o f the 

attB  sequence in gene-specific primers (examples are shown in Table 2.1).
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Table 2.1 Primers for offB-PCR. Each PCR reaction included a forward (F) and 

reverse (R) primer. The attB portion of each primer is shown in capital letters. The 

gene-specific sequence is shown in lower case.

Primer Name Primer Sequence (5" to 3')

attB PCR o fR v O lllT

MTB031 (F) GGGGACAAGTTTGTACAAAAAAGCAGGCTaacggccaacgtacgggctggtc 

MTB007 (R) GGGGACCACTTTGTACAAGAAAGCTGGGTcactggcgacccgcaccgaatc 

attB PCR of OVA

MTB115 (F) GGGGACAAGTTTGTACAAAAAAGCAGGCTggctccatcg 

MTB116 (R) GGGGACCACTTTGTACAAGAAAGCTGGGTaggggaaaca

As summarised in Figure 2.1, purified PCR products were transferred to the Entry clone and 

then to the pTBD vector by BP and LR reaction, respectively. Briefly, the PCR 

product/plasmids were mixed with BP or LR clonase in TE buffer (pH 8.0) and incubated at 

25°C for 1 hour. The reaction was stopped by incubation with proteinase K solution at 37°C 

for 10 minutes. After each BP or LR reaction, E. coli TOPIO bacteria were transformed with 

1 pi of reaction mix and the desired transformants selected for on LB agar containing 

antibiotic. The plasmids used during the course of the study are listed in Table 2.2.

Table 2.2 Plasmids propagated and manipulated during the course of the study.
Plasmid pLAS-2 was a kind gift from L. S. Wyatt, National Institute of Health (NIH).
Plasmids in the pTBD series (TB group Destination plasmids) were originally derived
from pLW-44, pLW-24 and pLAS-1 (also kindly donated by L. S. Wyatt, NIH).

Plasmid Antibiotic resistance marker(s) Source

pLAS-2 Ampicillin NIH

pDONRzeo Zeocin™
ThermoFisher

Scientific

Gateway® Destination vectors (prior to insertion of the gene of interest)

pTBDl Ampicillin and Chloramphenicol Laboratory stock

pTBD2 t i / /

pTBD3- 4 tt it

pTBD5-1 4 a This study
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2.1.5 Site directed mutagenesis

Site directed mutagenesis was carried out on plasmids pTBD3 and pTBD4 using QuikChange 

Lightening Site-Directed Mutagenesis kits (Agilent Technologies) as per the manufacturer's 

instructions. Primers (Table 2.3) were designed using the manufacturer's online primer 

design tool. They were required to be 25-45 base pairs in length with base pair changes at 

or near the centre of the sequence. Mutated DNA was transformed into E. coli XL10 Gold 

ultracompetent cells after digestion of the parent DNA template by Dpn I enzyme.

Table 2.3 Primers designed for site-directed mutagenesis. Base pair changes were 

made to the indicated plasmids in order to introduce novel unique restriction 

enzyme sites. Mutations are shown in bold capital letters.

Primer Name Primer Sequence (5' to 3')

Introduction of Age! to pTBD3

QM01 (F) gcgagaaataatcataaataagAccggtgccaccatgga

QM02 (R) tccatggtggcaccggTcttatttatgattatttctcgc

Introduction ofAgel to pTBD4

QM03 (F) gaagtagaatcataaagaacagtAccggtgccacca

QM04 (R) tggtggcaccggTactgttctttatgattctacttc

Introduction of EcoRV to pTBD3 and pTBD4

QM05 (F) ccgattcagaagaggagccagatctGATatcaaacaagtttgtacaaaaaagc

QM06 (R) gcttttttgtacaaacttgtttgatATCagatctggctcctcttctgaatcgg

2.1.6 Restriction enzyme digest

Restriction enzymes (New England Biosciences) were used according to the manufacturer's

instructions. Briefly, 1 unit of enzyme (1 pi) was added to 1 pg DNA (plasmid or PCR

product). Each reaction included the appropriate NEB buffer, with or without bovine serum

albumin (BSA) as prescribed and was made up to the required volume with nuclease-free

water. The reaction was incubated at 37°C for at least 1 hour. For digestion with two

enzymes, a double-digest was performed provided enzyme conditions were compatible.
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Where they were not, a sequential digest was performed. To prevent re-ligation of 

digested plasmid, 5' phosphate groups were removed using Antarctic phosphatase (New 

England Biosciences) as per the manufacturer's instructions.

2.1.7 Separation of DNA fragments by agarose gel electrophoresis

Horizontal gels were prepared by dissolving agarose (1%) in Tris-acetate 

ethylenediaminetetraacetic acid (TAE) buffer. Sybr® Safe DNA gel stain (ThermoFisher 

Scientific) was added so that DNA fragments were visible under ultra-violet light for image 

capture (UVIdoc) or blue-light transillumination for band excision (ThermoFisher Scientific). 

Samples of DNA were loaded into each gel using gel loading dye and were run in parallel 

with 1 kb DNA ladder (ThermoFisher Scientific). Electrophoresis was performed at 100 V 

for up to 1 hour. Fragments requiring excision were extracted using QIAquick® Gel 

extraction kits (Qiagen) as per the manufacturer's instructions.

2.1.8 Polymerase chain reaction (PCR)

High-fidelity PCR was performed using KAPA HiFi Hotstart readymix (Kapa Biosystems) as 

per the manufacturer's instructions. Briefly, forward and reverse primers were added at a 

final concentration of 0.3 pM. Template DNA was present at less than 100 ng (genomic 

DNA), or between 0.1 and 10 ng (less complex DNA, e.g. fragments). The reaction volume 

was made up using nuclease-free water. Initial denaturation was performed at 95°C for 2-5 

minutes. Cycling conditions were 35 cycles of 98°C for 20 seconds, 65°C for 15 seconds and 

72°C for 15 seconds per kilobase (kb). A final extension step of 72°C for 1 minute per kb 

was performed before cooling the reaction to 4°C. PCR products were cleaned up for use in 

ligation reactions by gel extraction (Section 2.1.7) or by performing QIAquick PCR 

purification (Qiagen) as per the manufacturer's instructions.

High-fidelity PCR was applied to generate fragments for transfer plasmid construction. The 

primers used to create DNA fragments homologous to Deletion site II are listed in Table 2.4. 

Where possible, primers were 20 -  30 nucleotides long, had a guanidine/cytosine (GC)



content of 40 -  60% and a melting temperature (Tm) between 60 and 70°C. Four 

nucleotides were added 5' to restriction enzyme recognition sites to promote efficient 

cutting. Secondary structure was examined using an online tool 

(http://biotools.nubic.northwestern.edu/OligoCalc.htmn.

Table 2.4 Primers for creating Del II fragments by high-fidelity PCR. Forward (F) and 

reverse (R) primers were designed to add unique restriction enzyme recognition sites 

(underlined). Where the PCR product might have otherwise contained a unique site 

of value to the cloning process, a two-step PCR reaction (Section 2.1.9) was applied 

to introduce a mutation (bold, lower case) that would remove it. The template DNA 

was plasmid pl_AS-2 (Table 2.2).

Primer Name Primer Sequence (5' to 3')

Del II Direct repeat: adding EcolRCI (F) andXhol (R)

MTB95 (F) TAATGAGCTCGCTTTCTCTCTAGCAAAGATG

MTB96 (R) T AAT CT CG AG G AAT CAT CCAGT CCACT G AATAG

Del II Left Flank: 2 step PCR removing Agel, adding Sbfl (F) and Hindlll (R)

MTB97 (F) TAATCCTGCAGGGGATGCGATCATGACGTCC

MTB105 (R) CGT ACAG G ACGTAACTATAAACCG cTT

MTB106 (F) CTT G AACA AATATA AAgCG G

MTB98 (R) TAATAAGCTTGGTTTGATCGTTGTCATTTCTCC

Del II Right Flank: Two-step PCR removing Hindlll, adding Narl (F) and AscI (R)

MTB109 (F) GAAGTCTAAGCAGCTGAAAtGCTTTC

MTB110 (R) GCA TCT TTG CTA GAG AGA AAG CaT TTC

MTB107 (F) TAATGGCGCCCTCCTGAAAAACTGG

MTB108 (R) TAAT G G CG CG CCG AAT CAT CC AGTCC ACTG

2.1.9 Overlap extension (OE) PCR

OE-PCR was applied to generate DNA fragments incorporating multiple PCR products, 

and/or oligonucleotides. The fragments were combined in a PCR reaction with Kapa HiFi 

polymerase and subjected to cycling conditions as described in Section 2.1.8. After 15
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cycles, the reaction was stopped and primers homologous to the ends of the combined

product were added. A further round of 20 cycles was then carried out.

2.1.10 DNA annealing

Custom synthesised oligonucleotides (Table 2.5) were mixed at equimolar concentration in 

Ligase buffer (New England Biosciences) and incubated at 85°C for 10 minutes. Stepwise 

cooling was performed in 5°C increments down to 25°C. Each temperature was held for 5 

minutes.

Table 2.5 Oligonucleotides for plasmid modification. Custom synthesised DNA 

fragments (Integrated DNA Technologies) were prepared ready for annealing and 

ligation; they were designed to have ends compatible with restriction enzyme- 

digested vector and were 5' phosphorylated.

Oligo

Name
Oligo Sequence (5' to 3')

pTBD5/6 to pTBD9/10: Kozak sequence, no leader

MTB111 CCG GTG CCACCAT G G AT

(F)
M T B lllr ATCCATGGTGGCA

(R)
pTBD7/8 to pTB D ll/12 /13 /14: N terminal V5 tag

MTB112 CCGGTGCCACCATGGGTAAGCCTATCCCTAACCCTCTCCTCGGTCTCGATTCT

(F) ACGGATCTAGAGGG
CCCGCGGTTCGAAGAT

MTB112r ATCTTCGAACCGCGGGCCCTCTAGATCCGTAGAATCGAGACCGAGGAGAGG

(R) GT TAGGGATAGGCT TACCCATGGTGGCA

pTBD7/8 to pTB D ll/12: C terminal VSVg

MTB113 GGCCCGAGCAGCATCGCCAGCTTCTTCTTCATCATCGGCCTGATCATCGGCC

(F) TGTTCCTGGTGCTGCGCGTGGGCATCCACCTGTGCATCAAGCTGAAGCACAC

CAAG AAG CGCCAG AT CTACACCG ACAT CG AG ATG AACCG CCT GGG CAAGTA
ACTCGACCTGCA

MTB113r GGTCGAGTTACTTGCCCAGGCGGTTCATCTCGATGTCGGTGTAGATCTGGC

(R) GCTTCTTGGTGTGCTTCAGCTTGATGCACAGGTGGATGCCCACGCGCAGCAC
CAGGAACAGGCCGATGA

pTBD7/8 to PTBD13/14: C terminal stop

MTB114 GGCCCGTAACTCGACCTGCA

(F)
MTB114r GGTCGAGTTACG

(R)
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2.1.11 DNA ligation

Fragments of DNA were ligated together using the Quick-Ligation™ kit (New England 

Biosciences) as per the manufacturer's instructions. Briefly, the reaction was set up to 

include 50 ng of vector with a three-fold molar excess of insert. Quick-Ligation reaction 

buffer and Quick T4 DNA ligase were added at the required concentrations and the reaction 

incubated at room temperature for 5 minutes. The reaction mix was chilled on ice prior to 

transformation of E. coli TOPIO (Section 2.1.1). The inserts used in each ligation were 

derived from high-fidelity PCR (Sections 2.1.8 and 2.1.9) or were otherwise purchased as 

oligonucleotides and annealed (Section 2.1.10).

2.1.12 DNA sequencing

Sanger sequencing of DNA samples was performed using an external sequencing service 

(Beckman Coulter Genomics, Takeley, UK). Plasmid DNA or purified PCR products were 

sent at, or above, the minimum concentration and volume required. Where universal 

primers were not available, sequences for custom synthesised primers were provided. 

Primers were designed to bind to the template sequence at approximately 700 base pair 

intervals, were typically 20-30 nucleotides long and had a GC content between 40 and 60%. 

Sequences with secondary structure (examined as described in Section 2.1.8) were avoided.

2.1.13 Conversion of pTBD5 to pTBD9

A combination of oligonucleotide custom synthesis, PCR and OE-PCR was applied to the 

preparation of inserts for the conversion of pTBD5 to pTBD9. A summary of the inserts 

prepared and their means of preparation is described in Figure 2.2.
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pTBD5
Linear Map w ith scale (bp) 
SeqBuilder DNA Lasergene 11

Xhol 
Age I

EcolCRI
EcoRV

Not!

GFP DR R1

TPA
mH5

PspOMI

CmR ccdB R2 ►

V5

pTBD9
Xhol

SeqBuilder DNA Lasergene 11 Agel
EcoRV

EcolCRI Not! PspOMI

15*30 1 3000

►  r "

V5

1S3S3
CmR ccdB R2

mH5 

— B H

I 3200

Fragments and their means o f preparation:
A 17 bp (Not shown in the above diagram)

Annealed oligonucleotides; M T B l l l / M T B l l l r  (see Table 2.5)
Age I/EcoRV

B 252 bp Custom synthesised by IDT.
Xhol/N otl

C 1899 bp 1. TPA to V5 was amplified from  pTBD5 by PCR.
2. TPA was removed from  the PCR product by restriction enzyme digest 
with EcoRV.
3. OE-PCR w ith fragm ent B was performed.
Xhol/PspOMI

D 2849 bp 1. GFP to TPA was amplified from  pTBD5 by PCR.
2. TPA was removed from  the PCR product by restriction enzyme digest 
with Age I.
3. OE-PCR with fragm ent B was perform ed fo llow ed  by OE-PCR with  
fragm ent C.
Eco53KI (EcolCRI isoschizomerj/PsoOMI

Figure 2.2 Fragments for the conversion of pTBD5 to pTBD9. Plasmid maps fo r 

sections o f pTBD5 and pTBD9 are shown. Plasmid conversion using fragm ent A was 

unsuccessful. Larger fragments (B-D) were prepared and are illustrated, below which 

the ir means o f construction is described. Restriction enzymes used fo r vector/insert 

digestion are shown underlined.
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2.1.14 Construction of the Ovalbumin (OVA) gene

The OVA gene (Gollus gallus ovalbumin; NCBI Accession number NM_205152.1), minus the 

native start, was custom synthesised as three overlapping gBIock fragments (Integrated 

DNA Technologies) as shown in Figure 2.3. The fragments were joined by OE-PCR and 

incorporated attB  sites fo r recombination into pDONRzeo (see 2.1.4 Gateway® cloning). 

Am plification was achieved using primers binding to  the end o f the product (the sequences 

fo r primers MTB115 and MTB116 are shown in Table 2.2). As w ith  the other antigens used 

in this study, the OVA gene was screened fo r the vaccinia transcription term ination 

sequence I I 11 I NT in silico, prior to  cloning (none were found to be present).

attB-OVA Linear Map vjith  scale (bp), SeqBuilder DNA Lasergene 11

attB 1 attB2

| 1200 I <00 1600 1800 I 1003 I

E|  Ovalbumin ^ > H

gBIock YH3
<  _________gBIock VH2______________j

g Block YH1

Forward MTB115 Reverse MTB116

Figure 2.3 Construction of the OVA gene by OE-PCR. In the firs t step o f the reaction, 

three overlapping gBIock fragments were combined. In the second step o f the 

reaction, the product was amplified by the addition o f primers MTB115 and MTB116 

(Table 2.2). AttB  sites were added to the sequence so tha t it could be used in 

Gateway® cloning.

2.2 Generation of Recombinant MVA (rMVA)

Recombinant MVA were generated using establish protocols fo r transfer plasmid mediated 

construction (Earl et al., 2001a; Earl and Moss, 2001; Earl et al., 2001b; Kremer et al., 2012). 

Aseptic technique was applied throughout.
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2.2.1 Cell culture

Cell line BHK-21 (ATCC CCL-10) was maintained in Minimal Essential Medium (MEM) 

supplemented with 10% fetal bovine serum (FBS), 5 mM L-glutamine, 100 units/ml 

penicillin and 100 pg/ml streptomycin (all reagents -  Sigma Aldrich). Cells were maintained 

in static tissue culture flasks, incubated at 37°C, 5% C02 and 95% humidity. The cell culture 

medium was changed twice a week and cells were passaged every 7 - 1 0  days. No more 

than a total of 10 passages were performed as BHK-21 cells are susceptible to phenotypic 

drift.

Primary chick embryo fibroblast (CEF) cells were obtained from The Pirbright Institute, UK. 

Cells were seeded into tissue culture flasks at approximately 2 x 107 cells per 175 cm2 in 

supplemented MEM, as described above. Flasks were incubated at 37°C, 5% C02 and 95% 

humidity for 24 hours before reducing the incubating temperature to 30°C. Cells were 

passaged at least once prior to use and from there on were incubated at 37°C.

Throughout, BHK-21 or CEF cells were cultured in multi-well tissue culture plates or in 

tissue culture flasks with a surface area of 25 cm2 (T25), 75 cm2 (T75) or 175 cm2 (T175). 

Cells were infected with MVA diluted in supplemented MEM containing 0 or 2% FBS -  

referred to as '0% MEM' or '2% MEM', respectively. Incubations were performed at 37°C, 

5% C02 and 95% humidity. Infected cell monolayers were examined by inverted light 

and/or fluorescence microscopy to monitor the development of cytopathic effects (CPE) 

and where rMVA was present, the expression of the selection marker - GFP.

2.2.2 Preparation of wild-type MVA stock

A working stock of MVA (ATCC-VR-1508) was prepared by two sequential rounds of

amplification on CEF cells. The virus was diluted in 2% MEM and applied to a T75 flask at a

multiplicity of infection (MOI) of approximately 0.1. The cells were incubated for 3 days

and then harvested by scraping and centrifugation at 1200 x g for 10 minutes. The cell

pellet was resuspended in 1-2 ml 2% MEM supernatant and stored at -80°C. Cells were
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lysed by three repeat rounds of freeze-thawing and were vortexed and sonicated on each 

round to promote dissociation of the viral particles. The working stock was created after a 

second round of amplification performed on eight T175 flasks. The harvested material was 

diluted down to a working concentration, aliquoted and stored at -80°C for future use. 

Viral titre was determined as described below.

2.2.3 Determination of MVA titre by immunostaining

CEF cells were seeded into 6 well plates so that they were nearing confluency at the time of 

use. Viral samples were vortexed and sonicated immediately prior to performing 10-fold 

serial dilutions in 0% MEM. CEF were infected with a range of dilutions, in duplicate wells, 

0.5 ml per well and then incubated for 90 minutes with rocking at 15 minute intervals. 

After 90 minutes, 0% MEM was removed and replaced with 2% MEM containing 1% low 

gelling temperature agarose (2-hydroxyethylagarose Type VII; Sigma Aldrich). The pre- 

molten overlay was allowed to solidify before incubation of the plate(s) for 2-3 days.

The solid overlay was removed from each well immediately prior to immunostaining. Care 

was taken not to damage the cell monolayer. Anti-vaccinia polyclonal antibody raised in 

rabbit (AbD Serotec) was added to each well and then detected using VECTASTAIN® ABC-AP 

Rabbit IgG kit (Vector Laboratories). The kit was used as per the manufacturer's 

instructions. Briefly, biotinylated anti-rabbit secondary antibody was applied followed by 

combined avidin/biotinylated-alkaline phosphatase (AP) reagents. Viral plaques were made 

visible by the addition of Vector Red AP substrate. Plaques were counted under an inverted 

light microscope (x4) and the number arising from duplicate wells multiplied by the dilution 

factor to determine the viral titre (PFU/ml) of the original sample.

2.2.4 Generation of rMVA by infection/transfection (l/T) reaction

BHK-21 were grown to 85-90% confluence in a T25 culture flask and then infected with

MVA in 0% MEM at an MOI of 0.05. After 90 minutes, the MVA was removed and 5.6 pg of

transfer plasmid DNA transfected into the cells using Lipofectamine®, as per the
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manufacturer's instructions (ThermoFisher Scientific). After 5 hours, the transfecting 

medium was removed and replaced with 2% MEM. Two - three days later, BHK-21 were 

viewed using an inverted light microscope to monitor CPE and GFP expression before 

harvesting the cell layer into 1 ml of supernatant. The harvested sample was subjected to 

three rounds of freeze-thawing, with vortexing and sonication before being progressed to 

plaque purification.

2.2.5 Isolation of rMVA by plaque purification

CEF were seeded into multi-well tissue culture plates and were infected as described for 

immunostaining (Section 2.2.3). Briefly, material from the l/T step was serially diluted and 

plated at dilutions of 1:100,1:1000 and 1:10000. After 90 minutes incubation, the infecting 

material was removed and replaced with solid overlay. After 2-3 days incubation, viral 

plaques expressing GFP were visualised using inverted fluorescence microscopy and were 

picked from the cell layer using a Gilson pipette. Each viral pick was transferred to 0.5 ml 

0% MEM for freeze-thawing with vortexing and sonication.

Subsequent rounds of plating were performed as above, but by plating dilutions of 1:10, 

1:100 and 1:1000. At each stage, plaques were picked from the highest possible dilution so 

as to carry over the least amount of parent MVA.

Plaque samples were numbered according to the round of plaque purification and their 

number, which took into account their lineage e.g. P I (1.3.2). Where helpful, this was 

presented schematically, as per the mock example shown in Figure 2.4.
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P I

P2
(1.2)

P2
(1.3)

P2
(1.1)

P3
(1-3.3)

P I

Figure 2.4 A family-tree for rMVA isolation. A mock example is depicted. Following 

the infection and transfection step (l/T), 3 plaques are isolated - P I (1), P I (2) and P I 
(3). Plaque sample P I (1) is propagated and a further 3 plaques are picked. Two of 
these samples are propagated to yield a further 4 plaques. Samples are labelled 

according to the round of plaque purification and their number, which takes into 

account the lineage of the sample.

2.2.6 Generation of markerless rMVA

Following successful isolation of rMVA, viruses generated to express GFP transiently were 

further passaged to promote removal of the selection marker by an internal recombination 

event (described in Section 1.3.1). The viral population comprising GFP positive and GFP 

negative rMVA was propagated on CEF until CPE, but no GFP was visible.

In some instances, GFP expression was observed to persist. This was overcome by infection 

of CEF in a multi-well plate followed by incubation under a solid 2% MEM overlay (as 

described in Section 2.2.3). After 2-3 days, areas of the monolayer exhibiting CPE, but no 

GFP expression, were picked into 0.5 ml 2% MEM for further propagation, thereby 

expediting GFP removal.

2.2.7 Purification of rMVA by sucrose cushion density centrifugation

Samples of purified rMVA were amplified on CEF cells by serial propagation in culture

vessels of increasing size. Large scale amplification was performed using 10 or more T175

flasks. Amplified virus was separated from the cell lysate by density centrifugation. Briefly,

the cell pellet was harvested in 10 ml of 10 mM Tris-HCI. The cells were lysed by freeze-

thaw cycles, homogenised using a Dounce homogeniser (50 strokes) and sonicated. The
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homogenate was layered onto a 36% sucrose solution prepared in 10 mM Tris-HCI and 

centrifugation performed at 33000 x g, 4°C for 90 minutes. The viral pellet was 

resusepnded in PBS for aliquoting and titration. All viral material was stored at -80°C.

2.3 In vitro characterization of rMVA

2.3.1 Extraction of viral genomic DNA

Viral samples were amplified on CEF in multi-well plates for 2-3 days. Viral genomic DNA 

(gDNA) was extracted using a Wizard SV Genomic DNA Purification Kit (Promega) as per the 

manufacturer's instructions. Briefly, the cell culture medium was removed from each 

infected well and the contents transferred to a mini-column in lysis buffer. Each 

purification column was subjected to repeat washes before eluting gDNA in nuclease-free 

water.

2.3.2 Analytical PCR

PCR was performed using KAPA 2G Fast Hotstart readymix (Kapa Biosystems) as per the 

manufacturer's instructions. Briefly, forward and reverse primers were added at a final 

concentration of 0.5 pM. Template DNA (viral gDNA) was present at less than 100 ng. 

Initial denaturation was performed at 95°C for 1 minute. Cycling conditions were 35 cycles 

of 95°C for 15 seconds, 60°C for 15 seconds and 72°C for 60 seconds. A final extension step 

of 72°C for 5 minutes was performed before cooling the reaction to 4°C. In each reaction, 

transfer plasmid DNA was used as a positive control and nuclease-free water in place of 

DNA as the negative control. The primer pairs used to examine insertion sites and/or the 

presence of a recombinant cassette are listed in Table 2.6.
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Table 2.6 Primers for rMVA analytical PCR. Each primer pair bound to the flanking 

region of a particular insertion site (Del II or Del III) and/or the recombinant cassette. 

Primers were obtained from existing stocks or from those created above, i.e. during 

transfer plasmid construction (Table 2.1 and Table 2.4).

Primer Name Primer Sequence (5' to 3')

Del III Leftflank(F) to Del III Right flank (R)

MTB93 (F) CGGCACCTCTCTTAAGAAGT

MTB21 (R) GTGTAGCGTATACTAATGATATTAG

N-terminal TPA (F) to C-terminal V5 (R)

MTB01 (F) GCCACCAT GG ATG CAAT G AAG AG A

MTB34 (R) TTACGTAGAATCGAGACCGAGGAG

GFP (F) to Del III Right Flank (R)

MTB92 (F) CGTAAACGGCCACAAGTTCAGCG

MTB21 (R) GTGTAGCGTATACTAATGATATTAG

Del II Right flank (F) to Del II Left flank (R)

MTB109 (F) GAAGTCTAAGCAGCTGAAATGCTTTC

MTB105 (R) CGTACAG G ACGTA ACTATAAACCG CTT

OVA gene start (F) to OVA gene end (R)

MTB115 (F) GGGGACAAGTTTGTACAAAAAAGCAGGCTGGCTCCATCG

MTB116 (R) GGGGACCACTTTGTACAAGAAAGCTGGGTAGGGGAAACA

GFP (F) to Del II Left Flank (R)

MTB92 (F) CGTAAACGGCCACAAGTTCAGCG

MTB105 (R) CGTACAG G ACGTAACTATAAACCG CTT

2.3.3 Detection of recombinant antigen expression by Western Blotting

Viral samples were amplified on CEF in multi-well plates for 2-3 days. After removal of the 

cell culture medium, CEF and viral proteins were harvested in lithium dodecyl sulphate 

(LDS) buffer containing 10% denaturing reagent (ThermoFisher Scientific). Each sample was 

further denatured by heating to 90°C for 10 minutes.

Proteins were separated by polyacrylamide gel electrophoresis using NuPage 4-12% Bis-Tris 

gradient gels (ThermoFisher Scientific). SeeBlue Plus2 pre-stained protein ladder and Magic
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Mark XP Western protein standard (both ThermoFisher Scientific) were included in each 

run and electrophoresis performed at 200 V for up to 1 hour.

Following electrophoresis, protein was transferred to Hybond ECL nitrocellulose membrane 

(GE Healthcare Life Sciences) by Western Blotting; an XCell II™ Blot module and NuPage 

Transfer buffer (ThermoFisher Scientific) were used as per the manufacturer's instructions. 

Blotting was performed at 40 V for 1 hour and successful protein migration was monitored 

according to movement of the SeeBlue Plus2 ladder from the gel to the membrane.

Immunodetection was performed after blocking with 3% milk powder (Sigma Aldrich) 

diluted in PBS/Tween 20 (0.05%). The membrane was incubated with anti-V5 monoclonal 

antibody (AbD Sertotec) and chemiluminescent detection of anti-V5 reactive bands 

achieved via incubation with anti-mouse HRP conjugate. The application of ECL Plus 

chemiluminescent reagent and exposure to Hyperfilm ECL (GE Healthcare Life Sciences) was 

performed as per the manufacturer's instructions.

2.3.4 Semi-quantitative measurement of expression by dot blotting

Viral samples were amplified on CEF and the cells lysed as described above. Material was 

applied directly to nitrocellulose in 5 pi spots prior to blocking and immunodetection with 

anti-V5 (as described for Western blotting). Hyperfilm was scanned using a BioRad GS-800 

densitometer (BioRad) and optical density measured by ImageQuant TL image analysis 

software (GE Healthcare) or Quantity One ID  analysis software (BioRad).

2.4 In vivo characterization of rMVA

Mouse studies were conducted according to UK Home Office legislation for animal 

experimentation and were approved by the local ethical committee.

Mouse immunisation, M. tuberculosis aerosol challenge and post-terminal sampling were 

performed by the Biological Investigations Group and the Small Animal Vaccine Evaluation 

team.
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2.4.1 Mouse strain and immunisation

Groups of female C57BI/6 or CB6F1 mice (8 -10 weeks of age) were immunised with MVA 

diluted in PBS. A dose of 106 or 107 PFU was given in 100 pi, intramuscularly (50 pi per hind 

leg), twice at two week intervals.

BCG Danish (Staten Serum Institut, Denmark) was diluted in Sautons medium as per the 

vaccine supplier's instructions. Mice were administered a dose of 1 x 105 CFU in 100 pi, 

subcutaneously in the nape of the neck.

Unvaccinated mice were matched for age and sex and received no immunisation. 

Post-terminal sampling was performed to obtain whole blood and spleens.

2.4.2 Measurement of cytokine release by ELISpot assay

Splenocytes were harvested and assessed for antigen specific recall responses two weeks 

after the final immunisation. Cells were isolated via mechanical dissociation of the spleen 

followed by centrifugation at 500 x g for 7 minutes at 18°C. Red blood cells were lysed 

with ammonium-chloride-potassium (ACK) buffer (ThermoFisher Scientific). Processing and 

cell culture was performed aseptically in RPMI medium supplemented with 10% FBS, 5 mM  

L-glutamine, 100 units/ml penicillin, 100 pg/ml streptomycin, 0.5 pM 3-mercaptoethanol 

and 12.5 mM HEPES buffer (all reagents Sigma Aldrich, except 3-mercaptoethanol - 

ThermoFisher Scientific).

Murine ELISpot assays for IFNy, IL-4 and IL-17 (MAbtech) were performed as per the

manufacturer's instructions. PVDF plates (Merck Millipore) were coated with IFNy capture

antibody. Splenocytes were added at 5 x 104 or 2 x 105 cells per well. Cells were cultured

with restimulating peptides (described below), each present at a final concentration of 2

pg/ml. A mixture of 0.1 pg/ml Phorbol 12-myristate 13-acetate (Sigma Aldrich) and 1 pg/ml

lonomycin (Merck Millipore) was added to positive-control wells. Background IFNy release

was measured in wells containing splenocytes and cell culture medium only. Plates were
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incubated at 37°C, 5% C02 and 95% humidity for 18 hours priors to removal of the cells for 

spot detection.

Bound IFNy was detected via the addition of biotinylated anti-IFNy followed by streptavidin- 

AP conjugate. Spots were developed following incubation with AP substrate - BCIP/NBT 

(MAbtech). Spots were counted using an AID ELISpot reader and results expressed as spot 

forming units (SFU) per million cells (SFU/106) after subtraction of background (media only) 

responses. Responses greater than background plus two standard deviations were deemed 

to be positive. Statistical comparison between two groups was performed using unpaired 

T-tests (Microsoft Excel 2010). Comparison between multiple groups was achieved using 

one-way ANOVA (GraphPad Prism 6).

Cryopreservation of splenocytes was performed by freezing cells in FBS containing 10% 

DMSO. Cells were frozen at -80°C in a storage container designed to control the cooling 

rate (-1°C per minute). Cells were then transferred to the vapour phase of liquid nitrogen 

storage tanks.

2.4.3 Restimulating peptides and protein

Lyophilised peptides (Mimotopes) representing M. tuberculosis strain FI37Rv genes R v O lll 

and Ag85A (Rv3804c) and were prepared as 15 amino acid oligomers (15 mers) offset by 

5/overlapping by 10. Vaccinia peptides (Mimotopes) were based on immunogenic 

determinants (8-10 mers) for genes B8R, A19L, A47L, A42R and K3L, as described by 

Tscharke et al. (Tscharke et al., 2005). Ovalbumin peptides (Mimotopes) were based on 

MFIC Class I and MHC Class II epitopes; OVA257-264 'SIINFEKL' and OVA323.339 

'ISQAVHAAHAEINEAGR', respectively.

All peptides were resuspended in 10% DMSO to a concentration of 8 mg/ml and diluted to 

a final concentration of 2 pg/ml for cell stimulation. Peptide pools were created by the 

addition of equal volumes of each peptide.
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Whole OVA protein was obtained in the form of purified albumin from chicken egg white 

(Sigma Aldrich) and was used at the concentration specified. Tuberculin purified protein 

derivative (PPD) was obtained from the Staten Serum Institute and used at a final 

concentration of 10 pg/ml.

2.4.4 Measurement of OVA-specific IgG isoforms by ELISA

An in-house enzyme-linked immunosorbent assay (ELISA) was developed for the detection 

of murine anti-OVA IgG. Reagents were sourced from Sigma Aldrich unless otherwise 

stated. Serum was separated from whole blood via centrifugation in serum separator tubes 

(Becton Dickinson) as per the manufacturer's instructions.

Immuno MaxiSorb microtitre plates (ThermoFisher Scientific) were coated with IgG or 

ovalbumin diluted in 0.05 M carbonate-bicarbonate buffer, pH 9.6. Plates were incubated 

overnight (16+ hours) at 4°C and then blocked with 1% BSA in PBS for at least 2 hours at 

room temperature. Anti-ovalbumin IgGl or mouse serum, diluted in PBS, was added at 50 

pi per well and incubated for 2 hours at room temperature.

Indirect detection of bound IgG was achieved using biotinylated isotype-specific anti-mouse 

IgG, followed by ultrasensitive streptavidin-HRP conjugate, both added for 1 hour at room 

temperature. Measurement of bound IgG was achieved via addition of the chromogenic 

HRP substrate tetramethylbenzidine (TMB). TMB was incubated for 2 minutes before 1M 

H2S04was added to stop the reaction. The plates were read at 450 nm and 690 nm and 

results for the latter subtracted from the first. Non-specific binding (NSB) was subtracted 

from all of the results, i.e. the OD measured in the absence of primary antibody (coating IgG 

or mouse serum) and was determined for a minimum of three wells.

2.4.5 Evaluation of vaccine efficacy after M. tuberculosis aerosol challenge

Groups of C57BI/6 mice (Section 2.4.1) were infected with an aerosolised dose of M. 

tuberculosis strain Erdman. The challenge apparatus and methodology were as previously
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described (Clark et al., 2011). Briefly, a suspension of Mtb Erdman was aerosolised in a 

contained Henderson unit to infect the mice via nose-only exposure. The concentration of 

the bacteria in the Collison nebuliser was sufficient to provide an inhaled retained dose of 

approximately 100 CFU. After infection, animals were housed under Advisory Committee 

on Dangerous Pathogens (ACDP) Hazard Group 3 containment measures and monitored 

daily for outward signs of ill-health. At four weeks post-infection, post-terminal sampling of 

the lung and spleen was performed. Whole lung and spleen were homogenised in sterile 

water and plated on 7H11 OADC selective solid medium (bioMerieux) for enumeration of 

bacterial load. Groups were compared by unpaired, non-parametric Mann-Whitney test 

(GraphPad Prism 6).
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Chapter 3 Design and construction of novel transfer plasmids

3.1 Introduction

In order to test the study hypotheses (see Section 1.5), several novel rMVA viruses needed 

to be created. As discussed in Chapter 1.3, there are two principal approaches for 

generating recombinant MVA: transfer plasmid methodology and BAC technology. Transfer 

plasmid methodology was selected for the current study on the basis that an existing panel 

of transfer plasmids was available for use and/or modification. As described in Section

1.3.2, BAC technology confers the principal advantage of negating the need for plaque 

purification, but is technically demanding to establish (Cottingham, 2012).

The transfer plasmids available at the outset of the study were Gateway® cloning vectors. 

They are listed in Section 2.1.4, Table 2.2. It was proposed that alteration of this plasmid 

set via standard cloning techniques would be the most expedient route to obtaining the 

novel recombinant cassettes required. Before the transfer plasmids could be selected 

and/or modified, the precise nature of the rMVA viruses needed for the study had to be 

decided upon. (Generation of the rMVA viruses is described in Chapter 4).

3.1.1 Transfer plasmids for the Vaccinia promoter study

To investigate the impact of vaccinia promoter selection on the immunogenicity and 

protective efficacy of rMVA vectoring M. tuberculosis antigens, it was essential to have 

viruses identical in every regard except for the vaccinia promoter driving antigen 

expression. The rationale for the vaccinia promoters and M. tuberculosis antigens selected 

for this aspect of the study is described in more detail in Chapter 5. Briefly, two vaccinia 

promoters, P7.5 and mH5, and two M. tuberculosis antigens (R vO lll and Ag85A) were 

chosen. The complete panel of rMVA viruses is listed in Table 3.1. One of the viruses 

(MVA-mH5-Ag85A) and all of the transfer plasmids were available and so no further cloning 

work was needed.
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Table 3.1 rMVA viruses for the vaccinia promoter study. Existing transfer plasmids 

were available for the purpose of generating the expression products shown.

Recombinant MVA  

virus
Expression product Common Features

M VA-m H5-Ag85 A 

MVA-P7.5-Ag85A
TPA-Ag85A-V5 Insertion site: Del III 

Selection marker: stable
MVA-mH5-Rv0111

MVA-P7.5-Rv0111
TPA-Rv0111-V5 GFP

Other features conferred by the existing transfer plasmids were in-frame expression of a 

TPA leader (see Section 1.2.6) at the start (N-terminus) of the polypeptide sequence and in

frame expression of V5 at the end (C-terminus) of the protein. Both fusions are discussed 

in more detail in Chapter 5. The V5 protein tag, also known as Pk, is a B cell epitope 

sequence. It is 14 amino acids long and is derived from the P and V proteins of the 

paramyxovirus of simian virus 5 (Southern et al., 1991). Expression of V5 as an antigen- 

fusion enables immunodetection of the expression product using anti-V5 IgG, thus, 

circumventing the need for antigen-specific antibodies.

3.1.2 Transfer plasmids for the Leader Sequences study

To investigate the impact of leader sequences on transgene immunogenicity, including the 

impact of targeting a recombinant antigen to multiple pathways, two leader sequences 

were selected for use in two, separate insertion sites: TPA - Del III and VSVg - Del II. The 

antigen selected for comparison of antigen-fusion effects was the model antigen ovalbumin 

(OVA). The rationale for the antigen selected, and further explanation for the specific 

design of the constructs is discussed in Chapter 6. Briefly, the TPA and VSVg fusions were 

expressed at the N and C terminus of OVA, respectively. At the other terminus, a V5 tag 

was inserted. For each of the leader sequences under investigation, a corresponding 'no- 

leader' plasmid was created to enable provision of a no-leader control virus. The viruses 

required and their expression products, relative to the insertion site, are listed in Table 3.2.
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Table 3.2 rMVA viruses required for the leader sequences study. The panel of rMVA 

comprised single and double-recombinant viruses. For each virus expressing OVA 

fused to a leader sequence, there was a corresponding 'no-leader7 control.

Recombinant MVA virus
Expression product 

Del II
Expression product 

Del III

MVA-OVAtra - TPA-OVA-V5

MVA-OVA - OVA-V5

MVA-OVAVsvg V5-OVA-VSVg -

MVA-OVA V5-OVA -

M VA-OVAtpa/ OVAvsvg V5-OVA-VSVg TPA-OVA-V5

MVA-OVA/OVA V5-OVA OVA-V5

To create the transfer plasmids required, Destination vectors pTBD3 and pTBD4 (Section 

2.1.4, Table 2.2) were selected for modification. Plasmids pTBD3 and pTBD4 incorporate 

mH5 and P7.5 for antigen expression, respectively. A summary of their main features is 

shown in Table 3.3. Also listed are the transfer plasmids that would need to be generated 

from them in order to create the rMVA listed in Table 3.2. An Entry clone was also needed 

for insertion of OVA via Gateway® cloning.

Plasmids pTBD3 and pTBD4 carry the GFP selection marker flanked by a direct repeat 

sequence. Thus, upon transfer to the MVA genome, the marker is excised via a 

recombination event. All of the transfer plasmids listed in Table 3.3 were required to 

contain transiently expressed GFP so that single recombinant viruses could be used to 

generate multiple recombinant viruses, i.e. become markerless for monitoring of insertion 

of a second recombinant cassette.
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Table 3.3 Novel plasmids for the leader sequences study. Each of the transfer 

plasmids was a Gateway® Destination vector and could receive antigen via 

recombination with an Entry clone (pENTR). In all of the vectors GFP was flanked by 

a direct repeat sequence, for transient expression upon transfer to the MVA genome, 

as described in Section 1.3.

Plasmid
Insertion N- c-

Promoter
terminal

Source
site terminal

Destination vectors (contain a Gateway'* cloning site for antigen insertion)

pTBD3/4 Del III mH5/P7.5 TPA V5 Laboratory stock

pTBD5/6 Del III mH5/P7.5 *TPA* V5 This study

pTBD7/8 Del II mH5/P7.5 *TPA* V5 This study
pTBD9/10 Del III mH5/P7.5 none V5 This study

pTBD ll/12 Del II mH5/P7.5 V5 VSVg This study

PTBD13/14 Del II mH5/P7.5 V5 None This study

Entry vector 

pENTR-OVA n/a n/a n/a n/a This Study

*Unique restriction enzyme sites

Another objective set for the development of the novel transfer plasmids was that they 

remain suitable for the study of alternative antigens. For each of the recombinant 

cassettes required, a pair of plasmids was generated, one incorporating mH5 for transgene 

expression, the other P7.5, so as to retain each as an option for use in the current and 

future studies. The B cell epitope tag, V5, was included throughout for immunodetection of 

the expression product; anti-OVA IgG is available (various commercial sources), but future 

studies may involve antigens for which antigen-specific IgG is less readily obtainable. It was 

also considered important that the transfer plasmids be as amenable to further alteration 

as possible, for example by retaining unique restriction enzyme sites at useful positions. 

Accordingly, aims for transfer plasmid construction were as described below.
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3.2 Chapter aims

>  Plan and implement a series of sequential alterations through which to obtain the 

required plasmids, each derived from pTBD3 or pTBD4.

>  Introduce ovalbumin (OVA) to the Gateway® system by creating pENTR-OVA.

>  Finalise transfer plasmid construction by transfer of OVA via Gateway® cloning.

3.3 Results

3.3.1 An efficient cloning strategy for construction of the required transfer plasmids

To generate a panel of novel transfer plasmids derived from parent vectors pTBD3 and 

pTBD4, a series of manipulations (summarised in Figure 3.2) were identified through which 

to obtain the required constructs as efficiently as possible. In the first instance, pTBD3 and 

pTBD4 were examined for unique restriction sites allowing for alteration of each flank (L 

and R), the direct repeat sequence (DR), and N and C terminal fusions (Figure 3.2 A). 

Interrogation of unique restriction sites revealed all of the above to be excisable, with the 

exception of the N-terminal fusion (TPA), therefore, the first modification sought to address 

this limitation by introducing unique restriction enzyme sites.
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Figure 3.2 Cloning steps for construction of required transfer plasmids. 1. Unique 

restriction sites fo r removal o f TPA sequence were introduced by site mutagenesis. 2. 
Flanking sequences (L and R) and direct repeat (DR) fo r Del III (blue) were removed and 

replaced fo r sequences targeting Del II (green). 3. TPA was removed. 4. TPA and V5 were 

removed and replaced w ith  V5+linker and VSVg, respectively. 5. TPA and V5 were 

removed, and replaced w ith  V5+linkerand stop, respectively.
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Conversion of pTBD3/4 to pTBD5/6

Unique restriction enzyme sites were introduced via site mutagenesis to enable excision 

and replacement of the existing N-terminal fusion (TPA). The mutations required were 

selected by examining the existing sequence against sequences for absent sites. In pTBD3 

and pTBD4, the sequence prior to TPA was CCCGGT (A). The sequence after TPA was 

CCCATCAA (B). Of 39 possible unique recognition sites, 20 were immediately discounted on 

the grounds of being degenerate, i.e. more than one nucleotide possible at one or more 

positions (Table 3.4). For the remaining 19 sites, the number of base pair changes needed 

to convert the existing sequence to the restriction enzyme site was noted.

Introduction of only 1 base pair change permitted the sequence preceding the TPA leader 

to become the recognition site for restriction enzyme Agel; site mutagenesis primers were 

designed accordingly (Section 2.1.5, Table 2.3).

A minimum of 3 base pairs were required to introduce a unique site downstream of TPA. 

Of 7 possible options, EcoRV was selected on the grounds that the base pairs required to be 

changed were adjacent. It was also noted that concomitant with the change, one and not 

two coding changes would be introduced; proline (CCC) to aspartic acid (GAT). Whilst the 

intervening sequence located between TPA and the gene of interest is not considered 

biologically significant, it is within the open reading frame. Here, the change of one amino 

acid is presumed not to have an impact on presentation of the encoded antigen. Site 

mutagenesis primers were designed accordingly and the required mutations introduced 

(Section 2.1.5, Table 2.3).

The mutations required to provide Agel and EcoRV restriction sites were introduced

sequentially. Clones were investigated for introduction of the required mutation via

analytical restriction digest (Section 2.1.6) with the corresponding enzyme. Plasmid DNA

isolated from putative clones was subjected to sequencing across the manipulated area to

confirm that pTBD5 and pTBD6 had been successfully generated.

76



Table 3.4 Restriction enzyme sites absent from pTBD3 and pTBD4. Sequences for absent 

sites were compared to the DNA sequence before (A) and after (B) the TPA leader. N 

denotes any base. The number of base pair changes required to introduce the site was 

recorded. The individual base pairs required to be mutated are shown in bold in square 

brackets. Some of the changes introduced one* or two**coding changes.

Absent
sites

Sequence
Conversion of (A) 

CCCGGT
Conversion of (B) 

CCCATCAA
Aarl CACCTGCNNNN/NNNN - -
Afel AGC/GCT 3 >3
Agel A/CCGGT 1 [CCCGGT] >3
Ajul NNNNNNNNNNNNGAANNNNNNNTTGG - -
Ajul' GAANNNNNNNTTGGNNNNNNNNNNN - -
Alol NNNNNNNNNNNNGAACNNNNNNTCC - -
AsiSI GCGAT/CGC >3 > 3
Avrll C/CTAGG 3 > 3
Blpl GC/TNAGC - -
Bmtl GCTAG/C >3 3 [CCCATCAA]**
Bpll NNNNNNNNNNNNNGAGNNNNNCTC - -
Bpll' GAGNNNNNCTCNNNNNNNNNNNNN - -

BsiWI C/GTACG >3 > 3
BstEII GGTNACC - -

Bsu36l CCTNAGG - -
CspCI NNNNNNNNNNNNNCAANNNNNGTGG - -
CspCI' CAANNNNNGTGGNNNNNNNNNNNN - -
Dralll CACNNNGTG - -
EcoRV GAT/ATC >3 3 [CCCATC]*
Fsel GGCCGG/CC >3 >3
Hpal GTT/AAC >3 >3
Nael GCC/GGC 2 3 [CCCATCAA]**

NgoMIV G/CCGGC 2 3 [CCCATCAA]**
Nhel G/CTAGC >3 3 [CCCATCAA]**
Nrul TCG/CGA >3 >3
Pad TTAAT/TAA >3 >3
Pmel GTTT/AAAC >3 >3
Pmll CACGTG 3 3 [CCCATCAA}**

PpuMI RGGWCCY - -
PshAl GACNNNNGTC - -

Psil TTA/TAA >3 3 [CCCATCAA]*
Rsrll CG/GWCCG - -

SanDI GG/GWCCC - -
SexAl A/CCWGGT - -

Sfil GGCCNNNN/NGGCC - -
SgrAI CR/CCGGYG - -
Stul AGG/CCT >3 >3
Swal ATTT/AAAT >3 >3

T th l l l l GACN/NNGTC - -
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Conversion of pTBD5/6 to pTBD7/8

A panel of transfer plasmids targeting an alternative site was constructed with a view to 

introducing inserts at two sites in the MVA genome. The MVA homologous sequences for 

Del III, L, DR and then R, were replaced sequentially via restriction digest and ligation. 

Fragments homologous to Del II were obtained by PCR using primers designed to 

incorporate restriction sites (Section 2.1.8, Table 2.4). During in silico preparation of 

plasmid maps, sequences for Del II L and Del II R were observed to contain Agel and Hindlll, 

respectively. In order to preserve the uniqueness of these sites within the system, for use 

in this or future studies, they were removed by overlap extension (OE) PCR (Section 2.1.9) 

prior to ligation.

For transfer plasmids targeting insertion site Del II, left and right homologous flanks were 

introduced in the reverse orientation to those targeting Del III (Figure 3.2, Step 2). This was 

to ensure that the recombinant cassette would be inserted into the MVA genome in the 

opposite orientation and thereby the same orientation as adjacent open reading frames; a 

factor potentially linked to the efficiency of transcription (Panicali and Paoletti, 1982). The 

design, i.e. length of the Del II homologous DNA fragments, matched that of an existing 

plasmid (pLAS-2), with proven history for insertion of recombinant cassettes at this site in 

the MVA genome (Earl et al., 2009).

As transfer plasmids pTBD5 and 6 were modified to become pTBD7 and 8, clones were 

assessed via analytical restriction digest at each stage. Following restriction digest, DNA 

fragments were separated by agarose gel electrophoresis (Section 2.1.7) to determine the 

number of fragments and their sizes. An example representing the final manipulation for 

construction of pTBD7 is shown in Figure 3.3. Sequence data complete for the modified 

regions confirmed that correct clones were progressed.
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Figure 3.3 Analytical digest of pTBD7 with Sbfl and Hindlll. Purified plasmid DNA 

was subject to  restriction enzyme digest fo llow ing insertion o f the final Del II 

homologous sequence: Del II L in place o f Del III R. The plasmid, prior to  

modification, was digested as a control (C) and yielded the expected fragments: 6.3 

kb and 522 bp (arrow head). Of 8 clones assessed, 5 appeared to  be correct yielding 

fragments o f 6.3 kb and 695 bp: # 2, 4, 5, 7 and 8. Plasmid #2 was selected fo r 

sequencing and was progressed to the next stage.

Conversion ofpTBD5/6 to pTBD9/10

Transfer plasmids containing antigen w ith  no N-terminal fusion were required fo r the 

purpose o f creating rMVA 'no-leader' control strains. Plasmids pTBD9 and 10 were created 

from  parent plasmids pTBD5 and 6, respectively, by removal o f the existing N-term inal 

Kozak-TPA sequence, via Agel/EcoRV digest, fo llowed by ligation o f annealed 

oligonucleotide containing the Kozak sequence only (Figure 3.2 Step 3). Forward and 

reverse oligonucleotides were designed fo r ligation directly after annealing, i.e. w ith  ends 

complementary to  the digested plasmid (Section 2.1.10, Table 2.5). Putative clones fo r 

pTBDIO were identified by analytical restriction digest; one was selected fo r sequencing 

across the modified region and confirmed to be correct. Conversely, putative clones o f 

pTBD9 failed to  be identified; the plasmids were variable in size and all were smaller than 

expected (Figure 3.4).
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Figure 3.4 Analytical digest of putative pTBD9 and 10 clones with Xhol and Notl.
Purified plasmid DNA was subject to  restriction enzyme digest. Parent plasmid was 

digested as a control (C) and in each case yielded the expected fragments: 6.9 kb and 

350 bp (pTBD5) or 6.9 kb and 528 bp (pTBD6). Following removal o f the TPA 

sequence, a reduction o f 100 bp in the smaller fragm ent was expected fo r each 

plasmid. Putative pTBDIO clone #1 was sent fo r sequencing and confirmed to  be 

correct.

Repeat attempts to  generate pTBD9 produced similar results to those shown in Figure 3.4; 

a ttempts to  resolve the issue by re-cutting pTBD5, and/or by varying the vector:insert ratio 

in the ligation reaction (Section 2.1.11), were unsuccessful. Throughout, cut pTBD5 was 

examined by gel electrophoresis to  ensure tha t the digest was complete and yielding tw o 

fragments of the expected size. Annealed oligonucleotides were not re-prepared on 

account o f successful ligation into cut pTBD6 to generate pTBDIO.

The characteristics o f plasmids pTBD5 and pTBD6 were re-assessed in silico and found to be

identical in every regard except fo r the vaccinia prom oter included fo r transgene

expression. Thus, successful conversion of pTBD6 to pTBDIO provided evidence fo r no

intrinsic flaw  in the design o f the cloning step, i.e. Agel/EcoRV vector digest followed by

ligation o f M T B l l l / l l l r  annealed oligonucleotides was proven to work efficiently. To

fu rthe r investigate the reduction in plasmid size observed fo r pTBD5, one clone (Figure 3.4,

#6) was selected fo r analysis via sequencing (Section 2.1.12). Results revealed tha t the

Kozak-only oligonucleotide had been inserted, but was inserted twice, in tw o orientations

(back-to-back) and tha t 1.7 kb o f the Gateway® cassette was missing: the N-terminal
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attachm ent site (o ffR l), the chloramphenicol resistance gene (CmR) and a portion o f the 

second Gateway® selection marker (ccdB). A schematic o f the Gateway® cassette and of 

the deleted region is shown in Figure 3.5.

pTBD9 Linear Map with scale (bp) 
SeqBuilder DNA Lasergene 11

Age! 
EcoRV 

Notl
EcolCRI Xhol Eagl PspOMI

I <05 I«00 [ 800 I 1000 I ’ 230 I 1400 I 1500 I 1800 [ToOO f a * 2*30 12903 2800 1 3000

R1 CmR ccdB R2 ►

mH5 V5
. Deleted

Figure 3.5. Schematic of a portion of plasmid pTBD9. The TPA sequence in pTBD5 

was excised by Agel/EcoRv digest, which would be reinstated upon ligation o f a 17 bp 

oligonucleotide (A). Ligation o f fragment A led to  a section o f the Gateway® cassette 

(yellow features) being deleted (red bar). Increasingly larger inserts were generated: 

B (252 bp), C (1900 bp) and D (2850 bp), fo r insertion into the vector employing 

restriction enzyme sites: Xhol/Not, Xhol/PspOMI and Eco53KI*/PspOMI, respectively. 

The features o f pTBD9 shown are: selection marker (GFP); direct repeat sequence 

(DR); mH5 prom oter (pink triangle), Gateway cassette recombination sites (R l, R2); 

chloramphenicol resistance gene (CmR); lethal gene (ccdB); B cell epitope tag V5 

(blue triangle); right MVA homologous flank (R). *EcolCRI isoschizomer

It was speculated that other clones, fo r reasons unknown, may have undergone sim ilar or 

more extensive deletions. To circumvent the problem, repeat d igest/ligations were 

performed using increasingly longer inserts. In the firs t a ttem pt, the original 

oligonucleotide (Figure 3.5, A) was replaced w ith a longer, custom-synthesised fragm ent 

incorporating mFI5 and o ftR l (Figure 3.5, B) w ith  restriction sites Xhol and Notl replacing 

Agel and EcoRV, respectively. Following transform ation o f E. coli w ith  ligated DNA, putative 

clones were screened via analytical digest. The results appeared to  confirm successful 

removal o f TPA and ligation o f insert B. However, the plasmids had again undergone a
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deletion, this tim e incurring a greater reduction in size: approximately 3 kb (Figure 3.6). An 

a ttem pt to  interrogate the nature o f the deletion by sequencing (clone #2) was 

unsuccessful, presumably on account o f primer binding sites no longer being present in the 

template.

Figure 3.6 Analytical digest of putative pTBD9 clones with Xhol and Notl. Purified 

plasmid DNA was subject to  restriction enzyme digest. Parent plasmid (pTBD5) was 

digested as a control (C) and yielded the expected fragments: 6.9 kb and 350 bp. 

Removal o f TPA appeared successful fo r clones 2 - 4 and 7 -  12; a reduction o f 100 bp 

in the smaller fragm ent was observed. However, the plasmid backbone, which was 

expected to  be the size same as C (6.9 kb), was much reduced.

Two larger inserts were subsequently created. As described in Section 2.1.13 (Figure 2.2), 

inserts C and D were generated by overlap extension PCR and then insert and parent vector 

(pTBD5) subjected to  the same double or sequential restriction digest. The unique 

restriction sites employed fo r inserts C and D were Xhol/PspOMI and Eco53kl/PspOMI, 

respectively. Both inserts were made w ith  existing primers and so were longer than 

required; both incurred a reduction in size upon restriction enzyme digestion. Ligation of 

cut vector w ith  fragments C and D again resulted in a deletion. The apparent reduction in 

plasmid size was approximately 1 kb, which was less than had been observed w ith insert B.
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Upon sequencing, data were obtained and alignment revealed tha t a portion o f the 

Gateway® cassette had again been lost.

Until this point, propagation o f the Gateway® destination vectors had been in medium 

supplemented w ith  carbenicillin, as the addition of chloramphenicol had been observed to 

impede growth. In order to  preserve selection pressure on the Gateway® cassette, E. coli 

(TOPIO) were transformed w ith  ligation reaction containing inserts A, B C or D and plated 

on LB supplemented w ith  both antibiotics. A fter 18 hours incubation, no colonies were 

observed fo r A, B and C and only three colonies fo r D. Each was picked and propagated in 

LB medium containing carbenicillin and chloramphenicol. Plasmid DNA was subsequently 

extracted and subjected to  tw o analytical restriction digest reactions: BamHI fo r excision o f 

CmR to  ensure it was present and Xhol/Eagl fo r interrogation o f the N-term inal a lteration 

(Figure 3.7). Two putative clones were identified and, on sequencing across the modified 

region, one was correct and suitable fo r fu rthe r use.

BamHI

Figure 3.7 Analytical digest of putative pTBD9 clones. Parent plasmid (pTBD5) was 

included as a control (C). Following restriction enzyme digest w ith  BamHI, fragments 

o f the expected size (6.5 kb (C)/6.4 kb and 702 bp) were observed fo r all digests w ith  

the possible exception o f #3, the backbone o f which was potentia lly reduced. 

Interrogation o f the N-terminal m odification, fo r successful removal o f the TPA 

leader showed the expected result fo r the parent plasmid (6.9 kb and 350 bp) and fo r 

clones 1 and 2 (6.9 kb and 245 bp), but not #3.
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Conversion ofpTBD7/8 to p TB ll/12  and pTBD13/14

As summarised in Figure 3.2 (steps 4 and 5), plasmids pTBD7 and 8 were digested with 

PspOMI and Sbfl to remove the existing V5 C-terminal tag. Oligonucleotides providing the 

required C-terminal modification (MTB113/133r and MTB114/144r, Section 2.1.10, Table 

2.5) were annealed and ligated to create pTBD ll/12 and pTBD13/14 intermediates, 

respectively. Conversion to pTB D ll/12 and pTBD13/14 was completed by excision of the 

existing TPA leader via digestion with Agel and EcoRV, and ligation of annealed 

oligonucleotides MTB112/112r for introduction of an N-terminal V5 B-cell epitope tag. 

This identical N-terminal modification, which might have been performed on pTBD7/8 in 

the first instance, was required to be performed after C-terminal changes and not before on 

account of deliberate re-introduction of PspOMI -  a restriction site exploited for the C- 

terminal modification. Regardless of the vaccinia promoter present, none of the issues 

observed with pTBD5 were seen to manifest themselves when modifying the Kozak region: 

all four plasmids were successfully altered on the first attempt. As above, analytical digest 

was used to identify putative clones at each step, with sequencing across the modified 

regions used to confirm that the required changes had been made.

3.3.2 Completion of transfer plasmid construction with insertion of the gene of interest

The ovalbumin gene (OVA) was created by splice overlap extension PCR (Section 2.1.14) 

and amplified with attB primers. A clean band of the expected size was observed upon 

separation by gel electrophoresis. Purified PCR product was transferred to pDONRzeo by 

BP reaction to create pENTR-OVA (Section 2.1.4). All four clones investigated following 

transformation, carried pENTR-OVA. Sequencing data revealed three out of four clones to 

contain point mutations within the open reading frame and the fourth to be suitable for 

progression to LR reaction. Following LR recombination of OVA into each pTBD vector, 

putative clones were identified by analytical digest and verified by sequencing. In each 

case, sequence alignment for OVA and the entire open reading frame, inclusive of N and C
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terminal fusions was obtained. Plasmid maps, annotated to show the sequenced region, 

are presented in Appendix I.

3.4 Discussion

In this Chapter, novel transfer plasmids had to be constructed. Specifically, a panel of 

transfer plasmids with which to generate rMVA expressing OVA for an investigation into the 

impact of leader sequences on immunological potency. The approach selected was one of 

modifying existing transfer plasmids that were Gateway® Destination vectors. An 

additional objective, to be achieved in parallel, was to create a panel of transfer vectors 

that would be amenable to further alteration, including insertion of alternative antigens.

3.4.1 Alteration of existing vectors via conventional cloning techniques

Conventional cloning techniques such as PCR, restriction enzyme digest and enzyme- 

mediated ligation were applied to modify the existing transfer plasmids. In the first 

instance, a plan for making the desired alterations was devised in silico. The primary 

objective for the cloning strategy was to construct the required plasmids as efficiently as 

possible. Secondly, they were to remain suitable for further alteration, in case additional 

modification should be required within the scope of this study or in future work.

As described in Section 3.3.1, it was possible to devise and implement such a plan by 

making use of existing unique restriction enzyme sites, introducing new unique sites where 

necessary, and preserving them where they might otherwise be removed. This endeavour 

was assisted by the pre-existence of unique sites around the majority of the regions of 

interest, e.g. the homologous flanks and direct repeat sequences. This was presumably as a 

consequence of the provenance of the plasmids; pTBD3 and pTBD4 were derived from 

pLAS-1, which was originally constructed using restriction digest and ligation techniques 

(Wyatt et a!., 2008b).
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Generally, the application of conventional cloning techniques proved an efficient means of 

completing the desired alterations; the majority of restriction digest and ligation steps were 

completed successfully, within one attempt and the screening of 8 - 10 putative clones. 

However, this was not the case in one instance - the conversion of pTBD5 to pTBD9. For 

this alteration, many repeat attempts and ultimately a change in cloning strategy were 

necessary to generate the desired vector.

The reason for the difficulty experienced with pTBD9 was not immediately obvious. The 

planned modification involved removal of the N-terminal TPA leader via Agel/EcoRV 

restriction digest followed by ligation of annealed oligonucleotides MTB111/MTB111R. 

Evidence for the reliability of this step was provided by pTBDIO, which was generated from 

pTBD6 by exactly the same means and in parallel with pTBD5/9 which failed. Furthermore, 

four other plasmids (pTBDll-14) were successfully modified in the same region by the 

same restriction digest, albeit followed by ligation with different oligonucleotides (Figure

3.2, steps 4 and 5).

At each repeat attempt of the ligation, cut pTBD5 was examined by agarose gel 

electrophoresis to ensure that the digest was complete and yielding fragments of the 

expected size. No abnormalities were found and so no explanation for the truncated 

products observed after ligation was provided. Scrutiny was applied to the pTBD5 vector. 

All of the available sequence data relating to the plasmid (laboratory files and sequencing 

performed in this project) were re-aligned against the in silico map to ensure that it was as 

expected. Indeed, there was alignment with no mismatched base pairs, thus, confirming 

that the restriction enzyme sites employed were rightly expected to be unique.

The characteristics of plasmid pTBD5 were compared with those of the plasmids which had 

been successfully modified. Plasmid pTBD5 contains the vaccinia promoter mH5 for 

expression of the transgene upstream of the region incurring a deletion, whereas plasmid 

pTBD6 contains the P7.5 promoter. Like pTBD5, plasmids pTBDll and 13 contain the mH5



promoter for transgene expression; however, they both differ by having an adjacent direct 

repeat sequence homologous to MVA insertion site Del II. Thought was given to whether 

the combination of the Del III direct repeat combined with the mH5 sequence might be 

making the pTBD5 plasmid unique in an unfavourable way; there is evidence for some DNA 

sequences being prone to adverse rearrangements, through homology-dependent and 

independent mechanisms (Bzymek and Lovett, 2001; Conley et al., 1986). Further work, 

beyond the scope of this study, would have been required to determine if something of this 

nature was the root cause. To circumvent the difficulties encountered, inserts of increasing 

size were generated which served to move an increasing number of features from the 

vector to the insert (Figure 3.5, fragment D). This approach was successful, although the 

number of putative clones remained low.

3.4.2 Alteration of Gateway® Destination Vectors and insertion of OVA

A contributing factor to the difficulty observed in converting pTBD5 to pTBD9 may have 

been failure to maintain selection pressure for both of the antibiotic resistance markers 

present; ampicillin resistance on the plasmid backbone and chloramphenicol resistance in 

the Gateway® cassette. Ultimately, a correct clone was obtained using both antibiotics, i.e. 

carbenicillin (ampicillin analogue) and chloramphenicol. Of note, the use of carbenicillin 

alone did not impact upon the success of any of the other cloning steps. Further, use of 

carbenicillin alone was deemed preferable; inclusion of both antibiotics was observed to 

impede cell growth (reduced turbidity after overnight culture) and, therefore, the ability to 

progress the cloning steps expediently.

After insertion of the ovalbumin gene into a Gateway® Entry vector, the antigen was 

transferred to each of the Destination vectors. The plasmids were then sequenced to 

confirm integrity of the entire open reading frame (ORF). This was considered an essential 

prerequisite to the use of the plasmids in the generation of rMVA. Transfer of the 

recombinant cassette would be monitored by GFP expression, and also via PCR of the MVA
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genome across the insertion site, but expression of OVA was dependent upon insertion of 

the correct sequence in the correct reading frame. In addition, to the ORF sequence data, 

many other regions of each plasmid were sequenced in the course of confirming that 

modification has been made successfully. Long term stocks of transformed E. coli were 

deposited for each plasmid, both before and after OVA insertion. The extent of the 

sequenced regions for the OVA panel of plasmids is shown in Appendix I.

3.4.3 Suitability of the transfer plasmid panel for future work

The transfer plasmids generated are Gateway® Destination vectors and so can be used for 

the insertion of alternative antigens. The panel offers the ability to append a TPA or VSVg 

leader sequence, or no leader at all. For each type of plasmid, there is the opportunity to 

alter the level of antigen expression by employing either P7.5 or mH5 for transgene 

transcription. All of the plasmids contain a V5 tag in the expression cassette for 

immunodetection of antigens for which antibody is currently unavailable. If no leader 

sequence and no V5 tag were required, inclusion of an in-frame stop at the end of the 

antigen sequence would terminate translation so that no tag was expressed. In addition, 

unique restriction enzyme sites were retained around regions of interest so that each 

plasmid would lend itself favourably to further alteration. The position of these unique 

sites is illustrated in Appendix I.

3.4.4 Alternative approaches to the selected cloning strategy

Gateway® cloning is expedient by virtue of its selection mechanism (Section 2.1.4, Figure 

2.1). Conventional cloning, meanwhile, can be time consuming as was the case for the 

conversion of pTBD5 to pTBD9. An alternative approach might have been to employ 

custom synthesis of DNA fragments. The current study utilised custom oligonucleotides 

from 20 -  40 bp (primers) up to 500 bp (for the construction of OVA). During the course of 

the study, the maximum length of custom-made DNA fragments increased from 500 bp to 2
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kb (Integrated DNA Technologies). In future work, greater advantage could be made of the 

longer oligonucleotides now available.

Custom plasmid synthesis was also a possible alternative, but as with DNA fragments of 

increasing size, was proportionally more expensive. Ultimately, the majority of the cloning 

steps progressed efficiently, without delay and at relatively low cost. Thus, the value of 

being able to alter plasmid features via conventional methods was demonstrated. Another 

attribute of custom synthesis would have been the ability to generate sequences exactly as 

desired with no extraneous material or coding changes (applicable where alterations fall 

within the open reading frame). For the work undertaken in the current study this was not 

anticipated to have been a compromising factor. However, future work involving multiple 

changes to a plasmid should use custom synthesis as far as is economically possible.

3.5 Conclusions
Conventional cloning was successfully applied to generate the transfer plasmids required. 

Subsequently, they were used to generate novel rMVA viruses.
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Chapter 4 Generation of novel recombinant MVA viruses

4.1 Introduction

Two panels of rMVA viruses were needed to test the study hypotheses (described in 

Section 1.5); one for an investigation into the impact of vaccinia promoter selection, the 

other for an investigation into the influence of leader sequences on transgene 

immunogenicity. The rMVA virus-panels designed to test each hypothesis and the transfer 

plasmids required to make them are summarised in Table 4.1. As shown, one virus was 

already available.

Table 4.1 Summary of the rMVA viruses employed to test each hypothesis. Some 

of the transfer plasmids (*) were already available. The remainder were constructed 

within the current study (described in Chapter 3). For the leader sequences study, 
the set of transfer plasmids incorporating mH5 was selected for creating rMVA. This 

and the precise design of the inserts used to test each hypothesis are discussed 

further in Chapters 5 and 6, as indicated.

Recombinant MVA  

virus
Transfer Plasmid rMVA source

Vaccinia promoter study (Chapter 5)

MVA-mH5-Ag85A *pTBDl-Ag85A Laboratory stock

MVA-P7.5-Ag85A *pTBD2-Ag85A This study

MVA-mH5-Rv0111 *pTBDl-Rv0111 This study

MVA-P7.5-Rv0111 *pTBD2-Rv0111 This study

Leader sequences study (Chapter 6)

MVA-OVAtpa PTBD5-OVA This study

MVA-OVA pTBD9-OVA This study

MVA-OVAVsVg pTBDll-OVA This study

MVA-OVA pTBD 13-OVA This study

M VA-OVAjpa/  OVAvsvg pTBD5-OVA & pTBDll-OVA This study

MVA-OVA/OVA pTBD9-OVA & pTBD13-OVA This study
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4.1.1 Transfer plasmid methodology and plaque purification

Transfer plasmid methodology was selected as the approach for inserting recombinant 

cassettes into the MVA genome (see Section 3.1). All of the recombinant cassettes 

contained the GFP gene for use as a selection marker to identify and isolate rMVA plaques. 

Plaque purification is an established methodology for isolating recombinant viral progeny 

away from the parent virus (Earl et al., 2001b; Kremer et al., 2012). Following infection of 

BHK-21 cells with the parent MVA strain and transfection with the appropriate transfer 

plasmid, cells are incubated for 2-3 days and then the cells and viruses harvested. Virus 

particles are released from the infected cells by freeze-thaw cycles, and dissociated from 

the cellular material by vortexing and sonication. Sequential rounds of plaque purification 

are then performed on CEF (or BHK-21) monolayers. At each round, the cells are cultured 

under a semi-solid overlay to promote the development of discrete plaques. Recombinant 

viral progeny are made distinguishable from the parent virus via the use of a selection 

marker, e.g. GFP, so that they can be physically picked away from the cell monolayer. 

Where possible, this is done at a distance from areas observed to exhibit cytopathic effects 

(CPE), but no selection marker expression, so as to reduce the likelihood of co-isolating the 

parent strain, although, in the earlier rounds of plaque purification this is difficult to 

achieve.

4.1.2 Generation of markerless rMVA

Recombinant MVA can be generated for stable or transient expression of the selection 

marker (see Section 1.3.1). Transient expression is achieved by inclusion of an identical 

DNA sequence either side of the selection marker in the recombinant cassette, the 

presence of which leads to an internal recombination event through which the marker is 

'self-excised' (Wyatt et al., 2008b). To generate a stock of markerless rMVA, plaque 

purification is carried out in the same way as it is for stable marker expression, i.e. until no 

parent virus remains, at which point the viral population comprises both marker-positive

91



and marker-negative lineages. Further passages are then performed until only the 

markerless population remains.

In the current study, stable GFP expression was selected for the viruses needed to 

investigate vaccinia promoter selection. For the leader sequences study, transient GFP 

expression was selected to facilitate the creation of double-recombinant viruses.

4.1.3 Characterisation of novel rMVA and preparation of viral vaccine stocks

Comprehensive methods for preparing and characterising rMVA are available (Earl et al., 

2001a; Earl and Moss, 2001; Earl et al., 2001b; Kremer et al., 2012) and relevant aspects are 

summarised here.

Stocks of rMVA must be characterised to ensure purity of the viral population and stability 

of the intended insert. This is routinely achieved using analytical PCR; MVA genomic DNA 

(gDNA) is extracted and amplified across the insertion site, using primers binding to the 

flanking regions. A single amplicon of the expected size for the recombinant cassette 

serves to confirm a homogenous population of rMVA. Smaller products, dependent upon 

their exact size, are indicative of truncated inserts and/or the presence of native MVA.

Faithful expression of the transgene can be confirmed by immunostaining of the cell 

monolayer with transgene-specific antibodies. An alternative means of confirming 

transgene expression is to subject infected cell lysate to Western blotting (separation of 

protein by SDS PAGE followed by transfer to protein-blotting membrane for 

immunodetection).

Prior to immunisation studies, amplified stocks of rMVA must be separated from the host 

cell lysate because an unpurified preparation will contain recombinant antigen generated in 

the course of viral replication. Combination-administration of virally vectored antigen with 

recombinant antigen enhances antigen-specific immune responses (Hutchings et al., 2007). 

This is a valid strategy for enhancing the immunological potency of rMVA-based vaccines,
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but to make an interpretable assessment of rMVA immunogenicity alone, extraneous 

recombinant antigen must be removed by density centrifugation. There are established 

protocols for purifying vaccinia stocks by pelleting through a layer of sucrose solution.

Before a purified stock of rMVA can be evaluated at a specified concentration, the stock 

must be titrated to enumerate the number of plaque forming units per millilitre (PFU/ml): 

serial dilutions of the stock are plated on permissive cells, under a solid overlay in multi

well plates. After 2-3 days incubation, plaques are counted and PFU/ml calculated 

according to the dilution factor. An alternative method for quantifying MVA viral particles 

is to titrate for determination of tissue culture infectious dose 50 (TCID50). This is the 

concentration of virus required to kill 50% of cells. This method is more labour intensive as 

a greater number of counts must be performed to accurately determine the proportion of 

cells infected over several dilutions. With either method, plaques must first be made visible 

for counting as MVA does not form lytic plaques. This may be achieved by virtue of the 

selection marker, or can otherwise be accomplished by immunostaining of the cell 

monolayer using anti-vaccinia, or anti-transgene antibodies.

It is only following satisfactory preparation and characterisation of rMVA viruses that their 

relative attributes can be fairly evaluated and compared. Accordingly, aims for this Chapter 

were as follows.
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4.2 Chapter Aims

To assess the impact of vaccinia promoter strength on the immunogenicity and protective 

efficacy of rMVA vectoring M. tuberculosis antigens (described in Chapter 5):

>  Create and amplify stocks of the rMVA viruses listed in Table 4.1, each derived from 

wild-type MVA and stably expressing GFP.

>  Characterise stability and purity via PCR.

>  Confirm antigen expression via Western blot.

>  Generate purified stocks of known titre.

To assess the influence of leader sequences on transgene immunogenicity; including their 

combined effect in a multiple recombinant (described in Chapter6):

>  Create and amplify markerless stocks of the rMVA viruses listed in Table 4.1, each 

derived from wild-type MVA or from a single rMVA virus expressing OVA.

>  Characterise stability and purity via PCR for one (single rMVA) or both (double rMVA)

inserts.

>  Confirm antigen expression via Western blot.

>  Generate purified stocks of known titre.
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4.3 Results

Not all of the rMVA required for the study were amenable to plaque purification. The 

outcome for each virus is summarised in Table 4.2.

Table 4.2 Generation of rMVA viruses for the current study. For those that were
insufficiently stable, a purified viral stock could not be prepared.

Recombinant MVA  

virus
Transfer Plasmid Outcome

Vaccinia promoter study

MVA-mH5-Ag85A pTBDl-Ag85A Laboratory stock

MVA-P7.5-Ag85A pTBD2-Ag85A Purified

MVA-mH5-Rv0111 pTBDl-RvOlll Unstable

MVA-P7.5-Rv0111 pTBD2-Rv0111 Purified

Leader sequences study

MVA-OVATpA PTBD5-OVA Purified

MVA-OVA pTBD9-OVA Purified

MVA-OVAvsvg pTBDll-OVA Purified

MVA-OVA PTBD13-OVA Purified

MVA-OVAjpa/ OVAvsvg pTBD5-OVA & pTBD 11-OVA Unstable

MVA-OVA/OVA pTBD9-OVA & pTBD13-OVA Unstable

For those rMVA that did appear to be stable, scrutiny was applied to the integrity of the 

recombinant insert and the ability of the rMVA to express the transgene. Where viruses 

could not be purified this was further examined, as far as practicable, to understand the 

root cause and to determine next steps.

4.3.1 Generation of novel rMVA expressing either Ag85A or R v O lll

The novel rMVA viruses required for the vaccinia promoter study (Table 4.1) were created 

using transfer plasmids as described in Section 2.2. To characterise the viruses generated, 

virus samples were amplified and examined via PCR and Western blot, as described in 

Section 2.3.
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Recombinant MVA expressing antigen under the contro l o f  P7.5

Recombinant MVA viruses expressing Ag85A or R v O lll under the control o f the weaker, 

P7.5 prom oter were both readily purified: both MVA-P7.5-Ag85A and MVA-P7.5-Rv0111 

were isolated away from  w ild-type MVA after three rounds of plaque purification. 

Representative results fo r analytical PCR and Western b lot are shown in Figure 4.1.

A

B

MVA-P7.5-Rv0111

mH5-
Ag85A

P7.5-
Ag85A

Figure 4.1 In v itro  characterisation of novel recombinant MVA. A) W ild-type MVA 

(WT) and MVA-P7.5-Rv0111 virus samples were amplified on CEF cells and gDNA 

extracted fo r analytical PCR o f the insertion site. PCR products were subsequently 

separated by gel electrophoresis. Transfer plasmid DNA was used as template in the 

positive control (+) reaction and yielded a product o f the expected size. W ater was 

used in place o f DNA in the negative control (-) reaction and did not produce an 

amplicon. B) Infected CEF cell lysate was separated by SDS PAGE and then 

transferred via Western Blot to  nitrocellulose fo r immunodetection w ith  anti-V5.
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The amplicons generated after PCR of the insertion site provided evidence for the presence 

of either wild-type MVA (549 bp) or rMVA (MVA-P7.5-Rv0111; 3901 bp). Results for MVA- 

P7.5-Ag85A are not shown. The failure of the PCR to yield two products, indicative of a 

mixed population, was speculated not to occur, or to occur rarely, because of preferential, 

more efficient amplification of the smaller target. Each rMVA virus was considered to be 

pure when wild-type MVA was no longer detectable.

For both MVA-P7.5-Ag85A and MVA-P7.5-Rv0111, evidence for antigen expression was 

provided by Western blot; the presence of anti-V5 immunoreactive bands demonstrated 

that the C-terminal V5 tag had been expressed (Figure 4.1B). In the case of MVA-P7.5- 

R vO lll, the expected size of the product was 86.3 kDa. Within the cell lysate, a number of 

breakdown products were detected. The expected size of the V5-tagged expression 

product for MVA-P7.5-Ag85A was 44.5 kDa. A band of this size and a smaller product were 

seen. In both cases, the presence of anti-V5 immunoreactive bands confirmed that the 

recombinant antigen was being expressed as translation had occurred through to the C- 

terminus. No V5-immmunoreactive product was seen in CEF infected with wild-type MVA 

(Figure 4.1A). However, a non-specific band of approximately 70 kDa was observed if the 

ECL hyperfilm was exposed to the blot for longer time periods.

Having been successfully purified, MVA-P7.5-Ag85A and MVA-P7.5-Rv0111 were available 

for further amplification and titration (discussed below).

Recombinant MVA expressing antigen under the control of mH5

When rMVA viruses expressing Ag85A or R vO lll under the control of the stronger mH5 

promoter were generated, only the Ag85A construct was amenable to plaque purification: 

MVA-mH5-Ag85A was isolated from wild-type MVA after four passages (this information 

was obtained from laboratory records). Meanwhile, the MVA-mH5-Rv0111 virus remained 

unpurified after three attempts to perform the infection/transfection and subsequent 

plaque purification.
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The apparent instability of MVA-mH5-Rv0111 was investigated further by amplifying all of 

the available infection/transfection harvests and plaque picks on CEF monolayers. After 

two days incubation, cell layers were examined for CPE and GFP expression and then 

harvested for characterisation by PCR and Western blot. A sample of wild-type MVA (WT- 

MVA) and samples relating to MVA-P7.5-Rv0111 (which had been successfully purified), 

were included in the experiment for comparison.

For each sample, the presence of CPE and GFP was arbitrarily scored to reflect the relative 

levels visible within the cell layer. After processing of cell lysate for determination of 

antigen expression, Western blots were scored similarly with results ranging from no V5- 

immunoreactive bands visible (-) to a strong V5-positive product (+++). In some cases a 

faint band may have been visible, but was difficult to discern above background (-/+). After 

extraction of MVA gDNA, two PCR reactions were performed and their products visualised 

after separation by gel electrophoresis. Primers for the 'L/R' PCR reaction bound to the left 

and right flanks of the Del III insertion site. The reaction was observed to yield either a 

small product, interpreted to confirm the presence of wild-type MVA (WT), or a large 

product observed to correspond to the size of the intended recombinant insert (Rec). As 

described above, the L/R PCR reaction did not yield two products, as might be expected for 

a mixed population of wild-type and recombinant virus. This was speculated to be because 

of preferential, more efficient amplification of the smaller wild-type target whenever it was 

present. Therefore, in order to investigate the presence of rMVA by PCR, a reaction 

employing primers annealing within the recombinant cassette was implemented; the 

forward primer annealed within the TPA leader sequence (N-terminal antigen fusion) and 

the reverse primer annealed within the V5 tag (C-terminal antigen fusion) (for a full 

description of the oligonucleotides, see Section 2.3.2, Table 2.6). All of the results obtained 

for WT-MVA, MVA-P7.5-Rv0111 and MVA-mH5-Rv0111 are summarised in Table 4.3.
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Table 4.3 Characterisation of viral samples arising in failed attempts to generate 

MVA-mH5-Rv0111. After two days amplification on CEF cells, the relative levels of 

CPE and GFP expression were recorded. Cell lysates were harvested and processed 

for interrogation by PCR and Western blot. Samples relating to wild-type (WT) MVA 

(the parent strain) and MVA-P7.5-Rv0111 (P7.5) were analysed in parallel.

Sample Promoter Description CPE GFP V5 WB PCR

L/R

PCR

TPA/V5

1 N/A WT-MVA +++ - - WT -

2 P7.5 l/T +++ - + WT +

3 P I +++ + + WT +

4 P2 + ++ ++ WT +

5 P3 + +++ ++ Rec -

6 A l ++ ++++ +++ Rec ++

7 A2 +++ ++++ +++ Rec ++

8 A3 +++ ++++ +++ Rec +

9 mH5 l/T +++ - + WT +'

10 (attempt 1) P I +++ + - WT -

11 mH5 l/T +++ - + WT +

12 (attempt 2) P I ++ + - WT -

13 P2 +++ ++ - WT -

14 P3 ++ +++ - WT -

15 mH5 l/T +++ - + WT +

16 (attempt 3) PI +++ + -/+ WT -/+

17 P2 ++ - - WT -/+

18 P3 ++ - - WT -

Abbreviations: CPE, cytopathic effects; GFP, green fluorescent protein, V5 WB, anti-V5 

Western blot; PCR, polymerase chain reaction; L/R, forward and reverse primers 

binding within the Left (L) and Right (R) flank; TPA/V5, forward and reverse primers 

binding within the TPA leader and V5 tag; l/T, infection/transfection sample, PI, 

'plaque pick' sample & round of purification; A l, 'amplification' sample & round of 

amplification; WT, wild-type; Rec, recombinant.

The results observed for WT-MVA and MVA-P7.5-Rv0111 were as predicted. WT-MVA  

induced CPE, gave no GFP expression, was detectable as wild-type (WT) when the insertion 

site was amplified (L/R PCR) and gave a negative result when an attempt to amplify a
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section o f the recombinant insert was made (TPA/V5 PCR). MVA-P7.5-Rv0111 induced CPE 

to  a level consistent w ith  the amount o f MVA expected to  be present; a decreasing amount 

as the recombinant was isolated away from  the parent strain and then an increasing 

amount as the purified recombinant was amplified. The level o f GFP expression increased 

as the recombinant was isolated and amplified, as did V5 expression. Native MVA was 

detectable until the strain was purified, which took three rounds o f plaque purification. 

There was evidence fo r the recombinant insert (TPA-V5) being present at all times except 

fo r the sample derived from  the th ird  plaque pick (P3). This is presumed to  be an 

anomalous result; an alternative explanation m ight be lack o f gDNA template, but sufficient 

virus, measurable by the number o f GFP expressing plaques, had been present.

Given tha t many o f the MVA-mH5-Rv0111 amplified samples expressed GFP, but gave little  

(-/+) or no (-) evidence fo r the TPA to V5 section of the recombinant cassette, another PCR 

reaction was performed using a forward primer binding near the start o f the GFP gene and 

a reverse prim er binding in the right flank (GFP/R, Section 2.3.1, Table 2.6). Results 

revealed a product fo r all samples except fo r the negative control, sample No. 1 and sample 

No. 18 (Figure 4.2).

Figure 4.2 Interrogation of the insertion site following failed attempts to 

generate MVA-mH5-Rv0111. Products o f the GFP/R PCR reaction were separated 

by gel electrophoresis (see table 4.3 fo r a description o f the samples; 1-18). 

Transfer plasmid DNA was used in the positive control (+) reaction and gave a 

product o f the expected size (3190 bp). W ater was used in place o f DNA template 

to  provide a negative control (-). Only one product was observed fo r each 

reaction. NB. Sample 14 appears tw ice because lane-to-lane leakage was 

observed when loading the gel. The positive control band was very bright, but on 

close inspection was not considered to be tw o bands merging.
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The absence of a product for the WT-MVA control (sample No. 1) was expected and 

confirmed that without a recombinant cassette, specifically the GFP gene, the forward 

primer would not be complementary to the viral gDNA template and no amplicon would be 

generated. A product of 3190 bp was expected for all of the samples related to MVA-P7.5- 

R vO lll and this was observed, matching the product in the positive control for which the 

template had been the MVA-P7.5-Rv0111 transfer plasmid.

For the MVA-mH5-Rv0111 samples where GFP expression had been observed, but there 

was no evidence for the recombinant cassette upon TPA/V5 PCR, it was speculated that a 

truncated product might arise. Instead, all of the MVA-mH5-Rv0111 samples gave yield to a 

PCR product the same size as that in the positive control. This was investigated further by 

having these PCR products sequenced (Section 2.1.12).

Sequence files returned for the GFP-R PCR products were analysed against sequence maps 

for the corresponding transfer plasmid (pTBDl-RvO lll or pTBD2-Rv0111). The results are 

summarised in Table 4.4 where samples are confirmed as having the expected sequence 

('correct7) or an unexpected sequence ('wrong'). It was not deemed necessary to send all 

of the samples relating to MVA-P7.5-Rv0111 for sequencing (-).

MVA-P7.5-Rv0111 was successfully purified with no anomalous PCR results and so 

sequence data relating to the amplicon derived from this construct were expected to be 

correct. Indeed, they aligned with no mismatched base pairs.

Sequence data for the MVA-mH5-Rv0111 3rd attempt (Samples 15-17) were also correct 

and this strain had shown a weak TPA-V5 product suggesting that perhaps the required 

rMVA virus was present, but at low titre, eventually becoming undetectable by the third 

round of plaque purification (P3, Sample No. 18).
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Table 4.4 Sequence analysis for GFP-R PCR products. Purified PCR products were 

sequenced and compared to the expected sequence, to determine which were correct.

Sample Promoter Description Sequence Data

1 N/A WT-MVA No product

2 P7.5 l/T Correct

3 P I Correct

4 P2 -

5 P3 -

6 A l -

7 A2 -

8 A3 Correct

9 mH5 (attempt 1) l/T Correct

10 P I Correct

11 mH5 (attempt 2) l/T Correct

12 P I Wrong

13 P2 Wrong

14 P3 Wrong

15 mH5 (attempt 3) l/T Correct

16 PI Correct

17 P2 Correct

18 P3 No product

Evidence for the intended recombinant virus having been present, but again at low titre, 

was also observed for the MVA-mH5-Rv0111 1st attempt (Samples 9-10), which gave the 

correct sequence despite a TPA-V5 PCR product and V5 expression not being detectable.

Sequence data for the MVA-mH5-Rv0111 2nd attempt showed that an aberrant 

recombinant had been generated. Transfer plasmid backbone had been incorporated 

which replaced the majority of the R vO lll antigen, but which gave, coincidentally, a GFP-R 

PCR product of the expected size. Evidently, this recombinant was stable in nature, 

explaining why GFP expression was observed to increase with successive plaque 

purification rounds, just as it did for MVA-P7.5-Rv0111.
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Overall, an assessment of the 3 attempts to generate MVA-mH5-Rv0111 concluded that it 

may have been made successfully, but was only ever present at very low levels and was 

unable to propagate such that it could be isolated away from wild-type MVA. 

Characteristics of the R v O lll transgene were reviewed to investigate why MVA-mH5- 

R vO lll could not be purified.

Truncation of R vO lll to enable generation of stable MVA-mH5-Rv0111 virus

R vO lll is predicted to contain 10 transmembrane domains (Figure 4.3) and so this was 

considered a likely cause for its instability (Krogh et al., 2001). It was speculated that a 

truncated version of the gene, eliminating the majority of the predicted transmembrane 

helices, may enable a stable MVA-mH5-Rv0111 virus to be generated. Accordingly, a 

truncated R vO lll sequence, Rv011136i -685 (RvO lllT), was amplified from M. tuberculosis 

strain H37Rv gDNA. The rationale for the length of R vO lllT  was to eliminate as many 

predicted transmembrane helices as possible while retaining immunogenic epitopes 

(murine and human T cell epitopes have been identified, as discussed in Section 1.4.2).

R vO lllT  was amplified from the M. tuberculosis genome using primers incorporating attB 

sequences, so that the gene could be rapidly transferred to the required MVA transfer 

plasmid via Gateway® cloning (Section 2.1.4). Upon completion, the transfer plasmid was 

sequenced to ensure that there were no mutations in the open reading frame. A transfer 

plasmid map annotated to show the sequenced regions is presented in Appendix II. Once 

the transfer plasmid was confirmed to be correct, the infection/transfection reaction in 

BHK-21 was repeated. In the subsequent attempt to isolate recombinant virus, MVA-mH5- 

R vO lllT  was successfully isolated and native MVA confirmed to be absent (by PCR) after 

three rounds of plaque purification. Evidence for recombinant antigen expression was also 

obtained via Western blot (not shown).
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TMHMM posterior probabilities for WEBSEQUENCE
1.2

RvOlllT

0 100 200 300 400 500 600

transmembrane ------  ins ide---------- outside --------

Source: T M H M M  Server v2.0, CBS, Denmark

Figure 4.3 R v O lll transmembrane helices The R v O lll amino acid sequence (685 

residues) was entered into a server fo r transmembrane helices prediction 

(TMHMM Server 2.0, Centre fo r Biological Sequence Analysis, Denmark). Arrows 

show the length o f R v O lll before (2-685) and after (361 -  685) truncation.

Amplification of MVA-Ag85A and M VA -R vO lll virus stocks

Each o f the recombinant viruses successfully isolated away from  w ild-type MVA were 

subsequently amplified by propagation through culture vessels o f increasing size, 

culm inating in a large-scale amplification involving m ultiple tissue culture flasks. Cell lysate 

was harvested and viral particles separated from  host cell and vaccinia-derived protein by 

sucrose-cushion density centrifugation (Section 2.2.7).

T itration on CEF monolayers was performed in order to  determ ine the titre  (PFU/ml) o f the 

purified stocks (Section 2.2.3). In parallel, purified material was amplified and harvested for 

a fu rthe r round o f PCR and Western blot characterisation, to  ensure tha t it was o f suitable 

quality fo r subsequent studies (Section 2.3). A summary is provided in Table 4.5.
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Table 4.5 Purified stocks for an investigation into vaccinia promoter selection

Summary for sucrose 
cushion purified material

MVA-P7.5-
Ag85A

MVA-mH5-
Ag85A

MVA-P7.5-
R v O lll

MVA-mH5-
R vO lllT

No. of passages taken to 
isolate recombinant MVA

3 3 3 3

Total no. of passages
(plaque purification & 
amplification)

7 8 7 8

Stability of insert 
confirmed by PCR

✓

Expression product 
detected via Western blot

4.3.2 Generation of markerless rMVA expressing ovalbumin (OVA)

The novel rMVA viruses required for the leader sequences study (Chapter 6) were created 

and characterised as described above, with the addition that after isolation of recombinant 

virus further passages were performed to remove transiently expressed ('self-excising') GFP 

(Section 2.2.6). In light of the findings for MVA-mH5-Rv0111, where an erroneous 

recombinant had been purified, a panel of analytical PCR reactions was devised for robust 

analysis of the recombinant insert at each round of plaque purification. Expression was 

investigated as before, using anti-V5 for immunodetection of the recombinant antigen 

following Western blot of infected CEF cell lysate.

An expanded PCR panel for virus characterisation

Using the transfer plasmids created in Chapter 3, four recombinant MVA viruses expressing 

OVA were constructed. Between them, recombinant cassettes were introduced at two 

sites in the MVA genome, Deletion site II (Del II) and Deletion site III (Del III). For all, the 

selection marker was transiently expressed by virtue of homologous sequences flanking the 

GFP gene. The PCR reactions that were implemented are summarised in Figure 4.4. 

Existing primer pairs (previously applied to the characterisation of M VA -R vO lll) were 

employed for Del III specific reactions - L/R and GFP/R. For the remainder, it was possible
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to  establish primer pairs using oligonucleotides originally synthesised fo r construction o f 

the transfer plasmids (sequences are listed in Section 2.3.2, Table 2.6).

Del III

OVAGFP DR rr»H5

(OVA)

MTB115 MTB116

(GFP/R)MTB92 MTB21

(L/R)MTB93 MTB21

Del II
mH5 DR GFPOVA

(OVA)

MTB115MTB116

(GFP/L) MTB92MTB105

(L/R) MTB109MTB105

Figure 4.4 Primer pairs for characterisation of recombinant MVA expressing OVA

For each insert site, analytical PCR was employed to detect w ild-type vs recombinant 

virus (L/R) and to  detect GFP in the context o f the insertion site (GFP/R and L/GFP). A 

PCR test targeting OVA, w ith in the recombinant cassette, was also implemented. As 

described in Chapter 3, the recombinant cassette fo r Del II is introduced in the 

opposite orientation. (Abbreviations: L, le ft flank; R, right flank; DR, direct repeat; 

GFP, green fluorescent protein; OVA, ovalbumin; mH5, modified vaccinia promoter 

H5).

The transient GFP system leads to the generation of antigen-free rMVA

Following the infection/transfection process, samples were plated fo r isolation o f GFP- 

positive plaques. A fter the firs t round o f plaque picking, harvested plaques were amplified 

fo r extraction o f MVA gDNA and characterisation by PCR. Results pertaining to  each o f the 

four viruses provided evidence fo r a mixed population comprising recombinant and w ild- 

type virus. In addition, a th ird  population was identified; it was observed tha t some o f the 

virus was recombinant, contained GFP, but had an insert smaller than was expected fo r the 

intended recombinant cassette. The size o f the insert was consistent w ith  a recombinant
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virus containing the GFP gene only (MVA-GFP). It was reasoned tha t this would occur on 

account o f an undesired homologous recombination event involving the d irect repeat 

sequence (Figure 4.5B). Further, it was speculated that a fourth  population could arise in 

which OVA, but not GFP would be transferred to  the MVA genome (Figure 4.5C).

A

MVA gDNA

DRGFP mH5 OVA
Transfer plasm id

B

MVA gDNA

mH5
Transfer plasm id

OVAGFP DR

C

MVA gDNA

GFP DR mH5 OVA
Transfer plasmid

Figure 4.5 Putative homologous recombination events between MVA gDNA and a 

transient-marker transfer plasmid. A) The desired recombination event involves the 

regions flanking the insertion site. B) The presence o f a direct repeat (DR) sequence, 

homologous to  the end o f the preceding flank (L) makes possible an alternative 

recombination event in which only the GFP gene is transferred. C) It may also be 

possible fo r the antigen, but not GFP, to  recombine into the MVA genome. For each 

scenario, features o f the transfer plasmid transferring to  MVA gDNA are shown w ith  

a bold outline.

For each o f the viral populations tha t could emanate from  the infection/transfection 

process (Figure 4.5) the length of the amplicon expected to  arise in each PCR reaction was 

determ ined (Table 4.6).
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Table 4.6 PCR reactions for virus characterisation and expected products (bp). Viral 

populations and the transfer plasmid(s) from which they could arise are shown. For 
some virus-PCR combinations, no product was expected (-). For viruses in which GFP 

was transiently expressed, a reduction in PCR product size upon GFP loss was 

anticipated (shown in parentheses).

Target and primer pairs

Virus
OVA

MTB115
MTB116

Del III

L/R GFP/R
MTB93 MTB92 

MTB21 MTB21

Del II

R/L GFP/L

MTB109 MTB92 

MTB105 MTB105

Wild-type MVA - 549 - 750 -

pTBD5 or pTBD9-OVA (Del III), pTB D ll or pTBD13-OVA (Del II) 

MVA-GFP - 1599 1071 1739 1622

pTBD5 orpTBD9-OVA (Del III), pTB D ll or pTBD13-OVA (Del II) 

MVA-Ag only 1205 2069 2274 -

PTBD5-OVA 

MVA-OVAtpa(Del III)

(without GFP)

1205 3119

(2069)

2591

(-)

750 -

pTBD9-OVA

MVA-OVA (Del III)
(without GFP)

1205 3014
(1964)

2486

(-)

750
(n/a)

pTBDll-OVA

MVA-OVAVsvg (Del II)
(without GFP)

1205 549 “ 3262
(2274)

3159

(-)

pTBD13-OVA

MVA-OVA (Del II)
(without GFP)

1205 549 - 3115
(2127)

3012

(-)

For all four MVA-OVA viruses, the decrease in amplicon size expected to occur following 

loss of transiently expressed GFP gene was also calculated. In some instances, no PCR 

product was expected, because the homologous sequence for one or both primers would 

be absent from the template, or because primers would bind, but at separate insertion
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sites (Del II and Del III are separated by 130 kb of genomic DNA, the PCR reaction is 

optimised for an amplicon of approximately 3 kb). It was noted that, should antigen-only 

recombinant MVA arise directly from the infection/transfection process (Figure 4.5C), it 

would be genetically identical to the intended construct following GFP loss and so 

indistinguishable upon PCR. In each PCR test, transfer plasmid DNA was included as a 

positive control and water used in place of DNA to provide a negative control.

Isolation of markerless rMVA expressing OVA

MVA-OVATPA(Del III) and MVA-OVA (Del III) were both purified after two rounds of plaque 

purification. A schematic summarising the viral samples harvested for each virus and their 

status with regards to recombinant cassette insertion and transgene expression, as 

determined by PCR and Western blotting, is shown in Figure 4.6. Viral sample 

nomenclature is described in Section 2.2.5.

MVA-OVAvsvg (Del H) and M V A -O V A  (Del II) were both purified after 3 and 4 rounds of 

plaque purification, respectively. A  schematic summarising the viral samples harvested for 

each virus and their status with regards to recombinant cassette insertion and transgene 

expression is shown in Figure 4.7.

Representative PCR and Western blot data for the four MVA-OVA viruses are shown below. 

For ease of reference throughout, the viruses are referred to by a single digit, 

corresponding to the transfer plasmid used to create them.
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Key to PCR and Western Blot Results

PI

PI
(1)

Round of plaque purification and 
plaque number. No fill: no PCR data.

PI
(1)

Green/Red fill:
OVA detected/not detected.

PI Light green:
(1) faint OVA product.

Green writing:
MVA-GFP population detected.

Green border- OVA expression 
detected via Western Blot

Green 'glow' -  no native MVA 
detected.

5: MVA-OVAtpa (Del III}

P4
( l . l . l . l )

P4
(1.1.1,2)

P4 
(1.1.1.3)

(1.1-5)
P3

(1-1-6)

Figure 4.6 Plaque purification of MVA-OVAtpa (Del III) and MVA-OVA (Del III). Plaque-pick 

samples, the ir propagation and the results o f in vitro  characterisation (PCR and Western 

blot) are summarised. Numbers adjacent to  the virus name indicate the pTBD plasmid used 

to  generate the virus e.g. pTBD5-OVA fo r MVA-OVAtpa (Del III). Not all picks were analysed 

by Western blot and only positive results fo r expression are shown. Abbreviations: l/T, 

infection/transfection reaction; P I (1), Plaque pick, round of plaque purification and plaque 

sample number(s) (the latter shown in parentheses).
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Key to PCR and Western Blot Results

PI
(1)_

PI
{1}

Round of plaque purification and 
plaque number. No fill: no PCR data.

PI
(1)

Green/Red fill:
OVA detected/not detected.

PI Light green:
(1) faint OVA product.

Green writing:
MVA-GFP population detected.

Green border- OVA expression 
detected via Western Blot

Green 'glow' -  no native MVA 
detected.

11: MVA-OVAVSVg(Del II)

P3
(1-3.6)

(1 ,3 .1 .

P I P I P IP I P I P I

P2
(1.2)(1.1

P3
(1.1.1)

P4
(1.1.2.1)

P4 
(1.1.2.3)

P3
(1-1-3)

P3
(1-1-2)

13: MVA-OVA (Del II)

P3
(1.1.4)

P3
(1-1-5)

P3
(1.1.6)

Figure 4.7 Plaque purification of MVA-OVAVSvg (Del II) and MVA-OVA (Del II). Plaque-pick 

samples, the ir propagation and the results o f in vitro  characterisation (PCR and Western 

blot) are summarised. Numbers adjacent to  the virus name indicate the pTBD plasmid used 

to  generate the virus e.g. pTBD5-OVA fo r MVA-OVAtpa (Del III). Not all picks were analysed 

by Western blot and only positive results fo r expression are shown. Abbreviations: l/T, 

infection/transfection reaction; PI (1), Plaque pick, round o f plaque purification and plaque 

sample number(s) (the latter shown in parentheses).
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Rationalised processing o f genomic DNA samples for PCR

For all four MVA-OVA viruses, all plaque picks were amplified and viral genomic DNA 

(gDNA) harvested, but to  accommodate the extended panel o f PCR reactions, stepwise 

analysis o f the samples was implemented. A fter the firs t round o f plaque purification (PI), 

one plaque sample fo r each virus was initia lly analysed using the primer pairs described in 

Figure 4.4 and Table 4.6. The PCR products arising from  reactions 'OVA', 'L/R' and 'GFP/R' 

are shown in Figure 4.8.

Figure 4.8 Analytical PCR of MVA-OVA samples collected in the first round of 
plaque purification. Virus from  plaque-pick samples was amplified fo r extraction of 

gDNA and characterisation o f the insert site and recombinant cassette via PCR. For 

each virus, DNA from  the corresponding transfer plasmid was used as template in the 

positive control reaction (+). W ater was included in place o f DNA in the negative 

control (-). For ease o f reference, the plaque samples were referred to  by a single 

digit, corresponding to  the transfer plasmid used to  create them (shown in Table 

4.4).

Across the PCR reactions, negative controls produced no amplicon. The products observed 

fo r each o f the positive controls fo llow ing the 'OVA' reaction were close to  the expected 

size and appeared to  have migrated fu rther on account o f having been run at high 

concentration. For both '5 ' (MVA-OVAtpa Del III) and '9 ' (MVA-OVA Del III), the OVA 

reaction confirmed tha t a viral population carrying the ovalbumin gene (1205 bp) was 

present; a fa in t band was visible fo r virus derived from  pTBD5. Plaque samples fo r '11'

(MVA-OVAvsvg Del II) and '13' (MVA-OVA Del II) also contained ovalbumin-positive gDNA.
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Following reaction 'L/R', the positive control (transfer plasmid) DNA yielded bands 

consistent with each plasmid having undergone a recombination event, excising the 

selection marker in the same manner anticipated for the recombinant viral gDNA. Thus, 

they provided an indication of the expected products, both with and without GFP. As 

expected, amplification across the insertion site revealed the presence of wild-type MVA 

(549 bp) and this product was amplified in preference to larger amplicons derived from the 

recombinant gDNA, known to be present in the sample because of the 'OVA' result. The 

'L/R' reaction targets insertion site Del III and so plaque samples for '11' and '13' yielded 

bands consistent with a native genotype and this would have been expected even had they 

been purified recombinant virus.

Amplification of the GFP gene in the context of insertion site Del III (reaction 'GFP/R') 

preferentially highlighted a recombinant population containing GFP only (MVA-GFP) for 

both '5' (MVA-OVAtpa Del III) and '9' (MVA-OVA Del III). There was also evidence for a non

specific band (~850 bp) faintly visible in each of the positive controls.

It was noted that in both the 'L/R' and the 'GFP/R' reactions, the positive control template 

also revealed a non-specific product larger than the recombinant cassette (> 4kb), likely to 

be plasmid DNA carried over from the PCR reaction on account of the template being 

insufficiently dilute. This was remedied in future reactions by further dilution of the 

plasmid DNA.

Overall, for both of the Del III constructs, investigation by PCR revealed the presence of at 

least three virus populations - wild-type MVA, MVA-GFP and MVA carrying the ovalbumin 

gene. The latter was potentially present with and without the GFP gene. As summarised in 

Figure 4.7, the results for '11' (MVA-OVAVsvg Del II) and '13' (MVA-OVA Del II), some of 

which can be seen in Figure 4.8, revealed the presence of wild-type MVA and MVA-OVA  

(with and without GFP). There was no evidence for a MVA-GFP population.
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The P I plaque samples characterised by PCR were also investigated for evidence of antigen 

expression via Western blot of infected cell lysate. The results did not reveal an anti-V5 

reactive band for any of the viruses (not shown). Whilst the ovalbumin gene had been 

detected upon PCR, this was considered a plausible outcome on account of the potentially 

very low amount of recombinant virus present. Material from each of the 

infection/transfection steps did provide evidence for V5 immunoreactivity.

Plaque samples from the first round of plaque isolation were subsequently diluted and 

plated for further plaque isolation. In subsequent rounds of PCR analysis, more plaques 

were analysed, but the PCR reactions were performed in stages to down-select those 

worthy of further investigation, e.g. those containing the ovalbumin gene.

Purification of MVA-OVA (Del III)

At the second round of purification (P2), PCR was performed as above and revealed that 

MVA-OVA (Del III), derived from pTBD9, had been isolated efficiently. Of seven P2 plaque 

samples harvested and characterised, four were confirmed by PCR to contain virus carrying 

the ovalbumin gene (not shown): P2 (1.1), P2 (1.2), P2 (1.5) and P2 (1.6). Reaction 'L/R' and 

'GFP/R' were subsequently performed on these four samples. Results are shown in Figure 

4.9A.

In three of the pTBD9-derived P2 samples (1, 5 and 6), amplification across the insertion 

site ('L/R') was able to demonstrate a mixed population - wild-type MVA (549 bp), MVA- 

GFP (1599 bp) and GFP-free MVA-OVA (1964 bp). The ability of the reaction to detect 

larger inserts in addition to the native product, which might have otherwise been 

preferentially amplified, was attributed to an increase in the proportion of recombinant 

viral populations. The relative intensity of each band was not interpreted beyond that as 

the amplification efficiency for PCR products of different size is not anticipated to be equal. 

For P2 (1.2), the 'L/R' reaction provided evidence for GFP-free MVA-OVA and possibly a
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very faint band for the recombinant cassette with the GFP gene. Wild-type MVA was not
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Figure 4.9 Characterisation of MVA-OVA samples collected in the second round of 
plaque purification (P2). A) Viral samples relating to  '9 ' (MVA-OVA Del III) were 

amplified fo r extraction o f gDNA and characterisation o f the insert site and 

recombinant cassette via PCR. DNA from  the corresponding transfer plasmid was 

used as tem plate in the positive control reaction (+9). W ater was included in place of 

DNA in the negative control (-). B) All 4 o f the samples relating to  those investigated 

by PCR were observed to express recombinant antigen on Western blot (expected 

product size, 47.8 kDa). All contain a non-specific product o f approximately 70 kDa 

(arrow head) observed to be a feature o f MVA-infected CEF cell lysate (negative 

control not shown).

In support o f the 'L/R' PCR result, reaction 'GFP/R' confirmed the presence o f MVA-GFP in 

the P2 (1.1), P2 (1.5) and P2 (1.6) samples. For sample P2 (1.2), it provided evidence fo r the 

desired recombinant only, inclusive o f the GFP gene. Hence, between the 2 reactions it was
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apparent that both a GFP-positive and GFP-negative population of MVA-OVA (Del III) was 

present. This was expected as visual inspection of the cell layer prior to extraction of gDNA 

had shown GFP-positive plaques.

At the second round of plaque purification, those samples in which the ovalbumin gene was 

detectable by PCR also demonstrated expression by Western blot (Figure 4.9B). At this 

stage, plaque sample P2 (1.2) was selected for further passaging for removal of the GFP 

gene.

Purification of MVA-OVAtpa (Dei III)

As summarised in Figure 4.6, further plaque purification of sample P I (1) was carried out, 

but at the fourth round of purification (P4) the MVA-GFP (no OVA) population was shown 

to persist. Ultimately, further plaque samples from round 1 were investigated to select an 

alternative for progression, specifically, a plaque sample in which MVA-GFP was not 

apparent. As described above for MVA-OVA (Del III), the required recombinant was then 

isolated and, again, by the second round. Sample P2 (5.1) was selected for further passage 

for removal of the GFP gene.

Purification of MVA-OVAVSVg (Del II) and MVA-OVA (Del II)

As described above, one plaque sample for each virus was analysed at the first round of 

plaque isolation (Figure 4.8). Both of the recombinant MVA viruses went on to be purified 

from these samples after three and four rounds of plaque purification, respectively. The 

PCR reactions applied throughout were 'OVA' (as used for the Del III constructs), and 'R/L' 

and 'GFP/L' which were Del II specific. An example of the results obtained at the fourth 

round of plaque purification (P4) for MVA-OVA (Del II), derived from pTBD13, are shown in 

Figure 4.10. Sample P4 (1.1.2.2) was selected for further passage to remove the GFP gene, 

while for MVA-OVAVSvg (Del II), derived from pTBDll, sample P3 (1.3.2) was selected (as 

shown in Figure 4.7).
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Figure 4.10 Analytical PCR of MVA-OVA samples collected in the fourth round of 
plaque purification. Viral samples relating to  MVA-OVA (Del II), derived from  

pTBD13, were amplified fo r extraction o f gDNA and characterisation o f the insert site 

by PCR. A fter amplification across the Del II insertion site (R/L), tw o  o f the three 

pTBD13-derived MVA-OVA plaques were observed to  contain a m ixture o f the 

required recombinant, w ith  and w ithou t the GFP gene. No w ild-type MVA was 

detected. Amplification o f the insertion site using a primer binding w ith in  the GFP 

gene (GFP/L) revealed the required rMVA only and no MVA-GFP, i.e. rMVA w ith  no 

OVA antigen. All o f the samples were observed to contain the ovalbumin gene 

(results not shown).

Removal o f transiently expressed GFP and amplification o f virus stocks

After isolation o f each o f the MVA-OVA viruses away from  w ild-type MVA, the purified 

samples were subjected to  serial passage to  remove the GFP gene. As described in Section 

2.2.6, the removal o f GFP by serial passage was assisted by culturing CEF under a solid 

overlay so tha t discrete plaques expressing GFP could be physically removed p rior to  

harvesting the cell layer. Where a GFP-positive population o f MVA-OVA was found to  

persist, the approach o f picking discrete foci o f GFP-free cells was taken to  maximise the 

likelihood o f amplifying GFP-free recombinant virus only. The number o f passages required 

before each virus no longer exhibited GFP expression is summarised in Table 4.7. A t each 

subsequent round o f amplification cell monolayers were screened to ensure tha t no GFP 

positive cells were visible. Upon PCR analyses o f the final, purified rMVA stock, no GFP- 

positive PCR products were observed.
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Table 4.7 Purified stocks for an investigation into leader sequences. Purified, 
titrated stocks were subjected to PCR of the insertion site to reveal products of the 

expected size for pure, GFP-free recombinant MVA-OVA. Expression was also 

confirmed via Western blot.

Sucrose cushion (SC) 
purified stocks:

MVA-OVAtpa 
(Del III)

MVA-OVA 
(Del III)

MVA-OVAvsvg 
(Del II)

MVA-OVA 
(Del II)

No. of passages taken to 
isolate MVA-OVA (+GFP)

2 2 3 4

No. of additional
passages taken to isolate 
MVA-OVA (- GFP)

2 5 4 2

Total no. of passages
(purification, GFP 
removal and 
amplification)

9 11 11 11

Stability of insert 
confirmed by PCR

✓ ✓

Expression product 
detected via Western blot

Following isolation of GFP-free MVA-OVA, each of the viruses was amplified through culture 

vessels of increasing size and then purified by sucrose cushion purification (Section 2.2.7). 

The concentration of the purified stocks (PFU/ml) was determined by titration on CEF in 

multi-well plates (Section 2.2.3). All of the titrated stocks were subjected to a final, further 

round of characterisation by PCR and Western blot to ensure that the material was of 

suitable quality for subsequent studies (summarised in Table 4.7). The results for the 

Western blot are shown in Figure 4.11. Each virus produced a V5 reactive band of the 

expected size. MVA-OVAtpa (Del III) ('5') also produced a larger band, possibly a dimer of 

the expected product. Overall, the results confirmed that all four MVA-OVA viruses were 

suitable for further use, to create double recombinants (below) or for comparison of their 

relative immunogenicity (Chapter 6).

118



Figure 4.11. Expression of Ovalbumin by four MVA-OVA viruses. Infected CEF cell 

lysate was separated by SDS PAGE and transferred to  nitrocellulose fo r 

imm unodetection w ith  anti-V5. Viruses are referred to by the number o f the pTBD 

plasmid used to  create them (see Table 4.6). From left to  right, the expected size fo r 

the product was 51.6, 47.8, 53.9 and 48.3 kDa. All contain a non-specific product o f 

approximately 70 kDa observed to  be a feature o f MVA-infected CEF cell lysate 

(arrow head). The presence o f OVA as a doublet is expected due to  the form ation o f 

d ifferent glycosylated forms.

4.3.3 Instability of double recombinant MVA-OVA

The MVA-OVA viruses above were generated to be markerless so that, as single 

recombinants, all would have the potential to  be transformed into a double recombinant 

virus via insertion o f a second, separate recombinant cassette. The infection/transfection 

reactions carried out are listed in Table 4.8. MVA-OVAtpa (Del III) and MVA-OVA (Del II) 

were selected to  serve as the parent strains (because they had been available first). The 

viruses were diluted fo r infection o f BHK-21 at the required MOI (see section 2.2.4). 

Subsequently, the infected cells were transfected w ith  transfer plasmid to  create double 

recombinant MVA viruses (summarised in rows 1 and 2 o f Table 4.8).

Table 4.8 Creation of double recombinant MVA-OVA viruses. The names given to  

the double recombinant viruses reflect the order in which the antigens w ith  leader 

sequences have been inserted.

l/T
Infecting MVA parent 

strain
Transfected transfer 

plasmid
Resultant double 

recombinant

1 MVA-OVATpA (Del III) pTBDll-OVAVSvg(Del II) MVA-OVATPA/OVAVsvg

2 MVA-OVAvsvg (Del II) pTBD5-OVATPA(Del III) MVA-OVAvsvg/OVAtpa

3 MVA-OVA (Del II) pTBD9-OVA (Del III) MVA-OVA/OVA
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A modified PCR panel for characterisation of double recombinant MVA-OVA

Due to pre-existence of the recombinant cassette in the first insertion site, new primer 

pairs were incorporated into the analytical PCR protocol to detect OVA in the context of the 

flanking regions (Table 4.9). As before, amplification across the insertion site was 

performed to detect the presence of multiple populations: wild-type MVA, MVA-GFP and 

MVA-OVA (with and without GFP). Throughout, both insertion sites were analysed to 

ensure stability of the first insert.

Table 4.9 PCR characterisation of double recombinant MVA and expected products 

(bp) Amplification from the OVA gene to each of the flanks means that one amplicon 

will include the GFP gene and reduce in size upon its loss (shown in parentheses).

Target and primer pairs

Del III
Viral inserts 0 V A /R L/OVA

MTB115 MTB93 
MTB21 MTB116

Del II
OVA/L R/OVA

MTB116 MTB105 
MTB109 MTB115

Existing insert (from pTBD5):

MVA-OVATpA (Del III) 1417 1859 - -

Second insert (from pTB D ll)

MVA-OVAvsvg (Del II)
(without GFP)

- 2590
(1602)

1852 
(no change)

Existing insert (from pTBD13):

MVA-OVA (Del II) 1627 1705

Second insert (from pTBD9))

MVA-OVA (Del III) 1417 
(without GFP) (no change)

2802
(1754)

- -

Isolation of MVA-OVATPA/OVAV5vg

Two attempts were made to generate a double recombinant virus expressing OVA fused to

two different leader sequences. Following the first infection/transfection reaction (Table

4.8, l/T No.l) propagation of the harvested l/T sample gave rise to only two plaques, on two

separate occasions (Figure 4.12A). A promising isolate was identified at the second round
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of plaque purification, (P2) 2.2, but was found to be devoid of the required virus in the 

subsequent round (P3). Throughout, the recombinant cassette in the first insertion site 

(Del III) was present and of the expected size and so appeared to be stable. The inability to 

isolate MVA-OVATPA/O VAVsvg on this occasion was considered likely to stem from the 

inadequate number of plaques arising from the l/T-step; the number of BHK-21 cells visibly 

expressing GFP prior to collection of the sample had been less than expected.

To obtain the required double recombinant MVA, two alternative strategies were 

attempted in parallel: the same infection/transfection was reattempted using increasing 

concentrations of the infecting virus. The infection/transfection was also repeated using 

the alternative single-recombinant MVA as the recipient strain (Table 4.8, l/T No. 2).

Of the two approaches, the latter appeared to yield more putative plaques, but by the 

second round of plaque purification the ovalbumin gene at the first insertion site (Del II) 

was no longer detectable via PCR. Indeed, there was no product at all for PCR reactions 

incorporating primers binding to the Del II region. This result was confirmed at the third 

round of purification (P3), where six out of six plaque samples were shown to be purely 

recombinant gDNA with regards to Deletion site III (Figure 4.12B).

Isolation of MVA-OVA/OVA

As outlined in Table 4.8 (l/T No. 3), MVA-OVA/OVA was created by introducing a second 

recombinant cassette into the MVA genome at Deletion site III. After four rounds of plaque 

purification, no more virus of native genotype remained for the second, Del III insertion site 

(P4 (5.1.1.1), Figure 4,12C), but by this round of plaque purification the insert at Deletion 

site II had been lost. Again, no PCR products were observed for reactions incorporating 

primers binding to the Del II region. This was confirmed in further passages which would 

have otherwise served to amplify the virus.
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A) l/T  N o .l

S /ll: MVA-OVA^/OVA^ 
(Del Ill/Del II)

P3
(2,1.6)

P3 P3
12,2.5) (2,2,6)

B) l/T  No.2

11/5: MVA-OV/Vsvg/OVA^ 
(Del ll/D el III)

P3
(4-2.1)

N o

p la q u e s

N o

p la q u e s

C) l/T  No. 3

13/9: MVA-OVA/OVA 
(Del ll/Del III)

Figure 4.12 Plaque purification and propagation to create MVA-OVA double recombinant 
viruses. Plaque-pick samples, the ir propagation and the results of PCR characterisation for 

the second insertion site are summarised. Numbers adjacent to  the virus name indicate the 

firs t and second pTBD plasmid used to  create the virus e.g. pTBD5-OVA and pTBDll-O VA 

fo r MVA-OVATpA/OVAVSvg (Del Ill/Del II)). Abbreviation and Key: as shown in Figure 4.6 and 

Figure 4.7. Red outline: no PCR product fo r firs t (Del II) insert.
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In summary, while the single recombinant MVA viruses expressing OVA were successfully 

purified, neither of the double-recombinant viruses was successfully isolated within the 

time available. In both cases, the insert at Deletion site II was lost during the additional 

passages needed to insert the second recombinant cassette.

4.4 Discussion

As discussed in Section 3.1, transfer plasmid methodology is one of two approaches 

available to generate rMVA; the other alternative is to apply BAC technology. The transfer 

plasmid system was selected for the current study because of the advantages conferred by 

its ease of set-up and implementation. The main disadvantage of the transfer plasmid 

system is the need to plaque-purify recombinant viral progeny.

4.4.1 Plaque purification of rMVA

After each infection/transfection (l/T) reaction the BHK-21 cell layer was harvested and 

subjected to sequential rounds of plaque isolation on CEF cells. It was possible to monitor 

the success of each l/T step by inspecting the BHK-21 cell layer for cells expressing GFP. 

The detection of adequate GFP expression proved an important prerequisite to undertake 

successful plaque purification.

Plaque purification was very efficient for MVA-P7.5-Ag85A and MVA-P7.5-Rv0111, taking 

only three rounds to complete. In contrast, the process was more challenging for MVA- 

mH5-Rv0111; the insert was unstable at the higher expression level, thus providing a 

growth advantage to non-expressors. Analytical PCR reactions were fundamental to 

determining what had occurred in this instance and demonstrated the importance of 

applying PCR tests at every round of plaque purification to ensure that only appropriate 

isolates were progressed.
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Characterisation of rMVA by PCR

For each novel rMVA, amplification of gDNA at the site of antigen insertion was vital to 

ensure that the recombinant cassette was present, had not been truncated and to identify 

the point at which native MVA was no longer contaminating the recombinant viral stock. 

The use of primers that bound either side of the insertion site might have had the potential 

to simultaneously detect multiple populations, e.g. wild-type and recombinant viral DNA. 

This occurred in some instances, but more often the reaction was observed to demonstrate 

a bias towards smaller products. Rather than presenting a significant limitation, this 

feature worked in favour of the overall objective which was to ensure that no WT-MVA 

remained. However, it did mean that other reactions had to be implemented in order to 

more fully examine each recombinant cassette.

For samples pertaining to MVA-mH5-Rv0111, additional PCR reactions specific for the 

recombinant antigen were able to demonstrate that it was absent beyond the early 

purification rounds, despite continued presence of the GFP gene on one occasion. These 

analyses were essential to being able to conclude that the virus was insufficiently stable to 

be purified.

Improved stability was observed for the single rMVA viruses expressing OVA; following 

antigen insertion, viral replication was able to occur and the rMVA viruses were readily 

isolated. However, each of these viruses was generated to express GFP transiently and the 

ability for an unwanted rMVA population to arise was revealed to be an inherent 

complication for this system; the transient-marker recombinant cassette was able to 

mediate transfer of the GFP gene alone.

Additional PCR tests were able to clarify which viral populations were present within a

given sample but, in terms of expedient rMVA preparation, the application of an extended

panel of reactions was time consuming. The apparent propagation of plaque samples that

were either unsuitable according to PCR data, or not required (as shown in Figures 4.6, 4.7
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and 4.12), was a reflection of the need to continue propagation whilst waiting for PCR 

results to become available. For double recombinant MVA the number of required PCR 

tests was again increased, but was vital in demonstrating the instability of recombinant 

viruses at their first insertion site (discussed further below).

In summary, the difficulties presented by plaque purification were arguably off-set by the 

relative ease with which they could be interrogated by analytical PCR, but more time was 

required for transient marker expression and/or the creation of double recombinants. 

Ultimately, some rMVA were readily isolated and PCR was an expedient means of 

confirming purity and stability of the recombinant insert.

Characterisation of rMVA by Western Blot

In addition to characterisation by PCR, transgene expression was investigated using anti-V5 

antibodies. During plaque purification, detection of an expression product lent support to 

PCR findings in some instances. However, in the earlier rounds of plaque purification 

transgene expression might not have always been detectable on account of the low level of 

rMVA present. Thus, the main benefit of characterisation by Western blot was not to 

support the selection of appropriate plaque isolates, but to verify faithful transfer of the 

recombinant antigen for effective transcription and translation. This appeared to be 

particularly pertinent at certain stages of rMVA preparation. Accordingly, material arising 

from each l/T step was analysed for early assurance of successful antigen insertion and, 

later, expression from the amplified stocks was checked as a precursor to performing 

further rMVA studies.

The manner in which the expressed recombinant products manifested was varied. MVA

expressing R vO lll produced V5-positive proteins that were a range of sizes, including a

dominant band of approximately 30 kDa. The R v O lll gene encodes a membrane-bound

acyltransferase with 10 transmembrane domains; thus, it is hydrophobic and insoluble.

This was considered a likely cause for the range of anti-V5 immunoreactive products
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observed. In support of this conclusion it was calculated in silico that a C-terminal fragment 

of R vO lll, devoid of transmembrane domains, would give rise to a V5-positive protein of 

approximately 30 kDa.

Both Ag85A and OVA are soluble, and MVA expressing each of these proteins both 

produced two - three discrete V5-positive products upon Western blot. Eukaryotic 

expression of Ag85A has been reported to culminate in glycosylated and non-glycosylated 

forms, thus, the protein appears as two products when separated according to size (Huygen 

et a i,  1996). Ovalbumin is also reported to appear as a doublet because of the existence of 

mono and di-glycosylated products (Suzuki et al., 1997).

Immunodetection with anti-V5 antibodies was applied throughout despite the availability 

of transgene-specific antibodies in some instances, e.g. anti-OVA. This was in order to 

demonstrate the flexibility of the system for investigating alternative recombinant antigens, 

as had to happen with R vO lll which was truncated to promote stability under higher 

transcriptional regulation. It was noted that in the presence of degraded antigen, as seen 

for R vO lll, greater assurance of successful translation was provided by the inclusion of a C- 

terminal V5 tag, i.e. to confirm translation of the entire open reading frame. For those 

rMVA expressing an N-terminal V5 tag, e.g. MVA-OVA (Del II), it was reassuring to see V5- 

reactive products of the expected size.

With regards to the use of rMVA as viral vaccine vector, the appearance of the expression 

product after separation by SDS PAGE may be less relevant than the ability to detect it at 

all. This is because novel vaccines for use against TB (and other important diseases) are 

primarily being developed to induce cell-mediated immunity, i.e. T cell responses to 

processed antigen peptides and not B cell responses to conformational epitopes.
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4.4.2 rMVA viruses for an investigation into Vaccinia promoter selection

Of the four rMVA viruses required for this aspect of the study, only three were successfully 

purified. The fourth, MVA-mH5-Rv0111, was apparently unstable and could not be 

isolated. MVA expressing R vO lll under the control of the weaker, P7.5 promoter was 

readily purified and so instability of MVA-mH5-Rv0111 was attributed to heightened levels 

of R vO lll expression. An rMVA virus expressing a truncated R vO lll gene was generated 

(MVA-mH5-Rv0111T) and was readily isolated. As this version of the recombinant antigen 

excluded the majority of the protein's putative transmembrane domains, evidence for their 

being the cause of, or a contributing factor to, the instability was provided. A link between 

transmembrane regions and rMVA instability has been reported previously (Wyatt et a i, 

2009). The validity of undertaking a comparison of promoter effects for a full length 

antigen versus a truncated version is discussed in Chapter 5.

4.4.3 rMVA viruses for an investigation into the use of Leader sequences

Six rMVA expressing OVA needed to be created, two of which would contain recombinant 

cassettes at two insertion sites. To facilitate insertion of a second recombinant cassette, all 

of the viruses were created to express GFP transiently so that markerless rMVA could be 

obtained. The single-recombinant viruses were apparently stable and were successfully 

purified, while the double-recombinant viruses were not. As discussed above, the transient 

marker system led to less efficient rMVA purification, but this would not appear to have 

contributed to the instability observed for the double-recombinants. There was some 

evidence to suggest that this may have been associated with the maintenance of a 

recombinant cassette in Deletion site II.

Deletion site II confers inferior stability

The single recombinant MVA expressing OVA comprised two strains employing Deletion 

site III for insertion of the recombinant cassette and two strains utilising Deletion site II. All 

were readily purified within 2-4 rounds of plaque purification. Prior to the amplification of
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the viruses, further passages were performed to remove the transiently expressed, 'self- 

excising' GFP gene. By the time that viral purification was undertaken, all of the rMVA had 

undergone between 9 - 1 1  passages. Purified viral stocks were plated to determine their 

titre and at the same time, all were satisfactorily examined by PCR to confirm purity and 

stability of the recombinant inserts. Subsequently, some of the viruses were used to create 

double recombinant MVA-OVA, none of which were successfully isolated.

MVA-OVATpA (Del III) was used for insertion of a second recombinant cassette in Deletion 

site II. By the time of abandoning the attempt, the parent virus had been passaged 14 

times in total and the recombinant cassette in Deletion site III was still present.

MVA-OVAvsvg (Del II) and MVA-OVA (Del II) were both used for insertion of a second 

recombinant cassette in Deletion site III. By the time of their 14th and 16th total passage, 

respectively, the insert in Del II had been lost. The PCR tests employing primers binding to 

the Del II region gave no product at all.

The six major genomic deletion sites of MVA have been used routinely as regions for 

insertion of exogenous DNA. There is some evidence in the literature to suggest that 

Deletion site II may confer inferior stability for HIV antigens (Wyatt et al., 2009) and in this 

example the use of intergenic regions was favoured, i.e. insertion between essential regions 

so that spontaneous deletions would be lethal. Many rMVA studies have employed OVA as 

a model antigen and this gene was not anticipated to induce spontaneous loss in the Del II 

region. There was insufficient time within the course of the current study to confirm 

conclusively if one or both insertion sites would incur stability issues over a protracted 

number of passages. There was also insufficient time to rectify this issue. The impact on 

the overall objectives and the value in assessing those rMVA-OVA that were successfully 

purified is discussed in Chapter 6, as are alternative approaches to successfully generating 

the double-recombinant MVA.
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4.5 Conclusions

Transfer plasmid methodology was an efficient means of generating novel rMVA, including 

markerless rMVA, provided it was supported by a suitable and sufficient number of PCR 

tests to characterise viral progeny.

The model antigen ovalbumin was inserted in two sites of the MVA genome and may have 

had a greater tendency to induce spontaneous deletions when inserted into Deletion site II, 

as opposed to Deletion site III. Further work would be needed to determine whether this 

was the case.

Characterisation by PCR identified those rMVA that were sufficiently stable and pure to be 

used in further studies, while Western blot was applied to confirm each was able to express 

the recombinant antigen. The viruses available for future work are listed in Table 4.10.

Table 4.10 rMVA available for further study. All of the rMVA listed are single 

recombinant viruses expressing a product from either Del II or Del III.

Recombinant MVA virus
Expression product 

Del II
Expression product 

Del III

Vaccinia Promoter Study

MVA-P7.5-Ag85A - TPA-Ag85A-V5

MVA-mH5-Ag85A - TPA-Ag85A-V5

MVA-P7.5-Rv0111 - TPA-Rv0111-V5

MVA-mH5-Rv0111T - TPA-Rv0111T-V5

Leader Sequences Study

MVA-OVATpA - TPA-OVA-V5

MVA-OVA - OVA-V5

MVA-OVAvsvg V5-OVA-VSVg -

MVA-OVA V5-OVA -

The rMVA listed in Table 4.10 were subsequently used to test the hypotheses of the study 

(described in Section 1.5). Thus, the impact of vaccinia promoter selection on the 

immunogenicity and protective efficacy of TB vaccine antigens vectored by MVA was 

investigated and is described in Chapter 5, while the potential for leader sequences to
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diversify the quality of the immune response evoked to antigens vectored by rMVA was 

studied and is described in Chapter 6.
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Chapter 5 Does vaccinia promoter selection have the potential to alter 

the efficacy of rMVA TB vaccines?

5.1 Introduction

Vaccine antigen expression in rMVA based vaccines is achieved via insertion of the 

transgene downstream of a vaccinia promoter. The vaccinia promoter sequence contains 

binding sites for transcription initiation factors and determines both the strength and 

timing of transcriptional activity. To achieve high levels of transgene expression, promoters 

combining early and late (E/L) regulatory elements are routinely used. Optimised, synthetic 

promoters combining early and late elements are available (PsynE/L), but as discussed in 

Section 1.2.4, they may compromise virus stability.

One of the first vaccinia promoters to be employed for the expression of foreign genes was 

the naturally occurring early/late promoter P7.5. This promoter is still widely used, but 

alternatives offering greater levels of transgene expression are available for selection, 

provided they do not compromise stability. In an attempt to create a promoter of 

intermediate strength to PsynE/L and the weaker P7.5, the naturally occurring H5 promoter 

was modified (mH5) to provide optimised expression and stability (Wyatt et al., 1996). 

Recombinant Vaccinia virus studies have shown that the timing and magnitude of 

transgene expression also influences the nature of transgene-specific immune responses; 

early expression is critical for the induction of cell mediated immunity (discussed in Section 

1.2.4). In this regard, the attributes of mH5 are highly desirable as early expression in 

particular is increased relative to H5.

5.1.1 Promoter effects on antigen expression, immunogenicity and protective efficacy

There have been at least three reports describing head-to-head comparison of vaccinia 

promoters P7.5 and mH5, using rMVA expressing the same antigen. In a study involving the 

luciferase gene fused with a T-cell epitope sequence, promoters P7.5 and mH5 gave rise to
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similar levels of expression over 24 hours, but the mH5 construct was able to induce a 

higher frequency of CD8+ antigen-responding T cells (Orubu et al., 2012). In a pair of rMVA 

viruses expressing the model antigen ovalbumin, mH5 drove higher levels of expression 

than P7.5, but there was little change in the induction of CD8+ T cell responses to the 

immunodominant ovalbumin epitope. Meanwhile, responses to subdominant CD8+ 

epitopes were increased suggesting that mH5 may alter immunodominance hierarchy 

(Becker et al., 2014). Of more relevance to the TB field, a dual rMVA expressing an HIV 

antigen (HIVA) and Ag85A was described in which mH5 and PsynE/L were compared to 

P7.5. There was evidence for increased expression by mH5 as compared to P7.5, 

established in vitro for a single infecting dose only, and increased expression did appear to 

correlate with increased immunogenicity. However, the results were complicated by 

simultaneous delivery of two separate antigens and investigation of some of the responses 

in the context of boosting a previously administered recombinant BCG strain. Further, the 

impact of increased immunological potency on protective efficacy was not assessed 

(Hopkins et al., 2011). Overall, these studies did not define the relationship between 

transgene expression and the immunological potency and efficacy of the rMVA under test.

5.1.2 Optimisation of vaccinia promoter selection for TB antigen delivery

MVA85A is the only vaccinia-based TB vaccine candidate to have entered human trials and 

until recently, was the most advanced TB vaccine candidate under clinical development 

(see Section 1.4.3). Unfortunately, results for a Phase lib efficacy study in infants were 

unable to demonstrate improved protection relative to the placebo control (Tameris et al., 

2013). Research efforts for MVA85A have since focused on alternative delivery routes and 

immunisation regimens. Aerosol delivery has been investigated in rhesus macaques and 

was proven to induce equivalent antigen-specific responses to intradermal delivery, with 

the added benefit that anti-vector immune responses were reduced (White et al., 2013). 

Similar findings were subsequently reported for humans (Satti et al., 2014) and most

132



recently, another Phase I clinical study of MVA85A was conducted to assess its ability to 

boost Adenovirus vectoring TB vaccine antigens (Sheehan et al., 2015).

MVA85A delivers a single M. tuberculosis antigen (Ag85A) fused to a TPA leader sequence 

and utilises vaccinia promoter P7.5 for recombinant antigen expression (McShane et al., 

2002). The P7.5 construct showed potent immunogenicity in early clinical trials and 

demonstrated efficacy in pre-clinical testing. Modification/improvement of the construct 

may have initially been deemed unnecessary, but given the lack of efficacy observed in 

humans, rational optimisation might now be warranted. The impact of replacing P7.5 for 

mH5 should be determined in a manner consistent with assessing whether the efficacy of 

MVA85A, and other MVA-based TB vaccines, can be improved via optimisation of antigen 

expression.

5.1.3 Design and generation of rMVA for the current study

Vaccine candidate R vO lll has induced promising levels of protective efficacy in pre-clinical 

small animal models (see Section 1.4.2), but has unfavourable characteristics from a 

formulation perspective; the amino acid sequence of the protein contains 10 putative 

transmembrane domains (Vipond et al., 2006a; Vipond et al., 2006b). MVA is a potential 

vector for R vO lll delivery, but if confronted with stability issues the extent to which 

increased expression should be pursued is unclear. Therefore, a vaccinia promoter 

optimisation study for TB antigens is needed to clarify the potential benefits. The vaccine 

antigens selected for the current study were Ag85A and R vO lll. The vaccinia promoters 

selected for comparison were the promoter included in the current MVA85A clinical 

candidate and a promoter optimised for expression and stability - P7.5 and mH5, 

respectively.
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5.1.4 Evaluation of protective efficacy for novel TB vaccines

Pre-clinical evaluation of TB vaccines occurs through a hierarchy of animal models where 

immunogenicity testing is routinely performed in mice and preliminary efficacy studies in 

mice and guinea pigs (McShane and Williams, 2014). As discussed in Section 1.4.2, TB 

vaccines need to induce Th-1 immunity and so a key readout for murine immunogenicity 

studies is antigen-induced IFNy release. To evaluate protective efficacy, immunised animals 

are challenged with an aerosolised dose of M. tuberculosis (Mtb) and bacterial load in the 

lung and spleen determined at a set time point post-infection. Vaccine efficacy is measured 

according to the reduction in Mtb colony forming units (CFU) retrieved from the organs, 

relative to untreated and treated controls. The standard positive control in such tests is the 

current BCG vaccine. Dependent upon the requirements of the experiment, the test 

vaccine may be evaluated alone or as a booster vaccine to BCG. For ethical (and 

economical) reasons it is appropriate to restrict the pre-clinical efficacy testing of novel TB 

vaccines to those demonstrating adequate immunogenicity in a relevant model. The aims 

for this Chapter, described below, were implemented accordingly.

5.2 Chapter Aims

The objective for this Chapter was to test the hypothesis that vaccinia promoter selection 

can influence the immunogenicity and protective efficacy of TB vaccine antigens vectored 

by MVA. Specific objectives for this chapter were to:

For each pair of MVA:

>  Investigate relative levels of antigen expression.

>  Characterise viral fitness and stability.

>  Measure immunological potency.

>  Evaluate protective efficacy.
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5.3 Results

In order to make a head-to-head comparison of vaccinia promoter effects rMVA identical in 

every regard except for the vaccinia promoter driving transgene expression were required. 

This was achieved with respect to the configuration of promoters in relation to the inserted 

antigen; the early and late transcriptional start sites for P7.5 and mH5 were all within a 100 

bp of the Kozak sequence in which the translational start resides (detailed information 

regarding the sequence of each recombinant cassette is presented in Appendix III.). 

However, not all of the rMVA were able to be purified with the full length antigen 

sequence. The four rMVA vaccines constructed for the study were MVA-P7.5-Ag85A, MVA- 

mH5-Ag85A, MVA-P7.5-Rv0111 and MVA-mH5-Rv0111T, with the latter carrying a 

truncated R vO lll gene (described in Chapter 4).

5.3.1 rMVA expressing R vO lll under the control of P7.5 and mH5

MVA-P7.5-Rv0111 and MVA-mH5-Rv0111T antigen expression levels

Sucrose-cushion purified and titrated stocks of each of the above viruses were used to 

infect CEF cells at a range of concentrations. After two days, the cells were harvested in 

denaturing buffer for determination of antigen expression by dot blot (Section 2.3.4). The 

results demonstrated a dose dependent increase in the amount of V5 present in the 

infected cell lysate for each virus (Figure 5.1).

135



Rv0111 Expression

MVA-mH5-Rv0111T 

-« MVA-P7.5-Rv0111

CO
O 2 > «Xo >* 
,§■  i(/) C0)

c
V
XQ.

10°
MVA (PFU/well)

Figure 5.1 Expression of R v O lll by rMVA. CEF cell monlayers were infected w ith 

rMVA in trip licate wells. A fter tw o days, cell lysate was transferred to  nitrocellulose 

fo r detection o f R v O lll using anti-V5 and anti-mouse-HRP. Following incubation 

w ith  ECL Plus chemiluminescent reagent, nitrocellulose was exposed to  Hyperfilm 

ECL and densitom etry performed to  measure spot volume using ImageQuant TL 

image analysis software (GE Healthcare). Results fo r spot volume minus background 

(mean +/- SEM) were plotted against the concentration o f infecting virus (PFU/well).

The relative expression levels o f the rMVA viruses were compared. There was clear 

separation o f the exponential region fo r each curve. The results provided evidence for 

MVA-mH5-Rv0111T being able to  achieve an equivalent level o f expression to MVA-P7.5- 

R v O lll after infection o f the cells w ith approximately 10 fold less virus. As stated above 

(Section 5.2), a comparison o f vaccinia promoter effects should ideally characterise rMVA 

viruses that are identical in every regard except fo r the prom oter under test. Therefore, 

the rate of viral replication was investigated to  determ ine w hether the increased 

expression observed fo r MVA-mH5-Rv0111T was due to  superior viral fitness, conferred by 

the expression o f a truncated R v O lll gene.

Relative fitness of MVA-P7.5-Rv0111 and MVA-mH5-Rv0111T

In the above experiment, an additional well o f CEF cells was infected w ith  each serial 

d ilu tion o f rMVA. When cells were harvested fo r analysis by dot blot, the additional well
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was harvested fo r titra tion  and determ ination o f rMVA concentration (PFU/ml). The results 

enabled dot b lot densitom etry data to  be re-plotted against PFU/well as measured at the 

end o f the incubation period (Figure 5.2).

Rv0111 Expression and Viral Fitness
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Figure 5.2 Amplification of rMVA expressing R vO lll. Data were as described fo r 

Figure 5.1. The densitometry results (mean ± SEM) were plotted against the 

concentration of infecting virus (solid line) and in addition, the viral titre  at the end of 

the experiment (dashed line).

A fter tw o days incubation, titra tion  o f the infected CEF cell lysate revealed tha t the 

number o f PFU per well had increased fo r both viruses across the range o f infecting 

concentrations. There was little  difference in the degree to  which each o f the viruses 

had been amplified. The average fold increase fo r MVA-mH5-Rv0111T and MVA-P7.5- 

R v O lll were similar (2.6 x 104 and 1.8 x 104, respectively).

The similar level o f amplification observed fo r MVA-mFI5-Rv0111T and MVA-P7.5-Rv0111

was inconsistent w ith  the observation that MVA-P7.5-Rv0111 plaques regularly appeared to

express more GFP (visualised during routine inspection o f the cell layer by inverted

fluorescent microscopy). By way o f a fu rthe r simple estimate o f viral fitness, titres  fo r

individual plaques were determined as reported fo r rMVA generated during the

development o f mFI5 (W yatt et at., 1996). Two representative plaques fo r each rMVA
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expressing R v O lll were isolated and diluted fo r determ ination o f PFU per plaque. The 

results confirmed that the growth rate fo r the tw o  rMVA was similar and tha t the rate o f 

replication fo r MVA-P7.5-Rv0111 m ight have been closer to  the parent virus (Figure 5.3).

Virus titre for isolated plaques

105i

1°4- -----

103-

102-l— -------------- h-----------------U ------ --------------  U ---------
MVA-1974 MVA-P7.5-Rv0111 MVA-mH5-Rv0111T

Figure 5.3 Plaque titre estimates for rMVA expressing R vO lll. CEF cells were 

infected w ith each o f the three viruses. Three days later, representative plaques 

were isolated and titra ted  fo r determ ination o f the ir concentration. Cell 

monolayers were immunostained w ith  anti-vaccinia to  make viral plaques visible 

fo r counting. Data are the mean fo r duplicate counts.

MVA-P7.5-Rv0111 and MVA-mH5-Rv0111T Th-1 immune responses

To investigate the impact o f transgene expression on antigen immunogenicity, mice were 

immunised w ith  each rMVA to determ ine antigen-specific Th-1 immune responses. A fter 

tw o doses o f MVA, splenocytes were harvested fo r restimulation ex vivo w ith  overlapping 

antigen-specific peptides representing R v O lllT  (as described in Sections 2.4.2 and 2.4.3). 

MVA-mH5-Rv0111T induced a measureable antigen-specific Th-1 response (Figure 5.4). 

Responses to  MVA-P7.5-Rv0111 were not significantly increased above background levels 

o f IFNy release.
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Figure 5.4 Immunogenicity of rMVA virus expressing R vO lll. Groups o f C57BI/6 

mice (n=5) were immunised intramuscularly w ith  rMVA at a dose o f 1 x 106 or 1 x 107 

PFU, tw ice, at tw o weeks apart. Two weeks after the final immunisation, splenocytes 

were harvested fo r restimulation w ith  overlapping peptides representing R vO lllT . 

The number o f cells induced to  release IFNy was measured by ELISpot assay 

(Mabtech). Results were plotted as the number of spot form ing units (SFU) per 

m illion cells (mean +/- SEM) after subtraction o f background, i.e. SFU/106 measured 

in the presence o f cell culture medium only.

No dose dependent effects were seen fo r the tw o  doses of MVA-P7.5-Rv0111 and MVA- 

mFI5-Rv0111T administered (1 x 106 and 1 x 107 PFU). Variability w ith in  the assay was 

greater than tha t seen on other occasions and a repeat assay would be required to 

determ ine w hether this observation was genuine. Poor antigen recall responses fo r MVA 

vectoring R v O lll under the control o f prom oter P7.5 had been seen previously; an rMVA 

construct prepared outside o f the current study was only measurably immunogenic when 

administered as part o f a heterologous prime-boost regimen (See Section 1.4.3, Table 1.5). 

The rationale fo r administering an MVA-only regimen in the present study was to  ensure 

tha t only MVA-induced and, thereby, promoter-mediated effects were investigated.

Given tha t MVA-P7.5-Rv0111 was so weakly immunogenic fo llow ing an MVA-only 

vaccination regimen, it was deemed inappropriate to  repeat the immunogenicity test, or 

progress this pair o f rMVA viruses to a protective efficacy study in which mice would be 

immunised and then infected w ith  M. tuberculosis.
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5.3.2 rMVA expressing Ag85A under the control of P7.5 and mH5

Recombinant MVA carrying the same Ag85A expression cassette were successfully isolated 

and purified. Subsequently, a more in-depth comparison o f the ir features was carried out. 

In the firs t instance, the expression and fitness experiment performed fo r rMVA expressing 

R v O lll was modified to  provide detailed time-course information. CEF were infected w ith 

rMVA expressing Ag85A to  enable the relationship between dose, fitness and expression to 

be defined.

Relative fitness o f MVA-mH5-Ag85A and MVA-P7.5-Ag85A

Purified stocks o f rMVA were diluted to  infect CEF cell monolayers at approximately 104 

PFU per well, equivalent to  an MOI of 0.1 PFU/cell. Sufficient m ulti-well plates were 

infected to  perm it harvesting o f cell lysate at set tim e points from  trip licate wells. One 

sample from  each tim e point, fo r both viruses, was titra ted  in parallel to  obtain 3 sets of 

viral growth data (Figure 5.5). The concentration of MVA (PFU/ml) was determined by 

counting GFP-expressing plaques (made possible because the selection marker had been 

inserted fo r stable expression).

Replication of MVA-Ag85A

mH5(1) 

■ P7.5 (1)

mH5 (2) 

P7.5 (2)

mH5 (3) 

P7.5 (3)

0 20 40 60 80
Time post infection (hours)

Figure 5.5 Growth curves for rMVA expressing Ag85A. CEF monolayers were 

infected w ith  MVA at an MOI o f 0.1 PFU/cell and then harvested at set tim e points in 

trip licate. The titre  o f each sample was determined by titra tion  on CEF cells and 

counting o f GFP-expressing plaques.

107-,

106-.
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Each pair of viral replication curves was very similar. Overall, the first set of titration data 

was lower. This was later attributed to a slight difference in the density of the CEF cells 

used for titration. The wider reaching implications for this observation are discussed in 

Section 5.4.1.

A statistical method for the comparison of viral growth curves was applied to investigate 

differences in the rate of viral replication for the two viruses (Wang and Bushman, 2006). 

In the first instance, the natural logarithm (In) of mean values for virus titre was calculated 

and plotted against time (Figure 5.6A). The exponential region of the curves was then 

selected, by eye, for analysis by linear regression. Data falling within the exponential region 

were replotted to permit the fitting of curves (Figure 5.6B). The slope of each curve was 

calculated and statistically compared (GraphPad Prism). The results confirmed that there 

were no statistically significant differences between the rates of replication for MVA-mH5- 

Ag85A and MVA-P7.5-Ag85A (summarised in Table 5.1).

Table 5.1 Analysis of viral replication by linear regression. Growth curves for rMVA 

expressing Ag85A (exponential region only) were analysed to find the line of best fit 

and to statistically compare the slopes (GraphPad Prism). Slope constants and 95% 

confidence intervals for the slope are shown. The slope was equivalent to the rate of 
change in virus titre per hour (ln(PFU/ml)/hr). Statistical comparisons were made 

between pairs of growth curves for which viral titres has been determined in parallel. 

None of the differences were statistically significant (P > 0.05).

MVA-

Ag85A

Slope

ln(PFU/ml)/hr

95% Confidence 

Interval
P value

Plot 1 (dotted line)

mH5 0.2568 0 .1537 -0 .3599 0.236

P7.5 0.3162 0 .1645 -0 .4678

Plot 2 (dashed line)

mH5 0.2218 -0 .0251 -0 .4687 0.185

P7.5 0.3142 0 .2854 -0 .3431

Plot 3 (solid line)

mH5 0.3285 0 .0917 -0 .5653 0.942

P7.5 0.3332 0.2207 -  0.4458
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Figure 5.6 Statistical comparison of viral growth curves for rMVA expressing Ag85A
A) The natural logarithm (In) o f virus titre  was calculated and plotted against tim e 

and then the exponential region o f the data was selected by eye (grey box). B) 

Individual replicates from  the exponential region were plotted fo r analysis by linear 

regression (GraphPad Prism). The line of best f i t  was added to each data set and 

statistical comparison carried out (Table 5.1).
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MVA-P7.5-Ag85A and MVA-mH5-Ag85A antigen expression levels

In parallel w ith  the comparison o f viral rates o f replication, samples were harvested for 

measurement o f Ag85A expression over time. Cell lysate samples were investigated for 

presence o f the V5 tag by dot blot, as described in Section 2.3.4.

Ag85A Expression
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Figure 5.7 Expression of Ag85A by rMVA. CEF monolayers were infected w ith  MVA 

at an MOI o f 0.1 PFU/cell and then harvested at set tim e points. Cell lysate was 

transferred to  nitrocellulose to  create trip licate spots before im m unodetection w ith  

anti-V5 and anti-mouse-FIRP. Following incubation w ith  ECL Plus chemiluminescent 

reagent, nitrocellulose was exposed to Hyperfilm ECL and densitom etry performed to 

measure the mean optical density (OD) of each spot using Quantity One 4.6.9 ID 

analysis software (Bio-Rad). Results (mean +/- SEM) were plotted against the tim e of 

sample harvest.

From as early as four hours post-infection, MVA-mH5-Ag85A generated measurably more 

Ag85A than MVA-P7.5-Ag85A. Values fo r spot intensity (mean +/- SEM) were 0.171 + /- 

0.032 and 0.062 + /- 0.002, respectively. The difference between these values was 

statistically significant (T test, P = 0.03).

The expression o f Ag85A from both viruses appeared to  plateau at around 30 hours post

infection. Viral concentration (PFU/ml) had been determ ined fo r a separate set o f samples 

tha t were infected and harvested in parallel (Figure 5.5 and Figure 5.6A). Growth curves
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had revealed tha t viral amplification had also reached, or was nearing, a plateau at 30 hours 

post-infection. To better understand the am ount of Ag85A produced in the context o f the 

amount o f virus present, the data were replotted against virus titre  (Figure 5.8). MVA-P7.5- 

Ag85A was able to  produce equivalent amounts o f recombinant antigen to  MVA-mH5- 

Ag85A when present at approximately a 10-fold greater concentration.

a
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Figure 5.8 Dose dependent expression of Ag85A by rMVA. Densitometry data are as 

described in Figure 5.7. The results were plotted against viral concentration 

(PFU/ml), equivalent to  to ta l PFU because the titra ted samples had a volume o f 1 ml.

MVA-P7.5-Ag85A and MVA-mH5-Ag85A Th-1 immune responses

The immunogenicity o f MVA-P7.5-Ag85A and MVA-mFI5-Ag85A were compared in mice. A 

vector-only control group was included in the study to  m onitor fo r MVA-mediated effects. 

Following immunisation, splenocytes were harvested fo r measurement o f antigen-specific 

Th-1 immune responses (Figure 5.9).
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Murine Th-1 Immunogenicity
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Figure 5.9 Immunological potency of rMVA expressing Ag85A. Groups o f C57BI/6 

mice (n=5) were immunised intramuscularly w ith  rMVA (1 x 106 or 1 x 107 PFU) 

expressing Ag85A under the control o f vaccinia prom oter P7.5 or mH5. Another 

group o f mice received w ild-type MVA (1 x 107 PFU). All immunisations were given 

tw ice at an interval o f tw o  weeks. A fu rthe r tw o  weeks after the final immunisation, 

splenocytes were harvested fo r restimulation w ith  overlapping Ag85A peptides o f 15 

amino acids, overlapping by 10. Peptide pools representing the whole antigen (66 

peptides; amino acids 1-338) or sections from  the N to  C term inus were applied (up 

to  10 peptides). The number o f cells induced to  release IFNy was measured by 

ELISpot assay (Mabtech). Results were plotted as the number o f spot form ing units 

(SFU) per m illion cells (mean +/- SEM) after subtraction o f background, i.e. SFU/105 

measured in the presence o f cell culture medium only. Results were compared by t- 

test (*P < 0.05, * *  P < 0.01). The data are representative o f tw o  separate mouse 

experiments, one o f which was subjected to repeat analysis on cryopreserved cells 

(shown) to  confirm reproducibility o f the results.

Only groups receiving rMVA expressing Ag85A were able to  demonstrate Ag85A-specific 

immune responses. There was no detectable IFNy release in samples derived from  mice 

immunised w ith  w ild-type MVA (MVA 107). The highest responses overall (fractionally) 

were to  the 'Whole Antigen' peptide pool. Results fo r the other peptide pools provided 

evidence fo r at least three im m unodom inant epitopes residing w ith in  amino acids 301-338, 

101-160 and 251-310 (listed in decreasing order o f magnitude). Responses fo r each rMVA 

virus were generally dose dependent and higher where Ag85A was expressed under the
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control o f the mH5 promoter; the immunogenicity o f MVA-P7.5-Ag85A approached that o f 

MVA-mH5-Ag85A when used at a 10-fold higher dose.

In order to  investigate anti-vector T-cell responses, splenocytes were restimulated w ith 

Vaccinia virus imm unodominant CD8+ epitopes: B8R, A19L, A47L, A42R and K3L (Tscharke 

et o i,  2005). The peptides induced IFNy release and demonstrated dose dependent 

responses fo r the rMVA expressing Ag85A, which had been administered at tw o d ifferent 

doses (Figure 5.10).
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Figure 5.10 Immunes responses to vaccinia derived peptides. Groups o f C57BI/6 

mice (n=5) were immunised intramuscularly w ith  rMVA (1 x 106 or 1 x 107 PFU) 

expressing Ag85A under the control o f vaccinia prom oter P7.5 or mFI5. Another 

group o f mice received w ild-type MVA (1 x 107 PFU). All immunisations were given 

tw ice at an interval o f tw o weeks. A fu rthe r tw o weeks after the final immunisation, 

splenocytes were harvested fo r restimulation w ith  vaccinia derived peptides (8-10 

residues). The number o f cells induced to  release IFNy was measured by ELISpot 

assay (Mabtech). Results were plotted as the number o f spot form ing units (SFU) per 

m illion cells (mean +/- SEM) after subtraction o f background, i.e. SFU/106 measured 

in the presence o f cell culture medium only. The data are representative o f results 

observed fo r fresh and cryopreserved cells (shown).

Responses fo r mice immunised w ith  w ild-type MVA provided evidence fo r the actual dose 

given being closer to  106 PFU as opposed to the intended 107 PFU. Flaving confirmed that 

the four rMVA expressing Ag85A were all immunogenic and able to  induce Th-1 antigen- 

specific immune responses, the ir protective efficacy was evaluated in mice.
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MVA-mH5-Ag85A affords equivalent protection to MVA-P7.5-Ag85A at a 10 fold lower 

dose

Groups of C57BI/6 mice were immunised with rMVA and wild-type MVA as described 

above. Whilst a proportion of each group was used for antigen-recall studies (Figures 5.9 

and 5.10) the remainder went on to be challenged with an aerosolised dose of M. 

tuberculosis (Section 2.4.5). In addition to the groups immunised with recombinant and 

wild-type MVA, the study was set up to include unvaccinated and BCG controls, to provide 

negative and positive control data, respectively. A schematic of the study vaccination and 

challenge schedule is shown in Figure 5.11.

Immunogenicity 
Time (weeks) fn=5)

0 2 4 6

BCG Mtb Challenge
(105 CFU) (100 CFU)

M V A ----------- > MVA
(10® or 107 PFU)

Figure 5.11 Murine efficacy study schedule. Groups of C57BI/6 mice (n=8) were 

immunised intramuscularly with rMVA (1 x 106 or 1 x 107 PFU) or native MVA (1 x 107 
PFU), twice, at two weeks apart. Mice in the BCG control group were immunised 

subcutaneously with M. bovis BCG Danish (SSI, Denmark) at a dose of 1 x 10s CFU. Six 

weeks after the first immunisations, vaccinated and unvaccinated mice (n=8) were 

challenged with aerosolised Mtb to provide an inhaled retained dose of 
approximately 100 CFU. Four weeks after infection, the mice were necropsied and 

lung and spleen removed. Organs were processed for determination of Mtb bacterial 
load.

Lungs and spleens were harvested for determination of bacterial load at four weeks post

challenge. The organs were processed for serial dilution and plating on selective medium 

as described in Section 2.4.5. Total CFU per organ was calculated for each animal and 

plotted against a log scale (Figure 5.12).
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Necropsy
(n=8)
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M. tuberculosis  in the lung
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Figure 5.12 Protective efficacy of rMVA expressing Ag85A. Groups of C57BI/6 mice 

(n=8) were vaccinated with M. bovis BCG Danish (SSI, Denmark), rMVA expressing 

Ag85A under the control of vaccinia promoter P7.5 or mH5, or wild-type MVA. MVA 

was given at a dose of 1 x 106 PFU or 1 x 107 PFU. Immunised mice were challenged 

with M. tuberculosis and four weeks later the bacterial load in the lung and spleen 

was determined. Results for individual mice and group median were plotted against 
a logarithmic scale. Statistically significant reductions relative to the unvaccinated 

control are highlighted (**P  < 0.01, ***p <  0.001; Mann-Whitney, GraphPad Prism).
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The data for the negative (unvaccinated) and positive (BCG) controls were as expected. 

There was a 1 -  2 log reduction in the median bacterial load for the BCG group compared to 

the unvaccinated group and in both organs this difference was statistically significant 

(Mann Whitney PcO.OOl). No statistically significant reductions were seen in the lung or 

spleen for the vector-only control group (wild-type MVA).

MVA-P7.5-Ag85A was able to induce modest reductions in the bacterial load of the lung 

and spleen and did so dose dependently. At a dose of 1 x 107PFU, a statistically significant 

reduction relative to unvaccinated controls was observed in the lung (Mann Whitney P = 

0.0011). MVA-mH5-Ag85A was able to achieve the same result using a dose that was 10 

fold lower (P= 0.0011). Curiously, in mice immunised with a higher dose of MVA-mH5- 

Ag85A (1 x 107 PFU), protective efficacy in the lung was reduced such that bacterial levels 

were equal to those seen in the unvaccinated control. However, there may have been 

reduced dissemination of Mtb to the spleen since the median value CFU was 0.6 logi0 lower 

in the MVA-mH5-Ag85A group than the unvaccinated control.

Stability of MVA-P7.5-Ag85A and MVA-mH5-Ag85A over multiple passages

To confirm that any benefits conferred by increased antigen expression were not offset by 

decreased stability of the recombinant cassette, the rMVA were characterised over an 

extended number of passages on CEF cells. The expression, fitness and immunogenicity of 

the MVA-P7.5-Ag85A and MVA-mH5-Ag85A, described above, had been evaluated after 10- 

11 passages, as this was the total number of passages required to purify and amplify the 

viruses (see Section 4.3.1, Table 4.5). Further passages were undertaken up to a total of 20. 

After each, analytical PCR of the insertion site (Figure 5.13) and Western blot for detection 

of the expression product (not shown) was performed. The results confirmed no change in 

the insert size or expression product.
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Figure 5.13 Analytical PCR of the Del III insertion site containing Ag85A. MVA- 

mH5-Ag85A and MVA-P7.5-Ag85A were passaged up to  20 times. A fter each 

passage a sample o f infected CEF cell lysate was subjected to  gDNA extraction and 

interrogation o f the insertion site via PCR. The PCR was performed using primers 

binding either side o f the insertion site. Amplicons were separated by gel 

electrophoresis. Transfer plasmid DNA was used in the positive control (+) 

reaction fo r each construct and gave a product of the expected size (MVA-mH5- 

Ag85A, 2680 bp; MVA-P7.5-Ag85A, 2863 bp). W ater was used in place o f DNA 

tem plate to  provide a negative control (-). A single band o f the same size in all 

reactions confirmed tha t the insert was present and had not been truncated.

5.4 Discussion

A head-to head comparison was undertaken fo r tw o pairs o f rMVA expressing a TB antigen 

under the control o f vaccinia prom oter P7.5 or mH5. MVA-P7.5-Rv0111 and MVA-mH5- 

R v O lllT  were compared, but w ith  the caveat tha t the expression products were not 

identical. The rMVA expressing the Ag85A gene were identical in every regard and so a 

more comprehensive comparison was undertaken.

5.4.1 Promoter effects on fitness and stability

As discussed above in Section 5.1, and in Section 1.2.4, vaccinia prom oter selection must 

balance optim ised expression w ith  stability o f the recombinant insert. Heightened levels of 

antigen expression may lead to  increased immunological potency, but this is only beneficial 

provided the vaccine is sufficiently robust fo r product-scale manufacture. M tb gene 

R v O ll l  was so unstable under the control o f mH5 that the desired recombinant could not 

be isolated. A truncated version o f the gene was stable and immunogenic and so may o ffer
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a viable alternative. Optimised expression for a truncated HIV antigen is being pursued as a 

clinical candidate (Wyatt et al., 2009; Wyatt et al., 1996). Expression of Ag85A under the 

control of mH5 did not impact negatively on viral fitness or on stability of the recombinant 

insert.

An important observation arising from the titration of viral samples was that differences in 

the estimated titre were most heavily impacted upon by technical variability in the plating 

of the virus, i.e. by differences in the cell monolayers upon which they were plated (Figure 

5.5). For this reason the viral titres of rMVA that were destined to be compared, in this 

Chapter and in Chapter 6, were always titrated in parallel.

5.4.2 Promoter effects on antigen expression

The first comparison of P7.5 with mH5 was made upon initial modification of the naturally 

occurring early/late promoter H5 and expression investigated using (3-galactosidase 

production by rW-LacZ (Wyatt et al., 1996). A five-fold increase in antigen expression was 

measured at a specified MOI, but not over a range of doses. Similarly, other published 

comparisons of P7.5 and mH5 have described expression following infection at one dose 

and over a time-course, e.g. as performed for expression of the luciferase reporter gene 

(Orubu et al., 2012) and the model antigen ovalbumin (Becker et al., 2014). In each of 

these examples the difference in expression was less pronounced, and it was not possible 

to gauge whether equivalent levels of expression might have been achieved by only a slight 

change in viral titre.

In the current study, antigen expression was investigated via dot blot to provide semi-

quantitative data; the amount of antigen expressed was not defined, but characterised for

each pair of rMVA in parallel to enable relative levels of antigen expression to be compared.

Further, results were obtained across a range of doses. Both MVA-mH5-Rv0111T and MVA-

mH5-Ag85A produced an equivalent amount of antigen to their P7.5 counterpart, but at a

10-fold lower concentration. In both cases, the rate of viral amplification was confirmed
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not to have influenced the result. The data provided evidence for optimised expression 

having the potential to provide optimal vaccine antigen delivery at a reduced dose of viral 

vector to an extent not previously reported. It should be noted that upon inoculation in 

vivo, rMVA expression will be limited to one round of viral protein production as the virus is 

replication deficient. However, relative differences in the strength of antigen expression 

are still expected to be manifest.

5.4.3 The correlation between in vitro expression and in vivo immunogenicity

The induction of Th-1 immunity in C57BI/6 mice was measured to assess the immunological 

potency of each rMVA. After two doses of rMVA, ex vivo antigen-recall responses were 

measured by murine IFNy ELISpot assay. The immunogenicity of each pair of rMVA viruses 

appeared to correlate with their relative levels of antigen expression. In each experiment, 

splenocytes were restimulated with overlapping peptides representative of the amino acid 

sequence of the recombinant antigen. Peptides were 15 residues in length and overlapped 

by 10 residues and so were designed to evoke CD4+ and CD8+ T cell responses (Rodda, 

2002).

Splenocytes from MVA-P7.5-Rv0111-immunised mice did not release IFNy in the presence 

of R vO lllT  peptides, but equivalent samples from MVA-mH5-Rv0111T-immunised mice 

demonstrated an antigen-specific recall response. Thus, evidence to support increased 

immunogenicity of the construct containing mH5 was obtained. The results highlighted the 

importance of including Vaccinia-derived peptides in future experiments, in order to 

demonstrate successful and equivalent delivery of the vector. Responses to rMVA 

expressing Ag85A were investigated more fully.

The number of antigen-responding T cells correlated with the immunising dose after

immunisation with MVA-P7.5-Ag85A and MVA-mH5-Ag85A. Consistent with the

observation that MVA-P7.5-Ag85A expressed an equivalent amount of recombinant antigen

to MVA-mH5-Ag85A when used at a 10 fold higher dose, the P7.5 and mH5 constructs
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induced a similar number of IFNy secreting cells after two inoculations with 107 and 106 

PFU, respectively.

The profile of the response to Ag85A was investigated using a whole-antigen peptide pool 

and sub-pools representing the length of the Ag85A amino acid sequence. The results 

provided evidence for at least three immunodominant epitopes which remained consistent 

between the two rMVA. The most immunogenic epitope was in the terminal region of the 

protein (amino acids 301-338) as has been reported previously for C57BI/6 mice immunised 

with an Ag85A vectored by plasmid DNA (D'Souza et al., 2003) and by Adenovirus 

(Radosevic et al., 2007).

Responses to Vaccinia peptides were measured to investigate vector immunity and provide 

confirmation of the doses of MVA given. All of the samples were induced to release IFNy in 

a pattern consistent with that reported previously for C57BI/6 mice (Cottingham et al., 

2008; Tscharke et al., 2005). The IFNy release data confirmed that the rMVA expressing 

Ag85A had been delivered at two different doses and that the doses of the two rMVA had 

been equivalent to one another; no statistically significant differences between MVA-P7.5- 

Ag85A and MVA-mH5-Ag85A at each dose were observed. Responses for mice inoculated 

with 107 PFU were approximately 30% higher than those measured in mice inoculated with 

106 PFU (this level of increase was also observed following restimulation with Ag85A 

peptides). The results provided evidence for the wild-type MVA group having been given a 

lower dose, closer to 106 PFU than the intended 107 PFU.

5.4.4 The impact of optimised expression on protective efficacy

Protective efficacy was investigated in C57BI/6 mice after challenge with M. tuberculosis.

All of the animals were infected as demonstrated by countable CFU in lung and spleen

samples at four weeks post-infection. Data for the control groups were as expected; BCG

vaccination led to a 1-2 logi0 drop in the bacterial load relative to the unvaccinated group

and this decrease was very highly significant in both the lung and the spleen (P = 0.0002
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and P = 0.0003, respectively). Mice immunised with wild-type MVA were not expected to 

be protected from initial infection or dissemination of disease and no statistically significant 

differences in bacterial load were observed for either tissue relative to the unvaccinated 

group.

The rMVA test groups were assessed for their ability to lower the bacterial load in the 

organs relative to the unvaccinated control. Protective efficacy better than BCG was not 

expected as the vaccines are TB sub-units designed to boost BCG. As discussed in Section 

1.4, BCG is a live, attenuated strain of M. bovis. It expresses multiple antigens and induces 

a relevant immune response for protection against TB, but requires improvement. Subunit 

vaccines are designed to be applied in the context of prior BCG vaccination, to boost 

responses to relevant antigens. Their efficacy can be evaluated in animal models in which 

BCG is used as the positive control, but it is often preferable to evaluate their effects 

relative to unvaccinated groups as BCG is very effective in small animal models making 

booting effects difficult to resolve.

Inoculation with MVA-P7.5-Ag85A at two doses of 106 PFU did not reduce the bacterial load 

in the lung relative to the unvaccinated control. However, the median logi0 CFU was 

reduced (-0.38) after two doses of 107 PFU, and the difference was statistically significant (P 

= 0.0011). In keeping with the observation that MVA-mH5-Ag85A could induce equivalent 

immune responses at a 10 fold lower dose, equivalent protection was observed following 

immunisation with two doses of 106 PFU; the median logi0 CFU was reduced (-0.40) and the 

difference was statistically significant (P = 0.0011). For both viruses there was a similar 

level of dissemination to the spleen which was not significantly different to the negative 

control. After immunisation with a higher dose, MVA-mH5-Ag85A was less protective and a 

possible explanation for this could be the strength of antigen delivery.

Successful vaccination is dependent upon the induction of immunological memory. As

outlined in Section 1.1.2, immunisation leads to the expansion of an antigen-specific T cell
154



effector population (TE) which can then differentiate to provide a reservoir of memory cells. 

Circulating effector memory (TEM) cells provide immediate antigen recall, while central 

memory (TCM) cells reside in lymphoid tissues to mount a response upon interaction with 

infected APC (Sallusto et al., 2010). It is the TCM population in particular that is critical for 

vaccine induced T cell immunity.

It has been shown that excessive antigen stimulation can drive strong effector responses 

with the result that T cells are terminally differentiated and memory cell populations 

depleted (Masopust et al., 2006). Higher antigen doses and/or shorter intervals between 

priming and boosting immunisations can, therefore, reduce central memory and protective 

efficacy despite having induced stronger effector memory functions, such as those 

measured by IFNy ELISpot assay. Thus, vaccination must strike a balance between the 

expansion of TE cells and the retention of sufficient proliferative potential.

Excessive T cell differentiation may explain the lack of protection observed for the potently 

immunogenic MVA-mH5-Ag85A vaccine. The rMVA had been administered twice at two 

week intervals. In a clinical setting, a subunit vaccine would be given as a boost to BCG 

after a longer intervening period. A dose dependent reduction in protective efficacy has 

been reported for a novel TB vaccine tested in mice (Aagaard et al., 2009). Increased doses 

reduced the quality of the immune response with the result that protective efficacy was 

lost. This may have happened in this study and could be investigated by the assessment of 

further immune parameters, in particular by cytokine profiling of antigen-specific T cell 

subsets.

5.5 Conclusions

Pre-clinical efficacy for a rMVA-based vaccine was first demonstrated in mice following 

delivery of influenza virus antigens (Sutter et al., 1994). The study reported a correlation 

between the immunising dose of rMVA, levels of antigen-specific antibody subsequently
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induced and the resulting survival rates against influenza challenge. Studies performed 

since have provided further evidence for a positive correlation between antigen expression 

and immunogenicity, but the extent to which optimised expression can increase 

immunological potency and in turn protective efficacy is not always apparent. Two limiting 

factors are inadequate investigation of effects over a range of doses and the absence of 

efficacy data.

The results presented here have examined the relationship between rMVA titre, antigen 

expression, immunogenicity and efficacy. They support the view that optimisation of 

expression is of vital importance as it has the capacity to reduce the inoculating doses of 

rMVA required to achieve protection. This has the potential to reduce subsequent anti

vector immune responses and may impact favourably on the cost per dose of the vaccine.
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Chapter 6 Do antigen fusions have the potential to make the immune 

response to rMVA-vectored TB antigens more diverse?

6.1 Introduction

Recombinant MVA viruses deliver vaccine antigens in the form of nucleic acid. Post

immunisation, the antigen must be expressed before an immunological response can be 

evoked. In order to influence the way in which an MVA-vectored antigen is translated and 

processed, it is possible to genetically engineer a sorting signal to be fused to the amino (N) 

and/or carboxyl (C) terminus of the protein. This has the effect of influencing the manner 

in which the antigen is processed upon translation which in turn can influence the nature of 

the immune response that is stimulated. As summarised in Section 1.2.6, a number of 

antigen fusion sequences have been investigated for this purpose. The leader sequence 

most commonly used in TB vaccine research is the signal peptide from the human tissue 

plasminogen activator gene (TPA).

6.1.1 The TPA signal peptide

The first comparison of antigen delivery with and without a TPA leader was performed 

using plasmid DNA vaccines vectoring a malaria antigen (Haddad et al., 1997). The authors 

had speculated that direction of the gene product to the secretory pathway would increase 

humoral responses. Whilst TPA-dependent secretion via the endoplasmic reticulum (ER) 

was observed, increased antibody responses, however, were not. Conversely, TB antigen 

studies have demonstrated that fusion to the TPA leader sequence can increase murine 

humoral and cell-mediated immune responses. Evidence for increased expression and 

enhanced murine immunogenicity has been demonstrated for plasmid DNA vectoring 

Ag85A (Montgomery et al., 1997) and four other TB antigens (Li et al., 1999), as well as for 

rW  delivering Ag85A, Ag85B or Ag85C (Malin et al., 2000). Importantly, Li et al. also 

investigated protective efficacy. Following Mtb challenge, the bacterial load in the lung and
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spleen of immunised mice was consistently reduced for groups receiving TPA-antigen 

fusions as compared to their non-TPA counterparts (Li et al., 1999). The majority of 

recombinant TB vaccines researched since have employed a TPA leader sequence, including 

the clinical candidate MVA85A (McShane et al., 2002) and more recent plasmid DNA (Mir et 

al., 2009) and Adenovirus vaccines (Dicks et al., 2015; Mu et al., 2009).

6.1.2 Enhanced humoral immunity for novel TB vaccines

As discussed in Section 1.4.2, the induction of Th-1 immunity and IFNy release is considered 

central to the development of an improved TB vaccine. However, recent reports have 

highlighted the potential for antibody responses to contribute to TB protection and, in 

particular, the prevention of initial infection (Achkar and Casadevall, 2013; Andersen and 

Woodworth, 2014). Cell surface expression of an antigen following delivery by rMVA can 

lead to the induction of higher antibody titres (Wyatt et al., 2008a) and can be promoted by 

fusion of the antigen to membrane-anchoring sequences.

The Vesicular Stomatitis Virus (VSV) glycoprotein has been studied as a model integral 

plasma membrane protein. Initial reports of the protein's sequence suggested that a 

region at the C-terminus would be responsible for membrane anchoring - specifically, a 49 

amino acid sequence comprising a hydrophobic and cytosolic domain (Rose et al., 1980). 

This theory was supported by in vitro expression studies in which the C-terminus was 

removed; the glycoprotein was no longer observed to be membrane bound (Rose and 

Bergmann, 1982). Later, it was shown that the gene sequence for an otherwise secreted 

protein could be fused to the membrane-anchoring region with the result that the gene 

product would be cell surface expressed (Guan et al., 1988). Srinivasan et al. used this 

approach to enhance the immunogenicity of an rVV-based human chorionic gonadotrophin 

P (PhCG) subunit vaccine. Briefly, two rVV expressing phCG were generated - one with the 

VSV membrane-anchoring region (VSVg) and one without. High titres of anti-phCG 

antibodies were measured in animals immunised with the VSVg construct, whilst no phCG-
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specific antibody was detected in animals immunised with the native form of PhCG 

(Srinivasan eta l., 1995).

As discussed in Section 1.4.2, current TB vaccine strategies are primarily concerned with 

enhancing anti-mycobacterial T cell responses. However, there is a growing body of 

evidence to suggest that humoral immunity may also contribute to protection against TB 

(Achkar and Casadevall, 2013). Fusion of a TB antigen to the VSV glycoprotein membrane 

anchoring region (VSVg) may be an appropriate means of achieving enhanced antibody 

responses. Further, bilateral targeting of the same antigen to multiple pathways may 

diversify the immune response induced. In the current study, TPA and the VSVg were 

selected for comparison of their relative and combined effects.

6.1.3 A model antigen for proof of principle

The model antigen ovalbumin (OVA) was selected to be the test antigen for this aspect of 

the current study. OVA is well characterised and has been the subject of previous vaccine- 

related studies investigating immuno-potentiating factors, including endogenously 

expressed antigen fusions (Diebold et al., 2001), rMVA promoter selection (Baur et al., 

2010; Becker et al., 2014), novel adjuvants (de Cassan et al., 2011) and delivery systems 

(Huang et al., 2010). As demonstrated through these, and earlier reports, the OVA antigen 

is known to induce IgG isotypes associated with Th-1 (lgG2a, lgG2b and lgG3) and Th-2 

(IgGl) responses. The antigen also has restricted MHC Class I and MHC Class II epitopes 

through which to examine CD8+ and CD4+ T cell responses, respectively (Table 6.1).
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Table 6.1 Murine-restricted OVA immunological determinants. Sections of the OVA
385-amino acid sequence contain MHC Class I (OVA I) and Class II (OVA II) epitopes. 

The exact peptide sequence is shown using the single-letter amino acid code. The 

MHC molecules binding these antigens are encoded by H-2 genes, residing in 

different loci and on different alleles (haplotype).

MHC H-2 restriction 

Class Loci Haplotype
Reference

OVA 1: SIINFEKL (OVA257.264)

1 K b (Rotzschke et o/., 1991)

OVA II: ISQAVHAAHAE1NEAGR (OVAa^g)

II IA d (McFarland eta!., 1999)

The construction of rMVA expressing OVA using transfer plasmid methodology is described 

in Chapters 3 and 4. Transfer plasmids incorporating vaccinia promoter mH5 for regulation 

of antigen expression were selected to promote the induction of strong, measurable 

immune responses associated with different T cell subtypes. As discussed in Chapter 4, 

rMVA expressing a single copy of OVA were successfully isolated, but a double-recombinant 

expressing OVA fused to both TPA and VSVg, in separate insertion cassettes, could not be 

purified. The immunogenicity of the single rMVA was investigated to test the study 

hypothesis as far as possible and to inform the design of future studies.

6.2 Chapter Aims

The overall aim for this Chapter was to investigate the potential for diversifying the immune 

responses to an antigen through the use of multiple leader sequences, as per the study 

hypotheses outlined in Section 1.5. The immunogenicity of four rMVA viruses vectoring the 

Ovalbumin (OVA) gene was compared. Specific objectives were to:

>  Investigate antibody-mediated responses to OVA by measuring antigen-specific IgG 

isotypes.

>  Compare the cell-mediated response to OVA by measurement of antigen-recall 

cytokine release.



6.3 Results

6.3.1 rMVA for an investigation into leader sequence effects

Four rMVA viruses expressing OVA were purified as described in Chapter 4 (see Section

4.3.2). For each rMVA expressing OVA fused to  a leader sequence there was a 

corresponding 'no-leader' control virus. A diagram o f the expression product arising from  

each rMVA is presented in Figure 6.1. Detailed inform ation regarding the sequence o f each 

open reading frame is presented in Appendix III.

TPA-OVA-V5 (Del ill) 

36

TPA
11

385

OVA

8 14

V5

OVA-V5 (Del III) 

11
385 8 14
OVA \ / W  V5 ♦

V5-OVA-VSVg (Del II)

14 8

• i  v s  KAA—

385

OVA
16

49

VSVg

V5-OVA (Del II)

14 8

•| vs

Figure 6.1 Schematic representation of rMVA-OVA expression products. Each rMVA 

expressed OVA fused to N and/or C term inal fusions. Either side o f the OVA gene 

was a short sequence arising from  the presence o f the a tt recombination sites used 

in Gateway® cloning. The V5 tag was joined to  a linker sequence (zig-zag line) to  

ensure adequate presentation o f the B cell epitope. For each recombinant cassette 

incorporating a leader sequence, i.e. TPA-OVA-V5 and V5-OVA-VSVg, there was a no

leader control, identical in every regard, including the site o f insertion. The start (•) 

and stop (♦ )  codons are shown. Numbers represent amino acid length.

385
16

OVA
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The immunogenicity o f the rMVA expressing OVA was investigated by immunising mice for 

subsequent evaluation o f humoral and cell-mediated immune responses. In the first 

instance, an ELISA was developed fo r the detection o f antigen-specific IgG isotypes.

6.3.2 Development of an ELISA for detection of mouse anti-OVA IgG isotypes

An indirect ELISA protocol was optim ised fo r the detection and measurement o f murine IgG 

isotypes. Biotinylated antibodies specific fo r murine IgG l, lgG2a, lgG2b and lgG3 were 

purchased (see Section 2.4.4) and investigated fo r the ir ability to  accurately discriminate 

between each isotype and were optim ised w ith  regards to  the ir concentration (described 

below). A suitable concentration o f OVA protein was then selected fo r coating m icrotitre  

plates, so that OVA-specific murine IgG could be captured from  serum samples and 

measured. In advance o f describing the assay optim isation undertaken, summaries o f the 

principal components o f the assay are presented (Figure 6.2).

Anti-OVA
ELISA

T M B  s u b s t r a t e  ___

S t r e p t a v id in - H R P  \

A n t i - m o u s e  i s o t y p e  

( B i o t i n y l a t e d )  - —

M ic r o t i t r e  w e l l

O  ®  O  

T 3 P P Q P P Qn x x mM o u s e  s e r u m --------------------------

O v a lb u m in  --------------------

Assav M ic r o t i t r e  w e l l

Optimisation

T M B  s u b s t r a t e  —-------------------------- -
- ®  o  •  o

S t r e p t a v id in - H R P  —

~ --------- - Q P P Q P P P
A n t i - m o u s e  i s o t y p e  

( B i o t i n y l a t e d ) m x m
C o a t in g  lg G l / i g G 2 a / l g G 3

Figure 6.2 Indirect ELISA for detection of anti-OVA IgG isotypes. The main 

components of the assay are shown in one well o f a 96-well m icrotitre  plate. Plates 

were coated w ith commercially available murine IgG isotypes to  optim ise the 

protocol (left panel). Bound IgG was detected indirectly via the addition of 

biotinylated anti-mouse IgG followed by incubation w ith  streptavidin - horse radish 

peroxidase (HRP) conjugate. The amount o f IgG present was quantified by measuring 

HRP-mediated colour change o f the substrate 3,3',5,5'-tetramethylbenzidine (TMB). 

Later, plates were coated w ith  OVA protein and incubated w ith  mouse serum to 

allow anti-OVA IgG to  bind (right panel). The levels o f anti-OVA were then measured 

as described above, using biotinylated anti-mouse IgG to  detect specific isotypes.
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Isotype-specific detection of IgG

The specificity o f biotinylated antibodies raised against murine IgGl, lgG2a, lgG2b and lgG3 

was investigated, to  ensure that they would provide an accurate means o f measuring IgG 

isotypes (protocols and reagents are described in detail in Section 2.4.4). M icro titre  plates 

were coated w ith  IgGl, lgG2a, lgG2b or lgG3 at a range o f concentrations and then 

detection attem pted w ith  each biotinylated anti-mouse IgG (as described in Figure 6.3, left 

hand panel). The results confirmed tha t the biotinylated antibodies were isotype specific 

and tha t d iffe ren t concentrations o f coating IgG would be detected in a dose dependent 

manner (Figure 6.3). In this experiment, each o f the biotinylated anti-mouse IgG antibodies 

had been used at a d ilution o f 1 in 20,000. In the next round o f experiments the 

concentration o f anti-IgG would be optim ised.

Detection by Anti-IgG 1

2 0-,
—  IgGl 

lgG2a 
lgG3

oo-

-0 5-
\

[Coating IgG] (ng/ml)

Detection by Anti-lgG2a

2 0-,
igGi
lgG2a
lgG3

1.5-

£c

0 5 -QO

-0.5-

[Coating IgG] ((ig/ml)

Detection by Anti-lgG2b
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Figure 6.3 Isotype-specific detection of murine IgG. Plates were coated w ith  IgG l, lgG2a, 

lgG2b (not shown) or lgG3, as indicated by the legend. Isotype-specific b iotinylated an ti

mouse IgG (raised in rabbit) was applied at a dilution o f 1:20,000 to  achieve indirect 

detection o f the coating IgG using streptavidin-FIRP and TMB reagents. Optical density (OD) 

was measured at 450 nm and was plotted after subtraction o f values fo r non-specific 

binding (NSB). Data points represent the mean o f duplicate wells.

Detection by Anti-lgG3

IgGl
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Optimisation of secondary antibody concentration

The product information supplied w ith  each o f the four biotinylated anti-mouse IgG 

specified a range o f dilutions at which they m ight be investigated fo r use in an ELISA. Four 

dilutions encompassing this range were selected fo r testing. M icro titre  plates were coated 

w ith  three concentrations o f each IgG isotype (0.003, 0.03 and 0.3 pg/m l) and were then 

incubated w ith the d ifferent dilutions o f biotinylated anti-mouse IgG. As before, the 

amount o f anti-IgG binding to  the plate was measured via the addition o f Streptavidin-HRP 

followed by TMB substrate. The OD data are summarised in Figure 6.4.
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Figure 6.4 Optimisation of secondary antibody concentration. M icrotitre  plates 

were coated w ith  one o f four IgG istoypes. The corresponding isotype-specific 

secondary antibody was applied at four d ifferent dilutions to  achieve indirect 

detection o f the coating IgG using streptavidin-HRP and TMB reagents. Optical 

density (OD) fo r trip licate wells (mean +/- SEM) was plotted after subtraction of NSB 

readings.
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The m ajority o f the biotinylated anti-mouse IgG concentrations tested were able to  detect 

the coating antibody and were able to  do so dose dependently. However, the sensitivity o f 

detection improved as the concentration o f biotinylated anti-IgG antibody was increased. 

The discrim inatory power to  measure 10-fold changes in coating-IgG concentration was 

poorest at a d ilu tion o f 1 in 250,000 and at its most sensitive at 1 in 8,000. The lowest 

dilution (1:8,000) was, therefore, selected fo r use in subsequent assays.

Previously, the specificity o f each o f the biotinylated anti-IgG antibodies was investigated at 

a d ilution o f 1 in 20,000 (Figure 6.3). To ensure tha t non-specific binding would not 

manifest at a higher concentration, isotype specificity was re-examined at the revised 

dilution o f 1 in 8,000. The results provided evidence fo r negligible cross-reactivity (Figure 

6.5) and so each o f the biotinylated anti-IgG antibodies was used at a d ilu tion o f 1 in 8,000 

in subsequent assays.

Specificity of anti-isotype IgG 
(1 in 8000)

Anti-IgG 1 
i i Anti-lgG2a

[Coating IgG] (0.3 jig/ml)

Figure 6.5 Specificity of secondary antibody at 1:8000. M icro titre  wells were coated 

w ith  one o f four IgG isotypes at a single concentration (0.3 pg/m l). Detection o f the 

bound IgG was then attempted using four isotype-specific b iotinylated anti-mouse 

IgG, as indicated by the figure legend. For each isotype o f coating IgG, detection was 

only achieved after addition o f the corresponding isotype-specific anti-IgG. OD fo r 

trip licate wells (mean +/- SEM) was plotted after subtraction o f non-specific binding 

(NSB).
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Selection of an ovalbumin concentration for plate coating

As summarised in Figure 6.2, OVA-specific IgG antibodies in mouse serum were captured 

fo r detection using m icrotitre  plates coated w ith  OVA protein. In order to  identify an 

optim al coating concentration o f OVA, m icro titre  plates were coated w ith  four d ifferent 

concentrations selected to fall w ith in  those reported fo r previous studies (Baur et a i,  2010; 

Bohnen et al., 2013). The binding o f antigen-specific IgG to  the coated plates was 

investigated using a commercially sourced preparation o f anti-OVA IgG. This was deemed 

preferable to  using mouse serum from  rMVA-OVA immunised mice, fo r which the anti-OVA 

IgG titre  was unknown. The commercially sourced anti-OVA IgG was serially diluted and 

applied to  the coated plates. Anti-OVA IgG binding curves were similar fo r all four coating 

concentrations o f OVA (Figure 6.6). At a dilution o f 1 in 100,000 (10~5), anti-OVA IgG 

binding increased dose dependently w ith  the coating concentration o f OVA and revealed 

tha t binding was nearing its maximum at 5 pg/m l. The concentration above this (10 pg/m l) 

was selected fo r use in the anti-OVA ELISA protocol.

Detection of OVA at various coating 
concentrations

2 .0-1

1 .5 -

i  1 .0-
oin

Q 05-
o

o.o-

- 0.5
, \

Anti-OVA lgG1 Dilution

Figure 6.6 Selection of an OVA concentration for plate coating. M icrotitre  plates 

were coated w ith  d ifferent concentrations o f ovalbumin and then ten-fold dilutions 

o f anti-OVA IgG were applied. Antibody binding was measured indirectly via the 

addition o f biotinylated anti-lgG l. Optical density (OD) fo r trip licate wells (mean +/- 

SEM) was plotted after subtraction o f NSB. At a d ilution o f 1 in 100,000, anti-OVA 

IgG binding correlated w ith  the coating concentration o f OVA.
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6.3.3 A mouse study for investigating rMVA-OVA immunogenicity

Groups of CB6F1 mice (5 per group) were immunised intramuscularly with each of the four 

rMVA expressing OVA, twice, at two week intervals (see Section 2.4.1). The dose of rMVA 

administered on each occasion was 1 x 107 PFU.

In order to ensure consistency between the doses of each rMVA vaccine, the viral stocks 

used for immunisation were titrated in parallel to determine their concentration (see 

Section 5.4.1). The viral stocks were then diluted in PBS to achieve the specified dose.

Two weeks after the final immunisation, whole blood and spleens were harvested for 

evaluation of humoral and cell-mediated immune responses, respectively.

6.3.4 Measurement of anti-OVA IgG isotypes in rMVA-OVA immunised mice

Serum from immunised mice was separated from whole blood as described in Section 2.4.4, 

and tested for the presence of anti-OVA IgG isotypes, as described in Section 2.4.4 and 

above. Throughout, samples of test serum were evaluated in parallel with control serum to 

monitor for the specificity of any 'anti-OVA' IgG detected. The control serum was obtained 

from CB6F1 mice immunised with plasmid DNA vectoring various TB antigens (pooled stock 

from multiple studies). No cross-reactivity with OVA was expected and this was confirmed 

in preliminary studies in which control serum was serially diluted and incubated in OVA- 

coated plates; there was evidence for only limited binding at the highest serum 

concentrations. Representative data for control serum are presented in Figure 6.7 and are 

plotted as the mean plus three standard deviations. Test-serum OD values above this 

threshold were interpreted to represent positive responses.
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Figure 6.7 Measurement of anti-OVA IgG isotypes in rMVA immunised mice.

Groups of CB6F1 mice (n=5) were immunised intramuscularly w ith  rMVA expressing 

OVA (1 x 107 PFU), twice, at tw o week intervals. Two weeks after the final 

immunisation, serum was harvested fo r measurement o f anti-OVA IgG. Two serum 

samples were selected fo r a prelim inary assessment o f the ir anti-OVA IgG titres by 

ELISA. Sample IB  was from  a mouse immunised w ith rMVA-TPA-OVA-V5. Sample 4B 

was from  a mouse immunised w ith  rMVA-V5-OVA. Both were selected on account of 

having ample volume. Optical density (OD) was measured at 450 nm in duplicate 

wells and the mean value plotted after subtraction of NSB. Control serum was 

evaluated in parallel. Data were plotted after calculation o f the mean plus 3 

standard deviations.

Prelim inary studies were performed to  investigate the presence o f anti-OVA IgG in serum 

derived from  rMVA-OVA immunised mice. Two samples o f the test serum were 

investigated over a dilution series and anti-IgG was detected in some o f the samples in a 

dose-dependent manner. Representative data are shown in Figure 6.7. The results were 

interrogated fo r the ir ability to  yield reliable endpoint titre  values, as this is the method 

most commonly applied to  the measurement of antibody titres in the absence o f a positive 

control (Miura et al., 2008). The data confirmed that fo r many samples there would be 

insufficient IgG present to  implem ent this approach reliably. All o f the test samples were 

subsequently investigated at a d ilution of 1 in 100 as has been reported fo r o ther IgG- 

isotype studies involving mice (de Cassan et al., 2011) and humans (Biswas et al., 2014). All
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o f the serum samples were tested in parallel, w ith  one another, and w ith  control serum. 

The results are shown in Figure 6.8.
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Figure 6.8 Anti-OVA IgG induced by rMVA immunisation. Groups o f CB6F1 mice 

(n=5) were immunised intramuscularly w ith  rMVA expressing OVA (1 x 107 PFU), 

tw ice, at tw o week intervals. Two weeks after the final immunisation, serum was 

harvested fo r measurement o f anti-OVA IgG by ELISA. Serum samples were diluted 1 

in 100 and added to duplicate wells. Control serum was diluted 1 in 100 and added 

to  four wells divided between tw o m icro titre  plates. Mean OD values were 

calculated after subtraction o f NSB. The rMVA vaccine groups are labelled according 

to  the expression product delivered. Data are shown fo r individual mice (n=5) and 

the group mean. Dotted lines represent the threshold fo r positive responses and are 

equal to  the control serum mean plus three standard deviations. For each IgG 

isotype the difference between groups was examined by one-way ANOVA and by 

post hoc Tukey's m ultiple comparison tests. Significant differences are highlighted 

(*P<0.05, **P<0.01, ***P<0.001).
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For each IgG isotype, it was deemed important to compare test serum results with control 

serum data obtained within the same assay in order to control against inter-assay 

variability. Whilst the majority of the serum samples passed the threshold for positive 

responses, this was not the case for any of the lgG3 measurements and for many of the 

lgG2b readings. However, the control serum mean value may have been slightly higher for 

lgG2b and lgG3 than seen on other occasions (see Figure 6.7).

Only a few of the anti-OVA IgGl measurements were below the threshold for a positive 

response and it was noted that this would not have been the case had the threshold been 

set to the mean plus two standard deviations. Statistical analysis was applied to all the data 

sets despite the failure of some samples to pass the threshold for a positive response, but 

later, the results would be interpreted with due reference to the relative magnitude of the 

IgG levels detected.

Analysis of the data by one-way ANOVA revealed statistically significant differences 

between the groups for each of the IgG isotypes (IgGl, P = 0.0248; lgG2a, P = 0.0008; lgG2b, 

P = 0.0025; lgG3, P = 0.0482). The difference between individual groups was further 

examined by post hoc Tukey's multiple comparison tests. Statistically significant 

differences are highlighted in Figure 6.8. The induction of anti-OVA responses in mice 

immunised with each of the 'no leader' control rMVA might have been expected to be 

similar to one another. However, rMVA expressing OVA-V5 inserted into Deletion site III 

generally induced higher IgG levels than rMVA expressing V5-OVA inserted into Deletion 

site II, and for anti-OVA IgGl, this difference was statistically significant (P < 0.05).

Relative to their corresponding 'no leader' controls, rMVA vectoring OVA fused to either 

TPA or VSVg evoked higher Th-1 associated IgG responses (lgG2a and lgG2b). These 

increases reached statistical significance for VSVg enhancement of anti-OVA lgG2a (P < 

0.01) and TPA enhancement of anti-OVA lgG2b (P < 0.05). Relative to their respective
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controls, there was no difference in the ability o f the tw o  leader-sequence constructs to  

modulate the levels o f Th-2 associated IgGl.

The ratio o f lgG2a to  IgGl, based upon group means, was compared as an indicator o f the 

balance between Th-1 and Th-2 immunity, as has been reported previously (de Cassan et 

al., 2011). The results confirmed tha t all o f the groups were skewed towards a Th-1 type 

response, but tha t rMVA employing insertion site Del III m ight have been less biased on 

account o f the ir higher IgG l levels (Figure 6.9A).

Th-1:Th-2 IgG Total IgG
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Figure 6.9 Anti-OVA IgG Isotype summary data. A) The Th-l:Th-2 balance o f the IgG

levels reported in Figure 6.8 were investigated by calculating the ratio o f lgG2a: IgG l. 

The data are the ratio o f group means. B) The to ta l amounts o f IgG induced were 

plotted according to  all o f the OD values. The contributing totals fo r each isotype are 

shown, as indicated by the figure legend.

Finally, the IgG data were summarised by plotting the sum o f the responses (Figure 6.9B). 

Fusion o f OVA to  either TPA or VSVg increased the to ta l levels o f IgG induced relative to  

data fo r the corresponding 'no-leader' control. As already noted, the induction o f anti-OVA 

humoral responses appeared to  be higher fo r rMVA expressing OVA inserted into Deletion 

site III.
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6.3.5 Measurement of OVA-specific IFNy release

Splenocytes from  immunised mice (see Section 6.3.3) were harvested fo r IFNy ELISpot 

assay, as described in Section 2.4.2. Cells were incubated w ith  whole OVA protein and non- 

OVA protein to  investigate the induction o f antigen-specific cytokine release. Tuberculin 

purified protein derivative (PPD) was added at a concentration routinely observed to  induce 

cytokine release after BCG vaccination (10 pg/m l), but did not increase the number o f IFNy- 

releasing cells above background levels (Figure 6.10). Whole OVA protein, meanwhile, did 

evoke an increase in the number o f responding cells enumerated fo r each group. Further, 

the splenocytes were incubated w ith  tw o concentrations o f whole OVA protein (10 and 50 

pg/m l) to  test whether the number o f cells induced to  release IFNy would vary dose 

dependently. The results confirmed antigen-specific, dose-dependent stimulation.

Restimulation with OVA protein
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Figure 6.10 Whole OVA IFNy responses. Groups o f CB6F1 mice (n=5) were 

immunised intramuscularly w ith  rMVA expressing OVA (1 x 107 PFU), twice, at tw o 

week intervals. Two weeks after the final immunisation, splenocytes were harvested 

fo r restimulation w ith  whole OVA protein or tuberculin purified protein derivative 

(PPD). The number o f cells induced to  release IFNy was measured by ELISpot assay. 

Results were plotted as the number o f spot form ing units (SFU) per m illion cells 

(mean +/- SEM) after subtraction o f background, i.e. SFU/106 measured in the 

presence o f cell culture medium only. No statistically significant differences between 

groups were observed (one-way ANOVA).
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The number of cells induced to release IFNy after restimulation with whole OVA protein 

was compared between the groups. No statistically significant differences were detected at 

either of the whole OVA concentrations tested (one-way ANOVA, P = 0.5429 and P = 

0.6489, for 10 and 50 pg/ml, respectively).

Within the same assay, OVA-specific cellular responses were further dissected after 

incubation of the splenocytes with MHC Class I and MHC Class II OVA-restricted peptides 

(see Section 6.1). Peptides OVA I and OVA II stimulate CD8+ and CD4+ T cells, respectively, 

thereby enabling the number of anti-OVA responding cells to be enumerated for each 

subtype. Incubation of the splenocytes with either OVA I, or OVA II, led to an increase in 

the number of cytokine releasing cells. For each of the groups, there were more CD8+ 

responding T cells than there were CD4+ T cells (Figure 6.11).

The number of splenic T cells responding to stimulation with the OVA peptides was 

compared between the groups. There were no statistically significant differences between 

group means for the number of CD4+ cells induced to release IFNy by peptide OVA II. The 

number of CD8+ responding cells, meanwhile, did appear to differ according to the rMVA 

used for immunisation (one-way ANOVA, P = 0.0118). Further examination of the group 

means by post hoc Tukey's multiple comparisons tests revealed that there were no 

differences in the number of CD8+ cells stimulated to release IFNy following immunisation 

with each of the no-leader control viruses. This was in contrast to the data collected for 

humoral responses where rMVA vectoring OVA-V5 inserted into Del III had induced higher 

Th-l-associated IgG levels than rMVA vectoring V5-OVA inserted into Del II. In terms of 

CD8+ cytokine response, the results were slightly lower for OVA-V5 (Del III) than they were 

for V5-OVA (Del II), i.e. the opposite of what had occurred in terms of IgG induction
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Restimulation with CD4+ and CD8+ 
restricted OVA peptides
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Figure 6.11 IFNy responses to MHC Class I and MHC Class II restricted OVA peptides.
Groups of CB6F1 mice (n=5) were immunised intramuscularly w ith  rMVA expressing 

OVA (1 x 107 PFU), twice, at tw o week intervals. Two weeks after the final 

immunisation, splenocytes were harvested fo r restimulation w ith  OVA I or OVA II. 

The number o f cells induced to  release IFNy was measured by ELISpot assay. Results 

were plotted as the number o f spot form ing units (SFU) per m illion cells (mean +/- 

SEM) after subtraction o f background, i.e. SFU/106 measured in the presence o f cell 

culture medium only. For each OVA peptide the difference between groups was 

examined by one-way ANOVA. Differences between the responses to OVA I were 

statistically significant (P = 0.0118) while differences between OVA II responses were 

not (P = 0.5417). Post hoc evaluation by Tukey's m ultiple comparison tests revealed 

differences reaching statistical significance and these are highlighted (*P<0.05).

Relative to  the corresponding no-leader control, there were no measurable differences in

the number o f CD4+ or CD8+ responding T cells induced fo llow ing fusion o f OVA to  VSVg.

The impact o f fusing OVA to  TPA, meanwhile, was to  decrease the number o f antigen-

specific CD8+ IFNy-releasing splenic T cells. The differences between the group mean for

TPA-OVA-V5 and the group means fo r V5-OVA-VSVg and V5-OVA were statistically

significant (P < 0.05). An outcome o f the weaker CD8+ response fo r the TPA-OVA-V5 group
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was that the ratio of CD8+ to CD4+ responding cells was more balanced than it had been for 

the other groups. Thus, fusion of the transgene to TPA appeared to reduce the CTL 

dominance of the anti-OVA immune response evoked by rMVA, as measured by IFNy 

ELISpot assay.

6.3.6 Measurement of OVA specific IL-4 and IL-17 release

ELISpots for IL-4 and IL-17 release were conducted in parallel with assays for IFNy. None of 

the restimulating proteins or peptides induced responses above background release. This 

remained the case upon repeat testing where the restimulation period was increased from 

overnight to two, and then five days (data not shown).

6.4 Discussion

The primary objective for this Chapter was to compare the immunogenicity of rMVA 

incorporating TPA and VSVg leader sequences, with a view to investigating the potential for 

leader sequence combinations to diversify the immune response to an MVA vectored 

antigen. Four rMVA expressing OVA were generated and evaluated for their 

immunogenicity in CB6F1 mice. Differences in humoral and cell-mediated immune 

responses were observed, confirming the potential for antigen fusions to modulate 

antigen-specific immunogenicity.

6.4.1 Measurement of anti-OVA IgG

An ELISA panel was developed for the detection of anti-OVA IgG isotypes. In the absence of

a positive standard, it was not possible to create standard curves through which to

interpret OD values. Instead, control serum was tested within each assay to monitor for

positive responses. Experimental immunisation studies are commonly without a positive

standard control and so quantitative analyses are performed on the basis of results for a

negative control, typically by determination of reciprocal endpoint titre. Endpoint titre is

determined from a full dilution curve of the test sample. It is equivalent to the highest

dilution giving an OD reading two or three standard deviations above the negative control.
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In instances where there are low antibody titres, dose curves are difficult to define and 

readings at a single dilution may be compared (Biswas et al., 2014; de Cassan et al., 2011). 

This was the approach applied in this study.

The limitations of assessing IgG levels at a single dilution must be noted. Chiefly, it is 

unclear where on the titration curve the OD value is taken from; the relative differences 

between readings are less meaningful if not from the linear region. However, the relative 

magnitude of the values remains informative.

6.4.2 Measurement of cytokine responses

Splenocytes were restimulated to measure antigen-specific cytokine responding cells via 

ELISpot assay. Th-1 immunity was investigated via enumeration of cells secreting IFNy. 

ELISpot assays for IL-4 and IL-17 release were implemented to explore Th-2 and Th-17 

responses, respectively.

The ELISpot assays for IL-4 and IL-17 were performed in parallel with the IFNy tests and 

were implemented using the same methodology (MAbtech). Positive control wells were 

restimulated with PMA/I (as described in Section 2.4.2) and were induced to release IL-4 

and IL-17. However, there were markedly lower SFU as compared to the IFNy assay. Lack 

of sensitivity may, therefore, have been the root cause of the failure to detect measureable 

responses. Humoral responses for all of the vaccines had demonstrated skewing towards 

Th-1 immunity.

6.4.3. The design and evaluation of vaccine antigen fusions

Leader sequences have the potential to modulate the immunogenicity of virally vectored 

antigens. Complicating the selection of a sorting signal are conflicting reports about their 

expected impact on antigen immunogenicity and/or gaps in our understanding of their 

mechanism of action. For example, the MHC Class ll-binding invariant chain (li) would be 

expected to target antigens towards CD4+ T cell stimulation (Holst et al., 2008), but has
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been found to enhance CD8+ responses to both rAd and rMVA vectored antigens 

(Mikkelsen et al., 2011; Spencer et al., 2014). The TPA signal sequence is expected to 

modify antigen immunogenicity by targeting the protein towards the ER for increased 

secretion (Haddad et al., 1997). However, TB antigens fused to TPA are also more highly 

expressed (Li et al., 1999; Malin et al., 2000) and the relative contribution of expression to 

immune-potentiating effects, versus intracellular trafficking, has yet to be assessed.

Another consideration in the design of vaccine antigen fusions is whether to include the 

native sorting signal, should one be present. Both prokaryotic and eukaryotic genes can 

contain a signalling peptide at the N-terminus to direct the translated protein into the cell 

membrane or ER membrane, respectively, and both signals are recognised in eukaryotic 

cells (Hall et al., 1990). The TB vaccine antigen, Ag85A, is a secreted protein and has a 

signal peptide at its N-terminus. The clinical candidate MVA85A expresses the full length, 

native protein fused TPA (McShane et al., 2002). Previous studies have demonstrated that 

mature Ag85A, full length Ag85A and mature Ag85A fused to TPA become progressively 

more immunogenic (Huygen et al., 1996; Montgomery et al., 1997).

The OVA gene has an N-terminal signal peptide and this too was retained in the current 

study. This was important given that the VSVg membrane anchoring region would be 

dependent upon direction of the antigen to the ER in the first instance for co-translational 

membrane insertion (Lodish et al., 2000). For consistency, the same full length OVA gene 

was included in each of the rMVA evaluated. The presence of two ER-targeting sorting 

signals in TPA-OVA-V5 is not anticipated to be detrimental and, coincidentally, mirrors the 

'signalling content' of MVA85A.

Ultimately, for each novel antigen fusion it may be necessary for (a) the

immunomodulatory effects conferred by a particular leader sequence to be empirically

investigated and (b) that experiments testing the influence of the antigen fusion be robustly

controlled. Consequently, in the current study, the two rMVA-OVA constructs
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incorporating a cell sorting signal were matched with a corresponding no-leader control 

virus.

6.4.4. The impact of rMVA insertion site on the immunogenicity of the transgene

The panel of rMVA generated for the present study carried recombinant cassettes at one of 

two insertion sites -  Deletion site II (Del II) or Deletion site III (Del III). The insertion site had 

not been anticipated to impact upon the immunogenicity of the transgene, OVA, and T cell 

responses for the no-leader control viruses were not significantly different. However, the 

levels of IgG induced by OVA-V5 (Del III) were generally higher than V5-OVA (Del II) and 

achieved statistical significance for IgGl (P < 0.05).

When the rMVA were generated there was some evidence to suggest that Deletion site II 

may have conferred inferior stability (see Section 4.4.3). Future experiments should 

continue to monitor for insertion site effects and be extended to include characterisation of 

viral fitness and antigen expression (as performed for MVA expressing Ag85A in Chapter 5). 

Extended characterisation of the rMVA should also be complemented with repeat 

measurements of the immune responses induced; current observations have been made on 

the basis of one study. Measurement of anti-vaccinia responses should also feature to 

ensure successful and equivalent delivery of rMVA vaccines.

6.4.5 The impact of TPA and VSVg on cell mediated immunity

Fusion of OVA to VSVg was expected to lead to cell surface expression and the induction of 

higher antibody levels. The TPA signal sequence was expected to direct antigen to the ER 

and/or increase antigen expression with the result that antibody responses would be 

enhanced. Both VSVg and TPA increased anti-OVA IgG levels relative to their corresponding 

control viruses and by a similar order of magnitude.

Cytokine responses were measured after restimulation of splenocytes with either whole 

OVA protein or MHC-restricted OVA peptides. Whole protein is a less sensitive inducer of T



cell responses as it must first undergo internalisation and processing by APC in order to be 

presented to T cells. Peptides, meanwhile, can bind directly to MHC on the surface of APC 

in an ELISpot assay, leading to efficient and sensitive measurement of T cell responses 

(Schmittel et al., 2001). A peptide panel of 15-20 mers offset by 1-5 amino acids is advised 

for detection of CD4+ and CD8+ responses based upon the average epitope length for MHC 

Class I and II molecules -  8 -1 1  and 11 -  25 mers, respectively (Rodda, 2002). MHC Class I 

and MHC Class II restricted epitopes have been defined for OVA (summarised in Table 6.1) 

and were used in this study. Comparison of leader sequence effects was made on the basis 

of peptide-induced cytokine release. Cell-mediated antigen recall responses were 

investigated via IFNy ELISpot assay; there were no measureable increases in the number of 

cells secreting IL-4 and IL-17.

In the current study, fusion of OVA to VSVg did not lead to detectable differences in the 

number of antigen-specific CD4+ or CD8+ IFNy-secreting T cells. The effect of VSVg fusion 

on cell mediated immunity was previously unknown. The induction of T cell responses was 

not reported following delivery of rVV vectoring (3hCG fused to VSVg (Srinivasan et al., 

1995). The immunogenicity of an rMVA virus promoting cell surface expression of an HIV 

antigen was reported to be enhanced, but was confined to increased humoral responses; 

the levels of splenic CD8+ cells induced to release cytokine upon restimulation with the 

vaccine antigen were investigated and found to be unchanged (Wyatt et al., 2008a).

In contrast to the results obtained with V5-OVA-VSVg, immunisation with TPA-OVA-V5 

induced the lowest number of splenic CD8+ and CD4+ IFNy-releasing cells. In particular, the 

CD8+ response was reduced meaning that the skewing towards CTL-dominant immunity, 

observed for the other rMVA, was reduced. Novel TB vaccines are concerned with the 

induction of strong cellular immunity and so the expected effect of fusing OVA to TPA, a 

leader sequence commonly used in the TB vaccine field, might have been to enhance T cell 

responses. In the limited number of reports describing head-to-head comparison of TB
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antigen delivery, with and without an N-terminal TPA leader sequence, murine splenic 

cytokine release studies have been performed. However, these reports, which suggest T 

cell responses might have been unchanged (Li eta l., 1999), or moderately enhanced (Malin 

et al., 2000), are difficult to interpret as short-term cytokine release was investigated using 

purified whole mycobacterial proteins. As demonstrated here, this may have compromised 

the ability to accurately investigate the impact of TPA fusion on cell-mediated immunity.

In the current study, fusion to either TPA or VSVg enhanced the levels of lgG2a and lgG2b in 

particular, indicating that a Th-1 biased response had been induced, and all of the rMVA 

were biased towards the induction of CD8+ T cell responses. Both of these observations 

are consistent with viral vector delivery of the antigen.

6.5 Conclusions

The impact of TPA and VSVg leader sequences on OVA humoral and cell-mediated immune 

responses was investigated. The results have confirmed the potential for antigen fusions to 

modulate the immune response evoked by the antigen to which they are fused.

The original aim of this study had been to compare single rMVA expressing OVA with a 

double-recombinant containing both the TPA-OVA-V5 and V5-OVA-VSVg cassettes. This 

was not achieved on account of the instability encountered with the double-recombinant 

virus (see Section 4.3.3). The combined effects of multiple leader sequence on a single 

antigen are still worthy of investigation and insertion of recombinant cassettes into 

alternative insertion sites, including intergenic regions (see Section 1.2.7), may support 

improved stability.

The capacity for sorting signals to direct different antigens to different pathways to avoid 

competition and/or promote the induction of favourable antigen-specific immune 

responses may also form part of future investigations. Recombinant MVA expressing 

multiple antigens in the same insertion site could be expediently created for these studies.



The current study has developed tools with which to expedite future work. Transfer 

plasmids were generated and are available for assessment of further antigens, which can 

be inserted by Gateway® cloning. Should the transfer plasmids need to be modified, they 

have been rendered amenable to alteration by restriction enzyme digest (see Section

3.4.3). An in-house panel of ELISA assays was developed in preference to purchasing 

commercially available ELISA kits. The protocol developed was less expensive to implement 

and remains available for other immunisation studies investigating TB antigens; only the 

plate-coating protein would need to be replaced. Other parameters would remain 

unchanged and the specificity of isotype detection would have already been confirmed.

Viral vectors are a promising delivery strategy as they induce strong cellular immunity 

comprising CD8+ as well as CD4+ responses (Rollier et al., 2011). Hence, they are being 

developed for vaccination against important diseases requiring T cell immunity such as HIV, 

malaria and TB. The manner in which TPA reduced OVA-specific T cell response was not 

expected. Mice immunised with MVA vectoring TPA-fused Ag85A are reported to yield a 

balanced T-helper/CTL response, i.e. the numbers of Ag85A-specific CD4+ and CD8+ 

cytokine releasing T cells are similar (Spencer et al., 2012), but the extent to which TPA 

might be limiting the induction of T cell immunity has not been previously tested.

Protection against Mtb infection is believed to require both CD4+ and CD8+ T cell immunity 

(Andersen and Woodworth, 2014). Should the role of TPA be to balance the relative 

magnitude of these two arms of defence then an ability to induce fewer CD8+ reactive T 

cells may be advantageous, but this should be explored more fully and then either 

purposefully implemented or otherwise, further optimised. The potential for leader 

sequences to improve vaccines required to induce T cell immunity was more recently 

exemplified by fusion of a malaria antigen to the MHC-II binding invariant chain (Spencer et 

al., 2014). Similar studies are required in the TB field of viral vaccine vector development.
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Chapter 7 General Discussion

Recombinant MVA is a promising strategy for the development of novel vaccines; there are 

many clinical trials ongoing for viral, bacterial and parasitic diseases, and for cancer 

immunotherapies. The attributes of MVA include an extensive safety profile, large capacity 

for foreign DNA and the ability to induce potent humoral and cell-mediated immune 

responses. There are many factors to consider when constructing rMVA vaccines 

(described in full in Section 1.2), but therein lies an opportunity to apply rational 

optimisation for improved vaccine antigen delivery. The current study investigated the 

potential for vaccinia promoter selection and antigen fusions, or 'leader sequences', to 

enhance the immunological potency of rMVA delivering TB antigens.

7.1 Construction and characterisation of novel rMVA

7.1.1. Transfer plasmid methodology

As discussed in Section 1.3, there are two main approaches to rMVA construction - transfer 

plasmid and BAC methodology. Transfer plasmid methodology was applied in the current 

study because of the ease of set up; it is less technically demanding to implement and there 

were existing transfer plasmids available for use.

Transfer plasmids serve as a shuttle-vector for insertion of recombinant cassettes into the 

MVA genome. As demonstrated in Chapter 3 (see Section 3.3), they can be modified using 

standard cloning techniques to achieve any recombinant design. This has the potential to 

be an efficient process but, where more complex alterations are required, custom synthesis 

of plasmids and/or DNA fragments may be preferable. During the course of this study, the 

preparation of custom synthesised DNA has become more advanced and affordable and 

would be put to greater use in future work, for example, by custom synthesising 

recombinant cassettes in their entirety, for insertion into the plasmid DNA vector. 

Establishing the BAC system would not have negated the requirement to create the
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required recombinant cassettes by conventional cloning, or by custom synthesis, but might 

have expedited rMVA isolation.

7.1.2 Generation and isolation of rMVA

The rMVA viruses evaluated in the current study were isolated by plaque purification. 

Generally, this was an expedient process and rMVA were purified away from the parent 

virus in less than five passages (see Sections 4.3.1 and 4.3.2). However, genetically unstable 

or otherwise unwanted recombinant populations could lengthen the process. This was 

found to occur after the insertion of recombinant cassettes designed for transient GFP 

expression; a population containing the selection marker alone could be created and had to 

be distinguished from the desired recombinant viral population (see Section 4.3.2).

The application of BAC technology might have circumvented the issue of unwanted 

recombination events, but would not have resolved issues associated with genetic 

instability. In support of the plaque purification process, examination of MVA gDNA by 

analytical PCR provided a practical and effective means of achieving routine interrogation 

of the viral samples. Thus, future studies would continue to utilise transfer plasmid 

methodology and an extended panel of tools has been made available for this purpose by 

the current project.

7.1.3 An improved rMVA vaccine for TB

Until recently, the most advanced clinical candidate under development for use against TB 

was based on MVA vectoring a single TB antigen -  Ag85A (see Section 1.4.3). MVA85A 

became the first TB vaccine to enter an efficacy trial since BCG studies performed over 40 

years prior, but was unable to improve upon the effects observed for the placebo control in 

BCG vaccinated infants (Tameris et al., 2013). MVA85A has since been evaluated in clinical 

studies investigating aerosol delivery (Satti et al., 2014), Adenovirus boosting (Sheehan et 

al., 2015) and fusion of the TPA-Ag85A to a C-terminal oligomerisation domain (Minhinnick 

et al., 2016). It has been concluded that additional vaccine antigens and immune-
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enhancing strategies are still required. The current study undertook to assess how the 

underlying rMVA design might be improved, in advance of applying additional measures.

During the period of this study, pre-clinical evaluation of another novel rMVA targeting TB 

was reported. Candidate MVATG18377 is based on rMVA vectoring 14 TB antigens for 

prevention or treatment of active, latent and reactivating TB disease (Leung-Theung-Long 

et al., 2015). The vaccine incorporates three antigen strings under the transcriptional 

regulation of three different vaccinia promoters. One string has an N-terminal signal 

peptide derived from measles virus F protein; another has an N-terminal signal peptide and 

a C-terminal transmembrane anchoring domain, both of which were derived from rabies 

virus, while the third string has no antigen fusions. The design was reportedly optimised on 

the basis of bioinformatics and a review of the biochemical properties of each antigen. 

Thus far, the antigen-specific immune response to each gene vectored by MVATG18377 is 

variable, in mice and non-human primates (NHP). Vaccine candidate R vO lll has been 

included in the construct and is expressed under the control of vaccinia promoter P7.5, 

along with three other antigens. As demonstrated in the current study, this may not confer 

optimal expression and immunogenicity and could explain the weak responses induced 

against these antigens following delivery in MVATG18377.

7.2 The study hypotheses

7.2.1 Vaccinia promoter selection

The current study sought to address whether vaccinia promoter selection could influence

the immunogenicity and protective efficacy of TB vaccine antigens vectored by MVA. It was

shown that increased expression could improve immunological potency and efficacy. This

improvement was to an extent that would be relevant to the conservation of vaccine dose.

Products based on rMVA can induce anti-vector immune responses and so reduced doses

are preferable. Lower doses are also beneficial from the perspective of vaccine

manufacture and product cost; viral vectored vaccines are propagated on live cells and
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must be produced according to stringent regulatory (GMP) conditions. As stated in Section 

1.1.4, there are established processes for rMVA production, but strategies for improving 

viral yields and lowering vaccine cost should always be pursued. An optimised vaccine 

offering equivalent protection for one tenth of the dose would serve to increase product 

yields, in terms of the number of doses per manufacturing batch, and would reduce vaccine 

cost, in terms of cost per dose. This is particularly pertinent for vaccines sponsored by 

non-profit organisations for use in the developing world.

7.2.2 Leader sequence immunomodulatory effects

It was hypothesised that the type of immune response evoked by an MVA-vectored antigen 

could be altered by the addition of particular leader sequences, and that by targeting the 

antigen to multiple pathways the immune response could be made more diverse. Leader 

sequence effects were demonstrated for a single model antigen, OVA, and highlighted the 

potential for antigen-fusions to optimise transgene immunogenicity. An unexpected 

outcome was that the specific leader sequence used in several recombinant TB vaccines, 

TPA, served to reduce antigen-specific CD8+ T cell responses. This is a significant finding as 

there is evidence to support the view that novel TB vaccine strategies should be optimised 

for the induction of both CD4+ and CD8+ mediated anti-mycobacterial responses (Behar et 

a!., 2007; Ryan etal., 2009).

7.3 Future work

7.3.1 Efficient construction of rMVA

In the course of generating markerless rMVA (see Section 4.3.2) it was apparent that an 

unwanted population, expressing the GFP marker alone, was liable to be selected. It was 

also speculated that an antigen-only population could arise. The frequency of this 

occurrence could be investigated to gauge the impact on the efficiency of rMVA 

production, and to explore measures that might reduce it. An expedient means of 

achieving this would be to perform the infection-transfection (l/T) step after replacing the



gene of interest with a second marker gene, e.g. mCherry, which encodes a red fluorescent 

protein. Upon plating of the l/T harvest, viral plaques containing the selection marker (GFP) 

only, the antigen (mCherry) only, or both could then be enumerated according to the 

presence of green, red or red & green fluorescent protein.

7.3.2 Vaccinia promoter optimisation

Vaccinia promoter selection was able to enhance the immunological potency and efficacy 

of MVA-mH5-Ag85A, but at a higher dose the protective effect was lost. This was 

speculated to have occurred following immunisation with an excessive antigen dose, 

leading to terminal differentiation of effector T cell subsets with the loss of memory cell 

populations. This phenomenon was possibly confounded by the short time interval 

between the prime and boost immunisations applied in the experimental setting of the 

current study (described in full in Section 5.4.4). Detailed immunological analyses should 

be undertaken to determine if this was indeed due to a reduction in the quality of the 

immune response. In particular, T cell subsets including those associated with memory 

should be studied for antigen-specific induction of cytokine release. Multi-parameter flow 

cytometry would be a suitable approach (Aagaard et a i,  2009) and could be performed on 

murine peripheral blood mononuclear cells (PBMCs) over a time course following 

immunisation. In the first instance, a panel of cellular markers and antibodies for 

intracellular cytokine staining (ICS) would need to be established to distinguish effector T 

cell and memory T cell subsets. Detailed immunological studies should also investigate 

alternative vaccination schedules, to examine how the benefits conferred by an rMVA 

optimised for expression might be harnessed in a clinical setting, for example, by testing 

single doses of rMVA administered after a priming immunisation with BCG.

7.3.3 The influence of TPA on TB antigen immunogenicity

Studies comparing TB antigen delivery with and without a TPA signal sequence have been 

reported, but the influence on T cell immunity after ex vivo restimulation with overlapping
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peptides as opposed to whole protein should be reassessed (see Section 6.4.5). In the 

current study, TPA served to significantly lower the number of antigen-specific CD8+ 

responding T cells. MVA85A has a TPA leader sequence and is reported to primarily induce 

potent and enduring antigen-specific CD4+ T cell responses (Tameris et al., 2014). The 

impact of TPA on the immunogenicity of TB antigens, including Ag85A, should be examined 

in a properly controlled study, i.e. after antigen delivery in rMVA that are identical in every 

regard except for the presence of the leader sequence.

7.4 Conclusions

The advent and evolution of vaccinology research is captured within the history of Vaccinia 

virus. In 1796, cowpox lesion matter, a close relative of Vaccinia virus, was administered in 

the first vaccination study ever to be undertaken. In the 1970's the virus was attenuated by 

serial passage to create a safer, live vaccine and today, MVA is subject to development as a 

recombinant viral vaccine vector using the latest molecular biology, vaccine evaluation and 

product manufacturing techniques.

There are many aspects of rMVA design to consider when generating novel rMVA-based 

vaccines. This presents an opportunity to undertake rational optimisation for the induction 

of potent and long-lasting immune responses that are appropriate for the target disease. 

As such, it is insufficient to report that a given MVA-antigen combination is or is not 

effective. As demonstrated in the current study, efficacy is intrinsically linked to the precise 

nature of the rMVA vaccines' construction. A recent human efficacy study for MVA85A was 

unsuccessful, but factors such as vaccinia promoter selection and leader sequence 

optimisation may provide a means of improving future constructs which will need to deliver 

several antigens in order to target multiple stages of disease.

The value of vaccinia promoter selection may be to reduce the dose and thereby the cost 

and anti-vector effects of rMVA vaccines. Leader sequences represent an opportunity to 

further explore and enhance TB antigen immunogenicity. The rational selection of an



appropriate leader sequence may result in a more diverse immune response to an antigen, 

or help to explore changes in the quality of the immune response and their impact on 

protective efficacy. Vaccinia promoter selection and leader sequence optimisation should 

be a feature of future rMVA TB vaccine development.
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Appendix I

Transfer plasmids designed to  insert OVA into the MVA genome were sequenced across the 

open reading frame to  obtain continuous data fo r one or both strands. The sequenced 

region is indicated by a green arrow. The position of restriction enzyme recognition sites 

utilised in the cloning process is also highlighted. The plasmids maps were generated in 

SeqBuilder DNA Lasergene 11.

i. pTBD5-OVA
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vi. pTBD12-OVA
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vii. pTBD13-0VA

pTBD13-OVA 

6189 bp
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viii. pTBD14-OVA

pTBD 14-OVA
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Appendix II

A transfer plasmid designed to  insert a truncated version o f R v O lll (R vO lllT ) into the 

MVA genome was sequenced across the open reading frame to obtain continuous data for 

one or both strands. The sequenced region is indicated by a green arrow.

i. pTBDl-RvOlllT

Nsrt

pTBD1-Rv0111T

Sbfi
SnaBl

PspOM'

197



Appendix III

The pTBD plasmid series are E. coli cloning vectors incorporating an Ampicillin resistance 

gene (see Section 2.1.4). The sequence of each recombinant cassette is as follows:

i. pTBDl-RvOlllT

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 - 9 3 3 U94848.1; 148413 -14 93 39

Promoter P l l 948 - 978 TTTCATTTTG1 1 1 1 111CTATGCTATAAATG

GFP 976 -1695 JQ693016.1

Promoter mH5 1717 -1786 AAAAATTG AAAATAAATACAAAGGTT CTT G A 

GGGTTGTGTTAAATTGAAAGCGAGAAATAAT 

CATAAATA

Optimised Kozak 1795 -1804 GCCACCATGG

TPA 1801 -1908 X13097.1; 109 -  216

RE site/Gateway attB l 1909 -1941 CCCAT CAAACAAGTTT GTACAAAAAAG CAG G 

CT

R vO lllT 1942 - 2913 CP003248.2; 135031 -136002

Gateway attB2/RE site 2914 - 2946 ACCCAG CTTT CTT GTACAAAGT GGTTCGATGG 

G

Linker 2947 - 2970 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 2971 - 3012 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGTAA

MVA Del III Right flank 3028 - 3549 U94848.1; 149345-149866
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ii. pTBD2-Rv0111

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 - 9 3 3 U94848.1; 148413-149339

Promoter P l l 948 - 978 TTT CATTTT GTTTTTTT CTAT G CTATAAATG

GFP 976 -1695 JQ693016.1

Promoter 7.5 1704 -1975 AY243312.1; 190028 -190295

Optimised Kozak 1978 -1987 GCCACCATGG

TPA 1984 - 2091 X13097.1; 1 0 9 -2 1 6

RE site/Gateway attB l 2092 - 2124 CCCAT CAAACAAGTTTGTACAAAAAAG CAG G 

CT

R vO lll 2125-4176 CP003248.2; 133951 -136002

Gateway attB2/RE site 4177 - 4209 ACCCAGCTTTCTTGTACAAAGTGGTTCGATGG

G

Linker 4210 - 4233 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 4234 - 4278 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGTAA

MVA Del III Right flank 4291-4812 U94848.1; 149345 -1 4 9 8 6 6
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iii. pTBDl-Ag85A

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 - 9 3 3 U94848.1; 148413 -14 93 39

Promoter P l l 948 - 978 TTTCATTTTG1 11 1 1 1 1CTATG CTATAAATG

GFP 976 -1695 JQ693016.1

Promoter mH5 1717 -1786 AAAAATT G AAAATAAATACAAAG GTTCTT G A 

G G GTTGT GTTAAATT G AAAG CG AG AAATAAT 

CATAAATA

Optimised Kozak 1795 -1804 GCCACCATGG

TPA 1801 -1908 X13097.1; 1 0 9 -2 1 6

RE site/Gateway attB l 1909 -1941 CCC AT CAA AC AAGTTT GTACAAA A AAG CAG G 

CT

Ag85A (Rv3804c) 1942 - 2955 CP003248.2; 4266836 - 4265823

Gateway attB2/RE site 2956 - 2988 ACCCAGCTTTCTTGTACAAAGTGGTTCGATGG

G

Linker 2989 - 3012 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 3013 - 3057 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGTAA

MVA Del III Right flank 3070 - 3591 U94848.1; 149345-149866
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iv. pTBD2-Ag85A

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 - 9 3 3 U94848.1; 148413 -14 93 39

Promoter P l l 948 - 978 TTTCATTTTGTTTTTTTC1ATGCTATAAATG

GFP 976 -1695 JQ693016.1

Promoter 7.5 1704 -1975 AY243312.1; 190028 -190295

Optimised Kozak 1978 -1987 GCCACCATGG

TPA 1984 - 2091 X13097.1; 1 0 9 -2 1 6

RE site/Gateway attB l 2092 - 2124 CCC AT CAAAC AAGTTT GTACAAA AAAG C AG G 

CT

Ag85A (Rv3804c) 2125 - 3138 CP003248.2; 4266836 - 4265823

Gateway attB2/RE site 3139-3171 ACCCAGCTTT CTT GTACAAAGT G GTTCG ATG G 

G

Linker 3172 - 3195 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 3196 - 3240 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGTAA

MVA Del III Right flank 3253 - 3774 U94848.1; 149345 -1 4 9 8 6 6
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v. PTBD5-0VA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 - 9 3 3 U94848.1; 148413 -14 93 39

Promoter P l l 948 - 978 TTT CATTTT G TTTT1TTCTATG CTAT AAAT G

GFP 976 -1695 JQ693016.1

MVA Del III Direct repeat 1702 -1983 U94848.1; 149058 -149339

Promoter mH5 2015 - 2084 AAAAATT G AAAATAAATACAAAG GTT CTT GAG 

GGTTGTGTTAAATTGAAAGCGAGAAATAATCA 

TAAATA

Optimised Kozak 2093 - 2102 GCCACCATGG

TPA 2099 - 2206 X13097.1; 1 0 9 -2 1 6

RE site/Gateway attB l 2207 - 2239 G ATAT CAAAC AAGTTT GTACA AAAAAG CAG G C

T

Ovalbumin 2240 - 3394

1

NM_205152.1; 68-1222

Gateway attB2/RE site 3395 - 3427 ACCCAGCTTTCTTGTACAAAGTGGTTCGATGGG

Linker 3428 - 3451 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 3452 - 3496 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCTC

GATTCTACGTAA

MVA Del III Right flank 3509 - 4030 U94848.1; 149345 -14 98 66
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vi. pTBD6-0VA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 - 9 3 3 U94848.1; 148413 -14 93 39

Promoter P l l 948 - 978 TTT C ATTTT G TTTTTTT CT AT G CTATAAATG

GFP 976 -1695 JQ693016.1

MVA Del III Direct repeat 1702 -1983 U94848.1; 149058 -149339

Promoter 7.5 1997 - 2264 AY243312.1; 190028 -190295

Optimised Kozak 2271 - 2280 GCCACCATGG

TPA 2277 - 2384 X13097.1; 109 -  216

RE site/Gateway attB l 2385 - 2417 G ATAT CAAAC AAGTTT GTACA AA AA AG C AG G 

CT

Ovalbumin 2418 - 3572 NM_205152.1; 68 -1222

Gateway attB2/RE site 3573 - 3605 ACCCAGCTTTCTTGTACAAAGTGGTTCGATGG

G

Linker 3606 -3629 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 3 6 3 0 -3 6 7 4 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGTAA

MVA Del III Right flank 3687 - 4208 U94848.1; 149345 -14 98 66
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vii. pTBD9-0VA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 -9 3 3 U94848.1; 148413-149339

Promoter P l l 948 - 978 TTTCATTTTG1I I'll 1 1 ClATGCTATAAATG

GFP 976 -1695 JQ693016.1

MVA Del III Direct repeat 1702 -1983 U94848.1; 149058 -149339

Promoter mH5 2015 - 2084 AAAAATTG AAAATAAATACAAAGGTT CTT G A 

GGGTTGTGTTAAATTGAAAGCGAGAAATAAT 

CATAAATA

Optimised Kozak 2093 - 2102 GCCACCATGG

RE site/Gateway attB l 2099 - 2134 ATG G ATAT C AAACAAGTTTGTACAAAA AAG C 

AGGCT

Ovalbumin 2135-3289 NM_205152.1; 68 -1222

Gateway attB2/RE site 3290 - 3322 ACCCAGCTTTCTTGTACAAAGTGGTTCGATGG

G

Linker 3323 - 3346 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 3347 - 3391 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGTAA

MVA Del III Right flank 3404 - 3925 U94848.1; 149345 -14 98 66
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viii. pTBDlO-OVA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del III Left flank 7 - 9 3 3 U94848.1; 148413 -1 4 9 3 3 9

Promoter P l l 948 - 978 TTTCATTTTG1 1 1 1 1 11C 1 ATG CTATAAATG

GFP 976 -1695 JQ693016.1

MVA Del III Direct repeat 1702 -1983 U94848.1; 149058 -149339

Promoter 7.5 1997 - 2264 AY243312.1; 190028 -190295

Optimised Kozak 2271 - 2280 GCCACCATGG

RE site/Gateway attB l 2277 -2312 ATG GATAT CAA ACAAGTTT GTACAAAA AAG C 

AGGCT

Ovalbumin 2313 - 3467 NM_205152.1; 68- 1222

Gateway attB2/RE site 3468 -3500 ACCCAG CTTT CTT GTAC AAAGT GGTTCGATGG 

G

Linker 3501 -3524 GATCTAGAGGGCCCGCGGTTCGAA

V5 tag/Stop 3525 -3569 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACGTAA

MVA Del III Right flank 3582 - 4103 U94848.1; 149345-149866
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ix. pTBDll-OVA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del II Right flank 17 - 583 U94848.1; 21284-20719

Promoter P l l 601 - 631 TTTCATTTTG1 11 1 1 1 1C1ATGCTATAAATG

GFP 629 -1348 JQ693016.1

MVA Del II Direct repeat 1355 -1571 U94848.1; 20935-20719

Promoter mH5 1596 -1665 AAAAATT G AAAATAAATACAAAG GTT CTTG A 

GGGTTGTGTTAAATTGAAAGCGAGAAATAAT 

CATAAATA

Optimised Kozak 1674 -1683 GCCACCATGG

V5 tag 1683 -1724 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACG

Linker 1725 -1748 GATCTAGAGGGCCCGCGGTTCGAA

RE site/Gateway attB l 1749 -1781 GATAT CAAACAAGTTT GTACAAAAAAG CAG G 

CT

Ovalbumin 1782 -2936 NM_205152.1; 68 -1222

Gateway attB2/RE site 2937 -  2984 ACCCAG CTTT CTT GTACAAAGTG GTTCG AT G G 

GGATCTAGAGGGCCCG

VSVg/Stop 2985 - 3134 GU177825.1; 1387 -1536

MVA Del II Left flank 3148 - 3842 U94848.1; 20666-19972
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x. PTBD12-0VA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del II Right flank 1 - 5 6 7 U94848.1; 21284-20719

Promoter P l l 585 - 615 TTTCATTTTG 1 111111C1 ATGCTATAAATG

GFP 613 -1332 JQ693016.1

MVA Del II Direct repeat 1339 -1555 U94848.1; 20935-20719

Promoter 7.5 1562 -1829 AY243312.1; 190028 -190295

Optimised Kozak 1836 -1845 GCCACCATGG

V5 tag 1845 -1886 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACG

Linker 1887 -1910 GATCTAGAGGGCCCGCGGTTCGAA

RE site/Gateway attB l 1911 -1943 GATAT CAAACAAGTTT GTACAAAAAAG CAG G

CT

Ovalbumin 1944 - 3098 NM_205152.1; 68 -1222

Gateway attB2/RE site 3099 - 3146 ACCCAG CTTTCTTGTACAAAGTGGTTCGATGG

GGATCTAGAGGGCCCG

VSVg/Stop 3147 - 3296 GU177825.1; 1387 -1536

MVA Del II Left flank 3310 - 4004 U94848.1; 20666-19972
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xi. pTBD13-0VA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del II Right flank 17 - 583 U94848.1; 21284-20719

Promoter P l l 601 - 631 TTTCATTTTG 1 11 1 1 1 1C1 ATGCTATAAATG

GFP 629 -1348 JQ693016.1

MVA Del II Direct repeat 1355 -1571 U94848.1; 20935-20719

Promoter mH5 1596 -1665 AAAAATT G AAA ATAAATACA AAG GTT CTT G A 

G G GTTGT GTTAAATTG AAAG CG AG AAATAAT 

CATAAATA

Optimised Kozak 1674 -1683 GCCACCATGG

V5 tag 1683 -1724 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACG

Linker 1725 -1748 GATCTAGAGGGCCCGCGGTTCGAA

RE site/Gateway attB l 1749 -1781 GAT AT CAAACAAGTTT GTACAAAAAAG CAG G 

CT

Ovalbumin 1782 -2936 NM_205152.1; 68 -1222

Gateway attB2/RE 2937 -  2987 ACCCAGCTTTCTTGTACAAAGTGGTTCGATGG

site/Stop GGATCTAGAGGGCCCGTAA

MVA Del II Left flank 3001 - 3695 U94848.1; 20666-19972
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xii. pTBD 14-OVA

Feature Plasmid bases GenBank Accession No./Sequence

MVA Del II Right flank 1 -5 6 7 U94848.1; 21284-20719

Promoter P l l 585 - 615 TTT CATTTT GTTTTTTT CT AT G CTAT AAAT G

GFP 613 -1332 JQ693016.1

MVA Del II Direct repeat 1339 -1555 U94848.1; 20935-20719

Promoter 7.5 1562 -1829 AY243312.1; 190028 -190295

Optimised Kozak 1836 -1845 GCCACCATGG

V5 tag 1845 -1886 GGTAAGCCTATCCCTAACCCTCTCCTCGGTCT

CGATTCTACG

Linker 1887 -1910 GATCTAGAGGGCCCGCGGTTCGAA

RE site/Gateway attB l 1911 -1943 G ATAT CAAACAAGTTT GTACAAAAAAG CAG G 

CT

Ovalbumin 1944 - 3098 NM_205152.1; 68 -1222

Gateway attB2/RE 3099 - 3149 ACCCAG CTTT CTT GTACAAAGT G GTT CG ATG G

site/stop GGATCTAGAGGGCCCGTAA

VSVg/Stop 3147 - 3296 GU177825.1; 1387 -1536

MVA Del II Left flank 3310 - 4004 U94848.1; 20666-19972
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