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ABSTRACT 

The problem of fatigue crack growth accelcration was investigatcd in crack propagation studics and 

endurance testing. The study was driven by the necds of designers and researchers alike, to provide 

a better undcrstanding of the mechanisms associated with accelerated growth, and 

recommendations on the use of Miner's rule to calculate fatigue life under variable amplitude 

loading. 

The study was conducted on S355 structural steel and 6082 T6 aluminium alloy using centre-crack 

tension (CCT) specimens, with and without additional welding, and longitudinal fillct weldcd 

specimens. Crack growth rates undcr simple scqucnce loading and more complex variablc 

amplitude (V A) loading, all cycling down from fixed tcnsilc stress levels, were determincd using 

optical or direct current potential drop mcthods and scanning elcctron microscope examination of 

fracture surface striations. 

Under simple loading sequences, comprising two magnitudcs of stress range, the presence of 

tensile underloads resulted in accelerated growth rates compared with those based on constant 

amplitude (CA) loading. Various possible mechanisms to explain crack growth acceleration and 

factors that might influence it, notably crack closure and welding residual stress, were evaluated. 

The most promising outcome came from finite element analysis (FEA) of the crack tip stress and 

strain. This showed that whereas undcr CA loading the material near the crack tip cyclcd about 

zero mean stress, the mean stress was tensile after the application of a tensile underload, thus 

resulting in a higher crack growth rate. 

Fatigue endurance testing of welded joints performed under the same types of loading confirmed 

that Miner's rule overestimated the actual lives, consistent with the occurrence of accelcration. 

Thus, it was concluded that modification of the principle and application of Miner's rule is required 
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to allow for stress interactions that cause crack growth acceleration. Preliminary design 

recommendations were made. 
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SYMBOLS AND DEFINITIONS 

Symbol 

0. 

tJ.Ketlih 

tJ.Keq 

tJ.K, In tJ.K (J 

tJ.Se{f, tJ.aejf 

tJ.SCq 

o 

Definition 

Non-dimensional crack length (~) and Kinematic hardening 

Acceleration factor 

Rate at which c is reached during kinematic hardening 

Range of stress intensity factor 

Effective stress intensity factor range 

Effective stress intensity factor range at threshold 

Equivalent constant amplitude stress intensity factor range 

Threshold value of tJ.K for crack propagation to occur 

Effective stress range 

Equivalent constant amplitude stress range 

Plastic strain amplitude 

Strain 

Elastic strain 

Plastic strain 

Fatigue ductility coefficient 

Strain in X direction 

Strain in Y direction 

Angle 

Units 

Strain 

N/mmJ/2, MPa.mo.s 

N/mm3/2
, MPa.mo.s 

N/mm3/2
, MPa.mo.s 

N/mm3/2
, MPa.mo.s 

N/mm3/2
, MPa.m°.5 

N/mm2, MPa 

degrees 
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Symbols and Definitions 

Distance between inner and outer supports mm 

Linear attenuation coefficient 

microstrain 

Constant (3.14159 ... ) 

Corrected stress 

Stress tensor 

Nominal stress 

Stress in X direction N/mm2, MPa 

Stress in Y direction 

Maximum residual stress in Y direction 

Stress in Z direction 

Miner rule summation 

v Poisson's ratio or Displacement (in the y direction) -/mm 

Centre-hole biaxial interaction constant 

a Length of edge crack, depth of semi-elliptical surface 

crack or half length of through-thickness crack mm 

ii A verage crack length mm 

ai Initial crack length mm 

Final crack length mm 

a/2e Elliptical crack front aspect ratio 

A,C Material constants for crack propagation equation 

h Rate at which Q is reached during isotropic hardening Strain 

B, T, t Thickness mm 

c Fatigue ductility exponent, or, Maximum hardening level -
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d 

daldN 

daldNMinor 

daldNMajor 

D 

Dum 

E 

F 

h 

hkl 

H 

I 

10 

K 

Kc 

above the initial elastic limit during kinematic hardening 

Diffraction angle 

Material values in the unstressed condition 

Crack growth rate 

Crack growth rate for minor cycles 

Crack growth rate for major cycles 

Lattice spacing 

Damage sum from Miner's summation 'i..nlN 

Prescribed limit of the fatigue damage value 

Young's modulus 

Force 

Maximum force 

Planck constant 

Crystallographic plane (Miller indices) 

Isotropic hardening coefficient 

X-ray beam intensity 

X-ray beam energy 

Stress intensity factor 

Stress intensity factor under mode I loading 

Material fracture toughness 

Plane strain fracture toughness 

Maximum stress intensity factor 

Crack opening stress intensity factor 

Peak stress intensity factor 

Symhols and Defillitioll.'! 

degrees 

mm/cycle-1 

mm/cycle- 1 

mm/cycle-1 

Angstroms 

kN 

kN 

Photons per unit 

time detected 

keY 
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Kt 

m 

n 

Noc 

p 

Pi 

q 

Q 

r 

Stress concentration factor 

Geometric mean of the stress concentration factor 

Geometric mean of the strain concentration factor 

Exponent for crack propagation, or, 

Inverse slope to Log Sr - Log N curve 

Value of m for 5X)06 < N ~\O8 cycles 

Neutron mass 

Magnification factor for weld toe crack 

Magnification factor at maximum depth of weld toe crack 

Magnification factor at the tips of semi-elliptical weld toe 

crack on plate surface 

Number of cycles applied 

Cycles to failure under CA or V A loading 

A verage endurance 

Blocks to failure 

Load reversals to failure 

Constant amplitude endurance corresponding to Sac 

Pressure 

Relative stress range used in V A loading spectra 

Notch sensitivity index 

Maximum hardening level above the initial elastic limit -

during isotropic hardening 

distance from crack tip 

Plastic zone size or Plastic zone radius 

Cyclic plastic zone size or Cyclic plastic zone radius 

Symbols and Definitions 

meV 

Cycles 

Cycles 

Cycles 

N/mm2, MPa 

mm 

mm 

mm 

x 



R 

RpO.2 

S 

Stress ratio (Smi,/Smux) 

0.2% proof strength at test temperature 

Stress or Stress range 

Equivalent stress 

Maximum stress in cycle 

Mean stress in cycle 

Symhols and DefinitiollS 

N/mm2, MPa 

N/mm2, MPa 

N/mm2, MPa 

N/mm2, MPa 

N/mm2, MPa 

Soc Constant amplitude non-propagating stress range at 107 cycles N/mm\ MPa 

SOP 

Sr. !1S 

SrmlLT 

s. .. s. YS. ".vs 

Stress at which a crack opens 

Stress range 

Effective stress range 

Maximum stress range 

Yield stress (or 0.2% proof stress) 

Time of flight 

Tan, Cos, Sin Trigonometric function 

U Fraction of load cycle for which a crack is open 

V. Vr 

w 

Xpeak 

Y 

Yo 

ACPD 

AL 

BC 

Measured voltage 

Specimen width 

Offset used for un-symmetrical ".~y mux measurements 

Geometric function of crack size and shape 

Lead spacing used in direct potential drop 

Alternating current potential drop 

Aluminium plate specimen 

Boundary condition 

N/mm2, MPa 

N/mm2, MPa 

N/mm2, MPa 

N/mm2, MPa 

N/mm2, MPa 

Seconds 

Volts 

mm 

mm 

mm 
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BCAL 

BOP 

CAFL 

CAL 

CAT 

CCT 

CEV 

CL 

COD 

CT 

CTOD 

DCPD 

D-OES 

EDM 

EPD 

FCGR 

FEA 

FEGSEM 

FIL 

HAZ 

HCF 

lep-OES 

LCF 

LD 

LEFM 

Symbols and Definitions 

Block constant amplitude loading 

Bead on plateCA Constant amplitude 

Constant amplitude fatigue limit 

Constant amplitude loading 

Computerized axial tomography 

Centre crack tension 

Carbon equivalent value 

Used to indicate a specimen used for crack closure measurement 

Crack opening displacement 

Compact tension 

Crack tip opening displacement 

Direct current potential drop 

Direct optical emission spectrometry 

Electrical discharge machining 

Electric potential difference 

Fatigue crack growth rate 

Finite element analysis 

Field emission gun scanning electron microscope 

Used to denote a plate specimen with fillet welded attachments 

Heat affected zone 

High cycle fatigue 

Inductively coupled plasma optical emission spectrometry 

Low cycle fatigue 

Longitudinal direction 

Linear elastic fracture mechanics 
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MMA 

MT 

NO 

OLR 

PM 

R 

RES 

SBL 

SCF 

SEM 

SENB 

SIF 

ST 

TO 

TIG 

ToF 

UTS 

VA 

VAL 

WM 

XCT 

,u-CT 

Manual metal arc 

Middle tension 

Normal direction 

Overload ratio 

Parent material or parent metal 

Symbols and Definition . ., 

Indicates a CCT specimen with weld beads deposited (Residual stress) 

Indicates a specimen used for residual stress measurement 

Single block loading 

Stress concentration factor 

Scanning electron microscope 

Single edge notch bend 

Stress intensity factor 

Steel plate specimen 

Transverse direction 

Tungsten inert gas 

Time of flight 

Ultimate tensile strength 

Variable amplitude 

Variable amplitude loading 

Weld metal 

X-ray computed tomography 

Micro-computed tomography 
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Chapter 1 

INTRODUCTION 

1.1 OVERVIEW 

This research project was sponsored by the Integrity Management Group (lMG) at TWI Ltd, one of 

the world's foremost independent research and technology organisations for welding and joining. 

TWI is a membership-based not-for-profit organisation that provides a technical consultancy 

service across several industry sectors. The project was funded through TWI's Core Research 

Programme, which is one of the ways that TWI uses the fees paid by its members. 

The project addresses a practical design problem associated with the calculation of the fatigue life 

of a welded structure or component subjected to variable amplitude (VA) loading. In particular, 

under some loading conditions the widely used simple linear damage accumulation method 

('Miner's rule'), that assumes a stress cycle produces the same damage under VA loading as under 

constant amplitude (CA) loading, proves to be unsafe, in that the actual life is less than that 

estimated (Gurney, 2000; Berger et al., 2002; Zhang and Maddox, 2009). This is thought to be due 

to some form of stress interaction that causes fatigue crack growth acceleration. The main aim of 

the project was to identify the mechanisms involved with a view to deriving improved design 

guidance that will enable more accurate fatigue life estimations to be made for spectrum loading 

conditions that produce crack growth acceleration. 

1.2 FATIGUE DESIGN 

The structural design of components or structures should allow for all relevant potential failure 

modes, such as fracture, buckling, creep or fatigue, by suitable choice of material, dimensions and 
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manufacturing method. Fatigue is relevant if the component or structure will be required to sustain 

varying applied loading. Mechanical fatigue has been found to be one of the most common failure 

mechanisms in engineering structures, accounting for 50 - 90% of all mechanical failures 

(Stephens et al., 2001). Fatigue is of particular importance in welded structures because the fatigue 

strength of a welded joint can be considerably lower than that of the parent material (Gurney, 

1978). This is because of the inevitable introduction of severe stress concentration features, notably 

at the weld toe, from which fatigue cracks readily propagate, with the result that the majority of the 

fatigue life is spent propagating a crack whereas most of the life of the un-welded material is spent 

initiating a fatigue crack (Maddox, 1974). 

Fatigue design is most commonly based on the use of fatigue resistance data in the form of S-N 

curves. These are curves fitted to the results of fatigue tests performed on relevant specimens under 

CA cyclic loading. This is loading that varies between fixed upper and lower limits, the difference 

between them being the stress range (twice the amplitude). These test results are plotted in terms of 

the applied stress range (S) versus the number of cycles of applied load to failure (N). 

In reality, most structural components are required to sustain VA fatigue loading in service rather 

than the simple CA loading used to derive the S-N curves. The most widely used method for using 

such S-N curves to design components that will be required to sustain V A loading is the Palmgren-

Miner linear cumulative damage rule, or Miner's rule as it is more often called (Miner, 1945). This 

is based on the assumption that the number of cycles (n) applied at a particular stress produces 

nlN ths of the damage required to cause failure, where N is the fatigue life obtained under CA 

loading at the same stress. Thus, the rule states that failure will occur when the sum of all ratios nlN 

equals unity, Eq. [1.1.1]. 

nl n, n3 n." n -+--+-+ ... +-' = ~_' =1 
NI N2 N3 Ni i Ni 

[1.1.1] 

where, Ni values are obtained from the relevant CA S-N curve. 
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The above relationship can also be related to a fracture mechanics analysis of crack propagation 

under VA loading, over the life of a crack or until a pre-defined critical size is reached (Maddox, 

1991) using Eq. [1.1.2]. This is further discussed in Chapter 2. 

a 
f da m m f = CS n + CS n + ........ 

( 
r-'yn I I 2 2 

a. Yv;ra) 
I 

[ 1.1.2] 

where, ai and afare the initial and final crack size, SI, S! ..... and ni, n! .... are successive stress 

cycles at corresponding endurances, Y is a geometric factor and C and m are material constants. 

In view of the scatter inherent in fatigue test data, Miner's rule can only be expected to provide 

estimates of fatigue life. However, in reality such estimates can be significantly different from the 

actual lives obtained under V A loading. In some instances the rule has been shown to be overly 

conservative, with actual lives considerably higher than estimated. However, of much greater 

concern are cases where it has been found to be unsafe, with actual lives significantly less than 

estimated (Tilly, 1985; Vormald and Seeger, 1991; Dahle, 1993; Tubby et al., 1996; Gurney, 1985, 

1992, 2000 and 2006; Berger et al., 2002; Zhang and Maddox, 2009). These discrepancies are 

generally thought to arise from the assumption of linear damage accumulation when, in fact, there 

is some interaction between applied stresses that gives rise to either faster or slower crack growth 

than that obtained under CA loading, as assumed by the rule. Since the majority of the fatigue lives 

of welded joints are spent propagating cracks, such interactions are expected to be particularly 

significant in relation to their fatigue design. 

1.3 OBJECTIVES AND APPROACH 

The project aims to provide a better understanding of the factors that lead to unsafe life estimates 

and how they can be allowed for in fatigue design. To this end the following objectives and 

approach were adopted. 

a) Review existing published literature to ascertain the factors which lead to unsafe fatigue life 

estimates, with a view to providing necessary background information and an indication of the 
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current status of research which has addressed the same or similar problems to those being 

considered in the present project. 

b) Perform fatigue testing under simple loading conditions expected to produce crack growth 

acceleration. 

In order to allow close examination of the effect of stress changes on crack growth, the tests 

were conducted on centre-cracked tension (CCT) plate specimens in which crack growth rate 

could be measured or deduced by subsequent examination of the fracture surfaces. Simple 

loading spectra with two magnitudes of stress were used. 

c) Investigate the mechanisms associated with crack growth acceleration with a view to 

determining the primary cause. 

Finite element analysis was conducted to assist in the establishment of the primary mechanism 

involved in causing crack growth acceleration. As understanding of crack growth acceleration 

in welded joints and components was of prime concern, the effect of residual stress was also 

investigated along with the significance of crack closure under the form of loading used. 

d) Perform comparative endurance fatigue testing of CCT and fillet welded specimens under 

variable amplitude loading spectra. 

Both Miner's rule damage summations and crack growth acceleration factors were used to 

establish the performance of specimens tested under the loading spectra used. The extent of 

crack closure as well as measured and calculated crack growth rates were also investigated. 

e) Discuss the implication of the results on current fatigue design and provide recommendations 

on design guidance to allow for fatigue crack growth acceleration under variable amplitude 

loading. 

The test specimens were made from a medium strength structural steel and an aluminium alloy of 

the types widely used in welded structures. To this end, it was considered important to establish 

whether the objectives above (in particular b)-d» result in similar findings for both materials. The 
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use of aluminium alloy also facilitated microscopic examination of fatigue striations on the fracture 

surfaces of test specimens. Necessary mechanical and chemical characterisation tests were 

performed on both materials. 

1.4 STRUCTURE OF THESIS 

Following Chapter 1 the remainder of the thesis IS divided into eight main chapters, with 

References in Chapter 10. 

Chapter 2 gives a comprehensive overview of the problems associated with fatigue of welded 

joints, in particular the use of Miner's rule, the role of residual stress and the influencing factors 

leading to accelerated crack growth under variable amplitude loading spectra. 

Chapter 3 reviews the experimental methods used for studying the effect of craek growth 

acceleration, including techniques used for crack length and residual stress measurement and 

associated errors and uncertainties in their application. 

Chapter 4 provides details of the materials used, the mechanical testing performed on them to 

establish properties relevant to the project and the results of those tests. 

Chapter 5 presents the results of fatigue tests performed under cyclic loading with periodic 

underloads, conditions expected to produce crack growth acceleration. The effects of underload 

magnitude and the presence of welding residual stresses on the extent of acceleration were 

investigated. Different parameters for determining the levels of acceleration were also presented. 

Scanning electron microscopy was used to examine striations on fatigue fracture surfaces to study 

more closely the effect of load changes on crack growth rate. 

Chapter 6 examines the mechanisms associated with the crack growth acceleration observed in 

Chapter 5. The significance of crack closure was investigated, along with the effect of residual 

stress. Finite element analysis was used for the analysis of stress/strain close to the crack tip. The 

results of the various studies, including the findings from the striation examination, are discussed 

with a view to identifying the main mechanisms involved in crack growth acceleration. 
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Chapter 7 provides a study of the perfonnance of welded joints under variable amplitude loading 

using spectra designed to promote fatigue crack acceleration. Both crack growth calculations based 

on fracture mechanics and endurance fatigue testing were used to evaluate the perfonnance. 

Chapter 8 reviews the evidence gathered in the previous chapters with a view to identifying the 

main cause of crack growth acceleration and the practical implications on fatigue design. Guidance 

on how it might be allowed for in design was also considered. 

Chapter 9 presents the conclusions drawn from the work performed in this research project and 

provides design recommendations as well as recommendations for future work to continue the 

research perfonned here. 

1.5 APPLICATION OF WORK PERFORMED 

It is expected that the results of the present project will be beneficial to all industries where fatigue 

endurance and fatigue crack propagation rates are fundamental to the design of welded structures 

and components subjected to variable amplitude loading. 

On completion, the research perfonned will be made available to relevant British Standard 

committees to assist in the provision of better guidance on cumulative damage calculations under 

some of the circumstances where crack growth acceleration is likely to occur. 
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Chapter 2 

BACKGROUND AND LITERATURE REVIEW 

2.1 INTRODUCTION 

The following review considers published and other work relevant to the factors which lead to 

unsafe fatigue life estimates, with a view to providing necessary background information and an 

indication of the current status of research which has addressed the same or similar problems to 

those being considered in the present research project. 

Mechanical fatigue is one of the most common causes of structural failure and with it can bring 

severe consequences. It has long been accepted that components and structures subjected to 

repeated or fluctuating loads may fail in service, even if they would normally be able to sustain 

much higher loads in a static manner. Mechanical fatigue is defined as a mechanism of failure 

experienced by materials under the action of a fluctuating/repeated stress. It involves initiation and 

propagation of a crack under the action of repeated stresses well within the static capacity of the 

material (Forrest, 1962). With regard to fatigue properties, the magnitude of a repeatedly applied 

stress that causes failure after a specified number of applications is termed the fatigue strength, 

while the number of repetitions at an applied stress that leads to failure is termed the fatigue life. 

One of the dangers of this failure mechanism is that generally there is no prior indication of 

impending failure in the form of visible deformation in the region of fracture, even for ductile 

materials. Similarly, the progressive growth of a fatigue crack may be effectively undetectable until 

shortly before it reaches a critical size and failure occurs. 
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In addition to mechanical fatigue, other forms of fatigue include thermal, rolling contact, corrosion 

and fretting (Suresh, 1998). The focus of the current research is on mechanical fatigue and from 

hereafter is simply referred to as fatigue. 

When considering metallic structures, welding is the most common joining method. Consequently, 

an understanding of fatigue of welded joints has been the subject of substantial research. Examples 

of industrial applications of welding where fluctuations of the working stress can arise are offshore 

structures for oil and gas recovery, bridges, cranes, handling equipment, masts, process equipment, 

vehicles and ship structures. A significant feature of welded joints is that they can have 

considerably lower fatigue strengths than that of the un-welded material (Gurney, 1978). In view of 

this, special attention must be paid to the avoidance of premature failure by fatigue in welded 

components and structures, typically using standards such as BS 7608 (BSI, 2014), DNV-RP-C203 

(DNV, 2012), Eurocode 3 (BS EN, 2005), Eurocode 9 (BS EN, 2007) and BS 7910 (BSI, 2013). 

There are two main approaches that are used for calculating the fatigue lives of components, based 

on cumulative damage (safe-life design) or crack propagation analysis (damage tolerant design) 

(Codrington, 2008; BSI, 2014). The former utilises the cyclic stress or strain range to characterise 

the total life to failure. Generally, the presence of any existing flaws is ignored. This means that 

the predicted fatigue life includes the number of cycles to initiate as well as propagate a crack. A 

particular disadvantage of this technique is the wide scatter in calculated fatigue lives. Such scatter 

can be attributed to the inconsistent nature of the crack initiation phase, which is highly dependent 

on the material microstructure and manufacturing procedures employed (Codrington, 2008). The 

latter, damage tolerant design, is based on the use of fracture mechanics principles to describe 

crack propagation from a known or assumed initial flaw or defect, providing knowledge of the 

fatigue crack growth in relation to the component/detail geometry, and applied cyclic loading. As 

such, the initiation phase is ignored, resulting in a reduction in the scatter in life predictions. Even 

so, the actual fatigue life may be very different from the calculated, depending on the accuracy of 

the initial flaw size measured. 
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2.2 CYCLIC STRESS-STRAIN RELATIONSHIPS 

2.2.1 STRESS-LIFE (S-N) 

During the 1850s and 1860s a German engineer carried out pioneering tests in an investigation into 

fati gue of railway ax les by use of rotating bending pecimens (Wohler, 1870). Plotting the result 

of these tests in terms of the applied cyclic stress and the number of applica tion to fa ilure led to 

the establishment of the Wohler curve, or as it is more often known the stress/endurance curve (S-N 

curve), one of the empiri cal laws of fa tigue behav iour (8 amby, 1972). These are still u ed today as 

the main method for presenting fa tigue test data obtained under any type of loading. Such test 

results are the main source of design data fo r avoiding fa tigue. Testing i not limited to rotating 

bending and modem equipment allows tests to be performed under ax ial, bending or tor ional 

loading. Such tests may be perfo rmed under what are termed constant amplitude ( A) or variable 

amplitude (V A) loading, the fo rmer being repeated loading between fi xed limit and the latter 

loading between varying magnitude limit (see Figure 2.2. 1); instances where loading uch as that 

in Figure 2.2 .1 occur are given later in Chapter 8 Section 8.3 . 

.... 
E 
E 
Z 

Endurance, cycles 

Figure 2.2.1 Variable amplitude loading showing vwying magnitude limits. 

However, basic reference data for use in fa tigue design rul es are obtained under CA loading. In 

such tests the applied load typica lly varies with time in a si nusoidal manner to give a constant 

cyclic stress range whi ch is twice the amplitude (see Figure 2.2.2). When testing in air under CA 
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load ing, steel s have what is termed an 'endurance limit ', or, a constant amplitude fatigue limit 

(eAFL). 

N ~a 
E ~ ____ ~~ ____ ~ __ -r __ ~+-__ ~~ 
E 

---Z 

amean 

le cle 

Endurance, cycles 

Figure 2.2.2 Sinusoidal waveform giving a constant cyclic stress range. 

This is a point at which a structure can sustain repeated load ing at a particular stress (sometimes 

temled the non-propagating stress range (Sac)) below which there will be no propagation. Various 

assumptions are made about the corresponding endurance (Nod, typically ranging from 2 x 106 to 

107 cycles, but 107 cyc les is assumed in most modem design standards (BSI, 20 14), see Figure 

2.2.3. 
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Figure 2.2.3 Typical S-N relationship for welded joints. 
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It should be noted that Figure 2.2.3 is typical for welded joints where life is dominated by crack 

growth propagation. In the case of S-N curves for plain materials where crack initiation dominates, 

the slope of the curve, m, typically has a much shallower gradient with no identifiable knee-point 

(Suresh, 1998). 

The S-N curve is typically plotted on log-log scales, which generally produces a straight line 

relationship that can be expressed as: 

Log N = log A - m log S 

or, S" N= A 

[2.2.1 ] 

[2.2.2] 

where m and A are material constants. When considering welded structural steels it is usual to 

consider the slope of the curve (m) as 3.0, which is a reasonable average and normally used in 

fatigue design of welded joints (BSI, 2014). For design purposes use is made of S-N curves that 

relate to the lower bound of the test data. The most widely used is set two standard deviations of 

log N below the mean. 

Most fatigue design rules use a classification system that involves a series of S-N curves to cover 

the range of potential fatigue strengths, each being relevant to one or more specific weld detail. The 

classification of the detail(s) is referred to by letters (e.g. BS 7608:2014) or a number 

corresponding to the fatigue strength at a specified fatigue life, usually 2 x 106 cycles (e.g. category 

90 in the Eurocode scheme refers to a fatigue strength of 90N/mm2 at 2 x 106 cycles). Under VA 

loading, the S-N curve is usually extended beyond Noc at a shallower slope. In BS 7608 the curve is 

first extrapolated without a slope change to what is termed the slope transition point endurance 

(No v) of 5 x 107 cycles corresponding to stress range Sov. This is to take account of the stress 

ranges below Sac, but exceeding 5N/mm2
, which under VA loading can contribute towards fatigue 

damage (BSI, 2014). 

The stress-life method is used extensively in applications where low amplitude cyclic stresses 

induce elastic deformation in a component designed for long life i.e. High Cycle Fatigue (HeF) 

(Suresh, 1998). 
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2.2.2 STRAIN-LIFE (e-N) 

In some applications, engineering components undergo plastic deformation as a result of the 

application of high amplitude cyclic stresses or their production at locations of high stress 

concentrations. For such instances it is more appropriate to consider strain-life (E:-N) as opposed to 

stress-life (S-N) (Suresh, 1998). 

Realising the important role of plastic strains on fatigue life, Coffin (1954) and Manson (1954) 

independently proposed a plastic strain based continuum characterisation of Low Cycle Fatigue 

(LCF). They noted that a linear relationship for metallic materials was formed when the logarithm 

of the plastic strain amplitude, 6E:J2, was plotted against the logarithm of the number of load 

reversals to failure, 2Nh i.e. 

[2.2.3] 

where Br is the fatigue ductility coefficient and c is the fatigue ductility exponent. 

The strain-life approach is typically applied to plain or machined un-welded components with 

smooth surfaces, or notched components. Evaluation of notched members, in particular the 

deformation that occurs at the notch tip, commonly makes use of an estimate of the corresponding 

local strain. On this basis Neubers Rule (Neuber, 1961) approximates the elastic stress 

concentration factor, Kt. under conditions of plastic deformation and states: 

[2.2.4] 

where Ko and K£ are the geometrical means of the stress and strain concentration factors. 

2.3 CRACK INITIATION 

Microscopic fatigue crack growth is strongly affected by the slip characteristic of the material, 

characteristic microstructural dimensions, applied stress and near-crack tip plasticity (Suresh, 

1998). 
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In nominally defect free (un-notched) metals and alloys, repeated cyclic straining of the material 

leads to different amounts of net slip on different crystallographic glide planes. In practice, a 

limited number of crystallographic planes (due to their unfavourable orientation with respect to the 

maximum shear stress (Lassen and Recho, 2006», are subject to plastic deformation, which in turn 

can result in the 'roughening' of the surface of the material (Wood, 1958). This slip induced 

surface roughening was first documented by Forsyth (1953) whilst working on solution treated AI-

4 wt% Cu alloy. Due to a cyclic strain hardening effect during the reversed stage of a load cycle, 

the crystallographic planes do not slide back into their original position, resulting in yielding of the 

neighbouring planes as they slide in opposite directions. Intrusions and extrusions (valleys and 

hills) are then formed (Figure 2.3.1) following the to-and-fro motion of the slip bands (Forsyth and 

Stubbington, 1955; Cottrell and Hull, 1957); the intrusions then act as micro-cracks for further 

crack extension during the subsequent loading (Lassen and Recho, 2006). 

In the case of engineering structures, the principal sites for the initiation of fatigue cracks are local 

areas of stress concentrations (Suresh, 1998). However, under fatigue loading the presence of a 

notch generally produces a lower stress concentrating effect than predicted by theoretical elastic 

analysis, particularly as the notch becomes sharper and the material becomes softer. This is 

predominantly a result of the notch geometry and material properties which determine the volume 

of material subjected to elevated stresses and the material sensitivity to the local strain gradient 

respectively. 

t l ""', ,. ,. ,. ,. . ,. 
Extrusion 

,. 

,. -. 
, 

,.' 

Intrusion 

t 
Figure 2.3.1 Schematic illustrating the formation of extrusion and intrusion slip band\' during 

loading. 
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By use of the notch sensitivity index (Peterson, 1959) the degree of agreement between theoretical 

analysis and actual effects can be obtained. The index is defined as: 

K f -\ 

q= K -1 
t 

[2.3.1] 

where q varies from zero to unity according to whether no notch is assumed or the full effect 

predicted by the elastic theory is assumed. Kt is a function of geometry and loading mode and Kf is 

determined empirically (Suresh, 1998). 

Particular influences in fatigue cracking are areas of high stress concentration such as material 

discontinuities and manufacturing defects (inclusions). For welded joints stress concentrations arise 

as a result of the weld shape, particularly at the weld toe where it wi11 be intensified as a result of 

undercut or a sharp re-entrant angle. In a stress analysis of welded joints Gurney (1976) found that 

weld toe stress concentrations (Kt ~ amaxl'anom ) in fillet welds ranged from 2 to 5. Other features are 

the weld root condition (caused by partial weld penetration) and residual stress, which is discussed 

later (see Section 2.8). 

The crack initiation stage for welded joints occupies a much smaller proportion of life than that for 

a case such as a plain plate, where surface roughness induced by mi11scale produces Kt close to 

unity with the result that most of the fatigue life is spent initiating a crack. In fact, it can be said 

that in the case of welded joints the initiation stage is almost non-existent (Gurney, 2006). Fatigue 

cracks in welded joints usually initiate at the weld toe where there are very sharp defects which can 

really be regarded as small cracks. Work on fillet welded specimens manufactured from SS 15 

mild steel and BS 968 medium strength steel (Signes et af., 1967) found frequent occurrences of 

tiny (tenths of mm) sharp-tipped slag intrusions along the weld toes, trapped in the region between 

the weld and surrounding plate in partially-melted or pasty metal. Fatigue cracks were found to 

have propagated from such intrusions. 
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2.4 THEORY OF LI NEAR ELASTIC FRACTURE MECHANICS 

2.4.1 LOADING MODES 

The reaction of a crack to applied loading is described in terms of the three possible crack face 

di splacement modes (F igure 2.4 .1 ). 

Mode I represents an opening or tensile mode where the crack surfaces move di rect ly apart. Mode 

I1 represents in-plane shear (s liding) whereby the crack surfaces slide over one another in a 

direc tion perpendicular to the leading edge of the crack. Mode III represents out-of-plane shear 

(tearing) whereby the crack surfaces move relative to one another and para ll el to the leading edge 

of the crack. Where fa ti gue is concerned, traditional fracture mechani cs methods have concentrated 

mainly on cracks growing under opening mode I (La en and Recho, 2006). Thi s work is 

concerned only with mode I loading. 

Mode I 
(Opening) 

Mode II 
(In-plane shear) 

Figu re 2.4.1 Modes of crack surface displacement. 

2.4.2 STRESS INTENSITY FACTOR 

.. 
Mode III 

(Oul-or-plane shear) 

It is well established that the presence of a crack in a stressed solid structure can ea u e it to fa il at 

stresses much lower than the ultimate tensile strength of the material (Maddox, 1972) . The fracture 

process itself takes place in a small region at the crack tip where the material yie lds and a plastic 

zone surrounds it. In theory, it is assumed that the stress concentration at the tip of a sharp crack is 
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infinite and therefore the stress at the crack tip must be infinite. This would suggest that the stresses 

and strains present within the plastic zone (see Section 2.4.4) will be controlled by the surrounding 

elastic stress and strain fields. Thus, provided the plastic zone is small it will not change the elastic 

stress field significantly (Maddox, 1972). 

The modem methods of fracture mechanics started with the elastic stress analysis of cracked bodies 

by Irwin (Irwin, 1957), based on work performed by Westergaard on the stress field surrounding a 

crack in an infinite plate (Westergaard, 1939). Irwin quantified the near-tip fields for the linear 

elastic crack in terms of a stress intensity factor (SIF), K. The SIF incorporates the boundary 

conditions of the cracked body and is a function ofloading, crack length and geometry. If the SIF is 

known, all the components of stress, strain and displacement can be determined as a function of 

distance from the crack tip, r, and angle, B. Using the cylindrical co-ordinate system centred at the 

crack tip, this can be written as: 

[2.4.1 ] 

where a ij is the stress tensor, fij (B) is a dimensionless function of Band K/ is the mode I SIF. 

For an element located at (r, B) near the crack tip (Figure 2.4.2), the leading mode I stress fields for 

cartesian co-ordinates (Westergaard, 1939) are of the form: 

er.« = ~ co{ al - Sin( ~)sif:) J 

er ~ = ~ coG 11 + Sin( ~)sif:) J 

a zz = v(a xx + a yy), in plane strain 

(J':::: =0, in plane stress 
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To characterise a linear elastic crack in the near tip region, it is therefore only necessary to know 

the SIF, K, which can be shown to be related to the applied stress and crack length by: 

K=YS~ [2.4.7] 

where Y is a dimensionless geometric factor which accounts for component geometry, including the 

crack shape, and a is the crack dimension. 

y 

x 

Figure 2.4.2 Schematic illustration of crack lip region under mode flooding. 

2.4.3 PLANE STRESS AND PLANE STRAIN 

In order to simplify the analysis of full three dimensional problems, plane stress and plane strain 

concepts were derived for thin and thick sections respectively. 

Under pfane stress conditions, for a thin plate loaded as in Figure 2.4.3a, the through-thickness 

stress cannot vary as there is no stress perpendicular to the plane of the plate (i.e. (J:: = 0, E::: t o). In 

the case of a thick body (Figure 2.4.3b), due to the increase in cross-section resulting from the 

increase in thickness, the material is constrained in the z direction and E::: is equal to zero (i.e. E::: = 

0, (J:: t o), resulting in a plane strain condition. 
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a) Plane stress (thin body) 

x 
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y 

z 

b) Plane strain (thick bod)~ 

Figure 2.4.3 Schematic sholVing plane stress and plane strain conditions. 

2.4.4 CRACK T IP PLASTICITY 

x 
~ 

Chapter 2 

The method of fracture mechanics depends largely on the stress at the crack tip being either elastic 

or elastic-plastic. Such that, the more plasticity there is the less useful is the elastic parameter K. 

For any brittle fracture or fatigue crack, plastic zones exist at the crack tip where the yield stress 

has been exceeded giving rise to crack tip yielding (Leaity, 1988). The crack tip stress tate (i.e. 

plane stress or plane strain) depends on the size of the plastic zone in relation to the plate thickness 

and crack length. 

Under cyclic loading there are two plast ic zones of relevance. The first is the forward or monotonic 

zone which can be defined as the region of material experiencing plastic defomlation when 

subjected to the maximum load in the cycle, corresponding to K max . The second is the re ersed or 

cyclic zone, which is a small region of material within the forward zone which undergoe re er ed 

pIa ticity (reversed plastic flow) upon unloading to the minimum load (McClung, 1991; Rahgozar 

el al., 2007). Here the plastic zone is influenced by !)'K, stress state and material behaviour. 

An approximate estimate of the size of the plastic zone at the tip of a crack < ee Figure 2.4.4) \ as 

obtained by [rwin from his elastic solution for the stress field around the crack tip <In in, 1958). 
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Based on hi s findings lrwin found that the zone extends a distance 111 front of the crack tip 

corresponding to: 

[2.4.8] 

where O"S is the yield strength of the material and /3=2 for plane tress or 6 for plane strain . rp is 

generally defined as the plastic zone radius, there fore a pl astic zone is typica lly twice that given 

here. 

However, there are a number of olh r factors which may influence the size of the pl asti c zone. 

These include the strain hardening or softening characteristics of the materi al and the tre tate. 

Under plane strain conditions the tri axial stress system at the crack tip would inhibit yielding, 

therefore increa ing the effecti ve materi al yield strength, whereas under plane stress conditions 

yielding would be easier, thus leading to a larger pl astic zone size. Thi is becau e under plane 

stress conditions the material at the crack tip is under low restraint and is free to deform. 

Consequently the crack tip region can accommodate a hi gh applied K before stati c fracture occur. 

,~ 
Elastic stress di stribution 

, 
Yield stress di tribution 

Crack 

Plastic zone depth 

Figure 2.4.4Irwin 's illustration a/plastic zone size (Megllid, 1989). 

An alternati ve approach to Irwin 's is Ougdale 's strip yield model, whi ch assumes that the plastic 

deformation is concentrated in front of the crack in a localised strip (Ougdale, 1960). This was 

further simplified (Rice, 1965) in an attempt to introduce some aspects of crack tip plasti city into 

an el astic analysis. The resulting plastic zone size for plane stress was close to that obtained 
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theoretically (lrwin, 1960), confirming Rice's solution. Rice investigated several different cracked 

body configurations and always found that small scale yielding could be represented by: 

[2.4.9] 

Newman (1981) also further developed the Dugdale model and introduced the idea of a plastic 

constraint factor. This is often used to adjust the plane stress yield strength to account for plate 

thickness. In comparison to experimental results (Newman, 1995) reasonable success was 

achieved. However, there is much difficulty in discerning an appropriate value(s) for the constraint 

factor (Codrington and Kotousov, 2009). 

Under cyclic loading, the first application of stress in a cyclic stress sequence produces a plastic 

zone which is the same as that produced by a static stress of the same magnitude (Maddox, 1971) 

and can be characterised by the stress intensity factor KmaT" As the material yields ahead of the 

crack tip the monotonic plastic zone of dimensions given in Eq. [2.4.10] is produced. When the 

direction of loading reverses, the local stress is reduced to a level corresponding to a stress intensity 

factor K min . Due to this reduction from Kmax to Kmin, the re-distribution of stresses in the near crack 

tip region leads to reverse plastic flow and the formation of a plastic zone (termed reversed or 

cyclic plastic zone) in front of the crack tip, embedded within the monotonic plastic zone, Figure 

2.4.5. The radii of the monotonic and reversed plastic zones (Irwin, 1960; Rice, 1967) can be given 

as: 

[2.4.10] 

( 

2 
1 M( 

r =---C t."," 27r 2eT J [2.4.11] 

where Kmax is the maximum stress intensity in the loading cycle and !1K = K mat - K min. 
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Consequently, a plastic zone equal to Eq. [2.4.11] alternates between compress ive and tensile yield, 

whilst a larger zone based on the max imum value of K and (7)'s pulsates between zero and tens il e 

yield. On thi s bas is the pl astic zone size for cycli c loading conditions would be one quarter the size 

of that used for monotonic (static) conditions. 

Yi eld stress 

Crack 

Yield stress 

Crack 

Monotonic plasti c zone 

Reversed plasti c zone 

~ 

I 
I 

/ 

Figure 2.4.5 Schematic of the monotonic and reversed plastic zone development at the crack tip 

during cyclic unloading. 

However, the approximation given in Eq. [2.4. 10] underestimates the va lue of rp because it ignores 

the redistribution of stress due to the plastic zone. Instead, Irwin fo und that by considering the von 

M ises yield criterion ( 1913), a better approximati on o f the plastic zone sizes under monotonic 

loading could be derived as given in Eq. [2.4.1 2] fo r plane stress or Eq. [2.4. 13] for pl ane stra in 

(Irwin, 1960). 
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I max 

(
K J2 

rp = 7r l7yS 
[2.4.12] 

I max 

(
K ]2 

rp = 37r l7yS 
[2.4.13] 

The stresses within the reverse plastic zone at the fatigue crack tip were estimated by Rice (1967) 

and are equal to the yield stress (ay.» in compression. Therefore, the smaller cyclic plastic zone (re), 

which as mentioned above alternates between compressive and tensile yield, can be determined by 

substituting for I1K and 2a YS in Eq. [2.4.12] since the stresses move from tension to compression, 

giving: 

[2.4.14] 

It was noted that the size of the cyclic plastic zone depends only on I1K and is independent of the 

maximum value of Kmax. 

2.5 FATIGUE CRACK PROPAGATION 

Whilst the crack initiation phase is governed by cyclic shear stress (see Section 2.3), the 

propagation phase is governed by the cyclic principal stress (Lassen and Recho, 2006). As noted 

previously, much of the fatigue life associated with welded joints, especially those with very low 

fatigue strength, is spent in fatigue crack propagation. This is because with many welded 

geometries, geometric stress concentrations, crack-like defects and tensile residual stresses, 

particularly at weld toe locations (Signes et al., 1967; Maddox, 1970), cause fatigue cracks to 

initiate after relatively few cycles of applied stress (Maddox, 1974). 

The fracture surface of a fatigue crack is typically smooth and usually exhibits concentric rings 

known as 'beach marks' spreading out from the initiation point, Figure 2.5.1. These markings are 

often associated with varying loads, dwell periods and differential corrosion. 
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Figure 2.5.1 Fatigue specimen (manuJactured from Q I N) tested IInder direct axial constant 

amplitude loading sholVing distinct beach marks, courtesy oJTWI Ltd. 

As the rate of propagation continues the surface progressively roughens until fracture occurs. It is 

possible to trace the crack front on the fracture surface by microscopy, and in doing so it i possible 

to view individual loading cycles between 'striations', Figure 2.5.2. 

Figure 2.5.2 Example oJ Jatigue stria/ions contained within loading blocks as seen through a 

scanning electron microscope on 6082 T651 aluminium alloy. 

Fatigue crack propagation can generally be defined in terms of three stages. Stage I is the transition 

to a finite crack growth rate from no propagation below a threshold value of D.K. It concerns the 

initial extension of micro-cracks propagating within a slip band, which is on a plane of hi gh shear 
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stress, and is generally considered to be encouraged by plasticity (see Section 2.4.4) surrounding 

the crack tip in the direction of primary slip resulting in a zig-zag crack path (F orsyth, 1962). Stage 

11, referred to as macro-cracking, concerns the propagation of a crack through the majority of the 

cross-section; this stage can be further sub-divided in to 'crack growth in shear' and 'crack growth 

perpendicular to the applied tensile stress'. The final stage, Stage Ill, defines the final moments of 

crack propagation, whereupon the remaining cross-section is insufficient to sustain the applied load 

and brittle fracture or ductile collapse occurs. 

To aid in evaluating crack growth rate, a number of empirical laws were proposed in the attempt to 

characterise the rate of crack propagation in Stage 11, which usually takes up the majority of crack 

propagation stage. One such law is often used to characterise fatigue crack propagation rates in 

metallic materials (Paris et al., 1962) and states that: 

[2.5.1 ] 

where da/dN is the increment of crack growth per cycle. C and m are material constants, referred to 

later as the Paris coefficient and exponent respectively. These are found experimentally by 

measuring the rate of crack growth under applied cyclic loading. Values for m are typically around 

3 for a variety of metals. 

When plotting fatigue crack propagation data (da/dN v M0, on log-log axes (Figure 2.5.3), the 

Paris law is associated with the linear region in the middle of the crack growth rate curve. 

At lower values of M, crack growth rates fall below values corresponding to the Paris law as a 

fatigue crack threshold Mth (also denoted as Mo) below which crack growth ceases, is approached 

(Stage I in Figure 2.5.3). This is typically below da/dN = 1O-7mm/cyc1e, or in terms of IlK, 

63N/mm3/2 (2MPa.m Il2
) for steel and 21N/mm312 (0.7MPa.m l

!2) for aluminium alloys (in air, or, 

other non-aggressive environments) (BSI, 2013), where crack growth rates are also much more 

sensitive to stress ratio, micro-structural variables and environmental conditions compared with the 

Paris regime (Stage 11 in Figure 2.5.3). Conversely, crack growth rates can be considerably higher 

than those corresponding to the Paris law at high values of M, approaching the critical conditions 
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for fracture/ failure, where rates are more sensiti ve to stress ratio (R=Klll i,/KlIIlIX) (Stage III in Figure 

2.5 .3). Growth rates in this regime are often assoc iated with a change in fracture mechani sm. In the 

Pari s regime (Stage 11) , crack growth rate depends only on tJ. K. 

1.0E-02 ~--------,;--------....,.,.--------, 

Z 
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"0 
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6.K11r KIIllt< = K1c 

I 
I (Pari s law regime) 
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1.0 E-06 +-----.--.L,-~i--...--. ......... -r--.__r_--~---..--...___._ ......... __._._l 
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Stress in tensity facto r range (N/mm3/Z) 

Figure 2.5.3 Two stage simplified fa tigue crack growth law (R>0.5) for steels in air (BSI, 20 13). 

Stage 111 also shown. 

The Paris equati on is a useful concept as it can be integrated to determine the number of cycles for 

a crack to propagate from its initial size (ai) to a final size such as that corre ponding to failure (cif), 

by use of the procedure as detailed in BS 7910 (BSI , 201 3), such that by combining Eq's. [2.4.7] 

and [2.5. 1] and integrating between limits: 

[2.5.2] 
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Thus, an initial crack of size ai is calculated to propagate to a size of af in N cycles under stress 

range S. 

In the case of an as-welded joint where failure consists of growth from an inherent crack like flaw 

(e.g weld toe failure), if the geometry and size of inherent flaw remain the same from one weld to 

the next, as assumed for welded joints tested to generate S-N data, and at failure the crack size is 

considerably larger than ai, the integral in Eq. [2.5.2] is constant and the equation becomes: 

srn N = a constant [2.5.3] 

This is the form of S-N curve actually obtained from fatigue tests of welded joints (see Eq. [2.2.2]). 

Of course in reality variations in geometry and inherent flaw size exist such that the integral in Eq. 

[2.5.2] is not really constant. Such variations contribute towards the scatter observed in fatigue test 

data (Maddox, 1991). As well as predicting the correct form of the S-N relationship, the fracture 

mechanics analysis also gives the slope of the S-N curve, m, which is generally the same as that for 

the crack propagation data for the material, see Figure 2.5.3. As noted above, m, is usually around 3 

which is the reason for the choice of m=3 for the slopes of the design curves given in BS 7608 

(BSI,2014). 

Where crack propagation under VA loading is concerned, Eq. [2.5.2] is applied to successive stress 

cycles, such that if the spectrum comprises nl cycles at stress range SI and n: cycles at S: etc. then: 

[2.5.4] 

[2.5.5] 

This continues over the life of the crack or until some pre-determined critical size (ar) is reached, 

such that: 
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a 
f da m m f ( ~'vn=CSl n1+CS2 n2 + ...... ·· 

a Y"Jra) 
i 

[2.5.6] 

The flexibility of the fracture mechanics approach is such that any of the four main variables ai, 'If; 

/!;.S and N can be calculated provided the other three are known. 

2.6 INFLUENCING FACTORS ON FATIGUE CRACK GROWTH 

There are a large number of factors which can affect the fatigue mechanism and thus the fatigue 

crack growth rate and fatigue life of a component or structure. In order to provide greater 

applicability of the results to practical engineering situations, it is vital that these parameters be 

considered in any fatigue analysis. In metallic materials fatigue crack propagation tends to bc 

insensitive to material strength and also metallurgical factors (Pook, 2007). However, according to 

Codrington (2008) material effects including basic properties and grain structure can influcnce 

propagation rates. 

Along with metallurgical factors, structural geometry effects including stress concentration factors 

(SCFs) and welding defects, applied loading (i.e. mean stress), and environmental conditions (i.e. 

temperature and the presence of any corrosive substances) are all parameters that influence crack 

propagation rates (Codrington, 2008). 

The significance and effect of specimen thickness on fatigue crack growth rate is the subject of 

much debate within published literature (Codrington and Kotousov, 2009). This is particularly the 

case in CA loading tests which are generally used as the basis of estimations of crack growth under 

VA loading. 

It is discussed (Codrington and Kotousov, 2009) that three conclusions drawn from experimental 

studies directly contradict one another (Park and Lee, 2000). The conclusions drawn were as 

follows: 

• The effect of specimen thickness is negligible (Shahinian, 1972; Kim and Kim, 1998). 
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• Accelerated crack growth rates observed with increased thickness (Costa and Ferreira, 1998; 

Guo et al., 1999; Park and Lee, 2000). 

• Reduced growth rates observed with increased thickness (Jack and Price, 1972). 

The mechanical argument behind the thickness effect on fatigue crack growth rate is that the stress 

and strain fields in the vicinity of the crack tip are strongly dependent upon the spec imen thickness. 

As thickness increases the stress state will change from being large ly plane stress to plane strain 

dominant (see Section 2.4.3). Where thin materials are considered (plane stress conditions), a 

transfonnation between square and slant fatigue crack propagation can occur. Whilst crack 

propagation rates (at high !1K) increase as thickness increases, at the transition to slant fatigue 

crack propagation the rate decreases. At this transition stage 'shear lips' are fonned (Figure 2.6.1) 

and increase in size during propagation (Schijve, 1974; Schijve et al., 2004; Pook, 2007); as 

propagation continues the crack surface is inclined at 45° to the material surface, which upon 

reducing the level of load is reversible (Schijve, 1974). 

(a) Loading 
direction 

t 
------jf--- Crack front 

p.rtly in tenSIle mode 
partly In shear mode 

• transition point 

Figure 2.6.1 Fracture sur/ace 0/0 through-thickness fatigue crack with transition from the tensile 

mode 10 shear mode (Schijve et 01. , 2004). 
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2.7 THE EFFECT OF CRACK CLOSURE 

In consideration of the fatigue crack propagation process, particularly the influence of applied 

stress ratio (R), Elber postulated that only the portion of the cycle during which the crack tip is 

open is effective in propagating a crack (Elber, 1971). He went on to measure the point in the 

applied stress cycle at which crack closure occurred and found that this could be during the tensile 

part. Indeed, he found that cracks were in fact closed for a significant portion of tensile loading. He 

therefore defined the effective stress as: 

[2.7.1] 

where Smax is the maximum stress in the cycle and Sop is the stress at which the crack opens. 

Or in tenns of stress intensity factors: 

AV -K -K 
/j/"\. eJJ - max op [2.7.2] 

From this the effective stress intensity range at the crack tip could be detennined using: 

DJ( eJJ = Y .!3.S eJJ ...;;; [2.7.3] 

where Y is a geometry correction factor and a is the crack length. 

By replacing !1K in Eq. [2.7.3] for the effective stress intensity range, the growth rate can then be 

calculated using: 

[2.7.4] 

Crack closure can be induced by several mechanisms (Suresh, 1998) including: crack tip plasticity 

and residual plastic defonnation in the wake of the crack (Figure 2.7. 1 a», the explanation proven 

by Elber (1971); oxide induced crack closure (Figure 2.7.1b», due to corrosion products on the 

crack surface; roughness induced crack closure (Figure 2.7.1c», which occurs when microscopic 

irregularities on opposite crack surfaces interfere with one another; transfonnation induced crack 

closure (Figure 2.7.1d», which is when stress or strain induced phase transfonnations at the crack 
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tip zone lead to a net increase in the volume of transformed material; this is sometimes referred to 

as material ' bulging' (Makabe et 01.,2003,2004 and 2005). 

Plastic wake Oxide film 

a) Plasticity-induced b) Oxide formation 

Fracture surface asperity 
Transformed zone 

c) Surface roughness d) Phase transformation 

Figure 2.7. 1 A schematic illustration of some mechanisms associated with crack closure. 

However, in the context of the present study the first mechanism related to crack tip plasticity, is 

of primary signi ficance in that this is the only one that is likely to explain changes to fatigue crack 

growth rate due to the type of applied cyclic loading, CA or V A, in the materia ls considered. 

Indeed, Elber found indications that crack closure accounted for retardation and possibly 

acceleration in crack propagation rates under V A loading (Elber, 1971). In the case of the former 

the explanation was that a particular loading event could increa e the crack closure slress level uch 

that the effective magnitude of the stress ranges following it would be reduced. In the latter, crack 

growth acceleration, the opposite could happen and the effective sires range of cycle following 

the loading event would be increased. 

Under both CA and VA loading quantitative knowledge of the crack opening tress (Sop) is 

generally believed to be essential for crack growth estimations (Schijve, 1988), as it is required to 

define tiKejJ, which in turn is considered to be the appropriate parameter for correlating crack 

growth rates under different cyclic loading conditions. From the practical viewpoint, it appears that 

the crack closing and opening stresses are indistinguishable (Fleck, 1982; Banerjee, \984 and 

Mageed et al., 1992) and so either can be used to determine tiK .. jJ-
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2.8 RESIDUAL STRESSES 

2.8.1 FORMATION OF RESIDUAL STRESSES THROUGH WELDING 

The fomlation of residual stresses can be the direct result of manufacturing processes whereby 

changes in shape or material properties are present. These manufacturing processe can be divided 

into three main categories: 

• Mechanical processes - rolling of sheet metal, surface removal (machining) and component 

assembly. 

• Chemical processes - surface hardening treatments (nitriding and carburizing). 

• Thermal processes - quenching, casting and welding. 

~ 
~' 

(a) . 
~ 

l~ 

(b) 
r:; 
. " 

~ 
~ 

~ 

Figure 2.8. t Effect of residual stress on weld plates (Gurney, 2006). 

Welding is one of the most significant causes of residual stresses and typically produces tensile 

yield magnitude stresses in and close to the weld, balanced by compressive residual stresses 

elsewhere in the component. Figure 2.8.1 illustrates how residual stresses are formed. Immediately 

after welding (Figure 2.8.1 a) the weld metal and adjacent parent material are hot. I f the plates were 

unrestrained (Figure 2.8.1 b), it is possible to see how the weld metal would shrink during cooling. 

However, as the plates are joined (Figure 2.8.1 c), the sub equent cooling of the weld metal is 

restrained by the parent material, giving rise to a longitudinal tensile stress in the weld. This is 

balanced by the presence of compressive stresse in the adjacent material. The resulting 

longitudinal (parallel to the weld) and transverse (normal to the weld) residual stress distribution , 

assuming idealised conditions where a uniform through thickne s stress distribution exists, are 

shown schematically in Figure 2 .8.2 (a) and (b) respectively. 
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11 

Tension 
OIl 

(b) 

Compression 
• 

Figure 2.8.2 Typical residual stress distributions due to a bUlIlVeld between two plates 

(Gurney, 2006). 

Chapter 2 

The assembly of a structure from imperfectly-fitting parts produces reaction stresses, \ hich are 

also referred to as ' long range ' residual stresses. The balance of tensile and compressive members 

in such a structure gives rise to a state of equilibrium. 

This ' long range' residual stress is also referred to as 'macro-stress' or 'type I tress' and i one of 

three methods for categorising residual stresses based on length scales (Withers, 2008) . Others 

include: micro-stresses or type II stresses, where stresses equilibrate over a number of grains and 

type III stresse which exist and equilibrate over several atomic distances within a single grain. 

Only type I stresses are considered in the present work. 

High tensile residual stresses have a significant effect on fatigue of welded joint. Fatigue loading 

is superimposed onto the residual stress, with the result that cycling i at a much higher mean tres 

than that applied. Typically the weld and adjacent material will experience stress c cling from 

yie ld stres tension downwards (Gurney, 2006) 

It has been found that the magnitude of residual stresses is dependent on the tensile trength of 

both the we ld and parent material (Maddox, 1991 ). It is well established that in the presence of 

high ten ile residual stress, loading that produces compressive stresses can till produce failure b 

fatigue (Gurney, 1977; Maddox, 1982). Consequently, most fatigue de ign rule a ume that 
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applied tensile and compressive stresses are equally damaging, which is a marked contrast with 

design rules for un-welded parts. 

Work perfonned by McClung (McClung, 2007) established that both the application of fatigue 

loading and the production of fatigue cracking can alter the residual stress field (see also Section 

2.8.3) and should be taken into consideration in any estimates of the residual stresses in a structure. 

Although there are many variables associated with fatigue of welded joints (weld defects, weld 

microstructure etc.) these are well characterised. However, there are few data on through-thickness 

distributions of residual stress especially after cyclic stressing. 

In some instances residual stresses may be introduced intentionally, notably compressive residual 

stresses, by means of ultrasonic peening, shot peening or overloading, to improve the fatigue life of 

a component or structure. However, under cyclic loading it may be possible for the magnitude of 

the applied loads to reduce any beneficial effect by means of 'washing out' or redistribution of the 

compressive stresses. 

2.8.2 RESIDUAL STRESS MEASUREMENT 

Residual stress measurement methods can be either destructive or non-destructive. Destructive 

techniques generally involve the removal of material which generates partial relaxation of the 

residual stress field within a sample, allowing the resulting strain to be measured. This response in 

strain can then be used to calculate the residual stress generated under this defonnation. Such 

techniques include: centre hole drilling, deep hole drilling, the contour method and plate 

sectioning (layer removal). 

In contrast to destructive techniques, non-destructive techniques allow residual stresses to be 

detennined without changing or affecting the material properties, thus allowing the component / 

sample to remain re-useable. Typical methods include: Diffraction based techniques (X-ray, 

Neutron and Synchrotron), ultrasonics and magnetic. 

Further infonnation on residual stress measurement is given in Chapter 3. 
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2.S.3 RESIDUAL STRESS RELAXATION 

Initial residual stress fields inherent or induced by the manufacturing process may not remain stable 

during service life and so can relax or redistribute due to a variety of mechanisms (McClung, 

2007). McClung observed that relaxation/redistribution occurs when the summation of the residual 

stress and applied stress exceed the yield condition of the material. Both tensile and compressive 

residual stresses relax towards zero, although the changes are more pronounced for tensile stresses 

(McClung, 2007). 

The application of cyclic loading of test specimens has demonstrated relaxation effects after a 

relatively small number of stress cycles (Frost et aI., 1974). Whether or not residual stresses are 

relaxed depends on the magnitude of the subsequent cyclic stressing in relation to the yield stress of 

the material (Frost et al., 1974). Repeated loading can cause gradual changes in the residual stress 

over time, even ifno single fatigue cycle induces local yielding (McClung, 2007). 

Following an investigation where residual stresses were considerably relieved after one load cycle 

due to reversed stress cycling (Iida et aI., 1996), the effect was examined under the action of 

repeated loading (lida and Takanashi, 1997). It was once again observed that on the application of 

one load cycle under R=O and R=-l, both longitudinal and transverse residual stresses were 

significantly reduced, with additional reduction seen after further cyclic loading at the same stress 

range. The author noted that the extent of the residual stress relaxation increased with increase in 

applied stress range. 

As mentioned in Section 2.8.1, the fact that fatigue failure of welded joints is still observed even 

under purely compressive loading (Gurney, 1977; Maddox, 1982), suggests that either locally, 

residual stresses do not relax or residual stresses do not need to be at yield to still produce the same 

tensile effective stress. 

2.9 CUMULATIVE DAMAGE 

2.9.1 VARIABLE AMPLITUDE LOADING 

In service the great majority of structures and components at risk of fatigue failure are subjected to 

complex stress cycles which generally vary in a random manner and are known as variable 
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amplitude stresses. Variable amplitude stresses can arise due to varying loads, different forms of 

loading, or as a result of structural continuity (Note. where structural continuity is concerned this 

can give rise to complex influence lines of stress, such that stress interaction occurs between them 

i.e. adjacent wheels crossing an orthotropic bridge deck (Gurney, 2006». It is important to establish 

the stress spectrum that will be experienced in service before estimating its effect in fatigue 

behaviour. The most common method for achieving this is by use of electrical resistance strain 

gauges to provide a reasonable picture of the working stress variation. 

2.9.2 CYCLE COUNTING METHODS 

Once the stress history of the structure/component is known, the complex waveform needs to be 

broken down into cycles. There are several counting methods which can be used, although there is 

very little evidence as to which is the most satisfactory (Gurney, 2006; Pook, 2007). The most 

relevant methods for loading applied to as-welded joints are the Range-Pair and Raintlow (or 

Reservoir) methods (Maddox, 1991), the latter being recommended in BS 7608 (BSI, 2014). 

Range-Pair and Rainflow counting methods (Figures 2.9.1a) and b» respectively) combine positive 

and negative half cycles, whereas the Reservoir method (Figure 2.9.1 c» identifies complete cycles 

in terms of stress range (Maddox, 1991). It is worth noting that whilst Raintlow counting is one of 

the most common approaches to undertake, it was originally derived by considering the behaviour 

of metal under plastic cycling in relation to fatigue crack initiation. Therefore it may be premature 

to assume it is also appropriate for fatigue crack propagation. 

When individual cycles cannot be distinguished there is a need for cycle counting to reduce the 

process to discrete cycles to permit the application of Miner's cumulative damage rule, which is 

discussed in the next section. Where life prediction methods are not sufficiently accurate to predict 

fatigue lives under V A service loadings, standard load histories are required. 
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Figu re 2.9.1 Illustrations of typical cycle cOllnting methods lVith results included (Maddox, 199 1), 

a) Range-pair, b) RainjlolV, c) Reservoir. 

The effect of different cycle counting methods on fatigue damage is something which for welded 

joints has not been fu lly investigated. One comparison by Gurney (1978) u ing rain flow, level 

crossing and range pair for several different loading spectra, found that rain now consistently lead 

to values of LnIN which were 33% greater than those values derived by range-pair. The leve l 

cross ing method was higher sti ll by 66% greater than range-pa ir. This equated to reductions in 

design stress of - I 0% for rai nflow and 16% for level ero s ing, as compared with the range-pair 

method. Clearly these differences are significant. 

2.9.3 PALMGREN-MINER CUMULATIVE DAMAGE RULE 

The most widely used method for estimating fatigue live under V A loading is by use of the 

Palmgren-Miner linear cumulative damage rule, or Miner's Rule as it is commonly called (Miner, 

1945). It sta tes that fatigue damage from the application of n cycles of stress range S is directly 

proportional to nlN, where N is the CA life at S. On this basis, failure under V A loading consi ting 

of I1 j cycle at stress ranges S j, where i= 1, 2, 3, etc. can be expected when: 

[2.9.1 ] 

where, i values are obtained from the relevant CA S- curve. 
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However, a limitation with Miner's rule is that it does not allow for any prior stress history that the 

structure or component may have seen. Relevant events include overloading, whereby any existing 

crack growth can be slowed or even halted due to blunting at the crack tip or the introduction of 

compressive residual stress. Some fonns of tensile under-loading may result in the acceleration of a 

fatigue crack, giving a life less than predicted by Miner's rule. As Miner's rule does not take into 

account these effects, in practice failure as a result of V A loading does not always occur according 

to Eq. [2.9.1]. Therefore, for safety a damage sum in Equation 2.9.1, tenned D, less than unity may 

be used to take account of such effects, giving: 

[2.9.2] 

where D is typically in the range of 0.3 - 0.8 (Maddox, 1991). 

Another problem associated with the application of Miner's summation is the treatment of low 

stresses in a spectrum. Under V A loading high stresses in a spectrum may propagate a crack to 

such an extent that stresses below the CAFL become damaging. Whilst it is accepted that such low 

stresses should be included, there is some debate over the best method to be employed. If, however, 

all the stress ranges are below that of the constant amplitude fatigue limit, which is usually 

assumed to correspond to 107 cycles, then the possibility of fatigue failure can be ignored. In the 

British fatigue design rules BS 7608 (BSI, 2014) it is assumed that for joints in air, the S-N curve is 

bent at 5x 107 cycles from a slope m to a shallower slope (m+ 2), so that stresses below this point are 

assumed to be damaging but not as damaging as implied by the extrapolated S-N curve (as 

discussed in Section 2.2.1). The existing European design standard, Eurocode 3 (BS EN, 2005), 

suggests a change of slope at 5x 1 06 cycles with a final cut-off (where the curve is assumed to be 

horizontal) at 108 cycles. A more extreme recommendation is made by the US AASHTO bridge 

rules (AASHTO, 2010) which suggest that the S-N curve to be extrapolated 'ad infinitum' with no 

slope change. 

This problem was further investigated by Gurney (2000), whose findings suggest that for a convex 

upwards spectrum it makes little difference whether a straight or bent S-N curve is used for design 

purposes; however for a concave upwards spectrum it can be unsafe to use a bent curve. He also 
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concluded that stresses down to a value of 1O.IN/mm2 under tensile loading, and ±8AN/mm2 under 

alternating loading were just as damaging as those implied by the extrapolated S-N curve with a 

slope change. This was further confirmed more recently (Zhang and Maddox, 2009) also using a 

concave upwards spectrum, where it was found that for the two specimens considered conforming 

to a Class G and F joint detail (BSI, 2014) stresses down to ~8AN/mm2 and ~31.5N/mm2, 

respectively, were found to be just as damaging as implied by the extrapolated S-N curve. The key 

difference between the two spectra being that, in convex upwards spectra, the proportion of low 

stress cycles is low, hence they are not so significant in their contribution to fatigue damage, which 

is the opposite to that for concave upwards spectra. 

Due to its simplistic nature, these problems have not deterred investigations into cumulative 

damage being assessed by the use of Miner's rule for both initiation and total life. On many 

occasions investigators have found instances where lives have been greatly safer than the lives 

predicted by Miner's rule. Of more concern, however, are occasions when lives are significantly 

lower than those predicted by the use of this method. There is extensive evidence to show that 

variable amplitude stress cycles could be more damaging than the same stress cycle under CA 

loading resulting in lJn/N) <1.0 at failure (Tilly, 1985; Vormald and Seeger, 1991; Dahle, 1993; 

Tubby et aI., 1996; Gurney, 1985, 1992b, 2000 and 2006; Berger et al., 2002). 

One such investigation examined the effects of loading spectra with different mean stresses and the 

resulting validity of Miner's rule (Zhang and Maddox, 2009). The results showed that Miner's rule 

was substantially non-conservative for all tests performed cycling down from a constant maximum 

stress (,stalactitic' loading). Such loading is assumed to simulate the presence of high tensile 

residual stress for use in tests on welded specimens that cannot be relied upon to contain such high 

residual stresses. However, it may actually arise in some service loading conditions. The deficiency 

in Miner's rule was attributed primarily to the stress interaction effects resulting from the loading 

sequences used, whereby high stresses caused significant crack growth acceleration from 

subsequent lower stresses. It was concluded that, in the case for the constant maximum spectra, 

Miner's rule should be applied assuming "£.(n/N) ~ 004. 
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The Fraunhofer Institute in Germany (formally LBF) (Sonsino et al. , 2009) also suggests that under 

certain app lications Miner's rule should be applied assuming L(nlN) < I. Here they recommend 

that under constant mean stress conditions L(nlN) :::: 0.5, whilst for varying mean stress conditions 

such as under wide band loading L(nlN) :::: 0.2 . This call for a reduction has also been echoed and 

appl ied by the International Institute of Welding ( IIW) which recommends that Miner's rule should 

be app lied assuming L(nlN) :::: 0.5 (Hobbacher, 1996). 

A limited amount of research has gone into discovering the reasons \ hy Miner' s rule is 

substantia lly non-conservative; however, it is thought that the main factors relate to crack closure 

and load sequence effects. It is this problem that forms the basis of the present research project, 

which aims to investigate the factors that influence accelerated crack propagation under high mean 

stress spectra and how they can be allowed for in fatigue design. 

2.9.4 THE INFLUENCE OF NARROW AND WIDE BAND SERVICE 

LOADING 

Under narrow band loading, each positive ~ cycle is followed by an equal and oppo ite ~ cycle, 

returning to the same mean level, Figure 2.9.2. This form of loading does not include any sudden 

occurrences of overloads or smal l cycles and is generally performed with all cycles at a stress ratio, 

R, of O. The ratio of upward going mean crossings to the number of peaks, termed irregularity', in 

narrow band loadi ng is close to unity (Gurney, 2006). 

With wide band loading, the mean stress of individual cycles within the spectrum varies widely 

(Figure 2.9.3) and generally involves a stress history with irregularity significantly less than 1.0 

(Gurney, 2006). 

Figure 2.9.2 Typical example of a narrow band stres history. 
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Figure 2.9.3 Typical example of a \Vide band stress history 

In a series of comparative tests using the same spectrum of stress ranges applied in different forms, 

it was found that Miner's rule gave L(nlN) = 0.5 to 0.92 (Gurney, 1993). Gurney showed that 

higher mean stresses for smaller cycles can enable the propagation of a crack, even when the peak 

stress is at R=O. He also went on to state that other investigators (Haibach et af., 1980; Pedersen 

and Agerstov, 1991 ; Sarkani, 1990) have also found low values ofL(nlN) under wide band loading, 

suggesting that one important feature of a loading spectrum is the variation of stress ratio for 

individual cycles. The current design rules BS 7608 (BSI , 2014) state that as far as welded joints 

are concerned, stress ratio is an irrelevant factor. However, findings discussed here would suggest 

otherwise. The findings of Gurney's work also show that another factor which affects the value of 

L(nlN) under loading that consists of repeatedly applied blocks of a variable amplitude stress 

sequence is the block length, the shorter the block the lower L(nlN) at failure. Under such 

conditions an alternative method known as the area rule was derived (Gurney, 1985). This states 

that: 

Ln( ~; ) ~ - (area under curve p; v. Ln NE; exceedence diagram) [2 .9.3] 

where NB is the number of blocks to failure (each block containing one excursion to the top limit 

stress), Ne is the life under CA loading for the top limit stress in the spectrum, pi is the proportion 

of the maximum stress in the spectrum, Smax (i .e . Si = pi x Sm IX) and N E; is the number of cycles per 

block equal to or exceeding pi times the top limit stress (I.O<p <O). 

Whilst this technique was shown to be a satisfactory alternative to M iner' s rule for the 

consideration of short block length spectra, due to the relatively low number of tests perfornled this 

can only be communicated as a tentative suggestion . 
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2.10 INTERACTION EFFECTS ON FATIGUE CRACK ACCELERATION 

2.10.1 GENERALITIES 

Investigations into the effects of crack growth retardation and acceleration are still being 

considered today. The actual mechanisms associated with them are still not well understood. The 

majority of work has concentrated on crack retardation effects (McEvily et al., 1990; Makabe et 

al .. 2003 and Zhao et al., 2008). However, as acknowledged in Section 2.9.3, life expectancy under 

service loading according to Miner's rule has identified occasions where VA stress cycles could be 

more damaging than the same stress cycle under CA loading, resulting in lJnlN) <1.0 at failure. 

Such discrepancies in Miner's rule summations almost certainly arise from the assumption that 

damage accumulation is necessarily linear. It is, in fact, how individual cycles interact with one 

another which give rise to faster or slower crack growth than that predicted by the rule. Therefore, 

understanding the mechanisms behind crack acceleration which contribute to such fatigue damage 

is of extreme importance. 

2.10.2 LOAD SEQUENCE EFFECTS AND OVERLOAD RATIO 

Load sequence effects have been observed under various mean stress levels, not only stalactitic V A 

loading (Gurney, 1992 and 1993; Zhang and Maddox, 2009), but also through wide band loading 

(Gurney, 1993). It is thought that where compressive underloads follow tensile overloads, 

accelerated crack growth is generated by reverse plastic flow (Makabe et al., 2003, 2004 and 

2005), which is a phenomenon that occurs when residual stresses are changed from compressive to 

tensile due to material bulging in the thickness direction. If local compression is high enough, 

bulging behind the crack tip reduces the crack closure level and hence gives rise to a tensile 

residual stress in the overload zone as well as increasing the magnitude of the effective tensile 

stress range at the crack tip. Whilst the acceleration seems to be related to the magnitude of tensile 

overload (Makabe, 2004), study of the material bulging effect has been limited to through­

thickness cracking in 4mm thick specimens and so further investigations should be considered to 

determine this effect for thicker specimens and for the more common surface crack. 
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Published attempts to understand stress interaction effects have utilised simple V A loading with 

two magnitudes of applied stress range, as summarised in Table 2.10.1. This provides an 

opportunity to understand how stresses interact and affect propagation rates. 

By far the most common approach for investigating load sequence effects is by use of CA cycling 

with the periodic introduction of a Single Peak Overload. Such sequences involve three variables; 

overload ratio (OLR) (KpeakIKma,), stress ratio (KminIKmax) and range of CA loading, I1K. Under this 

form of loading, it has been found that there is a threshold level of OLR below which the 

application of an overload has no effect on crack propagation (Bernard et al., 1976; Garwood, 

1978; Voorwald et al., 1991), ranging from 1.2 for Ti6A 14V to 1.5 for HT80 steel. High levels of 

OLR i.e. 2.5-3.0, generally result in crack arrest (Garwood, 1978; Blom, 1989), and intermediate 

values cause the number of delay cycles to increase (Bernard et al., 1976; Kumar, 1991; Ch and, 

1992; Lu and Li, 1993). 

Varying I1K whilst maintaining an OLR of 2.0, results in a clear difference in behaviour, with low 

values generating immediate retardation and higher values giving initial acceleration followed by 

retardation (Matsuoka et al., 1976; Ranganathan et al., 1984; Dhar, 1989). 

Tests on materials with two different yield strengths (690N/mm
2 and 350N/mm2) at an OLR of 2.0 

(Blom, 1989) showed that the higher strength material generates immediate retardation; however, 

initial acceleration followed by delayed retardation was evident in lower strength material. This can 

be related to plane strain conditions during overloading for the high strength material and plane 

stress for the lower strength (Gurney, 2006). 

Of the simple loading types investigated, whilst acceleration effects may occur at some stage in the 

majority, only tests using a step change of Smean lip have really demonstrated appreciable increases 

in propagation rates over that of the standard CA rates (Jacoby et al., 1976; Nowack et al., 1979). 

Here crack growth acceleration in both 2024-T3 aluminium alloy and Ti-6AL-4V was attributed to 

strain hardening, whereby the high crack tip strain from the large increase in stress reduces the 

deformation capability in subsequent stress cycles (Jacoby et al., 1976). Similar acceleration effects 

in a laboratory Al alloy were considered to be a result of strain hardening, reduced crack closure 
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levels and crack ti p blunting, although none could be recognised as the main cau e ( owack et al. 

1979). 

Table 2. 10.1 Summary of experimental findings using simple loading spectra. 

Fo rm of 
loading 

Single peak 
overl oad 

Mul ti ple 
peak 
overl oad 

Step change 
down 

Step change 
up 

Low-High 
overload 

High-Iow 
overl oad 

Step change 
of S mcan 

down 

Step change 
of S mean up 

Step change 
constant 

Sequence Results 

o effect for OLR 1.2 -
1.5. Intermediate alue of 
OLR cause number of 
delay cycles to increa e. 

At OLR of2.0, plane strain 
or low M ga e immediate 
retardation. Plane stre or 
high M gave acceleration 
then retardation. 

Similar to that of single 
peak 0 erload. 

Immediate reduction in 
da/d with no initial 
acceleration. 

Step increase in growth rate 
higher than standard CA, 
followed by gradual 
reduction to tandard rate. 

Similar behaviour to a 
single peak overload, but 
with less retardation. 

Reduced 0 erload effect 
compared with ingle peak 
overloads. 

Abrupt decrease in dd, 
greater effect than that of a 
single peak overload. 

Immediate increa e in 
da/d to a higher than 
expected rate. 

o transient effect. 

Immediate increase in 
da/d . Greate t effect 
found,> ith a ratio of 10: I 
(minor to major cycles) 
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It is interesting to note that tests perfonned involving a step change, constant Kmax found no 

transient effects i.e. crack growth rate was unaffected (Oruce et al., 1979). This is surprising since 

similar loading has been found to produce significantly shorter lives than predicted by Miner's rule 

in endurance tests of welded joints (Gurney, 1992 and 1993; Zhang and Maddox, 2009). Other 

crack growth tests, on both Al alloy (20 I 4A-T4) and steel (BS 4360 SOB), did show a strong stress 

interaction effect in that periodic underloads (one underload to every ten minor cycles) caused 

crack propagation rates typically 1.8 times faster than expected under CA loading (Fleck, 1985). 

Again various causes were considered (strain hardening and crack tip mean stress) but no single 

explanation was found. Further work is therefore required using simple loading spectra to ascertain 

if a stress interaction effect under this mode of loading does influence propagation rates and, if so, 

by what mechanism(s). 

Stress interaction in BS 4360 Grade SOB structural steel tested at R=O was also investigated by 

Gurney (Gurney, 1981) by restricting peaks of smaller cycles so that they were lower than the main 

constant amplitude cycle. It was assumed that stress interaction would consistently give an increase 

in life i.e. nlN> 1. Four loading spectra were investigated which consisted essentially of CA loading 

with one or more excursions applied on each stress cycle. Gurney found that the calculated Miner 

summation for these sequences actually lay in the range of 0.64 - 1.02. He also demonstrated that 

the magnitude of peak stress was irrelevant to the degree of stress interaction caused. 

Further work considering the effect of R on tensile overloads (Zitounis and Irving, 2007) found 

accelerated crack growth for a two level spectrum, where near threshold load cycles at R=0.9 were 

interrupted with underloads to zero load. Not only was a reduction in the plasticity induced closure 

(crack tip) level found to be responsible, but also micro-structural induced closure caused by 

faceted crack growth, whereby faceted fracture may account for changes in Kop and consequent 

changes in growth rate. This effect of stress ratio, sequence loading, overloads and underloads was 

further investigated (Zhao et aI., 2008), where although it was agreed that compressive underloads 

tend to accelerate crack growth, reduced crack closure level, compressive residual stresses, crack 

tip blunting and strain hardening may also be responsible. 
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Accelerated crack propagation is not just confined to loading with IQO, but can also arise in weld 

details under part-compressive loading. This is because the loading is superimposed onto the high 

tensile residual stresses due to welding, with the result that the loading is effectively tensile (see 

Section 2.8. I). Also, in high stress regimes, such as the growth of cracks from sharp notches, 

overloads cause yield magnitude notch root strains which accelerate growth (Topper and 

DuQuesnay, 2001). Yield magnitude compressive overloads crush asperities leaving a flatter 

material in the crack wake for propagation. 

Crack growth under negative stress ratios considered by (Makabe et aI., 2005) showed that both 

retardation and acceleration effects were associated with crack tip opening displacement at the 

point of overload. Acceleration, however, was confined to R = -1.5. This was due to a change in the 

residual stress distribution following the applied minimum stress, whereby. if the local compression 

is high enough, reverse yielding occurs resulting in material bulging in the vicinity of the crack tip. 

Bulging subsequently reduces the closure levels behind the crack tip, which on return to zero load, 

brings about a state of residual tensile stress leading to accelerated crack growth. This investigation 

established that crack propagation behaviour is dependant of the baseline stress ratio. overload 

level and mechanical properties of the material. 

2.10.3 INFLUENCE OF EFFECTIVE STRESS INTENSITY FACTOR ON 

ACCELERA TION 

As discussed in Section 2.7, the effective stress intensity factor (Mr:(t) is the portion of the loading 

cycle during which the crack tip is open, and is therefore effective in propagating a crack. It was 

also noted that in predicting fatigue crack growth rates knowledge of this factor is believed to be 

essential (Schijve, 1988). 

The work performed into material bulging (see Section 2.10.2) found that Eq. [2.10.1] originally 

proposed by McEvily et al., (1990), satisfied various underload/overload scenarios, and that the 

rate of fatigue crack growth is a function of Me!! - Me(fth' independent of the R value or overload 

level. 
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do ( )2 
dN = A IlK ejJ - IlK etJih [2.10.1 ] 

where A is a material constant and !iKejJth is the effective threshold stress intensity factor range. 

This effective stress intensity factor was also considered during compliance measurements on 

compact tension (eT) teel specimens under eA loading and block constant amplitude loading 

(BeAL) at applied loads of2kN to 20k . It was found that the expansion of the hysteresis loop and 

the extent of the hysteresis loop tail, Figure 2.10.1, made it possible to evaluate the fatigue crack 

propagation behaviour (Xiong et al., 2006 and 2008). It was suggested that the expanding 

hysteresis loop and reducing hysteresis tail resulted in fatigue crack acceleration, with the effective 

stress intensity factor being the driving force, such that propagation will retard if there is 

insufficient compressive plasticity at the crack tip. Therefore, the residual stress distribution at the 

crack tip will govern acceleration (or retardation) effects based on tensile or compressive residual 

plastic zones (Xiong et 01.,2008). However, no mention of the assumed values of !1K or !iKejJ was 

given in either paper. 
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Figure 2.10.1 Evolution of the /7)' teresis loop tail during fatigue crack propagation (Xiong et 01., 

2006). 

2.11 SUMMA RY OF THE BACKG RO UN D AND LITERATURE REVIEW 

AND IDE TI FICATION OF NOVELTY I THE CURRENT WORK 

The background study and literature review discu ed in this chapter has identified the need for 

better understanding of the factors which lead to unsafe estimate on fatigue life. Whilst a 

substantial amount of \,: ork has investigated safe life e timates generated by fatigue crack 

retardation, limited v ork has explored the factor which are directly responsible for crack 
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acceleration. Much of the work which has been performed, to the authors knowledge, has identified 

three main contributing factors; metallurgical effects, load sequence effects and residual stresses, 

although none of these have provided definitive explanations for fatigue crack acceleration. The 

actual reasons behind fatigue crack acceleration may not lie with just one of these observed effects 

but some combination. It is this important problem that fonns the basis of the present research 

project, which aims to provide better understanding of the factors which influence accelerated 

crack propagation under high mean stress spectra, and how they can be allowed for within the 

current design recommendations. 

Other conclusions which have been drawn from this literature review have shown that, as discussed 

in Section 2.9.2, there are several cycle counting techniques currently being employed to break 

down complex stress histories (Range-pair, Rainflow, and Reservoir etc.). However, there is little 

evidence to suggest which of these techniques is the most appropriate when considering fatigue of 

welded joints (Gurney, 2006; Pook, 2007). The current tendency to adopt either Rainflow or 

Reservoir stems from the fact that they tend to produce the most severe counts with respect to 

fatigue, allowing a degree of conservatism. 

The correct derivation of a loading spectrum in use with fatigue testing is therefore an important 

factor in the subsequent Miner's summation. Gurney explored the effect of different counting 

techniques under broadband loading (Gurney, 1978), the result of which produced differing 

damage summations by up to 66%, depending on those compared, or in terms of design stress, a 

reduction of up to -16%. Whilst the tendency may be to adopt the most conservative method there 

is clearly a future need to further investigate and understand cycle counting techniques and their 

effects on fatigue life. 

Whilst Miner's rule may be the simplest guidance on life estimates under spectrum loading it has 

been discussed (Section 2.9.3) that there are a number of limitations in its use; namely, how the 

influence of low stresses in the spectrum should be allowed for and how account could be taken of 

previous stress history. It has also been acknowledged that the CA fatigue curves which are used in 
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conjunction with Miner's rule contain a certain degree of scatter which In turn can produce 

different values of'i.nlN. 

The overriding problem is that Miner's rule has been shown to significantly over estimate fatigue 

lives leading to unsafe life estimates. This is not just confined to circumstances which consider 

only propagation, but also for those which include initiation. Therefore, the consideration of two 

entities, initiation and propagation, for determining fatigue life estimates may be valid, or, 

alternatively, a single law which satisfies both these entities and produces a more reliable method 

for fatigue life estimates under spectrum loading. 

As a result of the lack of understanding of the actual mechanism(s) responsible for accelerated 

fatigue crack propagation, how they interact and subsequently produce lives much shorter under 

V A loading than predicted using current cumulative damage methods, much of the data generated 

as part of this research project are novel. In order to provide such test data, existing analysis 

methods have been employed to understand stress interaction effects. 
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Chapter 3 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This research project is predominantly empirical and, in addition to a thorough review of literature 

(Chapter 2), has generated an extensive data set through a variety of laboratory tests. Laboratory 

testing has focused on filling identified gaps in existing published data to improve the 

understanding of load sequence effects under simple loading with two magnitudes of stress range. 

In addition, V A loading has also been used to study the performance of welded joints using spectra 

designed to promote fatigue crack acceleration. 

This Chapter describes the various experimental and analytical methods employed, including: 

a) the measurement offatigue crack growth rates (FCGR) in notched specimens; 

b) load sequence and endurance fatigue testing, along with the application of strain gauges for 

static and cyclic responses and residual stress measurement; 

c) the application of finite element stress analysis (FEA) for modelling the effect of the applied 

underloads at the notch tip. 

d) fractographic examination of fatigue striations and sites of fatigue crack initiation at the weld 

toes of fillet welded specimens. 

3.2 SPECIMEN IDENTIFICATION SYSTEM 

Care was taken to use a clear specimen numbering system throughout to ensure that multiple 

references to the same specimen could always be tracked back to its manufacture and subsequent 
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treatment. Parent material samples used for characterisation purposes have been identified using 

the prefix 'PM' (for parent material) with two numbers following (e.g. PMI-OI). The first digit 

refers to the batch number; the second refers to the individual specimen sequence number. For 

welded samples the same identification system has been used but with PM replaced by 'W' (e.g. 

WI-OI ). 

FCGR test specimens were designated 'CCT' (centre crack tension) followed by the material, 'ST' 

for steel or 'AL' for aluminium aHoy. the specimen sequence number and. where relevant, 'R' to 

denote a plate specimen with weld beads deposited to introduce residual stress (e.g. CCT-ST-03R). 

In the case of periodic underload testing (see Section 3.4.3) of plain material. the prefix 'SBL1.5' 

or 'SBL2' for single block loading with underload range 1.5 or 2 times greater than the basic minor 

stress range respectively. as well as 'ST', or, 'AL' for the material, was also used (e.g. CCT-SBL2-

ST -0 I). Where a CCT bead on plate specimen was used the specimen sequence number was 

followed by 'R'. 

Fatigue endurance test specimens were first assigned the material type followed by 'CCT' or, in the 

case of fillet welded specimens, 'FIL'. After this came the loading type i.e. constant amplitude 

loading (CAL) or variable amplitude loading (VAL), then the sequence number as above (e.g. AL­

FIL-VAL-02). Again for CCT bead on plate specimens 'R' is placed after the sequence number. 

In the case of specimens used in periodic underload or endurance tests, the term 'CL' has also been 

included if a crack closure test was performed and 'R' again when using a bead on plate specimen 

(e.g. CCT -V AL-ST -CL-02R). The numbering of specimens used for residual stress measurement 

also included the term 'RES' (e.g. CCT-FIL-ST-RES-OI). 

3.3 MEASUREMENT OF FATIGUE CRACK GROWTH RATES 

3.3.1 TEST SPECIMEN 

Fatigue crack growth rate (FCGR) tests are generally performed using either single edge notch 

bend (SENB), compact tension (CT), or centre crack tension (CCT) specimens, Figure 3.3.la-c 

respectively. The two main standards covering FCGR testing are BS 12108:2012 (BSI. 2012) and 
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ASTM E647-1 3a (ASTM, 2013a); it should be noted that CCT specimens are referred to as middle 

tension (MT) in the ASTM standard but are referred to using the British designation CCT 

throughout this thesis. 

The CCT specimen was the choice for FCGR, load sequence testing and initial V A testing in this 

work (Chapters 4, 5 and 6 respectively) because it was the most suitable of the three for introducing 

high tensi le residual stresses as arise in welded joints. This was necessary to enable the influence of 

such residual stresses on FCGR to be investigated. The residual stress was achieved by depositing 

continuous weld bead along the length of the specimen. 

Direction of applied loading 

a) 

Direction of applied loading 

b) 
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c) 

Applied 
electric current 

• 

~. 

Direction of applied loading 

Location of 
mea urement 
probe 

Chapter 3 

Figu re 3.3.1 Types of fatigue crack growth rate test specimen: a) Single edge no/ch belld pecimen 

(loaded in three point bending), b) Compact tension specimen, c) Centre crack tell ion specimen 

(used in the present experimental work). 

3.3.2 FATIG UE C RACK G ROWTH RATE TE T ING 

A number of methods are available for determ ini ng FCG R data a a function of M. The mo t 

common method for moderate values of M (Stage 11 ), typica lly abo e 350 Imm3 c (1 IMPa.ml
"), 

is to test under constant applied load range. Under such conditions M, and hence the crack gro\ th 

rate (da/d ), increases as the crack extends. This method i referred to a 'increa ing M and i 

carried out using a fixed R value. 

An alternative technique is 'decreasing t::,K', whereby the applied load range i continually reduc d 

at a specified rate. Such a technique is performed either at a con tant R value or con tant K",,]X b 

controlling the minimum and max imum loads accordingly. se of constant R i th tandard 

decreasing I1K technique, as described in both B 12 I 08 and TM E 647. Whil t both decr a ing 

t::,.K techniques allow the determination of FCGR data approaching the fatigue rack growth 

threshold (the point below whi ch no further crack propagation is achie ed, defined a M o), the 

- 3-4 -



Research Methodology Chapter 3 

constant Kmax technique is particularly effective for minimising the extent of crack closure (portion 

during a tensile load cycle to which a crack remains closed, see also Chapter 2, Section 2.7) at low 

M. Both the increasing and decreasing ~K techniques were used in the present work to validate 

the basic CA perfonnance against that given in BS 7910 (BSI, 2013). 

A third method (although not used here) is to conduct tests under conditions of 'constant ~K' by 

continually shedding the applied load, as in the case for decreasing M but by allowing the 

decrease in load range to counteract the increase in crack depth. This allows examination of factors 

other than M on the crack growth rate, including cyclic loading frequency, crack depth and the 

weld metal or heat affected zone (HAZ) microstructure. 

With reference to the use of M, it is noted that in view of the significance of crack tip plasticity 

(see Chapter 2, Section 2.4.4), it might be thought that LV would be a more appropriate parameter 

than M for characterising the crack tip stress field. The J-integral is used as a means to detennine 

the dissipated energy ahead of a crack tip and is typically used in fracture assessments, of ductile 

metals when LEFM is no longer valid. This might also be the situation under fatigue loading, but 

only low cycle conditions where both generally and locally there is cyclic plasticity (Zhou and Cai, 

1980). Under the high cycle fatigue conditions used in the present project, crack tip plasticity is 

highly localised (see Chapter 6) so that LEFM is valid and M is the appropriate parameter to use. 

3.3.3 INTRODUCTION OF NOTCH 

A notch is included in a fatigue crack growth specimen to provide the site for fatigue crack 

initiation. However, even then fatigue pre-cracking is generally required to initiate a sharp crack 

from the notch tip before valid crack growth data free from the influence of the notch (e.g. 

geometry, residual stress) can be captured. Generating a unifonn pre-crack of the correct shape i.e. 

unifonn across the specimen thickness, can be difficult. However, such a problem can be avoided 

by the use of electrical discharge machining (EDM). 

This allows the introduction of a sharp notch and also lower residual stresses than other cutting or 

machining operations. The resulting correct geometry, allows valid crack growth data to be 
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obtained soon after fatigue crack initiation, typically neglecting ju t the data for the first I mm of 

growth. For this reason, EDM was used to produce 16mm long notche in the present pecimens, 

Figure 3.3.2. All notch dimensions were in line with recommendations gi en in 8 1210 (8 I 

2012). 
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Figure 3.3.2 Detailed drawing of a centre crack tension specimen 'holVing the IJO/eh dim en ions 

(weld beads also shown). 

3.4 FATIG UE TESTS 

3.4.1 TEST SPECIMENS 

3.4.1.1 CENTRE CRACK TENS ION SPECIME 

ceT specimens 600mm long and 160mm wide were cut from the mm thick 355J2+ teel plate 

parallel to the plate rolling direction, using a cold saw. In the ca e when it wa required for the 

specimen to contain high tensile residual stress acting transverse to the fatigue crack, manual metal 

arc (MMA) was used to apply a longitudinal weld bead 300mm long on both urfac s directl 

opposing one another, Figure 3.3.2 and 3.4.1. 

Murex low carbon steel rutile electrodes (Fortrex 7018) 4mm in diameter with a heat input of 

between 1.7 and 1.9kJ/mm were used to produce a weld bead width imilar to the notch length of 
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16mm. Previous work on similar specimens manufactured from mild and high-strength steels 

(Gurney, 1977) determined that using a heat input of 1.9kJ/mm, the tensile residual stress 

distribution extended 33mm from the weld centreline before being balanced by compressive 

residual stresses nearer the edge of the specimens. The extent of the tensile residual stress field was 

s lightly less, 23mm, for a heat input of 1.2kJ/mm. 

Figure 3.4.1 Steel CCT specimen with a 300mm long weld bead (EDM notch also sholVn). 

CCT specimens 600mm long and 116mm wide were also produced from the 6mm thick 6082 T651 

aluminium alloy, Figure 3.4.2. The method of cutting and direction of stressing was the same as 

that of the steel specimens discussed above. 

Again weld beads were deposited on some specimen to induce tensile residual stresses. Tungsten 

inert gas (TlG) welding with a zirconiated tungsten electrode, 3.2mm diameter 4043 filler wire and 

a heat input of 1.26kJ/mm wa used. The heat input was chosen on the basis of trials that showed it 

to be the most favourable condition to produce the required weld bead. Unlike the MMA process 

used on the steel specimens to produce a weld bead width similar to the notch length in one pass, 

the TIG process required the weld metal to be deposited using a weave technique to provide the 

same width of weld, Figure 3.4.3. 

The central area of all pecimens was subsequently machined flush using an end mill to allow 

notching by electro discharge machining (EDM), as seen in Figure 3.4.1 . 
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60 

Figure 3.4.2 Detailed drawing of a centre crack tension specimen manufactured from 6mm thick 

6082 T651 aluminium alloy (weld beads also shown). 

Figure 3.4.3 Weld bead deposited on aluminium CCT specimen by weave technique to provide 

adequate width . 

3.4.1.2 FILLET WELDED SPECIMENS WITH LO GITUDIN L 

ATTACHMENTS 

Fillet welded specimens 650mm long and 150mm wide \ ere al 0 manufactured from the mm 

thick S355J2+N steel plate, Figure 3.4.4. Longitudinal attachment 150mm long and 38mm high, 

in the same stee l, were fillet welded centrally on each surface (i.e. directly oppo ing one another). 

The fillet welds were made usi ng the MMA process in the flat po ition in t\ 0 run \ ith th 

specimens tilted to form a 'V'. Welding was carried out u ing 4mm diameter Mur x Fortex 70 I 
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electrodes with a heat input of 1.25kJ/mm and weld stop/start positions In the middle of the 

attachments so as to avoid, as far as possible, the effects of end craters. The fillet welds were 

carried around the ends of the attachments as shown in Figure 3.4.5. The resulting weld sizes were 

around 4.7mm throat thickness and 6mm leg length in all specimens. 

- f--S .O 

o 
g 38.0 

;:h 
~150.0~ 

Figure 3.4.4 Detailed drmving of a fillet welded specimen with longitudinal allachmenls 

manufactured/rom 8mm thick S355J2+N structural sleel. 

Figure 3.4.5 Steel fillet welded specimen showing weld detail. 
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Specimens of the same type and dimensions as shown in Figure 3.4.3 \ ere al 0 produced in the 

6082 T651 aluminium alloy, the only difference being the base plate and attachm nt thicknes e 

which were 6mm, Figure 3.4.6. The fillet welds were made u ing the tung ten inert ga (TJG) 

process in the flat position in two runs with the specimens held in the horizontal po ition. 

Welding was carried out using a zirconiated tungsten electrode with 3.2mm diam ter 4043 filler 

wire. The method of manufacture was to join the attachments to the main plate with approximatel 

113mm long fillet welds using a heat input of 1.37kJ/mm. The joint were then completed \ ith 

fi llet welds that were carried around the ends of the attachments u ing a heat input of 2.20kJ/mm. 

Stop/start position were therefore some 30mm from the attachment end, Figure 3.4.7. weld 

throat thickness of 6mm and a weld leg length of II mm ere typical for all fillet welded pecimens 

produced in 6082 aluminium alloy. 

-,-

--6.0 

o g 38.0-
~ 

-'---- '- ....... 

--H--6.0 

Figure 3.4.6 Detailed drawing of a fillet welded pecimen with longitudinal attachment 

manufactured/rom 6mm thick 6082 T651 aluminium alloy. 

For consistency, all welds were made by the same welding technician to reduce the effect oh elder 

variation. Welder variation has been shown to produce a significant amount of catter for 

nominally identical test specimens fabricated using the same procedure (Maddo 19 5). 
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Figure 3.4.7 Aluminium alloy jille/lVelded specimen sholVing lVeld de/ail. 

3.4.2 FATIGUE TESTING 

A ll fatigue testing was carried out under axial applied loading in a number of calibrated servo­

hydraulic fatigue testing machines of capacities 500kN, 600kN and 1000kN, interfaced with 

lnstron 8400 controllers and personal computers (PC's). The tests were performed in air under 

ambient conditions and under load control. 

CA tests were performed under the direct control of the 8500 lnstron controllers, whereas V A tests 

under simple load sequences or spectrum loading were controlled through PC's. 

3.4.3 TESTS UNDER SIMPLE LOAD SEQUENCES 

All load sequence testing (Chapter 5) was performed on CCT specimens in the 600k capacity 

testing machine interfaced with the Instron 8400 controller and Pc. The specimens were lightly grit 

blasted over a region of \ OOmm from either end, and layers of emery cloth secured (Figure 3.4.8) to 

provide electrical insulation from the testing machine grips (see Section 3.5.2). 
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Figure 3.4.8 A CCT specimen with grit blasted ends and emery cloth applied. 

The loading sequence spectra was created using ational 1 nstruments Labview version _012 and 

comprised a block of stress cycles, all cycling down from a con tant ten ile tre of I 56 Imm~ for 

steel or 74N/mm2 for aluminium alloy. Each block contained ten minor con tant amplitude cycle, 

n, and one major (underload) cycle of either twice or 1.5 times the range of the ten minor c cles, 

Figure 3.4.9. The relationship between the number and magnitude of minor and major cycle u ed 

has been found experimentally to produce significant crack growth acceleration (Fleck, 19 5). 

11= 10 cycles 
74N/mml 

42.2N/mm2 

10.56 Imm 2 

N 

C 

Z .., .., 
,..; 
-c 

11 ... 
Vl 

Figure 3.4.9 Simple load sequence lVith constant ma.ximllm sIre and periodic lInderload 11 ed in 

the present study; example sholVn is for aluminium alloy with an underload magnification of 2x 

minor stress range (S8L2). 

Test frequency was controlled by entering the desired alue into the Lab iew oftware. Thi 

frequency was then maintained automatically by running the C cycles a fa t a po ibl then 
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slowing down for the larger underload cycles. The achieved frequency on the software's control 

panel was displayed as the average and was typically within 2% ofthe desired value. Flowcharts of 

the basic software and testing process developed for this research are given in Appendix A. 

Load spectra cycling down from a constant maximum stress were chosen, as previous experience 

indicates that cycling down from fixed tension produces acceleration (Gurney, 2000; Zhang and 

Maddox, 2009). It is also thought to reproduce the conditions that arise in welded joints containing 

high tensile residual stress (see Section 2.8). However, as the upper limit stress is not as high as 

yield, it was considered necessary for a thorough study also to carry out additional tests on 

specimens actually containing such residual stress. In industry, actual welded structures or 

components containing high tensile residual stress may still experience loading that cycles down 

from a constant tensile stress level in service, as discussed in Chapter 8. 

3.4.4 TESTS UNDER VARIABLE AMPLITUDE SPECTRUM LOADING 

Fatigue endurance tests (Chapter 7) were performed under spectrum loading on both CCT and fillet 

welded specimens. Unlike the load sequence tests described in Section 3.4.3, layers of emery cloth 

were not required, although in some instances specimen ends were again lightly grit blasted to aid 

gripping. 

The VA loading spectra was again created using Labview (frequency being controlled in the same 

manner as discussed in Section 3.4.3) and comprised a block of stress cycles all cycling down from 

a constant maximum tensile stress in a random manner, with a fixed maximum stress range for 

each material (Figure 3.4.10). The subsequent blocks were repeated in the same order. 

The block length in a given test depended on the minimum value of the relative stress range, pi, 

where Pi is the ratio of the ifh stress range to the maximum stress range in the spectrum. A pi, value 

of 0.25 was initially investigated as it had been shown, under this form of V A loading, to produce 

lives shorter than predicted by Miner's rule (Zhang and Maddox, 2009). 
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The value of Pi was subsequently varied in other tests (PF O.20 and PI-OAO to allow for difference 

in the number of smaller stress ranges to identi fy whether all tho e appli d in the pe trum \ ere 

damaging. 

100 

90 

80 

70 

~60 
.; 

I 
I 

I I I I I I 11 1 I 111 1I 1 1111 111 111 11 11 11 I 11 11 11 I 11 1 I 
11III111111I1111111U 1 :11111111111111111111111111111111 1111 UIII 11 1111111 111111 
1.lllllllillllllllllll'lllllll.IIIII.1 1IIIIIIIIilllllllllllll ~ ~t) +f-....ILal......ll.LfL"-1f1-ll+-+ 

a. 
~ 40~----+-~¥-~~U--Hr-L---+-r-UU~~~r;~--~~ 

20 ~--------L--L ____ -L ____________ ~ ____ -J ____ ~~ 

10~--------------------------------------------4 

~OO 1000 

Turning point.J 
I . 2000 

Figu re 3.4.10 Example of a VA loading spectrum lIsed in thi project. Spectrum hOIl'n i for a 

minimum Pi value of 0.25. 

3.5 MEASUREMENT AND MO ITORI G OF F TIG E CRACK 

GROWTH 

3.5.1 OPTICAL MEASUREMENT 

By far the simplest method for monitoring crack growth i by optical mea urement. Thi \ a 

performed in the present project on specimens with the surface lightl poli hed acro th plate 

width on the fatigue crack path. A 2 megapixel re olution 20 to 200x magnifi mion opti al 

microscope was used to measure the crack length periodically during fatigue t ting. H re a 

calibrated digital micrometre to an accuracy of within ±0.02mm ( ±20~lm) and a re olution of 

0.0 1 mm (I O~m) was employed. In order to capture the entire cra k length, a be pok j ig wa 

manufactured with movements in all three ax is (x, y and z) to fa ilitat the optical mi ro cop 

which was held to the testing machine by magnet , Figure 3.5.1. 
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Figure 3.5.1 Optical microscope system applied to a steel CCT pecimen. 

3.5.2 POTENTIAL DROP METHOD 

3.5.2.1 DIRECT CU RRENT POTENTlAL DROP 

Apart from the manual method of measuring the fatigue crack length optically, there are a variety 

of other methods \J hich may be u ed to monitor the growth of fatigue crack automatically during 

testing, as detailed in BS 12108 and ASTM E 647. One of these, the direct current potential drop 

(DCPD) technique, was used for most of the present fatigue crack growth tests. The method has 

been shown to provide accuracy to within 2% of measured crack length (ASTM, 20 13a), which 

was considered to be adequate for the present project. The alternative alternating current potential 

drop (ACPD) method (see ection 3.5.2.2) is far more su ceptible to electrical noise interference, 

and so was not deemed uitable for monitoring crack propagation in the CCT specimen. 

The DCPD method itsel f require that two wires be re istance welded to the plate surface on either 

side of the notch. In accordance with the TM tandard (Annex A2 and A6) it is nece ary for the 

wires to be attached diagonally opposing one another, so that the mea ured electrical resistance 

provides an e timate of the a erage crack length for non-uniform lengths. Due to the fragility of the 

wires when welded to the urface of a CCT specimen, in the present project a small (- I mm deep) 

interference fit hole \ as drilled at the de ired locations and pins, onto which the electrical wire 
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could be soldered, pressed in. A specimen with the DCPD system connection wires attached is 

shown in Figure 3.5.2. 

To ensure the optimum current was being drawn, a simple calibration exercise was performed on 

both material types to ensure that the natural noise of the system did not mask any measurements 

being recorded; this was particularly important for aluminium which has greater electrical 

conductivity than steel. For this, a current of 35-40amps (for steel) and 55-60amps (for aluminium) 

was passed through the specimen resulting in a two dimensional electrical field which was constant 

through the thickness at all points. The potential difference between the two sides of the crack was 

then measured. 

One potential source of error that can arise when using DCPD is drift in the measurements of 

potential due to changes in temperature. One method to account for this error is to normalize the 

voltages measured at PO wires mounted to the specimen surface (Zitounis. 2003). However, this 

was not necessary because temperature measurements during the initial calibration exercise were 

found to be stable throughout. 

It was of great importance to ensure that the specimen was electrically insulated from the test 

machine. In the present project this was achieved by introducing layers of emery cloth between the 

machine jaws and the plate surface (Figures 3.4.8 and 3.5.2). A further precaution taken to prevent 

the specimen heating up as the electric current flowed through it. thus avoiding any potential for 

temperature effects at the crack tip, was to switch the current on and off automatically at regular set 

intervals. 

Through appropriate calibration (derived either experimentally, analytically or numerically) the 

potential drop measured on either side of the crack plane can be related to the crack length. As 

crack length increases the area of remaining ligament decreases resulting in an increase in electrical 

resistance and in potential difference. For CCT specimens a closed form analytical voltage versus 

crack size relationship for an infinitely long specimen, described in the ASTM standard, Eq. 

[3.5.1], was used (Johnson, 1965). 
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Figure 3.5.2 CCT specimen connected to the DCPD system showing staggered PD wires (both 

specimen sll/faces sholVn). 

a = ~COS - 1 
;r 

COSH 

COSH ( ~ • Yo ) 

~.COSH - 1. W 

[

COSH (~ . Yo )1 
V r COS ( ~ • a r ) 

[3.5.1 ] 

where a is the crack size (half-length in the ca e of a through-thickne crack in a CCT specimen), 

ar is the reference crack size, W the specimen width, V is the measured electric potential difference 

(EPD) voltage, Vr is the measured voltage corre ponding to a r and Yo is the voltage measurement 

lead spacing from the crack plane. 

Resolution depends on the specimen geometry and the material conductivity, but is typically 10-

20 Ilm (Holtam, 20 I 0) depending on the quality of th equipment used and the maximum 

systematic error in crack length. Following simple calibration under CA loading, comparing crack 

length from DCPD er u that obser ed optically from microscope (Section 3.5.1), the error 

- 3- t 7 -



Research Methodology Chapter 3 

between the two techniques was found to be within 2.2% (0.02mm) for a Imm surface crack length 

and 0.05% (0.0 I mm) for a 20mm crack length. This would result in a maximum error in crack 

growth rate of -8% and -5% for a Imm and 20mm crack length respectively. Or in other words, 

4.1 x I 0-6 mm/cycle for a I mm crack length and 1. 7x 10-5 mm/cycle for a 20mm crack length in the 

case of a 6082 aluminium alloy, and 1.2x10-6 mm/cycle for a Imm crack length and 7xlO-6 

mm/cycle for a 20mm crack length in the case of S355 structural steel. However, the variation in 

crack growth rate error would depend on the number of cycles during the crack increment. The 

associated errors as described are therefore considered acceptable for the work performed. 

Each time a voltage reading is taken, the corresponding load and number of cycles are also 

recorded. Crack growth rates (da/dN) can then be determined by use of the secant method which 

involves calculating the slope of the straight line connecting two adjacent data points on the a 

versus N curve Eq. [3.5.2], the average crack size can then be determined as in Eq. [3.5.3] using a 

measurement interval ofO.2mm (ASTM, 2013a). The corresponding M( was then calculated using 

the solution given in BS 7910 (BSI, 2013), see Eq. [3.5.4]. 

[3.5.2] 

a=~(al+a) 2 1+ 1 
[3.5.3] 

where ai is the initial crack length, ii is the average crack size and Ni is the endurance for a given 

crack size. 

I 

IlK =M~( Sec ;, r [3.5.4] 

where a is crack length and W is plate width. 

An alternative approach is to use the incremental polynomial method (ASTM, 2013a) which 

involves fitting a second order polynomial (parabola) to sets of (2n+ I) successive data points. This 

method is generally used in instances where poor data are collected and smoothing is required. 

No correction for crack front shape was used but after each test the specimen was cut approaching 

the crack tip to reduce the size of the un-cracked ligament, and sprayed locally with liquid nitrogen 
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to embrittle the material and so allow the specimen be broken open with a minimum of distortion. 

The fracture surface could then be examined to determine the initial and final crack depths based 

on a weighted nine point average, as described in BS 7448-4 (BSI, 1997). 

3.5.2.2 ALTERNATING CURRENT POTENTIAL DROP 

The alternating current potential drop (ACPD) method is based on the 'skin effect', a characteristic 

of high frequency current flowing in a conductive material, whereby the majority of the current is 

confined to a thin skin at the surface of the material (Huang, 2004), resulting in a low current, 

typically I amp, requirement The method can be applied using an automated system whereby a 

current is passed at set intervals during fatigue testing. 

Compared to DC PO (Section 3.5.2.1), ACPD is a far more complex piece of equipment and is 

prone to suffer from inductive pick up (the effect of which can be minimized by reducing any cable 

loops). Also, measurement lead connections must be robust, as their movement during a test may 

affect the results. 

As an alternative to a permanently installed monitoring system, ACPD can also be performed 

manually using hand held commercial systems to provide an estimate of crack depth, as used in the 

case of fillet welded specimens later (Chapter 7). Here, a spring loaded four pin probe (comprising 

both the current (500mA) and measurement poles» is positioned such that the pins are placed 

across the crack (over the weld toe in this case) with the current flow perpendicular to the plane of 

the crack. The voltage drop (potential difference) across the crack is then measured and converted 

to crack depth via a micro-processor in the probe handle. This is achieved by comparing the 

measured voltages with those stored from calibration as well as the material characteristics. 

Based on careful calibration on a reference block containing an artificial crack starting at a depth of 

zero up to 10mm, the claimed accuracy of the instrument' is ± I to ±23% for crack depths of 0-

IOmm and ±I to ±25% for crack depths of 10-100mm (without calibration), improving to ±l to 

I http://www.karldcutsch.de/KDR~1GENMl.html 
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±13% for crack depths of O-IOmm and ±I to ±15% for crack depths of 1O-IOOmm, following 

calibration. 

3.6 APPLICATION OF STRAIN GAUGES UNDER STATIC LOADING 

CONDITIONS TO ESTABLISH CRACK OPENING AND CLOSURE 

LEVELS 

The most commonly used technique for determining crack closure is the compliance technique 

(Fleck, 1984; Zitounis, 2003), whereby the crack opening displacement (COD) response of the 

specimen to the variation of the far field applied load is measured. The alternative is to use strain 

gauges to measure the change in strain adjacent to the crack tip during loading. In both the COD 

and strain gauge techniques a linear relationship between the applied stress and, in the case of the 

strain gauge method, microstrain, is assumed to represent a fully open crack. Crack closure is 

therefore assumed to coincide with the change to a non-linear relationship. 

Both the COD and strain gauge methods were also used for the determination of crack closure in 

aluminium alloys (Lee et al., 1996). The findings showed that the strain gauge method was more 

sensitive to local crack tip behaviour on a microscopic scale resulting in higher closure levels than 

observed by COD. However, whilst the strain gauge method precisely measured the local closure, 

its sensitivity varied depending on the relative distance between the point of measurement and the 

crack tip. 

The use of strain gauges to detect closure levels has previously been used on a range of structural 

steels with a clearly defined change in linearity of the slope; hence crack closure being observed 

(Maddox et al., 1978; Fleck, 1984; Fleck and Smith, 1984). This allowed the fraction of the load 

cycle for which the crack is open, U, to be derived using: 

u = Kmax - Kop Me/f [3.6.1 ] 
Kmax - Kmin M 

To establish crack opening/closure levels under applied sequence and V A loading, electrical 

resistance strain gauges, types FLA-2-11 for steel and FLA-2-23 for aluminium alloy, were 
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adhesively bonded to the surface of selected CCT specimens using cyanoacrylate cement. In the 

case of steel specimens, the regions of interests were polished (by pneumatic grinder) using 

successively finer grit bands (up to 240 grit) followed by a grinding flap wheel (320 grit). Each 

polishing operation was performed at 90 degrees to the previous one with the final pass being 

parallel to the specimen loading direction. The polished zones were then lightly abraded using 

Scotchbrite™ wire wool in a random manner to lightly key the surface. For the aluminium alloy 

specimens, the same methodology was applied only manually using successively finer grades of 

wet and dry paper (up to 800 grit) as opposed to bands or flap wheels. 

After marking out the gauge locations, areas were cleaned using acetone and MylarTM tape applied 

to hold the gauge in place whilst light pressure was applied to the strain gauge ensuring good 

contact through the cement. An acrylic solution (M-Coat A) was then applied to the gauges to 

provide light protection whilst handling. Strain gauges were wired in a triple twist configuration to 

a National Instruments SC2345 signal conditioning unit. The unit was wired in a half-bridge 

formation with a dummy gauge (or resistor) completing the circuit. 

Measured microstrain values were recorded at set increments under static loading conditions to 

ascertain levels of crack opening/closure. Initially a calibration exercise was performed to 

determine the distance below and behind the crack tip to adhere the strain gauges in order to 

observe the effect of closure. This was found to be 4mm below the crack and 1.5mm behind the 

crack tip (half the width of the strain gauge). The applied strain gauges therefore detected the 

response in displacement of the material behind the crack to the variation of the far field applied 

stress. Figure 3.6.1 shows four gauges bonded to a steel specimen following measurement of crack 

closure at different crack lengths. 

Figure 3.6.1 Typical po itions of strain gauges for investigation of crack closure. 
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The measured response was compared with a straight line in order to identify whether there was 

any deviation from the linearity (Maddox et al., 1978; Fleck, 1984; Fleck and Smith, 1984). 

Typically a curve fitting analysis is performed to detect the closure point, whereby the curve is split 

into two parts, with a straight line fit to the upper part and a second order polynomial to the lower 

part (Yieshieng and Schijve, 1995; Yigeng et al., 2000; Zitounis, 2003). In the work performed 

here only the straight line fit was applied due to the technique employed giving microstrain values 

at defined loads, as opposed to the data generated by recording load versus displacement using the 

COD technique. For the purpose of the research performed, the levels of crack closure are therefore 

an approximation. The errors associated with curve fitting were found to be around 5% to 10% of 

the test measurement (Zitounis, 2003), this is therefore considered to be an appropriate degree of 

error for this study. 

The uncertainties associated with using the straight line determination of crack closure in this 

study, was performed by first accounting for the errors in the system. These included ±0.24% for 

the 600kN load cell, ±O.lO% for the strain logger, ±O.Olmm for the digital Vernier callipers (used 

for measuring the specimen width) and ±O.06mm for the micrometre (used for measuring the 

specimen thickness). These expanded uncertainties (with the exception of the strain gauge logger) 

are based on standard uncertainties multiplied by a coverage factor of k=2 (providing a coverage 

probability of 95%). The combined standard uncertainty was then deduced based on either a 

normal or rectangular distribution. The resulting uncertainty in values of stress and microstrain 

were calculated as ±O.49% and ±O.02% respectively. 

Applying this error to the individual data points, linear trendlines were then plotted to the mean, 

maximum and minimum values, Figure 3.6.2a-b. Trendline interception points produced a diamond 

shaped area of uncertainty, Figure 3.6.2b. The maximum extent of which (for conservatism) was 

used to define the maximum uncertainty in stress and microstrain at the assumed crack closure 

point. This was found to be 22.8 - 21.3 = 1.5N/mm2 and 258.2 - 236.4 = 21.8f.1E. Therefore, it is 

considered that using this technique, the maximum uncertainty is ±O.75N/mm2 on applied stress 

and ± I 0.9 on measured microstrain. 
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Figure 3.6.2 Plot sholVing the traight line fit approach used to define crack closure: a) straight 

lines fi tted to the upper and 10lVer data points about the a stllned closure stress based on the 

calculated error, b) Intercept points giving the maximum uncertainty of the assumed closure stress. 
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3.7 

3.7.1 

RESID UAL STRESS MEASUREME T 

INTROD UCTION 

Chapter 3 

The residual stresses in a component or structure are stresses cau ed by incompatible internal 

permanent strains. They may be generated or modified at every stage in the component life c cle 

from original material production to final disposal. Welding is one of the mo t igni ficant causes of 

res idual stresses and typically produces large tensile stresses which can be a high as the ield 

strength of the material being joined, balanced by lower compressive residual tre es el e\ here in 

the component. 

Residual stress measurement methods can be destructive, emi-de tructive or non-destructi e. An 

example of some of the most common techniques is gi en in Table 3.7. 1. emi-destructi e and 

destructive techniques generally involve the removal of material to produce rela 'ation of the 

residual stress within a sample, and measurement of the resulting train. Thi train can then be 

used to calculate the residual stress. In contrast, non-destructi e technique are method in \ hich 

residual stresses can be determined without changing or affecting the material propertie , thus, 

allowing the component / sample to remain useable if so wished. Table 3.7.2 gi es the extent of 

depth covered by the various destructive and non-destructi e mea urement technique . 

Table 3.7.1 Categories of residual tress measurement methods. 

Measurement method 

X-ray diffraction, Neutron diffraction, 

Synchrotron diffraction, Ultrasonic, 

Magnetic 

Centre hole drilling, Deep hole drilling, 

Ring core 

Contour method, Slitting, Block removal , 

Sach's boring 
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In the work performed in this research project two techniques were utilised, one destructive and 

one non-destructive (centre-hole and neutron diffraction respectively). As shown in Table 3.7.2, 

basic hole drilling is a near surface technique which resolves strains typically at around 0.0 I Omm 

( lO).lm) to 1 mm depth, whereas the use of neutrons allows residual stresses to be determined over a 

range of 0.1 Omm (I OOJlm) to 1 OOmm; both techniques are further discussed below. 

Table 3.7.2 Residual stress measurement depths (Rossini et al., 2012). 
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3.7.2 CENTRE-HOLE METHOD 

3.7.2.1 BACKGROUND 

The system of determining residual stress using the centre-hole technique was first developed in 

1934 using a two-step drilling method (Mathar, 1934). At this time centre-hole gauges were not 

avai lab le and it was not until 1966 that they were first employed under the application of a 

specially dressed end mi ll (Rendler and Vigness , 1966). The abrasive jet method (Figure 3.7 .1 ) is 

just one centre-hole drilling technique used today and was first introduced in 1973 following a 

review of different techniques (Bush and Kromer, 1973). Three years later the technique was 

improved by use of an orbiting head (Beaney, 1976). 
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Other techniques encompassed by the term hole drilling In Table 3.7.2 include ring core and 

incremental hole drilling. 

Figure 3.7.1 Centre-hole residual stress system. 

Centre-hole drilling is probably the most common residual stre s measurement method for 

situations where the stress close to the surface is required. This semi-destructive technique is 

usually calibrated in a uniform uniaxial stress field which can then be applied to uniform biaxial 

fields by superposition . However, conditions in the component may not be the same as that of the 

calibrated sample, in which case deviations may occur brought on from ariation of the stress field 

over the depth of the hole and plasticity at the hole edge (Scaramangas et al., 19 2). 

Once dri lied, the relaxation of radial stresses at the edge of the hole cause a redi tribution of tres 

which is detected by the strain gauges (Beaney, 1976). By u e of Eq. [3.7.1] which \ a de eloped 

by Beaney and Proctor (1974), the strain can then be related to the re idual stress in the material. 

( I J( E)[ B) +B) + frB) -B
3

):! + [2B,_ -(B) +B) )]~}) z] [3.7.1] 
(Y max.min = - --;z: '2 I - vK 2 / K ) - 1+ vK 2 / K ) l\ 

where ilK, is a function of hole size, E i the Young's modulus of the material , v i Poi on s ratio 

c: /, 2 and 3 are the relaxed strains and K, and Kl are constants 

A three element rosette strain gauge is generally used in order to determine the principal stre s 

directions. Thus for any given value of residual stress, the strain change 
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distance of 'x' from the edge of the hole to the strain gauge (Martin, 2000). Therefore, it is 

imperative that the hole drilled is not only round and of a known diameter, but that it is also in the 

centre of the gauge and equi-spaced from the strain gauge elements, to improve accuracy of the 

results. 

If the residual stresses exceed approximately 50% of the yield stress, then errors can arise due to 

localised yielding (Withers and Bhadeshia, 2001). According to the original development work 

(Beaney, 1976) the error was found to be negligible for stresses less than 70% yield. Following a 

review of their data, (Scaramangas et al., 1982) suggested that stresses above 65% of yield (or 

0.2% proof stress) should be corrected for plasticity effects. Such that, measured stresses would be 

subject to correction using Eq. [3.7.2] : 

<lC 
[3.7.2] 

where, ac is the corrected stress, a 'c is the measured stress and ao is the yield strength. 

A review on the accuracy of this method (Martin, 2000) found that errors in relaxed strain values 

are dependent on the alignment of the hole, strain measuring technique and the induced stresses 

from the hole forming process. They found that, if carried correctly, errors in strain measurement 

should not exceed ±0.6%. Any errors in hole alignment would depend on the direction of 

misalignment with respect to the stress field and rosette direction and would be similar to that 

found for errors in hole diameter (±1.2%). Calibration tests by various researchers using Beaney 

and Proctor's method of analysis Eq. [3.7.1], found empirical values for stresses derived from 

three-element rectangular rosette gauges in the range of 0.3 (± 1.2%), and showed that errors up to 

±5.2% could exist in the derived stresses, with errors due to plasticity effects being <2% for 

stresses up 65% of yield. Thus the total error using the air abrasive centre hole system is up to 

±10.2%. 
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3.7.2.2 APPLICATION IN CURRENT RESEARCH PROJECT 

For the detennination of pennanent (residual) stresses (Chapter 6), electrical re istance strain 

gauges, both conventional strain gauge rosettes (Figure 3.7.2a) type FR -2-11-120, and t pe CEA-

13-062UM-120 (Figure 3.7.2b), were used. As opposed to con entional strain gauge ro ettes, the 

latter make it possible to measure residual stresses closer to the area of intere t uch a a \ eld toe. 

However, in all cases the governing factor behind the proximity to an obstruction i.e. a stiffener, is 

the drill head of the residual stress measurement equipment. 

25mm 

b) 

Figure 3.7.2 Permanent stress measurement strain gauges lIsed in this re earch project: a) 

Conventional strain gauge rosette, type FRS-2-11-120, b) Strain gallge rosette type CEA-13-

062UM-120. Arrows indicate strain gauge elements. 

The same method of application of the gauges, as that described in ection 3.6 wa u ed, e c pt M­

Coat A coatings were not applied. 

Due to the availability of equipment and experience in its operation the centre hole drilling method 

with an air abrasive system shown in Figure 3.7.1 was the primary re idual stre s mea urement 

method used (Chapter 6). A series of calibration hole \ ere first trepanned in identical spare 

material in order to set the correct operating pressure, orbiting p ed and flo. rate. 3 micron 

aluminium oxide was used as the cutting medium. 
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Measured strains (J1f;) were recorded using a Vishay P3 strain indicator. After each hole was cut the 

change in microstrain was agai n recorded and both the depth and diameter of the hole measured 

using a cal ibrated micrometer and x I 0 magnification ocular lens. The recorded strain was then 

converted to stress using Eq. [3 .7.1] following the procedures given in ASTM E 837-1 3a (ASTM, 

20l3b). 

Figure 3.7.3a-b shows both a CCT specimen, incorporating a weld bead on the plate surface and a 

fillet welded specimen instrumented with CEA-1 3-062UM -1 20 strain gauge rosettes following 

residual stress measurement. 

a) b) 

Figure 3.7.3 CCT (a) and Fillet lVelded (b) specimens sholVing trepanned holes after residual 

stress measurement. 

3.7.3 NEUTRON DIFFRACTION 

3.7.3.1 BACKGROUND 

Di ffrac ti on techniques are well-established non-destructive tools for measuring strains (residual or 

applied) within polycrysta lline materials. By changing the orientation of the sample, train can be 

measured at a number of different angle allowing a stre s component to be obtained. 

The basic principle of residual strain scanning requires the determination of lattice spacing, dh"" 

(hkl denoting crystallographic plane (Hutchings et al., 2005)), which cau e changes in the spacing 
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of the lattice planes from their stress free condition (Kudryavtsev, 200 ). The lattic pacing can be 

calculated using Bragg's diffraction law: 

A-d = hkl 
IIkl 2sin e 

Ilkl 

[3.7.3] 

where, ; .hkl is the wavelength, ()hkl is the diffraction angle, h i Planck con tant, I11n i the neutron 

mass, L is the neutron 's travel down flight path and t hkl is the time of flight (ToF). 

Neutron strain scanning provides the average elastic strain \ ithin the gauge volume defined b the 

intersection of incident and diffracted beams (Hutchings et al. 2005) Figure 3.7.4. fter obtaining 

dhkl, the elastic strain, exx , along a direction 'x', is determined from the change in the lattice pacing, 

d.u, of the crystalline material referred to the stress free alue, dQ, thu ; 

[3.7.4] 

where do is the material value in the unstressed condition. 

Incident beam Diffracted beam 

Figu re 3.7.4 Bragg 's law geometry in the plane of diffraction. 

Stres calculations following the strain calculations are ba ed on continuum mechani ,u ing 

Hooke's law. The stress is calculated from the elastic trains in the gauge volume m a ured along 

three mutually orthogonal directions as follows: 

E 
CYxx = (l + v)(l- 2v) [(1- v)cxx + v(c})' + c;:;: )] 

[ .7.5] 

E 
CY}J' = (1 + v)(1 - 2v) [(1 - v)c)J' + v(c.a + c=;:)] 

[3.7.6] 
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[3.7.7] 

where E and v are the crystallographic elastic constants for the hkl planes being measured. 

The experimental uncertainties in the neutron diffraction results can be calculated using an error 

propagation method (Taylor, 1982). With this approach, the effect of the stressed and un-stressed 

lattice spacing, t-.d (the error in the measurement of d) and t-.do (the error in the measurement of do), 

on the uncertainties in the strain and stress values is quantified. 

The experimental uncertainties presented in this research report were derived using an error 

propagation method (Taylor, 1982) of the form: 

[3.7.8] 

where z is a function of x and y; and ~x and ~y are the uncertainties in x and y. The uncertainty in a 

strain component &x .. (say) is therefore: 

Il&_ = [aco: ~d J2 +(acu Ild J2 
- ad xx ad 0 

xx 0 

[3.7.9] 

ifEq. [3.7.4] is substituted in Eq. [3.7.9], Eq. [3.7.9] can be rewritten as: 

[3.7.10] 

The uncertainty in a stress component (J' xx (say) is similarly derived, ie 

[3.7.11] 

after the substitution ofEq's. [3.7.5] - [3.7.7] into Eq. [3.7.11], the following equation is obtained 

for the uncertainty in the stress component 
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[3.7.12] 

where the constant 

c= E 
(l+v)(I-2v) 

[3.7.13] 

Eq's. [3.7.9] to [3.7.12] relate the uncertainty in the strain and stress calculations to the uncertainty 

in the original stressed and un-stressed lattice parameter spacing's, M and Mo, respectively. 

3.7.3.2 APPLICATION IN CURRENT RESEARCH PROJECT 

The use of neutron diffraction was employed on CCT and fillet welded specimens to determine the 

extent of the through-thickness residual stress distribution after welding and EDM notching 

(Chapter 6). The neutron diffraction measurements were carried out on the Stress-Spec 

monochromatic diffractometer at FRM2 in Garching, Germany. Ferritic steel is body centre cubic 

(bcc), and measurements were made using the {2 I I} plane, as it has been reported to correlate 

well with macroscopic elastic response (Lewis and Truman, 20 I 0). The wavelength was set to 

1.68A (0.168nm) to achieve an almost cubic gauge volume by having a scattering angle (29) close 

The stress free lattice parameter can vary significantly in both the heat affected zone (HAZ) and the 

weld metal itself (Holden et al., 2006). Thus, stress free reference cubes were machined using 

EDM from sections of the original welded plate. In some cases a stress free reference 'comb' is 

machined, however, it can be difficult to ensure the comb is fully stress relieved. In general 

retained stresses can be up to 20N/mm2 (Ganguly, 2004). The dimensions of the cubes (3x3x3) 

were small enough to ensure they were virtually stress-free (Pearce et aI., 2008). The gauge volume 

used for the stress free sample was 2x2x2mm to ensure that the gauge volume was entirely within 

the cubes. As this material is relatively thin, plane stress rather than plane strain conditions were 

expected with no significant stress gradient through the thickness (Ganguly et aI., 2008). 
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Neutron diffraction was used to evaluate the full 3D strain tensor along the principal strain axes. 

Strain va lues were measured in the longitudinal (a long the welding direction), transverse across the 

weld/notch) and normal (through-thickness) direction. These directions are further defined as LO, 

TO and NO as shown in Figures 3.7.5 and 3.7.6. 

D 

~LO 
, TD 

" Measurement planes 

Figure 3.7.5 CCT specimen incorporating a 300mm weld bead on the plate slllface, measurement 

planes also shown. 

t< LO 
TD 

Figure 3.7.6 Fillet welded specimen incorporating longitudinal allachments, measurement plane 

also shown. 
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[n both specimen types, measurements were made at 2mm interval 0 er the central region (\ eld, 

notch location or weld toe); this was increased to 5mm to\ ard the edge of the plate. The e 

locations were repeated through the specimen thickness at depth of 1.5, 2.75, 4.0, 5.25 and 6.5mm 

(where 4.0 denote mid-thickness). In the ca e of the CCT specimen, r idual tre "a al 0 

measured at a distance of 50mm from the reference plane (notch location), as indicated in Figure 

3.7.5, to obtain the initial and un-cracked stress distribution . 

Figure 3.7.7 Steel CCT specimen setup for residual tress mea IIrement by neutron diffraction, 

lIsing the Stress-Spec at FRM2. 

3.8 FINITE ELEMENT A ALYSI 

3.8.1 MODEL DEVELOPME T 

Finite element (FE) analysis is a numerical modelling method allO\ ing the e timate of the tre 

fiel d or displacement field for a model whose geometry or loading do not allo\,,, th calculation 

by an analyt ical solution. In FE, the continuum mechanics problem i.e. the anal)' i of kinematics 

and mechanical behaviour of materials modelled as one ma ) i tran po ed to a di r le problem 

where the so lution is calculated at a finite number of points of the geometry in tigated. The 

interpo lation of the variable values between each point where it is numerically calculated gi es an 

estimate of the variable considered over the continuum geometry. 

- 3-34 -



Research Methodology Chapter 3 

In a FE model, the geometry is partitioned into geometrical elements, defined by the nodes at the 

intersection of edges (corner-nodes), and eventually the nodes lying at the centre of edges (mid-

nodes), Figure 3.8.1. Knowing the behaviour of the material, and assuming the displacement of 

each node, the software can calculate the strain and stress at particular points inside the elements, 

called Gauss points or integration points. Assuming initial displacements for all the nodes defined 

for the discretisat ion of the geometry, and using an iterative process, the software optimises the 

value of the displacements at each node so that the stresses calculated in the elements are in 

balance with the external loading applied. 

F 

integration 
point 

x 

x 

mid-side 
node 

x 

Figure 3_8.1 Illustration of a continulIm mechanics problem (in black) resolved into a discrete 

problem (in blue) of geometrical elements. 

In each element, the variation of the displacement between the nodes can be assumed to be linear or 

quadratic. In the case of a linear interpolation, only the displacements of the corner nodes are 

considered. When the interpolation is quadratic, the displacements of the mid-nodes are also 

considered. The use of elements with quadratic interpolation allows accounting for a sharper 

variation of strain, or tre , v ithin each element. These elements are therefore particularly 

recommended in cases where a significant stres gradient is expected, such a a crack tip region. 

For the analysis of the crack tip stress field (Chapter 6) due to the application of periodic 

underloads, the geometry was modelled as 20 plane stress, and was therefore meshed with 20 

plane stress element. The elements used assumed quadratic interpolation of the displacements. The 

mesh was signi ficantly refined in the region of the crack path in order to capture the stress gradient 

near the crack tip. 
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The specimen geometry modelled was one quarter that of a CCT specimen such that two planes of 

symmetry (y-z and x-z) were included, Figure 3.8.2. 

QJ 
c 
tU 

a. 
~ .... 
QJ 

E 
E 
>­
VI 

80mm 

symmetry plane 

8mm lOmm 
~------------~.4----------------~ 

Crack tiP 

Figure 3.8.2 FE model with two planes a/symmetry, plain steel CeT model howl1. 

The plastic behaviour of the material was assumed to follo\ the combined non-linear i otropic and 

kinematic hardening model. This model, described by Lemaitre and haboche ( 1990), i a ailable 

in the Abaqus database of models for metal plasticity (Abaqus, 2013). In thi model , the total train 

(c) is divided into elastic strain (ce) and plastic strain (cp): 

[3 .. 1] 

The flow stress varies with the cumulative plastic strain cp, either by increa ing the ield tre for 

all directions of loading (Isotropic hardening), or by the ela tic domain retaining a con tant ize, 

but moving about in the free space by translation (Kinematic hardening). Figure 3 .. 3 i11ustrat the 
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principles of isotropic and kinematic hardening, and shows their respective effect on a low-cycle 

fatigue stress-strain curve. 

Abaqus uses two variables, H and a, to implement this model. The equations describing the 

variation of the variables H for isotropic hardening and a for kinematic hardening are as follows: 

H = Q[l- exp(- be p)] 

a = C [1- exp(1- rep)] 
r 

[3.8 .2] 

[3.8.3] 

where for isotropic hardening, Q is the maximum hardening level above the initial elastic limit and 

b is the rate (in strain) at which Q is reached. For kinematic hardening, the same is also true for C 

and r respectively. The Parameters Q, b, C, and r, as well as the Young's modulus and elastic 

limit, can be identified by comparing the experimental fatigue curves with data produced by the 

model. 

Isotropic cr 

Kinematic cr 

Figure 3.8.311lustration of the principles of isotropic and kinematic hardening. 

A very simple model , made of one axisymmetric element with linear interpolation, was generated. 

The cyclic loading was defined by applying 20 series of tensile and compressive displacements. 

The magnitude of the applied displacements was determined from the strain range applied for each 
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experimental test. The resulting cyclic stress history was recorded and compared with the 

experimental data, and the parameters were adjusted until good agreement wa obtained ben een 

the experimental and simulated LCF curves. 

Figures 3.8.4a-c show the comparison between the model and the LCF test data (Cycle I and Cycle 

20, see also Chapter 4) fo r both materials investigated. It is worth noting that in the ca e of S355 

steel, the first cycle is affected by the Luders plateau2
, which cannot be taken into account by the 

model. Two different sets of parameters were then identified: with the first set the i otropic work 

hardening parameters were chosen in order to capture the variation of the tres \ hen the applied 

strain was at its peak, however the initial elastic limit had to be adjusted to an artificially 10\ alue' 

in the second set, the elastic limit was more in agreement with the LCF curve observed in the first 

cycle, but using the identified parameters for the isotropic work hardening, the maximum tres in 

the first cycle was over-estimated. Because the aluminium alloy doe not exhibit any ingularity in 

the fi rst cyc le, a unique set of parameters was used to model its plastic behaviour described in Eq s. 

[3.8.2] and [3.8.3]. 

a) 

S355 Steel - Low Initial Elastic Limit 

600 

-0.005 

-200 

-600 
stnln 

0.01 0.015 

• Cycle 1 - expenmental 

- Cycle 1 - model 

... Cycle 20 - expenmental 

- Senes4 

2 A region following the yield point in a tensile test, where localized bands of plastic deformation 0 cur prior 

to strain hardening. 
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b) 

c) 

to 
CL 
::10 
~ -0.Q15 
e 
1ii 

'" CL 
::10 
vi -0.Q15 
1/1 

e 
1ii 

-0.Q1 

-0.01 

S355 Steel - High Init ial Elastic Limit 

600 

-0.005 

-600 
stress, MPa 

A6082 Alloy 

400 

-400 

strain 

0.Q1 0.Q15 

• Cycle 1 - experimental 

- Cycle 1 - model 

4 Cycle 20 - experimental 

- cycle 20 - model 

0.01 0.015 

• Cycle 1 - experimental 

- Cycle 1 - model 

" Cycle 20 - experimental 

- Cycle 20 - model 

Chapter 3 

Figure 3.8.4 Compari on between model and LCF lest data/or a) S355 with a low initial elastic 

limit, b) S355 with a high initial elastic limit and c) 6082 aluminium alloy. 

The magnitude of applied loading in each model was identical to that performed in the laboratory 

load sequence tests and comprised a number of CA (minor) cycles followed by a tensile underload 

then further minor cycles, Figure 3.8.5. 
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o 

0 max = lSS.5N/mm2 (Tensile) for steel and 74N/mm2 (Tensile) for aluminium 

- - --
0 min = 85.5N/mm2 (Tensile) for steel and 31.8N/mm2 (Tensile) for aluminium 

Cycles 

Figure 3.8.5 Loading sequence applied 10 FE models . 

Loading was accomplished by assuming an even distribution across the \ idth of the plate and 

app li ed to the ends. The loading point was constrained to allo\' displacements in the y direction. 

The nodes, at x=O, representing the un-cracked material were con trained in the y direction. 

Ten models were created with different loadinglboundary conditions. A summary of the models 

discussed in Chapter 6 is presented in Table 3.8. 1. 

Table 3.8.1 FE models developed/or sleel and aluminium CCT specimen. 

Residua l Underl oad Underload 
stress minimum tr e range Te t 

Model ID Material included stre , Imm 2 Imm 2 prefix 

M-2D-S355-crack S355 0 15.5 140 BL2 

M-2D-S355-
S355 Yes 15.5 140 BL2 

RSnotchcrack 

M-2D-S355-0 S355 No C L 

M-2D-S355-\ 5 S355 0 50.5 105 BLI.5 

M-2D-S355-22 S355 No 0 155.5 BL2.2 

M -2D-6082-crack 6082 0 10.6 63.4 BL2 

M-2D-6082-
6082 Yes 10.6 63.4 BL2 

RSnotchcrack 

M-2D-6082-0 6082 0 C L 

M-2D-6082-1 5 6082 No 26.3 47 .7 BL1.5 

M-2D-6082-23 6082 No 0 74 BL2.3 
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The models were defined as 20 plane strain. Initially, 20 plane stress elements were used as they 

were thought to be more appropriate in view of the thickness of the plate compared to its length and 

width. However, it was noticed that the use of plane stress elements resulted in the localisation of 

strain along the crack front, which was not observed in the experiments. The results obtained 

assuming the plane strain field were in better agreement with the observations. 

The elements used for meshing the model were quadrilaterals with quadratic interpolation and 

reduced integration. Using quadratic interpolation allows the capturing of high stress gradients, 

such as those expected to be present at the crack tip. The crack tip stress field is also well captured 

when using collapsed elements (elements where two adjacent nodes are defined to lie at the 

location of the crack tip). In this case, it looks like the crack tip is meshed with triangular elements 

in the initial mesh. However, when plasticity is invoked the nodes can move independently when 

the load is applied. A comparative study of the stress field obtained using collapsed elements and 

quadrilaterals was conducted and is reported in Appendix B. It shows that the mesh with 

quadrilateral elements is sufficiently fine to capture the crack tip stress field in the same way as 

collapsed elements. 

The element size in the region of the crack tip was O.Olmm. Figure 3.8.6 shows the crack tip mesh 

defined with normal quadrilateral elements and collapsed elements. Also highlighted in this figure 

is the line of symmetry. The nodes where this condition is not defined are in the crack wake and are 

free to move in the symmetry plane. 

No mesh sensitivity study was performed. However, the mesh size at the crack tip was O.Olmm, 

which is of the order of the typical grain size of the structural materials considered (Lehto et aI., 

2014; Bouquerel et al., 2015), so that further refinement would be valid regarding the mathematical 

aspect of the analysis, but would be questionable regarding the relevance to the microstructure of 

the material. Also, all the analyses were carried out with the same model, so that a relatively 

quantitative comparison can be made between the results obtained with the different loading 

conditions. 
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Mesh with quadrilateral elements at crack tip Mesh with collapsed elements at crack tip 

Horizontal symmetry plane 

Figure 3.8.6 Crack lip meshing for S355 specimens. The meshing for AI60 2 specimens \Vas 

similar. 

To characterise stress/strain in the maximum principal stress direction, set distance of 0.0 I mm, 

0.05mm and O. IOmm from the crack tip were analysed. The examination of stress/strain at 

characteristic d istances ahead of a crack tip is reminiscent of the Sigma-d method, typicall used in 

the assessment of crack initiation in plain materials (Drubay et 01.,2003; Da ies et al., 2005). 

Since the CCT specimens already contain a notch and for the purpo e of the model anal sis a 

10mm crack extending from the notch tip is already present (Figure 3.8.2), the sigma-d method 

wou ld not be appl icable in this instance. 

To provide support for the FE model methodology and demonstrate its accurac and robu tness in 

representi ng the conditions at the crack tip under the applied loads, initial alidation of the elastic 

response ahead of the crack tip was performed, Appendix B. 

Here resul ts of the FE model for the minor stress range were compared with the calculated re pon e 

using LE FM. The fin dings revealed that at a distance of >0.2mm from th crack tip, good 

agreement between the model and the calculated response wa achie ed, Figure B 19. Ho\ e er, as 

one would expect, closer to the crack tip the LEFM response failed to capture th large pia tic 

deformation brought on from yielding, which had been allowed for in the FE mod J. Comparing 

the variation in crack tip response between the loading and unloading portion of the minor cycle 

(i .e. the elastic range), both the model and calculated response correlated \ ell. 
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Following this, further validation was perfonned by considering Irwin's elastic-plastic offset from 

the LEFM elastic curve (Lemaitre and Chaboche, 1990), Figure B21. The process involved 

calculating the corrected crack tip stress field allowing for the plastic zone ahead of the crack tip 

tenned Ry• Assuming LEFM and plane strain conditions, the stress at the crack tip (Rp) over the 

distance of 2 x Ry was detennined using the von Mises equivalent stress limited to the materials 

yield strength. By truncating the LEFM curve at the value of Rp, the response agreed well with the 

minor cycle FEA results, Figures B22 and B23. 

To establish the effect of residual stress during tensile underloading, the measured residual stress 

distribution extending across the plate from the notch width (Section 3.7) was used to define the 

residual stress profile extending from the notch (Bao et al., 2010) using a closed fonn stress 

intensity factor (SIF) solution derived by a weight function method for a centre crack in an infinite 

plate width (Tada et al., 2000), using: 

[3.8.4] 

where ayymax is the maximum residual stress measured, Xpeuk is the offset used in un-symmetrical 

ayymaX measurements and C is a constant derived experimentally for data fitting. 

For the introduction of residual stresses into the FE model, the Abaqus subroutine SIGINI was 

used. In this, the first step of the analysis is the calculation of a balanced residual stress distribution. 

This is necessary because the residual stress field applied is often not at equilibrium. In this first 

step, when applying the stress distribution identified from the measurements to the model, 

achievement of a balanced residual stress distribution could not be obtained as the stress 

concentration and plastic strain at the notch tip were too high. The alternative solution was to apply 

the residual stress field before the notch was modelled, so that the balanced stress distribution was 

calculated in the un-notched condition, then to remove the elements corresponding to the notch to 

calculate the new stress distribution. 
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It is worth noting that this process does not strictly agree with the way the re idual tress 

distribution was established, since Eq . [3.8.4] is for the residual tres di tribution at a notch, but 

was applied to the model in the un-notched condition. Howe er the fir t mea ur ment point i 

2mm from the notch tip, where the stress distribution is hardly affected by the not h. 

Figures 3.8.7 and 3.8.8 show the stress distribution before equilibrium, before notching, and after 

notching, compared with the actual measurements. Becau e of the ymmetry of the model the 

predicted FE residual stress is shown at only one side of the notch. The e graph ho' that, 

although the stress distribution was applied in the un-notched condition, the final predict d re idual 

stress is very close to the measurements. ote that the balanced tre tran ver e to the \ eld i 

close to zero before notching. This is in agreement with the exp cted re ult after equilibrium. 

However, the notch) causes the stress to rise to the mea ured alue. 

1000 
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..... 600 
E 
E -'Z 400 
~ 

'" '" Q) 

200 '-..... 
'" -~ 
::s 0 

:E 
'" Q) 

0:: -200 

-400 

-600 

- FEA, before notching & 
before equilibrium 

- FEA, before notching & 
after equilibrium 

I 

0 1 - FEA, after notching & 
after equilibrium I 

I 

- -0 - Experimental, as I 

measured 

--<r Experimental, with 
plasticity correction 

-80 -70 -60 -50 -40 -30 -20 -10 0 10 2 

Distance acro plate wid th mm 

60 70 80 

Figure 3.8.7 Comparison between the initial input stres field. balanced ~tre . field. alld the 

measured distribution for S355 steel for the direction longiludinallo the weld. 

J The width of the weld bead, as indicated in the plot and the notch length in all and for both t el and 

aluminium alloy are equal. 
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Figure 3.8.8 Comparison between the initial input stress fi eld, balanced stress fields, and the 

measured distribution f or S355 steel for the direction transverse to the weld. 

The same methodology was applied in the case of the 6082 aluminium alloy and is shown in 

Figures 3.8.9 and 3.8.10. Also shown are the boundaries to the HAZ softened zone. This softened 

zone is a result of the welding process changing the original alloy constituents of 6082 in the T6 

condition, due to over aging brought on by the high temperatures involved (Missori and Sili, 2000). 

The FE model produced was validated using linear elastic fracture mechanics. The validation 

calculations are included in Appendix B. 

All FEA was performed by the umerical Modelling Section (NMO) at TWI , Cambridge. All 

model requirements, geometry, loading requirements, interpretation of data and model validation 

were specified/carried out by the author. 
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Figure 3.8.9. Comparison between the initial input stre field. balanced tre fie/cl, and the 

measured distributionJor the 6082 aluminium alloy Jor the direction longitlldinal to the Ireld. 
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Figure 3.8.10. Comparison between the initial inpuI sIre field. balanced Ire . field., and the 

measured distribution Jor the 6082 aluminium alloy Jor the direction tram verse to the weld. 
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3.9 FRACTOGRAPHIC EXAMINATION 

3.9.1 METALLOGRAPHIC PREPARATION 

Metallographic samples were cut from fatigue tested specimens using a band-saw; these were 

further reduced to a more manageable size (where necessary) by means of a cut-off wheel. 

Samples for macro examination were then mounted in conductive Bakelite (20ml Phenolic hot 

mounting resin and I5ml Conductive Phenolic mounting resin) using a mounting press. Once 

mounted, they were ground back using successively finer abrasive discs of 180 to 1000 grit grade, 

rotating the samples by 90° between each grit grade. They were then polished again successively 

finer to 0.25)lm. Samples were inspected for scratches, provided none were found they were etched 

using 2% Nital for steel, and either Kellers (with hydrofluoric acid) or sodium hydroxide for 

aluminium alloy, to allow the microstructure and weld to be examined. 

Samples for examination In the scanning electron microscope (SEM) were again cut from 

specimens using a band-saw, but this time were cleaned in an ultrasonic bath of Acetone. In some 

instances Pyrene was used as the medium. This is a more aggressive remover of oxidising product 

but can easily destroy the fracture surface if the concentration is too high. Typically 2% Pyrene was 

used in the ultrasonic bath and increased to a maximum of 5% should it be required; five minutes 

was the maximum exposure time used for the steel samples (where necessary). 

3.9.2 SCANNING ELECTRON MICROSCOPE 

A scanning electron microscope (SEM) works by using electrons to form an image as opposed to 

light. A beam of electrons is produced at the top of the microscope and passes through an 

electromagnetic lens which focuses the beam on to the object. Once the electrons hit the object 

surface they are dispersed randomly and detectors capture a proportion of them and convert them 

into an image. In the work performed here, two detectors were used at varying stages of the 

analysis: the InLens detector which is mounted vertically within the objective lens captures a small 

proportion of the secondary electrons which travel vertically upwards. The side mounted secondary 

electron detector (SE2) drags electrons from the surface and therefore enhances the topographical 

nature of the system. Whilst the InLens detector loses the topographical effect, the detector can 
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perform better at high magnification particularly with a shorter working distance and hence greater 

proportion of captured secondary electrons. 

For the experimental work performed within this research project, specimen fracture faces were 

examined using a Zeiss Supra 55VP field emission gun scanning electron microscope (FEGSEM) 

at the Open University, Milton Keynes and the Leo 1550 FEGSEM at TWI, Cambridge. All SEM 

microscopy performed in this thesis was carried out by the author. 

For both FEGSEM systems the inlens secondary electron detector was used with an accelerating 

voltage of 3kV and 5kV for the Zeiss and Leo respectively. Steel specimens were examined at both 

20k and 50k times magnification, and the aluminium alloy specimens were examined over a range 

of lOk to 50k times magnification. The purpose was to observe striations (Figure 2.5.2) on the 

fracture surface following periodic underloads and V A loading; striations define the position of the 

advancing crack front. Consequently, the space between them is the distance propagated by the 

crack under the relevant applied load cycle. In all cases, images were captured at set intervals 

extending out from the notch tip to examine any differences in striation spacing with respect to 

crack length. 

3.9.3 X-RA Y COMPUTED TOMOGRAPHY 

X-ray computed tomography (XCT) is a non-destructive imagining technique which uses X-rays to 

produce three dimensional representations of a scanned object. Originally developed in the medical 

sector for computerized axial tomography (CAT) scans, the resolution was limited to around 

0.5mm. Over the past two decades the technique has extended significantly with the availability of 

Industrial Micro-Computed Tomography (Il-CT) scanners capable of providing 3D and 4D micron-

resolution, as well as synchrotron radiation sources that are capable of sub-micron resolutions 

(Wevers, 2012). 

Its use in analysing welded joints is limited and to date no known work has investigated its ability 

to resolve the local weld toe geometry. Recent work has, however. seen its use in resolving surface 

features (i.e. corrosion pits), porosity, stress corrosion cracking, fatigue cracks and inclusions 

(Bettaieb et al., 2011; Homer et al., 2011; Gamboa et al., 2014; Marrow et al., 2014). 
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The system works by projecting an X-ray beam through a specimen at several increments about a 

3600 rotation of the specimen and taking a number of X-ray radiographs, Figure 3.9.1. These 

projections are then formed on a detector by the X-rays that attenuate energy as they traverse 

through the specimen (Kumar et al., 20 11). The amount of X-ray attenuation is a logarithmic 

function of the material absorptivity and thickness and is represented by : 

[3.9.1 ] 

where 1 is the X-ray beam intensity, 10 is the X-ray beam energy, t is specimen thickness in the 

beam direction and J1 is the linear attenuation coefficient of the material. 

specimen on 
rotation stage scintillator 

series of 
projection images 

3D image 
represented 
as a series 
of 20 slices 

~ $ ~ tom ",,,,h;, Y-- reconstruction 

Figure 3.9.1 Schematic illustration of the X-ray eT acquisition and reconstruction proce s (Landis 

and Keane, 2010). 

The radiographs are reconstructed into a 3D volume by finding the centre of rotation and using a 

back-filtered projection algorithm in CT3DPro software. The resulting 3D volumes are then 

analysed using 3D image processing software such as: VG Studios, A VIZO, CAD+, SCA JP and 

FIJr. 

In the case of the steel fillet welded specimens with longitudinal attachments used in this project, 

two scans were carried out at the weld return location (Figure 3.9.2) using the 225kV HUTCH ).1-

CT machine at outhampton Univer ity by an Eng.Doc tudent, each scan taking 6.5 hours to 

complete. The two volumes were then aligned and stitched in VG Studios. Further details of the 

work performed are given in Chapter 4. 
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Figure 3.9.2 Weld return location on a steel fillet welded specimen with longitlldinal attachment . 

3.10 SUMMARY 

This Chapter has identifi ed a number of techniques employed to better under tand fatigue crack 

acceleration under simple loading spectra and VA loading from a con tant maximum tre . In each 

case the methods most relevant to th is research project were id ntified. hown and mentioned at 

various stages throughout this Chapter, the use of both teel and aluminium alloy pe imen has 

been utilised in thi s research project. The materials selected and their characteri ation i di cu ed 

in the fol lowing Chapter. The bas ic understandi ng of the selected material \\ a pivotal in appl ing 

the methodologies discussed herei n. Chapters 5 to 7 present the re earch undertak n using the 

methodologies identified above. An overview of the research carri d out i pre ented in Figure 

3. 10.1. 
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Chapter 3 

Figure 3.10.1 Overview a/the research carried Ollt and the analy tical or test techniques employed. 
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Chapter 4 

MATERIAL SELECTION AND 

CHARACTERISATION 

4.1 INTRODUCTIO~ 

In view of its widespread use for welded structures the material selected for this study of fatigue 

under variable amplitude loading was a medium strength structural steel, the choice being S355 

steel. However, one aspect of the investigation involved microscopic examination of striations on 

the fatigue fracture surfaces. This is generally very difficult in steels, even using a scanning 

electron microscope (SEM), whereas striations are more readily identifiable in aluminium alloys. 

Therefore, supplementary tests were included using a structural aluminium alloy, the choice being 

6082-T651, another structural material widely used for welded structures. Details of the two 

materials and the material properties required for the present study are presented in this chapter. 

4.2 SELECTED MATERIALS USE I~ INDUSTRY 

4.2.1 STRUCTURAL STEEL 

Structural steel plate, type S355J2+N to BS EN 10025-2 (BS, 2004), produced by Corus UK Ltd., 

was used throughout this investigation in all aspects of experimental work performed. It was 

supplied in two batches (PMl and PM2) in the normalised rolled 'N' condition, whereby the steel 

is cooled in air after the final rolling process from a temperature exceeding 900°C. The result is a 

refined grain size with improved mechanical properties, particularly fracture toughness (minimum 

impact requirement 27J at -20
0 e). 
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The steel is generally readily weldable but this wa checked on th ba i of it carbon qui alent 

value (CEV) (see Section 4.3.4). 

4.2 .2 ALUMINIUM ALLOY 

The aluminium alloy used was grade 6082 T651 to 8 E 4 ~ (8 ,_00 ), produced, again in h 0 

batche , by Constellium. 

A lloy 6082 (A I Si Mg Mn) has reasonable weldability and corro ion re i tanc and al 0 the highe t 

strength of the 6000 series alloys. It is used extensi ely in engineering application uch a bridge, 

trusses, cranes, offshore and transport. The classification 'T651' refer to the heat treatment and 

normalisation processes, 'T6' being the solution heat treatment b fore quenching in old \ ater to 

give enhanced strength, and '51' denoting that the material \\ a normali ed by controlled 

stretching. 

Figure 4.2.1 Extent oJ HAZ softening in Cl fillet welded 60 2 T651 aluminium alloy pecimen with 

longitudinal attachments (BSI, 1991). 

A practical disadvantage of some structural aluminium alloy, including 60 2, i that th ar 

softened in the heat affect zone (HAZ) as a re ult of w Iding. In the t) pe of fillet-\\ Ided joint u d 

in the present investigation (Figure 4.2.1), according to (8 I 1991) it trength redu tion fa tor 

due to such softening is 0.50, and the softened zone extend to a radiu , z, of 40mm (Figure ·L.I ). 

o guidance i g iven for the weld bead deposited on the C T pecim n u ed in the pre ent \ ork. 

Therefore, the actual extent of the softened zone was m a ured u ing ickcr mi ro hardn 

(Section 4.3.3). It was found to extend - 22mm from the centre of the weld ap. For ompl t ne 

Vickers micro hardness measurements were al 0 performed on the fillet welded p im n and th 

- 4-2 -



Material Selection and Characterisation Chapter 4 

softened zone was found to extend across the entire plate width of Il0mm (55mm from each 

welded joint intersection (Figure 4.2.1», perhaps due to the use of multiple weld passes and the 

limited number of heat paths. 

4.3 MATERIAL CHARACTERISATION 

4.3.1 GENERAL 

The mechanical properties of the two materials were determined in accordance with the relevant 

British Standard tests, performed at TWI Ltd, TWI's subsidiary company The Test House (TTH) 

and Westmoreland Mechanical Testing & Research Ltd (WMTR). 

4.3.2 TENSILE TESTING 

4.3.2.1 STATIC PROPERTIES 

Tensile testing was performed in accordance with BS EN 10002-1 :200 I for the S355 steel and BS 

EN ISO 6892-1 :2009 B for the 6082 aluminium alloy to determine the yield (0.2% proof), ultimate 

tensile strength (VTS), % elongation and the % reduction in area. 

Tables 4.3.1 and 4.3.2 give the measured tensile properties for S355 structural steel and alloy 6082 

respectively. In both cases the properties from the material data sheets 'certificate' values are also 

provided for comparison. All tensile tests were performed in VKAS accredited testing machines. 

It can be seen in Table 4.3.1 that for both steel supplies, the measured yield stress (0.2% proof) is 

below the certificate values. However, the measured values are above the BS EN 10025 specified 

minimum of 355N/mm2
• 

Referring to Table 4.3.2, it will be seen that the measured properties of the two batches of 

aluminium alloy were in reasonable agreement with the certificate values. 
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Table 4.3.1 Measured and certificate tensile propertie of the 53 -5 (rllctllral tee/. 

S355J2+N tee I 355, 
ertificate B E 10025 

PMl Pl\I2 Grade 
Property (Heat no. 79876) (Heat no. 69637) (P Il fP 12) 355J2+ 

Yield stres (0.2% 
470 455 506472 "'5- min) 

proof), N/mm2 

Tensile strength, 
602 585 5 35 4 470-630 

N/mm2 

Elongation, % 26 31 2 '26 (_0 min) 

Reduction Area, 
0/0 59 54 -/-

Table 4.3.2 Measured and certificate tensile propertie of the 60 _ T6 -I aluminium alloy. 

Aluminium allo 6082 T651 
6082 T651, 

Property Batch 1 Batch 2 ertificate l 

Yield stres (0.2% 
322 325 310 proof), N/mm2 

Tensile strength, 
339 345 340 N/mm2 

Elongation, % 13.4 12. 11 

Reduction Area, 
% 46.7 40.9 

4.3.2.2 CYCLIC PROPERTIE 

The cyclic stress-strain propertie of th two material \\ re required to d fine th ir hard ning 

characteristics (i.e. kinematiclisotropic) under fatigue loading, for finite elem nt modelling 

(Chapter 6). They were obtained from train-cycling lovy-cjc) fatigue (L F) le t . performed in 

accordance with SS 7270 (B I, 2006) by WMTR. mall Cj lindrical pe imen - -tmm diam t r 

(two steel and two aluminium alloy) were prepared and longitudinal I) poli hed t pr du e a 

I www.aa lco.co.uk 
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surface roughness <3.2)lm Ra. Tests were performed using an lnstron servo-hydraulic testing frame 

of 100kN capacity and an 8mm gauge length MT extensometer. 

Tests were conducted in air under ambient conditions (21 QC) with an average humidity of 35-55% 

at a strain ratio (ratio of minimum strain/maximum strain in a cycle) R of -I and a strain amplitude 

of I %. A sinusoidal waveform was applied with a cycling frequency of 0.5Hz. Testing involved the 

application of a specified number of cycles (50 for steel, 100 for aluminium alloy) to adequately 

characterise the stabilised stres Istrain hysteresis loop. 

Figures 4.3.la-b and 4.3.2a-b show the evolution of the maximum tensile and compressive stres es 

and the initial stress-strain loops for the S355 teel pecimen (WMTR o. 100676) and the 6082 

aluminium alloy specimen (WMTR o. 100679) respecti ely, with increasing number of cycles. 

a) 

N 

E 
E 

---z 

600 ~--------------------------------------------------------~ 

400 

200 

o ---------------------------------------------------------------------

-400 

o 10 20 30 

Number of cycles 
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15 

b) 

Figure 4.3.1 Cyclic properties for S355 structural 'iteel. WJITR So. 1006-6: 0) .\Iaxil1lllm ten ile 

and compressive stress, b) Cyclic stress-strain loop. 

For the steel specimen, cyclic hardening was e ident from the incr a e in tre after the first few 

cycles . In the case of the a luminium alloy spec imen, light cyclic hardening wa ob en d after th 

first tw o or three cycles, foll owed by marg inal cyclic oftening a the te t progre ed. 
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- I 1 5 

- 1st cycle 

- 50th cycle 

Stra in ,% 

b) 

Figure 4.3.2 Cyclic properties for 6082 aluminium alloy, WMTR No. 100679; a) Maximum tensile 

and compressive stress, b) Cyclic stress-strain loops. 

4.3.3 HARDNESS TESTING 

Hardness testing was perfonned on a Vickers macro hardness testing machine using loads of 10Kg 

fo r steel and 5Kg for aluminium a110y The Vickers machine was independently ca librated before 

use and the testing procedure was in accordance with BS EN ISO 6507-1:2005. Mid-thickness 

measurements were made in both materials. The results are given in Table 4.3.3. 

Table 4.3.3 Measured hardness (Vickers) for 5355 structural steel and 6082 T651 aluminium 

alloy. 

S355J2+N Steel Aluminium alloy 6082 T651 

Measured 181,187, 185 100, 98.4, 102 

Average 1 84HV lO 100HV5 

As mentioned in Section 4.2 .2, the hardness variation in the region of the weld was measured in 

both the aluminium bead-on-plate and fillet-welded specimens. These were produced from a series 

of indentations made 2mm below the surface. In the case of the weld bead, the HAZ softened zone 

with in ~22mm of the weld centreline had a much reduced hardness of 56HV, almost half that of the 

- 4-7 -



Material Selection and Characterisation Chapter 4 

un-welded parent material given in Table 4.3.3. It should howe\er be noted that the hardne of the 

parent material remote from the weld (>SOmm distance) wa al 0 lower than in Table 4.3.3, -72-

80HV, suggesting that the presence of the weld bead had r duced the hardne 0 er the entire 

specimen width. The weld metal (WM) itself mea ured 62H , but the highe t hardness 

measurements were observed from the under-bead HAZ region at - 8SH . 

The presence of multiple welds and limited heat paths in the ca e of the fillet welded pecimen 

meant that the HAZ softened zone, with a hardness of 4 H • extended much further than found for 

the weld bead. Here, the entire width (i.e. SSmm from each weld d joint inter ection (Figure 4.2.1» 

was affected, the minimum being 44HV, with an average of SSHV across the plate \ idth. The WM 

hardness was found to be significantly lower, with an a erage value of 44H 

4.3.4 CHEMICAL ANALY IS 

Direct optical emission spectrometry (D-OES) wa used to mea ure the teel compo ition \ hile 

that of the aluminium alloy was determined by inducti ely coupled pIa ma optical mi ion 

spectrometry (ICP-OES). The results are given in Table 4.3.4 for teel and Table 4.3.S for the 

aluminium alloy. 

Table 4.3.4 S355 structural steel composition (in weight %). 

Batch C Si M o P C r Mo Al 

PM ) 0.16 0.42 1.40 O.OIS 0.008 0.016 <0.003 0.019 0.042 

PM 2 O.IS 0.38 1.40 O.OIS 0.009 0.014 <0.003 0.019 0.041 

As B Co C u I b Pb 0 Ti V 

PM! <0.004 0.00004 <0.004 0.012 0.022 <0.005 <0.004 0.003 0.002 

PM 2 <0.004 0.00007 <0.004 0.013 0.018 <0.005 O.OOS 0.002 0.00-

W Zr Ca Ce 

PM ! <0.01 <0.005 <0.0003 <0 .002 

PM 2 <0.01 <0.005 <0.0003 <0.002 
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Table 4.3.5 60 2 T65! aluminiulI1 alloy composition (in weight %). 

Batch Si Mn Ni Mg Cu Zn Pb Sn Fe 

No. 1 0.91 0.45 <0.01 0.76 0.07 0.06 <0.01 <0.01 0.27 

Ti er 

No. 1 0.01 0.02 

Based on the composition of the steel, its weldability can be judged on the basis of its CEV, 

calculated using the following IIW formula (Granjon, 1967): 

Mn Cr + Mo + V i + ClI 
CEV=C+-+ +---

6 5 15 
[4.3.1] 

Typically values <0.45 would indicate excellent weldability, 0.45 to 0.60 good (pre-heat required) 

and >0.60 poor (pre and post-heat required) CA M, 1996). 

In the case of the S355 steel u ed in this study, the CEV was calculated to be 0.40, indicating 

excellent weldability. 

There is no measure such a the CEV available for judging the weldabi lity of aluminium alloys. 

Welding of aluminium allo s may result in softened zones with material strength well below the 

yield strength of the ba e material. Appropriate choice of filler wire is required in order to avoid the 

onset of so lidification cracking, which i common in alum inium alloys. 

4.4 FATIGUE CRACK GROWTH RATE TESTING 

4.4.1 FATIGUE CRACK GROWTH RATE TESTING OF S355 STEEL 

SPECIMENS 

Fatigue crack growth rate (FCGR) testing v as carried out in accordance with B ISO 12108 (BS I 

2012) using a servo-hydraulic fatigue testing machine of 500k capacity. Tests were perfonned 

under ax ial CA loading in air at a frequency of 4-12Hz and applied stress ratios of R = 0.1 and 0.5. 

Two types of centre-cracked ten ion (C T) specimen were tested, tenned 'plain' and 'welded'. 

The former were plain steel plate specimens while the latter had weld bead deposited on the plate 

surfaces to introduce tensile residual stre es acting in the same direction as the applied loading, as 
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ill ustrated earl ier in Figure 3.4.1. Crack length was mea ured by DCPD. The procedure \ as to 

propagate fatigue cracks from the central notch at the required initial M for a distance of 

approximate ly I to 1.5mm. Crack growth data generated during this phase \ ere neglected as being 

inva lid. Precise detai ls of the tests were as follows: 

• Increasing tJ.K tests were used to obtain Paris- law crack gro\\th rate data 0 er a M range of 

approximately 350 - 2000 Imm3/1 (11 - 63MPa.m°.5 ). 

• Decreasing M tests with a constant stress ratio were used to obtain Paris-la, crack growth 

rate data from a M of approximately 500 down to 100 Imm3 c ( 16 - 3MPa.mo.-). 

A summary of the parameters used in each test is given in Table 4.4.1. 

Table 4.4.1 Test parameters for fatiglle crack growth rate tests in 5355 teel. 

Te t K, K, Other te t 
Specimen no. Test type frequency, Hz ImmJ 1Pa.m l parameter 

CCT PM I-OI Inc. M 5 375 to 1350 12 to 43 R=O.5 

CCT PM I-02 Inc. M 5 850 to 1550 27 to 49 R=0.5 

CCT PM I-03 
Dec. M, 

12 475 to 130 15 to 4 R=0.5 
constant R 

CCT PM I-04 Inc. M 5 375 to 1750 12 to 55 R=O.1 

CCT PM I-05 
Dec. M, 

12 550 to 200 17 to 6 R=O.1 
constant R 

CCT PM2-0 1 
RES Inc. M 5 375 to 2000 12 to 63 R=O.I 

CCT PM2-02 
RES Inc. M 5 50 to 2800 27to R=O.I 

CCT PM2-03 Dec. M, 
RES constant R 12 500 to 275 16 to 9 R=O. I 

CCT PM2-04 
RES Inc. M 5 375 to 1100 12 to 35 R=0.5 

CCT PM2-05 
RES Inc. M 5 850 to 1350 27 to 43 R=0.5 

CeT PM I-06 Dec. M, 
12 475 to lOO 15 to 3 R=0.5 

RES constant R 
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In all tests it was necessary to ensure that the strict validity criterion of BS 12108 for the un-

cracked ligament ahead of the crack tip (Eq. [4.4.1]) was adhered to, thus further ensuring that the 

data produced were valid. 

(w - 2a) > 1.25AFmax 

BRpo.2 

[4.4.1 ] 

where W is the specimen width, 2a is the crack length, B is the specimen thickness, Fmax is the 

maximum force (kN), ). is the distance between external and internal supports and R"O.l is the 0.2% 

proof strength at test temperature. 

Five tests were performed on the plain steel specimens, two at R=O.I and three at 0.5. The results 

are presented in Figures 4.4.1 and 4.4.2 respectively. Also shown for comparison are the mean and 

mean +2 standard deviations (sd) (recommended for design) two-stage curves for steels in air from 

BS 7910 (BSI, 2013). 

Referring to Figure 4.4.1, the data show generally good correlation with the BS 7910 curves. Some 

scatter is observed during the decreasing MC tests, at approximately 200 - 300N/mm3/2 (6-

10MPa.m
l/

\ 

The data in Figure 4.4.2, again correlate well with the curves given in BS 7910 and exhibit 

marginally less scatter than at R = 0.1. 

The effect of stress ratio on FeGR for the plain material can be seen in Figure 4.4.3. As is 

generally found (Maddox et al., 1978; Skorupa and Skorupa, 2005; Zhao et al., 2008) the plain 

steel generally showed a slightly faster crack growth rate at R=0.5 than at R=O.l. Also as expected, 

there was a strong effect of R in the regime near the threshold (Le. the threshold decreased with 

increase in R). 
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Figure 4.4.1 Summary of fatigue crack growth data for plain 3 -5 steel specimen obtained at 

R=O.I . 

Taki ng the data generated under each stress ratio and a umtng that th ) follow a t\\'o- tage 

relationship, as in BS 7910, Paris law coefficient v.ere detennin d by lea t quare linear 

regression treating log daldN as the dependent ariable. The t\\O tage tran ition point gi n in B 

79 10 was used for the data as visually they appeared to agr \\ 11. The re ulting fatigue crack 

growth rate laws for dald in mm/cycle and Kin Imm3 ~ are gi\en in Table -t.-L. 
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Chapter 4 

Figure 4.4.2 Summary of f atigue crack growth data fo r plain S355 steel specimens obtained at 

R=O.5. 

Table 4.4.2 Fatigue crack growth rate law derivedfor S355. 

S355 mean cur e, plain S355 mean curve, welded Stage 

Stage A Stage B Stage A Stage B 
A/Stage 
B 

Stress transition 

ratio, point K 

R C m C m C m C m N/mm3/2 

<0.5 9.42xIO-19 5.06 1.32x 10-14 3.41 1.11 x 10-18 5.07 1. 19x 10-12 2.78 363 

~0 . 5 1.37x \0-17 4.78 3.37x 10-14 3.33 2.76xlO-13 2.95 3.07x 10-13 3.01 196 

Simplified curve for S355, welded m - 3, C - 2.78 10-13 
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Figure 4.4.3 Summary of fatigue crack growth data for plain 355 steel . pecimen howing effect 

of stress ratio. 

The increase in da/d with R is on of the reasons wh the pre nce of ten ile re idual tre due 

to welding reduces fati gue life. In order to study the effect of high t n il re idual tre directl, 

six tests were performed on CCT specimens with longi tudinal \veld bead on ea h urfa . Te t 

were conducted with applied R=O.1 and 0.5. The data obtai ned are pre ented in Figur 4.4.4 and 

4.4.5 respectively, again in comparison with the B 79 10 mean and m an _ d (de ign) urv . 0 

account of the changing effective tress ratio at the crack tip a the crack gro\\ through the \ eid 
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res idual stress field has been included. Instead, the appl ied stress ratio as used in the PM tests is 

stated fo r comparison with BS 7910 (BSI, 2013). 
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Figure 4.4.4 Summary of fatiglle crack growth data for S355 steel welded specimens obtained at 

R=O.l. 

The residual stress distribution in the CCT specimens with weld beads is discussed in detail in 

Chapter 6. The magnitude of residual stress found 2mm from the notch tip, using the centre hole 

technique, was 481 Imm~, compared with the yield strength of 455-470 Imm1 for this steel. This 

is reasonable since, as previously explained, the process of welding typically produces residual 

stresses of yield or proof strength magnitude in the region of the weld. The fact that the measured 
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residual stress is higher than yield/proof, results from the a umption In th re idual stress 

measurement analysis, that a constant Young's modulu exi t , in reality thi i not the ca e. The 

residual stress is then expected to decrea e away from the weld, b coming compre i e before 

return ing to zero or slightly tensile at the specimen edge ( ee Figure 6.3.1 in Chapter 6). 
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-- BS 7910 mean curve for air (R~0.5) 

- - BS 7910 design cune for air (R~O. -) 

I. E-07 +-- ...---.--......... -r-r~~---r--,.--r..,........""T"T"1~-...---.--......... -r-T"T"T"i 

10 100 1000 10000 

Stress intensity factor range, Imm3 

Figure 4.4.5 Summary of fa tigue crack grolVth data for S355 teel welded . pecimen obtained at 

R=O.5. 

In the case of the present CCT specimens the residua l tre di tribution extending out from th 

central notch was measured. The residual stress was found to become compre iv at a di lance of 

38mm from the centre of the notch. 
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With regard to fatigue crack growth, the data obtained at R=O. I in Figure 4.4.4 show good 

agreement with the BS 7910 curve for R~0 . 5 . This is reasonable in view of the presence of tensile 

residual stresses, which have the effect of increasing the effective stress ratio. The results indicate 

that the effective stress ratio was 0.5 or higher. In the case of the specimens tested at R=0.5 the 

effective stress ratio will be even higher, ot surprisingly, the resulting data in Figure 4.4.5 again 

correlate well with the relevant curves in BS 7910, for R~O . 5 . 

l. E-02 
0 All welded data <> 

(applied R=O.I) 

!:::. All welded data 
(app lied R=O.S) 

--BS 7910 mean curve 

1.E-03 
for air (R2:0.5) 

- - BS 79 10 design curve 
for air (R~O.5) 

Cl) --Simplified single slope 
U 
~ curve 
eJ -E 
E 
Cl) l.E-04 -~ :.. 
.c -~ 
0 
:.. 
QI) 

~ 
eJ 
~ 

l. E-OS :.. 
eJ 
Cl) 

= .~ -~ 
~ 

1. E-06 

l. E-O 7 +--"'---~"-'-"""""',""",,,---r---'--'-'P'"'T"'''''''''''------''''----T-r--'-'''''''''''...i 

10 100 1000 10000 
Stress intensity factor range, N/mm3/2 

Figure 4.4.6 SummGlY affatigue crack growth data for S355 steel welded specimens showing effect 

of stress ratio. 

- 4- 17 -



Material Selection and Characterisation Chapter 4 

The Paris law coefficients for the weld bead specimens are given in Table 4.4.2. The results 

obtained at the two R values are compared in Figure 4.4.6. Where direct comparison is possible, 

above M = 300N/mm3
!Z (9MPa.m l!\ there is no significant difference. Thus, it seems that the 

presence of the high tensile residual stress has saturated the effect of R over the range considered. 

In BS 7910 (BSI, 2013), a simplified single slope curve is given in addition to the standard two-

stage curves in the recommended FCGR laws for steels. Looking at Figure 4.4.6, it looks equally 

reasonable to fit a single slope curve to the data. A curve covering the range of M values relevant 

to the later fracture mechanics analyses (See Chapter 7, Section 7.6) was therefore fitted and is 

included in Figure 4.4.6. The Paris law constants are given in Table 4.4.2. 

4.4.2 FATIGUE CRACK GROWTH RATE TESTING OF 6082 T6S1 

ALUMINIUM ALLOY SPECIMENS 

FCGR testing was carried out at R=O.I and 0.5 on the aluminium alloy specimens using the same 

conditions and procedures as for steel. Again crack length was measured by DCPD. Further details 

were as follows: 

• Increasing M tests were used to obtain Paris-law crack growth rate data over a ,1K range of 

approximately 270 - 700N/mm3
!2 (8 - 22MPa.m IC

). 

• Decreasing M tests with a constant stress ratio were used to obtain Paris-law crack growth 

1'" 1·" rate data from a M of approximately 330 down to 75N/mm - ( 10 - 2MPa.m -). 

A summary of the parameters used in each test is given in Table 4.4.3. 

The same validity criterion expressed in Eq. [4.4.1] as in the case of steel tests was employed. 

Five tests were performed on the plain aluminium alloy specimens, three at R=O.I and two at 

R=0.5. The results are presented in Figures 4.4.7 and 4.4.8 respectively. Also shown for 

comparison are the BS 7910 mean and mean +2sd (design) curves for aluminium. These were 

derived on the basis of the difference in Young's Modulus between steel and aluminium using Eq. 

[4.4.2], as suggested in SS 7910 (2013). 
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C = SI age A ar 8 ,,«{ E ,,«/ r 
E at alloy 

[ 4.4.2] 

Table 4.4.3 Test parameters Jar Jatigue crack grolVth rate tests in 6082 T651 aluminium aI/ay. 

Test 
frequency, K, K, Other test 

Specimen no. Test type Hz N/mm312 M Pa.m l12 pa r a mete rs 

CCT AL-OI Increasing M 2 280 to 399 9 to 13 R=O.I 

CCT AL-02 Increa ing t:J( 2 268 to 469 8 to 15 R=0.5 

CCT AL-03 Increasing t:J( 5 268 to 720 8 to 23 R=O. I 

Decreasing M, 
CCT AL-04 constant R 8 330 to 114 10 to 4 R=O.I 

Decreasing M, 
CCT AL-05 constant R 8 320 to lOO 10 to 3 R=0.5 

Decreasing M 
CCT AL-06 RES constant R 10 334 to 108 II to 3 R=O.I 

CCT AL -08 RES Increasing t:J( 10 275 to 504 9 to 16 R=O.I 

CCT AL -09 RES Increasing t:J( 10 275 to 513 9 to 16 R=0.5 

Decreasing t:J(, 

CCT AL - 10 RES constant R 12 238 to 74 5 to 2 R=O.I 

CCT AL - 13 RES Increasing M 10 163t0351 5 to 11 R=0.5 

Referring to Figure 4.4.7, the data show generally good correlation with the mean curve given in 

BS 79 10 for t:J( values >200 Imm3 2 (6MPa.m I "), but much lower growth rates below this value. 

In addition, instead of the characteristic hostage crack growth relationship found for steel, the 

present aluminium alloy data suggest a multiple stage relationship. This effect has been observed in 

a wide range of aluminium alloys (BSI, 2007), even though it is not acknowledged in the 2-stage or 

s implified single stage crack growth rate curves recommended in BS 7910. 

The data obtained at R==0.5, Figure 4.4.8, al 0 hint at a multi -stage relationship but perhaps the 

most striking difference compared with the R==O.I data in Figure 4.4.7 i the disagreement between 

the growth rates obtained under increasing and decrea ing t:J( conditions above 250 Imm ' /2 

(8MPa.m
J12

). 
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Figure 4.4.7 Summary of fatigue crack grolVth data for plain 60 _ T651 aluminium alloy 

specimens obtained at R=O.I. 

The consistency of the increasing /).K data was thought to indicate that they \Ver the more reliable 

and so the decreasing M test was repeated (the green triangles). However imilar re ults .. ere 

obtained. Therefore, the difference cannot be explained, although it could \\ ell impl b a 

reflection of the scatter inherent in fatigue test data. 
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Figure 4.4.8 Summmy of fatigue crack growth data for plain 6082 T65! aluminium alloy 

specimens obtained under conditions of R=0.5. 

Pari s law coefficients for multiple stage relationships fined to each set of data were determined for 

dald in mm/cycle and I1K in Imm
3f2 and are given in Table 4.4.4. The relevant stage transition 

points were selected visually from the natural slopes of the data. The effect of stres ratio on FCG R 

for the plain material is hown in Figure 4.4.9. 
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T a ble 4.4.4 Fatigue crack grolVth rate laws derivedfor 6082 T651 aluminium alloy in air. 

6082 T651 a luminium a lloy 6082 T651 a lu minium a lloy mean 
mean cu rve, pla in curve, welded 

T r a nsition 
Stress point K 
ra tio, R N/mm3n C m dK C m 

AIB = 120 1.61x I 0- 15 4.36 

<0.5 BIC = 185 2.39x I O-~I 6.91 > 63 6.29x 1O-1~ 3.00 

CID = 230 9.47xI0-11 2.47 

AlB = 120 I.l2x10- 17 5.68 
~0.5 >63 8.56x 10-1~ 2.97 

BIC = 180 9.17xI0-9 1.68 

Simplified curve for 6082, welded m = 3, C = 6.87x 10-12 

The crack growth rate in the plain material was slightly higher at R=0.5 than 0.1, the difference 

depending on the value of M. 

Again, to establish the effect of stress ratio on a CCT specimen containing ten ile residual stresses, 

five tests were performed on specimens with weld beads at an applied R=O.I and 0.5, as detailed in 

Table 4.4.3. The data are presented in Figures 4A.1 0 and 4.4 . 11 and again include the BS 7910 

mean and mean +2sd (design) curves for comparison. As with the teel, no account of the changing 

stress ratio at the crack tip as the crack grows through the weld residual stress field has been 

included. 

Referring to Figure 4.4.10, the data show good agreement with the B 79 10 curve for ~O.5. As 

with the steel specimens, the magnitude of residual stress wa determined 2mm from the notch tip 

(Chapter 6) and was found to be 77 /mm~ . This is clearly belo\ the 0 .2% proof trength gi en in 

Table 4.3 .2, but this is to be expected in view of the lower strength of the material affected b HAZ 

softening. As noted previously, the effect of welding on 6082 aluminium alloy in the T6 condition 

is expected to reduce the proof strength, and hence residual tre ,b a factor of two (B I 1991). 

However, the reduction here is much greater, uggesting that the low con traint on the cooling \ eld 

offered by the thin (6mm) further affected the magnitude of re idual tre due to the \ eld beads. 
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Figure 4.4.9 Summary of fatigue crack growth data for plain 6082 T651 aluminium alloy 

specimens showing effect of stress ratio. 

Even though the residual stress was low, the effective stress ratio resulting from the application of 

cyclic loading at R = 0.1 is still relatively high. Based on the maximum measured residual stress of 

77N/mm2, the effective stress ratio was calculated to be >0.50 (0.57), Thus, comparison with the 

BS 79 1 0 R~0.5 cur es is rea onable, a reflected by their good agreement with the test data in 

Figure 4.4.10. 
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Figu re 4.4.10 Summary oJ Jatigue crack grolVth data Jor 60 2 T65! aluminium allo), welded 

specimens obtained at R=O. I. 

Turning to the results obtained with an applied stre ratio of 0.5 in Figure 4.4.11 th increa ing 

!J.K data are in good agreement with the B 7910 recommended mean curve. In contra t to the le ts 

performed on plain aluminium specimens, there is good correlation bet\\ een the K -incr a ing and 

M -decreasing test data. 
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Figure 4.4.11 SummGlY of fatigue crack grolVth data for 6082 T651 aluminium alloy welded 

specimens obtained at R=O.5. 

The Paris law coefficients for the welded specimens are given in Table 4.4.4. Over the available 

range and for both R values, the data do not support 2-stage crack growth laws and therefore single 

slope curves have been fitted to each. Indeed, as will be evident from the Pari law con tants for the 

two R values and the comparison of the two sets of data in Figure 4.4.12, there was no significant 

effect of R and it would not be unreasonable to fit a single Paris law to the combined data. The 

resul ting Paris law constant are included in Table 4.4.4. This situation is not surprising in view of 

the fact that the effective values of R in the presence of the tens ile residual stress due to welding 
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were both high. As with the steel, it would seem that the influence of R has saturated, even in the 

presence of relatively low tensile residual stress. 
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Figure 4.4.12 Summary of fatigue crack gro wth data for 60 2 T651 aluminium allo) welded 

specimens showing effect of stress ratio. 

4.5 X-RAY COMPUTED TOMOGRAPHY 

As di scussed in Chapter 3, x-ray computed tomography (X-CT) \ a u ed to pro ide an indication 

of the sizes of any flaws present at the toes of the welds in the S355 teel fillet-\ elded pecimens. 

The area of interest was the weld return around the end of the attachment a thi is the location 

where fatigue cracking occurs in this specimen. A 225kY HUTCH).1- T machine at outhampton 

University was used to perform the measurements. The can settings used are g i en in Table 4.5. 1. 
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The most severe inherent flaw observed at the return weld toe in the fillet welded steel specimen 

was undercut, Figure 4.5.1. This was not located in the centre of the return weld, where fatigue 

cracking is most likely, but at one corner where the welder had tried to sweep around the end of the 

longitudinal attachment. However, it could still provide the site for fatigue crack initiation. 

Table 4.5.1 HUTCH scan parameters for weld toe weld return location on a steel fillet welded 

specimen. 

Scan parameter set 1 

~-CT machine 225kV HUTCH 

Target Reflection 

Beam energy (kV) 210 

Beam intensity (~A) 54 

Filler material Copper 

Exposure (sec) 0.354 

Gain 5 

Projections 3,142 

Frames per projections 16 

Resolution (~m) 13.69 

F igure 4.5.1 Weld return showing an approximate overview of the weld model, and location of 

weld toe undercut. 
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The secant length of the undercut .. as 4.55mm with an inner perimeter length of 4.66mm and an 

outer perimeter length of 5.25mm, the maximum width wa found to be O.77mm, Figure 4.5.2c). 

c) 

b) 

- Im01 

Figure 4.5.2 Weld toe undercut observed at weld return location, a) defect viewed in 3D model, b) 

f.1-CT slice 0/ defect in x-y plane, c) defect dimen ions in x-y plane. 

The 3D model was re-sectioned in the x-z plane to establi h the maximum depth of the undercut, 

which was measured to be O.29mm, Figure 4.5.3. 

Figure 4.5.3 location 0/ plane in 3d volllme, b) f.1-CT slice in x-.: plalle. c) de/ecl dim en iOI1 . 
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Further examination along the weld toe found a small notch-like feature (undercut) associated with 

weld spatter (Figure 4.5.4) which measured 0.1 05mm in length and 0.030mm at its deepest point. 

This is comparable with measurements made on several fillet welded BS 968 high tensile steel 

specimens (Signes et al., 1967), where it was reported that very slight undercut, up to 0.076mm in 

depth, was present in all specimens. It was concluded that a small degree of weld toe undercut must 

be expected even with good welding practice. 

Defect sizes in fillet welded joints made from mild steel were also examined (Smith and Smith, 

1982) by means of optical microscope, with average depths of 0.045mm being reported. Therefore, 

the undercut depicted in Figure 4.5.4 is likely to be a true reflection of typical values of undercut 

found in the S355 structural steel used in this research. The larger undercut shown in Figure 4.5.1 is 

likely to be due to poor positioning during welding and would not be representative for all 

specimens. 1t should, however, be noted that its depth (0.29mm) is not untypical and the BS 7608 

design S-N curve for this weld detail is still considered to be applicable for undercut up to a depth 

oflmm (BSI, 2013). 

F igure 4.5.4 Location of small notch-like defect (undercut) located adjacent to weld spatter at the 

end of the weld return. 

4.6 SUMMARY 

The materials selection and characterisation work described In this Chapter has indicated the 

following: 
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• The two materials chosen for the project, namely S355J2+N structural steel and 6082 T651 

aluminium alloy, both met the minimum specified tensile properties (0.2% proof and tensile 

strength) as denoted by material certificates. 

• Low cycle fatigue testing revealed some cyclic hardening in the steel and marginal hardening 

followed by softening in the aluminium alloy. 

• FCGR tests on plain steel at R=O.l and R=0.5 showed good correlation with the recommended 

crack growth curves in BS 7910. 

• FCGR tests on welded steel at R=O.1 showed good agreement with the BS 7910 1Q0.5 curves, 

indicating that the effective stress ratio due to the presence of tensile residual stress from 

welding was 0.5 or higher. The crack growth rate was no higher for an applied R of 0.5 

indicating that the effect of R had saturated as a result of the presence of the high tensile 

residual stress. 

• FCGR tests on plain aluminium alloy at R=O.1 showed good agreement with the mean curve 

in BS 7910 at M >200N/mm3
/
2

• Multiple stage crack growth was also observed with growth 

rates <200N/mm3
/
2 being lower than the curve. At R=0.5, the data were in reasonable 

agreement with the BS 7910 curves, although disparity between the test type (M-increasing 

and M-decreasing) was found. Repeat M-decreasing tests gave similar results; therefore the 

discrepancy was attributed to scatter in test data. 

• FCGR tests on welded aluminium alloy at R=O.1 correlated well with the BS7910 1QO.5 

curves in spite of the relatively low level of residual stress due to welding. However, it was 

shown to be sufficient to increase the R value from the applied value of 0.1 to an effective 

value of 0.57. The crack growth rates at R=0.5 were in good agreement and it proved 

justifiable to combine the R=O.I and 0.5 data to produce a Paris law. In contrast to the plain 

material tested at R=0.5, good agreement was obtained between the M-increasing and M­

decreasing test results. 

• X-ray tomography performed on steel fillet welded specimens found undercut at the weld 

return measuring -4.55mm in length, O.77mm in width and a depth ofO.29mm. However, this 

- 4-30-



Material Selection and Characterisation Chapter 4 

was thought to be due to poor welder positioning and not a true reflection for all specimens. 

Further examination found more typical undercut resulting from weld spatter measuring 0.1 05mm 

in length by O.030mm in depth, which agreed well with other findings in the literature. 
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Chapter 5 

THE EFFECT OF PERIODIC UNDERLOADS 

ON FATIGUE CRACK GROWTH RATE 

5.1 INTRODUCTION 

This Chapter presents details of work perfonned, usmg methods described in Chapter 3, to 

establish the effect on fatigue crack growth rate of simple two-stress magnitude load sequences. 

These consisted of one large load cycle, tenned an underload, folIowed by ten lower, tenned minor, 

load cycles. Two fonns of loading sequence were applied, with the same maximum stress but 

different magnitudes of underload, selected to encourage crack growth acceleration. 

In addition to the effect of underload magnitude on crack growth rate, the effect of residual stress 

produced by bead-on-plate welds combined with the periodic underloads was investigated. 

The Chapter also considers the calculated extent of crack growth under the two types of loading 

sequence, derived by linear summation of the CA loading growth rates on a cycle-by-cycle basis. 

These are compared with actual data, to estimate the crack growth acceleration factors. 

Fractographic examination was also used to estimate acceleration factors from striation spacings. 

The effect of load interaction on crack propagation is assessed by the factors 'Y and fJ given in Eqs 

[5.1.1] and [5.1.2]: 

Measured crack growth rate from V A loading test for specific sequence of M values 

r = Calculated crack growth rate by I inear summation of the CA crack growth response 
for the same range of M values 
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Number of cycles to reach a specific crack length based on a 

fJ 
= linear summation of CA response 

Actual number of cycles to reach the same crack length from periodic underload test 
[5.1.2] 

By definition, y shows how much faster, or slower, the crack propagates compared with the growth 

expected on the basis of linear summation of CA crack growth rate. It is important to note that it 

refers to specific M values since useful conclusions cannot be derived by comparing y values at 

different values of M. 

The factor ~ shows how many times larger or smaller is the calculated number of cycles to reach a 

given crack length than the actual from the test. In the present study, fJ was determined at the final 

crack length and at crack lengths corresponding to the same Ms as those used to determine y. 

From the above definitions, if there are no significant load sequence effects from the periodic 

underload spectra, so that the calculated responses equal those in the tests, then y and p will be 

unity. Anything greater than unity signifies crack growth acceleration, anything less suggests 

retardation. 

By the same token, the widely adopted method for assessing damage under V A loading, provides 

similar information if the actual fatigue life under V A loading is compared with that calculated by 

Miner's rule. A ratio less than I indicates a shorter life than estimated (i.e. accelerated crack 

growth), with one greater than I suggesting a life longer than estimated (i.e. crack growth 

retardation). Therefore, establishing the typical acceleration factor from testing can provide an 

insight into the measures needed to adjust Miner's rule, to provide safe life estimates under 

spectrum loading. 

5.2 FATIGUE CRACK GROWTH RATE TESTING 

5.2.1 OUTLINE OF TESTS 

Fatigue tests were performed at 10Hz for CA tests and an average of 305Hz for VA tests on 8mm 

thick by 160mm wide S355 structural steel and 6mm thick by 116mm wide 6082 aluminium alloy 

CCT specimens. To investigate the effect of tensile residual stress acting in the same direction as 
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the applied loads, identical specimens were also produced with the addition of back-to-back weld 

beads on the plate surfaces. 

In all fatigue crack growth tests, the first 1 to 1.5mm of crack growth was neglected from the 

analysis because the cracks propagated from the notch tip and not a pre-fatigue crack. This is in 

accordance with both BS ISO 12108-12 (2012) and ASTM E647-13a (2013a). 

Full details of the specimen geometry are given in Section 3.4, with material properties given in 

Section 4.3. 

5.2.2 CONSTANT AMPLITUDE LOADING 

A series of CA tests was performed on plain material to establish the number of cycles to failure, 

for comparison with tests performed under V A loading. In this respect, the applied loading was 

selected to produce the same stress ranges and stress ratios as those in the two-stress magnitude V A 

spectra (see Section 5.2.3). 

In the case of tests performed under the minor stress range, those in steel were performed at a 

constant maximum tensile stress of 156N/mm2
, with stress range !:la of 70N/mm2

, giving a stress 

ratio (minimum stress/maximum stress in the cycle) R=O.SS. A plot of recorded crack length versus 

number of cycles was used to determine the rate of crack growth, daldN, at specific crack lengths. 

The corresponding values of!1K ranged from -350 to -11 00N/mm3
/
2

. In the case of the aluminium 

alloy specimens, a constant maximum tensile stress of 74N/mm2
, with a stress range !:la of 

31.8N/mm2, was employed, giving a stress ratio R=0.S7. Here crack growth over the !1K range 

-160 to _400N/mm3
/
2 was investigated. 

The fatigue crack length, 2a, ranged from the starter notch length of typically 16mm to a final 

crack length of -94mm for the steel or -64mm for the aluminium alloy specimens. Duplicate tests 

were performed on each material. 

Tests were also performed on specimens with bead-on-plate welds at R =0.10 in order to 

demonstrate that the presence of the tensile residual stress due to welding increased the effective R 

to a value similar to those used in the above tests (e.g. >0.5), as shown in Chapter 4. The range of 
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M values was chosen to overlap the data referred to above, and the additional test data (below) for 

the derivation of the acceleration factor. To this end, M rose from 550N/mm31~ to 14lON/mm3/2 for 

steel, and 170N/mmJI~ to 500N/mm31~ for the aluminium alloy. 

Both underload magnitudes were considered in the tests performed at the underload stress range. 

Under SBL2 loading (underload stress range of twice the minor stress range), stress ratios of 

R=O.1O (steel) and R=0.14 (aluminium alloy) were employed. For SBL 1.5 loading (underload 50% 

higher than minor stress range), the ratios increased to R=0.33 (steel) and R=0.35 (aluminium 

alloy). In these sets of tests, M rose from 747N/mm31~to 2203N/mm31~ for steel, and 306N/mm3/2 to 

994N/mm3/2 for the aluminium alloy. In both cases, the range of M applied was selected to 

encompass the total crack length produced under the periodic underload spectra. 

5.2.3 VARIABLE AMPLITUDE LOADING 

The simple loading sequence employed (Figure 5.2.2) was designed to promote fatigue crack 

acceleration and comprised a block of stress cycles, all cycling down from a constant tensile stress, 

which was repeated until failure. Each block contained ten minor stress range cycles and one 

underload stress range cycle of one and a half times (SBL 1.5) or twice (SBL2) the minor stress 

range (see Chapter 3 for more details). 

Load spectra cycling down from a constant maximum stress were chosen, as previous experience 

indicates that cycling down from fixed tension produces acceleration (Gurney, 2000; Zhang and 

Maddox, 2009). The magnitude of the maximum stress was chosen based on tests performed by 

Fleck (1985). Due to the occurrence of acceleration in his tests, similar values of M were chosen 

for the minor cycles and underload cycle. A stress ratio of R>0.5 was chosen for the minor cycles 

so that the situation was analogous to that assumed to exist in presence of tensile residual stress 

from welding, but it was not expected to be as significant because the upper limit stress level was 

not as high as yield. It was therefore considered necessary for a thorough study to also carry out 

tests on specimens with weld beads applied to the plate surfaces. 
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n=10 cycles 

al 

b 
<I 

• ~ 1 cycle . 

Chapter 5 

Figure 5.2.2 Constant maximum stress waveform with periodic under/oads used in the present 

study. 

The relationship between the number and magnitude of minor and major cycles used has been 

found experimentally to produce significant crack growth acceleration (Gurney, 1983; Fleck, 

1985). Details of the stresses used in the spectrum for both the steel and alum inium alloy 

specimens are given in Table 5.2.1. Duplicate tests were performed in both materia ls and both 

condi tions (plain and welded) to increase confidence in the results. The applied CA stress levels 

and underload ranges are hown in Table 5.2 .1. 

For a ll tests the fatigue life was defined as the number of cycles required to achieve a crack length 

approximately 60% of the specimen width. This ensured that direct comparisons could be made 

between the fatigue lives of the two materials, under the various loading conditions. 

T a ble 5.2.1 Stresses 1I ed in periodic under/oad spectrum. 

Stress 
Applied stress, N/mm2 

identification 355 steel R 6082 aluminium a lloy R 

a 1 156 74 

a2 86 42 

cr3(a) 16 11 

cr3(b) 51 26 

~cr1 70 0.55 32 0.57 

~cr2(a) 140 0.10 63 0.14 

~cr2(b) 105 0.33 48 0.35 

Note. ~o2(a) and (b) relate to the two different underload magnitudes investigated. 
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5.3 EXPE RI M ENTAL RESU LT 

5.3.1 FATIG UE T ESTI G UNDER CO TA T IPLlTU DE LO DI G 

The results of the fatigue test performed under C loading are ummari ed in Table 5.3.1. Good 

repeatability in lives was obtained, particularly in the aluminium alloy. Th fatigue crack growth 

data obtained in the tests are presented on a log-log ba i in Figure -.3.la-b. 

T a ble 5.3.1 Summary of resulls from conslanl amplilude loading fatigue le t . 

Ini tia l Final 

Maximum Stre s Stre Initia l Fin a l crack crack 

Specimen stres , r ange r atio, K K, length , lenoth, C cle to 

No. N/mm2 Imm2 R I mm3 I mm312 m m mm failure 

CCT-CAL- 156 70 0.55 375 1072 16.34 92.4 945402 

ST- 16 

CCT-CAL- 156 70 0.55 380 1101 16.54 93. 31 939 

ST- 17 

CCT-CAL- 74 32 0.57 163 370 15. 61. _6744 

AL- 12 

CCT-CAL- 74 32 0.57 162 397 1.4 63. 273,7-4 

AL- 15 

In Figure 5.3.1 it will be seen that similar result were obtained for te I r gardle of R (Figure 

5.3. 1 a), but that the aluminium alloy was sen iti e to R (Figure 5.3.1 b), d d in rea ing \ ith 

increase in R. The addition of the result from the welded p cim n how d that there \Va ery 

little difference in FCGR between them and the te t perform d at high Ire ratio in the plain 

material for both steel and aluminium. 
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Figure 5.3.1 Summary o//atigue crack growth rate data/or tests under constant amplitude loading 

(SBL calculated response also shown) [or a) S355 steel and b) 6082 aluminium alloy. 

Paris law coeffi cient (C and m (see Section 2.5» were detennined for each loading condition by 

least squares linear regression treating log da/d as the dependent variable, Table 5.3 .2. 
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Table 5.3.2 Paris law conslants (e and m) derived for 5355 tructllral teel and 60 2 T651 

aluminium alloy (Paris law conslants given for da/d! in mm/cycle and JK in X/n11n]} 

Minor stress SBL1.5 Minor 

Pa ris law range tress range Major tre tre ranae tre ra nge Major tres 

constant (CA L) (CA L) range (CAL) (C L) (CAL) range (CAL) 

m 3.36 2.21 2.51 2.9- 2.92 4.07 

C 2.66E-14 5.34E- 11 8.72E-12 1.17E-11 6. IE- 12 8.98E- 15 

Following a linear regression analysi of the C data, the degre of catter a ociated \ ith crack 

growth rate for identical tests performed on 355 steel \Va found to b within . % of one another 

at low M, 400 Imm3/Z, and 2.7% at high M, 1000 Imm3~. The greater catter at low M( in teel 

is generally found in the literature (King, 1998). For the 60 2 aluminium alloy le t ,the atter \ a 

very similar at low (175 Imm32
) and high M (350 Imm3 \ 4._% and 6.6% re p cti el . The e 

are somewhat lower than the potential factor of 2 on crack gro\\th rate tated in th literature for 

constant load range tests performed on 6082 aluminium alloy and B 4360 grade 50B tee I 

(Shercliff and Fleck, 1990). 

Also shown in Figure 5.3. 1 are the calculated da/d rsus M curve expected from appli ation of 

the periodic underload spectra (SBL), derived b linear ummation of the reI vant C crack 

growth rate data using Eq. [5.3.1]. For these, da/d \\a plotted in term of M ba d on th minor 

stress range. 

da 

'd SBL 

(( da ) ( da JJ - xlO + - xl 
d minor d major 

11 
[5.3.1 ] 

where da/d major was determined u ing the relevant major tre range crack gr wth law BL2 or 

SBL 1.5) given in Table 5.3.2, and d d monor \\a deri ed from the cra k gro\\lh la\\' for th minor 

stress range data. The numbers I and 10 are the number of major and minor cy 

the relevant SBL block, and 1 1 is the total number of cycle for the BL blo k. 
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5.3.2 THE EFFECT OF UNDERLOAD MAGNITUDE ON CRACK GROWTH 

RATE FOR PLAIN SPEC IMENS 

5.3.2.1 SBL2 LOADING 

Table 5.3 .3 summarises the results of the periodic underload fatigue tests where the magnitude of 

underload was twice that of the minor stress range. Compared with the results in Table 5.3. 1, these 

show that the inclusion of periodic single cycle underloads gives rise to shorter fat igue lives 

compared with CA loading tests under the minor stress range only. The parameter /3, defined in Eq. 

[5.3 .2], provides an indication of the overall acceleration in fatigue crack growth: 

N CAL data 
jJ=-----

N SBL dOlO 

[5.3.2] 

where N is the average endurance of the duplicate tests performed. 

T his was 1.99 for steel and 1.69 for aluminium alloy. 

Table 5.3.3 Summary of results from periodic underload fatigue tests of twice the magnitude 

(SBL2) of the minor stress range. 

0 1) Initial Final 
tress stress Initial Final crack crack 

Specimen stress, range, ratio, range, & K minorl & K minorl length, length , Cycles to 

No. N/mm! N/mm2 R N/mm2 N/mmJ12 N/mmJ12 mm mm failure 

CCT-SBL2- 156 70 0.55 140 348 1048 15.6 90.2 405,746 

ST-OI 1.99 

CCT-SBL2- 156 70 0.55 140 344 1042 15.2 89.8 487,536 

ST-02 

CCT-SBL2- 74 32 0.57 63 159 474 15.6 75.6 155,200 

AL-OI 1.69 

CCT-SBL2- 74 32 0.57 63 161 474 16 75.6 165,693 

AL-02 

Note. (\) UL is defined a the underload or major stress cycle. 

The measured crack growth rates due to the periodic underload sequence are compared with the 

calculated response in Figure 5.3.2 for both the steel and aluminium alloy. 
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Figure 5.3.2 Comparison of conslanl amplilude and periodic underload (S8L2) fa ligue crack 

growth rate data for S355 steel and 6082 aluminium alloy. 

The periodic underload data are expressed in tenns of M minor corresponding to the minor stress 

range. This choice was made on the basis that the main difference between crack growth under CA 

loading and SBL would be the increment of crack growth under the ten minor tres cycles. In 

other words, the crack growth increment due to the single underload cycle \ ould be the ame as 

that under CA loading. Then, comparison of the actual and calculated crack growth rate under B L 

would indicate the change in crack growth rate under the minor stress due to the underload. n 

alternative approach, which is often used in the presentation of re ult obtained under loading, 

would be to use the equivalent CA value of M, as gi en in Eq. [5.3.3], for comparison with the 

calculated response. 

_ ((M x 10) m +(M x It )1 //11 
M £qv _~--"":""'_~_-.!........L 

11 
[5.3.3] 

where m was assumed to be 3. 

The effect was a 9% increase in M. However, it is also nece ary to express the calculated 

response in terms of M Eq\., which again results in a 9% increa e in M. Therefore, u e of an 
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equivalent M resulted in the same acceleration factor, and as the degree of acceleration was of 

prime concern, the choice of using t1Kminor or t1KEql, was irrelevant. Henceforth, for the periodic 

underload data presented, stress intensity factor range is given in terms of !SKminor. 

It can be seen in Figure 5.3,2 that the FCGRs for the periodic underload tests generally lie above 

their respective calculated response, especially at low M. The difference was less marked in the 

case of the aluminium alloy with the periodic underload data intersecting the calculated growth rate 

in the mid to high regime. 

Paris law coefficients were determined by least squares linear regression analysis of each set of 

data and are presented in Table 5.3.4. In view of the good agreement between the duplicate sets of 

data, the results from each pair were combined in this analysis. These laws were used in 

conjunction with the relevant CA data to derive the crack growth acceleration factors, y, included 

in Table 5.3.4. 

Table 5.3.4 Paris law constants for plain materials used for derivation of the acceleration factors 

under SBL2 conditions. Constants m and C given for daldN in mm/cycle and L1K in Nlmm3 
2. 

Data over K 
range for y Acceleration factor, y, 

A Kminor=400 
Specimen No. m C (AKminor=200) 

CCT-SBL2-ST-Ol 2.47 1.53E-11 1.56 1.02 

CCT-SBL2-ST-02 2.73 2.65E-12 1.28 1.07 

ST -01 & 02 combined 2.58 7.38E-12 1.45 1.06 

CCT -SBL2-AL-0 I 2.43 2.9IE-IO 1.28 0.90 

CCT-SBL2-AL-02 2.41 3.39E-IO l.35 0.93 

AL -01 & 02 combined 2.40 3.43E-I0 1.29 0.89 

Note. Bracketed M value are for aluminium alloy. 

The inclusion of the underloads has produced y values of 1.45 and 1.06 at 400 Imm3/2 and 

1 000N/mm3/2 respecti ely in the steel, or 1.29 and 0.89 at 200 Imm3/2 and 400 Imm3/2 respectively 
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in the aluminium alloy. In other words, y was greater at the 10\ er tlK alues for both materials, as 

shown in Figure 5.3.2, and indeed crack growth acceleration only occurred then in the aluminium 

alloy, with an element of crack growth retardation at the higher M value. 

5.3.2.2 SBL1.5 LOADING 

Considering next the results for a reduced magnitude of underload (1.5 time that of the minor 

stress range (SBL 1.5)) in Table 5.3.5, the reduction in life is een to be les than for the higher 

underload, by 16% for steel and 18% for aluminium alloy, which corre pond to fJ alues (Eq. 

[5.3. 1]) of 1.66 for steel and 1.38 for aluminium alloy. 

As before, the measured crack growth rates due to the periodic underload sequence are compared 

with the calculated response in Figure 5.3.3. In the case of the 355 steel, FCGRs for the periodic 

underload tests are again above the calculated. For the aluminium alloy, the periodic underload data 

are generally above the calculated response at low tlK but rise as tlK increase (>300 Imm
32

) 

before returning to a similar crack growth rate respon e. 

Table 5.3.5 SlImmary of result from periodic underload fatigue te ., of one and half time the 

magnitude of the minor stress range (SBLl .5). 

Mino r stress c,rcles L(I) Initial Final Cycle 
Maximum tress Stress stress Initial Final crack crack to 
stress, range, ratio, range, length , length , failure P 

SEecimen No. N/mm2 N/mm2 R N/mm2 

CCT-SBLI.5- 156 70 0.56 105 9.9 534,400 
ST-OI 1.66 

CCT-SBL 1.5- 156 70 0.56 105 354 1044 16.1 9.9 535,664 

ST-02 

CCT-SBLI.5- 74 32 0.57 48 162 481 16.1 75.7 192,400 
AL-OI 1.38 

CCT-SBLI.5- 74 32 0.57 48 162 4 I 16.1 75.7 199,555 

AL-02 

ote. ( I) UL is defined as the underload or major tre s cycle. 
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Figure 5.3.3 Compari on 0/ constant amplitude and periodic underload (SBLI.5) fatig1le crack 

growth rate data for S355 steel and 6082 aluminium alloy. 

This increase in growth rate at around 300N/mm3/~ in the aluminium was not observed under SBL2, 

a lthough in Figure 5.3.2 it can be seen that for CCT -SBL2-AL-O I an increase occurs but at a higher 

t:J< of around 420 /mm3'~ . Examination of the specimen fracture surfaces (Figure 5 .3 Aa-b) showed 

that at a == - 22mm the fatigue crack approaches the change from flat to shear mode growth for the 

SBL 1.5 specimen. In contrast, growth in the full shear mode is achieved in the SBL2 specimen at 

a = - 35mm. These crack lengths correspond to DJ( values of 31 0 /mm3/~ and 4S0N/mm3/~ 

respectively, agreeing" ell v ith the increases in growth rate. This is further considered in Section 

5.3 .6. 

CCT-SBL 1.S-AL-02 

a) 
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CCT-SBL-AL-01 

b) 

Figure 5.3.4 Fracture surfaces offailed aluminium alloy pecimens showing regions of flat to 

shear mode growth (highlighted in red) in; a) CCT-SBLl .5-AL-02 and b) CCT-SBL2-AL-OI. 

It is worth noting at this point that whilst the development of hear lip and their effect on FCGR is 

relevant to through-section crack growth across a plate, as in CCT specimens, for welded joints 

(such as those in Chapter 7) fatigue cracking from weld toes is predominantly flat. Therefore, it is 

the flat fracture region that is of most relevance to the behaviour of \ elded joints. 

Once again, linear regression analysis was used to derive the Paris la\ constants (Table 5.3.6) and 

hence y for the periodic underload data. The inclusion of the underloads produced increases in 

growth rate by factors of 1.39 and 1.35 at 400 and 1000 fmm3 ~ respecti ely for steel, or 1.12 and 

1.40 at 200 and 400 fmm3
!2 respectively for aluminium alloy. 

Table 5.3.6 Paris law constants m and C for plain materials lIsed for derivation of the acceleration 

fac tor under SBLl .5 conditions. 

Data over K 
range for y Acceleration factor, y 

Km inor=400 Kminor= 1 000 
Specimen No. m C ( Kminor=200) Kminor=400) 

CCT -SBL 1.5-ST -01 2.96 6.29E- 13 1.56 1.36 

CCT-SBL 1.5-ST-02 3.17 1.52E-13 1.33 1.40 

ST-Ol & 02 combined 3.08 2.72E-13 1.39 1.35 

CCT -SB L l.5-AL-O 1 3.17 4.95E-12 1.30 \.33 

CCT -SBL 1.5-AL-02 3.73 2.0IE-12 1.03 \.55 

AL-Ol & 02 combined 3.46 9.14E-13 1.12 1.40 
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Comparing with SBL2 (Table 5.3.4), the use of the reduced underload resulted in a similar y at low 

M<, but higher factors at high ilK, by some 27% for the steel and 57% for the aluminium alloy. A 

difference in M<ejJ is considered to be a plausible explanation for the observed higher y factors 

within this regime, and will be discussed further in Chapter 6. 

5.3.3 THE EFFECT O F UNDE RLOAD MAGNITUDE ON CRACK G ROWTH 

RATE FOR WEL DED SPECIMENS 

5.3.3.1 SBL2 LOADING 

Having observed the effect of underload magnitude for plain specimens, further tests were 

performed using weld bead-on-plate CCT specimens to establish the effect of the presence of 

tensile residual stresses. 

Table 5.3.7 summarises the result of the periodic underload fatigue tests where the magnitude of 

underload was twice that of the minor stress range. As is the case of the plain specimens, the 

fatigue lives are less than those obtained under CA loading, in this case by a factor of 2.87 for steel 

and 1.74 for aluminium alloy. However, these differences are higher than those for plain 

specimens, by 31 % for steel and 3% for the aluminium alloy. 

Table 5.3.7 Summary of reslllls from periodic underload fatigue tests of twice (SBL2) the 

magnitude of the minor stress rangefor welded specimens. 

Minor stress cycles UL(I) Initial Final 

Maximum Stress tre s stress Initial Final crack crack Cycles 

Specimen stress, range, ratio, range, ~KmiDo", ~Kmino ... length, length, to 
2 N/mm2 N/mm2 N/mm312 N/mm312 

No. N/mm R mm mm fa ilure 

CCT-SBL2- 156 70 0.56 140 351 1042 15 .8 1.66 307,190 

ST-03R 2.87 

CCT-SBL2- 156 70 0.56 140 350 1045 15.7 90.0 311,365 

ST-05R 

CCT-SBL2- 74 32 0.57 63 157 474 15.2 1.38 158,360 

AL-03R 1.74 

CCT-SBL2- 74 32 0.57 63 158 475 15.3 75.7 151 ,926 

AL-04R 

Note. ( I) UL is defined as the underload or major stress cycle. 
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This greater difference between the plain and welded specimens is also e ident in Figures 5.3.5 and 

5.3 .6, which show the FCGR data. The difference suggests that the presence of tensile residual 

stresses enhances the mechanism(s) responsible for fatigue crack growth acceleration due to an 

underload. 

Turning to the Paris law coefficients in Table 5.3.8, the ' combined ' welded specimen data show 'Y 

values of 1.86 and 1.36 at 400 Imm3/2 and 1000 Imm32 respectively for S355 steel, and 1.48 and 

1.85 at 200N/mm3/2 and 400 Imm3/2 respectively for 6082 aluminium alloy. 
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Figure 5.3.5 Comparison of constant amplitude and periodic underload (SBL2) fatigue crack 

growth rate data for S355 steel in both the plain and welded (denoted by R) condition. 
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Figure 5.3.6 Comparison of con tant amplitude and periodic underload (S8L2) fa tigue crack 

growth rate data for 6082 AI alloy in both the plain and lVelded (denoted by R) conditions. 

Table 5.3.8 Paris law constants/or lVelded materials lISed/or derivation a/the acceleration/actor 

under SBL2 conditions (Constants m and C givenfDJ' dald in mmlcyc/e and L1 K in Nlmm J z). 

Data over i\K 
range for y Acceleration factor, y 

i\Kminor=400 Kminor= 1 000 
Specimen No. m C ( Kminor=200) (i\ Kminor=400) 

CCT-SBL2-ST-03 R 2.62 7.SI E-12 1.88 1.42 

CCT-SB L2-ST-OSR 2.S5 1.1 2E-Il 1.84 1.30 

ST-03R & 05R combined 2.59 8.88E-12 1.86 1.36 

CCT-SBL2-AL-03 R 2.77 7.93E-ll 2.12 1.88 

CCT-SBL2-AL-04R 3.7 1 2.93E-1 3 1.14 1.94 

AL-03R & 04R combined 3.26 4.13E-12 1.48 1.85 
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5.3.3.2 SBL1.5 LOADING 

The results obtained for welded specimens with the lower underload are given in Table 5.3.9. As 

with plain specimens, the reduction in endurance is less than that seen for the higher magnitude 

underload, by 2 1 % for steel and 25% for aluminium alloy, corresponding to p values of 2.28 for 

steel and 1.31 for a luminium alloy. Compared with the plain material pecimens and the same 

underload leve l, the endurance for steel was reduced by 27% but that for the aluminium alloy was 

increased by 6%. 

It can be seen from Table 5.3.9 that the fatigue life ofCCT- BLI.5-AL-03R was - 21 % higher at 

226,615 cyc les than its partner CCT-SBL 1.5-AL-04R which failed after 187,230 cycles. This 

difference in endurance is well above those for other aluminium alloy tests covered in this Chapter, 

wi th the highest difference prior to this being in the plain material tested under spectrum SBL2, 

where the percentage difference between identical tests was only - 6%. Re iewing the test data it 

was found that CCT-SBLI.5-AL-03R took a significantly greater number of cycles (25,742) to 

propagate the fa tigue crack from the notch to the desired 1.5mm than it partner. This may ha e 

been due to either a blunter notch tip or overloading of the specimen during setup. Had this not 

occurred then a red uction in endurance by - 5% (P of 1.39 as opposed to 1.3 I) may have been 

realised. 

T a ble 5.3.9 Summary of results from welded periodic lInderload fatigue test of one and half times 

(SBL/.5) the magnitude of the minor stress range. 

Minor stress cycles 
L ( I ) Initial Final 

Maximum Stress Stress stress In itial Final crack crack Cycle 
stress, range, ra tio, range, KmlnoM length length, to 

Specimen No. N/mm2 N/mm2 R N/mm
2 I mm ,mm mm failure 

~ 
CCT-SBL 1.5- 156 70 0.56 105 357 1051 16.3 90.5 394,478 
ST-03R 2.28 

CCT -S B L 1.5- 156 70 0.56 105 352 1002 15.9 6.5 3 5,859 

ST-04R 

CCT-SBLI.5- 74 31.8 0.57 47.7 158 481 15.4 75.7 226,615 

AL-03R 1.31 

CCT-SBLI.5- 74 31.8 0.57 47.7 159 4 0 15 .5 75.6 187,230 

AL-04R 

Note. (I) UL is defined as the underload or major stress cycle. 
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The measured crack growth rates due to the periodic underload sequence are given in Figures 5.3.7 

and 5.3.8 for steel and aluminium alloy respective ly . 

Figure 5.3.7 shows that the FCGR data for periodic underload tests on the welded steel specimens 

are comfortably above those of the plain material. It is noted though that at - 800 /mm312 (Figure 

5.3.7) the data for the welded specimens separate with those for CCT-SBL 1.5-03R tending towards 

the plain material data . A re-analysis of the results did not reveal any errors. A possible explanation 

is that there was a difference between the residual stress levels in the two welded specimens in this 

regime (i.e. the zone of residual tension). 

In contrast, for the aluminium alloy (Figure 5.3.8) there is no significant difference between the 

periodic underload data for plain or welded specimens, both sets lying above the calculated curve. 

1.0E-03 

CCT-SBL 1.5-ST-O I, AK 
Minor plotted 

- o CCT-SBL I.5-ST-02,AK Cl) 

Cj 1 i nor plotted ;>., 
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Z 
'0 o CCT- BLI.5-ST-O-'R, K -- 1.0E-04 ~ 
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or .-
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I-
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..... 
~ 
0 
I-

e,;) 

1.0E-05 +--------~----r__--~--r__-T____..-_r____.__J 

100 1000 
AK, N/mm3/2 

Figu re 5-3_7 Comparison of constant amplitude and periodic underload (SBLl.5) fatigue crack 

growth rate data for S355 teel in both the plain and lVelded (denoted by R) conditions. 
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Figure 5.3.8 Comparison of constant amplitude and periodic underload (SBLl.5) fatigue crack 

grolVth rate data for 6082 aluminium alloy in both the plain and welded (denoted b) R) conditions. 

The Paris law constants given in Table 5.3.10 show that for welded steel pecimens the lower 

underload resul ts in acceleration factors of 1.92 at 400 Imm32 and 1.59 at 1000 Imm31. For the 

aluminium alloy the y factors were 1.19 and 1.37 at 200 Imm} 2 and 400 I mm3 2 re pectively. 

Tables 5.3.8 and 5.3.10 therefore show that based on the calculated re pon e follo\ ing a linear 

summation of CA growth rates, the effect of the lower underload for the combined aluminium 

specimens in the presence of tensile re idual stresse wa le s than that for the higher underload. 

For the stee l the picture is a little more clouded by the perfonnance of C T- BLI.5- T-04R at 

high M (Figure 5.3 .7) which, when comparing combined y value, uggests that the gr atest 

acceleration came from the SBL 1.5 spectrum. 
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Table 5.3.10 Pari law constants for welded materials lIsed for derivation of the acceleration 

factor under SBL/ .5 conditions (constants m and C given for da/dN in mmlcyc/e and ,dK in 

3' N/mm ~). 

Data over K 
range for y Acceleration factor, y 

AK miDor=400 AKminor=1000 
Specimen No. m C ( Kminor=200) ( Kminor=400) 

CCT-SBL 1.5-ST-03R 2.82 1.70E-12 1.82 1.40 

CCT-SBL 1.5-ST-04R 3.07 4.44E- 13 2. 13 2.05 

ST-03R & 04R combined 2.90 1.lJ E-J2 1.92 1.59 

CCT-SBL 1.5-AL-03R 3.59 4.29E- 13 1.05 1.43 

CCT-SBL 1.5-AL-04R 3.16 5.81 E-12 1.45 1.47 

AL-03R & 04R combined 3.34 1.84E-12 1.19 1.37 

5.3.4 SUM MARY OF THE EFFECT OF RE IDUAL STRE ON APPLIED 

LOADI G SEQUENCES 

As discussed in Chapter 4, and also given in Chapter 6, the magnitude of tensile residual stress due 

to welding adjacent to the central notch wa 481 Imm:! for the steel and 3 1 Imm" for the 

aluminium alloy. 

Based on the results gi en In ections 5.3.2 and 5.3.3, the influence of the residual stresses due to 

we lding on the effect of the applied load sequences can be considered. Table 5.3.11 and 5.3.12 

summarise the ob erved acceleration factors and endurances for tests performed using the SBL2 

and SBLI.5 sequences . It hould be noted that acceleration factor for welded specimens were 

derived by comparing against CA data for plain material, in order to show the level of increase in 

acceleration due to .. elding. Had they be compared again t welded CA data, the degree of 

acceleration may ha e been le 

- 5-21 -



The effect o/periodic umlerloads on fatigue crack growth rate Chapter 5 

In the case of the SBL2 sequence (Table 5.3.11) tests on the S355 steel it can be seen clearly that 

the tensile residual stress introduced by the bead on plate, elds led to a reduction in life resulting 

in an increase in acceleration factor as compared with the behaviour of plain specimens. However, 

for the aluminium alloy, the results are less clear. 

The overa ll fatigue lives of the aluminium alloy specimens tested were reasonably similar. 

However, with regard to the acceleration factors, at low M (200 Imm32
) the two welded 

specimens gave significantly different va lues, with CCT- BL2- L-03R showing a much higher 

acceleration facto r (2.12) than CCT-SBL2-AL-04R (1.14) up to - 300 Imm32 (See Figure 5.3.6), 

before returning to a similar response (1.88 to 1.94). The difference bet, een the two is thought to 

be due to scatter or possibly a variation of the magnitude of residual tre s bet. een the specimens. 

At high /).K the welded specimens exhibited significantly greater acceleration than the plain 

material, by a factor of 2. 

Table 5.3.11 SummOlY ojtotal endurance and acceleration factor for le I performed under SBL2 

sequence (LJ K in Nlmm32
) 

Acceleration factor, y 

Endurance, Kminor=400 
Specimen No. cycle ( K minor=200) 

CCT -SBL2-ST -0 I 405,746 1.56 1.02 

CCT-SBL2-ST-02 487,536 1.28 1.07 

CCT-SBL2-ST-03R 307,190 1.88 1.42 

CCT-SBL2-ST-05R 311,365 1.84 1.30 

ST-Ol & 02 combined 1.45 1.06 

ST-03R & 05R combined 1.86 1.36 

CCT-SBL2-AL-0 I 155,200 1.28 0.90 

CCT-SBL2- AL -02 165,693 1.35 0.93 

CCT-SBL2- AL -03R 158,360 2.12 1.8 

CCT-SBL2- AL -04R 151,926 1.14 \.94 

AL-Ol & 02 combined 1.29 0.89 

AL-03R & 04R combined 1.48 1.85 
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When considering the SBL 1.5 sequences (Table 5.3.12), tests perfonned on the S355 steel showed 

that whilst an appreciable degree of acceleration was present for the welded specimens at low !J.K 

( 1.82 to 2. 13), the high M y values for both plain and welded specimens were generally quite 

similar at around 1040 (with the exception of CCT-SBL 1.5-ST-04R). The total endurances were 

however considerably shorter for the welded specimens than the plain. 

Table 5.3.12 SlImmary of toto/ endurance and acceleration factors for tests performed under 

SBLl.5 sequence (!J K in 1111/11
31

) 

Acceleration factor, y 

E ndura nce, ~Kminor=400 ~Kminor=lOOO 

Specimen No. cycles (~KmiDor=200) ( Kminor=400) 

CCT -SBL 1.5-ST -0 I 534,400 1.56 1.36 

CCT-SBL 1.5-ST-02 535,664 1.33 1040 

CCT-SBL 1.5-ST-03R 394,478 1.82 1040 

CCT-SBL 1.5-ST-04R 385,859 2.13 2.05 

ST-Ol & 02 combined 1.39 1.35 

ST-03R & 04R co mbined 1.92 1.59 

CCT -SBL 1.5-AL-0 1 192,400 1.30 1.33 

CCT-SBL1.5-AL-02 199,555 1.03 1.55 

CCT -SBL 1.5-AL-03R 226,615 1.05 1043 

CCT -SBL 1.5-AL-04R 187,230 1.45 1.47 

AL-Ol & 02 combined 1.12 1.40 

AL-03R & 04R combined 1.19 1.37 

As with the SBL2 sequence the effect of BL 1.5 on the 6082 aluminium alloy was different. Little 

or no effect of the re idual stres eS in the welded specimens was apparent; even the total fatigue 

li ves of the plain and welded pecimens were very similar. Again this is possibly a reflection of a 

low level of residual tress in the relevant parts of the specimens tested. 
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Overall it will be evident that the greatest observed effect of residual stress was during application 

of the SBL2 loading sequence for both materials. 

5.3.5 COMPARISON OF ACCELERATION FACTORS I' ANDP 

5.3.5.1 CALCULATION OF P 

The method used to calculate the crack growth rate under spectrum loading in the determination of 

y was also used in the determination of p. In this case, the linear summation of the crack growth 

from the major and minor stress cycles was used to calculate the number of cycles (major and 

minor) needed to produce fatigue crack lengths approximately corresponding to the 'final crack 

lengths' indicated in Tables 5.3.3 and 5.3.5. Endurances for shorter crack lengths were also 

considered. 

p values based on comparison of the calculated and actual numbers of cycles of the periodic 

underload sequence required to achieve the same crack length (92mm for steel, 76mm for 

aluminium) are also shown for both the SBL2 and SBL 1.5 spectrum in Table 5.3.13. They are also 

shown in Figure 5.3.9 to 5.3.12 for S355 steel and 6082 aluminium alloy at the different underload 

magnitudes. In all cases both plain and welded data are compared with the calculated response. 

Also presented are p values at low and high M corresponding to crack lengths of 10 and 43mm 

respectively for the steel, and 12 and 32mm respectively for the aluminium alloy. 
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Table 5.3.13 Summary of acceleration/actors, /3. 

Acceleration factor, p 

Underload Final crack AK=400 Steel AK=1000 Steel 

Material Condition sequence length AK=200 AI alloy AK=400 AI a lloy 

S355 Plain SBL2 1.I1 to 1.30 1.34 to 1.47 1.11 to 1.30 

S355 Welded SBL2 1.60 to 1.63 1.45 to 5.43 1.60 to 1.63 

6082 T651 Plain SBL2 1.00 to 1.09 1.10 to 1.33 1.01 to 1.10 

6082 T651 Welded SBL2 1.06 to 1.14 0.99 to 1.15 1.04 to 1.13 

S355 Plain SBLI.5 1.I9 to 1.23 0.95 to 1.17 1.19 to 1.23 

S355 Welded SBL1.5 1.50 to 1.68 1.81 to 1.82 1.49 to 1.68 

6082 T651 Plain SBL1.5 1.06 to 1.12 1.25 to 1.33 1.06 to 1.12 

6082 T651 Welded SBLI.5 1.00 to 1.12 1.02 to 1.33 1.00 to 1.12 

5.3.5.2 STEEL UNDER SBL2 LOADING 

Periodic underloads were found to reduce the number of cycles required to produce a given crack 

length in steel. The indicated /3 values at high M (or at final crack length), as given in Table 5.3.13 

for the plain (1.11 to 1.30) and welded (1.60 to 1.63) steel specimens under SBL2, are a little above 

the combined y factors presented in Tables 5.3.4 and 5.3.8 (1.06 and 1.36 for plain and welded 

respectively). However, /3 and y are similar at low M. 

It should however be noted that for the welded steel the p range at low M in Table 5.3.13 is quite 

large, presumably due to differences in residual stress distribution resulting in differences in 

propagation rates. This is highlighted in Figure 5.3.9 where it is shown that specimen CCT -SBL2-

ST-03R takes a little longer to propagate than CCT-SBL2-ST-05R, but towards final failure 

acceleration is very si milar. 

- 5-25 -



The effect o[periodic under/oads onfatigue crack growth rate 

48 
46 
44 
42 
40 
38 
36 

E 34 E 
,..::. 32 
..:;, 30 
.:: 28 
0Jl 
c: 26 
~ 

24 ~ 
<:J 22 eo: 
:... 
U 20 

18 
16 
14 
12 
10 
8 

- CCT -SBL2-ST -0 I (Actual data) 

- CCT -SBL2-ST -02 (Actual data) 

CCT-S BL2-ST-03R (Actu al data) 

- CCT-SBL2-ST-OSR (Actual data) 

- Calcula ted response 

, , , 
: f3 = 1.11 : 
'. 'f , I 

I 

I f3 = 1.30 :. .: 
I I 
I I 

:: f3 = 1.60 , : : .. , --_--!._----_., 
" ' 
11 : 

J3 = 1.63 , , 
t , 

Chapter 5 

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 

Endurance, cycles 

Figure 5.3.9 Comparison of actual and calculated crack gro lVth response f or 5355 steel in periodic 

underload (SBL2) tests. Plain and welded (denoted by R) conditions shown. 

5.3.5.3 ALUMINIUM UNDER SBL2 LOAD ING 

In the case of aluminium a lloy, fJ at fa ilure or high !:lK was 1.0 I to 1.10 for plain material and 1.04 

to 1.1 3 for welded (Table 5.3 .1 3 and Figure 5.3. 10). The fonner range was very slightly above the 

combined y for the pl ain materi al (0.89) but that for the welded materia l was signi ficantly lower 

( 1.85), see Tabl es 5.3.4 and 5.3 .8. When comparing at low !1K, the fJ and y ranges are much closer 

fo r both the plain and welded material (with the exception ofCCT- BL2-AL-03 R in Table 5.3.8). 
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Figure 5.3.10 Comparison of actual and calculated crack grolVth response for 6082 aluminium 

alloy in periodic underload (SBL2) tests. Plain and lVelded (denoted by R) conditions sholVn. 

5.3.5.4 STEEL UNDER SBL1.5 LOADING 

Referring to the underload spectrum SBL 1.5 for steel specimens, P corresponding to failure (Table 

5.3 .1 3 and Figure 5.3.11) was between 1.19 to 1.23 and 1.50 to 1.68 for plain and welded material 

respectively. In the case of the plain material these are sli ghtly below the combined y of 1.35 (see 

Table 5.3.6). However, P and y are reasonably con istent for the welded material, where a y va lue 

of 1.59 was derived (see Table 5.3.10). 
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Figu re 5.3.11 Comparison of actual and calculated crack grolVth response Jor S355 steel in 

periodic underload (SBLI .5) tests. Plain and welded (denoted by R) conditions shown. 

As noted earlier, CCT-SBLI.5-ST-04R behaved differently at high IlK (Figure 5.3.7) presumably 

due to d i fferences in residual stress. 

At low IlK the fJ values in Table 5.3 . 13 for both plain (0.95 to 1.17) and welded steel (1.81 to 1.82) 

are a litt le below the combined y factors in Table 5.3.6 for the plain material (1.39), but in 

reasonable agreement for the welded (1.92), Table 5.3.10. 

5.3.5.5 ALUMI NIU M UNDER SBL1.5 LOADI NG 

For the 6082 aluminium alloy SBLI.5 data at high ilK/final crack length (Figure 5.3.12), the fJ 

range (Table 5.5.13) for both plain (1.06 to 1.12) and welded (1.00 to 1.12) material is again below 

that found in terms of the combined y. Here acceleration for the plain aluminium was \.40 and 1.37 

for the welded (Tables 5.3 .6 and 5.3. 10 respectively). 
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Figu re 5.3.12 Comparison of actual and calculated crack growth re ponse for 6082 aluminium 

alloy in periodic underload (SBLI.5) tests. Plain and welded (denoted by R) conditions shown. 

Considering this further, in Table 5.3.13 it can be seen that the effect of welding had very little 

effect on fJ for the low and high regimes, which was al 0 found in Table 5.3.6 and 5.3.10 for y. 

However, the y values did show a tendency to increase as f!.K increased. 

5.3.6 ESTIMATING CRACK GROWTH RATE BY EXAM INATION OF 

SPECIMEN FRACTURE SURFACES 

Failed specimens were broken open to allow examination of the fracture surfaces in a scanning 

electron microscope (SEM) to observe striations at various crack lengths and the crack front 

following each periodic underload. Striations define the position of the advancing crack front after 

each cycle. Consequently, the space between them is the distance propagated by the crack under 

the relevant applied load cycle. The main reason for examining striation was to observe the 

di fference between effects of the two loading spectra at a local level. 

As is generally found, the striation were well defined in the aluminium alloy but not in the steel, 

Figure 5.3.13a-b. Indeed, it only proved to be po sible to distinguish between the crack growth due 
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to the major and minor stresses reliably in the aluminium. Consequently, the follow ing analysis is 

confined to that material. 

a) b) 

Figure 5.3.13 Comparison offatigue striations on fracture surfaces under loading spectrum with 

periodic under/oads (SBL2) ; a) 6mm thick 6082 T65J aluminium alloy (CCT-SBU-AL-OJ) at 

a=23mm, b) 8mm thick S355 structural steel (CCT-SBL2-ST-OJ) at a=J8mm. 

An initial step was to check that striation spacing at selected crack lengths corresponded to the 

measured crack growth increment per cycle at the same crack lengths in specimens tested under 

CA loading. The latter were represented by increments calculated using the mean crack growth 

laws for the aluminium alloy under the minor and major stress cycles in Table 5.3.2, for the AI< 

values corresponding to the selected crack lengths. The resulting calculated crack growth 

increments are compared with thosc based on striation spacing in Table 5.3 .14 and Figure 5.3.14. 

Since in practice the V A loading involves 10 cycles of the minor stress range, the increments for 10 

minor stress cycles are given in Table 5.3.14. 

It will be seen that there is reasonable agreement between the two but that the triation spacing 

values exhibit a wide degree of scatter. This probably reflects the many experimental errors that 

can arise in the identification and measurement of striations, such as uncertainty over the plane of 

the fracture surface with respect to the lens (i.e. parallax error), clear identification of striations 

corresponding to single cycles, thickness of graduation lines and scaling from photographs or the 

screen. All of these are difficult to quantify without a vast number of specimens. The impression 

from the results in Figure 5.3.14 is that, compared with the measured crack growth increments, the 
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error from striat ions for the minor stress range could be up to 40%, whi le that for the two major 

stress ranges cou ld be around 50%. 

Table 5.3.14 Crack grolVth increment for CA specimens 

Fatigue crack growth increment, mm 

From striations From mean da/dN data 

1 Major 10 Minor 1 Major 10 Minor 

Specimen No. 2a, mm ~K cycle cycles cycle cycle 

26 4 12 0.00042 0.0003 1 

30 448 0.00044 0.00039 

CAL Aluminium 36 500 0.00043 0.00054 

alloy, R=0.1 4 40 536 0.00034 0.00066 
(Maj or stress 
range SBL2) 46 590 0.00065 0.00088 

50 627 0.00082 0.00 106 

60 732 0.00133 0.00 166 

26 392 0.00028 0.000 13 

30 425 0.00035 0.000 18 

CAL Aluminium 36 475 0.00039 0.00029 
alloy, R=0.35 
(Major stress 40 506 0.00066 0.00038 
range SB L I.5) 

46 560 0.00 108 0.00056 

50 594 0.00078 0.00073 

60 694 0.00 137 0.00 136 

26 202 0.00 11 8 0.00083 

30 220 0.00 129 0.00 104 

CCT -CAL-A L-
36 245 0.00 120 0.00 146 

12, R=0.57 40 263 0.00203 0.00 178 
(Minor stress 
range) 46 289 0.00 154 0.00237 

50 308 0.00225 0.00287 

60 359 0.00432 0.00449 
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Figu re 5.3.14 Comparison 0/ CA crack growth rate data derived from striation pacing with test 

data. 

An alternative approach would be to lIse linear regression analy i to fit Paris laws to the striation 

data and to derive confidence intervals (e.g. mean ±2S0, where SO = standard deviation of log 

da/dN based on striation spacings for 95% confidence intervals) for comparison with the plotted 

FCGR data for the same case. This would indicate whether the scatter in the measurement 

technique encompasses the measured data over the range of DJ( considered. 

This approach was used for the data given in Figure 5.3.14 (see Appendix C), where it can be seen 

that for both CCT-CAL-AL-12 (R=O.57) and the major stress range data for SBL2 (R=O.14) the 

data do indeed fall within the confidence intervals. However, for the SBL 1.5 major stres range 

data (R=O.35), lie below the lower bound curve (mean -2 0 ), particularly in the mid-Iow AK 

region (20 = 26 to 40mm) where they are closer to mean -3S0. A mentioned above, this reflects 

the experimental errors associated with this technique. 

Striation measurements were then made at the same crack length as those in Table 5.3.14 from 

examinations performed on four specimens tested under periodic underload spectra (two for each 

loading spectrum, plain and welded). Figure 5.3.15a-d hows examples of the images captured in 
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the SEM. The results are presented in Table 5.3.15. It will be seen that the striation spacing due to 

the minor stress range was generally greater than the crack growth increment obtained in the CA 

tests at the same stress range (Table 5.3.14) and that calculated using the CA fatigue crack growth 

law (Table 5.3.14), particularly under SBL2 loading. Even when considering the error associated 

with the measurement technique, provided the assumed error (40% or 50%) is applied to both data, 

a difference in growth rate can be reliably detected (Figure 5.3.16); with the SBL data exhibiting a 

greater crack growth increment than the CA data. Thus, both comparisons suggest that the crack 

growth rate accelerated after each underload cycle. With regard to the former, an alternative 

version of the acceleration factor y has been introduced, defined as: 

crack growth increment due to 10 minor cycles under spectrum loading from striations 

y = crack growth increment due to 10 minor cycles calculated using CA crack growth law 
(5.3.4) 

The fact that most values exceed unity provides further confirmation that the presence of a tensile 

underload increases the growth rate of subsequent minor stress cycles. 

Recalling that it is generally assumed that an underload only affects crack growth under the applied 

stresses that follow, it will be seen from a comparison of Tables 5.3.14 and 5.3.15 that, according 

to the striation spacing, the growth rate has been increased for both the minor and major 

(underload) stress cycles. In this context, the resulting values of y, which are included in Table 

5.3.15, can be defined as: 

crack growth increment due to 1 major cycle under spectrum loading from striations 
Y = crack growth increment due to 1 major cycle calculated using CA crack growth law (5.3.5) 

The yvalues tend to follow the same trend, with those corresponding to the major cycle (in the case 

of plain material) generally exceeding those for the minor cycles up to a crack length of 40mm 

after which the minor cycle values are the higher. For the welded material, the presence of tensile 

residual stresses has the effect of keeping the y values for the major cycles above those for the 

minor. Thus, increased growth under both the minor and underload stresses contribute to the 

acceleration factors based on total growth under one V A loading block (i.e. one underload plus 10 

minor stress cycles), which are included in Table 5.3.15. However, beyond 40mm the yvalues from 
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the striations are generally less than or in the region of unity, indicating little or no interaction 

between the underloads and minor stress ranges. The same trend is found from the measured crack 

growth, but only for plain material under spectrum SBL2 loading. The relevant y values at each of 

the crack lengths considered, based on the actual total crack growth, as measured in testing, and 

that calculated using the relevant CA crack growth law (from Table 5.3.14) are included in Table 

5.3.15. Differences between these and the values based on striations can be expected since one set 

refers to striation measurements, with their attendant potential errors, on one specific sp cimen for 

each loading spectrum wh ile the other refers to the average of result from duplicate tests. 

a) b) 

c) d) 

Figure 5.3.15 Examples of SEM images used in striation analysis (direction of crack propagation 

indicated): a) CCT-SBL2-AL-Ol at 40mm, b) CCT-SBL2-AL-03R at 46mm, c) CCT-SBLI .5-AL-OI 

at SOmm and d) CCT-SBLI.S-AL-03R at 60mm. 
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Table 5.3.15 Summary of results from striation spacing measurements. 

Specimen 
No. 

CCT­
SBL2-
AL-OI 

CCT­
SBL2-
AL-03R 

CCT­
SBLI.5-
AL-O I 

CCT­
SBLI.5-
AL-03R 

2a, 
mm 

26 

30 

36 

40 

46 

50 

60 

26 

30 

36 

40 

46 

50 

60 

26 

30 

36 

40 

46 

50 

60 

26 

30 

36 

40 

46 

50 

60 

L1KMinon 

N/mm312 

210 

227 

254 

272 

300 

320 

372 

210 

227 

254 

272 

300 

320 

372 

210 

227 

254 

272 

300 

320 

372 

210 

227 

254 

272 

300 

320 

372 

Fatigue crack growth 
increment, mm y based on striatioos 

1 Major 
cycle 

10 Minor 
cycles Total 

Major 
cycle 

0.00054 0.00124 0.00178 1.74 

0.00058 0.00129 0.00187 1.49 

0.00094 0.00194 0.00288 1.74 

0.00094 0.00247 0.00341 1.42 

0.00070 0.00248 0.00318 O. 0 

0.00105 0.00376 0.00481 0.99 

0.00 11 2 0.00318 0.00430 0.67 

0.00041 0.00139 0.00180 1.32 

0.00066 0.00146 0.00212 1.67 

0.00088 0.00174 0.00262 1.62 

0.00082 0.00223 0.00305 1.23 

0.00125 0.00213 0.00338 1.42 

0.00141 0.00447 0.00588 1.33 

0.00116 0.00412 0.00528 0.70 

0.00047 0.00118 0.00165 3.57 

0.00030 0.00 I I I 0.00141 1.63 

0.00044 0.00158 0.00202 1.52 

0.00041 0.00153 0.00194 1.0 

0.00053 0.00149 0.00202 0.94 

0.00076 0.00294 0.00370 1.05 

0.00 I 03 0.00465 0.00568 0.76 

0.00028 0.00118 0.00146 2.13 

0.00041 0.00129 0.00170 2.23 

0.00057 0.00154 0.00211 1.97 

0.00059 0.00155 0.00214 1.55 

0.00051 0.00168 0.00219 0.90 

0.00082 0.00259 0.00341 1.13 

0.00117 0.00391 0.00508 0.86 
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Minor 
cycle Total 

1.49 1.56 

1.24 1.31 

1.33 1.44 

1.39 1040 

1.05 0.98 

1.31 1.22 

0.71 0.70 

1.22 1.58 

1.02 1.47 

0.87 1.31 

0.91 1.25 

0.66 1.04 

1.14 1.50 

0.67 O. 6 

1.42 1.72 

1.06 1.15 

1.08 1.16 

o. 6 0.90 

0.63 0.69 

1.02 1.03 

1.04 0.97 

1.42 1.52 

1.24 1.38 

1.05 1.21 

o. 7 0.99 

0.71 0.75 

0.90 0.95 

0.87 0.87 

Chapter 5 

y based on 
crack growth 
measurement 

1.24 

1.19 

1.12 

1.08 

1.02 

0.99 

0.91 

1.50 

1.54 

1.60 

1.63 

1.69 

1.72 

1.81 

1.13 

1.16 

1.21 

1.24 

1.27 

1.30 

1.35 

1.18 

1.21 

1.27 

1.30 

1.35 

1.39 

1047 
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To facilitate comparison of the various r values for plain material they are presented graphically in 

Figures 5.3.17 and 5.3.18, which also shows the fJ values obtained from the fatigue crack growth 

tests. Perhaps the most striking difference between r values based on striations and those based on 

the crack growth data is that for spectrum SBL 1.5 at crack lengths above 40mm (see Figure 

5.3.17(b)). The striation values follow the same trend as that found for spectrum SBL2 (Figure 

5.3.17(a)), decreasing with increase in crack length, but the crack growth measurements how the 

opposite. However, it will be clear that greater reliance can be placed on the accuracy of the crack 

growth measurements than the striation spacing and thus a possible explanation for the difference is 

error in the striation measurements. As noted previously, such errors could amount to 40% in those 

produced by the minor stress or 50% for the underload. These are general ly more than enough to 

account for the di fference between the r values from striations and crack growth data for crack 

lengths above 40mm in Figure 5.3.17(b), and indeed the exceptionally high value from the major 

stress cycle at 20 = 26mm (not plotted, see Table 5.3.15). 
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b) 
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Figure 5.3. 17 Comparison of acceleration factor (y) obtained from triation and measured crack 

growth rates for plain material: aJ SBL2 spectrum; b) SBLI .5 pectrum. 
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Figure 5.3.18 Comparison 0/ acceleration factor (y) obtained from striations and measured crack 

growth rates/at· welded material: a) SBL2 spectrum; b) SBLl.5 spectrum. 

For the welded material (Figure 5.3.18a-b) the y values again show the same tendency as the plain 

material to decrease with increasing crack length . As in the case of the crack growth measurements 

in Figure 5.3.17b, both the crack growth measurements for SBL2 and SBL 1.5 show the opposite 

effect. Again errors in striation measurements could account for the large differences in y observed 

for the major stress cycle (Figure 5.3.18b) at 2a = 26 to 36mm. 

In Section 5.3.2.2 it was noted that a slight increase in growth rate occurred under SBL 1.5 loading 

at around 300N/mm311
, which corresponds to a crack length of a = 26mm. Observation on the 

fracture surface of the specimens suggest that this may be due to the transition from flat plane 

strain tensile growth to shear, particularly as the shear lips increase in width, Figure 5.3 .19. 

Based on tests performed under constant D.K conditions (Edwards et al., 1984), it was found that 

crack growth was much higher in the flat tensile mode than when shear lips had developed. The 

same finding following the analysis of striation spacings on flat and slanted growth in constant D.K 
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tests resulted in a decrease in growth rate by a factor of 3 to 4 (Ling and Schjive, 1990). A similar 

observation was made on aluminium alloy 2024 where the decrease" as by a factor of around 3 on 

daldN (Zuidema and Mannesse, 1991). 

CCT-SBL-AL-01 

Figure 5.3.19 Macro photograph showing the fracture surface of specimen CCT-SBLl.5-AL-Ol . 

The tensile mode of growth is denoted by i, and the subseqllent shear mode by ii. 

Referring to the results of FCGR tests for plain and welded aluminium (Sect ions 5.3.2 and 5.3.3) 

specimens, increases in growth rates were observed close to the change from flat to shear modes. 

Further examination of specimen fracture surfaces and analysis of FCGR data revealed four stages 

of growth for these specimens, as shown in Figure 5.3.20. 

Figure 5.3.20 Diagram showing the four modes of growth associated with the 6082 6mm thick 

aluminium alloy subjected to SBLl.5 and SBL2 loading (actllal le I dala al 0 shown for 

comparison). 

Stage I is the tensile mode growth which has been found to extend to - 300 Imm312 (- a=23mm). 

Stage 2 concerns the slight increase in growth rate close to the transition from flat to shear growth 

and extends to - 340N/mm312 (- a=26mm). Examination of this region under SEM showed that near 
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the edge of the specimen, where plane stress prevails, the urface morphology exhibited elongated 

featu reless regions, which were not apparent at the centre of the specimen where plane strain 

condi tions exist, Figure 5.3.21 a-b. 

a) b) 

Figure 5.3.21 Stage 2 groIVth observed on 6mm thick 6082 T651 aluminium alloy (CCT-SBLI.5-

AL-03R); a) edge of specimen at a=22ml11 hOlVing elongated regions (an-olVed), b) middle of 

specimen at a=22mm showing uniform slllface morphology. 

Stage 3 is the formation of shear lips and increa ing lip width resulting in a slight decrease in 

g rowth rate, extending to - 440 Imm
312 

(- a=35mm). The final stage is the full transition into 

double shear mode with increasing growth rate as the nett cross-section reduces. These four modes 

are a lso indicated in Fi gure 5.3.22. 

CCT -SBL 1.5-AL-03R 

Figure 5.3.22 Macro pholOgraph sholVing the fracture sur/ace of specimen CCT-SBLI .5-AL-03R. 

The four stages of grolVth are highlighted. 
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For specimen CCT -SBL 1.5-AL-03R (Figure 5.3.22), the elongated regions close to the specimen 

edge were also found at crack lengths of I I mm and 28mm and were therefore not the reason for the 

slight increase in observed growth rates. However, they were not apparent in specimen CCT-SBL2-

AL-02, wh ich did not display the same Stage 2 growth rate increase (Figure 5.3.6). Here the 

surface morphology at II mm and 22mm was uniform across the specimen thickness, Figure 

5.3 .23a-b. 

a) b) 

Figure 5.3.23 Fracture surface oJ CCT-SBL2-AL-02 sholVing a uniform surJace morphology; a) 

edge of specimen at a=22mm, b) middle oJspecimen at a=22mm. 

Meta llographic sections were taken from CCT-SBL 1.5-AL-03R to identify possible explanations 

within the material microstructure for the slight increa e in growth rate, Figure 5.3.24a-b. othing 

of any significance was observed. The presence of intermetallic particles i typical for 6xxx series 

alumi nium alloys (M r6wka- owotnik, 2008). The intermetallic particle distribution in Figure 

5.3 .24a shows an expected effect of material thickness, with a random distribution near the surface 

and a more columnar distribution in the centre of the specimen; the opposite of what may have 

provided an explanation for the difference in crack growth. 
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Figure 5.3.24 Metal/agraphic sections 0/6mll7 thick 6082 T651 aluminium aI/ay (CCT-SBLl.5-AL-

03R); a) edge a/specimen, b) transverse section at a=22ml11. 

5.4 SUMMARY OF FIND INGS 

Based on fatigue crack growth tests on CCT specimens made from S355 steel and 6082 T651 

aluminium alloy, subjected to periodic underloads of two different magnitudes and the addition of 

welding residual stresses, the following conclusions were drawn: 

• Tests under periodic underloading have resulted In lives shorter than observed under CA 

loading. 

• Two different form of acceleration factor, termed y and [3, were used to compare the data. 

• The acceleration factor y show how many times larger is the crack growth rate for the 

periodic underload tests than the calculated crack growth rate detennined by a linear 

summation of CA loading re ponse. 

• The acceleration factor [3 shows how much larger is the calculated number of cycles than that 

actually required in a periodic underload test to achieve the same crack length. 

• For plain material tested using SBL2, accelerated growth was observed in the y range of 1.02 

to 1,56 for the steel and up to 1.35 for the aluminium alloy, although ome retardation wa 

apparent at high M. 
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• For the reduced underload magnitude (SBL 1.5), accelerated growth for steel was in the y range 

of 1.35 to 1.56 and 1.03 to 1.55 for the aluminium alloy. 

• With the exception of the aluminium aHoy tested under SBL 1.5 conditions (and one steel 

specimen, CCT-SBLI.5-ST-02), all tests exhibited acceleration factors that decrease with 

increase in crack length and/or at high M. 

• For the excluded, the greatest acceleration was at high M, which was thought to be due to 

variations in the magnitude of residual stress between specimens, or differences in the zone of 

residual tension (for the steel), and potential differences in Met! for the aluminium. 

• F or the majority of the tests performed, it was found that the SBL 1.5 spectrum resulted in 

higher acceleration factors than the SBL2 spectrum at high M. It was considered that due to 

the difference in major cycle stress ratio, this was related to a higher Me{f~ 

• Higher values of fJ were obtained from welded specimens due to the presence of tensile 

residual stresses particularly for steel. For the aluminium alloy, the same effect was true but 

far less pronounced. 

• The ranges of y acceleration factors for the SBL2 sequence also increased, to 1.30 to 1.88 for 

steel and 1.14 to 2.12 for the aluminium alloy. 

• Under SBL 1.5, the yacceleration factor for steel increased, ranging from 1.40 to 2.13, but for 

the aluminium no real increase was apparent with values in the range 1.05 to 1.47. 

• As with the plain material, the greatest level of acceleration in the welded specimens was at 

low M, with the exception of the SBL1.5 aluminium alloy tests (and CCT-SBL2-AL-04R) 

which again behaved in the opposite manner. 

• Examination of the effect of periodic underloads on fatigue crack growth based on striation 

spacings was confined to the aluminium alloy. Two alternative forms of acceleration factor y 

were identified, in each case considering either the crack growth increment due to the minor or 

major cycles from striations versus those calculated using CA crack growth laws. 
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• Observations on the fracture surfaces of the aluminium alloy specimens confirmed that 

accelerated crack growth was not just confined to the period following the underload but also 

the underload itself. 

• The addition of tensile residual stresses by welding had a negligible effect on y from striation 

spacings beyond that already observed for plain material. 

• The findings of load sequence tests for two magnitudes of stress range and two magnitudes of 

underload (major stress cycle), have been presented. The factors thought to be contributing 

towards fatigue crack growth acceleration are evaluated in Chapter 6. 
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Chapter 6 

MECHANISMS INFLUENCING CRACK 

GROWTH ACCELERATION 

6.1 INTRODUCTION 

Following a review of literature on applied loading interaction effects that can cause fatigue crack 

acceleration, in Chapter 2, and evidence of accelerated growth during periodic underload fatigue 

testing, as highlighted in Chapter 5, this Chapter presents both theoretical and experimental 

investigations into the mechanisms influencing crack growth acceleration. 

The main areas investigated include: 

a) the measurement of crack closure and the influence of plastic zones and their estimated sizes on 

its occurrence. 

b) the measurement of weld residual stresses, their redistribution and their effect on crack growth. 

c) the application of finite element stress analysis (FEA) for modelling the effect of the applied 

underIoads at the crack tip. 

The findings from load sequence testing in Chapter 5 and the role of influencing mechanisms 

considered in this Chapter are then discussed and the main mechanism(s) influencing crack growth 

acceleration under this form of loading are identified. 
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6.2 CRACK TIP PLASTICITY 

6.2.1 THE ROLE OF CRACK CLOSURE IN FATIGUE CRACK GROWTH 

ACCELERA TION 

As noted in the previous chapter, both the underload stress and the minor stress cycles following it 

produced higher crack growth rates than expected from the behaviour under CA. A possible 

explanation for this is that the crack closure stress levels were lower than those obtained for the 

same applied stresses and crack lengths under CA loading, so that the effective stress ranges were 

higher under V A than CA loading. This was investigated on the basis of crack closure 

measurements in both plain and welded specimens. 

6.2.2 CRACK CLOSURE LEVEL MEASUREMENT 

As discussed in Section 3.6, crack closure was detected using uniaxial strain gauges bonded to the 

surface of CCT specimens 1.5mm behind the crack tip. The crack closure stress for a given fatigue 

crack was found by measuring the load at which the crack surfaces came into contact, indicated on 

the applied stress versus measured strain curve as the point of non-linearity. Hence, the proportion 

of stress range for which the crack was open, U, was found. In order to consider the effect of prior 

loading on both the underload and minor stresses, crack closure measurements were made before 

the application of the underload, during the underload and immediately after its application, all at 

various crack lengths. 

6.2.2.1 PLAIN S355 STEEL SPECIMENS 

It was found that the crack closure stress level for the minor stress range, both before and after an 

underload and for all crack lengths considered, was constant, as illustrated for a crack length of 

12mm in Figure 6.2.1. However, the crack closure stress level for the underload varied with crack 

length, as shown in Figure 6.2.2. These results were obtained during the application of the SBL2 

spectrum underload but the minimum stress levels for both SBL2 and SBL 1.5 are indicated. 
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Figure 6.2. 1 Recorded crack closure levels in plain S355 steel before. dllring and after an 

underload cyclefrom 156 Il11n/ lo 16 11111111. 
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Figure 6.2.2 Recorded crack closure levels in plain S355 sleel during application of an IInderload 

stress from 156 Imml 10 16 Imn/ . 
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The findings in Figure 6.2.2 therefore suggest that under SBL2 loading, for which the underload 

stress range was 140N/mm2
, at the shortest crack length considered, a = 12mm, the proportion of 

the applied stress range that is effective in propagating the crack, while the crack is open, U, is 

(156-94 )1140 = 0.44. U then increases with increase in crack length until at and beyond 20mm it 

stabilizes at 0.76. When considering the application of the SBL 1.5 underload (stress range = 

IOSN/mm\ it will be evident that at a = 12mm the proportion of the applied stress range that is 

effective (156-94)/105) gives U = 0.59. As for SBL2, this then increases with crack length until it 

stabilizes at U = 1.0 at and beyond a = 20mm. These stabilized values of U are reasonably 

comparable with those obtained by Maddox and Booth (1986) under CA loading from 8mm thick 

mild steel CCT specimens of 0.70 to 0.85 for the SBL2 underload stress ratio of R = 0.1 and U = 

1.0 for the SBL 1.5 stress ratio of 0.6. 

In summary, the above measurements indicate that the crack never closes under the minor stress 

range and that the effective magnitude of the underload increases with increase in crack length. 

These findings would suggest that the underload will have no influence on the damaging effect of 

the minor stress cycles following it, which would be the same as that arising under CA loading. 

Furthermore, they imply that the damaging effect of the underload itself will increase with increase 

in crack length. However, the fatigue test results presented in section 5.3.2 showed that in fact 

crack growth acceleration occurred and that the greatest effect was at low /)J(, and hence the 

shorter crack lengths, for both SBL2 and SBL 1.5. It was not possible to distinguish between the 

effects of the underload and minor stress cycles from the crack growth measurements in steel, but if 

steel behaves in a similar manner to the aluminium alloy, in which it proved possible to observe 

and measure striations, acceleration occurred under both the underload and the minor stress 

following it. Thus, it seems that the observed acceleration in crack growth during both the 

application of the underload and the minor stress range following it cannot be explained in terms of 

a crack closure mechanism. 

6.2.2.2 WELDED S355 STEEL SPECIMENS 

As in the case of the plain steel, the crack remained fully open throughout the application of the 

minor stress cycles. However, in contrast to plain steel the same was found for the underload stress 
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cycle, at least until the crack was relatively long, as seen in Figure 6.2.3. For the SBL2 sequence U 

= 1.0 over the first 16mm of crack growth . Above 20mm the slight evidence of non-linearity 

suggests that closure occurred at 35 Imm2
, equating to U = 0.86. In the case of the SBL 1.5 

sequence, the closure results suggest that 100% (U = 1.0) of the appl ied stress range is always 

effective. Thus, overall it seems that the residual stress due to welding has the effect of holding 

open the fatigue crack and thus preventing closure. The fact that there was evidence of some 

closure at long crack lengths could well reflect the decrease in residual stress level due to the cyclic 

loading, as discussed later (see Figure 6.3.11). 
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Figure 6.2.3 Recorded crack closure levels in lVelded S355 steel, during application of an 

2 ' underload stressjrom 156Nlmm to 16Nlmm-. 

The results from the load sequence tests (Sect ion 5.3.3) indicated significant crack growth 

acceleration under both SBL2 and SBL 1.5, giving y = 1.86 and 1.92 respectively, at low M (a = 

- IOmm). The fact that y under SBL2 decreased at crack lengths above 20mm when closure was 

a lso observed, might suggest a link to crack closure effects; although some acceleration still exists 

suggesting there is no closure. However, in order to get this link this would mean that the closure 

stresses were different for CA loading, such that to get acceleration from both the underload and 
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minor stress following it, the value of U would need to have been < 1.0 under CA loading; but as 

explained above, the crack remained fully open throughout the minor stress cycles. Overall, since 

U = 1.0 for both minor and underload cycles, no interaction would be expected. So, the fact that 

there was acceleration indicates that closure is not the explanation. 

6.2.2.3 PLArN 6082 T651 ALUMINIUM ALLOY SPECIMENS 

As in the case of the plain steel, it was found that the crack clo ure stres leve l for the minor stress 

range, both before and after an underload and for all crack lengths considered, was constant, as 

illu trated for crack lengths of 12 and 20mm in Figure 6.2.4. However, unlike in steel the crack 

closure stress level for the underload also did not vary significantly with crack length, as shown in 

Figure 6.2.5. These results were obtained during the application of the SBL2 spectrum underload 

but the minimum stress levels for both SBL2 and BL 1.5 are indicated. The closure stress was 

typically 23 /mm2
. For the SBL2 sequence, for which the underload stress range was 63 /mm", 

th is would imply that the proportion of the applied underload tres range that i effective, while 

the crack is open, is U = (74-23)/63 = 0.81. However, in the case of the SBL 1.5 sequence, the 

proportion of applied stress that is effective increases to U = 1.0. 
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Figure 6.2.4 Recorded crack closure levels in plain aluminium alloy before. during and after an 

lInderload cycle from 74Nlmn/ to /1 Nlmml. 
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Figure 6.2.5 Recorded crack closure levels in plain 6082 aluminium alloy during application of an 

7 1 
underload stress from 74Nlnll11- to /1 Nlmn7 . 

Thus, the crack closure measurements imply that there should be little or no interaction between the 

underload and minor stress cycles. However, as indicated in Section 5.3.2, crack growth 

acceleration did occur. In the case of SBL2, y was again greater at low t1K (a = - 12mm) than at 

high /).K (a = - 32mm), 1.29 and 0.89 respectively, but the proportion of applied stress range that 

was effective whilst the crack was open, U, wa the same. 

Under SBL 1.5, y was greater at high M (a = - 32mm) than low, 1.40 and 1.12 respectively. 

Closure measurements did not extend to this crack length, but the results in Figure 6.2.5 suggest 

that the crack was fully open under the e loading spectra. Thus, as in the case of SBL2, the 

proportion of applied stre s range that was effective was the same, therefore suggesting that the 

observed acceleration was not governed by levels of closure or effective stress range. 
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6.2.2.4 WELDED 6082 T651 ALUM INIUM ALLOY SPECI MENS 

The results obtained from the welded specimen are ery imilar to those for plain material, 

presented in Figure 6.2.5, with only a slight change in closure leve l. As seen in Figure 6.2.6, the 

assumed closure stress was 19 Imm2
. 
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Figure 6.2.6 Recorded crack closure levels in welded 6082 alllminium alloy, upon application of 

an applied stress from 74 Imm} to 10.56 Imm}. 

Thus, as with the plain material, U = 1.0 for SBL 1.5. However, v ith the ame clo ure stres level 

for SBL2, compared with plain material the proportion of applied tres range that is effective has 

increased slightly, to 0.87, presumably due to the presence of ten ile residual stresses from 

welding. However, again in comparison with the plain material , the ame conclusion regarding the 

significance of crack clo ure can be drawn, namely that it wa not linked v ith the ob erved crack 

growth acce leration (Section 5.3 .3). 

6.2.3 PLASTIC ZONE SIZE DETERMI ATION 

As discus ed in Section 2.4.4, under cyclic loading the yielding of material ahead of the crack tip 

results in the formation of (i) a monotonic pia tic zone, due to the application of the maximum 

applied stress in the cycle, and (ii) a smaller re er ed or cyclic pia tic zone due to the applied 
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cyclic stress range within it (see Figure 2.4.5). This can, depending on the applied loading 

sequence, bring about a zone of local increase in tress (Suresh, 1998), but typically under tensile 

loading, results in a small zone of compres ion due to tensile yielding near the crack tip at 

maximum load (Zhao et al., 2003). The sizes of these plastic zones are given by Eqs. [2.4.12] and 

[2.4.14] given in Chapter 2. The resulting monotonic and reversed plastic zones sizes due to the 

underload cycles in the SBL2 and SBL 1.5 load sequences for a number of different crack lengths 

are presented in Tables 6.2.1 and 6.2.2 for steel and aluminium alloy, respectively. 

It will be seen for both sequences that the monotonic and cyclic plastic zone sizes increase with 

increasing crack length and that the greater tensile underload range in SBL2 re ults in a larger 

cyclic plastic zone than that due to SBL 1.5. Regardless of crack length, the proportion of 

monotonic plastic zone occupied by the cyclic plastic zone embedded within it i 20% for steel and 

18% for aluminium alloy under the BL2 spectrum, and 1I % for steel and 10% for aluminium 

alloy under the SBL 1.5 spectrum. Therefore, as the size of the cyclic plastic zone is around lis of 

the monotonic zone under SBL2 and 1/9 under SBL 1.5, the area of the plastic zone that is constantly 

under tension is reasonably large. 

Table 6.2.1 Plastic =one radii for S355 teel under SBL2 and SBLl .5 underload sequences 

assuming plane stress conditions. 

Sequence SBL2 SBLl.5 

a, mm 8 12 16 20 24 28 8 12 16 20 24 28 

Kmax, 349 388 419 447 472 496 349 388 419 447 472 496 
N/mm3/2 

Monotonic 
zone size, 188 23 1 270 307 342 378 188 231 270 307 342 378 

"m 

AK, 314 349 377 402 425 446 236 262 283 301 318 335 
N/mm3/2 

Cyclic zone 38 47 55 62 69 77 21 26 31 35 39 43 
size, "m 
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Table 6.2.2 Plastic zone radii/or 6082 T651 aluminium alloy under SBL2 and SBLI.5 underload 

sequences assuming plane stress conditions. 

Sequence SBL2 BLl.S 

a,mm 8 12 16 20 24 28 8 12 16 20 24 28 

Kma .. 167 186 202 217 231 245 167 186 202 217 23 1 245 N/mm3/2 

Monotonic 
zone size, 85 106 125 144 164 185 85 106 125 144 164 185 
J.1m 

K, 
143 159 173 186 198 210 107 120 130 140 149 158 N/mm3/2 

Cyclic zone 
16 19 23 26 30 34 9 \1 13 15 17 19 

size, J.1m 

Of course, as mentioned in Chapter 5, due to the lack of material constraint near the free surface of 

the spec imen, plane stress conditions will prevail. This results in a large plastic zone at the surface 

which gradually reduces in size towards mid-thickness, where plane strain condition ex ist, Figure 

6.2.7. 

Figure 6.2.7 Effect o/thickness on crack tip plastic =one si=e. 

Therefore, allowing for plane strain conditions at the centre of the specimen, the theoretical 

monotonic and reversed plastic zone sizes for a range of crack length \ ere deri ed using Eq. 

[2.4.13] and are pre ented in Table 6.2.3 and 6.2.4. Although the re ulting pia tic zones are 

significantly smaller than for plane stress, the ratio between the monotonic and re ersed plastic 

zones is still the same as determined for plane stress conditions. 
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This therefore suggests that under SBL 1.5 , the area ahead of the crack tip constantly under tension 

is larger than under SBL2. Therefore, based purely on pIa tic zone sizes, as a greater proportion of 

the crack tip region beyond the cyclic zone is under tension, more opportunity for an accelera ting 

effect using the SBL 1.5 spectra might be expected. 

Table 6.2.3 Plastic zone radii for S355 steel lInder SBL2 and SBLl.5 IInderload sequences 

assuming plane strain conditions. 

Sequence SBL2 SBL1.5 

a, mm 8 12 16 20 24 28 8 12 16 20 24 28 

Km.x> 349 388 419 447 472 496 349 388 419 447 472 496 
N/mm3n 

Monotonic 
zone size, 63 77 90 102 114 126 63 77 90 102 114 126 

Jim 

AK, 314 349 377 402 425 
N/mm

3n 
446 236 262 283 30 1 318 335 

Cyclic zone 13 16 18 21 23 26 7 9 10 12 13 14 
size, Jim 

Table 6.2.4 Plastic zone radii for 6082 T651 aluminium alloy under SBL2 and SBLl .5 underload 

sequences assuming plane strain conditions. 

Sequence SBL2 BLt.5 

a,mm 8 12 16 20 24 28 8 12 16 20 24 28 

Kmau 

N/mm
3n 167 186 202 217 231 245 167 186 202 217 23 1 245 

Monotonic 
zone size, 28 35 42 48 55 62 28 35 42 48 55 62 

Jim 

AK, 143 159 
N/mm

3n 
173 186 198 210 107 120 130 140 149 158 

Cyclic zone 5 6 8 9 10 II 3 4 4 5 6 6 
size, Jim 
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This suggestion that SBL 1.5 produces a larger tensile area ahead of the crack tip than SBL2 

underload would support findings in Chapter 5 for tests performed on plain material, where it was 

observed for both steel and aluminium alloy that SBL 1.5 resulted in higher acceleration factors 

than SBL2 (in both cases at high M, a = -43mm for steel and -32mm for aluminium alloy). 

However, for tests on welded specimens, it was found for the steel that acceleration factors were 

reasonably similar for the different spectra, whilst for the aluminium alloy acceleration was greatest 

using the SBL2 spectra. 

It should be borne in mind that the estimated tensile plastic zones ahead of the crack tip for the 

SBL2 and SBL 1.5 spectra were both large, and therefore both in theory may contribute towards the 

possible onset of accelerated growth beyond the reversed plastic zone where tensile stresses exist 

due to the monotonic zone. 

6.2.4 DISCUSSION ON THE EFFECTS 

As discussed in Chapter 2, crack closure is the premature contact between the surfaces of the crack 

and is attributed to crack wake plasticity (plasticity induced crack closure). A number of 

approaches have investigated both the measurement technique and closure point determination, but 

the compliance curve technique, as used in the present study, is considered to be one of the most 

powerful and important (Fleck, 1984; Schijve, 1986; Zitounis, 2003). 

Crack closure is relevant to fatigue in that it influences the proportion of applied stress range or 

stress intensity factor range that is actually effective in propagating a crack, defined as !ltJejf or tlKejf 

respectively. It has been shown to provide an explanation for the influence of applied mean stress 

or stress ratio on CA fatigue life or crack growth rate. In theory, it should also be possible to 

explain applied load interaction effects under V A loading, such as crack growth retardation due to 

tensile overloads or crack growth acceleration due to underloads. With regard to the latter, it was 

anticipated that acceleration would occur during the application of the minor stress cycles 

following an underload, because it would reduce the crack closure stress and so increase !ltJejf or 

M ejf; In fact, what has been demonstrated is that crack closure does not reflect the changes in 
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acceleration found in simple load sequence testing with two magnitudes of stress range, as 

presented here. 

Work performed on AI8090 (Zitounis and Irving, 2002) using a similar spectrum shape, with high 

R ratio minor cycles interspersed with single underloads to zero load, indicated that over a range of 

crack lengths and different ratios of the number of small high R cycles to underload cycles, the 

crack closure stress was reduced in the presence of the high R cycles, thus increasing MelT and 

hence causing the crack to propagate faster. However, an explanation for how such small near­

threshold high R cycles decrease the crack opening stress of larger low R ratio cycles, was not 

given. It was postulated that residual stress fields ahead of the crack tip may be responsible. 

A feature of the present test results (see Figure 6.2.2) that has been observed elsewhere, in a study 

on Ti-17 (Russ et al., 2001), was that FCGR acceleration occurred for load cycles where closure 

was not detected. This indicated that the effective crack driving force must be influenced by 

something other than closure and applied I1K. Russ et al. therefore considered that load interaction 

effects were influenced more by conditions in the highly stressed zone immediately ahead of the 

crack tip. The suggestion that crack advance is controlled by the damage process occurring within 

the highly localized fracture zone immediately ahead of the crack tip has also been noted elsewhere 

(Korsunky et al., 2009). 

For loading sequences with minor cycles at R=O.7 and underloads at R=O.I, Russ et al., (2001) 

found that the underload cycle disturbed the material ahead of the crack tip in such a way that 

resistance to propagation was reduced and crack growth under the subsequent high R minor stress 

cycles accelerated. Further work considering this using FEA (Russ and Johnson, 2002) showed that 

when comparing before and after the R =0.1 underload, the underload increased the y-displacements 

both in front of and behind the crack tip. Zitounis (2003) suggested that as a result of this, the 

plastic zone just behind the crack tip (Figure 2.4.5) is stretched towards the inner part of the 

material (i.e. towards the direction of loading) by the tensile stresses in the monotonic plastic zone, 

leading to a separation of the crack faces. Therefore, any closure associated with load cycles at low 

R is delayed, with surfaces coming into contact later than expected under simple CA loading. 
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As surmised in (Section 6.2.1), the crack closure stress level for the minor stress range, both before 

and after an underload and for all crack lengths considered, was constant. Thus, the underload will 

have no influence on the damaging effect of the minor stress cycles following it. Therefore, a crack 

closure argument does not support differences in observed acceleration factors. 

With respect to the conditions ahead of the crack tip due to the applied underload, as a tensile 

underload produces a tensile monotonic plastic zone (Suresh, 1998), which is significantly greater 

than the cyclic plastic zone, as determined in Section 6.2.3, it is conceivable that having this region 

ahead of the crack tip and extending slightly behind it separating the crack faces (Zitounis, 2003), 

may contribute towards the level of crack growth acceleration observed. However, it is not 

considered to be the mechanism responsible for generating acceleration. 

6.3 THE ROLE OF WELDING RESIDUAL STRESSES ON CRACK 

GROWTH ACCELERATION 

6.3.1 INTRODUCTION 

In Chapter 5 it was shown that the introduction of tensile residual stresses through welding further 

accelerated crack growth under periodic underload cyclic loading. The observed increase was, 

however, more pronounced in steel than aluminium alloy. 

To understand the role of welding residual stresses in crack growth acceleration, it was first 

necessary to measure their distribution, determine how they redistribute ahead of an advancing 

crack and finally, to establish the effect they have on the highly stressed material at the crack tip. 

6.3.2 MEASURED RESIDUAL STRESS DISTRIBUTIONS 

6.3.2.1 CCT SPECIMENS 

Residual stress measurement was performed on S355 steel and 6082 T651 aluminium alloy CCT 

specimens. Figure 6.3.1 presents the residual stress distributions across the weld and extending out 

from the notch tips) for steel, obtained using the centre hole technique. 

) The width of the weld bead, as indicated in the plots and the notch length in all cases and for both steel and 
aluminium alloy are equal. 
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In Figure 6.3.1 it will be seen that tensile residual stresses exceeding yield (470 Imm2
) were 

measured at both the weld and notch locations (S18 Imm
2 

and 481 Imm", respectively), with 

compressive longitudinal stresses balancing them beyond - 3Smm from the weld toe and - 40mm 

from the notch tip. Measurements in the notch region were therefore in good agreement with the 

residual stress distribution across the weld. The fact that the measured residual stress is higher than 

yield/proof, results from the assumption in the residual stress measurement analysis, that a constant 

Young's modulus st ill applies above yield, in reality due to plasticity this is not the case. 

Measurements were also performed on steel CCT specimens using the neutron di ffraction 

technique, for companson with the centre-hole measurements and to establish the through-

thickness distribution, Figure 6.3.2. It will be seen that tensile residual stresses exceeding yield, in 

the region of 407 Imm2
, were detected close to the notch. This is a little lower than that measured 

by centre-hole. However, when the through-thickness distribution is considered (Figure 6.3.3) it 

wil l be seen that at 6.5mm depth (equivalent to I.Smm from the opposite surface), the maximum 

stress measured was 455 Imm 2
, closer to that observed by centre-hole. The residual stress level at 

mid-thickness was si milar to that at 6.5mm depth, suggesting minimal through-thickne s variation. 
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Figure 6.3.1 Residual stres distributions measured in S355 teel CCT specimens across the \Veld 

and extending out from the notch tips. 
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Figu re 6.3.3 Through-thickness longitudinal sIres variation mea IIred in 5355 steel CCT 

specimens extending out from the nolch using neutron diffraction. 

The distribution across the welded region at a depth of 1.5mm and 50mm from the notch location 

(see Figure 3.7.5) was also measured and is shown in Figure 6.3.4. The ma imum tress observed 

at a distance of 2mm from weld toe was 48 1 /mm~, agreeing \ ith the centre hole fi ndings (Figure 

6.3. 1) fo llowing plastic ity correction (see ection 3.7.2). The di tance from the \ eld toe at \ hich 
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the residual stress becomes compressive was 32mm, again agreeing well with the centre-hole 

findings. 
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Figure 6.3.4 Re iduol stress distribution in S355 steel CCT specimen across the weld lIsing 

neutron difji'octiol1. 

For the aluminium alloy (Figure 6.3.5 ) the magnitude of residual stress is below that of the 

measured 0.2% proof stress (Table 4.3.2). This is due to HAZ softening adjacent to the weld which, 

for 6082 aluminium alloy in the T6 condition, typically results in a reduction of the material's 0.2% 

proof strength by a factor of 2 (BSI 1991 ). The - 22mm zone of HAZ oftcning is also shown in 

Figure 6.3 .5 and was determined by Vickers hardne measurement (see Chapter 4, Section 4.3.3). 

It can also be seen that the tensile longitudinal tresse are balanced by compressive longitudinal 

stresses after 34mm from the weld toe and 32mm from the notch tip. 

With the softening effect of the HAZ considered, the 0.2% proof strength of the material reduces to 

- 161 N/mm2, which i till considerably higher than the maximum residual tress measured in the 

region of the weld (24 Imm\ It '.: as, howe er, slightly higher at 31 Imm:!, in the material 

adjacent to the notch . 
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Figure 6.3.5 Residual stress distributions measured in 60 :2 aluminium allo), CCT pecimen 

across the \Veld and extending out from the notch. 

To check if a larger volume of weld metal , and hence a higher heat input, re ult in higher residual 

stresses, a full penetration double sided butt weld wa produced in the same 6082 T651 aluminium 

alloy plate. The maximum residual stress measured here was 55 Imm2
; more than double that for 

the bead-on-plate (BOP). However, this was 26mm from the weld toe a oppo d to 12mm for the 

BOP weld, Figure 6.3.6. The HAZ oftened boundary for lh full p netration butt weld was 

determined as ±40mm from the weld centreline ( ee Chapter 4, ection 4.2.2) following the 

gu idance given in the British Standard (BSI, 1991), and is shown in Figure 6.3.6. It can be een that 

the residual stress distribution 12mm from the toe for both the butt and BOP \ eld agree ery well. 

The difference between the BOP and butt weld is that the tre e in the butt weld remain tensile 

over a greater width of the CCT specimen. 
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Figure 6.3.6 Residual stre s di tribution measllred in a 6082 aluminium alloy full penetration 

double sided buff \Veld. 

Whil st Figure 6.3 .6 shows that the increased \ eld volume has increased the level of measured 

stress and the residual tension zone width, the magnitude of residual stress is still rather low. It is 

thought that the material thickness of only 6mm i a contributing factor, due to the low level of 

restraint it offers to the forces generated during contraction of the weld. A thicker specimen would 

try to res ist thi s force generating higher tensile residual stress. 

6.3.2.2 FILLET WELDED SPECIMENS 

The residual stress distribution determined using the centre-hole technique for S355 steel 

specimens incorporating a fillet welded longitudinal attachment is hown in Figure 6.3.7. At a 

distance of2mm from the weld toe and extending acros the plate width, the maximum longi tudinal 

stress found (following plasticity correction) was 515 Imm
2

• As can be seen, the level of stress fell 

away quickly with increasing distance from the end of the attachment, becoming compressive 

a round 35mm either side of the attachment centre-line. 
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Figure 6.3.7 Residual stress distribution measured in S355 structural teel across the plate width 

2mmfrom \Veld toe using centre hole. 

Again for comparison, measurements were also made using neutron diffraction, Figure 6.3.8. Here 

it is shown that the maximum residual stress at a depth of 1.5mm from the plate surface was 

487N/mm2
, s light ly lower than that measured by centre-hole but still above yield. When 

considering the through-thickness variation (Figure 6.3.9) it i shown that unlike in the welded 

CCT spec imens, there is some variation of peak stress through the thickne ,with the greatest 

measurement of 572 Imm2 at mid-thickness (4mm). At a depth of 6.5mm (1 .5mm from the 

opposite surface) a value of 530 Imm2 was recorded. In all cases the ob erved stress distribution 

changed from tensile to compressive at approx. 30-36mm, reasonably con istent \ ith that found by 

centre-hole . 
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Figure 6.3.8 Residual tress distribution measured in S355 structural steel acros the plate \Vidth 

2mm from \Veld toe using neutron diffraction. 
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Figure 6.3.9 Through-thicknes longitudinal Slress variation measured in S355 steel across the 

plate width 2mmfrom \Veld toe u ing neutron diffraction. 

Turning to the same type of specimen in the alum inium a lloy (Figure 6.3. 10), the max imum stress 

measured was 4 1 /mm~ , still v ell below the materia l's 0.2% proof stress even when allowing for 
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the effect of HAZ softening (see Section 6.3.2.1). As discu ed for CCT specimens, it is thought 

that the low level of residual stress is partly attributable to the 10\ material thickne of only 6mm 

(Section 6.3.2.1). As was found for the fillet welded steel specimen, the level of stress fe ll away 

quickly with increasing di stance from the end of the attachment, changing from tensile to 

compressive at 24mm. 
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Figure 6.3.10 Residual stress distribution measured in 60 2 aluminium alloy acro the plate 

width 2mm from weld toe using centre hole. 

6.3.3 RESIDUAL STRESS RELAXATION UN DER CYCLIC LOADI G 

6.3.3.1 CCT SPECIMENS 

Relaxation (or redistribution as it is also termed) of re idual tre occur when the sum of the 

applied and residual stress exceeds the yield condition of the material. The relaxation of re idual 

stresses in welded CCT specimens was ob erved following periodic underloading u ing the BL2 

sequence. 
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The maximum plasticity-corrected residual stres e tablished in the S355 steel specimens in the 

region of the notch was 481 Imm~ . Following the application of one loading block (i.e. ten minor 

and one underload cycle) the stress relaxed to 77 Imm~ (84% reduction), Figure 6.3.11. 

Subsequent loading in blocks of 10 and 100 slightly increased this value resulting in a stress of 

168N/mm2 after 100 blocks. It can therefore be seen that the majority of relaxation under cyclic 

loading is contained within the first loading block, with further cyclic loading having a significant 

effect on the re-distribution of tensile residual stresses. 
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F igure 6.3.1 1 Re-di fribufion of measured re idllal stresses follolVing blocks of SBL2 periodic 

under/oads in S355 steel. 

Figure 6.3.11 also hows that whil t the tensile residual stress decreased, the zone of residual 

tension increased to between 460101 and 58mm, although this may just be a result of scatter in the 

measurements performed. 

For the 6082 aluminium alloy the maximum mea ured re idual stress in the region of the notch was 

31 N/mm~, Figure 6.3.12. After one loading block this wa reduced by 39% to 19 Imm~. 

Subsequent loading of 10 blocks reduced thi further to 12 Imm
2 

(61 % of the original); beyond 

- 6-23 -



Mechanisms influencing crack growth acceleratioll Chapter 6 

this no significant difference was observed. Therefore as in the case of the teel , the majority of the 

observed relaxation was during the first loading block. 
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Figure 6.3.12 Re-distribution of measured residual stresses following block of SBL2 periodic 

underloads in 6082 aluminium alloy. 

The zone of residual tension also increased with increasing loading block to bet\ een 32mm and 

41 mm; agai n this may just be a result of catter in the measurement perform d. 

6.3.3.2 FILLET WELDED SPECIME 

Following determination of the initial residual stre distribution the steel fillet welded specimen , 

(F IL-ST-RES-OI ) wa cycled from zero to 200 /mm~ (- 40% yield) to determine the degree of 

relaxation after a pre-defined number of cycle (one and ten). 

On application of one cycle, a 72% reduction in residual stre from 515 /mm~ to 142 /mm- was 

observed adjacent to the weld toe at the centre of the \ eld return. Follo\ ing ten cycle the stress 

increased lightly giving a total reduction of 67% (172 /mm~ ) lower than the original. Therefore 

the majority of relaxation under cyclic loading i contained within the fir t c cle; sub equent c cles 

(up to ten) gave no further reduction. 
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For the aluminium alloy specimen (FIL-AL-RES-Ol), once the residual stress distribution had been 

obtained the specimen was cycled from zero to 120N/mm
2 

(-75% of softened 0.2% proof stress). 

After the first cycle the maximum stress reduced by 197% from 41 N/mm2 to -40N/mm2
• Ten cycles 

only slightly increased the level of reduction to 204% giving a stress of -43N/mm2
• Again 

measurements were performed close to the weld toe at the centre of the weld return as in the 

original location of maximum stress (see Section 6.3.2.2). 

6.3.4 EFFECT ON RESIDUAL STRESS FOR A PROPAGATING CRACK 

The above Sections have established the residual stress distribution following welding and its 

subsequent relaxation (redistribution) following cyclic loading. 

The effect on the residual stress of crack propagation across a CCT specimen was considered next. 

As will be seen in Figure 6.3.13, the residual stresses measured 2mm ahead of the crack tip show 

that the extent of the tensile residual stress zone is shorter than indicated by the original 

distribution. Here it is shown that the residual stress falls to zero at around 22mm from the notch 

centre before becoming compressive at around 32mm, a zone 20-45% narrower than that of the 

original extent of residual tension (40mm). 

In the case of the aluminium alloy (Figure 6.3.14), it can be seen that the zone of residual tension is 

slightly wider than the 32mm originally depicted by the residual stress distribution at around 39mm 

(an increase of 22%). However, what is most noticeable is the increase in stress immediately after 

the HAZ softened boundary, where the residual stress 2mm ahead of the propagating crack reaches 

114N/mm2, which is significantly closer to the 161 N/mm
2 

0.2% proof stress of the material derived 

when allowing for the effect of the weld. 
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Figure 6.3.13 Residllal stress measured 2mm ahead of propagating crack in S355 steel 11 ing 
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- 6-26 -



Mechanisms influencing crack growtlt acceleration Chapter 6 

6.3.5 DISCUSSION ON THE EFFECTS 

As discussed in Chapter 2, the presence of a weld can introduce yield magnitude tensile residual 

stresses, depending on the level of constraint imposed on the cooling weld by the part being 

welded. It was shown in Chapter 5 that the presence of a tensile residual stress distribution from 

welds in the vicinity of a crack generally gave rise to greater crack growth acceleration under a 

periodic underloading sequence than in plain material. It was surmised that the tensile residual 

stress assisted the already present tensile stress at the crack tip (within the monotonic plastic zone, 

Figure 2.4.5) in maintaining greater crack opening, with the result that a greater proportion of the 

loading cycle contributed to crack propagation. 

Measured crack closure levels (Section 6.2) indicated that a crack closure argument, or at least that 

based on the possibility of an increased ~aefffollowing an underload, does not support differences 

in observed acceleration factor. This was due to the closure stress level of the minor stress cycles 

being the same both before and after the underload (Le. closure was not detected at the high R ratio 

minor cycles), such that the underload has no influence on the damaging effect of the minor stress 

cycles following it. 

The effect of residual stress relaxation under cyclic loading has been investigated by a number of 

researchers (Iida et ai, 1996; Iida and Takanashi, 1997; Holzapfel et ai, 1998; Zhuang and Hal ford, 

2001). Significant relief of residual stresses due to welding and to surface treatments (e.g. peening) 

has been reported, by as much as 132% (Iida and Takanashi, 1997), on application of the first 

loading cycle. Further gradual relief has been observed with increasing numbers of repetitions of 

the same applied cyclic loading. In extreme cases, residual stresses have been shown to relax 

entirely in the first few cycles (Wallace and Frankel, 1949). 

The maximum residual stress measured in the welded CCT specimens was 481 N/mm
2 

in steel and 

31 N/mm2 in the aluminium alloy. The greatest relaxation under periodic underloading sequence 

loading (SBL2) occurred following the first loading block, with a reduction of 84% for the steel 

and 39% for the aluminium alloy. For fillet welded specimens, under CA cycling, a single cycle of 

-40% of the material's yield strength for steel and -75% of the materials softened 0.2% proof 
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stress resulted in a 72% relaxation in residual stress for the steel and 197% for the aluminium alloy 

from the initial measured values of 515N/mm2 and 41 N/mm2 for the steel and aluminium 

respectively. Following ten cycles, no further reduction was observed for the steel and only a slight 

increase in reduction for the aluminium alloy. 

The findings for steel agreed well with those by Blom, who observed relaxation in fillet welded 

specimens incorporating longitudinal attachments manufactured from Domex 350XP, of 50 to 80% 

of the initial value in the first cycle (Blom, 1995). 

The results of the residual stress measurements 2mm ahead of the propagating crack (Figures 

6.3.13 and 6.3.14) would suggest that with reference to the load sequence tests described in 

Chapter 5, any crack growth accelerating effects affected by welding residual stresses close to the 

tip of the crack would, for the steel specimens, be in the shorter crack length or lower M( region. 

For the aluminium alloy specimens, due to the presence of the HAZ softened zone, any 

acceleration resulting from the addition of welding residual stresses would be greatest at longer 

crack lengths or higher values of M. Both of these findings agree well with the acceleration factors 

given in Table 5.3.11. 

This therefore supports the hypothesis that the introduction of tensile residual stresses through 

welding plays an important role in further assisting the tensile stress at the tip, caused by the tensile 

underload, in accelerating crack growth. 

6.4 THE ROLE OF CRACK TIP MEAN STRESS ON CRACK GROWTH 

ACCELERA TION 

6.4.1 INTRODUCTION 

In Chapter 5 it was considered that a plausible mechanism for crack growth rate acceleration was 

related to the local mean stress at the crack tip. The effect of mean stress under CA and V A loading 

(Russ et al., 2001; Arcari and Dowling, 2012) as well as that postulated by Fleck after observing 

crack advance in the minor cycles of his loading spectra (Fleck, 1985), would suggest that periodic 

tensile under-loads assist in maintaining a higher tensile mean stress for the subsequent minor 
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stress cycles. The results of load sequence testing in the present work agreed with Fleck's findings, 

with accelerated growth accompanying the minor cycles. A new finding in this study was that it 

also accompanied the major cycle (underload). 

To provide a better understanding of the effect of underloads on fatigue crack growth, finite 

element stress analysis (see Section 3.8) was used to calculate the changes in stress and strain that 

take place in the crack tip stress field in CCT specimens as a result of the application of the 

periodic underload sequences. In addition to the SBL1.5 and SBL2 loading performed in Chapter 5, 

a tensile underload of magnitude greater than 2 was also investigated to determine its effect in the 

region of the crack tip. To this end, SBL2.2 for steel and SBL2.3 for aluminium alloy were 

introduced; in both cases resulting in a minimum stress of zero for the underload. Particular 

attention was paid to the number of cycles required to achieve stable strain cycling, the extent of 

any strain accumulation (e.g. the change in distance for minor and underload cycles) and the 

possible changes to the local mean stress at the crack tip that might affect crack growth 

acceleration. Table 3.8.1 gives a full list of the models developed for both the steel and aluminium 

cases. From these, the stress and strain at the crack tip due to the minimum and maximum loads in 

the applied loading cycles were extracted, and their evolution was plotted on graphs in order to 

determine the effects of the underloads, at various underload ratios, and the presence of tensile 

residual stress, as would be produced by welding. 

The stresses and strains reported here are those acting in the direction of loading of the CCT 

specimens, that is perpendicular to the symmetry plane where the crack propagates (S22). In all the 

models analysed, the crack was assumed to have propagated by IOmm from the initial notch tip. 

The change in crack length due to propagation was not taken into account, because it was not 

compatible with the chosen crack tip mesh (see Section 3.8.1). The loading cycle was therefore 

applied with no initial stress, except in the cases modelling specimens containing residual stresses 

from welding. This assumed that the stress pattern resulting from the combination of the earlier 

loading cycles and crack growth was "overwritten" by the newly applied maximum load, and that 

the work hardening in the elements of interest was significantly higher than immediately before the 

crack tip had reached the position investigated. 
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The data analysed and discussed are mainly those obtained O.Olmm from the crack tip, but data 

0.05mm and O.lOmm from the tip were also extracted. Data O.Olmm from the tip were assumed to 

be those most relevant to the fatigue crack growth mechanism, although some damage could exist 

from strain cycling further ahead of the crack tip. The data at the crack tip node and at the mid-side 

node of the first element were not considered because they may have been affected by the close 

proximity of the crack tip singularity. 

The data reported were obtained for six series of loading cycles. Each series consisted of ten minor 

CA cycles, followed by one major (underload) cycle. The loading sequence applied is shown 

schematically in Figure 3.8.5. The stresses used in the periodic underload spectra are presented in 

Table 5.2.1. Only a selected number of data are discussed in this section, but all the data are 

reported in Appendix B. 

An overview of the FEA model processing routine is presented in Figure 6.4.1. Here it is shown 

that such parameters as materials data, meshing and loading history, are the input for the analysis 

performed. Post-processing of the results then generates stress and/or stain contour plots, the nodes 

of which at particular distances of interest from the crack tip (0.0 I mm, O.OSmm and O.lOmm), are 

used to generate stress and strain history plots; in this case, highlighting the effect ofunderloads on 

crack tip mean stress. The materials data and meshing input parameters (specific to steel and 

aluminium alloy) remained unchanged for the respective models, but the cyclic loading spectrum 

was modified to suit the SBL I.S or SBL2 conditions. Post-processing was then repeated and 

different stress/strain histories generated, as presented in Appendix B and in Figures 6.4.2 to 6.4.9. 
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The data ana lysed and discussed are mainly those obtained 0.0 I mm from the crack tip, but data 

0.05mm and 0.1 Omm from the tip were also extracted. Data 0.0 I mm from the tip were assumed to 

be those most relevant to the fatigue crack growth mechanism, although some damage could exist 

from strain cycl ing further ahead of the crack tip. The data at the crack tip node and at the mid-side 

node of the first element were not considered because they may have been affected by the close 

proximity of the crack tip singularity. 

The data reported were obtained for six series of loading cycles. Each series consisted of ten minor 

CA cycles, followed by one major (underload) cycle. The loading sequence applied is shown 

schematically in Figure 3.8.5. The stresses used in the periodic underload spectra are presented in 

Table 5.2.1. Only a selected number of data are discussed in thi section, but all the data are 

reported in Appendix B. 

An overview of the FEA model processing routine is presented in Figure 6.4.1. Here it is shown 

:'-- at such parameters as materials data, meshing and loading history, are the input for the analysis 

:: rformed. Post-processing of the results then generates strcss and/or stain contour plots, the nodes 

:: : which at particular distances of interest from the crack tip (0.0 I mm, 0.05mm and 0.1 Omm), are 

used to generate stress and strain hi tory plots; in this case, highlighting the effect of underloads on 

crack tip mean stress. The materials data and meshing input parameters (specific to steel and 

aluminium alloy) remained unchanged for the respective models, but the cyclic loading spectrum 

was modified to suit the SBL 1.5 or SBL2 conditions. Post-processing was then repeated and 

diffcrent stress/strain histories generated, as presented in Appendix B and in Figures 6.4.2 to 6.4.9. 
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Figure 6.4.1 Overview oflhefinile element analysis model processing routine. 

6.4.2 MODELLI NG OF CRACK TIP STRESS STATE 

6.4.2.1 PLAIN S355 STRUCTURA L STEEL 

Figure 6.4.2 shows the CA response of material 0.0 I mm from the crack tip to the application of the 

minor stress cyc les. It can be een that after 7 1 cycles, the mean stress has relaxed to zero, although 

it al so shows that full stabili ty ha not yet been achieved, as seen by the increase in strain with 
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increasing number of cycles not yet ' turning over', suggesting that the mean stress could fa ll to just 

below zero, agreeing with Arcari and Dowling (2012). 
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Figure 6.4.2 Variation oJ stress and strain O.Olmm Jrom the crack tip in 5355 structural steel, 

obtained at the maximum and minimum applied load (minor cycles) under constant amplitude 

loading. 

Under SBL2 loading and at the same location, Figure 6.4.3, the results how that the stability of the 

stress-strain cycle cannot be achieved due to the slight increase in stres after application of the 

underload. They also show that strain accumulates between each underload and during each 
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underload cycle itsel f, consistent with the observation in Section 5.3 that striation spacing for both 

stresses were larger than those obtained under CA loading. 
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Figure 6.4.3 Variation of stress 0.01111111 from crack tip in S355 steel obtained at maximllm and 

minimum applied loads for the first six blocks of cycles under SBL2 loading. 

The same can be seen for SBL 1.5 loading, although strain accumulation for the underload itself is 

slightly reduced at 0.016 strain (Figure B2) versus 0.030 under SBL2 loading (F igure 6.4.3). For 

SBL2.2 loading (Figure B6), the slight increase in the magnitude of the underload stress, shows no 
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real increase in tensile mean stress above SBL2. However, strain accumulation is slightly greater 

(0.040). 

In each of these underload cases, the stress-strain hysteresis shows that shakedown of the minor 

cycles to a mean of around zero would occur very gradually over a number of cycles with the effect 

of the underload reducing as the number of blocks of cycles increase. 

At 0.05mm from the crack tip under SBL2 loading, the effect of the underload on mean stress is 

very pronounced (Figure B4) with no relaxation of minor cycles to zero mean stress, although the 

attempt to shakedown happens at a much faster rate than at 0.0 I mm. Further from the crack tip 

(0.1 mm) the effect of the underload has dissipated, although the mean stress after 71 cycles is well 

above zero, s lowly relaxing as the number of cycles increase, Figure B5 . 

A comparison of the strain for each loading cycle is shown in Figure 6.4.4. Here the analysis 

indicates that there will be a regular increase in strain at the node close t to the crack tip (0.0 I mm); 

this increase was proportional to the underload applied. 
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The SBL2.2 underload corresponds to =ero minimum stress. 
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6.4.2.2 WELDED S355 STRUCTURA L STEE L 

Figure B7 shows the effect of the inclusion of welding residual stresses of a specified magnitude of 

48 1 N/mm2, following plasticity correction (Figure 3.8 .7), on the variation in stress and strain 

0.0 I mm from the crack tip under SBL2 loading. The crack tip stress fie ld is added to the existing 

constant welding residual stress, thus generating extensive plastic strain. However, as a resu lt of 

this, there appears to be no effect of the underload on the minor stress cycles, with stable cycling at 

a mean stress of zero. 

1400 .......------------------------~ 

M 

S 
S -z 

1200 
1000 
800 
600 
400 
200 

o 
-200 
-400 
-600 
-800 

-1000 
-1200 
-1400 

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Strain E22 
1400 ~------------------------------------------~ 

1200 
1000 
800 

MS 600 
S 400 ~. __ ttl -z 200 

'" N 0 +------iiH 
N 

'" -200 
rIl 

~ -400 
.:: -600 
rJJ 

-800 
-1000 
-1200 
-1400 .J----r--r----r-----r--r----,----..--.....--_---l 

o 20 40 60 80 100 120 140 160 180 200 
Cycle number 

F igure 6.4.5 Variation o/stress O.05mmfrom crack tip in welded S355 steel obtained at maximum 

and minimum applied loads Jar the first six blocks oJ cycles under SBL2 loading. 
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Further from the crack tip, at 0.05mm, the plastic strain is less extensive so that the effect of the 

underloads can be seen more clearly, Figure 6.4.5. Here the underload increases the mean stress of 

the minor cycles above that of the minor cycles preceding the underload, increasing the mean stress 

at the crack tip. Beyond this location, the presence of the underload had only a slight effect on the 

succeeding minor cycles, whilst the welding residual stresses tends to delay the relaxation effect, 

keeping the tip in a region of tension for a longer period and over a greater distance, as seen O.lmm 

from the crack tip in Figure B9. 

6.4.2.3 PLAIN 6082 T651 ALUMINIUM ALLOY 

The data from the FE analysis of the 6082 aluminium alloy specimens were post-processed 

following the same methodology as that used for the steel specimens, (see Sections 3.8 and 6.4.1). 

Considering first the variations in stress and strain close to the crack tip following the application 

of CA loading of the minor stress range cycle of 32N/mm2, as shown in Figure 6.4.6, the general 

trend is the same as that for steel (Figure 6.4.2) with mean stress relaxing after each loading cycle. 

However, unlike the steel, which had reached zero mean stress after -71 cycles, the mean stress for 

the aluminium alloy is still in tension after -140 cycles. This is not surprising since the applied 

stresses for the aluminium were a smaller proportion of proof strength than in steel so that there 

would be less crack tip plastic deformation. This can be seen by a reduction in strain accumulation 

and differences in the rate of accommodation (relaxation), Figures B I and B 11. Although not 

shown, it is assumed that the aluminium alloy would continue to relax and eventually stabilize at or 

just below a mean stress of zero (similar to the steel). 

Turning to the influence of a tensile underload, the effect of SBL 1.5 on the stresses and strains 

0.0 I mm from the crack tip is shown in Figure B 12. The aluminium alloy seems to be more 

responsive than steel was for the same underload, with the material being unable to stabilize due to 

the periodic increasing of mean stress. This is also shown in Figure 6.4.7 for SBL2 loading and 

Figure B 15 for SBL2.3 loading. In each case, strain accumulates during both the minor and major 

cycles giving rise to a change in displacement with that of the major cycle being just as 

pronounced, if not more so, than the minor cycles increasing in both cases as the underload ratio is 
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increased. The same effect was evident from striation spacings, with increases in growth from both 

the major and minor cycles (Section 5.3.6). 
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Figure 6.4.6 Variation oJ stress 0.01 mm from crack tip in 6082 AI aI/ay obtained at maximum and 

minimum applied loads (minor cycles) under constant amplitude loading. 
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Figure 6.4.7 Variation of stress O.Olmmfrom crack tip in 60 2 AI alloy obtained at maximum and 

minimum applied loads for the first six blocks of cycles under SBL2 loading. 

As the distance from the crack tip is increased to O.05mm (Figure B 14), the effect of the underload 

during SBL2 loading diminishes and whilst the mean stres till tensile, it reduces fo llowing each 

block of loading cycles. 
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The change in strain for each loading cycle is shown in Figure 6.4.8. As in the case of the steel 

(F igure 6.4.4) a regular increase in strain at the node closest to the crack tip (0.0 I mm) is observed; 

this increase was proportional to the underload applied. 
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F igure 6.4.8 Variation of strain O.Olmm from crack tip in 6082 AI alloy for dijJerent underload 

ratios. The SBL2.3 underload corresponds to ::ero minimum stress. 

Whilst the strain data for the steel (Figure 6.4.4) were of higher magnitude, the same trend is 

observed with the highest underload ratio generating the greatest strain and lowest re laxation of 

m inor stress cycles for the underload. However, what is interesting to note in Figure 6.4.8 is that 

fo r the aluminium alloy, SBL 1.5 loading has little more effect on the crack tip strain than CA 

load ing, whilst SBL2 and SBL2.3 produce a much greater increase in mean strain. For the tee I 

(F igure 6.4.4), the CA loading had not fully tabilized and so the crack tip strain continued to 

increase. 

6.4.2.4 WELD ED 6082 T651 ALUMINIUM ALLOY 

As for the steel, the effect of load cycling onto an existing tensile residual stress field from welding 

on the cumulative strain and local mean stress was investigated under SBL2 loading, initia lly 

0.0 [mm from the crack tip, Figure 6.4.9. 
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Figure 6.4.9 Variation of stress O.Olmm from crack lip in lVelded 60 2 AI alloy obtained at 

maximum and minimum applied load for Ihe first six blocks of cycles under SBL2 loading. 

These data suggest that the cumulative strain and crack tip mean stress increase .. hen residual 

stresses are taken into account, which was not observed for the tee I at the same distance from the 

crack tip. However, unlike in steel, at 0.05mm (Figure B 17) the underload had no effect so the 

mean stress change wa the same as if there had been no underload, resulting in a steady decrease 

in mean stress with increasing number of cycles, much the same as for plain aluminium alloy at the 

same location (Figure B 14). Based on this result, the data at a distance of 0.1 mm were not plotted. 
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6.4.3 DISCUSSIOS OF FINDINGS 

Under CA loading, the application of minor stress cycles produce local cyclic stress close to the 

crack tip that cycles from tension to compression, with the local mean stress gradually reducing 

from a tensile value to zero. The FE analyses for plain material have demonstrated that in the 

region very close to the crack tip, the application of the underload does not allow the local tensile 

minor stress cycles to reduce to a compressive state. Even when the effect of the underload has 

diminished (Figures B5 and B 14), the resulting effect on the minor stress cycles shows them to 

slowly stabilize at a tensile stress. The observed effect near the crack tip therefore suggests that the 

presence of the underload maintains a higher mean stress than that arising under CA loading alone, 

which in turn would result in faster crack growth, agreeing with observations of accelerated growth 

under spectrum loading in Chapter 5. Indeed, the same is likely to be the case with the underload 

itself, since the progressive decrease in local mean stress towards zero seen in Figure 6.4.2 would 

still apply for CA loading. If so, this again is consistent with the observation that the striation 

spacing due to the periodic underload was greater than that seen under CA loading. 

The above can be seen to varying degrees for each underload ratio and for both materials at a 

distance of O.Olmm from the crack tip. Beyond this the material behaviour changes slightly. The 

steel continues to display the same effect of the underload 0.05mm from the crack tip, but the effect 

has diminished in the aluminium alloy. The effect has also diminished for the steel 0.1 mm from the 

crack. However, as mentioned above, no significant shakedown of the minor cycles is observed, 

therefore indicating that the crack tip stabilizes in high tension (at least for this distance ahead of 

the crack tip), as shown in Figures B5 and B 14 and observed under V A loading of 7xxx series 

aluminium alloys (Arcari and Dowling, 2012). 

The reason for the diminishing effect of the underload is likely to be associated with the decreasing 

levels of plasticity further from the crack tip. Considering Figure 4.3.1a and 4.3.2a, it can be seen 

that during the first few cycles of the LCF curve, the material begins to harden (accommodation is 

taking place with plasticity tending to make the stress cycle symmetrical). It is during this region of 

plasticity that the effect of the underloads can be seen. Once the material reaches a steady state, the 

effect of plasticity is reduced and the effect of the underload diminishes. 
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The load sequence tests perfonned in Chapter 5 showed that in the case of plain material, crack 

growth acceleration was highest under SBL2 loading at low M( but highest at high M( under 

SBL 1.5 loading. The results of the FE strain calculations above suggest that the local increase in 

strain is proportional to the applied underload. It is reasonable to assume that the same would apply 

to changes in daldN. Obviously the analysis in tenns of the number of cycles investigated in the FE 

analysis was limited; also crack propagation was not modelled, so that only one value of DJ( was 

assumed. Thus, any changes to the local strain pattern during crack growth are not included. The 

anticipated effect on the results would be expected to remain unchanged for the crack length 

currently considered, but may result in a larger area affected by the region of tensile stress ahead of 

the crack tip for increasing crack lengths (see Section 9.4). 

Interestingly, for welded steel no increase in mean stress was observed under SBL2 loading 

O.Olmm from the crack tip (with mean stress also stabilizing at approximately zero), but at O.05mm 

it was. For the welded aluminium, the opposite was true but instead of stabilizing at a mean of zero, 

a tensile mean stress was observed. It may therefore be inferred that welded aluminium would 

show greater signs of accelerated crack growth as the crack tip mean stress was in tension for both 

distances from the crack tip. However, comparing results from Chapter 5 under SBL2 loading, 

similar levels of acceleration were observed, albeit at opposite values of M( (or crack lengths). 

Whilst the test data in Chapter 5 showed that the introduction of welding residual stresses increased 

the levels of accelerated crack growth, the FE analysis indicates that their introduction does not 

produce an increase in mean stress in the vicinity of the crack tip, as compared with that for the 

plain material. This suggests that even though the presence of a tensile residual stress field serves 

to enhance any accelerating effect (presumably by means of pre-damage to the material ahead of a 

propagating crack), it is the presence of a tensile mean stress at the crack tip which generates 

acceleration in the first instance. 

Evidence from the FE models that the presence of a tensile underload serves to increase the stress 

in the vicinity of the crack tip for subsequent minor stress cycles supports observations on the 

fracture surfaces of specimens tested under periodic underloading. From these it was found that 
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accelerated crack growth occurred after and during the application of each underload cycle (Section 

5.3 .6). Whilst these observations were on aluminium alloy, accelerated growth at a reasonably 

similar level also occurred in the steel. Therefore, it is reasonable to assume that the underload has 

the same effect here. 
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Figure 6.4.10 Contour plot sholVing the deformed hape in the region of the crack tip for plain 

steel under SBL2 loading. The red line is the hori::ontal symmetry plane. 

With regard to crack closure, it can be seen in Figure 6.4.10 that on application of the minimum 

stress for the underload (15.5 Imm") the crack on the left hand halfofthe figure does not cross the 

horizontal symmetry plane (indicated by the red line). This shows that there is no crack closure 

taking place in the model. This can also be shown clearly in Figure 6.4.11, by the vertical 

displacement in the wake of the crack tip_ Here a displacement of 0.002mm to 0.004mm (2 to 4~m) 

is observed, indicating that the crack did not close. Whilst there was some limited crack closure 

detected in some of the tests described in Section 6.2, their levels were generally very low with the 

majority of the applied stress range being effective (i.e_ crack open). Therefore, the fact that the FE 

models do not implicitly demonstrate the s ligh t degree of closure observed (in some cases) 

experimentally, it is not considered that they invalidate the results . As it is the general effect of 

mean stress at the crack tip being considered, the FE models are deemed to be representative_ 
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Figure 6.4. 11 Contour plot sholVing displacement in the crack tip lVake follolVing application of 

the underloadfor plain steel under SBL2 loading The red line is the hori::ontal symmetry plane. 

Based on the findings of the FEA that accelerated growth through an increase in mean stress is 

occurring 0.0 I mm to 0.05mm from the crack tip, it is considered that the estimated cyclic plastic 

zones sizes are in fact smaller than given in Tables 6.2. I to 6.2.4, resulting in a much larger 

proportion of the monotonic tensile zone, thus, increasing the area ahead of the crack tip which is 

always under tension. 

Referring to the stress-strain plots in Appendix B, the data exhibit a 'progressive shift' in the 

direction of increasing strain, a phenomenon known as cyclic creep or ratchctting (Zhao et al. , 

2003). For the steel, the level that this is observed was more prominent at 0.0 I mm from the crack 

tip for plain material and is seen to increase as the underload magnitude increases. The effect was 

not 0 apparent in the welded material. The same was al 0 true for the aluminium alloy, although it 

was also observed in the welded models at the same distance from the crack tip (0.0 I mm). 

Ratchetting strain was also observed from FEA of nickel alloys (Tong et al., 2013), '> here it was 

suggested that through progressive accumulation of strain at the crack tip, at a critical le el 

material separation would occur resulting in crack propagation. Thi '> a also sugge ted in an 

earlier investigation on thin wall copper tubular specimens (Kapoor, 1994). Further, FEA of crack 

propagation (Zheng et al., 2014), examining the elasto-plastic fields in the vicinity of the crack tip, 
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also agree with this accumulation of strain, the build-up of which occurs at a 'critical distance' 

ahead of the crack tip. Once a critical strain value is reached, plastic energy is dissipated resulting 

in the propagation of the crack. 

This effect of ratchetting and its increase with increasing underload magnitude can be clearly seen 

in Figures 6.4.4 and 6.4.8, by the significant increase in strain during each block of load cycles and 

following the underload. The same effect was observed in 7mm thick stainless steel (Grade 316L) 

compact tension (CT) specimens by means of stereo-DIC (3D digital image correlation), SEM-DIC 

(application of gold micro-grids by lithographic process in the region of the crack tip, examined 

under SEM) and 3D FEA (Tong et al., 20 IS). Here a stationery crack was loaded incrementally in 

tension, at R=O.I, and the measured strain captured at a distance ofO.0285mm and 0.057mm ahead 

of the crack tip; this was subsequently reduced to a range of 0.006 to 0.014mm. 

It is therefore considered, that whilst the effect of mean stress at the crack tip due to the presence of 

the underload results in accelerated growth above that of CA loading, the actual fracture process at 

the crack tip is due to ratchetting strain, the effect of which increases with increasing underload 

magnitude. 

6.5 METALLURGICAL MECHANISMS 

6.5.1 CRACK TIP SHARPENINGIBLUNTING 

Although not considered in this research, Fleck (1985) hypothesized that if the crack tip was able to 

re-sharpen during periodic underloading, crack growth acceleration would occur under subsequent 

load cycles. Using similar SBL2 loading to that in the present study, and specimens of an 

equivalent steel grade, plastic replication of the crack tip was examined under SEM. No evidence 

of crack sharpening was found, but instead the underload had slightly blunted the crack tip, 

suggesting that this would cause crack growth retardation rather than acceleration. 

Espinosa et al. (2013) suggest that an underload produces crack tip sharpening as a result of the 

compressive stress between the crack flanks, which reshapes the crack tip and lowers the crack 

opening stress. The resulting higher effective stress range would then cause increased crack 

growth. In other words, accelerated crack growth is really due to the change in crack closure 
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conditions. However, as shown in Section 6.2.1 crack closure was not detected for the minor stress 

cycles in the present tests, indicating that this mechanism is not responsible for the observed crack 

growth acce leration. 

Thus, it seems to be very unlikely that crack growth acceleration following an underload can be 

explained on the basis of crack tip sharpening. 

6.5.2 CRACK TIP BRANCHING 

It is considered that crack tip branching would result in lower stress intensity at the crack tip, than 

if a s ingle crack was generated. Thus, under V A loading, such branching would result in crack 

growth retardation (Fleck, 1985). 
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Figure 6.5.1 Extent of crack tip bijilrcafion observed under SEM for: a) CCT-CA L-ST-1 6; b) CCT-

SBL2-ST-OI; c) CCT-CAL-AL-15; d) CCT-SBL2-AL-02. 
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The fracture surfaces of steel and aluminium alloy specimens tested under the minor CA cycles and 

SBL2 loading were examined under SEM, Figure 6.5.1a-d. It can be seen that under SBL2 loading 

(Figures 6.5.1 b (steel) and Figure 6.5.1d (aluminium alloy», the degree of branching was 

comparable with that under CA loading (Figures 6.5.1a (steel) and Figure 6.5.1e (aluminium 

alloy», suggesting that accelerated growth is not caused by a reduction in the amount of branching. 

6.5.3 CYCLIC HARDENING/SOFTENING 

Where single peak overloads are concerned, the associated crack growth delay increases with the 

rate at which a material cyclically hardens (Knott and Pickard, 1977). It is considered therefore that 

the converse of this argument would be true, that crack growth acceleration increases with the rate 

at which a material cyclically softens. 

Cyclic stress-strain tests described in Chapter 4 showed that after the first few cycles both the 

present materials were reasonably cyclically stable, that is their monotonic and cyclic strengths 

were comparable. Therefore, cyclic hardening or softening does not explain the presence of 

accelerated growth within this study. 

6.6 DISCUSSION 

6.6.1 THE EFFECT ON CRACK GRO\VTH RATE RESPONSE FOLLOWING 

PERIODIC UNDERLOADS 

6.6.1.1 PLAIN SPECIMENS 

Accelerated fatigue crack growth was observed in S355 structural steel and 6082 T651 aluminium 

alloy subjected to periodic underloads. The range of acceleration factors observed in this study was 

in line with those found by other investigators (Gurney, 1983 and Fleck, 1985). These studies 

showed Y values in the range of 1.10 to 1.80 for structural steel (BS4360 Grade 50B) and around 

1.50 for an aluminium alloy (2014A T4). In the present project under SBL2 loading, y values for 

individual plain material tests were in the range of 1.02 to 1.56 (1.06 to 1.45 for the combined 

duplicate test results) for structural steel and 0.90 to 1.35 (0.89 to 1.29 combined) for aluminium 

alloy. 
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A similar investigation with periodic underloads on 8090 T852 and 7010 T76351 aluminium alloys 

(Zitounis and Irving, 2007) recorded higher acceleration factors (termed a in their analysis) than 

those obtained here, from 1.0 to -14. The 7010 aluminium values were similar to the present ones 

at 1.0 to 1.5, but the 8090 alloy values ranged from 3.5 to 14, increasing as the level of Kmax 

increased. These high values were attributed to a distinct change in crack growth mechanism 

associated with the particular microstructure of the alloy. The origin of this change were considered 

to be environmental (water vapour at the crack tip), as well as high levels of microstructurally 

induced crack closure during the minor (CA) cycles, both of which are irrelevant in the present 

case. For both of these materials acceleration was also subject to a significant amount of scatter. 

Further acceleration factors by Zitounis for Ti 1023 (Zitounis, 2003) were in the range of 1.0 to 

2.59 and were therefore in the region of those observed here. 

Based on published literature (Gurney, 1983 and Fleck, 1985), it was assumed for the present study 

that reducing the underload magnitude would also reduce y. Both the studies mentioned showed 

that the maximum y occurred for an underload magnitude of twice the minor stress and that lower 

or higher values resulted in a decrease in y, as shown in Figure 6.6.1. 

This was not found to be the case in the present study, the acceleration factors being rather similar 

for underloads of 1.5 and 2 times the minor stress range. This is because the acceleration relative to 

a calculated load sequence response derived from the CA data was considered here. The same 

magnitudes of stress range for minor and major cycles were used to generate the life estimates for 

the SBL2 and SBL 1.5 sequences. Had the load sequence results been compared directly with the 

CA data for the minor stress range, then an effect of load sequence magnitude would have been 

observed with SBL2 reSUlting in a higher y than SBL 1.5, Figure 6.6.2. 

It will be seen in Figure 6.6.2 that the greatest acceleration was typically at low M. This is not 

surprising when considering the fact that fatigue crack growth in general is more sensitive in this 

regime to material and loading variations, especially applied stress ratio or residual stress at the 

crack tip, than at high M. The same observation is true for the 6082 aluminium alloy under SBL2 

but not for SBL 1.5, where the reverse was found, Figure 6.6.3. 
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This was evident in both tests performed (and for welded specimens) and could be seen as a slight 

increase in growth rate at around 300N/mm
312 

(9.5MPa.mo.s) in Figure 5.3.8. The increase in the 

plain specimens corresponded well with observations on the fracture surfaces just prior to and 

following the formation of shear lips, Figure 5.3.18. At around 300N/mm3/2 (-a = 23mm) an area 

extending for -3mm along the crack was found to be the corresponding region for the increase 

observed. However, no explanation for the increase in the welded specimens could be found from 

either fractographic or metallographic examinations (Figures 5.3.22 and 5.3.23 respectively). As it 

was found to be related to the SBL1.5 spectrum for both plain and welded aluminium specimens 

but only the SBL2 spectrum for welded aluminium specimens, it is assumed that the phenomenon 

is related to differences in tensile residual stress in the region of the crack tip. 

The region of double shear occurring at high M was found to produce y factors significantly 

greater in the aluminium alloy for the SBL1.5 spectrum as compared with the SBL2 spectrum, 

Section 5.3.2.2. FeGR tests on Al8090 (Zitounis, 2003) found that acceleration effects increased 

with increasing Kmax. However, as Smax for the minor stress cycles in the present case was the same 

for both spectra there will be no difference in values of Kmax. It is therefore considered that the 

increase in acceleration at high M under SBL 1.5 loading is due to the higher stress ratio in this 

regime (i.e. 0.35 under SBL1.5 versus 0.15 under SBL2), which in turn would lead to the 

possibility of a higher Mejf under SBL 1.5, resulting in a greater proportion of the major cycle 

contributing towards crack propagation. The findings from crack closure measurements (Figure 

6.2.3) do suggest that in the case of the aluminium alloy, a greater proportion of the applied stress 

range is effective under SBL1.5 (U=1.0) than SBL2 (U=0.81), which may account for the increase 

in acceleration observed here. It is also worth reiterating that the cyclic plastic zone under SBL 1.5 

was estimated to be smaller than under SBL2 loading, resulting in a larger tensile zone ahead of the 

crack tip, see Section 6.2.2. 

Considering that y and ~ acceleration factors are derived from different equations and are used to 

examine different aspects of accelerated growth, i.e. acceleration in crack growth response (y) and 

change in number of cycles to reach a given endurance (fJ), the P acceleration factors given in Table 

5.3.13 for plain material were found to be in reasonable agreement with the values of y for the 
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SBL2 spectrum (Table 5.3.11) but a little below those for the SBL 1.5 spectrum (Table 5.3.12). 

Further determination of P acceleration factors corresponding to the low Ms used to determine the 

y values showed them to be much closer, with the exception of the plain steel specimens under 

SBL 1.5, which were slightly lower. 

The factors from both methods give value to the analysis by clearly indicating the presence of crack 

growth acceleration, with anything greater than unity signifying accelerated growth and anything 

less, retardation. Also, as Miner's rule uses a similar approach in determining fatigue damage 

between actual numbers of cycles for a particular stress range with those calculated, determination 

of acceleration factors can provide an indication into the measures needed to adjust Miner's rule 

and provide safer life estimates under spectrum loading. 

6.6.1.2 WELDED SPECIMENS 

The introduction of tensile residual stress by the addition of weld beads in Section 5.3.3, further 

increased the extent of acceleration, with maximum y values reaching 1.88 and 2.13 (1.86 and 1.92 

combined) for the SBL2 and SBLI.5 spectra (respectively) for S355 steel at low M (Tables 5.3.8 

and 5.3.10). This is a little below that observed during VA testing of BS 4360 grade 50 structural 

steel cycling down from a constant maximum stress (Zhang and Maddox, 2009), where the 

maximum y found was 2.60. The same was also evident for the 6082 aluminium alloy, with 

maximum values of2.12 (1.85 combined) for SBL2 and 1.47 (1.37 combined) for SBL1.5 being 

derived at low and high !1K respectively (Tables 5.3.8 and 5.3.10). 

The high value at low ~K in CCT-SBL2-AL-03R is in direct contrast to the other welded 

aluminium results under SBL2 and SBL 1.5 spectra which tended to produce greater acceleration at 

high M. The reason for this is not known, but is expected to be related to the distribution of 

residual stress in that particular specimen. 

For the remaining specimens with the highest y values at the higher !1K end (Table 5.3.12), the 

slight increase in growth rate can be seen in Figure 5.3.8, and was also present to some degree for 

CCT-SBL2-AL-04R in Figure 5.3.6. A possible reason for this is that the crack is propagating 

outside the HAZ softened zone but still within the influence of the tensile residual stress due to 
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welding, resulting in the crack tip being exposed to an increase in stress. However, the increase 

occurs at the same ilK values as for the plain material under SBLl.5 (Figure 5.3.3). Measurements 

on the fracture surface again agreed with observations of changes in flat tensile mode growth to the 

formation of shear lips at around a = -23mm. As discussed in Section 6.6.1.1, the fact this slight 

increase was not apparent in the plain SBL2 specimens, suggests that it is related to the crack tip 

tensile stress due to the underload and presence of welding residual stresses. 

With the magnitude of residual stress for the aluminium specimens found to be low (31 N/mm~) the 

observed effect in Figure 5.3.8 shows that there was very little difference in growth rate between 

plain and welded. However, this slight increase in welding tensile residual stress in addition to that 

produced locally at the crack tip by differences between the cyclic and monotonic zones (Section 

6.2.3), may be the reason for the same sudden increase in growth rate as found under SBL 1.5. 

For the steel specimens tested under either sequence the acceleration was greatest at low L\K 

(Tables 5.3.8 and 5.3.10) which, as discussed previously, is expected to be due to the increased 

sensitivity of crack growth rate to loading variables in this regime. 

In Figure 5.3.7, specimen CCT-SBLl.5-ST-04R appeared to show a much greater degree of 

acceleration over both the plain material and the other welded specimen (CCT-SBL1.5-ST-03R). 

This is also shown in Table 5.3.10 with y values of 2.05 versus 1.40 being measured at high L\K. It 

was first thought that perhaps CCT-SBLI.5-ST-04R had a shorter crack length than CCT-SBLI.5-

ST-03R which is why the same behaviour had not been observed, but in fact its crack length was 

longer by approximately 4mm. The exact reason for this is therefore not known, but it is assumed 

that either a variation in the magnitude of residual stresses between the specimens or a difference 

between the tensile stress zones in the residual stress distributions are plausible factors. 

The p acceleration factors at failure given in Table 5.3.13 are predominantly below the y 

acceleration factors (Tables 5.3.8 and 5.3.10). In the case of the steel specimens, when comparing 

the p values for the welded material with the plain, it can again be seen that the presence of the 

weld, and therefore the tensile residual stresses, further accelerated growth. For the aluminium 

aIloy specimens, there is little effect of welding on p acceleration factors. 
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Considering the fJ acceleration factors at low t-.K, for the steel specimens under the SBL2 spectra, 

greater acceleration was detected at low M although a ignificant amount of scatter between 

values for CCT-SBL2-ST-03R (1.45) and CCT- BL2-ST-05R (5.43) was ob erved. This was 

thought to be due to va riat ions in residual stress di tribution resulting in differences in propagation 

rates. Whilst this could be seen in Figure 5.3.9, there was very little difference in terms of growth 

rate between the two specimens in Figure 5.3.5 . As the fJ factor at low M is for a crack length of 

IO.2mm for steel, it is therefore plau ible that whilst effort had been made to ensure sufficie nt 

crack growth data from near the notch tip were removed, it may be that for CCT-SBL2-ST-03R 

slight ly greater crack growth, and hence number of cycles, was required which is highlighted by p. 

Indeed the very first few data points in Figure 5.3.5 do ugge t thi and 0 too does Figure 5.3.9, 

when expanding the Y -axi (Figure 6.6.4). 
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effects due to underloads with other effects that cause scatter in crack growth data while y considers 

them individually 

In view of the observed levels of y acceleration for welded joints, which are typically around 2.0, it 

should be brought to attention that, of great concern, particularly for designers, is that under this 

form of V A loading, fatigue life has been found to be significantly shorter than predicted by 

Miner's rule, typically by half i.e. 'l.nlN = 0.5 (Gurney, 2000; Maddox, 2005; Zhang and Maddox, 

2009). Therefore, the level of y acceleration found in these tests is comparable with the reduction in 

life found. 

6.6.2 THE ROLE OF RESIDUAL STRESS DURING PERIODIC TENSILE 

UNDERLOADING 

It was important to investigate whether or not the effect of underloading would be affected by the 

presence of tensile residual stress because such stresses exist in actual welded structures. 

Comparing with the endurances under CA loading (Table 5.3.1), it was found that under 

application of the SBL2 spectrum, whilst the reduction in fatigue life for the aluminium alloy 

specimens compared with the plain material was modest, the reduction for steel was significantly 

greater. In other words, in the presence of welding tensile residual stresses acceleration was higher 

than that due to the underload alone, Tables 5.3.3 and 5.3.7; however, as noted in Section 5.3.4 for 

acceleration factors, had comparisons been made with welded CA specimens, the difference in f3 

may have been less. The SBL 1.5 spectrum had similar effects, with the greatest reduction in life 

due to the presence of the welds being observed for the steel, with little or no effect for the 

aluminium alloy, Tables 5.3.5 and 5.3.9. 

As mentioned in Section 6.3.2 the level of tensile residual stress for the 6082 T651 aluminium alloy 

was low, with a maximum stress in the relevant longitudinal direction of 31N/mm2
• Typically it is 

expected that yield magnitude residual stresses are generated by welding (as in the case ofthe steel, 

see Section 6.3.2). However, in some aluminium alloys, including 6082, a zone of HAZ softening 

is created which has the effect of reducing residual stresses, typically by a factor of around two for 

6082 aluminium alloy (BSI, 1991). In view of the contrasting results obtained from the present 
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steel and aluminium specimens, it is clear that this must have had a significant effect on both 

endurance and y. 

As the effect of stress ratio or residual tensile stress at the crack tip (i.e. mean stress effect) is to 

result in higher acceleration factors at the more sensitive low ~K region, it would seem reasonable 

that on the basis of the results, the application of welding introduces tensile residual stresses (of 

various magnitudes) distributed across the plate width, which are magnified at the crack tip. The 

increase in crack opening, U (Figures 6.2.3 and 6.2.6), then serves to increase the effective stress 

intensity factor. 

According to Fleck and Gurney (Figure 6.6.1), Y is at a maximum when the magnitude of underload 

is twice that of the minor stress range, y reducing either side of this. No explanation for this was 

given by either of the researchers, but is presumably related to changes in crack closure from the 

CA level and the proportion of the reversed plastic zone to the monotonic zone. In the current 

investigation, the variations in local strain ahead of the crack tip (Figures 6.4.4 and 6.4.8) produce 

strain accumulation which increases with increasing underload ratio, with the result that y would 

not drop off at underloads above SBL2. 

In addition to the effects on crack growth acceleration of changes in the crack tip mean stress and 

the magnification brought on by the presence of high tensile residual stresses through welding, the 

role of crack closure, in particular the corresponding Men; can also be considered. The different 

forms of crack closure have already been discussed in Chapter 2. As the application of welding 

would serve to effectively open up the crack (over the region of tensile residual stress), the degree 

of crack closure under tensile underloading would be expected to be less, and hence Meffwould be 

equal to that of the applied stress. 

This was supported by fatigue crack growth tests on stainless steel (CA6NM) at R=O.l and 0.7, 

whereby the presence of tensile residual stresses at the crack tip was found to maintain a fully open 

crack resulting in an applied M being equal to the Meff and hence a faster FCGR (Trudel et al., 

2013). Similarly, the same effect was observed in tests of five different steels whereby the effective 

stress ratio was higher than that applied due to the tensile residual stress at the tip, leading to faster 
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growth rates due to the increased crack opening (Ohta et al., 1997). Measured levels of crack 

closure in Section 6.2 showed that in the case of the steel, the addition of welding residual stresses 

increased the effective proportion of the applied stress range, particularly at low M where y values 

were highest. However, for the aluminium alloy, no significant increase in the effective stress range 

was found, presumably due to the low level of tensile residual stress in these specimens 

The addition of tensile welding residual stresses would therefore result in a higher crack tip mean 

stress than in the plain material case resulting in a more damaging stress cycle. Ultimately, 

acceleration effects are highest in the cases where the crack is fully open and the upper limit stress 

(due to the applied stress plus welding residual stress) is high, suggesting a higher tensile mean 

stress (or strain) being the most significant reason for acceleration. The fact that the aluminium 

alloy gave same the acceleration factors for relatively lower residual stress, is consistent with the 

general finding that aluminium is more sensitive to applied mean stress than steel (see Chapter 4). 

6.6.3 ACCELERATED GRO\VTH OBSERVATIONS FROM STRIATION 

SPACINGS 

It only proved possible to obtain clear evidence from measurements of striation spacing in the 

aluminium alloy and therefore the following observations from work performed in Section 5.3.6 

are confined to that material. 

The evidence confirmed that fatigue crack growth acceleration occurred under both loading 

spectra. However, in contrast to the expected behaviour, as given in the literature for similar 

sequences cycling down from a constant maximum stress (McMillan and Pelloux, 1967; Fleck, 

1985), this was not confined to the period following the application of the underload but included 

the effect of the underload itself. 

The author is unaware of any published evidence to indicate that acceleration also occurs under the 

underload. Therefore, the measurement of striations has been very valuable for identitying the 

growth due to the minor stress and the underload itself. 
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Comparisons of y values deduced from striations with those obtained from the crack growth data 

(Figures 5.3.16 and 5.3.17) show reasonable agreement for the plain material under SBL2 loading 

but not for SBL 1.5 or in the case of the welded material. Here y increases rather than decreases 

with increase in crack length. Although as noted earlier, in view of potential measurement errors, 

the crack growth data should provide the more reliable y values than the striations, the similarity 

between y and f3 at the shorter crack length end of the range considered, seen for both steel and 

aluminium (Tables 5.3.3 to 5.3.6), throws doubt on the indication from the crack growth-based 

analysis that y and J3 are in closer agreement at the longer crack lengths. The same can also be said 

for the welded aluminium alloy specimens (Tables 5.3.7 to 5.3.10). 

From the findings presented, it can be surmised that accelerated growth rates as observed from 

striation spacings are due to load sequence effects such as the crack tip mean stress remaining 

more tensile than under CA loading alone due to the presence of the underload. The inclusion of 

tensile residual stresses through welding the 6082 aluminium alloy has a negligible effect on 

generating any further increase in growth rate. Again this is presumably due to the magnitude of 

tensile residual stress being far lower than the expected yield magnitude, due to the presence of the 

HAZ softened zone (Section 6.3.2). 

6.6.4 POSSIBLE MECHANISMS ASSOCIATED WITH CRACK GROWTH 

RATE ACCELERATION 

The phenomenon of crack closure is a mechanism that has been used extensively to account for 

changes in fatigue crack growth due to V A loading, especially crack growth retardation (Fleck et 

al., 1983; Shin and Fleck, 1987; Aguilar Espinosa et al., 2013). As the crack closure findings 

indicate for plain specimens (Figures 6.2.2 and 6.2.5) with crack lengths above 20mm, the effective 

part of the minor stress range (U) following an underload was very similar for both materials. For 

the SBL2 spectrum, U values of 0.76 for the steel and 0.81 for the aluminium alloy were recorded. 

For SBLI.5 U=I.O for both materials meaning that the entire stress range was effective. 

Consequently very similar differences between crack growth under spectrum loading compared 

with that from CA loading would be expected. 
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For welded aluminium alloy (Figure 6.2.6) U values of 1.0 for SBL1.5 were observed. Under 

SBL2, U=0.87 for all crack lengths investigated. Whereas for welded steel (Figure 6.2.3), at crack 

lengths below 20mm the range was fully effective under both SBL2 and SBL1.5 loading reducing 

to U=0.86 beyond 20mm for SBL2. Again as the minor stress range produced a fully open crack in 

each case, similar results would be expected for both spectrum and CA loading. 

A comparison between crack closure findings and measured acceleration values under the same 

spectra demonstrated that crack closure does not reflect the changes in acceleration found in simple 

load sequence testing with two magnitudes of stress range. Thus, the occurrence of acceleration and 

differences in its values cannot be explained on the basis of crack closure characteristics. 

Previous work performed on this form of load sequence (Fleck, 1985) used an applied underload at 

a stress ratio of R=0.50, well above that investigated here, which would suggest that crack closure 

effects would be more dominant and lower acceleration factors would be derived in the present 

case. However, as discussed in Section 6.6.1.1, the acceleration factors observed here were in fact 

in line with those reported by Fleck, again suggesting that a crack closure argument, or at least that 

based on the possibility of an increased !lK~ff' is not supported. 

A possible mechanism responsible for accelerated fatigue growth following an underload is strain 

hardening ahead of the crack tip caused by the major (underload) cycles (Fleck, 1985). Schijve 

investigated this for 2024-T3 aluminium alloy and found that with just one underload application, 

fatigue cracks grew up to twice as fast as in the as-received material (Schijve, 1976). It was thought 

that half of the acceleration effect was a result of the reduced ductility whilst the other half was 

related to crack closure effects. 

Fleck postulated that a strain hardening argument would suggest faster growth accompanying the 

minor cycles after an underload. This was supported in a study on 2024-T3 aluminium alloy which, 

following careful measurement of striation spacing, showed that faster growth accompanied the 

minor stress range cycles (McMillan and Pelloux, 1967). However, a strain hardening argument, 

whereby a percentage of the materials useable ductility is reduced, generally Occurs by 

modification of the material yield strength following application of a load well above that of the 
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applied maximum or indeed the yield stress. In the present case, and that of Fleck's investigation, a 

constant maximum stress was used with no excursion abo e that level. 

Another possible mechanism is modi fication of the crack tip mean stress. Under CA loading, mean 

stress relaxation occurs in the reversed plastic zone at the crack tip (Saxena and Hudak, 1979). 

Work performed using high-Iow overloads (Table 2.10.1) e tabli hed the effect of mean stress 

relaxation under both CA and VA loading (Arcari and Oowling, 2012). The findings of their work 

showed that under CA loading the mean stress relaxes to a compressive state, whereas under V A 

loading it stab ilizes at a tensile value. The same argument wa postulated by Fleck (1985) who 

estab li shed that observations in the subsequent crack ad ance of his minor cycles agreed with the 

trend described resulting in faster growth due to the maintained tensile mean stress (F igure 6.6.5), 

although the exact control condition at the crack tip was not known. 

Peflodlc u~lood, 

cycl., r.loa .. 

Neer lip slress­
"ra In 001" 

f 

Figure 6.6.5 Assumed effect o/tensile underloads on crack tip mean stress (Fleck, /985). 

The results of FE predictions for plain specimens in ection 6.4.2 sho\ that clo e to the crack tip, 

the presence of the underload never allow the minor C cycles to reduce to a compres ive state 

agreeing with that found in the literature (Arcari and 00\ ling, 2012). Even when the underload 

was found not to increase the mean stress of subsequent minor cycles, the re ulting effect on the 

CA cycles showed them to stabilize at a tensile stress. Thus, the result of the pre ent FEA indicate 

that the presence of the underload maintains a higher mean tre than under A loading alone, 
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which in turn results in faster crack growth, agreeing with observations of accelerated growth under 

spectrum loading in Section 5.3.2. 

The addition of residual stress through welding has also been discussed. Whilst it is not thought to 

be the primary mechanism for generating crack growth acceleration (due to acceleration already 

being present in plain material, Tables 5.3.11 and 5.3.12), it is thought to be a contributing factor as 

acceleration is due to local changes at the crack tip, the effect of which is enhanced if the applied 

stress including any residual stress through welding is highly tensile, see Section 6.6.2. 

In other words, the presence of a tensile residual stress enhances the accelerating effect, but it is the 

magnitude of the change in the local tensile mean stress at the crack tip which causes it. 

As noted in Section 6.6.1.1, some test results indicate that acceleration effects increase with 

increasing Kmax (Zitounis and Irving, 2007). However, this does not explain the present results (for 

plain material) since all the tests were performed with the same Smax and hence Km" .. at a given crack 

length was the same for both spectra. However, with the addition of welding residual stresses, an 

increased Kmax would be generated over that for the plain material, which did result in an increase 

in acceleration. 

Finally in Section 6.5 other possible mechanisms were discussed which may be considered to lead 

to accelerated crack growth. These metallurgical mechanisms (eg sharpening, branching, softening 

etc.), were not supported by the investigation performed here and are therefore not considered as 

suitable explanations leading to acceleration. 

6.7 

• 

• 

CONCLUSIONS 

Fatigue crack growth acceleration was observed in S355 structural steel and 6082 T651 

aluminium alloy subjected to periodic underloads. The introduction of tensile residual stress 

by the addition of weld beads on the plate surfaces further increased the extent of 

acceleration. 

The measurement of crack growth from specimen fracture surfaces also confirmed that 

fatigue acceleration occurred under both loading spectra. Furthermore, acceleration was not 
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confined to the period following the application of the underload but also during the 

underload itself. This was also observed in the finite element models. 

• The addition of residual stress through welding is a contributing factor leading to the 

enhancement of levels of acceleration. 

• A comparison between crack closure measurements and acceleration factors for the same 

spectrum demonstrated that a change in effective stress range due to a change in the crack 

closure level did not reflect the changes in acceleration found in simple load sequence testing 

with two magnitudes of stress range. Thus, the occurrence of acceleration and differences in 

its values cannot be explained on the basis of crack closure characteristics. 

• The area adjacent to the crack tip being constantly under tension, as determined from 

theoretical plastic zone size calculations, contributes towards the onset of accelerated 

growth. It is, however, not the mechanism responsible for generating acceleration. 

• In contrast to behaviour under CA loading, the finite element analysis demonstrated that, in 

the region close to the crack tip, the presence of the underload does not allow the local strain 

range due to the minor stress cycles to reduce to a compressive state. Even when the effect of 

the underload has diminished, it still slowly stabilizes at a tensile level. These findings are 

consistent with the occurrence of increased crack growth rate, or acceleration, following an 

underload 

• A change in mean stress at the crack tip due to the presence of tensile underloads is the 

primary cause of acceleration. 

• Other potential mechanisms examined, including crack tip sharpening, branching, and work 

hardening or softening, were not considered to provide explanations for the occurrence of 

crack growth acceleration. 

• For welded specimens, the acceleration (y) factors observed are typically in the order of2.0. 

In fatigue design, loading spectra cycling down from a constant maximum stress results in 

fatigue lives significantly shorter than predicted by Miners rule, typically by half i.e. 'LnlN = 

0.5. Therefore, the level of acceleration is comparable with the reduction in life found. 
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Chapter 7 

ENDURANCE TESTING OF WELDED JOINTS 

7. I INTRODUCTION 

This Chapter presents details of work perfonned, using methods described in Chapter 3, on 

establishing the V A fatigue endurance of CCT and fillet welded specimens. CA loading tests were 

also perfonned in order to provide a bench mark S-N curve against which the V A tests could be 

compared. 

The work under V A loading was conducted using spectra designed to promote fatigue crack growth 

acceleration. Each individual stress range in the spectrum was described in tenns of the proportion 

p of the maximum, giving Pi. where j = 1,2,3,. The value of Pi was varied to modify the ratio of 

minor to major stress range in the spectrum. 

The load sequence effects discussed in Chapters 5 and 6 are also evaluated with respect to that 

observed under random loading spectra. The effects of variations in crack closure characteristics as 

well as a comparison of the measured and calculated crack growth rates under spectrum loading are 

also presented in this Chapter. 

The results are expressed both in tenns of Miner's damage summation values and acceleration 

factors, Y, based on increased crack growth rate or reduction in endurance. Fatigue life calculations 

based on fracture mechanics are also evaluated. 
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7.2 FATIGUE TESTING 

7.2.1 OUTLINE OF TESTS 

CA and V A fatigue tests were perfonned using CCT specimens in both the structural steel and 

aluminium alloy, as described in Section 3.4.1.1. To investigate the effect of tensile residual stress 

on fatigue behaviour some specimens included back-to-back weld beads on the plate surfaces. 

Tests were also perfonned on specimens incorporating longitudinal fillet welded attachments as 

described in Section 3.4.1.2. Such weld details are widely used in industry for a range of structural 

applications. Therefore, understanding their perfonnance under V A loading and detennining the 

rate at which fatigue cracks grow is highly relevant to the fatigue design of welded joints. 

Full details of the material properties are given in Section 4.3. 

7.2.2 

7.2.2.1 

CONSTANT AMPLITUDE LOADING 

CENTRE CRACK TENSION SPECIMENS 

Reference CA tests were perfonned on all types of specimen at various stress ranges to establish 

their basic S-N curves. In each case the applied loading cycled down from a constant maximum 

tensile stress, Sman 280N/mm2 in the steel specimens and 90N/mm2 in the aluminium (approx. 0.60 

x yield strength and 0.28 x yield strength respectively), as in the case of the VA tests. Tests were 

continued until complete failure of the specimen occurred, although, as noted in Section 3.3.3, the 

number of cycles needed to produce 1 mm of crack growth was neglected when defining the 

endurance. 

7.2.2.2 LONGITUDINAL FILLET WELDED SPECIMENS 

Baseline CA tests were also perfonned on fillet welded specimens to establish their S-N curves. 

The fatigue loading was as described for the CCT specimens with the same Smax for the steel 

specimens, but the higher Smax of 120N/mm2 (Approx. 0.37 x yield strength) for the aluminium. 

The need for this increase in Smax stemmed from the V A test results on CCT specimens (Section 

7.5.2), where it was decided to increase the number of damaging cycles in the spectrum by 
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increasing Smax, and in turn S" without compromising the limiting direct stress in the softened weld 

HAZ, given as 150N/mm2 (BSI, 1991). 

Testing was again continued until complete failure of the specimen. 

7.2.3 VARIABLE AMPLITUDE LOADING 

7.2.3.1 VARIABLE AMPLITUDE LOADING SPECTRUM 

To investigate whether accelerated crack growth occurred, a loading spectrum that has been shown 

to produce shorter lives from welded steel than those expected on the basis of Miner's rule 

(Gurney, 2000; Zhang and Maddox, 2009) was adopted. This involved nine stress range levels, 

each expressed in terms of the relative stress range Pi as in Eq. [7.2.1]. 

Applied stress range 
[7.2.1 ] 

Maximum stress range in spectrum 

where i = 1 to 9. The spectrum comprised 1,042 cycles (2,084 turning points), which constituted 

one block. A computer-controlled testing machine applied the stress cycles in a random order by 

selecting Pi values using a random number generator. Once the first block had been applied. 

subsequent blocks were applied in the same randomly generated order as the first. 

7.2.3.2 CENTRE CRACK TENSION SPECIMENS 

V A tests were performed on all types of CCT specimen. Details of the stress ranges and the 

corresponding number of cycles in a block are shown in Table 7.2.1. Following initial testing of 

plain material under CA loading, the stress range for the aluminium alloy was increased to 

90N/mm2, Table 7.2.2. The stress time history for the revised spectrum is shown in Figure 7.2.1. 
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Table 7.2.1 Details of loading spectrum used for VA loading tests of CCT specimens, Spectrum 

name VA -AL-70-0.25; VA -ST-210-0.25 

6082 T651 S355 

Relative stress Stress range, Stres range, 
range,pi N/mm2 N/mm2 Cycles Exceedence 

1.00 70.0 210.0 

0.90 63.0 189.0 3 4 

0.80 56.0 168.0 6 to 

0.70 49.0 147.0 12 22 

0.60 42.0 126.0 23 45 

0.50 35.0 105.0 48 93 

OAO 28.0 84.0 109 202 

0.30 21.0 63.0 296 498 

0.25 17.5 52.5 544 1,042 

Table 7.2.2 Details of the revised loading spectrum lIsed for VA loading tests of CCT and fillet 

welded specimens, spectrums name VA -AL-90-0.25; VA-ST-210-0.25 

6082 T651 355 

Relative stress Stre s range, 
range,pi N/mm2 Cycle Exceedence 

1.00 90.0 210.0 

0.90 81.0 189.0 3 4 

0.80 72.0 168.0 6 10 

0.70 63.0 147.0 12 22 

0.60 54.0 126.0 23 45 

0.50 45.0 105.0 48 93 

OAO 36.0 84.0 109 202 

0.30 27.0 63.0 296 498 

0.25 22.5 52.5 544 1,042 
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Figure 7.2.1 Variable amplitude loading spectrum cycling down from a constant maximum stress. 

Spectrum name VA-AL-90-0.25; VA -ST-210-0.25. 

7.2.3.3 LONGITUDINAL FILLET WELDED SPECIMENS 

The same fonn of loading was applied to the fillet welded specimens as that uscd for the CCT 

specimens above. However, to investigate the influence of small stress cycles on fatigue li fe (see 

Section 7.5.2 .), three versions of the spectrum were used with minimum Pi values of 0.25 , 0.20 and 

0.40. Detail s of the stress ranges and number of cycles are shown in Tables 7.2.2 to 7.2.4, with the 

corresponding stress histories given in Figures 7.2.1 to 7.2.3. 

For each of the applied spectra, the values of S max and the maximum applied stress range for steel 

and aluminium specimens remained unchanged ( ee Section 7.2.2.2). 
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Table 7.2.3 Details oJ loading spectrum used Jor VA loading te ts oJ fillet welded specimens, 

spectrum name VA-AL-90-0.20; VA-ST-210-0.20 

6082 T651 S355 

Relative stress Stress range, Stress range, 
range,pi N/mm2 N/mm2 Cycles Exceedence 

1.00 90.0 210.0 

0.90 81.0 189.0 3 4 

0.80 72.0 168.0 6 10 

0.70 63.0 147.0 12 22 

0.60 54.0 126.0 23 45 

0.50 45.0 105.0 48 93 

0.40 36.0 84.0 109 202 

0.30 27.0 63.0 296 498 

0.25 22.5 52.5 544 1,042 

0.20 18.0 42.0 1,125 2,167 
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Figure 7.2.2 Variable amplitude loading spectrum cycling down from a con lant maximum stres , 

spectrum name VA-AL-90-0.20; VA -ST-210-0.20. 
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Table 7.2.4 Details of loading spectrllm lIsed for VA loading tests of fillet lVelded specimens, 

spec/rum name VA -AL-90-0.40; VA -ST-210-0.40 

6082 T651 S355 

Relative stress Stre s range, Stress range, 
range,pi N/mm2 N/mm2 Cycles Exceedence 

1.00 90.0 210.0 

0.90 81.0 189.0 3 4 

0.80 72.0 168.0 6 10 

0.70 63.0 147.0 12 22 

0.60 54.0 126.0 23 45 

0.50 45 .0 105.0 48 93 

0.40 36.0 84.0 109 202 
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Figure 7.2.3 Variable amplitude loading pectrull1 cycling dOlVn f rom a constant maximum stress, 

sp ectrum name VA -AL-90-0.40; VA-ST-210-0.40. 
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7.2.4 EQUIV ALENT CONSTANT AMPLITUDE STRESS RANGE 

In order to compare fatigue test results obtained under both CA and V A loading it is useful to 

define the CA stress that is equivalent in terms of fatigue damage to the applied V A stress 

spectrum. For an applied stress spectrum consisting of ni cycles at stress range Sj, and assuming that 

Miner's rule is correct, this is given by: 

[7.2.2] 

where m is the slope of the constant amplitude S-N curve for the detail concerned expressed in the 

form given in Eq. [2.2.2], and !)Si is the stress range that is applied ni times in a spectrum. Note that 

'i.ni is the spectrum block length Nb. 

It is useful to express this equation in terms of the maximum applied stress range in the spectrum, 

Srmax , and individual stress levels Si included as proportions Pi of the maximum (i.e. p=s/Srmar) as 

follows: 

S = Sr [(LP~ .n; )]Ym 
eq max L 

n; 
[7.2.3] 

The relevant BS 7608 design curve for the present fillet welded detail has a slope of m=3 and 

therefore this value is used here. This has also been assumed for the welded CCT specimens, which 

is considered to be reasonable since, in both cases, the fatigue life consists essentially of the growth 

ofa crack. 

It should be noted that the above definition of the equivalent stress is based on the assumption that 

the CA S-N curve with a slope of m=3 extends to the lowest stress ranges in the spectrum. Making 

such an assumption increases Seq slightly, if, in fact, some of them are below the constant amplitude 

fatigue limit (CAFL). 

Good agreement between constant and variable amplitude test results with the latter expressed in 

terms of the equ.ivalent stress range would indicate that Miner's rule was correct for the weld 
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detai ls and stress spectrum considered, whereas disagreement would indicate that Miner's rule was 

not accurate. 

7.2.5 METHODS OF FATIGUE CRACK DET ECTION AND MEASU REMENT 

Soap solution was used as an aid to visual inspection by travelling microscope in the region of 

expected fatigue cracking for both types of welded specimen. Apart from aiding inspection, soap 

solution stains the fatigue fracture surface and produces beachmarks corresponding to the crack 

front at that time, as seen in a CCT specimen in Figure 7.2.4. Weld toe fatigue cracks, such as those 

in the present fillet welded specimens, adopt a semi-elliptical shape, Figure 7.2.5. The application 

of this technique, which is used routinely by TWI, allowed the detection of sma ll surface breaking 

fatigue cracks of this type (- 2mm surface length). It is reported to have no influence on the fatigue 

lives of welded joints (Hinnant, 2007) . 

CCT-VAL-ST-01 

Figure 7.2.4 CCT specimenfractllre surface showing curved-front beachmarks. An 8mm thick steel 

specimen is shown. 

ST-FIL-VAL-04 

10 20 30 120 130 140 IS 

Figure 7.2.5 Fillet welded specimen fracture sll/face showing semi-elliptical beachmarks. An 8mm 

thick steel specimen is shown. 

- 7-9 -



Endurance Testing 0/ Welded Joints Chapter 7 

In some of the tests on fillet welded specimens, once a crack was detected visual inspection was 

supplemented by ACPD (see Section 3.5.2.2) crack depth measurements. 

A record was kept of detected crack length and depth, with the corresponding number of cycles 

endured. This, together with macro examinations of failed specimen fracture surfaces and striation 

analysis using a SEM, aIJowed the generation of fatigue crack propagation data. 

7.3 RESIDUAL STRESS MEASUREMENT 

Negligence of the need to consider applied mean stress in fatigue design codes is based on the 

assumption that high tensile residual stresses wiIJ always be present in welded structures. As 

demonstrated in Chapter 6, yield magnitude residual stresses were indeed present in the steel CCT 

specimens. However, this was not the case in the aluminium alloy specimens, due to HAZ 

softening. Allowing for HAZ softening the residual stress in the region of the notch was about 19% 

(31N/mm2) ofproof(-161N/mm2) or 15% (24N/mm2) close to the weld toe. 

To establish the magnitude of residual stress in the present fillet welded specimens, and to 

investigate any change of residual stresses during cyclic loading, residual stresses close to the plate 

surface were measured in both materials. The hole drilling method (see Chapter 3) was used, with 

the holes located 2mm from the weld toe at the end of the attachment and extending across the 

plate width, Figure 7.3.1. In the case of the steel fillet welded specimen. measurements were also 

made using neutron diffraction (see Chapter 3), Figure 7.3.2. This was applied in the same region 

but also at increments through the plate thickness to establish any variation. 

As in the case of the CCT specimens, yield magnitude residual stress were shown to be present in 

the steel using both techniques, with those in aluminium alloy measuring 25% (41N/mm2) of the 

softened material's 0.2% proof strength (-161 N/mm2
). 

However, under application of one loading block to the steel CCT specimens, the measured 

residual stress in the region of the notch decreased by 84% to 77N/mm~, but increased after 100 

blocks to 168N/mm2. The aluminium aIJoy relaxed by 39% to 19N/mm2 after one block, with a 

further decrease to 12N/mm2 after ten blocks. 
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The relaxation of fillet welded specimens was also measured where on application of one loading 

cycle representing 40% yield for the tee I and 75% of the softened 0.2% proof stress for the 

a lum inium, the measured tress reduced by 72% to 142 Imm
2 for the steel and 125% to -40N/mm2 

fo r the alumin ium alloy, therefore becoming slightly compressive in that case. 

Figure 7.3.1 Fillet welded specimen with centre hole measurements peljormed across the plate 

width close to the end oJthe welded attachment. 

Figure 7.3.2 Steel Fillet welded specimen etup Jar residual stress measurement using neutron 

diffraction at FRMII, Munich. 
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7.4 CRACK CLOSURE MEASUREMENTS 

Crack closure under the applied VA spectrum (VA-AL-90-0.25; VA-ST-210-0.25) was detennined 

by use of uniaxial strain gauges bonded to the surface of CCT specimens (1.5mm behind the crack 

tip) as detailed in Chapter 3 (Section 3.6) and used previously for CCT specimens under simple 

loading spectra (Chapter 6, Section 6.2). 

Figure 7.4.1 shows the response of the steel CCT specimen following application of the VA 

spectrum. As the crack propagates, the level at which the crack closes is un-changed at 91N/mm
2 

such that U = (280-91 )/(280-70) = 0.90. Between 20 and 30mm there is a transition, such that by 

the time the crack length is 30mm it is fully open. The findings therefore suggest that for a = 12 to 

20mm, the proportion of the applied stress range that is effective, U, when the crack is open is 0.90, 

rising to U = 1.0 at and beyond 30mm. 

For the aluminium (Figure 7.4.2), it will be seen that the closure stress remains constant at 

27N/mm2 for the three crack lengths considered, giving U = «90-27)/(90-20» = 0.90. In other 

words, as in the case of the steel, 90% of the applied stress range is effective in propagating the 

crack, but in aluminium this applies over the full range of crack lengths considered. 

Welded CCT specimens were not included in this closure study but it can be inferred from results 

under simple loading spectra (Chapter 6, Section 6.2) that the introduction of tensile residual 

stresses would serve to increase the effective stress range for steel specimens by holding the crack 

open, even with the reduced level after cyclic redistribution (see Section7.3), but would not change 

that for the aluminium alloy due to the low level of residual stress observed in these specimens (see 

Section 6.3). 
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7.5 EXPERIMENTAL RESULTS 

7.5.1 CONSTANT AND VARIABLE AMPLITUDE TESTING OF PLAIN CCT 

SPECIM ENS 

Table 7.5.1 summarises the results of the CA reference test. The endurance data are plotted in the 

form of an S-N diagram with double logarithmic axes in Figure 7.5. 1. A mean line through the data, 

estimate by least squares linear regres ion treating logN as the dependent variable, is shown for 

comparison . 

It will be noted that specimens CCT-CAL-AL-OI and CCT-CAL-AL-02 were tested at a maximum 

stress of 160 Imm2
. This was subsequently reduced becau e of the very low endurances achieved 

and the fact that it exceeds the limiting stress (BSI, 1991) of the softened heat affected zone (HAZ) 

for the planned welded specimens. 

Table 7.5.1 Summary of results obtained from plain CCT specimens tested under constant 

amplitude loading 

Maximum Stress Cycles to 
stress, range, Stress Imm crack Final crack Valid 

Specimen No. N/mm2 I mm2 ratio extension length, mm cycles 

CCT-CAL-ST-OI 280 120 0.57 35,148 26 100,580 

CCT-CAL-ST- 02 280 ISO 0.46 12,953 29 46,919 

CCT-CAL-ST- 04 280 60 0.79 215,398 26.5 936,460 

CCT-CAL-ST- 05 280 75 0.73 102,657 28 530,158 

CCT-CAL-AL-OI 160 90 0.44 15.5 8, 100 

CCT-CAL-AL-02 160 30 0.81 107,200 17.5 116,420 

CCT -CAL-AL-03 90 30 0.67 80,770 25 233,030 

CCT -CAL-AL-04 90 50 0.44 126,480 32.5 51,750 

CCT-CAL-AL-05 90 20 0.78 248,750 31 792,290 

The fatigue test results obtained under the V A loading pectrum presented in Table 7.2.2 are 

summarised in Table 7.5.2 and presented in Figure 7.5.1 in terms of their equivalent CA stress 

- 7-14 -



Endurance Testing of Welded Joints Chapter 7 

ranges. For both materials the lives of the triplicate V A tests show good agreement with one 

another indicating that scatter on endurance was low. The table also includes the Miner 's rule 

summation, Ln/N, values. 

1000 

M 

E 
E 
Z 
or 
~ 
C 
0: 
s-
ri> 
", 
~ 
s--'" -c 100 ... 
-; 
;> .:; 
r: 

"'" or 
~ 
c 
~ 
s-

'" '" ... s-
{;j 

10 
1,000 

t::. 6082 Aluminium alloy, constant max stress (CAL) 

A 6082 Aluminium alloy, VAL, Pi 1.0-0.25 

- Mea n curve 6082 Alum inium alloy CAL data 

<> 355 teel, constan t max stress (CAL) 

• 355 Steel, V A L, Pi 1.0-0.25 

- Mean curve S355 steel CAL data 

S355 structural 
steel 

6082 T651 
aluminium alloy 

10,000 100,000 
Endurance, cycles 

1,000,000 10,000,000 

F igure 7.5.1 Fatigue test results obtained from plain CCT specimens tested under constant 

maximum tensile stress conditions. 

T able 7.5.2 Summary oJ results obtained from plain CCT specimens tested under variable 

amplitude loading (spectrum names VA-AL-90-0.20 or VA-ST-210-0.25) 

Maximum Equivalent Cycles to L n/N at failure 
stress, stress range, I mm crack Valid based on mean 

Specimen No. N/mm2 N/mm2 exten ion cycles CA S-N curve 

CCT -V AL-AL-O I 120 24.5 165,040 855,412 1.98 

CCT -V AL-AL-02 120 24.5 189,841 754,112 1.74 

CCT -V AL-AL-03 120 24.5 170,491 759,782 1.76 

CCT -VAL-ST -0 I 280 73.6 49,912 409,962 0.79 

CCT -V AL-ST -02 280 73.6 50,197 394,663 0.76 

CCT -V AL-ST -03 280 73.6 88,998 370,471 0.71 

Comparing the V A results with the mean CA data in Figure 7.5.1, it can be seen that the lives for 

the steel specimens were slightly below the CA mean, whereas those for the aluminium specimens 
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exceeded the mean (discussed further In Section 7.7.1 ). According to Miner's rule, if an 

experimental result lies on or above the CA mean curve (i.e 'in!. > I) then, for this type of detail 

and loading spectrum, use of the rule to estimate the fati gue life would be accurate or safe. 

Conversely, if the result is below the CA mean curve (i.e 'inlN < \) , then the rule would be unsafe. 

7.5.2 THE EFFECT OF RESIDUAL STRESS ON CCT SPECIMENS TESTED 

UNDER CONSTANT AND VARIABLE AMPLITUDE LOADING 

Table 7.5.3 summarises the results of the welded CA reference tests. The endurance data are 

plotted in the form of an S-N diagram in Figure 7.5.2. A mean line through the data is shown for 

comparison. 

Table 7.5.3 Summary of resulls oblained from welded CCT specimens lesled under conslanl 

amplilude loading 

Specimen No. 

CCT-CAL-ST- 01 R 

CCT-CAL-ST- 02R 

CCT-CAL-ST- 03R 

CCT-CAL-ST- 04R 

CCT-CAL-ST- 05R 

CCT-CAL-ST- 06R 

CCT-CAL-AL-OIR 

CCT-CAL-AL-02R 

CCT-CAL-AL-03R 

CCT-CAL-AL-04R 

CCT-CAL-AL-05R 

Maximum Stress 

stress, 
N/mm2 

280 

280 

280 

280 

280 

280 

120 

120 

120 

120 

120 

range, Stres 
N/mm2 ratio 

120 0.57 

150 0.46 

90 0.68 

60 0.79 

75 0.73 

50 0.82 

30 0.67 

50 0.44 

20 0.78 

40 0.56 

25 0.72 

Cycle to 
1 mm crack Final crack 

exten ion length, mm 

21,429 32 

7931 33 

42,797 32 

166,595 30 

79981 31 

355,733 31 

232,270 33 

14,590 33 

69,380 32 

27 ,940 33 

91 ,000 29 

Valid 

cycles 

73,046 

42,866 

210,363 

801,711 

387,953 

1,224,827 

330,970 

55,940 

548,650 

85,030 

231,820 

Specimen CCT-CAL-AL-O I R was excluded from the regress ion analysis a it wa accidentally 

overloaded during installation, resulting in an increase in the number of cycles needed to propagate 

the crack from the notch tip. 

- 7- 16 -



E l1dural1ce Testil1g of Welded Joil1ts Chapter 7 

The effect of welding residual stresses on the fatigue lives of the specimens under CA loading can 

be ca lculated by comparing the S-N curves for the plain and welded specimens. The mean curves 

given in Figures 7.5.1 and 7.5 .2 are based on the 'free slope' of the data (/11=3.32 and 3.04 for the 

plain steel and aluminium respectively; m=3.17 and 2.42 for the welded steel and alumini um 

respective ly). For ease of comparison, the regression analysis was repeated with the slope (m) fixed 

at m=3. The difference in fatigue endurance between the fitted mean curves is then independent of 

stress range. However, for convenience it has been made at stress ranges corresponding to the 

equiva lent stress ranges for the VA -AL-90-0.25 and VA-ST-210-0.25 spectra The resu lt of the 

comparison are given in Table 7.5.4, where it will be seen that the introduction of welding residual 

stresses resulted in similar reductions in mean life, 19% for the steel and 21 % for the a lum inium 

aIloy. The result for the aluminium suggests that the residual stresses were larger than measured 

and actually, perhaps local to the crack tip, sufficiently high to justify the stress range concept for 

design. 
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Figure 7.5.2 Fatigue test re ults obtained from lVelded CCT specimens tested under constant 

maximum tensile stress conditions. 
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Table 7.5.4 Comparison between endurance for plain and welded CCT specimens under CA 

loading based on CA S-N curves with slope ofm =3 

Mean life, cycles 
Stress 
range, 

Material N/mm2 Plain Welded 

Steel 73.6 471 ,546 38 1,250 

Alum inium 
24.5 424,993 337,274 

alloy 

Reduction in 
endurance due 
to presence of 

weld, % 

19 

21 

The fatigue test results obtained under V A loading using the same spectrum as for the plain 

material (Section 7.5.1) are summarised in Table 7.5.5 and presented in Figure 7.5.2 in terms of the 

equi va lent CA stress range. 

Comparing with the mean CA data in Figure 7.5.2, it can again be seen that the lives of the steel 

specimens were slightly below the mean. However, for the plain material , the lives of the 

aluminium specimens were very similar to the CA mean curve. The Miner's summat ions given in 

Table 7.5.4 re-affirm this with summations less than I for the steel and around I for the aluminium. 

Table 7.S.S Summary of result obtained from welded CCT sp ecimens tested IInder variable 

amplitude loading (VA -AL-90-0.25; VA -ST-210-0.25) 

Maximum Eqv stress Cycles to I nlN at failure 
stress, range, Imm crack Valid based on mean 

Specimen No. N/mm2 N/mm2 extension cycles CA -N curve 

CCT-VAL-AL-OIR 120 24.5 45 ,831 296,139 1.03 

CCT-VAL-AL-02R 120 24.5 49,567 281,984 0.95 

CCT-VAL-AL-03R 120 24.5 42,612 300,582 1.07 

CCT-VAL-ST-OIR 280 73 .6 59,245 304,359 0.77 

CCT-VAL-ST-02R 280 73.6 79,173 265,802 0.67 

CCT-VAL-ST-03R 280 73 .6 89,507 26 1,649 0.66 
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Working as before, the effect of welding residual stresses on mean life under V A loading, again 

related to the equivalent CA stress range, is shown in Table 7.5.6. Under VA loading the 

introduction of welding residual stresses had a more significant effect on the aluminium alloy than 

the steel, with a reduction in mean life by 63% as compared with 29% for the steel. Both reductions 

were greater than those seen for CA loading. 

Table 7.5.6 Comparison between mean endurance Jor plain and welded CCT specimens Zlnder 

VAL at the equivalent CA slress range 

Mean In/N at Reduction in 
EqvCA Mean life, cycles failure endurance 

stress range, due to 

Material N/mm2 Plain Welded Plain Welded welding, % 

Steel 73.6 391,699 277,270 0.75 0.70 29 

Aluminium 
alloy 24.5 789,769 292,902 1.83 1.02 63 

7.5.3 A FATIGUE CRACK GROWTH RATE ANALYS IS OF CCT 

SPECIMENS 

The test results were analysed in terms of the rate of fatigue crack growth da/dN versus the app lied 

stress intensity factor range !::J( at the crack length concerned. The resulting da/dN v K were then 

plotted in logarithmic terms and curves of the form of the Paris law fitted as shown in Figures 7.5.3 

and 7.5.4, using: 

[7.5. 1 ] 

where A and m are material constants. 

The results were used to compare V A and CA crack growth rates at a given stress intensity factor 

range, ilK, or, M eq for the VA loading tests. I1K was calculated using the relevant (B I, 20 13) 

so lution: 
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1 

i1K = i1S .;-;;(sec 1(a J; 
2.W 

Chapter 7 

[7.5.2] 

M eq was therefore derived by substituting i1S with i1Seq, as established in Eq. 7.2.2. 

For the plain material (Figure 7.5 .3), it was found that for steel da/dN was initially higher under 

V A than CA loading, by a factor corresponding to an acceleration factor of y = 1.6 at low i1K 

(400Nmm- 312
), with the results eventually converging at around M = 1000Nmm-3/2

• [n contrast, 

da/dN in the aluminium alloy was lower under V A loading initially by a factor of 1.5 at low i1K 

(120Nmm-3/2
), that is y = 0.7, indicating crack growth retardation rather than acceleration. The 

difference between the V A loading and CA loading curves increased with increasing M to a factor 

of 4.9 at high i1K (450Nmm-3/2
), correspond ing to y = 0.2. 
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Figure 7.5.3 Comparison of fatigue crack growth rates for plain CCT specimens tested under 

conslanl and variable amplitude loading. 

The above findings are consistent with the Miner's rule summations in Table 7.5.2, in that the lives 

of the steel specimens were reduced in comparison with the CA lives, while those of the aluminium 

alloy specimens were increased. 
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Recalling the acceleration factors obtained in Chapter 5 for specimens subjected to simple periodic 

underloading sequences (Table 5.3.11), the greatest acceleration occurred at low M where 

sensitivity to mean stress effects is higher. For the steel, values of y were in the range of 1.28 to 

1.56 at 400Nmm-3!2, reducing to around 1.0 at 1000Nmm-
3/2 consistent with the results in Figure 

7.5.3. However, for the aluminium the result was very different. The trend in Figure 7.5.3 appears 

to be the same as that in Table 5.3.11, in that any accelerating effect would decrease as !J..K 

increased. In Table 5.3.11 only slight crack retardation appeared to be present (combined y value of 

0.89) but as shown in Figure 7.5.3, significant crack retardation was present. A possible reason for 

this is that the magnitudes of stresses in the load spectrum (Table 7.2.1) were too low to cause 

crack growth acceleration. This is discussed further in Section 7.7.1. 

The corresponding results for the welded specimens are presented in Figure 7.5.4. For steel, da/dN 

was initially higher under VA than CA loading, by a factor corresponding to y = 1.9 at low !J..K 

(400Nmm-J12), with the results eventually converging at around M = 800Nmm-
3/2

• For the 

aluminium, in contrast to the behaviour of the plain specimens, da/dN under V A loading was 

slightly higher than that under CA loading, by the constant factor of y = 1.2. 

Based on the results for the simpler periodic underloading sequence tests (Chapter 5), the observed 

greater acceleration at low M than at high in the steel was as expected. However, it was also 

expected that there would be a slight acceleration at high M; this was almost the case for the plain 

specimens tested under VA loading (Figure 7.5.3), but for the welded specimens, Figure 7.5.4 

indicates there was none. For the aluminium, the general trend expected from the periodic 

underIoading sequence tests was for acceleration to increase with increasing M. This, however, 

has not been observed under V A loading. 
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Figure 7.5.4 Comparison of Jatigue crack growth rates Jor welded CCT specimens tested under 

constant and variable amplitude loading. 

It should be bome-in-mind that the load sequence tests in Chapter 5 only involved two differen t 

magnitudes of underload. The VA spectra used here contain nine different stress ranges. Therefore, 

the load sequence effects generated may well be very different and more complex than investigated 

earlier, as discussed in the following section. 

7.5.4 TH E EFFECT OF LOAD SEQUENCES 0 FATIGUE CRACK 

GROWTH 

In Chapter 5 the effect of different magnitudes of underload and their subsequent effect on crack 

growth acceleration were discussed. It was generally found (Chapter 6) that the BL 1.5 spectrum 

gave rise to higher acceleration factors than SBL2 at high M due to the increase in f1KeJf However, 

the FE models in Chapter 6 suggest that if there wa no crack clo ure, the mean train at the crack 

tip should increase with increasing underload magnitude resulting in a higher crack growth rate. 

One block of the stress-time history for the VA-ST-210-0.25 pectrum is sho\ n in Figure 7.5.5 . The 

equivalent CA stress range is indicated along with x2 and x 1.5 magnitudes of this alue fo r the 

teel specimens. The same information for the aluminium allo (spectrum VA-AL-90-0.25) is 
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presented in Figure 7.5 .6. The approximate values rounded to the closest Pi increment, with 

corresponding cycle exceedance are included in Table 7.5.7. 

Based on the work performed in Chapter 5, combined acceleration factors for welded CCT 

specimens of 1.86 and 1.92 were determined for the steel (at low f'..K), and 1.92 and 1.19 for the 

aluminium (also at low M, under SBL2 and SBLI.S loading respectively. With 90% of the VA 

loading spectrum stress range being effective in propagating a crack (Section 7.4), both the SBL2 

and SBLI.S magnitudes in Figure 7.5.5 would be above the respective closure levels. Therefore, 

based on a SrejJ argument, it would be expected that the observed acceleration factors would also 

apply under the V A loading spectrum for both materials. 

Referring to Figure 7.5.4, the greatest difference between the CA and V A re ult in steel was at low 

f'../(, with a value of 1.90 agreeing well with that observed under periodic loading. However, 

acceleration decreased with increase in M until the CA and V A results merged at high f'..K. In 

contrast, under periodic loading acceleration wa still prevalent at high M. 
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Figure 7.5.5 Variable amplitude loading pectrllm cycling down from a constant mQximum stress 

showing the proportion of the spectrllm which relate to the periodic lInderload sequences for steel 

specimens. 

- 7-23 -



Endurance Testing of Welded Joints 

100 

90 

80 

70 

~ 
'" 60 
~ 

"0 

.~ 50 
Q. 
E 40 -< 

30 

20 

10 

0 
0 500 1000 1500 2000 

Turning po ints 

SBL2 

Cmck-clos";;:c 
level 

Chapter 7 

2500 

Figure 7.5.6 Variable amplitude loading spectrum cycling dOlVn from a constant maximum stress, 

sholVing the proportion of the spectrum IVhich relates to the periodic underload sequences for 

aluminium alloy specimens. 

Table 7.5.7 Details of the proportion of the VA loading spectrum used in relation to periodic 

underload sequence 

Periodic underload sequence, steel Periodic underload sequence, aluminium 

SBL1.5 SBL2 SBL1.5 SBL2 

Pi Exceedance Pi Exceedance Pi Exceedance Pi Exceedance 

1.00 1.00 1.00 1.00 

0.90 4 0.90 4 0.90 4 0.90 4 

0.80 10 0.80 10 0.80 10 0.80 10 

0.70 22 0.70 22 0.70 22 0.70 22 

0.60 45 0.60 45 0.60 45 0.60 45 

0.50 93 0.50 93 0.50 93 

0.40 202 

0.30 498 
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For the aluminium alloy, a constant acceleration factor of 1.20 was found (Figure 7.5.4), which is 

below the observed value of 1.48 in the SBL2 tests but in agreement with the 1.19 found in the 

SBL 1.5 tests. 

It is considered that the variability in acceleration under V A loading, as compared to the simple 

load sequence tests, is due to the varying magnitude of stresses following underload cycles. The 

simple loading sequences in Chapter 5 contained only two stress ranges, of contrasting magnitude. 

In contrast, the sequence of loading in the present multi-level V A spectra was randomly generated. 

Therefore, there was no guarantee that a large underload would always be followed by a stress 

range of sufficient difference to produce crack growth acceleration. 

7.5.5 VARIABLE AMPLITUDE TESTING OF FILLET \VELDED SPECIMENS 

Table 7.5.8 summarises the results of the CA reference tests. Due to the inherent defects found at 

weld toes, such as the typically 0.1 05mm x 0.030mm undercut found in the present steel specimens 

(see Chapter 4), no account was taken of the time to produce a fatigue crack, as previously required 

for the CCT specimens. 

The endurance data are again plotted in the form of an S-N diagram in Figure 7.5.7. For steel, 

regression analysis indicated the slope m of the mean S-N curve to be 2.86, compared with the 

value of3 adopted for the relevant Class F design curve (BSI, 2014). However, using Eq. [7.5.3] to 

determine the 95% confidence limits on the estimate of m (Schneider and Maddox, 2003), it is 

found to lie between 2.55 and 3.17, making the choice of m=3 valid. 
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Table 7.5.8 Summary of results obtained from fillet welded specimens tested under constant 

amplilude loading 

Maximum Stre s range, Stress Cycles to 

Specimen No. stre s, N/mm2 N/mm2 ratio failure 

FIL-CAL-ST- 01 280 120 0.57 516,249 

FIL-CAL-ST- 02 280 150 0.46 269426 

FIL-CAL-ST- 03 280 90 0.68 1,328,870 

FIL-CAL-ST- 04 280 75 0.73 2,000,4 18 

FIL-CAL-ST- 05 280 175 0.38 145, 168 

FIL-CAL-ST- 06 280 105 0.63 676569 

FIL-CAL-ST- 07 280 50 0.82 5,266, 198 

FIL-CAL-AL- 0 I 120 50 0.58 325958 

FIL-CAL-AL- 02 120 40 0.67 65 1,233 

FIL-CAL-AL- 03 120 30 0.75 1,340,919 

FIL-CAL-AL- 04 120 65 0.46 90,836 

FIL-CAL-AL- 05 120 20 0.83 8,414,64 1 

FIL-CAL-AL- 06 120 25 0.79 3,899,339 

± - + ~ 
m test.Po;, -mtest _la-

t (logS; -logS) 

[7.5 .3] 

;=1 

In this equation each test result is expressed as (log S" log ) " here n i the number of test results I, 

i= I, ... , n, logS is the mean of the n values of log S" I is the two-sided P% percentage point 

(where P= lOO-a) of Student's t distribution, within n-2 degree of freedom, and a 2 is the best 

estimate of the variance of the data about the regres ion line. The re ulting mean S- curve, for 

which C = 8.28E+ 11, is included in Figure 7.5.7. This curve wa u ed in the evaluation of the 

results under V A loading. 
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F igure 7.5.7 Conslant amplitude fatigue test reslllts obtained from fillet lVelded specimens tested 

under conslant maximum tensile stress conditions. 

Figure 7.5.7 shows that for both materials, the specimens behaved In a manner which was 

consistent with the relevant design classification. 

For the aluminium alloy data, the slope m of the mean S- curve was estimated to be 3.72, 

compared with the value of 3.2 adopted for the PO 6702 Category 22 design curve (BS I, 2009). 

Again using Eq. [7.5.2], the 95% confidence limits on the estimate of m indicated that it could lie 

between 3.18 and 4.26, making the choice of /11=3.2 valid. The resulting mean S- curve, for which 

c == 8.77E+ IO, is included in Figure 7.5.7. 

The fatigue test results obtained under V A loading using the spectra presented in Table 7.2.2 to 

7.2.4 are summarised in Table 7.5.9 and presented in comparison with the CA results in Figure 

7.5.8 in terms of their equivalent CA stress range. The maximum stres range wa 210 Imm2 for 

the steel and 90 Imm 2 for th aluminium alloy. Wher pos ible, duplicate test were perfonned in 

order to ensure the re ults were consistent. They gave good agreement, indicating that scatter on 

endurance was low. 
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Compared with the CA data in Figure 7.5.8, it can be seen that for both materia ls lives were below 

the CA mean. The Miner's summations given in Table 7.5.9, re-affinn this wi th all summations 

being less than I . 

It is noteworthy that the lowest stress ranges in the spectra (42 Imm2 and 18N/mm2 for the steel 

and aluminium respectively) are slightly below the estimated CAFL, assumed to correspond to 

N= 1 07 cycles for steel and aluminium alloy, on the extrapolated mean S-N curve (44 Imm2 
and 

19 Imm2 for the steel and aluminium respectively) . It may be expected that these might be les 

damaging than implied by the equivalent stress range and hence result in longer lives. However, the 

imp li ca tion from the present results is that this is not the case, and such stress ranges are, no less, 

damaging than implied by the CA S-N curve extrapolated beyond CAFL. 

Table 7.5.9 Summary of results obtained from fillet welded pecimens tested under variable 

amplitude loading 

LnIN at 

Equiva lent L n/N at failure ba ed 

Maximum stress failure ba ed on CIa 

Minimum, stress, ra nge, Cycles to on mean CA F/Cat. 22 

Specimen No. Pi value N/mm2 N/mm 2 failure S-N curve mean curve 

FIL-VAL-ST-O 1 0.25 280 73.6 1,232,362 0.59 0.28 

FIL-V AL-ST -02 0.25 280 73.6 I 280,883 0.62 0.30 

FI L-V AL-ST -03 0.40 280 109.1 437,080 0.69 0.33 

FIL-VAL-ST-04 0.40 280 109.1 423,191 0.66 0.32 

FIL-VAL-ST-05 0.20 280 61.3 2,130,304 0.59 0.28 

FI L-V AL-AL-O I 0.25 120 31.5 884,498 0.64 0.77 

F[L-VAL-AL-02 0.25 120 31.5 898,953 0.65 0.78 

F[L-VAL-AL-03 0.20 [20 26.3 [ ,242,579 0.53 0.63 

FIL-VAL-AL-04 0.20 120 26.3 [ ,082,632 0.46 0.55 

F[L-VAL-AL-05 0.40 120 46.8 181 528 0.43 0.52 

FIL-VAL-AL-06 0.40 120 46.8 214,401 0.51 0.6 1 
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Figure 7.5.8 Variable amplitude fatigue test results obtained from fillet welded specimens tested 

under constant maximum tensile stress conditions. 

7.5.6 FATIG UE CRACK G ROWTH IN FILLET WE LDED SPEC IM EN 

As in the case of the CCT specimens (Section 7.5.3), further analysis wa performed by comparing 

VA and CA crack growth rates in the fillet welded specimens, Figure 7.5.9. 6.K and 6.KEq l' va lue 

were again ca lculated using Eg. [7.5.2]. [n these specimens, fatigue cracking start at the weld toe 

and propagates through the plate thickness , after which it continues to grow across the plate width 

as a through-thickness crack. The results here mainly refer to this econd stage. For the steel, da/dN 

was higher under VA loading than CA loading, by J' = 1.8 at low t1K (450Nmn,-3/2), reduc ing to J' = 

\.5 at high /)J( ( 1000 mm-3/2). For the aluminium alloy, da/d wa higher under VA loading 

in itia lly by J' = 1.6 at low t1K (150 mm·
3/2

), but increased to J' = 2.2 at high 6.K (900 mm-3/2
) . 

Looking at as a whole, these acceleration factors are consistent with the calcu lated Miner's rule 

summations given in Table 7.5.9, suggesting that crack growth acceleration was the main reason 

for those low values for both materials. 
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Figu re 7.5.9 Comparison of fatigue crack grolVth rates for through-thicknes cracks propagating 

across the plate lVidth in longitudinal fillet lVelded specimens tested under constant and variable 

amplitude loading. 

Compared with the resu lts from the welded steel CCT specimens in Section 7.5.3, it can be seen 

that over the range of !1K considered, acceleration was greate t in the fillet welded specimens, 

particularly at low !1K. Unlike the welded CCT specimen results, which converged at -800 mm-
3/2 

(Figure 7.5.9), the fillet welded specimens still exhibited acceleration well above this value. In the 

case of the aluminium alloy specimens, the fillet welded specimens also exhibited greater 

acceleration than the welded CCT specimens, increa ing slightly as K increa ed. 

For the steel specimens, yield magnitude ten ile residual stresses were pre ent in both the fillet 

welded and welded CCT specimens (Chapter 6). Therefore, the difference between their crack 

growth behaviour is not due to a residual stress difference. The di tance at which residual stress 

had fallen to zero was also identical and therefore again not a reason for the ob erved crack growth 

differences. For the aluminium alloy, residual stresses \ ere slightly higher in the fillet w Ided 

specimens which may have contributed towards the increase in acceleration factor. However, the 
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width of the tensile residual stress field was somewhat narrower than in the CCT specimens, which 

would reduce their significance at longer crack lengths and higher AK. 

Crack closure levels were not determined for the fillet welded specimens, although based on the 

results for welded CCT (Section 7.4) and the comparison between CCT specimens under VA 

loading and periodic underloading (Section 7.5.4), the levels of closure observed were already in 

the region of 90% of the applied maximum stress range. Therefore, the differences in acceleration 

between fillet welded and CCT specimen types would not appear to be due to an increase in IlKe(l~ 

One possible explanation for the observed difference relates to the joint geometry. In particular, the 

stress intensity factor for a crack at the toe of the welded joint is increased by a magnification 

factor, termed Mk, as a result of the stress concentration effect of the welded attachment. For the 

present longitudinal welded attachment detail, Mk would be effective while the surface crack length 

of the toe crack is less than the total weld width (including the attachment itself). Beyond this, its 

effect would diminish with increasing crack length, reducing crack growth rate to that of a CCT 

specimen. To investigate this issue, a more detailed analysis which included crack growth from the 

weld toe through the plate thickness was performed, as described in Section 7.6. 

7.6 FRACTURE MECHANICS ANALYSIS OF FATIGUE CRACK GRO\VTH 

IN FILLET WELDED SPECIMENS 

7.6.1 OUTLINE 

In order to examine more closely the extent of fatigue crack growth acceleration and its effect on 

fatigue life, fatigue crack growth data obtained from the fillet welded specimens were analysed in 

fracture mechanics terms. This entailed calculation of the applied stress intensity factor range ilK, 

or MEqv in the case of the VA data, for the semi-elliptical crack that grows from the weld toe (see 

Figure 7.6.1) and the through-thickness crack that later grows across the plate width. The CA data, 

presented in Appendix D in terms of crack size versus number of cycles, were used to determine 

crack growth laws relating crack growth rate daldN and M, which were then used to calculate the 

fatigue crack growth behaviour of the same specimens under V A loading for comparison with the 

measured data. The CA crack growth laws were finally used to calculate the total fatigue 
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endurances of the fillet welded specimens, based on crack growth from an assumed weld toe flaw 

though the plate thickness and then across the specimen width, in the two materials fo r compari son 

with the actual endurance data. 

Figure 7.6. ] Steel specimen sholVing typicalfaligue crack palh al the end of the lVeld loe. 

7.6.2 CRACK GROWTH MEASURE ME T 

The crack growth measurements obtained using the techniques described in Section 7.2.5 are 

presented in Appendix D. For their graphical presentation in the fonll of crack size versu number 

of cycles (N), N referred to the number of load cycle applied after the first recorded crack size 

measurement. It will be seen that the crack growth data generally exhibit smooth curves. Based on 

fi nd ings in the literatu re (Zhang and Maddox, 2007) it was en i aged that the crack growth would 

not produce smooth curves due to the anticipated change from initial growth, main ly through the 

plate thickness, within the influence of the stress concentrating ef~ ct of the weld and attachment, 

to growth across the plate width outside that influence. HO\ e er, thi transition wa not evident as 

a discontinuity in the present data. 

7.6.3 STRESS INTENSITY FACTORS 

As noted previously, fatigue failure in the fillet-welded p cimens starts \' ith the growth ofa crack 

from the weld toe through the plate thickne . The crack front for uch cracks generally adopts a 

semi-elliptical shape (see Figure 2.5.1). M for uch a\' eld toe crack can be expre sed a : 

[7.6. 1 ] 
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where Mk is a function of the stress concentration effect of the weld detail, Y is the plate width 

correction and a is the crack depth. 

The width correction Y is a function of the crack depth to plate thickness (B) ratio alB, the crack 

front aspect ratio al2e, where 2e is the surface crack length, and the crack length to plate width 

ratio 2c1W, W being the specimen width. 

Based on examinations of the present fracture surfaces it was found that, in the early stages of 

crack growth, the crack aspect ratio was -0.20. This was slightly below other observations (0.25) in 

a similar type of specimen (Zhang and Maddox, 2009). The crack aspect ratio gradually increased 

with increasing crack size and was about 0.3 when the crack had just propagated through the plate 

thickness. 

The solution for Yfor semi-elliptical weld toe surface cracks in BS 7910 (BSI, 2013) was used in 

the present analysis. Once the through-thickness crack was outside the stress concentration 

influence of the weld, AI< was calculated using Equation 7.5.2. 

The stress intensity factor for a weld toe crack is increased by a magnification factor, Mk. due to the 

stress concentration effect of the joint geometry. It is defined as (Maddox, 1991): 

Mk = kin plate .... ith weld Ik in plate without weld [7.6.2] 

Mk quantifies the change in stress intensity factor as a result of the surface discontinuity at the weld 

toe. Mk decreases sharply with increasing distance from the weld toe in the thickness direction and 

usually reaches unity at crack depths of typically 30% of plate thickness. 

The Mk solution derived by Dahle (1993) on the basis of 3D finite element analysis of the same 

type of weld detail as the present welded specimen, using a model with a weld toe radius of 

O.16mm, was adopted. This gave: 

Mk=O.845(aIBr0
316 

Mk=O.853(aIBr0
311 

for alB :S 0.1 

for alB > 0.1 

[7.6.3] 
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These expressions provide Mk only at the deepest point of the crack. Crack growth in this direction 

also depends on the crack front aspect ratio a/2e, where 2e is the surface length of the semi-

elliptical crack. In the present calculations of crack growth, the Mk value at the tips of the crack at 

the plate surface, Mkc. was assumed to be identical to the Mk value in depth, Mw at a = O.1mm 

since this represents a good approximation (Smith and Hurworth, 1984). 

As described before, crack growth on the surface varied, depending on the crack tip locations 

relative to the weld. To reflect this observation, the Mkc values were varied, decreasing from an 

initial value corresponding to M/w at a = O.lmm (about 3.4 for steel, 3.1 for aluminium) to Mice = 1.0 

when the crack had just grown beyond the weld (about 25mm long for steel and 30mm for 

aluminium) in front of the attachment. At and beyond this crack length it was assumed that the 

effect of the weld on surface crack growth could be neglected. The derived Mk parameters are 

presented in Tables D I and D2 in Appendix D. 

7.6.4 CRACK GROWTH CALCULATION 

7.6.4.1 CRACK GROWTH UNDER CONSTANT AMPLITUDE LOADING FOR 

A FILLET WELDED SPECIMEN 

Crack growth was monitored in all CA specimens. As discussed in Chapter 2, the fatigue crack 

growth relationship between da/dN and M( can be integrated in the way indicated in Eq. [2.5.2] to 

calculate the fatigue life of a specified crack. This approach was used to calculate the progress of 

the first detected fatigue crack in each fillet welded specimen. The resulting calculated crack size 

versus number of cycles curves were then compared with the measured crack growth data. The 

calculations were perfonned using the material specific simplified single slope fatigue crack 

growth relationships for welded specimens given in Tables 4.4.2 and 4.4.4, independently of the 

mean stress: 

For steel specimens, 

J ' da/dN = 0, when M( < Mrh = 63N/mm - [7.6.4] 
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For aluminium alloy specimens, 

3l'l 
daldN = 0, when M < M 1h = 21N/mm- [7.6.5] 

daldN = 6.87x 10-12 M 3
, when M"? 21 N/mm 3

/
2 

The threshold stress intensity factor range, M/h, for steel was the lower bound value recommended 

by SS 7910 (2013), that is 63N/mm3
1

2. This was corrected for aluminium alloy based on the 

difference in Young's modulus, using Eq. [7.6.6]. 

[
E ) _ I1K aluminium 

I1Kth, aluminium - th,steel E 
steel 

[7.6.6] 

, , 
Estecl was taken as 207kN/mm- and Ealuminium was taken as 70kN/mm-. 

The growth rate used for steel was slightly lower than that corresponding to the simplified mean 

growth rate given in SS 7910 for R>O.5. 

The resulting calculated crack growth curves for the fillet welded CA specimens are compared with 

the measurement crack sizes in Figures 01 and 02 in Appendix O. In the case of steel, it will be 

seen that both the calculated surface length and crack depth results agree well with the 

experimental data. For the aluminium, the calculated surface length results are reasonable but not 

as close as those for the steel. However, it is the calculated crack depth results which are the most 

important, as these are more applicable to failure in this type of joint as defined as the attainment of 

through thickness cracking (BSI, 2014). Referring to these, it can be seen that the results agree well 

with the experimental data. 

7.6.4.2 CRACK GRO\VTH U~DER VARIABLE AMPLITUDE LOADING FOR A 

FILLET WELDED SPECIME~ 

Similar calculations were performed for the fillet welded specimens subjected to VA loading by 

successively applying Eq. [2.5.2] with the crack growth relationship in Eq. [7.6.4] or [7.6.5] for 

each of the separate stress ranges in the spectrum. In this case it was found that crack growth under 

spectrum loading could not be calculated satisfactorily using the crack growth rate relationship that 
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had been suitable for CA loading. This significantly under-estimated crack growth, see Figures 03 

and 04. It was generally found that the initial stages of crack growth (2e = <lOmm) showed 

reasonable agreement, but beyond this the actual crack growth rate was much faster than calculated 

on the basis of CA data, suggesting that crack growth acceleration had occurred. This implies that 

the effect of stress interaction leading to crack growth acceleration was negligible in the early 

stages of crack growth but increasingly effective as the crack grew, but then its effect was not 

evident in the calculated behaviour because it took no account of possible load interaction effects. 

Noting that daldN is directly proportional to the crack growth constant C, the ratio of the C value 

for CA to the average C value for the VA sequence is equivalent to the Miner's rule summation. 

Following a linear regression analysis of the crack growth rates for the CA and VA tests and using 

a fixed slope of m=3, this was 5.1 I xlO· '4/S.34x 10-14 = 0.61 for steel and 1.05xlO-121l.S2xlO-12 
= 

0.58 for aluminium alloy, values that agree well with the Miner's rule summations given in Table 

7.5.9. 

7.6.5 CALCULATION OF FATIGUE ENDURANCE 

The fracture mechanics model (including K solution and Mk factor) used in Section 7.6.3 was also 

used to calculate the total fatigue endurance of the fillet welded specimens. The crack growth laws 

used were again the material specific curves for welded specimens used in Eq. [7.6.4] and [7.6.5]. 

In Section 4.5, the typical surface flaw found at the weld toe of the present fillet-welded steel 

specimens was 0.030mm (30Jlm) deep. It is generally considered that the planar flaw depth needs 

to be ~0.15mm (BSI, 2013) for a valid linear elastic fracture mechanics assessment of welded 

joints. Therefore, assuming a flaw depth of 0.15mm (Gurney and Johnston, 1979), as also assumed 

by Zhang and Maddox (2009), a crack length 2e = O.75mm (al2e = 0.20), and that fatigue 

endurance was controlled by fatigue crack propagation only, the predicted fatigue endurance S-N 

curves are shown in Figure 7.6.2. 

It will be seen that they agreed very well with the CA experimental data. This supported the 

fracture mechanics model and also implied that a crack propagation process, not crack initiation, 

predominantly controlled the fatigue endurance of this type of specimen. 

- 7-36 -



E ndurance Testing of Welded Joints 

1000 A AI alloy, constant max stres (CAL) <> teel, constant max Sire (CAL) 

- Mean cur e AI alloy CAL data (m=3.2) - Mean curve Steel CAL data (m=3) 

• AI alloy, VAL. Pi 1.0-0.40 • AI alloy, VAL, Pi 1.0-0.25 

• AI alloy, VAL, Pi 1.0-0.20 A Steel, VAL, Pi 1.0-0.40 

A Steel, VAL, Pi 1.0-0.25 A Steel, VAL, Pi 1.0-0.20 

- - Calculated, CAL ( teel) - - - Calculated, CAL (aluminium) 

X Calculated, VAL 

6082 T651 
aluminium alloy 

S355 tructura l 

Chapter 7 

10 +---~~~~~~~~--~--~~~~~.---~--~~~~~ 

10,000 100,000 1,000,000 10,000,000 
Endurance, cycle 

F igure 7.6.2 Variable amplitude fatiglle test reslllts obtained ji-om fi llet welded specimen · tested 

under constant maximum tensile stress conditions, compared with the calculated response using 

frac/lIre mechanics. 

Figure 7.6.2 a lso presents the re ults of the calculated fatigue lives for the Y A tests. It can be een 

that without making any allo\ ance for stress interaction, the calculated lives are coincident with 

those expected under CA loading, that is, they over-estimated the actual lives in thi ca e. 

Therefore, as was found u ing Miner's rule, under this form of spectrum loading unsa fe life 

estimates would be derived by u e of this approach. 

7.7 DISCUSSION 

7.7.1 THE EFFECT OF VARIABLE AMPLITUDE LOADI NG ON CRAC K 

GROWTH RATE FOR CCT PECIMENS 

The Miner'S rule ummation value of le s than I for steel in both the plain and welded condition 

(Tables 7.5.2 and 7.5.5) are indicati e of stre s interactions generating accelerated fatigue growth 

and hence li ves less than those expected on the basis of the CA data. The presence of welding 

res idual stresses in the tee I specimens decrea ed the m an endurance, but had only a marg inal 

effect on further reducing the Miner's rule ulTImation value. Therefore, as in the case of the s imple 
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periodic underloading sequences (Chapter 5), the presence of tensile residual stresses was not the 

cause of crack acceleration, but rather it served to enhance the effect. For the aluminium alloy, the 

presence of tensile welding residual stresses, albeit quite low (Section 6.3.2), was enough to 

increase the growth rate and reduce the level of crack growth retardation found in plain specimens. 

This was also evident by the significant reduction in fatigue life for the welded specimens 

compared with the plain. It was therefore considered that the magnitudes of stresses in the loading 

spectra were too low (i.e. too few cycles sufficiently large enough to increase the mean stress at the 

crack tip), resulting in crack growth retardation and hence Miner's rule summations > l. 

In Chapter 5, the effect of periodic underloads was investigated and the acceleration factor (;1 was 

used to quantify the stress interaction effect. It was found that typical values in the order of 1.45 for 

plain steel and 1.29 for plain aluminium alloy (Table 5.3.4) compared well with those found in the 

literature for tests perfonned with the stress cycling down from a constant maximum stress (Fleck, 

1985, Zitounis and Irving, 2007). The introduction of welding residual stresses increased them 

further (Table 5.3.8), to 1.86 for steel and 1.85 or the aluminium. 

In this Chapter, under V A spectrum loading y at low M was generally found to either remain 

similar to that found in Chapter 5 for simple periodic underioading or decrease (as in the case of 

plain aluminium). However, at high M, ywas always lower than for simple periodic underloading 

for both materials and in both conditions (plain or welded). 

The results of crack closure measurements for both plain steel and aluminium specimens suggest 

that the proportion of applied stress range for which the crack is open corresponds to U = 0.90, 

compared with up to U = 0.76 for steel and U = 0.80 for aluminium alloy under simple periodic 

loading (Chapter 6). For welded specimens under simple periodic loading the effective stress range 

rose to U = 1.0, suggesting that the same would also hold true for the welded specimens considered 

in this Chapter. Therefore, it is unlikely that the differences in observed y levels were related to 

crack closure. 

The differences in y were attributed to the varying magnitude of stresses following underload 

cycles. In particular, under the randomly generated spectra used in this Chapter, there was no 
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guarantee that a large underload would always be followed by a stress range of sufficient difference 

to produce crack growth acceleration, unlike that in the simple loading spectra in Chapter 5. 

7.7.2 LOAD SEQUENCE EFFECTS FOR RANDOMLY GENERATED 

SPECTRA 

In Section 7.5.4, it was suggested that the observed decrease in acceleration in welded CCT 

specimens, particularly at high M, is due to the loading sequence and, in particular, magnitude of 

subsequent cycles in the randomly generated spectra. 

For the simple loading sequences with two magnitudes of stress range (see Chapter 5), the 

difference in magnitude between the major and minor cycles results in a tensile region ahead of the 

crack tip (reversed or cyclic plastic zone), embedded within the monotonic zone, Figure 2.4.5. As a 

result, regardless of crack length, the reversed plastic zone is around 1/5 that of the monotonic zone 

under SBL2 and 1/9 under SBLl.5; hence the area of the crack fracture surface that is constantly 

under tension is reasonably large (see Chapter 6). 

Whilst magnitudes similar to SBL2 or SBL 1.5 may well occur in the random spectra considered in 

this Chapter, their occurrence will be more infrequent than that in the simple loading spectra. In 

addition, many of the subsequent loading cycles will be smaller or larger than SBL 1.5 and SBL2, 

which may reduce the zone of tension within the monotonic plastic zone, thus reducing the tensile 

effect and crack growth rate. It is this effect on plastic zone sizes at the crack tip under the applied 

V A loading spectra that is thought to explain why the levels of acceleration for CCT specimens 

differ between the simple loading spectra and the more complex randomly generated spectra. 

7.7.3 THE EFFECT OF VARIABLE AMPLITUDE LOADING ON THE 

FATIGUE PERFORMANCE OF THE FILLET WELDED SPECIMENS 

The fatigue test results obtained under CA loading showed that the lower bound S-N curves for the 

test data met the desired classifications for this type of welded detail, Class F according to BS 7608 

for steel and Category 22 according to PO 6702 (BSI, 2009) for aluminium alloy. 
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Considering the VA test results in terms of the equivalent CA stress range (Figure 7.5.8), their lives 

were less than those obtained under CA loading for each of the different minimum Pi levels 

considered. This suggests that crack growth acceleration occurred under V A loading. The 

corresponding Miner's rule summation values were all less than I, being in the range 0.59 to 0.69 

for steel and 0.43 to 0.65 for the aluminium alloy, in both cases depending (but not consistently) on 

the minimum Pi level in the spectrum. On the basis of the equivalent CA stress range, the 'i.nlN 

values imply that all stress ranges, including those below the CAFL (in the case of pi=O.20), are 

more damaging than the CA S-N curve implies. 

In contrast to the behaviour of the fillet-welded aluminium alloy, there was no evidence of crack 

growth acceleration under the same spectra in the plain CCT specimens (see Figure 7.5.3). 

However, as seen in Figure 7.5.4, the presence of tensile residual stresses in welded CCT 

specimens served to generate accelerated growth. In this case, Smax and the stress ranges were 

increased compared with the spectra used to test the plain specimens, by 33 and 29% respectively. 

This suggests that a possible explanation for the lack of crack growth acceleration and Miner's rule 

summations> I in the plain CCT specimens is that the stresses in the loading spectra were too low. 

These results could partly explain why higher r values were obtained from the tests on the fillet­

welded specimens than those from the tests on CCT specimens. However, the presence of the 

longitudinal attachment, and hence the stress magnification factor (Mk ) at the weld toe, might also 

be an influencing factor during the initial stages of crack growth. At the surface of the specimen, 

Mk was estimated to be -three times greater at the weld toe region than beyond this zone of 

influence (see Section 7.6.3). As the notch length of the welded CCT specimens was equal to the 

width of the weld bead on the plate surface, there was no effect of Mk• Thus, for short crack lengths 

(low t1K) Mk has a big effect on crack growth rate in the fillet welded specimens. 

The effect of crack closure and hence differences in Meff were dismissed as possible explanations 

for the observed increase in y, since the cracks were open for 90% of their applied stress range in 

the welded CCT specimens. With regard to residual stress distributions, both the steel and 

aluminium CCT specimens showed a slight increase in the length of zones of residual tension over 

- 7-40-



Endllrance Testing of Welded Joints Chapter 7 

that found for the fillet welded specimens (Section 6.3). Whilst for aluminium alloy specimens the 

peak tensile residual stress was slightly higher for the fillet welded specimen, it is considered that 

the efTect of Mk is more significant in relation to the increase in y. 

Further to the observed rates of acceleration, Zhang and Maddox (2009) presented results of an 

investigation under V A loading with a constant maximum stress using the same weld detail as 

considered here. The ratio of the maximum crack growth rate under what they termed Sequence A, 

to the mean crack growth rate under CA was 2.6, greater than that measured in Chapter 5 for CCT 

specimens. Using the same methodology of the ratio of crack growth rates in this Chapter, values 

of 1.l0xl0·13 
/ 5.11xl0·1

-l = 2.2 for steel and 2.84xl0· 12 
/ 1.05xlO·12 

= 2.7 for aluminium alloy are 

derived. Focusing on the steel, this is reasonably similar to that observed by Zhang and Maddox, 

for what is essentially a similar material grade, the same spectrum and the same applied constant 

maximum stress. It is considered that the slightly reduced acceleration may be due to differences in 

weld heat input, resulting in a difference in residual stress distribution, or simply scatter in fatigue 

performance particularly as both data sets considered are quite small. However, the same trend is 

seen in both cases, that cycling down from a constant maximum tensile stress results in accelerated 

crack growth and lives less than those calculated by Miners rule. 

7.7.4 CALCULATED RESPONSE UNDER SPECTRUM LOADING 

Unlike the calculations of crack growth response under CA loading, those for V A spectrum loading 

were found to significantly underestimate the actual measured performance. This indicated that due 

to the presence of load sequence effects, accelerated crack growth occurred under the V A loading. 

The ratio of average C values for the mean S-N curves fitted to the CA and V A test results agreed 

well with Miner's summations presented based on the mean CA S-N curve performance. Similar 

measurements by Zhang and Maddox (2009) also presented good agreement with summations from 

their endurance data, therefore supporting the presence of crack growth acceleration under this 

form of spectrum loading. 

Published literature suggests that the effect of stress interaction is related to crack initiation (James 

and Patterson, 1997; Niemi, 1997). The disparity in predictions at crack lengths> I Omm and the 
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agreement between resulting damage summations (discussed above), implies that the effect of 

stress interaction was mainly related to earlier crack growth. 

Similar to the findings on crack growth. the calculated CA fatigue lives based on fracture 

mechanics agreed well with the experimental values, but lives under V A loading were over­

estimated and thus unsafe. This was because, as in the case of the application of Miner's linear 

cumulative damage rule, the fracture mechanics approach makes no allowance for load sequence 

effects, merely summing the CA crack growth for each applied stress cycle in the spectrum until 

through-thickness cracking is achieved. In other words, the analysis process is exactly equivalent to 

the application of Miner's rule. 

7.7.5 VALIDITY OF MINERS RULE 

The results of VA tests on fillet welded specimens presented in Table 7.5.9 showed that when 

expressed in terms of the equivalent constant amplitude stress range, calculated using Miner's rule, 

the test lives generated were not in agreement with the CA data. This disagreement indicates that 

Miner's rule was inaccurate for the applied loading spectrum. 

As discussed in Section 7.7.3, the derived Miner's summation was less than I for each of the 

different minimum Pi levels considered, resulting in lives less than those under CA loading and 

therefore suggesting accelerated crack growth. 

One factor that can limit the accuracy of Miner's rule is the method of accounting for very low 

stresses in the spectrum, specifically those below the constant amplitude fatigue limit (CAFL). The 

CAFL was not established for the present specimens but is likely to be close the stress range 

corresponding to an endurance of 107 cycles for the steel and aluminium alloy, which from the 

extrapolated mean SoN curves in Figure 7.5.7, is 19N/mm2 for the aluminium and 44N/mm2 for the 

steel. As shown in Tables 7.2.2 and 7.2.4, the applied stress spectra did not contain stress ranges 

below these levels, but at 18N/mm2 and 42N/mm2 the values for aluminium and steel respectively 

in Table 7.2.3 (VA-AL-90-0.20; VA-ST-2/0-0.20) were marginally lower. Under VA loading lower 

stresses can be damaging because the effective fatigue limit decreases as a fatigue crack develops 

under higher stresses in the spectrum. The most commonly used way to account for low stress 
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ranges, such as in BS 7608, is to assume that their damage contribution is represented by the S-N 

curve extrapolated beyond the fatigue limit at a slope of m = 5 instead of 3. Whilst the difference in 

stress range is negligible, the fatigue damage contribution for stresses below 44N/mm
2 and 

19N/mm2 for that spectrum is 52%. Therefore, the resulting equivalent CA stress range decreases 

slightly to 57.6N/mm2 for the steel and 24.7N/mm
2 

for the aluminium alloy, resulting in a further 

increase in discrepancy with Miners rule, with a damage summation of 0.30 reducing to 0.25 for 

the steel, and an average summation of 0.5 for the aluminium alloy reducing to 0.41. 

In Section 2.9.3, it was discussed that a limitation with Miners rule was that it does not allow for 

any stress interaction related to the prior stress history. In other words, it is assumed that the 

damage due to a given applied stress range is the same regardless of whether the loading is CA and 

V A. Thus, the average value of "i...nlN for each sequence would be around 1.0. However, the present 

results have shown that this is not the case. 

A second assumption is that the fatigue strength of welded joints is dependent only on stress range, 

such that the effect of mean stress can be ignored (Maddox, 1991). As observed in Chapter 6 this is 

based on the fact that (for the steel at least) high tensile residual stresses of yield magnitude are 

bound to be present in real welded structures. The applied stress is considered to be superimposed 

onto the residual stress resulting in an effective stress of the same range but cycling down from 

tensile yield, regardless of the applied mean stress. 

To allow for the possibility that the above may not apply to the present relatively small-scale test 

specimens, all the CA and V A loading cycled down from a high tensile stress, thus reproducing the 

situation assumed to apply in the presence of high tensile residual stress. Thus, any effect of mean 

stress on the relative fatigue performance obtained under CA and V A loading was ruled out. 

Based on the above, the test results suggest that stress interaction was the major factor contributing 

to the difference in Miner's summations. 
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7.8 CONCLUSIONS 

Based on fatigue endurance tests on CCT and fillet welded specimens made from S355 steel and 

6082 T651 aluminium alloy, subjected to VA loading, the following conclusions were drawn: 

• Residual stress measurements confirmed the presence of high tensile residual stresses in 

regions of crack initiation in the fillet welded steel specimens. For the aluminium alloy fillet 

welded specimens, peak residual stress values were similar to those found for welded CCT 

specimens in Chapter 6. 

• For both the fillet welded aluminium alloy and steel, residual stresses were reduced 

significantly under application of one loading cycle, which represented 75% of the softened 

0.2% proof stress and 40% yield stress respectively. For the CCT specimens, one loading 

block represented a reduction in residual stress by 84% for the steel and 39% for the 

aluminium alloy. In spite of this, the welded specimens all gave a shorter life than the plain, 

suggesting that tensile residual stresses affected the majority of the fatigue life. 

• Crack closure measurements on welded CCT specimens showed that a significant proportion 

of the maximum stress range under V A loading ( U = 0.9) was effective in crack propagation. 

• Tests under the VA loading spectrum (cycling down from a constant tensile maximum stress) 

generated Miner's rule summation values of l..nlN < I at failure. For steel values were as low 

as 0.59, whereas for aluminium they went down to 0.43. Thus, Miner's rule gave unsafe life 

estimates for the spectrum used. 

• For the equivalent CA stress range, the l..nlN values generated under VA loading imply that all 

stress ranges, including those below the CAFL, are more damaging than the CA S-N curve 

implies. 

• The above findings agreed very well with results from crack growth measurements. Crack 

growth under spectrum loading could not be calculated accurately by simply summing the CA 

response from each applied stress range due to the presence of accelerated crack growth in 

both materials. 

- 7-44-



Endurance Testing of Welded Joints Chapter 7 

• Comparison of the results of tests on fillet welded joints and welded CCT specimens under 

V A loading showed that the presence of the welded attachment, and hence high Mk values in 

the weld toe region, had a large effect on the rate of crack growth acceleration at low ilK. 

• Crack growth acceleration for fillet welded steel specimens subjected to V A loading resulted 

in crack growth rates 2.2 times faster than expected on the basis of crack growth under CA 

loading. For aluminium alloy, the rate was 2.7 times faster. 

• The present acceleration factor for steel, y= 2.2, is slightly below that reported in the literature 

(y= 2.6) for the same type of specimen and loading. Scatter in fatigue test results owing to the 

small data sets considered and differences in residual stress distribution between these 

investigations are considered to be plausible explanations for this difference. However, in both 

cases, cycling down from a constant maximum tensile stress resulted in accelerated crack 

growth and lives less than those calculated by Miners rule. 

• For the form of spectrum loading used in the present study, the major factor contributing to 

unsafe life estimates was accelerated fatigue crack growth due to stress interaction at cyclic 

stress changes. Such interaction effects in the V A spectra were different for fillet welded and 

CCT specimens. Such that, although it is easier to study crack growth in CCT specimens, they 

do not necessarily reflect what will happen in a welded joint. 
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Chapter 8 

DISCUSSION 

8.1 INTRODUCTION 

The main aim of this project was to address a practical design problem associated with the 

calculation of the fatigue life of a welded structure or component subjected to VA loading. In 

particular, under spectra cycling down from a constant maximum stress, the widely used simple 

linear damage accumulation method (Miner's rule) proves to be unsafe, in that the actual life 

derived by endurance testing is less than that estimated. Some form of stress interaction, which is 

not taken into account in Miner's rule, is considered to be responsible for causing fatigue crack 

growth acceleration and hence a shorter life than calculated. To this end, the main aim of the 

project was to identify the mechanism(s) involved through fatigue crack propagation studies of 

relevant loading spectra, with a view to deriving improved design guidance that will enable more 

accurate fatigue life estimations to be made for spectrum loading conditions that produce crack 

growth acceleration. 

The objectives of the project, as outlined in Chapter I, have been addressed on the basis of an 

extensive investigation involving two materials, S355 structural steel and 6082 aluminium alloy. 

Through use of simple two-level loading sequences and a more complex V A loading spectrum, the 

occurrence of accelerated growth has been observed and different mechanisms for its occurrence 

evaluated, resulting in the establishment of a primary mechanism. The cause of crack growth 

acceleration and its implications on fatigue design are discussed in this Chapter. 
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8.2 CAUSE OF CRACK GROWTH ACCELERATION 

Although stress interaction under V A loading has been well recognised, much of the work in this 

area has focused on factors that reduce crack growth rates (crack growth retardation), as opposed to 

what would be considered more concerning with respect to safety in fatigue design, crack growth 

acceleration. That said, the limited research undertaken to-date on acceleration effects (e.g. Fleck, 

1985; Zitounis, 2003; Zitounis and Irving, 2007; Zhang and Maddox, 2009), has advanced 

understanding of this complex subject and challenged existing recommendations on fatigue life 

calculation for V A loading spectra. 

The phenomenon of crack closure (Elber, 1971) has been used extensively to account for load 

sequence effects, the argument being that cyclic load changes can change the level at which a 

fatigue crack closes and hence the effective magnitude of the stress cycles following it. Although 

most research has focused on loading conditions that produce crack growth retardation (e.g. James, 

1997; Suresh, 1998), acceleration has also been considered (e.g. Zitounis and Irving, 2007). A 

study of the effect of simple underloading spectra on two aluminium alloys reported enhanced 

crack propagation rates, of 30% in one aluminium alloy but up to 1200% in another (Zitounis and 

Irving, 2007). The level of acceleration was dependent on the number of smaller cycles 

interspersed between tensile underloads, as also observed by Fleck (1985), with the exceptionally 

high level being attributable to metallurgical features peculiar to the particular alloy studied. Both 

plasticity- and microstructurally-induced crack closure due to the underload cycles were said to be 

responsible. Increasing the stress ratio of the underload cycle increased the level of acceleration. 

Fleck (1985) found the same for steel and aluminium alloy, although the underload stress ratio 

(R=0.5) in this case was such that the crack was always fully open, suggesting that crack closure 

did not account for the observed acceleration. 

Whilst it may be considered that the greater the effective proportion of the applied underload stress 

range, the greater the acceleration effect will be due to the crack being open, work here has found 

that when the crack is fully open, it does not necessarily mean acceleration will be higher. Indeed, 

underload stress ratios lower than applied by Fleck (R=O. \0 in the case of SBL2 loading) still 

resulted in similar levels of acceleration to those found in his study. Elber postulated that just as 
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some loading sequences can increase the crack closure stress and hence reduce the effective 

magnitude of stresses following, causing crack growth retardation, the opposite is also possible 

(Elber, 1971). However, of the findings presented here and, as stated above, in the majority of 

cases from the literature, the crack was found to be near or completely open. On the occasions 

where closure did occur, the closure stress was similar to the minimum stress of the minor cycles. 

Therefore closure would be the same under CA loading or the applied sequence loading, again 

throwing doubt on the crack closure argument. 

Another suggested explanation for crack growth acceleration in the case of welded joints is the 

presence of tensile welding residual stresses. Experimental results for welded 2024 aluminium 

alloy CCT specimens from (Liljedahl et al., 20 10) were in reasonable agreement with fracture 

mechanics crack growth calculations which included the original residual stress distribution. 

(Liljedahl et al., 20 10) hypothesized that accelerated growth would arise as a result of an increase 

in effective mean stress due to the introduction of tensile welding residual stresses. However, in 

light of the work performed here, whilst accelerated growth rates occurred for welded specimens 

(see Chapter 5), they were only slightly higher than those for plain material tested under the same 

loading spectra (Tables 5.3.11 and 5.3.12). The maximum acceleration factors were 1.45 and 1.40 

for plain steel and aluminium respectively and 1.92 and 1.85 for welded steel and aluminium 

respectively. Therefore, welding tensile residual stresses are not responsible for generating 

acceleration, but rather appear to enhance it. 

It has been suggested (Ranganathan, 1995 and 2002) that under periodic underload spectra, such as 

that considered here, the acceleration level increases with increase in the proportion of flat fracture 

(e.g. plane strain tensile growth), with growth rates reducing (Edwards et al., 1984) at the transition 

to shear mode (plane stress tensile growth). This increase in acceleration during the flat growth 

mode has been attributed to a reduction in crack closure stress (Zitounis and lrving, 2007). 

The work here has found that there are four modes of through-thickness crack growth in aluminium 

alloy specimens, Figure 5.3.19. In the flat growth mode, acceleration was already present and does 

not necessarily increase as ilK (crack length) increases (Tables 5.3.11 and 5.3.12). Furthermore, 
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close to the transition from flat to shear, the growth rate was found to increase before reducing 

slightly during the shear growth mode prior to re-accelerating during the double shear mode as the 

specimen nett cross-section reduces. However, this transition from plane strain to plane stress is not 

significant in the most important weld details where surface growth of semi-elliptical cracks is 

relevant, such that plane strain occurs for most of the fatigue life. In addition to observations on 

fracture mode, it has also been demonstrated (Figures 6.2.5 and 6.2.6) that depending on the 

magnitude of the underload cycle, the crack is either fully open throughout the flat growth mode or 

the closure stress does not alter. Furthermore, as discussed above, even when the crack is fully 

open it does not necessarily mean acceleration will be higher. 

Instead, the primary mechanism for crack growth acceleration identified in this investigation is a 

change in the mean stress at the crack tip, resulting from a tensile local stress cycling about a 

tensile mean stress. Through use of validated FE models (Chapter 6 and Appendix B), the effect of 

underloads on the local stresses and strain in the vicinity of the crack tip has demonstrated, that 

whilst CA loading tends to stabilize at a mean stress of zero or just below, the presence of tensile 

underloads increases the mean stress back into high tension, meaning that the minor cycles are 

more damaging than under CA loading. In some cases, this local effect at a distance of 0.0 I mm 

ahead of the crack tip also occurred up to O.05mm ahead of the crack tip. Such findings are 

supported by the work performed on aluminium alloys under VA loading (Arcari and Dowling, 

2012). Here hysteresis loops generated under CA and four different VA loading spectra, showed 

that whilst under CA loading the mean stress relaxed to a compressive value, under V A loading 

only one of the sequences investigated (step change of Smean, see Table 2. \0.1) resulted in the loops 

stabilizing at a tensile value. A full explanation for this effect was not given but was considered to 

be due to load sequence effects. 

Based on the current investigation, the introduction by welding of tensile residual stresses into the 

models (Chapter 6) was found to show a very distinct effect of increasing the mean stress near the 

crack tip following an underload, at a distance of 0.05mm for steel and 0.0 I mm for the aluminium, 

Figures B8 and B 16 respectively. Beyond these distances, both models tend to revert to the same 

effect as observed in the plain materials, with the mean stress at a higher tensile value than at 

- 8-4-



Discussion Chapter 8 

0.01 mm. This is presumably a reflection of the increase in tensile stress outside of the reversed 

cyclic plastic zone (see Section 6.2.3). For the steel, the fact that at 0.1 mm the plain model showed 

no effect of an increase in mean stress from the underload, but the welded model does still show a 

slight increase (Figure B9), would suggest that the presence of tensile residual stresses tends to 

delay the relaxation effect, keeping the tip in a region of tension for a longer period and over a 

greater distance than under both CA loading and the plain material condition. Of course this effect 

would be less at longer crack lengths than considered here (lOmm from the notch tip), where the 

residual stress would be lower. This would certainly account for the higher acceleration factors 

observed at low M in Tables 5.3.11 and 5.3.12. 

The fracture process itself was determined as strain ratchetting, seen by a progressive increase in 

strain at the crack tip (Appendix B), the level of which increased with increasing magnitudcs of 

underload, Figures 6.4.3 and 6.4.7. The present findings agreed well with similar observations at 

approximately the same distances ahead of the crack tip, as determined by the examination of 

displacement fields in the region of the crack tip (Tong et al., 2015). 

It should be noted that the development of the models in Chapter 6 and their validation in 

Appendix B is not trivial. To correctly capture the behaviour of the crack tip it is important to 

ensure that the correct hardening laws are implemented; in the research performed here, a 

combined isotropic and kinematic behaviour was modelled (see Section 3.8). For elastoplastic 

materials, such combined hardening models are important in capturing Bauschinger-type effects 

(Toribio and Kharin, 2013), such as the accumulation of dislocations. In addition to this, is the 

detection of the 'real' behaviour at the crack tip, as it is affected by the stress peak due to the 

singularity. If elastic-plastic behaviour is assumed then the concern can be minimised. This 

behaviour was considered during the validation of the models (Appendix B) by applying the Irwin 

elastic-plastic offset from the LEFM curve. Using the von Mises equivalent stress and assuming 

LEFM and plane strain conditions, the modelled response agreed well with the calculated, 

providing validation of the accuracy and robustness of the FE representation of the conditions at 

the crack tip under the applied loads. 
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Mesh sensitivity should also be considered. In the case of the work performed here (see Section 

3.8), the mesh was very refined (O.Olmm) and was approximately to the order of the typical grain 

size of the structural materials considered (Lehto et aI., 2014; Bouquerel et al., 2015). 

A number of investigators have performed FE modelling crack tip plasticity. The effect of stress 

distribution ahead of the crack tip on fatigue crack growth rate using combined FE calculations and 

X-ray diffraction measurements was performed by Busch and Lebrun (1988). The stress profile 

ahead of the crack tip was estimated from 2D plane strain and plane stress FEA, assuming isotropic 

plastic behaviour. Whilst their work considered crack retardation, it did include the effect of 

residual stresses under V A loading. Other areas of focus have considered the effect of plasticity on 

fatigue crack propagation and plasticity induced crack closure (Singh and Khan, 2015), de-bonding 

of elements ahead of a crack under CA loading to determine plastic zones ahead of the crack tip 

and their effect on closure (Matsunaga et aI., 2013), and the effect on stress intensity factor due to 

residual stress distribution on fatigue crack propagation (Iiljedahl et al., 2010), to name but a few. 

A finding in the research performed is that the observed levels of acceleration for the materials 

considered were very similar. In addition to this, for both materials, the primary mechanism 

responsible for accelerated growth was the same. 

The use of the CCT specimen for the study of load interaction effects during periodic load 

sequences has been very valuable in establishing the primary mechanism for fatigue crack growth 

acceleration. Other fracture mechanics specimens involving through-thickness cracks such as the 

CT specimen would probably be just as effective. However, a direct benefit from the use of the 

CCT specimen has been the possibility to apply weld beads to the plate surfaces for the 

introduction of tensile residual stresses. The specimen geometry has also favoured the examination 

of fracture surfaces under SEM for the analysis of accelerated crack growth by means of the direct 

measurement of striation spacing, for both plain and welded specimens, against accurate crack 

growth data. This in itself has been very important in establishing that during the periodic 

underload sequences considered here, accelerated crack growth was not confined just to the minor 

cycles following application of the underload, as is generally considered (McMilIan and Pelloux, 
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1967; Fleck, 1985), but during the underload itself. However, although use of SEM was very 

beneficial, there is room for improvement in the reduction of the associated errors resulting from its 

use for identifying and measuring striations. 

It is noted, however, that under V A loading such as the form of spectrum loading used in the 

present study, the major factor contributing to unsafe life estimates was accelerated fatigue crack 

growth due to stress interaction at cyclic stress changes. Such interaction effects in the V A spectra 

were reasonably similar for fillet welded and CCT specimens. However, whilst it is easier to study 

crack growth in CCT specimens, they may not necessarily reflect what will happen in a welded 

joint, due to the presence of the attachment and hence the stress magnification factor, MA, at the 

weld toe during the early stages of fatigue crack growth. The variation in fracture mode from plane 

strain to plane stress in CCT specimens is also a practical problem. As discussed, crack growth in 

welded joints occurs in the plane strain fracture mode for most of the fatigue life, whereas, the use 

of fracture mechanics specimens also include this transition to plane stress growth which is not 

relevant for joints failing from a weld toe. 

8.3 IMPLICATIONS OF THE CURRENT \VORK TO FATIGUE DESIGN 

The work performed under simple loading spectra cycling down from a constant maximum tensile 

stress (Chapters 5 and 6) found acceleration factors for welded specimens in the order of 1.9 - 2.0. 

Fatigue endurance testing of welded joints under similar forms of loading considered here (cycling­

down from a constant maximum stress (Webber and Gurney, 1992; Gurney, 2000; Zhang and 

Maddox, 2009)) have resulted in fatigue lives significantly shorter than predicted by Miners rule, 

typically by half i.e. InlN = 0.5. Therefore, the level of acceleration from crack propagation studies 

is comparable with the reduction in life found through endurance testing. These findings confirm 

that the fatigue endurance of welded joints is dominated by crack propagation. 

The present work therefore suggests that Miner's rule is un-conservative under spectrum loading 

where cycling-down from a constant maximum stress is predominant. Indeed, considering the 

findings of work performed in Chapter 7, on fillet welded specimens of a geometry type well used 

within industry, a comparison of FCGRs also found acceleration factors of a similar order. Zhang 

- 8-7 -



Discussion Chapter 8 

and Maddox (2009) reported acceleration factors in a structural steel of up to 2.6 for the same 

spectrum type and similar specimen geometry. A re-analysis of the data here and calculating 

acceleration in the same manner as performed in that study, found acceleration here to be up to 2.2 

for the steel and 2.7 for aluminium alloy. The subsequent effect on the Miner's summation was 

'2.nlN at failure <I, with values of 0.59 for the steel and 0.43 for the aluminium alloy, based on an 

equivalent stress range comparison with the mean CA performance. 

Although the results obtained from both materials considered agree that Miner's rule was un­

conservative, the differences in Miner's summation values are reflective of the faster crack growth 

rate for welded aluminium (Figure 4.4.12) as compared with welded steel (Figure 4.4.6), due to the 

lower Young's modulus of aluminium alloy. As the fatigue lives of welded joints are dominated by 

propagation, the faster rates associated with the aluminium alloy should be born-in-mind when 

considering fatigue design under the forms of loading spectra considered here. 

The use of VA loading spectra that cycled down from constant high tensile stress levels in this 

investigation was primarily chosen to simulate the severe conditions that are thought to exist in 

welded joints containing high tensile residual stresses. It does also represent the actual service 

loading for some engineering structures, where periodic underIoading can also arise, as reported by 

Fleck (1985): 

• Gas storage vessels (e.g. accumulators) can be subjected to a daily cycle which consists of 

loading to a constant maximum pressure and discharging to various pressures depending on 

the demand. 

• Gas turbine blades experIence CA high frequency stress cycles due to vibrations; 

superimposed on these small cycles is a much larger run-downlstart-up load cycle. 

• Railway lines suffer random loading at constant maximum stress, each time a train passes. 

• Aircraft wings experience gust loading at high mean stress during flight, and a large underload 

each time the aeroplane lands and takes off again. 

Another example, that was behind an investigation on the effect of underloads on different metallic 

alloys (Zitounis, 2003), is helicopter loading. In this case many components experience loading at 
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high R ratios with excursions (underloads) below this, typically to R values of between 0.4 and 0.7, 

but also occasionally to zero load. 

In much the same manner as accumulators discharge to various pressures depending on demand, 

the same can also be said of gas pipelines which are at a constant high pressure (for storage) which 

drops depending on demand. 

Furthermore, some loading spectra that do not involve cycling down from a constant high tensile 

stress may also exhibit underloading behaviour. One such example is the wide band spectrum used 

by Gurney (2000), as shown in Figure 2.9.3. 

On the basis of the implications of this investigation to fatigue design, and the identification ofreal 

engineering components or structures which experience these forms of underloading spectra, 

consideration needs to be given to fatigue design guidance. 

8.4 DESIGN GUIDANCE 

Current guidance on fatigue design under V A loading (BS 7608, 2014; BS EN 1999-1-3, 2007; 

Hobaccher, 2008) suggests that under certain loading conditions, Miner's rule should be applied 

assuming summation values of InlN < 1. BS 7608 draws attention to the fact that under some 

stress spectra, e.g. fully-tensile stress cycling about a high mean stress or when there is little 

variation in the maximum applied tensile stress, fatigue testing has shown that failure can occur 

when InlN < 1 and recommends that if there is any uncertainty about the service stress spectrum 

then InlN should be limited to 0.5. 

A reduction in the value of InlN is also recommended by the IIW (Hobaccher, 2008). Here it is 

stated that the value should be ::;; 0.5. The LBF Fraunhofer Institute (Sonsino et al., 2009) also 

suggests that under constant mean stress conditions it should be assumed that InIN::;; 0.5, whilst for 

varying mean stress such as wide band loading (Figure 2.9.3) e.g. underloading behaviour, the 

value should be reduced further to InIN::;; 0.2. 

Under constant maximum stress spectra, Maddox (2005) reported un-conservative fatigue life 

estimates based on Miner's rule during an investigation of girth welds. In this study, the CA S-N 
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curve was first established under the same constant maximum tensile stress used in the V A tests. 

The minimum In/N value obtained at failure was about 0.6 for steel and 0.5 for aluminium. The 

investigation by Zhang and Maddox (2009), also using constant maximum stress spectra, led to the 

conclusion that Miner's rule should be applied assuming "i,nlN = <0.4. This lower recommendation 

than that currently given in BS 7608 is primarily due to results on specimens incorporating 

longitudinal attachments to the plate edges (Class G detail). Based on their findings for longitudinal 

attachments to the plate surfaces (Class F detail), only one result from their test programme gave 

In/N < 0.4, with the majority of data indicating that In/N S 0.5 would be representative. 

For the work performed here, the resulting Miner's rule summations would suggest that the current 

guidance for steel specimens given in BS 7608, a damage sum S 0.5, would be suitable, with a 

minimum damage sum of 0.59 being observed from tests incorporating longitudinal attachments 

(Chapter 7). This would therefore give support to the current recommendations in BS 7608. 

Considering the work by Zhang and Maddox, as the material grade and applied spectrum was 

similar to that used, and as both investigations are based on fairly small populations of results, it 

may be prudent at this stage to give recommendations for a damage sum of S 0.5 for Class F 

details, but consider a lower value for Class G details such as S 0.4. 

For aluminium alloy, BS EN 1999-1-3 suggests that fatigue assessments under VA loading should 

be based on partial safety factors or by defining a limit value (termed Dum, where D = In/N). In 

such a case attention should be drawn to guidance in the National Annex, in this case, PD 6702-

I :2009. Here Dum has retained a value of I, but in critical cases where there are high numbers of 

low stress cycles, the uncertainty in Dum is covered by ignoring the normal cut-off limit at 5x 1 06 

cycles (16.5N/mm2 for Cat. 22) in the S-N curve and continuing it beyond 108 cycles. 

In addition to the findings by Maddox (2005) for girth welded aluminium specimens, Webber and 

Gurney (1992) investigated the effect on 10mm thick 7019 aluminium alloy under V A loading 

cycling down from a constant maximum stress, reporting Miner's summation values of In/N = 

0.47. Findings of low Miner's rule summations (In/N <1) are not only confined to such VA 

loading spectra, Fatigue testing of 5454 and 5083 aluminium alloy, 5mm thickness specimens 
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containing butt welded joints, subjected to V A loading spectra with high mean stress fluctuations 

(Sonsino et a/., 2013), also generated low Miner's rule damage summations (0.76 and 0.41 

respectively). 

Referring to the present results in Tables 7.2.2 to 7.2.4, based on the continuation of the slope 

beyond the cut-off limit, the lowest stress in each case was 36%, 9% and 118% respectively above 

the Category 22 CAFL of 16.5N/mm2
• Thus, on the basis of the above design recommendations, 

the lives obtained under the present spectra should have corresponded to Dum ~ I, when in fact it 

was 0.43. In other words, DUm values below I are not simply due to stresses below the CAFL being 

more damaging than implied by the CA S-N curve. Therefore, it is advised that, if the service 

loading spectrum is similar to that applied in this research project, or one which predominantly 

involves cycling down from a fixed level with a short spectrum length, consideration should be 

given to a reduction to the Dum value of I, with the suggestion that InlN ~ 0.5, based on the value 

of 0.43 found in this study. A higher value could be adopted if proved through specific testing or 

other relevant literature. The findings by Webber and Gurney (1992), Maddox (2005) and Sonsino 

et al. (2013) would also give support to this lower recommendation based on the observed Miner's 

rule damage summations of ~ 0.5. Clearly this recommendation needs further investigation as it is 

based on a limited dataset. 

In short, for steel and aluminium alloy, due consideration of the type of V A loading spectrum and 

weld detail involved is required when Miner's rule is used in fatigue design. Design guidance for 

components under such loading conditions is urgently required from those code-writing 

organisations by incorporating the findings of the present investigation. 

It is acknowledged that Miner's rule offers a simple approach to estimating fatigue life under VA 

loading. However, the work here has demonstrated that there is a need to improve these estimates 

in order to provide safer designs for components that experience the form of spectrum loading 

investigated here. Whilst it may be possible to apply a factor to Miner's rule to enable it to provide 

better life estimates for real structures, the lack of accurate loading spectra at the design stage 

would make it unrealistic to assume that one rule can be applied to all cases. It may be that several 
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factors are required for a range of weld details to provide more accurate assessments of fatigue 

damage. 

To this end, although Miner's rule may continue to be suitable as the default simplistic approach, a 

range of correction factors to be applied to particular stress ranges (such as where the load 

sequence effects related to underloads considered here occur), during the cycle counting process, or 

as a constant to the Miner's rule summation, is a long term need. 
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Chapter 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 RESEARCH AIM 

The aim of this research project was to investigate fatigue crack growth acceleration, identifying 

the mechanism involved through fatigue crack propagation studies of simple loading spectra with 

different magnitudes of stress range, with a view to deriving improved design guidance that will 

enable more accurate fatigue life estimations to be made for spectrum loading conditions that 

produce crack growth acceleration. 

9.2 CONCLUSIONS DRAWN 

The principal conclusions drawn from this work are as follows: 

1. Specific FCGR data for S355J2+N structural steel and 6082 T651 aluminium alloy were 

derived for both plain and welded CCT specimens, at stress ratios of R=O.1 and 0.5. The data 

generated showed good agreement with the relevant curves given in BS 7910, with mUltiple 

stage crack growth observed in the aluminium alloy. 

2. Tests performed under simple loading spectra with two magnitudes of stress range termed 

SBL2 and SBL 1.5, resulted in fatigue crack growth acceleration being observed for both the 

steel and aluminium alloy. 

3. Under SBL2 acceleration factors (y) of up to 1.56 for steel and l.35 for the aluminium were 

obtained. Reducing the magnitude of underload in SBL 1.5 resulted in the same maximum y 
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value for steel as under SBL2, but an increase in y for aluminium to 1.55, comparable with the 

steel. 

4. The addition of tensile residual stresses through the application of back-to-back weld beads on 

the plate surfaces further increased the extent of acceleration. Here y increased to 1.88 for steel 

and 2.12 for the aluminium under SBL2. For the steel y increased under SBL 1.5 to 2.13 but for 

the aluminium it was reduced to 1.47. 

5. As accelerated growth rates occurred for both plain and welded material under the same 

loading spectra, the addition of welding residual stresses is not responsible for generating 

acceleration but rather appears to enhance it. 

6. An analysis of striation spacings on the fracture surfaces of plain and welded CCT aluminium 

specimens confirmed the presence of accelerated growth. Furthermore, it revealed that 

acceleration was not confined to the load cycles following the application of the underload but 

also to the underload itself. 

7. Crack closure measurements in both plain and welded CCT specimens provided no support for 

the theory that crack growth acceleration is due to a reduction in the crack closure stress, and 

hence increase in effective stress range, following an underload. The crack never closed under 

the minor stress cycle, with or without an underload, while although the effective magnitude 

of the underload itself could be higher than under CA loading, this did not coincide with the 

period when the crack growth acceleration was most significant. 

8. The application of one loading block (10 minor cycles and I major (underload) cycle), was 

found to reduce measured tensile residual stresses in welded CCT specimens by 84% in the 

steel and 39% for the aluminium. In spite of this, the welded specimens all gave a shorter life 

than the plain, suggesting that tensile residual stresses affected the majority of the fatigue life. 

9. The application of a single load cycle representing 40% (steel) of the measured yield stress 

and 75% (aluminium) of the softened measured proof stress for fillet welded specimens, was 

found to significantly reduce the magnitude of tensile residual stresses by 72% for the steel 
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and 197% for the aluminium. Again, in spite of this, the remaining tensile residual stresses 

were still thought to affect the majority of the fatigue life. 

10. Other potential mechanisms to explain crack growth acceleration including sharpening, 

branching and softeninglhardening, were examined but were not found to be plausible 

explanations. 

11. Finite element stress analysis of the CCT specimen was used to determine the changes in 

stress and strain that take place local to the crack tip as a result of the application of the 

periodic underload sequences. The models demonstrated that although under CA loading at 

the minor stress the local stress cycles from tension to compression with the mean stress 

approaching zero, application of the underload maintains a tensile local mean stress and/or 

stress range. Even as the effect of the underload diminishes, in some instances, the local cyclic 

stress range stabilizes at a tensile level. 

12. On the basis that tensile stresses are more damaging than compressive ones, it is concluded 

that the primary explanation for the observed crack growth acceleration under spectra 

containing periodic underloads is the production of a tensile local stress cycling about a tensile 

mean stress in the region of the fatigue crack tip. 

13. Whilst the above (conclusion 12) identifies the primary mechanism for crack growth 

acceleration, the actual fracture process at the crack tip is considered to be due to ratchctting 

strain, the effect of which was found to increase with increasing undcrload magnitude. 

14. The work performed has demonstrated that the observed levels of acceleration for the 

materials considered were very similar. In addition the same primary mechanism was 

responsible for accelerated growth in both materials. 

15. A limitation of the FE models produced was that the change in crack length due to propagation 

was not taken into account, as it was not compatible with the crack tip mesh employed. 

Therefore, in all models the crack was assumed to have only propagated by 10mm from the 

initial notch tip. The addition of crack propagation is not thought to affect findings for the 
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current crack length considered, but may result in a more pronounced effect of tensile mean 

stress ahead of a propagating crack for increasing crack lengths. This is discussed further in 

Section 9.4. 

16. Tests perfonned on fillet welded specimens under V A loading generated endurances less than 

those expected on the basis of their CA performance. Depending on the spectrum applied, 

Miner's summations as low as 0.59 for steel and 0.43 for the aluminium were obtained, 

indicating that Miner's rule provided unsafe life estimates under this form ofloading. 

17. Although the present study was confined to the particular case of fatigue loading that cycled 

down from a high constant tensile level, partly to simulate the effect of welding residual 

stresses, such loading conditions are actually experienced by components and structures in 

many industry sectors, from power generation (pressure vessel, gas piping) to aerospace 

(aircraft, helicopters). Thus, the results of the project and the highlighted need for an improved 

cumulative damage calculation method are of widespread industrial significance. 

18. An analysis of the rate of fatigue crack growth (daldN) for fillet welded specimens, versus the 

applied stress intensity factor range (D.K) for a given value of M, resulted in acceleration 

factors (y) of 1.8 for steel and 2.2 for aluminium. The ratio of the maximum growth rate under 

V A loading for fillet welded specimens compared with the mean crack growth rate under CA 

loading resulted in y values of2.2 for steel and 2.7 for the aluminium. 

9.3 DESIGN RECOMMENDATIONS 

I. The inaccuracy of Miner's rule, due to its inability to allow for stress interaction, highlights 

the need for modification to the existing rule, taking into consideration the levels of crack 

growth acceleration found here for different magnitudes of underload and the presence of 

welding residual stresses. 

2. The Miner's rule summations for fillet welded steel specimens found here (see conclusion 16 

in Section 9.2); and other relevant literature for the same Class F detail, support the BS 7608 

- 9-4-



Conclusions and Recommendations Chapter 9 

recommendation that design based on 'i.nlN S 0.5 is suitable for the V A spectrum considered 

here. 

3. However, other findings in the literature suggest further caution is needed Class G details 

since the test data have indicated 'i.nlN = < 004, at failure. 

4. In the case of welded aluminium, the present results and published literature indicate that the 

current assumption implicit in BS EN 1999-1-3 (2007) that Miner's rule based on 'i.nlN S 1 is 

safe as long as due account is taken of the damage due to stress ranges below the fatigue limit 

is false. In addition to attention to low stresses it is also necessary to allow for stress 

interaction that causes crack growth acceleration. Existing, admittedly rather limited. 

experimental data would suggest that design based on 'i.nlN S 0.5 should be adopted until a 

higher value can be justified on the basis of further testing and research. 

9.4 RECOMMENDATIONS FOR FUTURE WORK 

1. Investigate the effect of mean stress at the crack tip by modelling crack propagation under the 

loading spectra used here. This will provide information on any changes to the local 

stress/strain pattern during crack growth. The simplest method for performing this would be 

by means of de-bonding elements along the crack plane following a pre-detemlined number of 

cycles, as defined by the experimental test data. 

Typical contour plots showing crack propagation in a SENB specimen using the mesh type in 

Figure 904.1 is shown for reference in Figure 904.2. It can be seen that, as the crack length 

increases the stress distribution varies slightly, resulting in a slightly larger region of high 

tensile stress at the crack tip. The stress magnitude does not increase due to the stress level 

being limited by yielding. 

As an alternative to the mesh in Figure 904.1, collapsed elements could be used to model crack 

propagation. However, this would require re-meshing at the crack tip for each desired crack 

length which would be extremely time consuming 
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Figure 9.4.1 A finite element SENB specimen model showing regular mesh used for crack 

propagation (courtesy ofTW/). 
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Figure 9.4.2 Contour plots of a finite element SENB specimen model showing crack 

propagation (courtesy of TWI). 

2. The lack of accurate loading spectra at the design stage would make it unrealistic to as ume 

that one nile, be it Miner's nl le or a completely new original rule, can be applied to different 

loading spectra, materials and weld geometries, providing an accurate estimate on fatigue life. 

[t is recommended that use is st il l made of the existing approach due its simplistic form and 

widespread acceptance. Therefore, to provide safer estimates under the form of V A loading 

considered, it is suggested that the data derived here and any additional data considered 
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necessary, be used to apply a factor to similar magnitudes of stress range as that under SBL2 

and SBL1.5 loading, during the cycle counting stage. It may be that several rule variants are 

required for a range of weld details to provide a better assessment of fatigue damage. 

3. To provide further support to point 4 in Section 9.3, additional V A data for welded aluminium 

alloy is required to correct the mistaken view that Miner's rule is safe when the low stresses 

alone are accounted for. Should a larger dataset provide similar results as presented in this 

research project, then it is recommended that the findings be submitted to the Standards body 

for consideration and implementation. In the short term, the recommendations given for the 

steel results (points 2 and 3 in Section 9.3) should be assumed. 

4. The identification of other service loading spectra, be that actual or devised, that are likely to 

cause crack growth acceleration should be investigated, in order to provide evidence of the 

necessary changes to Miner's rule under their application. 
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SOFTWARE AND PROCESS FLOWCHARTS 

CONTENTS 

Figure Al Periodic underload software and process flowchart 

Figure A2 Variable amplitude loading software and process flowchart 



Software and Process Flowcharts Appel1di~ A . 

Start application (Random VA FCG MJD) I , 
Setup waveform: Upload spectrum I 

l 
Enter specimen details: Width; thickness, material properties I 

l 
Enter test details: DCPD trigger intervals (2000 cycles; O.2mm); a/W limit; test standard; PD 
probe/current distances, Constant stress, Maximum stress range, 'With demand hold' (I % error)'" 

~ 
Control transferred to application software I 

l 
Log files and cycle counts replaced/reset I 

l 
Spectrum applied at variable frequencies: 5Hz minor cycles, I Hz underload I 

l 
I DCPD unit triggered: 7 second period I , 

Voltage data averaged, checked with input crack length and used as reference 1 
l 

---J Measurements ceased for prescribed duration (above) I r I 

l 
~ DCPD unit triggered: 7 second period I 

r I I , 
I Voltage measurements triggered I 

l 
I Cycle number recorded I , 
I Voltage data averaged and translated to crack length I 

~ 
~K Number of daldN Plots 

i...- calculated cycles, N calculated produced ~ 

y 
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alW limit hit 

Manual check of data 

No Yes 

Test terminated 

Control transferred to machine controller 

Data files transferred 

Analysis: 9 point average crack length measurement, Crack length correction (> 10% error) 

End test 

Note. ·With demand hold (I % error), this means that the next load cycle is not applied until the 

load is within I % of the desired level. If not achievable at set frequency, the software adjusts the 

frequency to suit. 

Figure A 1 Periodic underload software flowchart. 
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r Start application (Random) I 
~ 

r Setup waveform: Up load spectrum 1 
l 

I Enter specimen details: Width; thickness 1 
l 

Enter test details: Constant stress, Maximum stress range, Constant stress, Maximum stress 
range, 'With demand hold' (I % error)* 

r Log files and cycle counts replaced/reset I 
l 

I Spectrum applied at an average frequency: 7Hz (automatically adapts to stress level) 1 

~ 
I Manual periodic inspection: Soap solution and travelling microscope 

l 
1 

I Surface crack detected: Length and depth recorded (ACPD) 1 

I Crack propagated to failure: Length and depth recorded (ACPD) I 

( End 

~ 
r Analysis: Crack length/depth measured, da/dN calculated, plots produced I 

~ 
End test 

Note. *With demand hold (1 % error), this means that the next load cycle is not applied lIntil the 

load is within 1 % of the desired level. If not achievable at set frequency, the software adjusts the 

frequency to suit. 

Figure A2 Variable amplitude loading processjlowchart. 
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FINITE ELEMENT ANALYSIS MODEL PLOTS 

AND VALIDATION 

CONTENTS 

Bl 

Figure Bl 

Figure B2 to B6 

Figure B7 to B9 

Figure BI0 

Figure B 11 

Finite element analysis plots 

Variation of stress and strain 0.0 I mm from the crack tip in S355 structural 

steel, obtained at the maximum and minimum applied loads (minor cycles) 

under constant amplitude loading. 

Variation of stress in S355 steel at O.Olmm from crack tip under SBLI.5 

and SBL2.210ading, and at 0.01,0.05 and O.lmm under SBL2 loading. 

Variation of stress in welded S355 steel at 0.01, 0.05 and O.lmm from 

crack tip under SBL2 loading. 

Variation of strain O.Olmm from crack tip in S355 steel for different 

underload ratios. The SBL2.2 underload corresponds to zero minimum stress. 

Variation of stress and strain O.Olmm from the crack tip in 6082 al alloy, 

obtained at the maximum and minimum applied loads (minor cycles) under 

constant amplitude loading. 

Figure B12 to Bl5 Variation of stress in 6082 al alloy at O.Olmm from crack tip under SBLI.5, 

SBL2 and SBL2.3 loading. 

Figure B 16 to B 17 Variation of stress in welded 6082 al alloy at 0.0 I and 0.05mm from crack tip 

under SBL2 loading. 

Figure Bl8 Variation of strain O.Olmm from crack tip in 6082 al alloy for different 

underload ratios. The SBL2.3 underload corresponds to zero minimum stress. 
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82 

Figure 819 

Figure 820 

Figure 821 

Figure 822 

Figure 823 

83 

Figure 824 

Figure 825 

Figure 826 

Figure 827 

Finite element analysis model validation 

Validation of FE model showing comparison of the stress profile near the crack 

tip due to the loading portion of the minor stress cycle with the stress profile 

derived using LEFM. 

Validation of FE model showing the variation of stress near the crack tip 

between the loading and unloading portions of the minor stress cycle and that 

derived using LEFM. 

(rwin's corrected crack tip stress fields allowing for the plastic zone. 

Validation of FE model showing the stress profile near the crack tip during 

application of the maximum nominal stress and that derived using plane strain 

LEFM considering the elastic-plastic offset. 

Validation of FE model showing the stress profile near the crack tip at the 

minimum nominal stress, and that derived using plane strain LEFM considering 

the elastic-plastic offset. 

Comparison between collapsed and quadrilateral elements 

Comparison of the strain profile in S355 structural steel, obtained at the 

maximum and minimum applied loads (minor cycles) under constant amplitude 

loading. 

Comparison of the stress profile in S355 structural steel, obtained at the 

maximum and minimum applied loads (minor cycles) under constant amplitude 

loading. 

Contour plots using quadrilateral elements for S355 structural steel, obtained at 

the maximum applied load for the minor cycle, showing a) Stress a22 and b) 

strain E22. 

Contour plots using collapsed elements for S355 structural steel, obtained at 

the maximum applied load for the minor cycle, showing a) Stress a22 and b) 

strain E22. 
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Figure BI Variation of stress and strain O.Olmm from the crack tip in S355 structural steel. 

obtained at the ma.x:imllm and minimum applied loads (minor cycles) under constant omplitude 

loading. 
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Figure B2 Variation of stress O.Olmm from crack tip in 5355 steel obtained at maximum and 

minimum applied loadsfor thejirst six blocks vfcycles under SBLI.5 loading. 
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Figure 83 Variation of stres O.Olmm from crack tip in S355 steel obtained at lIIC1ximum and 

minimum applied loads for the first ix blocks of cycle under SBL2 loading. 
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Figure B4 Variation of stress 0.05mm from crack tip in 5355 steel obtained at maximum and 

minimum applied loads for the first six blocks of cycles under 5BL2 loading. 
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Figure 85 Variation of stress 0.1 mm from crack tip in S355 steel obtained at maximum and 

minimum applied loads for the first six blocks of cycles under SBL2 loading. 
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Figure B6 Variation of stress O.O l mm from crack tip il1 S355 steel obtained at maximum and 

minimum applied loads for the firs t six blocks of cycles under SBL2.2 loading. 
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Figure B7 Variation oJstress O.Olmm from crack tip in welded S355 steel obtained at maximum 

and minimum applied load Jor the firs t six block oJ cycles under SBL2 loading. 
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Figure B8 Variation of stress 0.05mm from crack tip in welded S355 steel obtained at maximum 

and minimum applied loads for the firs t six blocks of cycles under SBL2 loading. 
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Figure 89 Variation of ·tress O. lmmji-om crack tip in lVelded S355 steel obtai/led at maximllm and 

minimllm applied loadsfor thejirst six blocks of cycles under SBL2 loading. 
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Figure B 10 Variation oJ strain 0.0 I mm from crack tip in S355 steel Jor different lInderload ratios. 

The SBL2.2 underload corresponds to zero minimum stress. 
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Figure B IJ Variation of stres and strain 0.01 mm from the crack tip in 6082 al alloy, obtained at 

the maximum and minimllm applied loads (m inor cycles) lInder constant amplitude loading. 
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Figure Bl2 Variation of stress O.Ol mmfrom crack tip in 6082 al alloy obtained at maximum and 

minimum applied loads for the first six blocks of cycles under SBLl . 5 loading. 
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Figure BI3 Variation of stress O.Ol mmfrom crack tip in 6082 al alloy obtained a/maximllm and 

minimum applied loads for the firs / six blocks of cycles under SBL2 /oading. 
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Figure B14 Variation of stress O. 05mm from crack tip in 608201 alloy obtained at maximum and 

minimum applied loadsfor thefirst six blocks of cycles under SBL2loading. 
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Figure 815 Variation o/stress O.Olmmfrom crack tip in 608201 alloy obtained at maximllm and 

minimum applied loads for the firs t six blocks of cycles under SBL2. 3 loading. 
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Figure 816 Variation of stress O.O lmm from crack tip in lVelded 6082 al aI/ay obtained at 

maximum and minimum applied loads for the first six blocks of cycles under SBL2 loading. 
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Figure B17 Variation oJ tress 0.05111111 from crack tip in welded 6082 01 alloy obtained at 

maximum and minimllm applied loads Jar the firs t six blocks of cycles under SBL2 loading. 
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Figure B18 Variation of strain O.Ol mm from crack tip in 6082 01 alloy fo r different underload 

ratios. The SBL2. 3 underload corresponds to zero minimum stress 
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B.2 MOD E L VALIDATION 

To alidate FE model , the elastic response ahead of the crack tip in steel was compared with that 

deri ed using linear elastic fracture mechan ics (LEFM) using the cylindrica l co-ordinate system 

centred at the crack tip, Eg. [2.4.1]. 

First, the ariation in stress clo e to the crack tip under the loading porti on o f the minor tre 

cycles was detennined, a shown in Figure 81 9. The results refer to the application of the first 

minor stress loading cycle and the tenth one (i.e. the start and end of the minor cycle block). Here it 

can be seen that away from the crack tip (>0.2mm) the FE results agree with the LEFM response . 

However, close to the crack tip, where large plastic defonnation would ex ist, the two olution do 

not agree. However, this is not surprising since the FEA models allowed for yielding and the 

va lidation (LEFM response) was purely elastic. 
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Figure 819 Validation of FE model sholVing comparison of the stress profile near the crack tip due 

to the loading portion of the minor stress cycle lVith the stress profile derived using LEFM. 

The process was repeated th is tim e using the variation in crack tip stres between the loading and 

unloading portions of the minor cycle, again for the first and tenth cycles, Figure 8 20. As thi s 

response is tota lly ela tic, it can be seen that good correlation is achieved. 
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Figure B20 Validation of FE model sholVing the variation of stress near the crack tip between the 

loading and unloading portions of the minor stress cycle and that derived 1I ing LEFM. 

To ensure the model was robust, validation was repeated using an alternative approach. Here 

consideration was given to Irwin' s elastic-plastic offset from the LEFM elastic curve (Lemaitre and 

Chaboche, 1990), Figure 8 21. 

LEFM 

Irwin 

Ry 
Figure B21 Invin's corrected crack tip stressfields allolVing/or the plastic zone. 

Irwin suggested that the stress at the crack tip is limited by the value Rp over the distance 2 x Ry 

(offset distance). Considering again the steel, where the maximum applied stress = 155 Immz and 

(j YS = 455N/mmz, Rp was determined using the von Mises equivalent stress. Assuming LEFM and 

plane strain conditions: 

- 8-20-



III 

Finite Element Analysis Plots & QA Docllmentation 

K, 
<J xx = O"yy = .J21rr 

AppemlixB 

[£31 ] 

[B2] 

[£33 ] 

Based on a plate width of W = 160mm and a crack length 2a=36mm, the Von M iscs stress ( a ) is 

given by Eqo [B4]0 

[B4] 

Assuming the von Mises stress is limited to the material yield strength, the value of RI' can be 

determined as follows: 

455 ~ 
<J =R =-=1138N/mm-

YY p 0.4 [£35] 

Based on a plate width of W = 160mm, crack length 2a=36mm and the maximum applied stress of 

155N/mm\ the stress intensity factor K, in Eqo [83] = 1129MPaVmmo The offset Ry could then be 

calculated from Eqo [B6]: 

1 (K' J2 Ry =- -- =Oo157mm 
21t Rp 

[[16] 

The LEFM curve was then truncated so that for Ry below Oo157mm, the stress = I 138N/mm2• The 

resulting responses are compared with the FEA results for the minor stress cycles in Figures £322 

and B23. In Figure B22 it will be seen that at the maximum nominal stress 155N/mm2 the truncated 

response agrees reasonably well with the CA cycles. 
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Figure 822 Validation of FE model showing the stress profile near the crack tip during 

application of the maximum nominal stress and that derived using plane strain LEFM considering 

the elastic-plastic offset. 
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Figure 823 Validation of FE model sholVing the stress profile near the crack tip at the minimllm 

nominal sIres " and that derived using plane strain LEFM considering the elastic-plastic offset. 
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In Figure 823, the LEFM solutions are compared with the FEA results for application of the 

minimum nominal stress (85N/mm~) by deducting the CA stress range (70N/mm2) from the LE FM 

truncated maximum stress of 155N/mm~. As will be seen, the truncated LEFM response agrees 

well with the FEA results, providing further validation of the accuracy and robustness of the FE 

representation of the conditions at the crack tip under the applied loads. 

B3 COMPARISON BET\VEEN COLLAPSED AND QUADRILATERAL 

ELEMEl'JTS 

As discussed in Section 3.8, due to the uncertainty in whether crack growth would be modelled 

within this project, the more traditional method of meshing at the crack tip using collapsed 

elements was not performed; instead quadrilateral elements were used, Figure 3.8.6. It was 

considered that quadrilateral elements would be sufficiently fine to capture the crack tip stress field 

in the same way that collapsed elements would. 

To investigate this, a second model of the plain steel CCT specimen was prepared and meshed 

using collapsed elements at the crack tip in order to compare the stress and strain plots obtained 

from this model with those obtained with the initial model meshed with quadrilateral elements. 

Plots of stress and strain were obtained at the first loading (155N/mm2 nominal stress) and first 

unloading (85N/mm2 nominal stress) i.e. minor cycle, are presented in Figures B24 and B25, and 

show good similarity between the models. However, the stress at the first loading is predicted to be 

slightly larger with collapsed elements. It is worth noting that in both cases, the stress and strain 

profiles seem to be near-identical, but slightly offset. Because the offset is the same at loading and 

unloading, the difference in strain and stress between the profile at loading and unloading indicates 

good agreement between the models. 
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Figure 824 Comparison of the strain profile in S355 structural steel, obtained at the maximum and 

minimum applied loads (minor cycles) under constant amplitUde loading. 
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Figure B25 Comparison of the tress profile in S355 structural steel, obtained at the maximum and 

minimllm applied loads (minor cycles) under constant amplitude loading. 
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Contour plots of stress and strain for the maximum load In the minor cycle \V re al 0 produ ed 

(Figures 826 and 827) and also show good agreement between the model , although th multiple 

untied crack tip nodes used for the collapsed elements (Figure 827) allow for a more round d 

blunting of the crack tip after the first loading due to low con traint. 
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Figure 826 Contour plots using quadrilateral elements Jor S355 structural teel. obtained at the 

maximum applied loadJor the minor cycle, showing a) Stress a22 and b) train c __ . 
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Figure B27 Contour plots using collapsed element Jar S355 structural steel. obtained at the 

maximum applied loadJor the minor cycle, sholVing a) Stress a22 and b) strain £22. 

This comparative study show that, if quadrilateral elements are chosen for the crack tip in order to 

obtain a regular me h that would allow for crack growth modelling (which wa not ana ly ed in thi 

study), the stress and strain near the crack tip would not be significantly different to those obta ined 

using collapsed elements, although the latter are designed for better capture of the crack tip 

singularity. However, it must be high lighted that in both models, the crack tip me h was very 
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refined (elements with quadratic interpolation, O.Olmm In size), and that this conclusion may 

probably not be the same for models with a coarser mesh. 
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Appendix C 

STRIATION MEASUREMENT - SCATTER IN 

ANALYSIS 

CONTENTS 

Table Cl 

Table C2 

Table C3 

Figure Cl 

Figure C2 

Figure C3 

Paris law constants derived from crack growth increment striation analysis on 

CCT-CAL-AL-12 (R=O.57), including upper and lower bound (mean ±2S0). 

Paris law constants derived from crack growth increment striation analysis on 

aluminium alloy major stress range SBL2 (R=O.14), including upper and lower 

bound (mean ±2S0). 

Paris law constants derived from crack growth increment striation analysis on 

aluminium alloy major stress range SBL1.5 (R=0.35), including upper and 

lower bound (mean ±2S0). 

Comparison of mean ±2S0 of striation measurement data with FCGR data. 

Comparison of mean ±2S0 of striation measurement data with FCGR data. 

Comparison of mean ±2S0 and mean -3S0 of striation measurement data with 
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Table C I Paris loll' constants derived from crack grolVth increment striation analysis on ccr­
CAL-AL-12 (R =O.57), including upper and 10lVer bound (mean z 2SD) 

~K, da/dN, Upper Lower 

N/mm312 mm/cycle bound bound 

m 2.07 20S 9.68E-OS I.S6E-04 6.0 1 E-OS 

C-mean l.SSE-09 390 3.68E-04 S.92E-04 2.28E-04 

SD 0.10 

C-Upper Bound 2.49E-09 

C-Lower Bound 9.6IE- 10 

Table C2 Pari Imv conslants derived from crack grolVth increment striation analysis on 

aluminium alia)' major tres range SBL2 (R=O.14), including upper and 10lVer bound (mean 

z 2SD) 

K, da/dN, Upper Lower 

N/mm312 mm/cycle bound bound 

m 2.02 400 3.02E-04 S.3 1 E-04 1.72E-04 

C-mean 1.68E-09 770 1.1 3E-03 1.99E-03 6.44E-04 

D 0. 12 

C-Upper Bound 2.96E-09 

C-Lower Bound 9.57E-1 0 
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Table C3 Paris law constants derived Jrom crack growth increment striation anal)' 'is on 

aluminium alloy major stress range SBLl.5 (R =O.35), including upper and 10IVer bound (mean 

:t2SD) 

K, da/dN, Upper Lower 

N /mm3n mm/cycle bound bound 

M 2.88 305 2.53E-04 3.81 E-04 1.68E-04 

C-mean 1.76E-11 570 1.53E-03 2.31 E-03 1.02E-03 

SD 0.09 1.37E-04(1) 

C-Upper Bound 2.65E-11 8.32E-04(2) 

C-Lower Bound 1.17E- 11 

C-Lower Bound(l) 9.55E-1 2 

ote. (/) Constant C Jor mean -3SD; (2) crack grolVth law Jor mean -3SD. 

Z 
"0 

1.0E-03 

~ 1.0E-04 
"0 

~ .... 
~ .. 

CCT-C L-AL- 12, R=O.S7 

+ tria tion da ta, R=O.S7 

tria ti on da ta, R=O.S7, ~ l ca n curvc 

- . - Stria tion da ta, R=O.S7, lcan-2 0 

- - - tria tion da ta, R=O.S7, ~ l ea n+2 0 

1.0E-05 +----------.-----r-----r'--.---.----'T--r---.----i 
100 1000 

Figure Cl Comparison a/mean :t2SD a/striation measlIrement data lVith FCGR data. 
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Figure C2 Comparison o/mean r 2SD o/striation measurement data with FCGR data. 
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FCGR data. 
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Appendix D 

FATIGUE CRACK GROWTH IN FILLET 

WELDED SPECIMENS 

CO~TENTS 

Table 01 

Table 02 

Figure 0Ia)-g) 

Figure D2a)-t) 

Figure D3a)-e) 

Figure 04a)-t) 

Mk parameters for steel specimens. 

Mk parameters for aluminium alloy specimens. 

Comparison between measured and calculated CA crack growth for steel 

specimens. 

Comparison between measured and calculated CA crack growth for 

aluminium specimens. 

Comparison between measured and calculated V A crack growth for steel 

specimens. 

Comparison between measured and calculated V A crack growth for 

aluminium specimens. 
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Table D1 Mk parameters derived/or steel crack grolVth predictions 

Ratio crack depth 

C rack Crack and specimen 

length, 2c depth, a thickness, a/8 (1) M kn M kc 

0 0 0.003 4.7 3.4 

0.25 0.05 0.006 4.2 3.4 

0.5 0. 1 0.0 13 3.4 3.4 

0.75 0.15 0.0 19 3.0 3.4 

1.5 0.3 0.038 2.4 3.2 

2.5 0.5 0.063 2.0 2.8 

3.75 0.75 0.094 1.8 2.4 

6.5 1.3 0.1 63 1.5 2.0 

10 2 0.250 1.3 1.6 

20 4 0.500 1.1 1.2 

30 6 0.750 1.0 1.0 

40 8 1.000 1.0 1.0 

ote. ( I ) Steel specimens were 8mm in thickness. 

Table D2 Mk parameters derived/or aluminium alloy crack grolVth predictions 

Ratio crack depth 

Crack Crack and specimen 

length, 2c depth, a thickne s, a/8 (1) M kn M kc 

0 0 0.002 4.5 3. 1 

0.25 0.05 0.008 3.8 3. 1 

0.5 0 .1 0.0 17 3. 1 3.1 

0.75 0.15 0.025 2.7 3.0 

1.5 0.3 0.050 2.2 2. 

2.5 0.5 0.083 1.9 2.5 

3.75 0.75 0. 125 1.6 2.2 

5 0. 167 1. 5 1.9 

10 2 0.333 1.2 1.6 

15 3 0.500 1.1 1.3 

20 4 0.667 1.0 1.2 

25 5 0 .833 1.0 1.1 

30 6 1.000 1.0 1.0 

ote. ( I ) Aluminium specimens were 6mm in thickne s. 
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Figure Dl (Continued) Comparison between the measured and caicuiated[atiglle crack gro1Vth in 

steel specimens under CA loading at a maximum stress of 280Nlmm2
: 

c) FIL-CAL-ST-03, 90Nlmm2 stress range; 

d) FIL-CAL-ST-04, 75Nlmm2 stress range: 
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Figure D 1 (Continued) Comparison between the measured and calclllated fa tigue crack grOlvth in 

steel specimens under CA loading at a maximum stress oj'280Nlmm1
: 

g) FlL-CAL-ST-07, 50Nlmnl stress range. 
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Figure 02 (Continued) Comparison between the measllred and calclllated fa tigue crack growth in 

aluminillm specimens under CA loading at a maximum stress of 120Nln'll112
: 

c) FIL-CAL-AL-03, 30Nlmm2 stres range; 

d) FIL-CAL-AL-04, 65Nlmm1 stress range; 
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b) 

Figure 03 Comparison between the measured and calculated fa tigue crack growth in steel 

specimens under VA loading at a maximum stress of280Nlmm2
: 

a) F1L-VAL-ST-Ol, 73.6Nlmml equivalent stress range, minimum Pi 0.25; 

b) FfL-VAL-ST-02, 73.6 Imnl equivalent stre S range, minimum Pi 0.25; 
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Figure D3 (Continued) Comparison between the measured and calclllated fa tigue crack gl'Olvth in 

, 
steel specimens under VA loading at a maximum stress of280Nlmm-: 

e) FlL-VAL-ST-05, 61.3Nlmm1 equivalent stress range, minimum Pi 0.20. 
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Figure 04 Comparison behveen the measured and calculated fa tigue crack grollth in allllllinilllll 

specimens under VA loading at a maximum stress of f20N/mlll: 

c) FlL-VAL-AL-03, 26.3N/mnl equivalent stress range, minimllm Pi 0.20; 

d) FlL-VAL-AL-04, 26.3N/mnl equivalent stress range, minimum Pi 0.20: 
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