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Abstract 

Computer generation of optimal arterial trees has previously been limited to the production 

of locally optimal configurations. The application of a global optimisation algorithm allows 

for the generation of vasculatures with consistent structure. Comparison of this structure to 

that of in-vivo vasculatures allows the determination of to what extent the vascular struc­

ture is the result of energy minimisation. In this thesis an algorithm capable of generation 

globally optimal vascular trees in geometries derived from medical imaging is developed. 

We begin by outlining a small set of constraints which capture physiological principles 

guiding the organisation of arterial trees. The constraints are then used to produce an al­

gorithm capable of finding the minimal energy configuration of a given arterial tree. The 

algorithm is used to produce both coronary and cerebral vasculature, and the latter is gen­

erated in geometries segmented from MRI data of a human brain. The trees are compared 

both morphologically and structurally to those found in-vivo. The morphological compar­

isons for the coronary vasculature show excellent agreement with experiment. The positions 

of the larger coronary arteries in the generated trees agree extremely well with experiment, 

suggesting that structure of the coronary vasculature is the result of energy minimisation. 

The generated cerebral vasculature approximates the vascular territories of the major 

cerebral arteries, however the morphological comparisons show that the structure of the 

cerebral arteries is likely not the result of energy minimisation. The cerebral vasculatures 

is used to extend a statistical model of embolic stroke to include the effects of branching 

asymmetry, and an analytic approximation to the statistical model of embolic stroke is de-



x 

vel oped and validated. It is found that branching asymmetry produces an overall reduction 

in the level of blockage occuring during an embolic event. 
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Chapter 1 

Introduction 

The creation of realistic, morphologically accurate arterial trees using simple optimisation 

criteria has seemed an achievable since Cecil Murray published his 1926 paper entitled "The 

Principal of Minimum Work". Previous attempts at realising this goal have fallen short in 

both the replication of morphological properties and the larger geometric structure of living 

arterial trees. This thesis represents the first application of a global optimisation procedure to 

the problem of arterial tree generation, and demonstrates the method by specific application 

to both the coronary and cerebral vasculatures. As a specific application, the cerebral trees 

are used to extend a statistical model of embolic stroke due to Hague et. al.[46]. 

Arterial trees provide the conduit through which blood, containing nutrients and oxygen, 

is delivered to tissue. Arterial trees are complex, three dimensional networks comprised pri­

marily of bifurcations, although trifurcations do occur, and they span length scales ranging 

from pm to cm. 

In 1926 Cecil Murray published a paper entitled "The Principal of Minimum Work" [94 ]. 

This paper used a simple optimisation criteria to derive a mathematical relationship between 

the radii of the parent and daughter arteries involved in a bifurcation. The fundamental 

premise of his work was that the driving force of natural selection had resulted in an arterial 

bifurcation process which minimises energy expenditure. The energetic cost of an arterial 
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tree is broken down into two separate contributing factors: the pumping power required to 

move blood through the system, due to viscous dissapation, and the volumetric energy cost 

of the blood required to fill the system. As will be detailed in later chapters, these two costs 

are at odds with one another, and their summation results in a function which has a single 

minimum. 

1.0.1 Previous Models 

Arterial trees deliver oxygen rich blood to tissues, remove waste products of cell motabolism 

and provide moisture in via osmosis from blood to cell. Their construction is essential to 

tissue growth in both normal development and theprogess of disease (e.g. cancer). The vas­

cular system of man spans a large range of length scales (~ I cm to IO,um), making imaging 

of the entire vascular system in vivo difficult. Models of biological function such as tissue 

growth, or dysfunction such as stroke and heart attack, can be improved by accurate models 

of the vascular tree at all length scales. In addition, our understanding of the vascular sys­

tem and its properties can also be improved by the development of models which accurately 

capture its behaviour. To this end, various models capable of generating vasculature have 

been proposed; this section aims to briefly outline a selection of those attempts. 

Due to their complexity, optimisation problems are frequently tackled using computa­

tional methods. The optimisation of a single bifurcation can be done by hand, but the optimi­

sation of a system of many thousands of connected arterial segments, in both network struc­

ture and spatial position, requires an algorithm amenable to computation. Previous work to 

this end produced a solution known as Constrained Constructive Optimisation (CCO), which 

builds arterial trees by iteratively adding, and then optimising, new segments. The method 

produces realistic looking arterial trees, but fails to accurately reproduce the morphological 

and geometric features of real trees. In recent years, various extensions to the orginal CCO 

paradigm have been attempted, with varying levels of success. One primary difficulty that 
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is yet to be overcome is CCO's inability to grow vasculatures for complex organ geometries 

e.g. the brain, where there exist multiple tissue types, non-convex geometries and multiple 

boundary conditions. A more fundamental limitation of the CCO algorithm is its inabillity 

to find the global minimum of the energetic cost: CCO builds arterial trees iteratively and 

once a segment is added it is never re-optimised. 

In addition to CCO, which is based upon optimisation principles, there are various other 

methods aimed at producing 3D arterial structures in-silico. Perhaps the most impressive 

are the morphometric models, which produced arterial trees from detailed morphometric 

databases containing the properties of many millions of arterial segments. The positions 

and morphology of the largest arteries are often taken from imaging data, and the mor­

phometric database is used to reconstruct the rest of the tree. The morphometric database 

contains probability distributions relating an arteries radii to its length, as well as topolog­

ical distribution indicating the probability of arteries being connected to one another via a 

bifurcation. While these methods are capable of producing large and accurate arterial trees 

(computational generation based on optimisation simply can not compete with the scale), 

large morphometric databases are required to construct them. Such databases do not exists 

for a large range of organ specific vasculatures. In addition, they provide no new insight 

into the structure of the arterial tree. Comparison of optimisation algorithms with real arte­

rial trees allow us to answer two important questions: is there an internal procedure which 

guides an energetically minimal design? and if so, what are the components which make 

up the optimisation criteria? Answering these questions may allow for examination of dis­

ease risk due to abnormally formed arterial trees, or allow imaging software to add educated 

guesses at scales below the imaging resolution. 

Beyond morphometric models, there are a wide variety of models aimed at mimmicking 

angiogenisis, particularly with regard to tumor formation. These mathematical models are 

vast and varied, but they are often aimed towards the microvasculature and involve the mod-



4 Introduction 

elling of chemical signals. The large scale modelling performed by optimisation procedures 

aims to reproduce the major arteries and arterioles of specific organs, where variation in the 

vasculature of that organ appears to be relatively stable over a population. 

Finally, there are also fractal models, which attempt to reproduce various fluid dynam­

ical and morphometric properties of real vasculatures. They are an important tool in the 

understanding of arterial trees, but frequently they do not contain spatial data or do not 

result in a 3D structure. 

1.0.2 Experimental Data 

For any computational model, verification against experimental data is a key objective. The 

matching of a model against experimental data not only validates the model itself, but also 

partially the conclusions and inferences obtained from it. For arterial trees there are two 

primary areas of experimental data: morphological and spatial. The morphological data 

comprise radii, lengths and network structure of the tree, whereas the spatial data comprises 

the location of individual bifurcations and the paths taken by the arterial segments. To be 

successful an arterial generation algorithm must be capable of producing an arterial tree 

with reasonable agreement to both morphologicla and spatial experimental data. 

There has been a vast amount of data published regarding arterial trees. Verification 

of Murray's "Principal of Minimum Work" has been the focus of many publications, but 

a consensus over its validity has not been reached. A large morphological study has been 

performed on the porcine coronary vasculature, but such detailed experimental data is rare. 

Studies on the microvasculature of the human cerebral cortex have also been performed, but 

detailed morphometric data spanning larger length scales does not appear to exist. There 

are numerous publications which investigate specific fluid dynamical quantities of the vas­

culature of specific organs, or investigate the morphology of arterial trees at specific length 

scales, but comprehensive morphological data for specific organs appears to be rare. 



1.1 Motivation 5 

1.1 Motivation 

The main purpose of this thesis is to develop, document and validate a new algorithm ca­

pable of generating morphologically and spatially realistic arterial trees in-silica, using a 

global optimisation procedure. The current standard algorithm for generating arterial trees 

using optimisation is ceo, however the trees it produces lack certain morphological prop­

erties of real arterial trees, and also can not reproduce certain geometric features of organ 

specific vasculature known to be present across a population. The algorithm developed in 

this thesis is capable of reproducing organ specific vasculature features, and produces trees 

which are have increased morphological accuracy in comparison to those of ceo whilst 

simulateously producing them for more complex geometries. 

In order to properly assess the "Principle of Minimum Work" as applied to whole arterial 

trees, rather than single bifurcations, the algorithm employs an optimisation routine known 

as Simulated Annealing (SA). The SA algorithm, in contrast to the optimisation method 

employed by ceo, allows for the entire topological and geometric space to be explored. 

While no algorithm could be guaranteed to find the global energetic minimum of an arterial 

tree in finite time, we demonstrate that for smaller scale trees a consistent minimum is 

approached, and find that even for trees with lOOOs of segments, a consistent structure in 

the larger arteries appears. The generated trees are visually similar in structure to in-vivo 

organ specific arterial trees, and match the morphological data well. As this is the first 

algorithm to globally optimise an entire arterial tree, we also present the first evidence that 

the larger arterial tree structure of the coronary arteries is, atleast partially, a result of a 

tendency to minimise energy expenditure. 

The ability to generate morphologically and spatially realistic arterial trees affords will 

afford models who use such trees the potential to improve their results. A motivation for the 

production of this model is the statistical model of embolic stroke produced by Hague et. 

al., which previously used a simplistic symmetrically bifurcation tree as its input. 
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1.2 Outline 

The second chapter of this thesis provides a literature background on arterial tree research, 

as it relates to arterial tree modelling. The literature on arterial trees is incredibly vast, 

and no literature review could hope to cover it all; Chapter 2 aims to provide a thorough 

background specifically in relation to the computational generation of arterial trees. There 

exist already numerous high quality review papers relating to vascular morphology and 

where appropriate these have been highlighted for the interested reader. 

The third chapter is divided into two sections. In the first section I develop a small set of 

criteria which are likely to govern the overall growth of arterial trees. This is not an attempt 

at indentifying the underlying chemical pathways or processes, but is a coarse graining of the 

"objectives" of an aterial tree framed in terms of an optimisation problem. Included within 

these objectives is the minimal energy hypothesis of Murray. In the second section I detail 

the specific computional representation of the previously identified optimisation criteria, 

and discuss the Simulated Annealing method. Finally, the consistency and convergence of 

the developed algorithm are tested on a small two dimensional arterial tree. 

The fourth chapter applies the previously developed algorithm to a simplified ellipsoidal 

heart model, and the resulting trees are compared both morphologically and visually to 

real porcine coronary vasculatures. The visual inspection shows that the major arteries of 

the heart are faithfully reproduced by the algorithm, a first for a generative algorithm, and 

morphological comparison reveals good agreement with published experimental data. 

The fifth chapter is divided into two sections. In the first the algorithm is applied to a 

cerebral geometry segmented from real MRI data. The generated tree is again compared 

both visually and morphologically to experimental data. It is found that though the morpho­

logical data comparisons remain encouraging, the structure of the larger arteries deviates 

from that found in-vivo, most likely due to the complex geometry of the brain. In the sec­

ond half of the chapter the generated tree is used as input to a statistical model of embolic 
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stroke, and the results of the simulations are compared with those generated for a simple 

symmetrically bifurcating tree. An analytic approximation for the embolic stroke model is 

also constructed. 

In the sixth chapter, I present some interesting properties of both the simulated anneal­

ing algorithm and the optimised trees it produces. The parameter space of the algorithm is 

fully explored and metrics such as the fractal dimension of the trees are presented. An ana­

lytic derivation of the optimal bifurcation exponent for symmetric trees containing arbitrary 

segments is derived, and its results are compared to those generated by the algorithm. 

In the final chapter I summarise the results of the thesis, as well as the limitations, 

and outline extensions and improvements which could be made to the algorithm. Possible 

applications to current techniques are also summarised. as well as some speculation on what 

the uses of an optimal arterial tree generating algorithm may be in the future. 



Chapter 2 

Optimal Arterial Trees 

2.1 Introduction 

In this chapter we will review past research into the morphology and geometry of mam­

mallian vascular systems, as well as computational methods used for their generation. 

2.2 The Bifurcating Tree 

Transport networks are pervasive in biology[ 11]. The requirement of biological organisms 

to supply nutrients and remove waste from their tissue has led to the evolutionary develop­

ment of various transport solutions. For instance in insects, who lack any form of pumping 

respiration, the transport network for oxygen works through a process of diffusion which 

begins in microscopic pores on the insect's outer surface, the tubes of which bifurcate and 

divide perfusing air through the entire insect[39]. In Man, and many other organisms, the 

main nutrient transport mechanism is blood, which is perfused through tissue by means of 

a bifurcating tree of vessels[152]. In some plants the transport system for nutrients is again 

a bifurcating tree, visible on the surface of leaves [ 117]. While the branching tree design 

is common in nature, the following will focus primarily on its properties as they relate to 
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blood transport in mammals, particularly humans. 

Bifurcations are by far the most common method for flow division within arterial net­

works. Trifurcations do occur in less than I % of cases[4], with higher order divisions being 

even less common. For the purpose of computational modelling a bifurcating system of 

vessels is an adequate characterisation, where the rare event of a trifurcation can be effec­

tively captured if the distance between bifurcations becomes sufficiently small (Fig 2.1). 

Bifurcations allow large arteries to connect to the microvascualture in order to facillitate the 

effective exchange of nutrients and oxygen from the blood, for waste products from cells. 

Oxygen echange is primarily diffusion driven [37], requiring large surface to volume ratios, 

low flow rates and thin vessels walls in order to occur effectively. The combination of thin 

vessel walls and low flow rates means that fluid pressure within the vessel also has to be low. 

Within the larger arteries, e.g the aorta, pressures are at a maximum ( lOOmmHg[36]), and 

are far too high to supply the microvasculature without destructive effects. As a result of 

these restrictions, the distributive duties of the arterial system also include the need to drop 

significant amounts of pressure during the journey from aorta to microvasculature. Since re­

sistance to flow scales as ~ for purely viscous flow, the majority of the pressure is dropped 

in the smaller arterioles, which also modify their radii in response to pressure changes via a 

process called autoregulation[57]. 

The microvasculature is arcade in structure[90], allowing for significant amounts of 

cross flow between tissue regions. One suboptimal solution to the blood supply problem 

then could be to have a single, large arcade structure, supplying blood to all tissue within 

the organism. The previously mentioned scaling law for vascular resistance demonstrates 

why this solution is suboptimal. The vascular resistance would be high enough that blood 

would never reach the outer edges of the system if there were only a single pumping source. 

Arterial systems are adapted to not only distribute blood to the microvasculature efficiently, 

but also to transport it there. Taking a single path from aorta to an area of microvasculature, 
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Figure 2.1: A trifurcation can be considered as a special case of bifurcation, where the 
distance between successive bifurcations dx becomes sufficiently small. 

Figure 2.2: The three sections of a typical arterial tree. l)The transportative stage consisting 
of large (> 1 mm) diameter vessels, which transport blood to a specific organ or location. 
2) The distributive stage, where smaller (50 Jlm < r < lmm) arterioles distribute blood 
throughout the tissue. 3) The microvascular regime, where arcade network structure domi­
nates and oxygen and nutrient exchange occurs. (r < 50 Jlm) 

we can identify 3 specific regions of the arterial system. The first is purely transportative, 

a single branch from the aorta transporting blood in bulk to the tissue. The second is dis­

tributive, involving many bifurcations, dropping pressure and reducing flow, dividing blood 

between areas of tissue. The third is the microvasculature, which allows for effective mate-

rial exchange (Fig. 2.2). In a real arterial system the demarcation between the transportative 

and distributive regions will not be sharp, however the distinction is still useful and provides 

the basis for a quantitative analysis of arterial tree structure. 

As with all biological systems, the maintainence and use of an arterial system require 
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energy. This energetic cost includes not on the pumping of the heart to overcome dissipitave 

effects, but also the production of enough blood to fully fill the system. Since red blood 

cells have a lifetime of I month, this blood volume must constantly be maintained and so 

represents a constant energetic strain on the arterial system. These two energy costs have 

solutions which directly oppose one another. To minimise the pumping power required, 

an arterial system should be arranged so as to minimise the the vascular resistance. As 

noted earlier, vascular resistance of a single artery is proportional to ~, and so the pumping 

power optimised system would consist of a large, single artery snaking through the body 

and bifurcating highly asymmetrically directly into the microvascular system. In this case, 

the volume of blood required to fill the system would be huge, as the large artery must be 

entirely filled to be viable. In contrast, to minimise blood volume, which scales as ,.z, the 

tree would look much like the suboptimal microvascular system outlined earlier. The aorta 

would bifurcate as quickly as possible down to the microvascular level. 

In general the competition between two competing factors in any problem signals the 

beginning of an optimisation problem, and this case is no different. Balancing the energetic 

cost of pumping and maintaining blood is a driving force in the generation of arterial tree 

structure and morphology, but to what extent vasculature is dependent of these factors re­

quires examination of the evidence. In this next section we will review the past and present 

experimental and theoretical investigations into the optimality of arterial trees for various 

animals. 

2.3 Optimality Principles for Arterial Trees 

2.3.1 Murray's Law 

The idea that transport systems of biological organisms would evolve to an optimal state was 

first proposed by Murray[94]. Using the principle of mimimum work and volume, applied 
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to a Newtonian fluid of constant viscosity undergoing Poiseuille flow in a cylindrical tube, 

Murray was able to derive a theoretical relationship between the radii of parent to daughter 

vessels at a bifurcation 

(2.1) 

Where rp refers to the parent vessel radius and ra and rb refer to the daughter vessels. This 

relation finds the minimum of the function 

(2.2) 

Where the first term on the right hand side (rhs) is the power dissipated by a fluid undergoing 

poiseuille flow of magnitude Q in a cylindrical tube of length I and radius r, and the second 

term is the volume of the same tube. Using elementary calculus and assuming a constant 

flow in the pipe, Murray shows that the minimum of this function is found when 

(2.3) 

For a flow through a bifurcating tube consisting of an incompressible fluid, the flow through 

the parent vessel will necessarily equal the sum of the flow through the two daughter vessels, 

so that 

(2.4) 

Combining Eq. 2.3 and Eq. 2.4 and assuming constant viscosity, we arrive at Murray's 

law (Eq. 2.1). While the assumption of poiseuille flow is valid for certain sections of the 

vasculature[79], elsewhere the behaviour can be more complex. In the larger arteries of the 

body flow is highly pulsatile[103], and in the microvasculature there are non-Newtonian[49] 

effects. Even when laminar flow is a valid assumption there are other effects which require 
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Figure 2.3: Schematic diagram of the energetic cost constributions from volume and fluid 
dynamic di ipation. The location of the minimum corresponds to the solution found by 

Murray. 

quantification , uch a the ela tic arterial walls, kinetic energy of the blood, turbulence 

etc. In re pon to the e additional criteria, Murray's law has been frequently adapted and 

expre ed in tead a an in tance of a power law relationship between arterial radius and 

flow, uch that: 

(2.5) 

Where in the pecific ca e of Murray 's law y = 3.0. The exact value of gamma, as will 

be hown in the following ection and investigated analytically in Chapter 6, appears to on 

the radiu , which in turn i mo t likely a re ult of various competing fluid dynamical and 

biological eff ct . In computational models the value of y is fixed at some experimentally 

determined value relevant to th va culature being modelled. Murray exposed a principle 

governing a ingle artery, however arterial trees con ist of many millions of arterial segments 

and their a ociated bifurcation . The imposition of Murray's law upon the radii of an arte­

rial sy tern i not ufficient to guarantee global optimality of the entire system. The position 

of the bifurcation mu t al 0 be determined. The application of Murray's law to bifurcation 

position i relatively traightforward but algebraicly tedious, but the primary constraint in 

the calculation i that th location of the root entry and daughter exit sites are fixed. In 
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the context of an entire vascular system this assumption is rather paradoxical: optimising 

the position of one bifurcation forces the immediately distal and proximal bifurcations to 

be suboptimal. The process could be attempted iteratively, but would be computationally 

rather slow. 

Even assuming the global optimum of bifurcation positions can be found for a particular 

set of bifurcations, how can we verify that this topological arrangement is the one resulting 

in the global minimum for the entire topological space? To be clear, the geometric optimi­

sation of single bifurcations ignores the pertinent problem of topological freedom: how the 

bifurcations are connected to one another. Since each topological configuration must be op­

timised individually, and there is no way to predict how a topological change will effect the 

minimum, it would be necessary to enumerate all the non-degenerate topological states and 

calculate their geometric minimums. This process would be computationally prohibitive for 

even the most modestly sized trees, as the topological space grows as the Catalan numbers. 

These isssues however do not preclude an analysis of the experimental evidence for 

Murray's law. Various measurements have been made of arterial trees spanning a wide 

variety of species. The following section is by no means exhaustive, but represents a detailed 

picture of the current understanding of the morphology of arterial trees. 

2.3.2 Bifurcation Exponent 

Murray's prediction that the bifurcation exponent should be exactly 3 in order to optimise 

power and volume is clearly theoretically correct (to first order approximation at least), 

however the level of various assumptions within the Murray's derivation means that real 

biological system show significant deviation from this value. The first is the assumption of 

laminar flow. In many bifurcations far away from the heart, blood flow is nearly laminar[79] 

(although not too far, where at the micrometer scale blood become non-Newtonian[49]), 

however in the large arteries of organs such as the heart and brain, the blood flow can 
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exhibit turbulent behaviour [126]. In addition, pulsatile flow is still present to a large degree, 

which requires the inclusion of energy loss through pulsatile wave reflection at bifurcations. 

This is enough to suggest that the bifurcation exponent value of 3 predicted by Murray is 

incorrect, and indeed when measured it has been shown to be as low as 1.8 in the larger 

arteries[60] and as low as 1.3 in the carotid bifurcation[lO]. The exact mechanism behind 

this relationship will be investigated in Chapter 6, however for now it is enough to note that 

as the radii decrease there is a general trend upwards to a value of 3 in the capillaries[112], 

consistent across species and organs. 

Horsfield and Woldenberg analysed the bifurcation ratios for the human pulmonary ar­

teries tree using resin casts. They found the bifurcation exponent to be 2.3 ± 0.1 which is 

equal to the value required for minimum power dissipation for fully developed turbulent 

flow, however even in the largest pulmonary arterial flow is most likely not turbulent. They 

concluded that other factors must be at work in determining the optimum branching expo­

nent, such as the turbulence created at bifurcations[52]. Work by Kassab et. ai.[70] and 

Restrepo[112] has shown that the bifurcation exponent is most likely a function of arterial 

radius, rising from 2.0 in the larger arteries, to > 3.0 in the microvasculature. Further anal­

ysis of the effects of pulsate flow have shown that the optimal bifurcation exponent in an 

artery experiencing fully pulsatile flow is 2.0[ 141]. Theoretical analysis of elastic wall ar­

teries predicts a branching exponent value of 2.33 which matched experimental data for the 

pulmonary arterial tree[98]. 

By showing that the apex point of a bifurcation, that point which splits the flow, can 

always be located such that the flow division matches that required in the branches, and in 

turn that this apex position is compatible with Murrays law, Zamir was able to show that the 

local optimality of a bifurcation, in terms of the orderliness of flow through a bifurcation, 

is compatible with the global, geometric optimality condition of Murray[148]. Beare et. ai 

measured the bifurcation exponent of the carotid bfiurcation in 45 subjects and found that 
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the exponent value ranged from 1.3 to 1.6. 

Rossitti and LOfgren analysed the bifurcation exponent and branching angles for the 

internal carotid, middle and anterior cerebral arteries and found a branching exponent of 

2.9±0.4 but found no correlation between theoretical and measured branching angles[116]. 

This is in contrast to data from Frame and Sarelius who looked at the bifurcation angles 

and exponent for the microcirculation of a Golden Hamster cremaster muscle[40]. They 

compared measured data for the branching angles to the theoretical predictions of different 

optimality models (volume, power, shear stress, surface area) but found no correlation. In 

addition they calculated the value for the bifurcation exponent using the measured values of 

branching angle and diameters, finding large variations in the value for bifurcations along 

the length of a feed arteriole[40]. Revellin et. al.[ll3] performed a theoretical eximination 

of the optimal bifurcation exponent under the assumption of non-newtonian flow. They 

found the optimal exponent remained at Murray's value of 3.0 if a volume constraint was 

present. The inclusion of a surface constraint produced optimal exponent values ranging 

from 2.42 to 3.0, depending upon the fluid properties used in their model. This implies that 

in regions of highly non-newtonian flow, there is likely to be some deviation from Murray's 

law, to an extent similar to that found in the larger arteries. Experimental measurements 

performed on the smaller arterioles however imply that a value of 3.0 is valid for all but the 

largest arteries[ 106, 116]. 

Wright et. al[I44] performed an analysis on segmented cerebral arterial trees from 64 

TOF MRI images of healthy individuals. The bifurcation exponent was found to vary as a 

function of branching order (calculated as the number of bifurcations occuring from the root 

of the tree to the segment), with an average value of 2.5. Due to the 0.5mm resolution of the 

MRI images, only the larger cerebral arteries were examined. Cassot et. al.[22] performed 

a detailed morphometric study of the cerebral microvasculature (radius less than 300,um), 

and found an average bifurcation exponent of 3.0, but with significant variation. 
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Figure 2.4: Bifurcati n p ition hown for a ymmetric bifurcation with an exponent of 3.0. 
The contour d n te th nergetic co t of the bifurcation at that position . 

A theoretical tud of th eff ct of a heterogenous branching exponent was performed 

by Karau I . aL[6] ho found that the mean value of the branching exponent had little 

effect on the wall hear tre throughout the tree. While the true value of the bifurcation 

exponent app ar t b dep nd nt upon the radius of the parent artery, the experimental 

data doe ugge t that in mo tea e a value between 2.0 and 3.0 is appropriate at arteriole 

length cale. The r ti al tudie of the bifurcation exponent in the microvasculature (less 

than a few hundred microm ter ) and large arteries (carotid, aorta etc) suggest pul atile 

flow, arterial ela ticity and the non-Newtonian properties of blood can explain some of the 

deviation from Murray ponent value of 3.0. 

2.3.3 Branching Angles 

The diameter of bifurcation i not the only relevant geometrical parameter, angles al 0 con-

tribute to th optimality of a bifurcation. Murray extended hi work on the optimal branch­

ing diam ter to inc1ud expre ion for the optimal angle of bifurcation[95], however this 

analy i pr uppo e a cubic relation hip between ve sel diameter and flow, which in tum 

implie apr i ting balance between volume and power optimisation . Zamir performed a 

theor tical analy i f optimal arterial branching angles for the 4 separate optimality con-
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Figure 2.5: Bi fur ation p ition hown for an asymmetric bifurcation with an exponent of 
3.0. The c ntour d note the energetic cost of the bifurcation at that position. In comparison 
to a ymm tric bifurcation the angle of the parent artery to the daughters is changed. The 
larg r daught r make a mailer angle with the parent. 

dition of minimum urface area, volume, pumping power and endothelial drag[147) . The 

di ameter f daughter and parent arteries were considered to be separate due to the long 

range va cular ffects of arteri al di ameter, where the analysis of Zamir was concerned only 

with the loca l geom try. It wa found that for certain values of the branching angles all 

four condition w r very clo e to their respective minima, but in general the condition did 

not agree on the mo t optimum angle. In addition it was noted that any theoretical analysis 

will onl y gi a rough guide to the reality found in nature, as natural biological scatter will 

alway cau e departures from optimality, and that in certain regions of the vasculature (e.g 

the aorta), geometry and concern uch a pulsatile wave reflection will cause significant 

departure fro m the optimality principles considered. Empirical verification of the theoret­

ical optima pre ented wa attempted in 1979 by Zamir and Chee[153) and as predicted the 

biological catter wa ignificant. The significant catter of bifurcation angles posed a prob­

lem to Murray ' idea of optimal bifurcations. Zamir and Bigelow investigated the size of 

the biological catter but in contra t to previous work they measured the scatter in terms of 

it energetic co t. They found that a deviation from optimality causing a 2% increase in cost 

wa enough to in lude almo t all the biological scatter found[150). It thus seems reasonable 
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Figure 2.6 : Bifurcation angle [143, ISO] and theoretical curve for various arterial trees as 
a function of the branching a ymmetry (data i for the larger daughter). There is a large 
amount of catter, however thi s con istutes a relatively small deviation in the energetic cost 

of the bifurcation. 

to conclud that while nature may be inexact in its working, arterial bifurcation angle do 

follow the optimality principle of Murray. 

Zamir examined the local properties of arterial branches and their relation to the global 

optimality condition of Murray[ 148]. Each arterial branch has a local structure, the most 

important feature of which i the po ition of the apex of the bifurcation relative to the two 

out ide edge of the daughter ve el , which in turn define the point of division of the 

parent' tream line . It wa hown that the position of the apex required to divert the 

nominal amount of flow with re pect to Murray's law was compatible with a locally optimal 

apex po ition. Thi i an important point which would be otherwise neglected in a first 

order fluid dynamic imulation of the arterial tree, and was indeed neglected in the method 

devi ed by Murray. That flow divi ion i compatible in an optimal way with the radii defined 

in Murray law lend upport to the u e of laminar flow approximation in the modelling 

of the fluid dynamic of bifurcation. Kassab et at. analysed 700 large (diameter> 1 mm) 

egment of the porcine coronary arterial tree. Bifurcation angle were found to follow 

optimality but with ignificant catter[ 143]. Zamir examined arterial bifurcations in the 

rat cardiova cular y tem[ 154]. Diameter data was also recorded and found to be in good 
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agreement with the theoretical model of Murray. Angular data was again subject to large 

biological scatter, although it was seen that the general principle that larger daughter vessels 

having a smaller angle was, for the most part, observed. It was also found that in the vast 

majority of cases, arterial bifurcations are planar, so that a single bifurcation is effectively 

two dimensional. 

2.3.4 General Scaling Laws of Vascular Trees 

The structure of the arterial tree can be described in bulk by various power law relationships 

derived from principles similar to those used by Murray. Effectively these models are exten­

sions of Murrays law applied to large arterial trees rather than single bifurcations. In Chapter 

6 we will explore a new method aimed at calculating the optimal bifurcation exponent for 

a symmetric binary tree, however these scaling arguments aim to produce power law rela­

tionships between the various physical properties of arterial trees. Kassab demonstrated a 

more general scaling law for biological transport networks based upon the minimum energy 

hypothesis and using a stem-crown formalism (See Fig 2.7) which coalesces the distal sub­

tree of a segment into a single set of parameters (resistance, length etc). The derived scaling 

exponents show a dependence on crown resistance and this was used to form a theoretical 

prediction which could be compared with a least squares fit. The values from theory were 

found to be in good agreement with those of the least squares fit. In analysis of the exponent 

predicted by Murray, it was found the exact value depends upon the balance of viscous to 

metabolic power dissipation in the tree being examined[66]. Further work of Kassab et. 

al. resulted in the formation of four structure-function scaling relationships, each relating 

various physical properties of the arterial tree (volume, length, diameter and flow). The 

predicted scaling exponents were validated by linear regression for various arterial trees. 

West et al. [ 141] derived allometric quarter power scaling laws for mammalian trans­

port networks based upon the minimisation of power and a fixed size of terminal arterioles. 
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Figure 2.7: The stem crown formalism used in Kassab et. al.[66]. The properties of the 
crown, such as volume, length, flow, are calculated as totals, and related to the properties of 
the stem via power laws. 

Their model incorporated pulsatile flow and showed that area preservation was important 

near the aorta, which would support a bifurcation exponent of close to 2.0 in that area of 

the vasculature. The model was verified by comparing the predicted scaling exponents with 

experimentally obtained values for numerous physiological parameters (e.g. aortal radius, 

tracheal radius, cardiac frequency, blood volume etc.). Models such as the ones outlined pro­

vide good tests for any computational method aimed at generating arterial trees: generate an 

arterial tree, measure the exponents, compare with the physiological obtained values. How­

ever they also provide valuable insight into the underlying mechanism behind this structure. 

For both models, the key assumption was the minimisation of energy expenditure, in the 

first case by the application of Murrays law, and in the second case by using an extention of 

it that includes pulsatile flow. It would seem key then, if any large scale vasculature is to be 

generated computationally, that the minimisation of energy be the guiding function. Mur­

rays law itself however explains nothing of the large scale structure of arterial trees: it takes 

scaling arguments, new assumptions and large quantities of algebra to get there. Instead, 

the law simply relates one radii to two others, at a single bifurcation, disconnected from the 
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whole. In orde to investigate the effect that energy minimisation has on a tree comprised of 

thousands of bifurcations, an efficient computational algorithm must be developed. 

2.4 Previous Methods for Arterial Tree Generation 

Various methods for the computer aided construction of arterial trees have been tried in the 

past. The most pervasive and relevant to this thesis is constrained constructive optimisation 

or CCO, which uses local optimisation techniques to generate arterial trees based on Mur­

rays principle[ 118]. The other techniques fall broadly into two categories: statistical and 

fractal. Statistical models use large morphological databases to reconstruct arterial trees 

which have realistic physical properties[61]. Fractal models are basic, frequently one di­

mensional models which are used to investigate network effects and fractal properties of 

arterial trees. Throughout the broad and varied history of arterial tree modelling no pub­

lished attempt has been made to investigate the effect of global optimisation on arterial tree 

structure. CCO would be by far the closest match if global optimisation were the search cri­

teria, however its local optimsation falls short, and computational difficulties often preclude 

it from investigating realistic tissue geometries. In this section we will examine the CCO 

algorithm in detail as well as outline some of the morphological and fractal models used 

previously. 

2.4.1 Constrained Constructive Optimisation 

Constrained constructive optimisation is an iterative technique which aims to produce mor­

phologically accurate arterial trees. The algorithm successively adds terminal points and 

optimises their connection to the existing arterial tree. In this way trees consisting of 1000's 

of bifurcations can be generated. In the following we detail the procedure and characterise 

its strengths and weaknesses. 
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Initially a root node is located along the edge of the perfusion volume, being the area 

of tissue to be supplied, and then a random position inside the volume is picked to be the 

second node. This node is then connected to the root node and the radius of the connective 

segment is scaled so that a predetermined flow and pressure are achieved at the second 

node. The predetermined flow is calculated as the physiological value of the flow through 

the root node divided by the required number of end nodes. After this first procedure, the 

algorithm can be fully generalised to the case where a new end node is to be connected 

between two existing nodes. The generation of a new end node begins by choosing a point 

inside the perfusion volume. This is done by generating a random point and then checking 

to see whether this point falls within a certain threshold distance of the current nodes and 

segments. If the distance is less than this threshold value then the point is rejected and a 

new point is chosen. If this process of rejection occurs more than a specified number of 

times, the threshold distance is reduced and the process is repeated. This method ensures 

that areas of tissue which are lacking blood supply are perfused more preferably, in analogy 

to angiogenesis in tissue (See Fig. 2.8). Once a position inside the tissue has been chosen, 

two nodes are added to the tree. The first node is the end node itself (xnew ), the second is the 

node which connects the end node to the tree (xconn). The process of addition proceeds first 

with the determination of the twenty nearest neighbours of Xnew· When this set is found, 

connections are made between each and Xnew by positioning Xconn half way between the 

chosen nearest neighbour and its parent. There are thus four nodes involved in the addition 

of a new end node to the tree: Xconn , xnew, and the nearest neighbour to Xnew which we call 

XNN and its parent xpar. For each nearest neighbour the position of Xconn is changed so that 

the value of a target function is minimised. The nearest neighbour with the lowest value of 

the target function is then chosen as the permanent connection for xnew• This process is then 

repeated until the required number of terminal nodes is achieved[ 118]. 
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Figure 2.8: ceo iteratively adds leaf nodes to a tree and optimises the connection between 
these nodes and the existing tree. In the first (left) panel a new leaf node has been added to 
the tree. In the second (middle) the connection has been made to the existing tree read for 
optimisation. The final panel shows the final tree, having had a new connection optimised. 
In a tree consisting of more than a single segment, multiple new connections are tried and 
the most optimal is selected. 

The target function is of the general form 

Peos! = E;rf If (2.6) 

Where i refers to an individual node and the sum is over the entire tree. Different values of 

the exponent a and {3 represent minimisation with respect to different physical parameters. 

For instance a = I, {3 = I represents a cost function proportional to the surface area, and so 

a ceo procedure using those values would produce a tree optimised to minimise the surface 

area. The standard cost function used throughout the literature is one which minimises the 

intravascular volume, so that a = 2 and {3 = I. In addition to optimising the volume, ceo 

also enforces Murray's law at bifurcations, so that Eq. 2.1 holds throughout the entire tree. 

These two optimisation conditions are sufficient to produce physiologically realistic tree 

structures. 
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Boundary conditions are necessary to set the physiological parameters of the tree. In 

general, the terminal flow of each node is specified as some fraction of the inlet at the root 

node, most usually as Qper f / Nlerm , where Qperf is the inlet flow at the root node and Nterm is 

the number of end nodes. The pressure in the root and end nodes are set to physiologically 

reasonable values, and the bifurcation exponent r is set. 

Maintaining the physiological boundary conditions is achieved by successive scaling of 

segment diameters. The initial segment comprising of the root node and the first end node 

is scaled trivially to maintain the pressure and flow conditions in the distal and proximal 

regions. The addition of a new end node requires that the flow splitting at the bifurcation, 

which is a result of the pressure drop over the new segment, be readjusted to meet the 

terminal flow requirements. Previous to CCO most attempts to model vascular systems 

were statistical and ignored topological and morphological effects[14, 120, 127]. 

Schreiner et al.[118] performed a morphometric comparison of their CCO generated 

tree with the corrosion cast results of Zamir and Chee[ 151], finding good agreement on the 

diameters of vessels both at the distal and root ends. However the model underestimated 

the diameters of mid-level (4 - 7 bifurcations from root) arterioles, most likely as a result of 

small side branching arterioles being burned off the corrosion casts of Zamir and Chee. In 

addition pressure profile and perfusion heterogeneity comparisons are performed, providing 

good agreement with experimental data. Schreiner et al performed CCO simulations for 

varying bifurcation exponents and target functions[lOO]. Trees were generated using the 

same seed for the random number generator but with different parameters, so that the effect 

of random variations in structure were avoided. They found that target functions depending 

on greater exponents of the radius of arterioles tend to decrease the overall bee-line distance 

from the root to the end nodes. Lowering the bifurcation exponent was found to increase the 

rate at which the cross sectional area decreases across the tree, but did not affect the trees 

topological structure. 
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Karch et al. [64] generalized the CCO method to grow vascular trees within convex 

three-dimensional boundary conditions. As with Schreiner et al. a morphometric compari­

son with the results of Zamir and Cheer 151] was performed, with bifurcation levels (4 - 7) 

again being understimated. In addition, Karch et al. improved the CCO method to include 

variations in end node pressure and perfusion, removing previous limitations. Karch et ai. 

[65] also improved the CCO method by including a time dependent probability function in 

the selection of new end node points. This allowed for a sequence of domains of vascular 

growth to be defined within the perfusion volume. Kretowski et al. [78] developed an algo­

rithm for CCO which ignores the change in global optimisation caused by optimisation of a 

single additional bifurcation, giving significant speed improvements over standard CCO at 

the expense of global optimisation. Schreiner et al have demonstrated the use of potential 

functions in forming 3D boundary surfaces for use in CCO[ 119], allowing for the modelling 

of concave tissues. The rigid boundary conditions supplied by finite element representations 

are often undifferentiable and suitable only for robust optimisations schemes which CCO 

is not. They showed that finite sums of point potentials give boundary conditions which 

are differentiable and also able to represent tissue surfaces within organs. Additional con­

straints are added to the CCO model, such that the first connection to the new node runs 

along an isosurface of the potential function. Results are compared with the experiments 

of Zamir[ 151] and found to provide good agreement. Bui et al performed CCO modelling 

for the cerebral vacsulature using a sign distance level function to provide weighting for 

the target function(e.g. Total tree volume)[16], extending the work of Schreiner et al[119]. 

This allowed more realistic vascular morphology, where larger arteries exist on the surface 

of brain tissue rather than penetrating inside. The dependence of diameter, length and num­

ber of segment elements upon the bifurcation order number was found to follow the same 

semi-logarithmic relationship reported by Lapi et al[83], but it was concluded that the varia­

tions of branch size, length and number were larger for successive bifurcation order than in 
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rats. In all eeo methods the bifurcation exponent is calculated a priori and entered into the 

model, and with the exception of Karch et al. [64] all reviewed methods pre-set the required 

end node flow to physiological reasonable values. 

That initial decisions of growth drastically affect the resulting eeo generated tree is 

both a feature and a possible criticism. In anatomical terms, this historical functioning 

perhaps shows analogue in the process of angiogenesis, where newly grown arteries will 

not move drastically or alter much more than their widths in the face of increased flow. 

In optimality terms, a eeo tree is locked in a local optimum of its own geometry, where 

the growth itself specifies its own optimum, so that the global optimum of design is never 

approached; when the desire is to search, or at least to presume that nature attempts to 

search, for a global optimum, it would seem counter productive to exclude such a solution 

from the search space. However, as was previously mentioned, this is perhaps a reasonable 

assumption given that arterial trees in humans do not look exactly alike, but still it is not 

certain whether the departure of individual design, the uncertainty of biological scatter, 

represents a deviation to a local optimum, arising from early decisions in growth, or the 

deviation from a global optimum, caused by the imperfection of nature's search algorithm. 

In addition, given the heretibility of coronary arterial structures, and the overall similarity in 

design of various organ arterial trees, it would seem problematic for the ceo technique that 

the structure of large arteries is often highly variable between simulations. That is that the 

variability resulting from local optimisation is at odds with the observation that the structure 

of organ specific vasculature, particularly in the larger arteries, is relatively consistent over 

a population. This implies that either the optimisation criteria used in eeo are incorrect, 

or that the local optimisation procedure itself is at fault. If the former were the case then it 

would be necessary to develop computationally efficient fluid dynamics procedures to more 

accurately calculate flows, as well as techniques for representing curved arteries, in order 

that error in the first order approximations and geometry could be ruled out as the cause. If 
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the latter were the case then what is required is a new technique capable of generating the 

global energy minimum for complex tissue geometries. 

The primary difficulty arising from non-convex boundary conditions in ceo simula­

tions is the Newton-Rhapson method used to find the minimum. If two nodes which are 

to be joined have a section of non-occupiable space between them (say, for instance, the 

ventricle of a heart), then this must somehow be included in the calculations performed as 

one of the nodes is moved to find its optimal position. More concisely, the optimisation 

search must be able to recognise and exclude invalid configurations. In a convex space this 

is done automatically, since no two points have non-occupiable space between them, but in 

a more realistic geometry, e.g the heart where the internal volume is a "forbidden" region, 

this is not the case. In order to allow the Newton-Rhapson method to accurately determine 

whether arteries have entered excluded zones, the virtual substrate being used must be ex­

pressed mathematically. This is because there must be some sort of smooth, directional 

gradient guiding the optimisation routine to the valid solutions. A simple yes no check 

would not do, as it it would not inform the algorithm which "direction" to head next. To 

achieve such a mathematical expression for generic organs is difficult, but not impossible. 

Schreiner et al[ 119] constructed their tissue substrate by using point sources to build a po­

tential field which represented the geometry. The process is similar to the method of images 

in electrostatics, where problems are mapped to configurations of point charges in order to 

make them simpler to solve. In this case, the equipotential lines are created so that they fol­

low the surface of whichever geometry is to be modelled. This process however creates an 

additional problem in that the optimisation procedure often attempts to create links which 

penetrate deep into the tissue only to emerge again near the surface, which is completely 

unphysiological. In order to mitigate this, the potential surfaces inside the tissue divide it 

into layers, with a bifurcation point being required to lie between the layers of it's parent 

and daughter nodes. The exact process is more comlicated than this, but this is the general 
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approach. Clearly, the inclusion of arbitrary tissue domains requires a large expansion of 

the model, including numerous complexities some of which some are entirely organ specific 

- the algorithm must be adapted subsequently if new organs are to be modelled. The ideal 

situation would be to have an entirely generic algorithm, one which is founded upon a set 

of sensible optimisation criteria which emcompass the functions of an arterial tree. We will 

see in later chapters how this can be achieved, but for now it is enough to note that a locally 

optimal, iterative procedure is not the best approach. 

2.4.2 Statistical And Fractal Models 

Statistical techniques form a separate class of models to those involving optimisation of 

physiological parameters. In order for them to succeed, large morphological databases must 

be created for the tissue, and detailed imaging data must exist of the larger arteries. This is 

a severe restriction given the lack of availability of human organ morphological databases. 

However, once these morphological databases are constructed, they prove to be very power­

ful for producing accurate arterial trees for the purposes of computational modelling. Being 

generated from explicitly from experimental data however, their predictive and explanatory 

powers are limited. 

The largest scale statistical model was produced by Kaimovitz et al., who generated a 

large scale reconstruction of the porcine coronary vasculature[61] based upon morphologi­

cal data of Kassab[67-69]. The vascular tree was grown in three subsections corresponding 

to outer, middle and inner layers of the heart wall. Initially tree substructures were grown 

stochastically based upon the morphological data without being given geometric structures, 

that is the substructures had vessel order and length, but no 3D geometric structure. Larger 

networks are then formed by joining compatible (in terms of vessel order) sub structures. 

Diameters are then assigned based upon statistical matrices formed from the morphological 

data. Geometric structure is given to the network by use of Simulated Annealing, which is 
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used to optimise the bifurcation angles. Finally the 3 separate layers are transformed to a 

spheroid surface by means of a least squares change in the lengths and angular properties. 

The resultant tree includes the vascular system down to the capillary network and has fairly 

good agreement with experimental data. 

Fractal models attempt to measure physiological properties from symbol models charac­

terised by fractal dimension. Diffusion Limited Aggregation (DLA) has been used to model 

the fractal structure of arterial trees[88], however this method ignores physiological con­

straints and does not fall under the category of global or local optimisation. The technique 

is based upon standard DLA, where a seed particle is placed in the centre of the problem 

space. A particle is then created at the boundary and allowed to diffuse until it comes within 

a specified distance ds of the seed, at which point it attaches. The newly attached particle 

and the seed then become possible attachment sites for other particles allowed to diffuse 

from the boundary. This process is repeated until a predetermined amount of particles have 

been attached. Flows in the tree were calculated by assuming that each bifurcation resulted 

in an equal division. The fractal dimension and frequency distribution of flow values were 

measured, however there was no comparison to morphological data. While interesting, this 

technique and other fractal or diffusion based models do not in general produce viable trees 

in terms of geometric properties. 

2.4.3 Global Optimisation Techniques 

The global optimisation techniques listed in this sectional are global in the sense that they 

operate in some way on the entire tree. In contrast to ceo, which optimises a single bi­

furcation never to revisit it, these techniques perform an optimisation step which involves 

several or all bifurcations in the tree. However, due to the details of the optimisation per­

formed, neither of the techniques finds a global minimum. The first technique begins with 

segmented image data, and uses target function optimisation to improve the segmentation. 
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While this technique is not strictly a method for generating arterial trees, it does attempt 

to use the concept of optimisation as applied to vascular systems. The second technique 

listed in this section uses a pseudo global update on top of a CCO algorithm in an attempt 

to improve consistency in the placement of the larger arteries. The resulting trees do show 

some improvement in this regard, however they are still not guaranteed to reach the global 

minimum, and the algorithm still inherits all of the issues associated with CCO. 

Bruyinckx et al. used Ant Colony Optimisation (ACO) to segment arterial phase CT im­

ages of the liver portal vein[ 15]. The method consists of 3 phases: first, a set of bifurcation 

points are located within the image. Afterwards, connections between bifurcation points are 

selected based upon a maximum radius constraint. Finally, the ACO optimisation proce­

dure finds the combinations of connections which minimise an energy function. The energy 

function itself is built from two separate contributions. The first is an "image" term, which 

is a measure of the probabilty of the CT image given the current segmentation. The second 

term is physiological and is built from three separate properties: volume, Murray's radius 

mismatch and perfusion. The volume term simply optimised for trees with minimum vol­

ume. The radius mismatch is a measure of the difference between the calculated optimum 

radius based on Murray's law, and the vessels radius in the current segmentation. Finally 

the perfusion constraint is constructed by distributing artificial terminal sites through the 

imaged tissue, and requiring that all of these sites be with the range dmax of a "real" node 

in the segmented tree. The authors however elected to contain the artifical terminal sites 

within the region of interest by placing them at the location of candidate bifurcations. The 

choice to use Murray's law is also questionable. While there is good evidence to support a 

radius-flow relationship, as has been shown its value is rarely 3.0, especially in the larger 

arteries as were considered in this paper. 

Georg et al.[41] used a combination of global and local optimisation to create realistic 

vascular trees. The local optimisation was achieved by use of CCO, however as CCO has 
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history it was found that early decisions in the model growth drastically affect the finished 

tree. The history effect is combated by a global procedure which removes all bifurcations 

below a certain order and then connects all end nodes to their nearest node on the pruned 

tree. After this a local optimsation procedure splits and merges nodes which are suboptimal. 

Once a new optimum has been found the pruning procedure is repeated up to a level lower 

than previously, where the level is determined by the strahler order of a bifurcation. It must 

be noted however that this is not true global optimisation in the sense traditionally thought, 

where the global energy minimum is gauranteed to be found. The process periodically 

uses a "global" operation which can effect all nodes, in an effort to remove the history effect 

caused by the sequential addition of arteries in ceo. This means the algorithm is technically 

not performing global optimisation because ergodicity is not guaranteed. The extra "global" 

operation simply shifts the subspace of allowable solutions, but does not guarantee that the 

entire solution space is accessible. 



Chapter 3 

Method and Algorithm 

3.1 Introduction 

As we saw in the previous chapter, the most widespread optimisation algorithm for the gen­

eration of arterial trees, constrainted constructive optimisation (CCO), proves inadquate on 

a number of fronts. First and most important is the lack of a global optimisation sched­

ule, which results in unphysiological variation of the larger artery structure. Second is the 

computational and analytic complexity of the methods required to adapt the algorithm to 

arbitrary tissue geometries, which themselves are adhoc and have no natural justification 

other than producing superficially realistic results. This last point may seem an odd one to 

make, but it is important if we are to learn anything from the algorithm. If it is tailor made 

to reproduce experimental results then we can extract no information regarding the cause of 

the structures we see. In order to find what the rules of arterial tree construction are inside a 

human body, we must first construct those rules and then design an algorithm which follows 

them: if the resulting trees are physiological realistic then we have a strong argument for the 

correctness of the rules we choose. This chapter is divided into three sections. In the first 

we detail the arguments for the selection of the optimisation criteria for a new method. In 

the second we outline various global optimisation procedures capable of generating optimal 
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Figure 3.1: Sch matic howing the categories of nodes present within the arterial tree model. 
The root node i the input for both radii and fluid dynamical properties of the tree. Terminal 
node repre nt the e it point of the tree. All other nodes represent bifurcation . 

tree and ju tify our choice of Simulated Annealing. In the final section we detail the exact 

implementation u ed to generate the arterial trees presented in Chapters 4 and 5. 

3.2 Arterial Tree Properties 

The key tone of any computational model of arterial trees is the representation of the tree. 

To proceed we mu t fir t have an under tanding of how exactly we can store an arterial tree, 

a compex 3 dimen ional tructure containing millions of tubes, inside a computer. Since 

the va t majority of bifurcation ar binary, we can borrow the binary tree data structure 

from computer cience. Traditionally used to store sorted data to allow fa ter earching, 

the binary tr e i repre en ted by a collection of node which, baring the root and terminal 

node each hav 3 connection . The root node is the input, and has two connections which 

are it two daught r . Terminal node have only a single connection to their parent, and 

are un upri ingly th point at which a path from the root terminates (See Fig 3.1. For our 

purpo e the root node will be the tart of the arterial tree we are modelling. It will in most 
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Figure 3.2: Topological changes in the tree can result in invalid configurations which con­
tain internal loops. These configurations are excluded from the solution space by avoiding 
modifications which could create them. 

cases be the largest artery supplying blood to the particular organ of interest. The terminal 

nodes are the points beyond which we can not model due to computational complexity and 

computational speed constraints. Each bifurcation of the tree is given a specific location in 

3D space and a set of connections which encode its topological configuration. In this way 

the geometric and topological structure of the entire tree is specified. Any modifications to 

the tree will involve either swapping some of these connections or moving the 3D location 

of one of the bifurcations. We will only ever consider modifications which result in valid 

tree configurations (no internal loops. See Fig 3.2). 

3.2.1 Blood Supply 

We have noted previously that the main purpose of the arterial system in man is to supply 

oxygen and nutrient to cells. This requires that the arterial tree terminates with capillaries, 

small thin walled vessels capable of allowing diffusion to occur. In addition, the blood 

should be homogenously distributed throughout the tissue[142], meaning that terminal sites 

are positioned such that the tissue supplied by them is maximised. In CeQ, these conditions 

are achieved by fixing the terminal flow and pressure of the tree and by randomly distributing 

the terminal sites inside the tissue. Since the terminal sites are never as small as capillaries 



38 

Microvascular "Black box" 
supply region 

Method and Algorithm 

Figure 3.3: Due to the early termination of the simulated trees, it is necessary to provide 
an approximation for the distal microvasculature. The microvascular black box serves this 
purpo e by approximating the mi sing vasculature as a sphere of blood supply. As the 
number of black boxe increa e the imulation accuracy increases, up to the limit of the 

smalle t art riole 

(typically they are a few hundred micrometers, whereas capillaries are of the order of tens 

of micrometer ), they are con idered to be microcirculatory "black boxes" where the details 

of the microva culature have been neglected entirerly (See Fig. 3.3). This approach is not 

perfect, ideally you would model the tree at all length scales, but it without this assumption 

the computational power required to optimise the tree would be prohibitive. We sought to 

improve thi approach on the grounds that it assumes each microvascular black box is of 

the arne general ize and maintain the same blood flow, in turn assuming that the tissue 

to be modelled i completely homogenous. Thi means that organs consisting of two or 

more ti ue typ (e.g the brain) or tissues which have heterogenous blood supply would be 

impo ible to model. 

There are many different way to achieve this improvement each with varying levels 

of computational complexity and corresponding levels of accuracy. The most complex and 

accurate method would be to generate arterial trees down to the capillary level, solve dif-
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Figure 3.4: A simple algorithm for packing spheres. The objective function is given in Eq. 
3.1, and reaches its minimum when the boundaries of neighbouring spheres touch. 

fusion equations governing oxygen exchange[72] and then use the oxygen concentration as 

an optimisation parameter. This is obviously far too computationally complex to be feasible 

given current hardware. A more conservative approach would be to use a sphere packing 

algorithm. Assuming there are n microvascular black boxes, each spherical in shape, we can 

construct a value P which measures how well the spheres are packed together (Fig. 3.4): 

n n 

p = E E 1(lxi -Xjl) - (Ri +Rj)1 
j=Oi=j+ I 

(3.1 ) 

The sums give contributions from all combinations of spheres i and j. Xi - X j is the distance 

between the centres of spheres i and j, and Ri is the radius of sphere i. This algorithm 

would be potentially adequate for a precalculation procedure, where the terminal sites are 

all decided before the optimisation of the actual arterial tree. However if the distribution of 

terminal sites starts to depend in some way on the structure and geometry of the optimised 

tree, then it will become prohibitively computationally expensive to recalculate it each time 

we need a new configuration. More importantly, this algorithm would provide no quantitive 

measure of whether a section of tissue is under or over supplied with blood. This means 

that if for some reason it was desireable to prioritise over supply rather than under supply, 

there would be no way to implement it. This could be resolved, but the algorithm would 

still require N rather lengthy calculations (or a complicated algorithm) for each update of 

the end node positions. 
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If the tissue were voxelised it would be possible to calculate a numeric value for the 

current level of blood supply in each voxel. Of course, voxels are not the only option, 

but they are the simplest to implement computationally, and provided their scale is not too 

coarse they provide more than enough accuracy at tissue boundaries. The voxelised method 

is to implant spheres (or the closest match in a voxelised space) into the voxelised tissue, 

so that a grid of values which correspond to the amount of blood delivered to that particular 

point (see Fig. 3.5b) is created. The process of expanding or moving a sphere then reduces 

to subtracting the previous contribution from each voxel that sphere influenced, and then 

adding the contributions to the voxels surrounding the new location. As with the sphere 

packing outlined previously, this voxelisation procedure allows for the introduction of more 

complicated supply distributions. It is an obvious approximation that the tissue supplied 

from the point of termination is a hard sphere centered on that point. The microvasculature 

at the capillary level is an arcade network that allows for the supply of tissue from various 

inlets, and so the blood supply cutoff is unlikely to occur sharply. However, at the level 

of model precision that we are looking to achieve (of the order of 1 mm, similar to an MRI 

data, which will form the tissue geometry) the cutoff would look rather sharp. Still, unlike 

sphere packing, a more complicated distribution, such as a gaussian centred at the terminal 

site, could be implemented. However the minimal increase in accuracy resulting from such 

an improvement would be offset by the increase in computational cost. 

The calculation for the total tissue supplied amounts to counting all the voxels in the 

tissue which are contained within at least one sphere. A measure of the over supply can be 

achieved by counting the voxels which are contained within more than one sphere, and the 

under supply by all voxels not contained within any sphere. 
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Figure 3.5: a) The di tance tran form for a circlular exclusion zone. Arterial segments 
which p netrat thi zone accrue a numeric cost which can be used in the optimisation 
procedure to p nalize olutions which contain them. b) Voxels of tissues contained within 
the microva cular black box are con idered to be supplied adequately. If more than two 
phere 0 erlap, the increased supply is used as a penalty in the optimisation procedure. 

Un upplied ar a of ti ue are al 0 penalized. 

3.2.2 Exclusion of Large Arteries 

In a flat pace, the di tance between two points is a straight line: however organs in the 

human body are rarely flat. For large arteries, there are areas of specific organs which are 

forbidden, which in the following will be referred to as exclusion zones. An obvious cases is 

the heart, wh re no arterie or arterioles penetrate the ventricles . Less obvious is the brain, 

which ha larg arterie kirting it surface, running up and down the folds of the grey 

matter. Grey matter ha almo t double the blood supply requirements of white matter[38], 

which may playa role in bringing the larger arteries to the surface. The larger arteries of 

the heart al 0 run along the urface. This is perhaps due to the strong contraction of the 

ventricle wall, which would increa e the resistance of any large arteries found within it. In 

an organ uch a the kidney however, there are no moving parts and no delicate tissues, and 

so the larger arterie penetrate and bifurcate within the organ itself. 

A method i required to allow for the exclusion of large arteries from arbitrary ections 

of ti ue within th model, if organ specific vasculature is to be modelled effectively. Most 

optimi ation procedure require some sort of "gradient" to follow if they are to function 

efficiently. An example of one that does not is a purely random search, but this method is 

far from efficient. Random earche do not take of advantage of the information contained 
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in the surrounding problem space of the current solution. One technique for achieving 

the desired exclusion, would be to simply disgard trees which have arteries out of place 

(assuming that a way to identify these trees has already been implemented). This method 

has a pitfall similar to that of random search, in that there is no information to be gained 

about exactly how far the solution is from becomg valid - move a node a little bit and you're 

still given the yes or no answers with no extra value to guide the rest of the search. A more 

computationally efficient solution would be to construct a cost value which depended in 

some way on the current distance of the tree to a valid solution. Good candidates for the 

construction of such a value are the minimum distance between nodes currently occupying 

forbidden regions and allowed regions of tissue. 

We could use a finite element method and extract the surface of the tissue, then using 

point sources construct a mathematical expression for the exclusion zones in the form of 

isosurfaces. This is the exact approach which CCO used. However, such an approach is 

quite complicated, and would increase in complexity if real MRI or CT data were to be used 

as the basis for the geometry. Instead, we tum again to voxels. The main details of the 

approach are very similar to that of the point source, in that we will generate a voxelised 

field of values which denote the distance from the surface, however the generation itself 

will only require that the surfaces have been segmented from the image. Once this has been 

done, we make use of a distance map[ 13]. Each voxel in the space is assigned a value equal 

to its shortest distance to the surface. The voxels which correspond to areas of tissue which 

are allowed then have their values set to zero. The values correspond to a penalty, where 

the larger the value the deeper the voxellies within the excluded tissue (See Fig. 3.5a). The 

benefit of this approach is that it allows the optimisation procedure to extract information 

about which direction to move an artery so that it is no longer in the excluded zone. 

We can use this distance map method in two ways. The first is use the location of a 

single point, the point of bifurcation, as the location of the penalty cost for a segment. This 
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Total cost • 0 Total cost> 0 

Figure 3.6: The left panel shows the simple algorithm for excluding arteries from tissue. The 
location of the bifurcation points is used in conjuction withe the distance tranform. In this 
case, because both bifurcations lay outside of the forbidden region, no cost is accrued and 
the trial solution is considered valid. On the right is the more complex bresetham algorithm, 
which acrues cost for the length of the segment which exists inside the exclusion cost. Here 
the cost would be non-zero due to the connection crossing the forbidden zone, and the trial 
solution would be penalized. 

is computationally very cheap, since it involves only looking at the distance map value at 

a single point, but suffers from accuracy issues. The second is to follow the path of an 

entire artery, taking the total of the distance map values at the voxels it intersects. The 

second method is much more computationally demanding, requiring an implementation of 

the Bresentham line algorithm[28] (we assume that most arteries will be comparable or 

smaller to the resolution of the tissue, so that we need not consider it a cylinder). The choice 

of which to use will depend on the type of tissue. For hollow organs, it is almost certainly 

necessary to use the line approach, since using only the locations of the bifurcations will 

results in an artery cutting through the entire ventricle chamber having a zero value when 

evaluated (See Fig 3.6. With solid organs however, even if the tissue itself is not to be 

penerated by larger arteries (e.g the brain), the simpler approach may be adequate, provided 

the radius of curvature is not too large. For solid organs such as the liver or kidney, no 

exclusion calculation would be required at all. 

This method is general in the sense that many different tissue boundaries can be defined 
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within the same organ, each with their own allowed range of radii. In addition, it will work 

with any conceivable tissue shape. 

3.2.3 Energy Optimisation 

As was clear in the previous chapters, a key component of arterial tree generation is the 

optimisation of energy expenditure. Volume calculations are trivial since we assume that all 

arteries are hollow cylinders. Power calculations however require a choice of approxima-

tion. Clearly the gold standard would be to perform full fluid dynamics simulations in order 

to measure the power expended pumping blood through the tree, however computational 

expense prohibits this. There are various approximations for pulsatile flow[ 138] however 

the vast majority of the bifurcations considered in our model will have very weak pulsatile 

flow[5]. In addition, the velocities are relatively low. Since we will be performing the fluid 

dynamic calculations for the entire tree after each modification, they need to be computa­

tionally efficient. We assume then that the flow inside the artery is laminar and that a zero 

dimensional poiseuille flow approximation is sufficient. 

To calculate the power dissipated in an artery we first note that the pressure drop over 

the length of a cylinder supporting a flow of volumetric rate Q, diameter r and length I is: 

(3.2) 

The power dissipated in this cylinder is MQ. If we can calculate the flows in each artery of 

the tree, then the total power dissipation can also be calculated. 

Given any arbitrary tree configuration, it is necessary to be able to calculate the flows 

in each artery of the tree. As in all fluid dynamic calculations, a set of boundary conditions 

are required in order to perform these calculations. There are two choices in this regard: 

the first is to maintain a constant input pressure and input flow, as well as cons ant output 

flows in each terminal site of the tree. This is the approach CCO adopted and it is by far 
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the most computationally efficient. If the output flows are homogenous then the flow in any 

artery will depend only on the number of terminal sites distal to it. The other approach is 

to keep only the input flow and pressure fixed. This solution requires a large computational 

investment, as the flows in each artery will depend upon the distal resistance of its subtree 

as well as the pressure at its entry point. The calculation is not entirely prohibitive, provided 

the tree is small, but in comparison to the previous method it will be much slower. The 

computational approach is to calculate the resitance for each artery as well as the resistance 

of the subtree distal to it. Then starting from the input, traverse down the tree to each 

node, calculating the input pressure and flow for its two daughter nodes. This allows the 

flows to be calculated for the entire tree. Which method to use will depend on whether we 

wish to model trees with inhomogenous output flows. In our case, since we the radius of 

the terminal sites is kept constant, the terminal flows are also assumed to be fixed. It is a 

reasonable assumption given the experimental results supporting a power law relationship 

between radius and flow. While the flows may be equal in the terminal sites, the blood flow 

demands on the tissue may not be, which is why the voxelised tissue supply method is still 

required. 

Any optimisation procedure we apply to the tree will necessarily need to modify various 

degrees of freedom. The most obvious of these is the position of each bifurcation in the 

tree. Less obvious but still important is the topological configuration. Finally there are the 

diameters of each artery. Murrays law gives us a guide for how diameters should change at 

a bifurcation, but the exponent value of 3 does not agree with the experimental data. The 

power law relationship however is valid for various tissue types[140]. It is then possible 

to eliminate an entire set of degrees of freedom by imposing Murrays law with a variable 

exponent. The exact value of this exponent can be either taken from experimental data or 

be a degree of freedom for the optimisation procedure. This reduces the computational 

complexity by a large amount, since now the diameter of an artery (much like the flows) is 
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set only by the number of terminal sites distal to it. In Chapter 6 we will calculate the exact 

optimal values of the bifurcation exponent for a symmetric bifurcating tree. 

As we are supplying identical "microcirculatory black boxes" with identical flows, it 

would seem appropriate to also limit the pressures which are acceptable at the terminal 

sites. If they are too low then not enough blood will flow, clots will form and the tissue 

will die. If they are too high then capillaries will burst. To achieve this, it is sufficient to 

calculate: 
n 

LI~-Pol (3.3) 
;=0 

Where the sum is over all terminal sites, ~ is the pressure in terminal site i and Po is 

the ideal pressure. Choosing the ideal pressure is problematic in that there is a scarcity 

of pressure data for the arterioles (it is difficult to measure). For the range of diameters 

considered computationally viable however there is very little pressure drop ( IOmmHg) 

so that it is unnecessary to constrain the pressures at all - they will always range within 

physiological reasonable values. 

The three component covered in this section consitute the minimum requirements for 

the construction of an aterial tree via energy optimisation. In proceeding chapters we will 

investigate the validity of this claim through comparison of the generated trees with mor­

phological data and images. Now that we have identified the primary criteria and outlined 

the methods we will use to generate quantatitive values for their evaluation, it remains to 

find a procedure capable of finding the global minimum. The objective function to be min­

imised depends upon the positions and topological configuration of the tree, so it will need 

to be quite general. Topological modification to the tree will necessitate the abillity to cope 

with discontinous jumps in the search space. 
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3.3 Optimisation Methods 

The previous section outlined the construction of a fitness function which could be used to 

inform an optimisation routine, but the question remains as to which optimisation proce­

dure to use. The goal of any optimisation method is to minimise some objective function 

f(Xi) where Xi are the parameters which define a particular solution. While they share this 

in common, the methods they use to achieve this minimisation vary wildly, and often the 

types of problems for which they are best suited are just as varied. For instance, a down hill 

search, which at all times will simply modify the Xi by some amount so that f(Xi) decreases, 

is perfectly adequate for finding the minimum of a convex function[84]. However if the 

function has more than one minimum then it is no longer guaranteed to find the global op­

timum, because the search algorithm can become locally stuck. We will focus our attention 

in this section on those methods with produce globally optimal solutions for complex search 

spaces. 

There are various deterministic methods capable of finding the global minimum, how­

ever the nature of the arterial tree problem precludes their use. For instance, the popular 

branch and bound method requires the ability to calculate upper and lower bounds of some 

subset of the search space. This would perhaps be feasible for small trees where the problem 

space could be divided into subsets based on topology, but for any appreciable number (say, 

greater than 30 nodes) the number of topological configurations becomes too large for this 

to work. Other deterministic methods suffer similar pitfalls. We focus then on stochastic 

and heuristic techniques and present 3 possible approaches. 

3.3.1 Multi Solution Algorithms 

Multi solution algorithms maintain a population of solutions during the course of optimisa­

tion, either in some way picking out the most optimal ones during each iteration or encour­

aging the population to change towards the most current most optimal solution in the popu-
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lation. They are efficient because large sections of the solution space can be explored during 

a single iteration, but this efficiency usually pairs with implentation difficulties. This class 

of methods includes genetic algorithms[53, 81], ant colony[ 12, 31], particle swarm[8, 71] 

and the bees algorithm[155]. 

Ant colony and particle swarm optimisation are both techniques which attempt to influ­

ence a population of solutions with information gleaned from the most optimal solutions of 

that population. While foraging for food, ants lay pheremone trails which are then followed 

by other ants who also lay pheremone trails. In this way, trails which lead to good food 

sources are reinforced, and those which lead to dead ends fade away. Shorter trails which 

lead to food sources are reinforced more quickly than long trails, and in this sense the food 

foraging is optimised. Computationally an abstract ant entity iteratively constructs a solu­

tion, favouring steps which are a shorter distance from its current position (in whichever 

space the problem is situated) and ones which have higher levels of pheremones. Once a 

whole solution has been constructed the ant then deposits pheremones if the solution is good 

(good here is some criteria of fitness). 

Particle swarm algorithms work in a similar manner, except that the abstract entities are 

called particles, and they are given position and velocity inside the solution space. Each par­

ticle then represents a solution, and its movements are governed by the locally best known 

solution, as well as the best solution in the swarm of particles. The primary difficulty with 

either of these methods are the specifics of the implementation. For particle swarm it is un­

clear exactly how a velocity through topological space can be constructed, in that it would 

require a measure of topological "closeness" between trees. For ant colony optimisation the 

issue lies in the iterative construction of a solution, where it is unclear how pheremone trails 

should be intepreted if the nodes following them are not of the same topological type (with 

respect to the number of attached end nodes). 

A genetic algorithm is a search heuristic which functions exactly as its name suggests: a 
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large population of trial solutions are compared for fitness and the most optimal are allowed 

to breed and mutate until a new generation is produced[ 135]. In order to procede efficiently, 

the problem space should be adequately encoded in a string of bits, much like a genetic code. 

This ensure that the process of mating between two solutions produces a valid solution, and 

allows for the bitwise modification of the solution mimicking the genetic mutation process. 

In the context of an arterial tree this poses some problems. Geometric data can easily be 

encoded for any given topological configuration, but the topological configuration itself is 

more subtle and difficult to formulate in a genetic code format. To avoid the vast majority 

of breeding between trial solutions resulting in invalid trees, the topological structure must 

be carefully encoded so that it can be split and joined with minimal chance of failure. If this 

is not possible, then the efficiency of the genetic algorithm will drop dramatically, and the 

time taken to reach an optimal, or close to optimal, solution, would become prohibitively 

large. 

3.3.2 Simulated Annealing 

While the algorithms discussed in the previous section maintain a large population of can­

didate solutions, progressing by allowing the most optimal to survive to the next generation, 

simulated annealing maintains only a single solution. This solution is continuously modified 

and at each attempt the modification is either accepted or rejected with a certain probabil­

ity. This process is repeated until a termination condition is reached. The probability of 

acceptance of a modification is dependent upon a parameter commonly referred to as the 

"annealing temperature". Simulated annealing is inspired by the physical process of an­

nealing, whereby crystalline materials are cooled quasi-statically to induce higher levels of 

order in their structure, implying the attainment of lower energy states[l]. Thermal fluctua­

tions at high temperatures allow the system to escape local minima, and the slow reduction 

of temperature ensures there is adequate time to escape any local minima that may have 
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otherwise have been found if the system was quenched. The temperature of a Simulated 

annealing algorithm sets the probability of a modification being accepted which increases 

the cost, with higher temperatures being associated with higher probabilities. At infinite 

temperature, SA is effectively a random search. The exact expression for calculating the 

probability of acceptance of a modification is given by the Boltzmann expression: 

-/le· 
P;j = exp( I} ) 

T 
(3.4) 

Where P;j and /leij are the probability and change in cost associated with going from state i 

to j respectively, and T is the temperature. At very high temperatures the probability tends 

towards 1, meaning that almost all modifications are accepted, even those increasing the 

total cost of the system. At very low temperatures, any modification increasing the cost 

of the system will have a probability very close to 0, and and decrease of cost will have 

a probability equal to 1. The interesting regime occurs when the temperature parameter is 

between these two extremes, where modifications which increase the cost of the system can 

still be accepted. If the current solution lies in a local minimum, then these increases of 

cost allow the simulated annealing search to escape, something which would be impossible 

with a purely downhill search. Important for the success of the algorithm is the annealing 

temperature reduction schedule, which dictates how rapidly the temperature declines after 

each subsequent modification to the trial solution. It is essential that whatever reduction 

procedure is chosen that it occur slowly, so that the system has adequate time to explore 

the solution space at any given temperature. In physical terms this is equivalent to allowing 

the system to reach thermal equilibrium each time the temperature is reduced, or to perform 

the reduction quasistatically. For most problems an exponential decrease in temperature is 

sufficient, however there are many different cooling schedules from which to choose[47]. 

The start and finish temperatures of the algorithm should be chosen so that at it's highest the 

temperature is much larger than the energy change associated with a typical change, and at 
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it's lowest much lower than the energy associated with a typical change. This ensures that 

sufficient time is spent in both the randomisation and downhill portions of the optimisation. 

An annealing temperature which failed to intially exceed the typical cost change would be 

far more suceptible to reaching local minima, and a temperature which did not decrease to 

sufficiently small values would mean the system would still be thermalised in some sense. 

As with all optimisation techniques some method of evaluation of the fitness of a so­

lution is required. However, once this is attained the algorithm itself becomes refreshing 

simple: 

• Randomly choose a modification 

• Accept or decline the modification based on current temperature and Eq. 3.4. 

• Reduce the temperature via cooling schedule. 

• Repeat previous steps until termination condition. 

The key to this algorithm then is to choose the correct set of modications. In order to 

guarantee that SA will find the globally optimal solution (provided it were given infinite 

time), a few conditions need to be met. The first is that the set of modifications provided 

allow for all trial solutions to be reachable (ergodicity). For instance, if the optimisation 

problem were to find the balance point of a plank of wood, it would be unnaceptable to only 

have modifications which moved the current best balance point left, since if the global opti­

mum were to the right it would never be found. The second is that detailed balance should 

be maintained. In simple terms this is the statement that the probability of a modifcation 

occuring must the same as the probability of its inverse. The core idea is reversibillity, an 

essential component of any Markov chain process. If the SA algorithm were not reversible, 

i.e. detailed balance were not maintained, then there would be a net flow of probability to­

wards some section of the solution space, meaning that certain solutions would be favoured 

simply as a result of the modifications which were chosen. As a result, there is again no 
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guarantee that the optimisation would terminate at the globally optimal solution, even given 

infinite time. 

The power of simulated annealing lies in its simplicity. Once the cost function has 

been computed, the optimisation procedure is relatively straightforward, meaning complex 

problems are as simple to optimise as trivial ones. Implementing a genetic algorithm or 

other multi solution type algorithm such as particle swarm or ant colony would require 

careful design of the optimisation procedure. In contrast, once a suitable set of candidate 

moves have been chosen, simulated annealing is algorithmically simple while still offering 

the guarantee of finding the global minimum. For certain classes of problems it has been 

shown that genetic algorithms for instance are faster than SA[130], however the increased 

complexity and the resultant difficulty found if the algorithm requires modification offset 

this speed increase. With simulated annealing it is possible to add extra boundary constraints 

and cost function terms without having to modify the optimsation procedure, meaning for 

biological models improvements can be made to the algorithm without major algorithm 

modification. In addition, it has been shown that tuning of the cooling schedule can render 

SA orders of magnitude faster than a genetic algorithm [54] 

3.4 Implementation of Simulated Annealing for Vascular 

Systems 

In the previous section various physiological parameters were identified which characterised 

an optimisation target for arterial trees. In order to show that the optimisation of these 

quanties leads to the production of morphologically realistic arterial trees, it is necessary to 

construct from them a numeric value which can be the target of an optimisation algorithm. 

In this section we detail the construction of these numeric values. 
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3.4.1 Tissue Supply 

At the start of the algorithm, terminal nodes are randomly distributed inside the tissue, with 

each node having associated with it a sphere of influence for blood supply. The radius 

of this sphere is calculated using physiological values for the blood demand of the tissue 

under consideration. The density of myocardium is p = 1.06 x 103kg m-3 [137], and the 

flow demand is l.13ml min-1g- 1 [132] leading to a flow demand per m3 of heart tissue of 

qrequired = 1.3 x 1O-5m3s- l . The total flow into the heart is Qo = 4.16 x 1O-6m3s-1 [48], 

which can be converted to total flow per node as QN = Qo/N, where N is the total number of 

arterioles (end nodes). The radius of the supply sphere is then calculated via 41tR~uPPIy/3 = 

QN / qrequired The sphere can be thought of as a microcirculatory black box [118], where 

the exact fluid dynamical details of the blood flow have been ignored. Spheres of blood 

supply associated with end nodes are stored in a voxel map (a voxel is a 3D generalisation 

of a pixel) of the tissue, where each terminal node adds exactly one to each voxel inside its 

sphere of supply (Fig 3.5b). The terminal nodes are then allowed to move inside the tissue, 

where after each move a new voxel supply map is calculated, and the overlap (each voxel 

supplied by more than 1 sphere, or the dark red voxels in Fig 3.5b) is used as a value in the 

cost function of the simulated annealing algorithm. In addition, all voxels not being supplied 

are given a cost, so that as a whole the penalty associated with having both unsupplied and 

oversupplied voxels is given by: 

Cs = E s;s= { 
voxels 

10 

(b - 1)2 

if b =0 
(3.5) 

otherwise 

where b is the value of the supply at the voxel (i.e a measure of the total number of spheres 

contributing to the supply of the voxel) and the sum is performed over all the voxels com­

prising the tissue. Cs is then a value defining the fitness of the tree in terms of its ability to 

supply blood, and the penalty for oversupplying voxels forms a sort of self avoidance algo-
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rithm, where terminal nodes are encouraged to pack the tissue as densely as possible without 

overlapping. As the size of the spheres decreases, the accuracy of this approximation im­

proves up until diffusive effects become relevant i.e at the scale of the microvasculature the 

spherical approximation would no longer be appropriate. 

3.4.2 Metabolic Cost of Blood Volume 

In order to convert the volume of blood held by the arterial treeto a cost, it must be multiplied 

by a physiologically reasonable value, mh, corresponding to the metabolic demand of the 

same quantity of blood and vascular tissue [86]. Thus the metabolic cost due to the volume 

of the tree will be given by: 

(3.6) 

where mb is taken to be 641.3 J s-1 m-3[86] and Vtree is the volume of the entire tree. 

3.4.3 Power cost to pump blood through vessels 

To calculate the power needed to pump blood through the entire tree, we must know the 

pressure and volumetric flows inside each segment (vessel) of the tree, which can be found 

by first assuming that Poiseuille's law[ 122], M = QR, is followed inside the segments, 

where M is the pressure drop over the vessel, and Q is the flow. Due to the application of 

Murray's law and the assumption that terminal node flows are constant, the procedure for 

calculating the relevant fluid dynamical quantities is greatly simplified: the only quantity 

which relies on the geometrical arrangement of the tree is the pressure. In a sense, the 

segments can be considered to be a connected set of resistors, with the resistance given by: 

(3.7) 
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where r is the radius of the vessel, L its length and Jl = 3.6 x 1O-3Pas the viscosity of 

blood. The pressures for every node in the tree can then be found recursively. Knowing the 

pressure, resistance and flow of each segment, the power consumed by each segment i can 

be easily calculated according to: 

(3.8) 

where"" is the power consumed by segment i. Summing over all segments in the tree, we 

find the total power required to maintain the proper flow through the tree is given by: 

(3.9) 

3.4.4 Exclusion of Large Vessels from Tissue 

In order to calculate the cost associated with a large vessel penetrating a forbidden area of 

tissue, arteries entering forbidden zones must first be identified. To do this, we define a 

cutoff radius Rc whereby any vessel exceeding this radius incurs a cost should it penetrate 

the tissue. For each segment satisfying the radius criteria, a list of voxels which its centre­

line penetrates is generated [3] along with a value for the length element of the segment 

present inside that voxel. A cost is then calculated based upon the value of the distance 

transform at each of the voxels according to, 

(3.10) 

where i, j and k are the x, y and z voxel coordinates taken from the centerline of the segment. 

Dijk is the value of the distance transform at that voxel coordinate. Wijk is the length of the 

segment inside the voxel. The sum is performed over all the voxels contained in the list 

calculated from the centre-line. This cost can then be used in the algorithm as a penalty, 

which makes moves taking large segments out of the tissue favourable. This method takes 
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into account only the centre line penetration of the artery, but for the voxel resolutions used 

in the model ( 1 mm) it is entirely appropriate given the low population of larger diameter 

vessels, where even the largest have radii approximately 1 mm in size. 

3.4.5 Pressure constraints 

In physiologically realistic trees, capiliary networks should receive a constant pressure of 

blood to function correctly. In order to ensure that a constant pressure Prerm is found at the 

terminal nodes, a new cost can be devised. The quantity must be a positive definite function 

of the sum of the difference between the ideal end node pressure Prerm and the actual terminal 

node pressure of node i: ~. A suitable candidate is then given by: 

N'erm 
Cp = L (P; - Pterm)2, 

; 
(3.11 ) 

where the sum is performed over all terminal nodes. In practice, for trees which can be 

realistically optimised on feasible time scales (i.e of a few thousand nodes), the pressure 

drop from root to end node is less than 10% of the total pressure drop of a real arterial tree, 

with the bulk of the pressure drop occuring over smaller arterioles than those considered 

here. It is then unnecessary to perform this calculation, however when it becomes possible 

to grow larger trees the pressure at the capillaries will need to be taken into consideration. 

This will add a significant computational cost. 

3.4.6 Total Cost Function 

We have now determined a form for all the relevant costs associated with an arbitrary tree 

configuration supplying arbitrary tissue shapes. We can therefore define a total cost which 
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gives a numeric measure of the fitness of a given tree, defined as: 

(3.12) 

where Ai are dimensionless constant indicating a weighting value which scales each relevant 

cost. There is no way to analytically determine what weights to use, and the selection of 

appropriate weights must found experimentally, however a few basic principles such as the 

having a very high weight for the blood supply cost and a low weight for the end node 

pressure cost can guide the process. In this work, we use Aw,v = 1, Ap = 0, As = 1 X 1018 

andAo = 1 x 1013 • In this way, As andAo force the exclusion of vessels and uniform supply 

of tissue to act like constraints. 

3.4.7 Exploring the tree structure: Translations and node swaps 

In order for the simulated annealing algorithm to work, it must have access to a set of moves 

which allow it to alter the configuration of the tree. It is necessary to find changes that can be 

made to the topological and geometrical structure of the tree such that all possible solutions, 

between perfectly symmetric structures and a single trunk vessel can be explored (Le. the 

algorithm is ergodic). This is achieved by allowing: (1) repositioning of bifurcations, and 

(2) swapping the parent vessels of bifurcations between different parts of the tree. The first 

of these moves is simple: translate a node in space. (Fig 3.7a). For every type of node this 

move is possible, so that each node is allowed to explore the entire physical space. The 

second move is performed by swapping the parents of two nodes. (Fig 3.7b). For all nodes 

but the root node, this move is valid, and performed consecutively it allows all possible 

tree topologies to be explored. If one of the two nodes is a direct parent of the other (i.e 

while traversing up the tree to the root node from one of the chosen nodes, the other node 

is encountered), then the move is rejected as the tree resulting from the move would form 
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Figure 3.7: The two type of modifications present within the SA algorithm. a) A geomet­
rical move tran lating the position of a single bifurcation in space. b) A topological move 
which wap the parent node of a single bifurcation. The combination of these two nodes 
allow the algorithm to reach any trial solution in the problem space. 

a clo ed loop. With the e two modification, the entire parameter space of the tree can be 

explored, allowing the algorithm the opportunity to reach a globally optimal solution . 

3.5 Convergence and Consistency 

The primary purpo e of the algorithm is to produce arterial tree configurations which con­

form to tho e found in living organisms. As the algorithm itself relies only upon opti-

mi ation principle, the clo e agreement with experimental results implie an evolutionary 

pre ure toward a tructure with minimal power consumption. This is it elf a far from new 

concept, however in thi paper we have shown that energetic constraints lead not only to a 

morphometrically reali tic tree, but also to the production of major arteries which closely 

follow the path of major arterie in living ystems. 

While it is clear that the algorithm produce both morphometrically and geometrically 

reali tic tructure, what i not clear is how close the optimisation procedure gets to the 

global energy minimum or indeed whether there is a non-degenerate energy minimum at all. 

For any given topological configuration there i a single, non-degenerate energy minimum 
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which it is possible to approach using Newton-Rhapson (provided the solution space is 

convex, which would not be true for more complex structures). In contrast, the toplogical 

space for any even modestly sized tree is huge, high degenerate and not easily searchable. 

Even if one excludes degenerate topological structures, which in the case of the swap node 

procedure outlined earlier would imply never swapping two nodes with the same number 

of distal terminal sites, the number of possible configurations is still massive. It is entirely 

possible that two distinct topological configurations share a degenerate energy level, and 

proving that this is not the case appears difficult. 

While it may be that the global energy minimum is highly degenerate, the algorithm 

itself can still be characterised in terms of reliability and convergence. For reliability, we 

can perform visual inspections on trees and assess their similarity. It must be noted here that 

the geometry in which the tree is grown will have a large effect on the consistency of the 

results. For instance, in the case of a circular section of tissue with an input in the centre, 

there is a high degree of rotational symmetry. In the case of convergence, we can produce 

many trees and plot the frequency distribution of their resultant energies, or as in this case 

the average and variance of the cost as a function of SA steps. 

The convergence and consistency tests trees were generated on a 2D plane with the 

input placed in one comer. The trees consisted of 127 nodes total (64 end nodes) and had a 

bifurcation exponent of 3.0. The 2D tissue plane was sized at lOcm by lOcm and the root 

radius at 2.4mm. Each tree was optimised for a given number of simulated annealing steps, 

with the minimum energy of the SA run being recorded. The average energy reached for 

a given number of SA steps was then calculated (Fig. 3.8). The results show a clear tend 

towards lower average energy and standard deviation as the number of SA steps increases. 

The high variance at the lower numbers of SA steps are typical of a system which has been 

quenched, i.e high temperature disorder has been locked into the system, which has not had 

sufficient time to reach equilibrium. 
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Figure 3.8: Average co t and tandard error vs SA steps for a 127 node tree grown in a 2D 

plane. 

For the consi tency te t we have a produced Fig 3.9, which show trees generated for 

three different numbers of steps. As would be expected, at low numbers of SA steps the trees 

are very dis imilar, however as the number of steps is increases the similarity between the 

overall tree increa e dramatically, with a main diagonal artery dominating the structure. 

3.6 Summary 

In this chapter we have constructed a new algorithm for the optimisation of arterial trees 

based on phy iologically reasonable principles. The cost function for the optimisation is 

built from numeric value for blood supply, pressure, energy cost and the exclusion of large 

arteries. The algorithm i capable of generating arterial trees in complex tissue geometries 

which consist of arbitrary numbers of tissue types, and can also be easily integrated with 

medical imaging data. This repre ents a significant step in the field of generative arterial 

tree modelling. 

Simulated annealing wa chosen as the optimisation procedure due to its robustness, 

ability to find the global minimum and its ease of use. The consistence and convergence of 

the algorithm were then verified on a small sample geometry and were found to be reason-
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able given the vast size of the problem space. In the following Chapter the algorithm will 

be used to generate arterial trees on physiologically reasonable geometries and geometries 

taken from MRI data of living tissue. The results will be compared to morphological data 

and the geometry of the larger arteries assessed in comparison to imaging studies. 
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104 Steps 106 Steps 108 Steps 

Figure 3.9: Examples of trees grown for various numbers of stepsizes. 



Chapter 4 

Generation and Validation of the 

Coronary Vasculature 

4.1 Introduction 

In the previous chapter a general algorithm for the generation of arterial trees was presented. 

The algorithm uses the global optimisation scheme Simulated Annealing to produce arterial 

trees which minimise arterial blood volume, pumping power, and maximise the distribution 

of blood. In addition the algorithm is capable of excluding certains classes of arteries from 

specific areas of the simulation tissue. While the algorithm was built from physiological 

principles, in order to test its validity it is necessary to compare its output to the arterial 

trees found in living organisms. In this chapter we present a comparison of trees generated 

for a heart-like geometry with those found in the porcine coronary system. While ideally 

the comparison would be performed on Human vasculatures, it was found that a lack of 

extensive morphological databases precluded such an analysis. 

We will begin by describing the ellipsoidal heart model which was created to be the ge­

ometry input for the SA algorithm. We also describe the diameter defined strahler ordering 
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scheme used in the morphological analysis of the generated trees, and the simulation param­

eters given as input to the SA algorithm. In the final section we present the morphological 

comparison and analysis of the various properties of the generated trees. 

4.2 Preliminaries 

In order to accurately generate the a coronary vasculature the SA algorithm requires a set of 

input values, such as the tissue geometry, root volumetric flow, root radius etc. This section 

documents those input parameters which were used in the generation of the results presented 

in the proceeding section. 

4.2.1 Ellipsoidal Heart Model 

We require a set of geometric data which accurately capture the geometry of the heart. The 

large, left ventricle is routinely modelled as a prolate ellipsoid[2, 51, 74, 75, 133], and the 

right ventricle as a superellipsoid[ 134] with exponent 2.5. The dimensions of the ellipsoids 

were chosen to give a left ventricle wall thickness of 90mm[ 131] and a right ventricle wall 

thickness of 34mm[S9]. The radii of the prolate ellipsoid and super ellipsoid were then 

scaled, keeping the same ratios, as necessary to provide a total myocardial mass of 21Sg. 

The intraventricular septum was created by truncating the right ventricle where ever it pen­

etrated the outer surface of the left ventricle. 

The combined right and left ventricle were then truncated in the horizontal plane. In phys­

ical terms this remove the right atrium and left atrial appendance from consideration in the 

model. Given the relatively low blood supply provided to these areas of the heart in com­

parison to the myocardium this is a reasonable approximation. 

While the ellipsoidal model is a good first order approximation, it does fail to account for 

some of the more subtle geometric properties of the heart. For instance, the path followed 
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by the Anterior Descending Artery (ACA) exists in the indentation formed along the line 

where the intraventricular septum meets the outer mycardium. This is effectively the bound­

ary where the left and right ventricle meet. This indentation is not captured within the el­

lipsoidal model and so neither is the possible cost saving from following it. In addition, the 

heart is a kinematic organ, and the ellipsoid model a static boundary condition. We implic­

itly assume that any evolutionary pressure tended towards a time averaged configuration of 

the heart, where approximately equal time is spent both diastole and systole. 

4.2.2 Strahler Order 

The Strahler (or stream) ordering method was first introduced to classify river systems, but 

can be applied to any bifurcating system. In standard Strahler ordering, nodes at the end of 

a tree (in this case the arterioles) are assigned a number I. At a bifurcation, if two vessels 

(segments) of the same order meet, then the order of the parent vessel is 1 higher. However, 

if two vessels of different orders meet, the artery supplying these vessels has the largest 

order of the two. For example, if two arteries of order I meet, then the vessel supplying 

these arteries has order 2. If an artery of order 3 meets an artery of order 2, then the vessel 

supplying these arteries has order 3. Therefore, within this scheme, vessels with the lowest 

order are arterioles. The major vessels have the largest order. 

Within a standard Strahler ordering scheme it is possible for arteries of vastly differ­

ent diameters to be classified within the same order level. For the large arteries within the 

coronary vasculature, this effect is particularly noticeable due to the tendency for highly 

asymmetric branching. In order to counteract this effect, a diameter defined Strahler order­

ing can be introduced. The procedure for determining the diameter defined strahler ordering 

of arterial segments is iterative, but begins with the arteries being assigned their standard 

Strahler order value. From this intial ordering a mean and standard deviation of the diame­

ters of segments within strahler order n, Dn and ..1n, can be calculated. The arteries are then 
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assigned new order numbers based on their diameters such that a segment lies in order n if 

its diameter D satisfies[55]: 

The newly created set of diameter defined strahler orders are then used to recalculate Dn 

and ~n, which are in turn used to assign new order numbers as before. This process is then 

repeated until convergence is obtained. For the trees generated by the SA algorithm conver­

gence was assumed when the change in average Diameter and Standard deviation between 

iterations was less than Ie - 5m. 

Within the Strahler ordering scheme it is possible to identify continuous sections of 

vessels with the same order number. These are refereed to as elements, so a single arterial 

element may pass through multiple bifurcations. Throughout this article it is the properties 

of elements which will be calculated for direct comparison with Ref. [66]. We note that due 

to the early termination of the simulated trees, calculated order numbers are modified so that 

the root nodes have an order number equivalent to that of the largest arteries of real coronary 

arterial trees. For example, in the work of Kassab, the largest diameter defined Strahler 

order number is II, corresponding to the input artery. For a computer generated tree of 

only 6000 nodes spanning order numbers 1-6, 5 must be added to each order number so that 

the orders of the root nodes (largest vessels) match and a direct comparison can be made. 

This is consistent with assuming that the smallest vessels in the computer generated tree 

correspond to vessels of order 6. Which is due to the absence of smaller vessels downstream 

of the smallest arteries in the in-silico model. 
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4.2.3 Simulation Parameters 

In this chapter globally optimised vessels are grown using the previously outlined SA based 

approach to supply a myocardial substrate, and validated through comparison with mor­

phological data from the porcine arterial tree. We choose to examine the coronary vascula­

ture, since the structure of the large coronary arteries has been found to be similar between 

individuals[43] and the full arterial tree has been well characterised in porcine models [66]. 

In modelling the coronary arteries we used the following parameters: 

I. A tissue substrate representing an ellipsoidal human heart muscle of mass 218g, con­

structed based on physiological parameters [134]. The right ventricle was assumed 

to take the form of a super ellipsoid of exponent 2.5 and the left ventricle was rep­

resented by a simple ellipsoid. Truncation of the ellipsoidal substrate was chosen so 

that the mass of the tissue corresponded to a reasonable physiological value given 

morphological data for ventricle thickness. 

2. Blood flow through each of the terminal segments of the tree was assumed to be con­

stant, with each arteriole supplying an equal volume of tissue and homogeneous per­

fusion throughout the tissue parenchyma [Ill]. These assumptions greatly simplify 

fluid dynamical calculations for estimating the total power needed to pump blood 

through the tree. 

3. The metabolic cost of maintaining a given volume of blood was assumed to be 641.3J s-) 

per metre cubed of blood [86] . For convenience, each arteriole supplies a sphere of 

tissue with a size calculated by assuming a mean blood flow per unit mass for car­

diac muscle of 0.8 ml min -) g-l [73]. The value taken from the literature was chosen 

such that it lay within the given error, but also conformed reasonably with both the 

ellipsoidal heart model, input flow and radii. 

4. The larger arteries with diameters greater than 0.01 mm were constrained to avoid 
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penetration of the outer layer of heart tissue. This simplification differs slightly from 

real coronary vasculature, where progressive intrusion of arteries into the myocardium 

can be observed [128]. However, as the major arteries modelled by our method are 

far larger than the intra-myocardial vessels, a sharp cut-off is thought to provide a 

reasonable approximation. 

5. The starting positions of the two root arteries were fixed with a total input flow of 

4.16-6 m3 s-I[56]. Relative radii of the two inputs to the tree were constrained via 

ri· 1 + ~.I = [2.1 mmj2- 1 however, the relative sizes of root arteries and division of 

perfusion territories are determined by the method alone. 

6. The branching exponent varies throughout the coronary arterial tree, but for the larger 

arteries its value remains in the range 1.8 to 2.3. A variable branching exponent would 

greatly increase the computational cost of the approach, so a compromise value of 2.1 

was chosen for the entire tree [59]. 

4.3 Results 

In this section we present the results of a large scale (12000 segments) simulation of the 

coronary vasculature. The generated tree is compared against both morphological data ex­

tracted from porcine hearts as well as geometric data from schematic heart diagrams. 

Coronary arterial trees containing increasing total numbers of vessels grown using the 

SA based method are presented in Fig. 4.1. In real human coronary trees, there are 3 

identifiable main coronary arteries (see e.g. the schematic from Ref. [29]): Left Anterior 

Descending (LAD), Right Cardiac Artery (RCA) and Left Circumflex Artery (LCX). The 

positions and relative dimensions of these are similar in most humans, with major variations 

observed in less than 1% of healthy individuals [42]. Trees grown using SA (Fig. 4.1) adhere 

well to this structure. There is a consistency in the placement of the larger arteries, although 
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6000 500 

Figure 4.1: Images howing arterial trees grown with the approach detailed here. The num­
ber of terminal arteriole i increased from 500 to 6000 (the total number of arterial segments 
is roughly twice this). There is consistency in the positioning of the larger arteries between 
the numerical method and the typical arrangement of the major arteries, suggesting that the 
coronary arteries may be the result of a biological process seeking the global minimum in 
metabolic demand. 

the RCA appear lightly lower, and the right marginal artery appears slightly shorter, in our 

model . Overall , vi ual inspection of the arterial structure appears extremely promising. 

To provide a quantitative comparison of our trees with anatomical data, the topological 

characteristics of the computer generated coronary artery trees were extracted and com-

pared to morphological data characterising the pig coronary arteries published by Kassab et 

al. [66] Ka ab and colleagues used a combination of corrosion casting and optical section­

ing to obtain detailed morphometric data, tabulated using the Strahler (or stream) ordering 

cherne to denote element of the tree of varying scale. Within this scheme, the lowest 

Strahler order number correspond to the smallest arterioles and the largest numbers refer 

to major ve els (for detail on Strahler ordering see method). To directly compare arterial 

diameter , lengths, and branching properties, of our computer-generated arterial tree with 

real data from pig coronary arteries, averages were obtained over all elements of the same 

diameter defined Strahler order. 
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Figure 4.2: (a) Vessel diameter as a function of order in a tree with 6000 arterioles. Excellent 
agreement i found for vessels on all length scales. (b) Vessel length as a function of order 
number. Agreement i excellent for the major vessels (large order) . The large variation seen 
for arterioles (lower order) i a result of early termination. Also shown are the morphological 
data reproduced from Table 2 of Ref. [69] for easy comparison. (Error bars show standard 
errors, both axes are logarithmic.) 

4.3.1 Diameter and Length 

The primary morphological points of comparison are the diameters and lengths of the tree 

segments, categorised by diameter defined Strahler order. The diameters of the generated 

tree are 100 ely controlled by the bifurcation exponent, however due to the diameter de-

fined Strahler ordering scheme and the tendency towards highly asymmetric branching in 

the larger ve els, there is still a significant amount of freedom in the possible distribution 

of diameters. For in tance, in a perfectly symmetric tree with bifurcation exponent y, we 

would expect a trahler order vs logarithmn of the diameter plot to have a gradient of 1~2 . In 

an asymmetric tree this gradient can be significantly different, the degree to which depend­

ing upon the nature of the a ymmetry and the details of the strahler ordering scheme. 

The mean ve el diameters are shown as a function of order number, for a tree compris-

ing of 6000 arteriole (12000 vessel segments) in Fig. 4.2(a). Excellent agreement is found 
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Figure 4.3: (a) Vessel diameter and (b) length as a function of order in trees with varying 
numbers of nodes. As the size of the simulated trees increases so does the agreement to the 
morphological data. Also shown are the morphological data reproduced from Table 2 of 
Ref. [69] for easy comparison. (Error bars show standard errors, both axes are logarithmic.) 

between the trees generated in-silica and the morphological data. Only slight deviations 

from the morphological data can be seen for the smallest vessels (lowest order arteries) in 

the generated tree. This is likely to be due to the combination of integer order numbers and 

the condition that terminal sites are of constant radius. The result of this constraint is that 

the termjnal radii will only match the anatomical data for a correct choice of the number of 

arterioles. Fig 4.3(a) shows the effects on diameter of increasing the number of arterioles 

from 500 to 2000. Agreement is generally good, regardless of the number of terminal arter-

ies, and there i a clear trend towards matching the experimental data as simulated tree size 

increases. 

Fig 4.2(b) compares average vessel length in the model and porcine morphological data 

as a function of order number. For the largest arteries (high order numbers) the agreement is 

excellent. Although the lengths of the smaller arteries (Strahler orders < 7) in the computer 

generated tree tended to be overestimated, this can be easily explained by the fact that the 
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smallest vessels are required to bridge a gap that would normally be filled by inclusion of 

lower order vessels in a larger simulation. As the number of generated vessels is increased, 

the agreement with morphological data improves (Fig. 4.3(b». 

4.3.2 Branching Asymmetry 

Branching asymmetry within the arterial system is calculated as the ratio of daughter and 

parent diameter involved in a bifurcation. In the following we follow the analysis of Kassab 

et. al. and calculate two branching asymmetry parameters As and AI, which refer to the ratio 

of the smaller and larger daughter segment diameter to the parent respectively. A symmetric 

branching tree with branching exponent y has a constant branching asymmetry (As = AI) 

I 
value of 2- Y, which for the generated trees with branching exponent 2.1 would be equal to 

0.72. 

Previously, the best methods available for the computer generation of arterial trees strug­

gled to recreate realistic branching asymmetry. Fig 4.4 shows the ratio of daughter to mother 

vessel radii for the largest and smallest daughter vessels as a function of order number. For 

the ratio of the larger daughter vessel, values close to I suggest a trunk like morphology. 

For the smaller daughter vessel, values approaching 0 suggest the same morphology. Where 

the ratio drops to 0.7, symmetric branching occurs. For Strahler orders corresponding to 

microvascular arterioles, both the computer generated and true morphology approach 0.7, 

which is consistent with perfectly symmetric branching where both daughter vessels are of 

similar size. Agreement with the morphological data from Ref. [59] improves as the size 

of the computer generated tree increases. This is not the result of any special input param­

eters or initial conditions. The trees are topologically and spatially randomised before SA 

optimisation begins, and are allowed to explore the entire parameter space during optimi­

sation. The observed asymmetry is purely the result of a balance between pumping power 
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Figure 4.4: The ratio of daughter vessel diameters (Ds and D, are the diameters of the 
smalle t and large t daughter vessels respectively) to diameters of parent segments, Dp as a 
function of order number, showing how the tree tends towards more symmetric branching 
at lower orders. Agreement with morphological data reproduced from tables in the online 
upplement of Ref. [59] is good, if the early termination of the generated trees is taken 

into account, with the trend towards the morphological data as the tree size increases. Both 
graph demon trate that there are large trunks at high orders with the largest daughter vessel 
(panel (b)) of similar size to the parent vessel and another side artery which is much smaller 
(panel (a)). At smaller orders, the ratio becomes similar showing that the branchings of the 
smaller arteries are near symmetric. Realistic branching asymmetries are a clear advantage 
over other method of generating arterial trees in-silico. 
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and metabolic maintenance cost, and is a major improvement in predicting the trunk-like 

structure of major vessels. 

4.3.3 Metabolic Cost 

The metabolic cost of blood mb gives the energy cost per unit time of a volume of blood. 

While this value is physiologically determined, its effect within the energetic cost function 

of the SA algorithm is equivalent to a change in length scale: 

The change in mb can also be interpreted as a change in length scale. The total energetic 

cost of the arterial tree can be expressed as: 

We can make the following transformation: r -t r' = Ar, I -t I' = AI. So that the cost 

function itself is transformed into: 

The cost function maintains the same form but acquires a multiplicative factor which affects 

all terms. This factor can then be absorbed into the cost itself without affecting the location 

of the energetic minimum: 

A new value of the metabolic constant can now be identified: m~ = A6mb. The cost function 

now has the same form. Since changing mb is equivalent to changing the length scale, these 

results suggest that there are likely to be structural differences between organisms of dif­

ferent sizes, as the power required to pump blood becomes relatively more important than 

the metabolic demand to maintain blood volume in small vessels. In the absence of mor-
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Figure 4.S: Example trees generated with different values of mb, which changes the relative 
weight of the pumping power to cost of maintaining blood in the optimisation. For small mb 

(corre ponding to mall hearts), vessels in the tree wind around - this is because there is lit­
tle penalty to make a single wide vessel that curve to supply blood, rather than bifurcating. 
For large mb (corresponding to large hearts) the vessels travel as straight as possible. 

phological data, visual comparison of the coronary arteries tentatively indicates that vessels 

meander around in smaller pecies [146] and that vessels are straighter in larger species 

[ lOS]. 

Figure 4.S how the effect of altering the metabolic energy cost of blood per unit volume 

mb. The large t morphological change is found in the lengths of the larger arteries (Fig 

4 .6). As mb increa es, bifurcation symmetry is al 0 increased in the larger arterie and as 

a re ult there is an increa e in the number of Strahler orders present in the tree (Fig 4 .6). 

The explanation for the e caling behaviours is evident when considering the limiting cases. 

For mb = 0 the power involved in pumping the blood dominates the optimisation, which 

lead to a large, 'snaking' artery with small side branches that supply the ti sue. This large 

artery would cover the entire surface of the heart, and the configuration is equivalent to a 

completely a ymmetric binary tree. For a large mb value (or mall power cost) there i a 

huge penalty a sociated with larger arteries, and 0 their lengths are contracted. In order to 

accommodate the reduction in length, the larger arteries must bifurcate more frequently and 

ymmetrically. Additionally the high volume co t causes the trunk artery to minimise its 

total length, re ulting in a much traighter path acros the tis ue. Les extreme example of 

thi behaviour can been een in Fig 4.S, with meandering arteries for small mb and traight 
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Figure 4.6: (a) Diameter as a function of Order Number for trees with 1000 vessels. De­
crea ing mb, which de cribe the relative energy cost of an amount of blood and the power 
required to pump it, ha little effect on the agreement of the diameter with morphological 
data. (b) For length however there is an obvious effect in the larger arteries, with regimes 
of high pumping cost being more accurate. The primary optimi ation for high pumping cost 
then i to increa e the length of the largest arteries . 

arteries for large mb· 

4.4 Discussion 

We have developed a powerful and universal method for growing arterial tree in-silica, 

which i capable of identifying the near globally optimal configuration of arteries for ar­

bitrarily haped tissue with heterogenous blood supply demands. As input, the method 

only need information about the ti ue structure and the entry point po itions of the largest 

arterie . From thi information, the approach generates morphologically and tructurally 

accurate coronary arterial trees at almost every length scale. This is a significant improve­

ment on previou optimi ation methods, which failed to reproduce the consistent structure 

found in the coronary arterie . We have shown that the method improves with the number of 

ve el modeled, 0 that a computing power increa es, there is a systematic improvement 
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Figure 4.7: (a) and (b) The main effect of changing mb is a change in the asymmetry of 
the branching of the largest arteries - for large mb, the branches are more symmetric than 
for small m b. As mb becomes very small, the limiting behaviour is broad trunks that wind 
around all the tis ue, with a large number of very small offshoots that supply blood in the 
direct vicinity of the large vessel. 

in the accuracy of the generated trees. To our knowledge, no other method can generate 

reali tic arterial tree that closely match morphological data by taking only the shape of 

the tissue a input, and claim systematic improvement in the generated trees with increased 

computational power. 



Chapter 5 

Modelling Embolic Stroke 

5.1 Introduction 

While the results of the previous chapter validate the Simulated Annealing algorithm for 

use in generating the coronary vasculature, any organ specific application will require its 

own separate validation. In this chapter the capability of the algorithm to generate realistic 

cerebral vasculatures, in tissue volumes segmented from MRI images of a human brain, are 

assessed and validated. The extension of the algorithm is motivated by a specific application 

to a previously published statistical model of embolic stroke. 

The chapter is divided into two main sections. In the first section the segmentation of 

MRI imaging data for the purposes of arterial tree modelling and generation of the cerebral 

arterial tree are described. The generated trees are subjected to morphological and vascu­

lar territory comparisons with in vivo data[I44]. In the second section the statistical stroke 

model is outlined[46], and results of simulations performed both on the generated vascu­

lature, and a symmetric bifurcating tree (the symmetric tree being the model previously 

employed in the stroke simulations of Hague et. al.[46]) are compared. The effect of using 

realistic vasculatures in the context of stroke modelling is assessed, 
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5.2 Cerebral Arterial Tree 

The geometry of the Human brain is complex. The cerebral cortex contains deep folds on 

its surface upon which the pial arteries attach. At sub 250Jlm diameter scales, the micro­

vasculature of the cerebral cortex extends into the cerebral tissue[87], perfusing blood into 

the capiJ1ary network. The larger arteries of the cerebral vasculature attach to the Circle 

of Willis (CoW), which acts as a distribution mechanism for the cerebral blood supply. 

The complex connectivity of the CoW is difficult to model in the context of arterial tree 

generation, and its anatomical structure is highly variable between individuals[76]. The 

primary issue for the arterial generation algorithm stems from the proximity of the major 

cerebral artery inlets. The middle, posterior, and anterior cerebral artery (MCA,PCA,ACA), 

connect to the CoW within a small volume ( lOmm3). The proximity of the inlets forms 

a degeneracy which is difficult for the Simulated Annealing algorithm to resolve, and in 

general leads to solutions in which a single inlet dominates. 

The internal structure of the brain also presents a new challenge. Unlike the heart which 

could be effectively modelled as consisting entirely of myocardial tissue, the brain is com­

prised of two very separate tissue types: white and grey matter. The two tissue types have 

different volumetric blood flow requirements per mass of tissue[85], which must be factored 

into the arterial tree generation algorithm, specifically the distribution of end node sites. 

In order to convert the volumetric MRI data into a fonn compatible with the arterial 

generation algorithm, the images must first be cleanly segmented from the surrounding skull 

and meninges. The outer surface of the brain must then be extracted so that the distance map 

calculation on the internal volume can be performed, and the locations of the CoW inlets 

for the major arterial segments must be located so that realistic boundary conditions can be 

imposed. After the volume, surface and distance map data have been created, they can be 

loaded into the generation algorithm in the same manner as the ellipsoidal heart volume, or 
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Figure 5.1: Here details of the MRI data used in the arterial tree generation model are 
displayed. Panel a) shows the segmented brain tissue. b) shows the result of the distance 
function calculation of the brain surface, which is shown in panel c) . 

any volume data, would be. Generation of the arterial trees then proceeds in the manner 

described in previou chapters. 

5.2.1 MRI Data and Extraction 

To create a realistic geometry in which to grow the cerebral arterial trees, TI weighted MRI 

data of a healthy individual was obtained in the form of DICOM image slices. A TOF image 

was u ed in order to locate the starting positions of the major cerebral arteries: the Middle 

Cerebral Artery (MCA), Anterior Cerebral Artery (ACA) and the Posterior Cerebral Artery 

(PCA). The DICOM image files were loaded into MATLAB and the automatic segmenta­

tion routines in the stati tical parametric mapping (SPM) MATLAB library were used to 

egment both white and grey matter from the tissue volume. The surfaces of the combined 

White and Grey matter were identified via a nearest neighbour search, where voxels having 

at lea t one unoccupied neighbour were labelled as belonging to the outer surface of the 

brain. The e urface voxel were then used to compute a distance map from the surface to 

all occupied pixels, a previou ly discussed. A sample slice at each stage of the segmen-
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tation process is shown in Fig. 5.1. While the brain itself exhibits some asymmetry [ 139], 

at the length scale of the MRI image (0.75 x 0.75 x 0.80mm3) the two hemispheres of the 

brain are effectively symmetric. It is reasonable then to divide the brain into left and right 

hemispheres and perform arterial tree generation for a single hemisphere only. A full tree 

could then be generated by either combination of trees grown for right and left hemisphere, 

or from joining a single tree to it's mirror image. 

In comparison to the coronary vasculature, which has two "input" arteries, the brain has 

3 major inlets in each hemisphere: the MCA, PCA and ACA. These inputs are connected 

through the circle of Willis so that a concentration of flow in one would mean a reduction in 

flow to the other. In the case of the heart, the coronary arteries attach directly to the aorta, 

with each pulling a relatively small amount of blood, so small that the effect on the overall 

aortic flow ( 5%) can be neglected and the two arterial inputs treated as effectively separate. 

As this is not true in the brain, only a single arterial inlet will be provided to the generation 

algorithm. The three cerebral arteries supply very separate territories of the brain, and it will 

be left to the SA algorithm to determine whether this behaviour is replicated. I adopted this 

approach in part as a remedy to the problem of atrophied inlets, but under consideration too 

was avoiding the addition of unnecessary adhoc rules to the algorithm: where possible, the 

optimisation procedure should take care of organ specific details. There are other solutions 

to the inlet problem: for instance, flow constraints in each inlet could be the target of the 

SA algorithm. This would guarantee correct vascular territory sizes and flow proportions 

for the MCA, PCA, and ACA, but it would also make it impossible to discern to what extent 

those morphological properties are the result of energy optimisation. 
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5.2.2 Arterial Tree Generation 

As with the Heart, the generation of the Cerebral vasculature requires inputs other than 

the geometry. The radius and flow of the root node can be calculated from summation of 

average flow values, and the radius exponent summation of the average MCA, ACA and 

PCA radii so that: 

froot = (jMCA) + (jPCA) + (j ACA) (5.1) 

and 

(5.2) 

The diameters of the MCA, PCA and ACA were taken as 2.7mm, 2mm and 2mm[123]. 

The flow rates in the MCA, PCA and ACA were taken as 127 mllmin, 51 ml/min and 

88 rnI/min[34]. A branching exponent r of 2.5[23, 145] was chosen, so that the total ra­

dius of the root node is 1.35mm. 

In cerebral tissue arterioles of diameters less than 300jlm are responsible for penetrat­

ing deep within cortical tissue[21]. As a result the node exclusion parameter was set to 

300jlm so that only arteries with radii less than this would penetrate into the voxelised tis­

sue map. Grey and white matter are distinguished by the relative amount of blood supply 

they require[85], which affects the number of voxels supplied by each terminal site in the 

arterial tree. The result is that the density of the generated trees terminal sites should be 

much less in the white matter than in the grey. The grey and white matter blood supply 

requirements were provided as input to the simulation, at values of 1.3 x 1O-5m3s- 1 and 

0.6 x 1O-5m3s- 1 respectively[85]. Multiple cerebral arterial trees were generated, with the 

tree producing the lowest value of the cost function being chosen as the final output. The 

Simulated annealing algorithm was given 5 x 109 steps spanning a temperature range of 

1012 to 10- 11 • 
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5.2.3 Results 

The morphology of the generated arterial tree is compared with the data of Wright et. 

al.[145] who extracted cerebral arterial tree morphometry from 3. T time-of-flight MRA 

high-resolution images of 61 healthy volunteers. In contrast to the coronary data of Kassab 

et. al. [70] which was categorised in terms of diameter defined Strahler order, Wright et. al. 

labelled arterial segments using the branching number. In assigning branching number, the 

root node is first given order number O. The tree is then traversed recursively, and at each 

bifurcation the order number is incremented by 1. The trees used by Wright et. al. were 

segmented from MRI images with a resolution of 0.5 x 0.5 x 0.5mm3 and as a result the 

arteries it includes span a relatively low range of radii (1.1 mm to 0.5mm). This low range 

allows the ordering scheme they employed to be feasible, where in larger, asymmetric trees 

it would create very large values of the maximum branch order, and result in arterial seg­

ments with vastly different morphological properties being labelled with the same branch 

number. 

In order to allow a comparison of the generated trees to the data of Wright et. a1. the 

MRI segmentation process needs to be replicated in the generated trees. The effect of the 

MRI and subsequent segmentation is to prune arteries which have a radius of less than 

approximately 0.5mm, which is relatively straightforward to replicate in the generated trees. 

In the subsequent morphological comparisons only the arteries in the generated tree with 

radius 2: 0.5mm are considered. After the pruning, there exist many connected arterial 

segments which have the same value of order number. This occurs for instance when the 

small branches of a large trunk artery are pruned and the bifurcations are transformed into 

"internal" nodes. The internal nodes are points of direction and radius change without 

bifurcation, and the arterial segments which contain them are grouped together into a single 

segment. Wright et. al. performed the same procedure, and calculated the radii of the 

arterial segments as the average radius along the segment length. The same method is 
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reproduced in the analysis performed on the generated trees. 

The analysis of Wright et. at. includes some metrics which do not exist, or exist to 

only a limited degree, in the generated arterial trees. The analysis includes measures of the 

tortuosity of the arterial segments, which exists in the generated trees only to the extent that 

pruning leads to the creation of internal nodes. Wright et. al also include data on the path 

and euclidean distances traversed by a segment. The path distance is the total length of the 

arterial segment, and the euclidean distance is the straight line distance between the start 

and end point of the segment. Due to the lack of tortuosity in the generated trees, the extent 

to which the path and euclidean distances of segments differ is severely restricted. 

Wright et. al divided their data into those segments belonging to the MCA, ACA and 

PCA. To perform the same analysis on the generated trees requires that the locations of the 

MCA, ACA and PCA be identified, as there is only a single root point in the generation 

algorithm. To achieve this, the tree was first pruned of segments with radii less than O.5mm. 

The tree was then rendered in 3D so that the root points of the major arteries could be 

manually identified. The root points were chosen under the following conditions: that their 

radii conform within error to the associated cerebral artery[124]; and that the locations of 

the end nodes attached to the root lay within the vascular territory of the associated cerebral 

artery. 

Appearance 

Figure 5.2 shows the appearance of the generated vasculature from three axis. The MCA, 

PCA and ACA are color coded (red, green and blue respectively), and the pale pink segments 

indicate sections of the tree which have been identified as being representative of the Circle 

of Willis. This occurs at the points before the common parent of two of the major arteries. 

The vascular territories are apparent in the image, with the ACA supplying the majority of 

the front of the brain and the PCA supplying the cerebellum. The MCA supplies the largest 
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Figure 5.2: Cerebral va culature automatically generated on a geometry obtained from MRI 
imaging. Aterial egments belonging to the MCA, PCA and ACA are color coded red, 
green and blue re pectively. The pale pink arteries are segments which can not belong 
to any definitive major cerebral artery; in subsequent analysis they are excluded as being 
repre entative of the Circle of Willis. 

volume of ti ue and cover a wedge between the front and rear. 

Radii 

Figure 5.3 5.4 and 5.5 how a comparison of the relationship between arterial radius and 

order number for the MCA, PCA and ACA respectively. The olid lines indicate the data 

extracted from th generated tree and the da hed lines the data of Wright et. at. For 

the MCA (Fig. 5.3) the general agreement with experimental data is good. The overall 

behaviour of the radii a a function of branching order is matched between the experimental 

and generated data, how ver there are ignificant deviations from the expermental values at 

pecific point. Thi could be due to the low ample size involved in the data points for the 

generated tree (> 10). 

Both the P A and ACA how ignificant deviation from the experimental values. The 

ize of both of the tree in terms of numbers of bifurcation is small « 15), and so it is 

po ible that the differ nce could repre ent normal statistical variation (Wright et. al. did 

not publi h rror). 
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Figure 5.5: Plot hawing the radii of the ACA branch of the generated tree (blue solid) vs 
the experimental data of Wright et. al. (green dashed) as a function of branching order. 

Lengths 

Figures 5.6 5.7 and 5.8 show the relationship between length and branching order for the 

MCA, PCA and ACA branches of the generated tree respectively. The MCA lengths (Fig 

5.6) show a imjlar variation with branching order in comparison to the experimental data of 

Wright et. aI, however there is a systematic underestimation of the segment lengths. Since 

arterial segment of living trees are rarely straight segments, this is not supri sing. In the 

generated tree a bifurcation must occur in order for a branch to change direction, meaning 

that a bifurcation may be relocated specifically to allow a large artery to bend along a sur­

face. If thi s occur, then the branching order will also change. The PCA lengths (Fig. 5.7) 

also broadly follow the form of the experimental data, however there is again a systematic 

underestimation. It i po sible that the tortuosity of cerebral arteries is due to a feature not 

captured by the optimisation model. The lengths of the ACA in the generated trees (Fig. 

5.8) do not follow the experimental data. While the length of the first segment is correct, 

the overall behaviour of the lengths with the variation of order number is incorrect. 
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Figure 5.6: Plot howing the length of the MCA branch of the generated tree (blue solid) 
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Figure 5.7: Plot showing the lengths of the PCA branch of the generated tree (blue solid) vs 
the experimental data of Wright et. al. (green dashed) a a function of branching order. 
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Figure 5.8: Plot howing the lengths of the ACA branch of the generated tree (blue solid) 
vs the experimental data of Wright et. al. (green dashed) as a function of branching order. 

5.2.4 Discussion 

In compari on to image of in vivo cerebral arterial trees and their vascular territories, the 

visual appearance of the generated trees is promising. Given that there was only a single 

root point to the tree, it is encouraging that the algorithm produced solutions which pro­

duced major arterie roughly corresponding to the major cerebral arteries and their vascular 

territories. The cerebral arterie of real coronary vasculatures are tortuous, and this aspect is 

absent from the generated tree. The algorithm is incapable of generating tortuosity firstly 

due to arterie being compri ed of traight segments, and secondly because an increase in 

length of an artery repre ent and overall increase in both the volume and power cost of that 

artery. 

In compari on to the coronary vasculatures generated in the previous chapter, the mor-

phological of the generated cerebral arterial tree are less accurate. There are clear dis­

crepancie between the experimental data and the generated results. The branching order 

dependence of the radii for the ACA for instance is clearly incorrect, both in value and 

overall form. In contra t however, the values and form of the dependence for the MCA is 

encouraging. The length depdence in the MCA segment is also encouraging, however there 
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is a clear need to investigate the effects of adding some form of tortuosity to the model. 

The PCA and ACA are both underrepresented in terms of numbers of bifurcations in­

volved in the vasculature. They both consist of less than 15 total bifurcations, and it is 

difficult to distinguish between what may be statistical variation and what may be inadeque­

cies in the formulation of the algorithm. The generation of larger trees consisting of many 

thousands of segments may somewhat alleviate this uncertainty. The underrepresentation 

of the root radius of the PCA suggests that the algorithm has not ascribed the full vascular 

territory of the PCA, where the MCA has acquired a vascular territory larger than expected. 

5.3 Application: Modelling Embolic Stroke 

In this section the previously generated arterial tree is used to perform a statistical simulation 

of embolic stroke. The stroke simulation is based upon the work of Hague et. al[26, 45, 46], 

but the performance of the algorithm has been improved to allow for potential real time 

applications and to improve the statistical accuracy of the results. The effect of using a 

computer optimised vascular tree versus an entirely symmetric tree is assessed, and the 

physical locations of blockages occurring in the generated tree are analysed. 

5.3.1 Introduction 

The applications for computer generated vasculatures are numerous[77, 80, 102]. Organ 

specific blood ftow[92], drug delivery[121], and imaging phantoms[33] all use comput­

erised vasculatures to improve realism, and the ability to generate realistic vasculatures for 

arbitrary three dimensional tissue volumes could potentially lead to further advances in these 

areas. As an example case, the arterial tree generated in the previous section will be used 

in a statistical simulation of embolic stroke, previously developed by Hague et. al[26, 46]. 

The ability to model the process of embolic stroke on patient specific vasculatures, gener-
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ated from MRI imaging, could have important clinical applications, specifically in the area 

of open heart surgery[46], where gaseous embolisation can pose a significant risk[9]. 

Embolic stroke accounts for 22% of all strokes, and is the second most common form 

of stroke behind atherothrombotic brain infarction which accounts for 61 %[20]. The con­

sequences of gaseous or solid emboli entering the cerebral vasculature can be devastating. 

Cerebral tissue deteriorates rapidly whilst blood flow is halted, but the exact neurological 

effects of an embolic event can be difficult to quantify (e.g silent strokes[136]). The most 

common causes of gaseous embolisation are decompression sickness and clinical cardiovas­

cular intervention (particularly open heart surgery featuring cardio-pulmonary bypass), but 

gaseous emboli are also formed in mechanical heart valves albeit at low levels. Solid emboli 

occur when a fragment of solid material exists within the circulatory system. Typically they 

are thrombi[50], however there are numerous means of production and solid emboli can be 

formed from various materials. Solid emboli typically cause significantly more tissue dam­

age than gas[96], and the effect of a large embolus entering the cerebral vasculature (stroke) 

can be clearly resolved by perfusion weighted MRI imaging[l15]. 

Models of embolic stroke are typically animal based[6, 7, 104], and knowledge of the 

role of the cerebral circulation has been largely derived from perfusion studies on cadav­

ers, or magnetic resonance perfusion studies on healthy individuals[ 107]. More recently, 

large scale fluid dynamics studies of embolus trajectories have been performed[35, 93, 129], 

which suggest that the distribution of embolus depositions during embolisation may be de­

pendent on both the size of the embolus and on the specific anatomy of the vascular system. 

Hague et. al. [27] have previously demonstrated the use of a Monte Carlo simulation in 

the prediction of arterial blockage during gaseous embolisation. The method used a sym­

metrically bifurcating arterial tree to model the cerebral vasculature. This tree was entirely 

topological and contained no spatial information, so that extraction of blockage data was 

limited entirely to the temporal dimension. Using the more accurate computerised model of 
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the cerebral vasculature generated in the previous section, the embolic stroke model can be 

extended to more accurately account for branching asymmetry and the spatial distribution 

of blockages. The first point is important as vessel asymmetry will influence the topologi­

cal distance between blockages[ 109], and the second because strongly spatially correlated 

blockages are more immediately dangerous due to the reduction of cross flow in the capil­

lary beds[ 101]. 

5.3.2 Integration of Cerebral Vasculature 

The tissue damage caused by solid and gaseous emboli are a result of arterial segment oc­

clusion, leading to reduced blood to a localised volume. The reduction in flow persists so 

long as the embolus continues to block the arterial segment, causing hypoxia, swelling, and 

eventually and cell death. As the embolus dissolves over time, it traverses through arte­

rial tree, blocking ever smaller arterial segments, until it has dissolved sufficiently to pass 

through the capillary bed. In the generated tree, arterial segments are terminated well above 

the capillary bed radius of:::::: 5J.lm. To correctly account for the cascade of a dissolving em­

bolus, an extension to the generated arterial trees, which bridges the gap between capillary 

bed and terminal segment radius, is required. 

At each of the terminal points of the generated tree a symmetrically bifurcating tree is 

attached. The symmetric tree spans radii from the terminal segment radius of the generated 

tree re to just above the capillary radius at rcap5J.lm. The bifurcation exponent of this sym­

metric tree is matched to the generated tree at a value of 2.5, and the length of the individual 

arteries are calculated as 20rs where rs is the radius of the segment[46]. The number of 

bifurcations required in the symmetrically bifurcating tree can be calculated using re and 

The attached symmetric trees allow for emboli smaller than the terminal segment radius of 

the generated tree to block flow, but because the symmetric tree contains no spatial data 
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the physical location of the blockage is unresolveable. The blockages associated with the 

terminal sites of the generated tree are calculated as the ratio of the attached symmetric tree 

end nodes which receive no flow to the total number of attached end nodes: 

B . - nblocked ,-
ntotal 

(5.3) 

Where n refers to the total number of symmetric tree end nodes attached to the end node 

of the generated tree, and blocked(unblocked) refer to the relative proportion of those end 

nodes currently experiencing blockage(normal flow). The spatial distribution of the block­

ages can then be mapped by associating the blockage value Bi with the spherical supply 

volume of the generated tree end node. While this procedure allows small emboli to con­

tribute to a spatial map of blockages, it can not distinguish between certain patterns of 

blockages below the generated tree radius. A specific blockage ratio Bi can be formed from 

a single embolus, from many small emboli, or some combination. To account for this a time 

average of the blockages can be taken. In this case a single embolus will contribute a larger 

total blockage than would many small emboli. 

5.3.3 The Stroke Model 

The stroke model previously developed by Hague et. al is a Monte Carlo simulation which 

tracks blockages caused by emboli as they traverse through a vascular tree. The emboli 

navigate the bifurcations of the tree probabilistically, preferentially following the maximum 

relative amount of blood flow until they reach arterial segments smaller than a certain radius. 

Once an embolus has become "stuck", the flow of blood distal to that point in the tree is 

temporarily cut off, and the fluid dynamic properties in the rest of the tree are recalculated. 

Emboli are inserted at the root node randomly, but with an average insertion per unit time 

equal to the rate of embolisation 1. Once inserted the emboli begin to dissolve at a rate 
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proportional to their surface area[26], with the specific rate depending on their composition 

(gaseous vs solid). 

Various experimental data[l7, 109] suggest that emboli flow in specific proportions 

through the outlets of a bifurcation. In the limit of the embolus size approaching that 

of red blood cells, the proportion should be equal to that of the hematocrit division at 

the bifurcation, which for symmetric bifurcations is essentially proportional to blood flow 

division[ 110]. The regime where emboli are divided in proportion to the flow division 

at a bifurcation is known as the linear flow weighting regime. Non-linearities can arise 

as a result of large asymmetries involving small vessels « 30,um), which in the present 

model can be neglected as a result of the symmetric tree model used for segments of ra­

dius < lOO,um. For large emboli (ratio of embolus to daughter artery diameter > 0.5), 

non-Iinearities also occur[ 17] at asymmetric bifurcations, resulting in a disproportionate 

amount of emboli entering the larger daughter. The non-linearity arises due to the Fahraeus­

Lindqvist effect [ I 09], causing non uniform distributions of particles in the radial direction 

as a function of both particle and arterial radius. In the cerebral vasculature this is thought 

to cause preferential deposition of emboli at the termination points of the larger arteries. 

The MCA shows a disproportionate uptake of emboli with regard to a linear flow weight­

ing scheme[24], consistent with the high proportion of stroke events seen in the vascular 

territory supplied by the MCA. For small emboli (radius of emboli to parent artery < 0.07), 

the linear flow weighting regime is recovered. Chung et. al performed a study of embolus 

deposition for a realistic phantom of the major cerebral vasculature, including the CoW, and 

found preferential deposition in the MCA branches for large emboli. Fluid dynamic sim­

ulations of specific anatomies [ 19, 25] indicate that individual arterial configurations also 

heavily influence the trajectory of emboli. Hague et. al[46] derived a semi-empirical flow 

weight relationship from the data of Bushi et. al[ 17] for use in their stroke model, how­

ever little difference was observed in comparison to simulations performed with the simpler 
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linear weighting. 

Full 3D fluid dynamical simulations of embolus trajectories in vascular systems are 

computational feasible only for relatively small systems, but embolic stroke involves the 

occlusion of arteries which may be proximal to high numbers of arterial segments, and 

supply large volumes of tissue. A large scale model of the cerebral vasculature, containing 

upwards of 220 total bifurcations and capable of dynamically incorporating occlusions due 

to emboli, would be computationally infeasible if detailed fluid dynamics calculations were 

performed. To allow such a simulation to be performed in reasonable time requires a number 

of simplifying assumptions which will now be described: 

I. Flow throughout the cerebral vasculature system is laminar. 

2. Vessel walls are thin and non-elastic, with constant radius. 

3. Embolus deposition is proportional to flow division. 

4. An embolus dissolves proportional to its surface area. 

5. There is no blood flow distal to a blockage. 

6. The time taken to traverse an arterial segment is much less than the typical timescale 

of dissolution. 

The first assumption is the same as that used in the arterial generation algorithm, but is 

essential due to the large numbers of arterial segments in involved in the stroke simulation. 

The second assumption ignores the effect of cerebral autoregulation[58], pulsatile flow[91] 

and potential vasoconstriction due to cerebral swelling[18]. The third assumption ignores 

the previously discussed non-linear effects for highly asymmetric or large emboli. The mag­

nitude of these effects had been previously studied by Hague et. al. and was found to be 

minimal within the stroke model. The fourth assumption is relatively well accepted[46], 

however may not be valid for gaseous emboli, or those emboli blocking arteries. The fifth 
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while T < Tend do 
if U (0, I) < 't" then 

I 
Generate e of size U(O, I) x rmax 

Add e to g at root node 

end 
fore E g do 

if re < rcut then 
I Removee 

end 
Movee 
Dissolve e 
Check for blockage at e's location in g 

end 
Recalculate Pressures, flows and resistances in g 

end 
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Algorithm 1: Stroke simulation algorithm[46]. Where g denotes the bifurcating tree 
on which the simulation is being perfonned, U (0, I) a unifonn pseudo-random number 
between 0 and 1, rcut the radius of the smallest arteriole in g, rmax the radius of the 
largest embolus being simulated, Tend the embolisation time period, and 't" the rate of 
embolisation. The specific rules used for whether an embolus e can move or not depend 
upon its composition (gaseous or solid), as do the rules for checking whether an embolus 
has blocked a specific segment in the Tree (g). 

assumption directly relates to the arterial generation algorithm, which does not include con­

nections between subtrees. The final assumption relates to the implementation of the algo­

rithm, which assumes an embolus will traverse a single arterial segment during each time 

step (provided it is not blocked). 

The basic outline of the stroke simulation is presented in Algorithm 1. The process of 

checking for blockages involves not only finding those emboli whose radii exceed the radius 

of their current arterial tree location; but also finding those segments of the tree for which 

all distal tenninal nodes are blocked. These segments are "stagnant" and experience no 

flow, SO that any emboli within them are unable to move. The last step of the algorithm is 

the most computationally expensive, as it potentially involves the recalculation of 220 fluid 

dynamical quantities. 
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5.3.4 Fast Fluid Dynamics 

In previous work Hague et. al[26, 45, 46] used a recursive algorithm to calculate the fluid 

dynamic properties for the symmetric tree. The algorithm first recursively assigns resis­

tances based upon the resistance of the current segment, plus contributions from the dis­

tal subtrees. The distal subtrees act as resistors in parallel, and so their contributions are 

summed using the familiar rule for resistors. The total resistance provided by segment i is 

then: 

( 
1 1 )-1 

Rj= --+-- +Tj 
Rsubl Rsub2 

(5.4) 

Where Rj is the total resistance provided by the segment, Rsub indicates the resistance of a 

subtree of segment i, and Tj is the resistance of the segment length. In order to calculate 

the flow and pressures in the tree a boundary condition must first be chosen. Hague et. 

al[26, 45, 46] chose the boundary condition to be a constant inlet pressure of lOOmmHg, 

so that the total flow through the tree varies as the resistances of the tree changes. Once 

a boundary condition is chosen the rest of the fluid dynamical properties can be calculated 

by traversing the tree from root to end node and assigning values of pressures and flow. As 

flow is conserved throughout the tree, the flows in each node can be calculated as a fraction 

of the flow in the parent. The fractions of flow sent to the first and second subtree of node i 

are given by: 

Rsub2 
Qsubl = R R 

subl + sub2 
and Q 

Rsubl 
sub2 = 

Rsubl + Rsub2 

Where Qsub is the fraction of the parent flow given to the subtree and Rsub is the total 

resistance provided by the subtree. The pressure at the outlet of a node can be calculated as: 

Pi = Pp-QiTj (5.5) 

Where P p is the pressure at the outlet of the parent node and Tj is the resistance along the 
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segment length. The algorithm can correctly calculate the pressures, flows and resistances 

for even very large trees (220 nodes) however due to the use of recursion and the necessity 

to recalculate all flows and resistances after a single change in the tree (e.g. an embolus 

blocking an artery), it performs rather poorly. In order to speed up the computation, produce 

more statistically accurate results, and provide scope for real time usage in clinical settings, 

an effort was undertaken to drastically increase the performance of the algorithm. 

While a blockage event in the tree affects the flows and pressures in the entire tree, 

changes in resistances occur only for the segments connected proximally to the event. When 

a blockage occurs, the change in resistances can be sent up the tree (See Algorithm 2), which 

for a tree consisting of 220 nodes means reducing the number of calculations performed by 

a factor of 10- 19 • For a solid embolus, the direction of travel at a bifurcation is a function 

of the relative flow in each branch, and from Eq 5.3.4 these can be calculated entirely from 

the resistances. For a gaseous embolus however, the value of the pressure in the segment is 

required in order to decide whether the embolus will block the flow. This calculation must 

be performed after the resistances are calculated, and requires at least one recursion of the 

tree. 

Implementation of the fast resistance update for solid emboli provided a near 3 orders 

of magnitude performance benefit over the recursive algorithm. For gaseous emboli, which 

require the pressure, the performance increase was more modest at around a single of order 

magnitude. In both cases the largest improvement is seen when a high number of emboli are 

present, however it is unclear how much of this is a result of the fluid dynamics optimisation 

and how much is a result of other algorithmic improvements. 

5.3.5 Analytic Approximation 

The dynamics of the stroke model can be incredibly complex. Many hundreds of emboli 

can be present in the tree at anyone time, each affecting the trajectory of the next embo-
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fore in g do 
if e changed state then 

i = Location of e in g 
while Bifurcation i is not root do 

; = Parent of ; 
if i is Blocked then 
I break 

end 
end 
if i is Root then 
I Add location of e to List of Blockages 

end 
end 

end 
for i in List of Blockages do 

while Bifurcation i is not root do 

I
i = Parent of i 
Recalculate resistance i (Using Eq 5.4); 

end 
end 

Modelling Embolic Stroke 

Algorithm 2: Fast fluid dynamics for the Stroke simulation. An embolus is considered to 
have changed state if goes from being stuck to not stuck, or vice versa, in the current time 
step. The list of blockages created in the first for loop represent top-level blockages in the 
tree. Any blockages below that do not need to be considered. 

Ius entering the tree. This complexity combined with the number of bifurcations involved 

means that many simulations must be performed in order to reach a significant level of stat-

ical accuracy. In the following section I will develop an analytical approximation to the 

fuIl monte carlo dynamics of the stroke model. The results of the model are compared with 

the results of the monte carlo simulation for a fully symmetric tree, and it is found that the 

approximation performs well over a large portion of the model parameter space. 

To construct a rate equation for the number of emboli at time t, we first note that the 

production rate for emboli of all sizes in time dt is equal to 1'. The average size of an 

embolus, (r), produced in time dt is equal to O.5rmax , where rmax is the largest embolus size. 

The time taken for all emboli produced in time dt to dissolve will be ~, where a is the rate 

of dissolution of the emboli. Thus in time dt the fraction of emboli which have dissolved 
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will be ~. Summing these terms, we arrive at the rate equation for the total number of 

emboli: 
dN aN 
-='t'--
dt (r) 

(5.6) 

Which has the solution: 

N(t) = 't'~) (1 - e - Trt ) (5.7) 

Where the boundary condition N(O) = 0 has been imposed. At equilibrium ~7 = 0, and thus 

Neq = !£l is the equilibrium saturation of emboli within the tree. The average embolus size 

at equilibrium, (r) eq' is not equal to the average size of emboli introduced to the tree «(r)), 

due to contributions of emboli released at previous times. To calculate the average embolus 

size we first note that only emboli introduced at time t - r~ will contribute. We now work 

in the time interval 0 to ~, and find that the fraction of emboli contributed at time t which 

still remain in the tree, with radius equal to rmax - at is equal to: 

u _ 't'at 
lYt -

rmaxNeq 

The average radius at equilibrium can now be calculated as: 

!".mall. 
{ a rmax 

(r)eq = Jo Nt (rmax - at) dt = 3 

Where the equilibrium distribution of emboli as a function of radius r is given by: 

N(r) = ..:. (1- _r ) 
a rmax 

(5.8) 

(5.9) 

(5.10) 

Integration of this equation between 0 and rmax recovers the equilibrium saturation Neq. The 

average blockage at equilibrium due to the distribution in Eq. 5.10 can now be ca1culated. 

The fraction of terminal sites in the tree blocked by an embolus at level i in the tree is given 
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by: 

(5.11 ) 

Using the approximation that the tree holds a continuum of radii from 0 to rroot, an embolus 

of radius r blocks the tree at i(r) given by: 

r 

i(r) = -rln rroot 
In2 

So that the blockage due to an embolus of radius r is given by: 

B(r) = (_r )Y 
rroot 

(5.12) 

(5.13) 

Combing Eq's 5.10 and 5.13 and integrating from 0 to rmax we find the average blockage at 

equilibrium: 

(B)eq = 't'Tmax (rmax)Y (_1 ___ 1_) 
a rroot r+ 1 r+2 

(5.14) 

5.3.6 Non-Equilibrium Dynamics 

In order to calculate the maximum blockage experienced for time periods less than the equi­

librium saturation time rr:r, the embolus size distribution at time t < r~ must be calculated. 

To construct this, the first point to note is that in time period dt the size distribution created 

will be a top hat function of height 't' and width rmax. If the embolisation time t is less 

than than the equilibrium saturation time, the distribution function will no longer be ana­

lytic but instead be a composite function. The first part of the distribution function consists 

of a flat distribution of height 't'(~ - t), which ranges from embolus sizes of r = 0 to 

r = r max - a (rr:r - t). The second part resembles the equilibrium distribution, having value 

't' (r~ - t) at r = r max - a (rr:r - t) value 0 at r = r max. The Non-equilibrium blockage is 
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then given by: 

(8) _ ~rmax _1 ___ 1 __ ~rlim _1_ _ rlim + ~rlim _1_ y+ 1 ( ) Y+ 1 ( ) Y+ 1 

non-eq - a rloot r+ 1 r+ 2 a rloot r+ 1 r max (r+ 2) rmax rloot r+ 1 
(5.15) 

Where rlim = rmax - at. As expected, when t = r~ax, the result of Eq 5.14 is recovered. 

5.3.7 Results 

Symmetric and Generated Trees 

Fig. 5.9 shows the average maximum blockage which occurs in the symmetric tree for a 

wide range of maximum embolus size and embolisation times. These results are similar to 

those obtained by Hague et. ai.[46], which is expected given the only variation between the 

two models is the size of the root radius. Fig 5.10 shows the results of the same simulations 

performed on the generated trees. There is a marked difference in the average maximum 

blockage between the two trees, suggesting that branching asymmetry can reduce the po­

tential impact of embolic events in the cerebral vasculature. 

The reduction in maximum blockage occuring for the generated tree is most prominent 

at low embolisation rates (T < 0.1 S -I). At high embolisation rates the results of the two 

trees are almost indistinguishable. In addition, at very low embolisation rates (T < 0.01) 

the average maximum blockage in the symmetric tree is so low that any reduction would be 

inconsequential. 

Analytics 

To assess the accuracy of the analytic model developed in the previous section a compari­

son to the monte carlo simulation must be made. The nature of the calculation performed 

previously suggests that the blockage will be systematically overestimate. This is due to the 
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Figure 5.9: Average maximum blockage over 100 iterations of the monte carlo stroke model 
using a ymmetric tree. In compari on to the simulations performed on the generated tree 
(Fig. 5.10) there i overall increase in the level of expected blockage. 
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assumption that blockages in each level block independent numbers of end nodes, neglect­

ing the "shadowing" effect where newly introduced emboli block bifurcations proximal to 

previously established blockages. In addition, due to the method of calculation, the block­

age fraction reported in the analytical model can be higher than 1, which is clearly incorrect. 

To compensate, blockage fractions greater than 1 are considered to be fully blocking, and 

are scaled back to I in the following results. Integrating this equation from 0 to 

The predicted equilibrium saturation is within the statistical fluctuation of the Monte 

Carlo model. In addition, the predicted equilibrium and non-equilibrium size distributions 

closely match those produced by the full Monte Carlo simulation. This is unsuprising, given 

that these sections of the calculations should be exact. The embolus size distribution and 

average number of emboli are procued solely from the dissolution and production dynamics, 

which are controlled precisely by a and 't'respectively. 

Fig. 5.11 are reproductions of the symmetric tree plots of the previous section, showing 

the maximum blockage occuring in the tree as function of maximum embolus size and 

embolisation time. The agreement with the Monte Carlo simulation is very good, suggesting 

that a fast calculation of the maximum blockage could be performed prior to the completion 

of the full Monte Carlo Simulation, further increasingly the viability of the stroke model as 

a real-time clinical tool. While the accuracy of the analytical model in comparison to the 

symmetric tree simulations is good, the agreement with the generated tree is not. This is 

clearly a result of the symmetric tree used in the formulation of the analytic model. 

5.3.8 Discussion 

The results of the monte carlo stroke simulation for the symmetric model are as would 

be expected from the work of Hague et. al[26, 45, 46]. There is a clear transition from 

low to maximum blockage at high embolisation rates for simulations performed on both 

the symmetric and generated trees. For the generated tree, the location of this transition is 
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Figure 5.11: Average maximum blockage for the analytic stroke model for various em­
boli ation rate (-r). In compari on to the equivalent monte carlo simulations the analytic 

approximation perform well. 
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shifted towards lower levels of blockage with respect to the symmetric tree. The number 

of bifurcations, terminal and root radii are the same for each tree, and so the difference in 

blockage can only be ascribed to the level of branching asymmetry present in the generated 

tree. 

A highly asymmetric bifurcation will cause a representative fraction of emboli to take 

trajectories which follow the path of the larger daughter. If this asymmetry is present at 

subsequent bifurcations. then the emboli will on average travel more bifurcations before 

blocking an artery than it would have in the symmetric tree. This difference allows extra 

time for the embolus to dissolve. resulting in the emboli causing less overall blockage when 

it eventually blocks an artery. It is possible then that branching asymmetry in the cerebral 

arteries affords some amount of protection against embolic events. 

The analytic approximation to the full monte carlo stroke simulation accurately repro­

duced the average maximum blockage. The model ignores the complex dynamics caused by 

blockages changing the probabilities of embolus trajectories through the tree, and reduces 

the model to the calculation of size distributions and average blockages. The accuracy of 

the results suggest that the analytic approximation could be useful as a tool to produce a 

fast estimate of the expected blockage in clinical situations, where the full Monte Carlo 

simulations may be innappropriate due to time scales of the simulations. 

The difference in maximum average blockage between the generated and symmetric 

trees suggests that in models of cerebral embolisation the branching asymmetry of the cere­

bral tree must be taken into account; or at least that the results of simulations performed on 

symmetric trees must be presumed to overestimate the total amount of blockage. 

As mentioned previously, the presumption that emboli follow a linear flow weighting 

trajectory becomes invalid in the presence of highly asymmetric branching. In this case, 

emboli will preferentially flow into the larger daughter above what would be expected given 

a linear flow weighting. With respect to the current model, this suggests that the effect of 
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asymmetry are being underrepresented, and it is possible that an improved fluid dynamic or 

semi-empirical model may produce more pronounced differences. 

5.4 Summary 

In this Chapter the arterial generation algorithm was applied to the cerebral vasculature. 

The morphometric comparison of the MCA was good, but the PCA and ACA were less 

accurate than expected. The vascular territories of the identified major cerebral arteries in 

the generated trees roughly corresponded to experiment. 

The generated vasculature was then used in a statistical model of embolic stroke, and 

the results were compared with the previously used symmetric tree model. The results of 

simulations suggested that branching asymmetry in the cerebral arterial tree may reduce 

arterial blockage during embolic events. In addition, the computational efficiency of the 

stroke model was vastly improved via algorithmic improvements. 

An analytic approximation to the stroke model was derived and its results compared 

with that of the full Monte Carlo simulation. The analytic approximation produced results 

with a high degree of accuracy. 



Chapter 6 

Theory Chapter 

6.1 Introduction 

Previous chapters dealt with the computational generation of arterial trees using a novel, 

global optimisation technique. This technique relied upon the use of a radius-flow relation­

ship of the form q ex ,Y, where q is the volumetric flow and , is the radius of an arterial 

segment. When generating both coronary and cerebral arterial trees the value of r was taken 

from the literature as a single value which best represented the real bifurcation exponent in 

the radius range of interest. In living systems, as was shown in Chapter 2, the bifurcation 

exponent is not constant and instead varies as some function of the radius. The factors caus­

ing this variation, and the resulting effects it has on the structure of the arterial tree, are not 

well understood. In this chapter we will provide a theoretical analysis of the optimal bifur­

cation exponent for a symmetrically bifurcating tree. In contrast to the work of Murray[94] 

and others[52, 98, 143, 149, 153], this analysis is performed on an entire tree, rather than 

a single arterial segment. To further explore the effect of the bifurcation exponent on the 

structure of arterial trees, we will use the previously developed algorithm to generate arterial 

trees for various exponent values. 
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6.2 The Symmetrically Bifurcating Tree 

In Murray's analysis the optimal exponent for a single arterial tree segment, based upon 

the minimisation of volume and viscous power dissipation, was calculated and found to 

be equal to 3.0. While his analysis, and the subsequent work performed by other authors, 

was sound, it was performed on an arterial segment in isolation from its environment. An 

arterial tree is a connected set of arterial segments such that changes in any single segment 

are felt in the rest of the tree. For instance, in an occlusion event such as embolic stroke, the 

distal and proximally connected arteries to the event suffer a reduction in pressure and flow, 

and all other arteries experience an increase. This connectedness suggests that in order to 

fully understand the branching behaviour of arterial trees, the entire tree must be taken into 

account. 

Following the work of Murray, we begin by writing the energy cost equation for a single 

arterial tree segment experiencing Poiseuille flow: 

(6.1) 

Where mb is the metabolic power cost of blood, r is the segment radius, I its length, Q its 

volumetric flow and Jl the dynamic viscocity of blood. The total cost of an arterial tree will 

be the sum of these individual segment costs. For an arterial tree consisting of nT segments 

labelled i we write the total cost CT as: 

(6.2) 

In a symmetrically bifurcating tree it is possible to group "layers" of arteries together, so 

that each layer comprises arteries with similar properties (e.g length, diameter, flow). The 

symmetric tree has the advantage, in terms of analysis, that each of of the segments in a 

layer exist at the same bifurcation level. In a real arterial system, this would not be true, but 



6.2 The Symmetrically Bifurcating Tree 113 

it would still be possible to group arteries with similar lengths, radii and flows together. In 

the symmetric tree each layer has i segments, where i is the number of bifurcations which 

occured before that layer (i = 0 at the root segment). We can now rewrite the cost function 

so that the sum now runs over the layers in the tree: 

f . ( 2 8JlQ?I;) Cr = J.. 2' fflb1Cr;I; + ~ 
;=1 1Cri 

(6.3) 

Where i now refers to a particular layer rather than a segment. For a real arterial tree, 

which will not be perfectly symmetric, the 2; term must be replaced by a function N (r, I, q) 

which gives the number of arterial segments with similar radii, lengths and flows. n deter­

mines the depth of the arterial tree, or the maximum number of bifurcations experienced 

along a path from the root to an end node. What is left now is to determine the lengths, radii 

and flows at layer; in the symmetric tree. We begin by noting that, since the tree is symmet­

ric, a bifurcation will split the flow in the parent artery evenly between the two daughters, 

so that: 

(6.4) 

Where Qo is the flow in the root segment of the arterial tree and Q; the flow in the segments 

of layer i. This is a clear consequence of the continuity equation, but is valid only for 

symmetric trees. For asymmetrically bifurcating trees, as is the case in living systems, the 

picture is much more complicated. 

To derive an expression for the radii in layer i of the symmetric tree we begin with the 

radius-flow relationship: 

Q;,;+ I oc r'Yi (6.5) 

Where Qi,H I are the flows in layer i and i + I, and '}1 is the bifurcation exponent associated 

with the bifurcation distal to layer i. This allows us to write the following expression, 

analogous to the one derived by Murray, for the bifurcations leading to the segments in 
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layer i of the tree: 

(6.6) 

Using this equation it is possible to write the radius r; of the segments in layer i of the tree 

in terms of the root radius ro: 
ri -I 

r; = 2- 4j=1 Yj ro (6.7) 

Here it has been assumed that the bifurcation exponents }1 are independent at each bifur­

cation layer of the tree. In Murray's derivation a single optimal exponent was found and 

thought to goven the bifurcations of the entire arterial tree, and in later sections we will in­

vestigate the effects of fixing the bifurcation exponent to a constant value, however to begin 

we will operate on the assumption that they remain independent. 

The final unknown in the cost equation are the lengths of arterial segments in layer i of 

the tree. Experimental data suggest that the length of an arterial segment is proportional to 

some power of the radius, I; oc rf, where the value of the exponent a has been found to be 

very close to 1.0[62]. The equation for the length Ii of an arterial segment in layer i of the 

tree can then be written as a function of the radius rj: 

(6.8) 

Where 10 is the length of the root segment of the tree. We are now in a position to rewrite 

Eq. 6.3 in terms of the derived expressions for radius, length and flow. Inserting Eq 6.4, 6.7, 

and 6.8 into Eq 6.3 we find: 

(6.9) 

') 8J.LQ2/
0 (i -I) . . Where CI = mb1C'o lo, C2 = ~, and q,i = 3 Ej =l Yj -I. ThiS is the energy cost for a 
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symmetric tree consisting of n bifurcation levels. It is expressed purely as a function of the 

layer number i and the value of the bifurcation exponent at that layer '}1. Given this equation, 

we are now in a position to calculate the optimal bifurcation exponents which minimise the 

cost function of the symmetrically bifurcating tree. 

6.3 Optimal Bifurcation Exponent 

In the previous section we derived a simplified cost function for the symmetric bifurcating 

tree (Eq 6.9). In deriving an expression for the radii at level i in the tree, the bifurcation 

exponents '}1 were taken to be independent of one another so that the radii of segments in 

level i are given by Eq 6.7. While this may be a valid choice, experimental data suggests 

that the bifurcation exponent holds some functional dependence on the radii involved in the 

bifurcation[112]. To begin with however, we will calculate the optimal exponent values for 

the case where each '}1 is independent. 

6.3.1 Independent '}1 

Since in this case the '}1 are independent of one another, we can assume that each level of the 

tree achieves its own optimum with respect to the cost function. In precise terms we may 

take the partial derivative of the cost function with respect to 'Yk and set it equal to 0, then 

solve for 'Yk. The derivative of the cost function with respect to 'Yk is given by: 

(6.10) 

Here we have made use of the fact that since q,; = 3 (r.~= 1 rj 1) - i, the sum terms in the 

cost function with i < k will not contribute, so that the sum runs from k to n. To find the 

minimum we set the partial derivatives equal to zero and note that the expression for the 
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partial derivative with respect to 1nis: 

(6.11) 

Solving for q,n, substituting the full expression and rearranging we find that: 

(6.12) 

Which can be easily solved to give an optimum value of 3 for ')1 when i > I and equal to: 

(

I log £.l. ) -1 
11 = 3 2 log~ + I (6.13) 

This is in contrast to Murray's law which states that the bifurcation exponent should be 

3 in all bifurcations, regardless of position in the tree. The difference can be explained by 

noting that in Murray's derivation the optimal radius-flow relationship is derived for a single 

arterial segment, and then this rule is used in the continuity equation to find an expression 

governing the arterial diameters in a bifurcation. In this derivation, the root node flow and 

radius were not assumed to have any particular relation to one another. The optimal radius 

flow relationship as derived via Murrays law is given by: 

(6.14) 

Using Eq 6.14, one finds that g = 2 and so Eq. 6.13 recovers Murray's law throughout 

the entire tree i.e a 1 value of 3 throughout the entire tree. It seems then that deviation 

from Murray's law in the root segment of the tree generates a corresponding deviation in 

the first bifurcation, with regards to the optimal exponent value. This makes sense from 

an optimisation perspective, in so far as the first bifurcation is likely to have the smallest 

overall impact on the cost function. The number of arterial segments grows as i with the 
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layer number i, and since the viscous dissipation grows as I/rt it is likely that the later 

layers in the tree will make comparatively large contributions to the cost function. 

While it may seem strange to perform an analysis which differs appreciably from Mur­

ray's law only when the root bifurcation has a suboptimal radius-flow relationship, there 

are a few reasons why this may important. The first is that there may be physiological sit­

uations which demand a divergence from the optimal radius-flow relationship, which must 

be later "recovered" by the rest of the tree. For instance, measurements of the bifurca­

tion exponents in the largest arteries of the human body have shown a significant deviation 

from the exponent values predicted by Murray[I08]. These deviations have been attributed 

to elastic arterial wall effects[97], pulsatile flow[S] and turbulence[12S]. While the exact 

mechanism of the deviation may be unknown, the recovery of Murray's law in the smaller 

arterioles [ 114] suggests that its effect diminishes far from the heart. As such, there will be 

instances where near laminar flow is supplied into a tree segment from an arteriole which 

does not have the correct radius-flow relationship. The second is that it allows us to examine 

the optimality of various bifurcations under the assumption of laminar flow conditions. 

The analysis of arterial bifurcation exponents can now be peformed with reference to the 

morphometry of the parent artery. Previously comparison would be against either Murray's 

law, or one of the other theoretical derivations performed on single arterial segments[IS6]. 

All comparison methods of this form have the same fault, in that they presuppose the parent 

artery has some fixed radius-flow relationship and asses the bifurcation exponent starting 

from this assumption. The general method is to measure the 3 radii involves in the bifurca­

tion and then perform a linear regression to fit the radii to the equation: 

(6.1S) 

The fitted r value is then compared to the theoretically optimal value. If the radius-flow 

relationship in the parent artery differs from that predicted by the theory, then so will the 
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Figure 6.1: The optimal bifurcation exponent for bifurcations with parent arteries having 
a Q oc ,2 relationship. As the radius of the artery increases the optimal r value decreases. 
lYpically, the carotid artery has a radius of approximately O.3cm. Experimental data shows 
the carotid bifurcation to have an exponent value of :::::: 1.6 [97] 

theoretically optimal bifurcation exponent. In this case, comparison of the measured expo­

nent value with, for the case of laminar flow, Murray's exponent value, is meaningless. In 

order to make a true comparison the morphology of the parent artery must be taken into 

account. 

In fact, if the objective is a comparison of experimental data with the prediction of 

Murray's law, then calculations ofEq 6.15 are undesireable. Instead where possible both the 

radius and volumetric flow in the artery should be measured. This allows a direct calculation 

of the radius-flow relationship, and so a direct comparison to the prediction of Murray's law 

without the issues outlined in the previous paragraphs. 
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6.3.2 Constant r 

We now look at the case of a constant r value throughout the entire tree. This case is partic­

ularly relevant for the study of optimisation algorithms for arterial trees, such as ceo and 

the algorithm presented in this thesis, since they rely upon a fixed bifurcation exponent to 

set the radii in the generated trees. From the previous analysis it is clear that any signifi­

cant deviation from a bifurcation exponent of 3 will result in a higher cost tree, but to what 

extent would depend on the morphometric properties of the root segment. Computationally 

generated trees often take the properties of the root segment as an input, where the values 

for diameter and flow are taken from experimental data. This means that the radius-flow 

relationship in the tree is not guaranteed to be the same as that suggested by the chosen 

bifurcation exponent. 

For constant r it is possible to make the susbtituion 11 = rn in the right hand side of Eq. 

6.10. In this case, all derivates dissapear except for ~~;, which can be set equal to zero and 

solved for rto give: 

( 

1 log £l. ) - 1 

r= 3 2n log~ + 1 (6.16) 

This solution is almost identical to the expression given for the first bifurcation in the case of 

independent r, except for the factor of ~ in the first term of the right hand side. This factor 

is again a result of the larger cost contributions of the later levels in the tree. The log £l. term 
C2 

is entirely the result of the root segment morphology, but for large trees the ~ term ensures 

its effects are barely felt. In the case of very large n, the effect of the root segment is largely 

negated, and for infinite n Murray's result is once again recovered (i.e r = 3 for any root 

segment morphology). 
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Figure 6.2: Optimal bifurcation exponent as a function of log ~ and tree depth n. As n 
increases the optimal exponent value approaches 3, however this approach is lowed for 
large value of ~ . Thi indicate that the optimal bifurcation exponent may depend on the 
specific configuration of the input artery for arterial trees in living organisms. 

6.4 Properties Of Generated Trees 

In thi s ection an inve tigation of the unexplored parameter space of the arterial generation 

algorithm i performed. The re ult of the previous section are also compared again t the 

result obtained for generated tree; pecifically the optimal bifurcation exponent for the 

generated tree i a e ed and compared to the theoretical value. The fractal dimen ion of 

the generated tree are calculated using the box counting method, and their value a es ed 

as a function of both the bifurcation exponent and the boundary conditions of the generation 

algorithm. 

6.4.1 Box Counting Method 

In order to e timate the fractal dimen ion of the generated vasculatures, the method of box 

counting wa employed. Tree generated by the algorithm are first rendered a two dimen­

sional image . The tr e i viewed from above and the image is cropped to minimize white 
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(a) (b) 

Figure 6.3: On the left i an image of a generated tree as viewed from above, cropped to 
minimize white pace. On the right is an example of a thre holded image of the gen rated 
tree, converted to a binary format. 

pace (See Fig. 6.3(a)). The resulting image is then converted to binary form 0 that pixel 

belonging to the tree are colored white and empty space is colored black e.g Fig 6.3(b). 

After thi proce the image are then proce sed using the box counting method. 

The method it elf estimates the fractal dimension of an image by dividing it into box 

of size c. If the box contain an occupied pixel of the image then it is counted, and the 

sum of thi count i determined for the entire image. For boxes of size c the count of boxe 

countaining an occupied pixel i N(c). The estimate of the box counting dimen ion for an 

image S, at box ize c i then given a : 

d· (S) 10gN(c) 
Imbox c == I 

loge 
(6.17) 

The box ize i th n changed, and the process is repeated. The value obtained are then 

plotted, and the gradient of a linear fit is extracted to give an e timate of the box counting 

dimen ion (See Fig. 6.4) . For well behaved fractals, the box counting dimension is exactly 
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Figure 6.4: 10gN(e) vs log k for the example tree of Fig. 6.3(b). The dashed line represents 
the first order fit. The box counting dimension is calculated as the slope of the fitted line. 

equal to the Hausdorff dimension, however in general they are related by the inequality[ 44]: 

dimHaus ::; dimbox (6.18) 

The calculated box counting dimension then also sets an upper limit for the Hausdorff di­

mension. The box counting dimension has the benefit of being the same quantity as that 

calculated for images of in vivo arterial trees, allowing for a direct comparison to experi-

mental data. 

6.4.2 Ites~ts 

The fractal dimension of an arterial tree is a measure of its structure. To characterise the 

effect of a changing bifurcation exponent on the structure of an optimised arterial tree, the 

fractal dimension can be measured. The algorithmn developed in earlier chapters can be 

used to generate arterial trees in the 2D plane. The fractal dimension of these arterial trees 

can then be calculated via the box counting method outlined in the previous section. 
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For each value of the bifurcation exponent and metabolic constant values 5 arterial trees 

consiting of 1024 nodes were generated. The size of the geometry was lOem by lOem and 

the root node had a radius of I mm and input flow of 5 x 1 0-6m3 s-l. The optimisation 

geometry was confined to the 20 plane, but within it there was no node exclusion. A 

sample of the trees produced at each bifurcation exponent and metabolic constant values 

are presented in Fig. 6.5. The effect of changes in the metabolic constant are quite dramatic 

at the lowest values of the bifurcation exponent, but become less apparent at higher values. 

There are obvious structure changes occuring as the bifurcation exponent changes at all 

values of the metabolic constant, with higher values being generally associated with shorter 

segments and more symmetric branching. 

In Fig. 6.6 we show the calculated fractal dimension for the generated trees. While there 

is a significant difference in the appearance of the trees generated for r = 2 at each value of 

the metabolic constant, the difference in the fractal dimension at this r values is minimal. 

This suggests that the bifurcation exponent has a much stronger on the fractal structure of 

the tree than the metabolic constant. Experimental data show that the human retinal arterial 

tree has a fractal dimension of 1.7 [82], and the renal arterial tree a fractal dimension of 1.61 

[30]. Since it is unlikely that a measurement of the branching exponent in the renal arterial 

tree would yield a value less than 2, it appears as though the results of the 20 simulation 

can not be applied to three dimensional arterial trees. However, measurements of the retinal 

arterial tree bifurcation exponent yield a value of 2.65 ± 0.18[82], which aligns with the 

fractal dimension given the current algorithm. It appears then that the basic 2D simulation 

is enough to capture the important aspects of the retinal arterial tree. 

In Fig. 6.7 the generated trees have been altered so that the total number of bifurcations 

is 128 and the end nodes lie on evenly spaced grid points. In addition, the fractal dimension 

has been calculated over a wider range of bifurcation exponents and for different values 
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Figure 6.5: Example tree generated for variou value of the mb and y. While there i a 
large vi ual difference in the tructure of the tree for y = 2.0 at various metabolic constant 
value, the change in fractal dimen ion is relatively small. The fractal dimen ion of the 
tree hould thu be r latively con tant over a variety of length cales, for a fixed bifurcation 

exponent. 
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Figure 6.6: Fra tal dim n ion a a function of bifurcation exponent for arterial tree gen­
erated in a 2D plan . Ea h pint i the average of 5 generated arterial trees. The trees are 
compri d of 1024 n d with a root radiu of 1 mm. The tree were generated for 3 values 
of the metabo li n tant wh r Inb i the physiological value. The fractal dimen ion how 
a near linear incr a with bifurcation exponent. 

of the root rad iu . Th ria clear tructural change occuring in the tree as the bifurcation 

exponent y appr a he a alue f ~ 2, however the exact location of the local peak ('}'tran ) of 

the fracta l dim n i n app ar to change with the values of the root radius . Figure 6.8 haws 

tree of r ot radiu I mm f r va lue of y either side of /'trans. The change in structure i 

apparent i uall a th tr tra n ition from an asymmetric to a symmetric configuration. 

At high r alu r at radiu , the tran ition occurs more sharply, and is potentially 

characteri ed b th app arance of a max imally bifurcating tree (See Fig. 6.9), where all 

the bifurcation tend t ward the arne phy ical position. This indicates that for the length 

scaJe of th ample on id r d, the pecific values of y, Qo and rroot cause the terminal 

egment t be the n rg ti minimum no matter the length. 

A Y tend t ard 0, th lr e tructure becomes maximally asymmetric, with a single 

trunk arter naking thr ugh ach of the end node sites (See left panel in Fig 6.8). This 

i due to th rap id r du ti n in radiu caused by ymmetric bifurcations, which scale as 
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Figure 6.7: Fractal dimen ion calculated for 2D trees (terminal nodes place on grid sites). 
Each curve i for a pecific value of ~, given in the legend. There is a clear anomaly at 

rroot 

around y = 2, where the tructure of the tree changes significantly, though the exact location 
of the local peak of the fractal dimen ion changes as a function of the root radius. 

(a) (b) 

Figure 6.8: Tree generated either side of '}'trans for a root radius of 1.1 mm. There is a clear 
change in the tructure of the tree. Left: y = 1.9, Right: y = 2.1. 
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(a) (b) 

Figure 6.9: Tree generated either side of '}'trans for a root radius of Smm. There is a clear 
change in the tructure of the tree, where at values of y just before the transition, the tree 
ha taken a maximaJly bifurcating form. Left: y = 1.9, Right: y = 2.1. 

2- ~. Since the power co t cale a r-4, for small ya symmetric bifurcation causes a large 

increa e in the energetic co t of the ub equent arterial segments. This regime i then one 

where the power co t dominate. For large y values, the opposite is true, and the tree tend 

toward a maximally ymmetric tructure. 

6.5 Discussion 

The re ult of the analytic analy i of the bifurcation exponent are dis apointing in compar­

ison to the a ailable experimental data for large arteries. At the e length cale it i po ible 

that term taking account of pul atile flow and elastic arterial wall effects are required in 

the energetic co t function, however inclusion of these term would potentially exclude the 

po ibility of a clo ed form olution. For smaller arteries the results are inline with tho e 

found in the literatur , that i that the optimal bifurcation exponent is clo e to 3. It i clear 

from the analy i that experimental inve tigations of deviations from Murray's law mu t 
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take account of the blood flow through a bifurcation in addition to the diameters. As was 

shown, blood flow through a parent artery can dramatically affect the theoretically optimal 

exponent for a bifurcation. Conclusions drawn from exponent data extracted solely from 

radii must therefore take this into account if a claim of deviation from Murray's law is to be 

asserted. 

The computationally generated trees have optimal bifurcation exponents in line with 

those predicted by the analytic calculation for constant y. The minor differences between the 

two can be explained by the difference in the radii-length relationship between the generated 

tree and the analytic model, as well as differences in the average bifurcation asymmetry. 

The fractal dimension calculations performed on the generated trees show that the bi­

furcation exponent is the most dominant factor in controlling the overall structure of the 

tree. That the fractal dimension of the generated trees can be used to correctly predict the 

bifurcation exponent of the retinal arterial tree is further confirmation of the validity of the 

arterial generation algorithm. The generation of a full three dimensional renal arterial tree 

with subsequent fractal dimension analysis and comparison to experimental data would pro­

vide further validation of the model. The striking change in structure which occurs suddenly 

as a result of changes in the bifurcation exponent suggests that arterial trees with exponents 

either side of this transition possess a fundamental difference. The exact details of this 

difference warrant further investigation. 

6.6 Summary 

In this chapter I have developed an extension to Murray's law which provides an analytic 

expression for the optimal bifurcation exponent of an entire symmetric arterial tree. The 

model is developed to take account of both independent values of y and a constant value 

throughout the tree. 

The parameter space of the generated arterial tree was more fully explored by the anal-
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ysis of trees generated with end nodes placed upon grid points. The asymmetry parameter. 

optimal exponent value and fractal dimension of the generated trees were calculation and 

the implications of their values discussed. 



Chapter 7 

Conclusions and Future Work 

In this chapter I summarise the main results of the thesis and their implications, as well 

as discuss possible future avenues of research and possible applications of the algorithm 

developed in this work. 

7.1 Conclusions 

A fundamental goal of this thesis was to develop a simple, global optimisation algorithm 

capable of generating large scale arterial trees for complex geometries derived from medical 

imaging. While this target was successfully achieved, the cerebral vasculatures generated by 

the algorithm were lacking in both morphometric and structural accuracy. Possible reasons 

for this were detailed in the discussion section of Chapter 5, and in the following sections 

various future modifications and extensions to the algorithm will be discussed. In some 

cases these changes represent overall improvements to the algorithm (e.g more accurate fluid 

dynamics) which may become feasible as computational power increases, or be currently 

applicable for arterial trees with small numbers of bifurcations. 
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7.1.1 Global Optimisation Algorithm 

This thesis developed a simple, physiologically based model of arterial tree which could be 

entirely framed as an optimisation problem. In previous models such as constrained con­

structive optimisation (CCO), the inclusion of complex geometries necessitated the addition 

of ad-hoc rules which were separate to the optimisation; in contrast, the algorithm devel­

oped in this thesis produces arterial trees purely from optimisation principles. In addition, 

to the knowledge of the author, the algorithm developed in this thesis is the first to allow for 

the possibility of a globally optimal solution to be reached, and as a result is the first to pro­

duce arterial trees with a consistent arterial structure when provided with different starting 

conditions (random number seeds). 

At the time CCO was first developed the available computational power dictated its 

construction: it was not possible to globally optimise trees of appreciable size given the 

existing hardware. The decision to produce an iterative algorithm was deliberate, and the 

consequences were discussed in the original paper of Schreiner et. al[118]. Since then, the 

decision does not appear to have been reconsidered publicly outside of the current work. 

While the development of an algorithm which can produce globally optimal arterial trees 

is interesting in its own right, without validation against arterial trees of living organisms it 

would have limited applications. 

7.1.2 Coronary Vasculature 

In Chapter 4 the arterial generation algorithm was used to produce arterial trees for a sim­

plified ellipsoidal model of the human heart. The results of the simulation were compared 

both morphologically and visually with in-vivo data. The morphological results represent 

an improvement vs those previously achieved by optimisation methods, but perhaps the 

more striking result was the consistely correct positioning of the larger coronary arteries. 

This suggests that the evolutionary pressure towards energy minimisation was a large driv-
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ing force in the organisation of the coronary vasculature in adult humans. While this may 

previously have been assumed to be the case, it is difficult to imagine a more convincing 

demonstration of its validity. 

7.1.3 Cerebral Vasculature 

The results obtained for the cerebral vasculature are less impressive than those of the coro­

nary vasculature. The mophometric and visual comparisons are less convincing, and this 

could be due to a variety of reasons. The first and most obvious is that the brain may not 

have been subject to the same energy minimisation pressure as the heart. The heart can 

undergo large variation in blood flow due to exercise[32], and myocardial tissue requires 

a much higher level of blood flow than even grey matter. In addition, the large quantity of 

grey matter in the human brain evolved rapidly [99], and so may be less optimised as a result. 

Nevertheless, the cerebral trees produced by the algorithm are, to this authors knowledge, 

the first vasculatures to be generated in geometries obtained from medical imaging, purely 

using optimisation criteria. It may well be that this type of algorithm is innarppriate for the 

cerebral vasculature, however reaching this conclusion will take further work. 

The complexity of the cerebral topology is yet another potential source of the model 

innacuracy. High levels of curvature in the folds of the brain, combined with a larger overall 

tissue volume than that found in the heart may also have contributed to the lack of morpho­

logical and structural accuracy. 

7.1.4 Stroke Model 

The stroke model was successfully extended to use trees derived from the arterial genera­

tion algorithm. As a side benefit, this will also allow for trees generated by other means 

(e.g extract from MRI imaging or generated from a morphological database) to be used 

with the stroke model. The result of changing from a perfectly symmetric to an assymetric 
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arterial tree topology was that of a reduced level of cerebral ischeamia, suggesting that cere­

bral arterial trees with higher levels of branching symmetry are potential more at risk from 

stroke. 

The performance of the stroke model was improved by three orders of magnitude for 

solid emboli and an order of magnitude for gaseous emboli, allowing for potential real-time 

clinical applications. In addition, an analytic approximation was developed which would be 

capable of providing instantaneous esimations of the potential arterial blockage. 

7.2 Future Work 

While the develop arterial tree model was adequate for the coronary vasculature grown on 

an ellipsoid model of the heart, it is clear that further work will be required if it is to be 

reliably applied to other organs, in particular the brain, and this is a clear focus for further 

development. 

7.2.1 Cerebral Vasculature 

If the cerebral vasculature is indeed vestigal to large degree then it will not be possible to 

generate accurate arterial trees using the algorithm presented in this thesis. However, in 

order to fully rule out the possibility it will be necessary to perform further computational 

experiments. The first and simplest to undertake is to generate trees for a large number of 

simulated annealing steps, for various numbers of nodes; this work is already underway. 

The acquisition of either the raw data of Wright et. all 144] or new cerebral arterial tree 

data would be highly beneficial, so that an analysis in terms of diameter defined strahler 

order (as performed for the cerebral arterial tree) could be performed. This is preferable 

to the branching order categorisation performed by Wright et. al as it compensates for the 

potentially large variation in diameter of arteries assigned similar branching indices. 
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Another possible extention would be to assign 3 inputs to the arterial tree generation 

algorithm, and to fix the perfusion territories of these inputs so that they correspond to 

the middle, posterior and anterior cerebral arteries. This would undoubtedly improve the 

results of the algorithm but represents a significant deviation from its original intention; 

however, it is perhaps reasonable to assume that if there are vestigal effects present in the 

cerebral vasculature, that they would be found near the Circle of Willis. This was originally 

considered but was excluded in favour of a single input in order to allow for the potential to 

draw a definite conclusion regarding the optimality of the cerebral vasculature. Nonetheless, 

it is a worthy avenue of potential research. 

7.2.2 Fluid Dynamics 

An obvious extension to the current model would be to include higher order fluid dynamics, 

or at first to matain the current poiseuille dynamics but allow the terminal node flows to 

vary. The current algorithm is capable of the latter currently, however it was disabled early 

on the grounds of computational efficiency. However, the capability could be re-enabled 

and used to investigate the effect for smaller two dimensional trees (e.g the retina). 

In order to allow for higher order fluid dynamics the calculations would certainly have 

to be parallelised extensively for use on a computing cluster. The number of simulated 

annealing steps required for even small trees necessitates this. An accurate fluid dynamics 

simulation performed on a tree optimised using the poiseuille flow equations would also 

be an interesting avenue of research, where the laminar flow assumptions could be more 

fully verified and perhaps the trajectory of individual emboli through the tree could be more 

accurately assessed. 
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7.2.3 Blood Supply 

Currently the algorithmn employs the simplified "microvascular black box" formalism to 

associated tissue volumes to terminal sites in the generated tree. This implies that there is 

no crossflow between branches of the arterial tree, and that within a given radius all tissue 

is supplied with an equal amount of blood from a given terminal site. These assumptions 

are clearly incorrect, and lead to an overestimation of the number of a terminal sites (and 

blood flow) required to supply a given volume of tissue. A simple modification would be 

to replace the fixed radius of supply with a function which decays with distance away from 

the end node. The difficulty arises from determining the form of this function. Acquiring 

organ specific data documenting the volume of tissue associated with an arterial segment 

of given size, for a specific organ, would allow an empircal estimation of this blood supply 

function. The algorithm could then be modified to include it. Obtaining such data however 

would represent a significant research challenge, and there are certainly more immediately 

available improvements to be had. 

7.2.4 Other Organs 

This thesis explored only the vasculatures of two organs in the human body. Both the liver 

and kidneys have unique vasculatures that represent a potential application for the current 

algorithm. The major difficulty in this regard lie in obtaining extensive morphological data 

for the purpose of comparison. As a first step it would be possible to simply perform visual 

inspections against both vascular imaging data and the representative images presented in 

various textbooks, but this is far from rigorous and true validation will require detailed 

measurements. 
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7.2.5 Bifurcation Exponent 

The analysis presented in Chapter 6 of the optimal bifurcation exponent for a symmetrically 

bifurcating tree is another area worthy of further investigation. The fluid dynamics included 

in the energetic cost function were again poiseuillian, and there were no further terms in­

volving energy dissipation (such as pulsatile flow). The addition of further terms may lead 

to more complex behaviour of the optimal exponent as a function of arterial segment radius. 

Further analysis may also lead to solutions involving more complex functions, where in the 

analysis presented the variation of the exponent was limited only to completely indendent 

and constant values. 

7.2.6 Stroke Model 

The results of the stroke model simulation suggest that branching asymmetry could be an 

important factor in the assessment of damage likely to occur during an embolic event. The 

use of clinical embolus sizing data in conjuction with the more accurate cerebral vasculature 

represents the next steps in this avenue of research. In addition, the spatial correlation 

of blockages is yet to be fully analysed, and would allow the determination of whether 

branching asymmetry results in more tightly focussed volumes of blockage. 
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