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Abstract 

Peripheral nerve injury as a result of trauma affects approximately I million people in 

Europe and America annually. The current clinical gold standard treatment for repairing 

long gaps is the nerve autograft, in which only -50% of cases result in satisfactory 

functional recovery. Tissue-engineered cellular bridging devices for surgical 

implantation into peripheral nerve injury sites could provide an attractive alternative to 

the autograft. This project reports the development of a robust, anisotropic biomaterial 

with highly aligned cells that can form the basis of a peripheral nerve repair device. 

Engineered neural tissue (EngNT), which is formed from columns of Schwann cells or 

stem cells within a 3D aligned collagen matrix, can promote directed neurite outgrowth 

in vitro. This study demonstrates that sheets of EngNT can be arranged to form the 

'endoneurium' of a peripheral nerve repair device within a NeuraWrapTM outer tube, 

and can be used for the repair of critical sized defects in rat. 

Schwann cells are the preferred cell type for peripheral nerve repair because of their 

ability to enhance axon migration and secrete factors that further increase regeneration. 

However the use of autologous Schwann cells has a number of disadvantages, including 

the sacrifice of host nerve tissue for their extraction and slow expansion times in vitro. 

Various therapeutic cell types and a bovine collagen source that can potentially be used 

to make EngNT to form the device core were investigated. EngNT devices containing 

Schwann cell-like cells from adipose-derived stem cells (dADSC) or human neural 

progenitor cells differentiated to glial cells (dCX) were tested in a critical sized gap in 

the rat sciatic nerve model. The in vivo experiments demonstrated that there is potential 
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for the dADS Cs to be used for peripheral nerve repair. The results from the dCX repairs 

were less clear. 

The technology reported here offers a simple, rapid and effective method for the 

manufacture of an aligned cellular biomaterial, and could be applied to a range of tissue 

engineering applications. This study demonstrates that there is potential for EngNT to 

be used in the construction of nerve repair conduits. 
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1.0 Introduction 

1.1 The nervous system 

The nervous system can be divided into two parts: the central nervous system (CNS) 

and the peripheral nervous system (PNS) (figure 1.1). The CNS consists of the brain , 

spinal cord, optic, olfactory and auditory systems. The PNS consists of all the sensory 

and motor nerves that carry infonnation into and from the spinal cord and the brain. 

This research will focus on the PNS, in particular nerve damage and regeneration. 

Brachial plecus---.." 

MusruloclianeCllS
nerve 
Radial nerve '---'-, n r 

Medan nerve- -¥.f1 
LlldlvpogcSric
nerve 

Genitofemcral_ 
nerve 

Obturctor nerve -L.j,LU .'-J.----' 

ConITlO'l permeal nerve 

Deep peroneal nerve -- -

Figure 1.1 The nervous system 

?7'~~---- Brain 

~':l+---Cerebellum 

u----Splnal cad 

Sacral 
plecus 

'\-1:-'11\-1---' Femoral 
nerve 

__ Pudendal 
nerve 

- Sclctlc 
nerve 

t'HH -----Tlblal nerve 

The peripheral nervous system is shown in blue (A.M.A. , 1998). 
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There are three types of peripheral nerve, described below. 

Motor: send impulses from the brain and spinal cord to all of the skeletal 

muscles in the body. 

Sensory: send impulses from muscles, sensors (pain, temperature etc.) in the 

skin and within the body to the spinal cord and brain. 

Autonomic nerves: control involuntary and semi-involuntary functions i.e. heart 

rate, digestion, sweating etc. 

Within these, there are different types of nerve fibres, which are classified according to 

their diameter and whether they are myelinated or not, the type of neurotransmitter they 

release and the rate of conduction of action potentials. The in vivo experiments in this 

project use the rat sciatic nerve model, which is a mixed nerve containing sensory and 

motor neurons. 

Schwann cells are the supporting cells for the PNS fibres and are key regulators of 

peripheral nerve development (lessen and Mirsky, 1997). In a healthy nerve, Schwann 

cells either myelinate individual axons or wrap small groups of unmyelinated axons. 

Each nerve fibre (Schwann cells + axon) is surrounded by a layer of extracellular matrix 

(basal lamina), which is made up of collagen IV mainly and includes laminin 

components, and is secreted by Schwann cells. 

The PNS is made up of neurons which each consist of a cell body (soma) and a long 

thin axon which is surrounded by Schwann cells, some of which are myelinating. In the 

PNS, myelination is the process by which the Schwann cell wraps its membrane around 

an axon, creating a sheath which insulates the axon and propagates impulses along the 

axon, facilitating the transmission of nerve impulses. The axons are packed into the 

endoneurium. These are enclosed by the perineurium to form fascicles, which are 
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grouped together by the epineurium to form the nerve itself (figure 1.2). The epineurium 

is the strongest component of the nerve trunk and is a major contributor to nerve tensile 

strength (Topp and Boyd, 2006). 

Fig. 1.2 Anatomical overview of a PNS nerve (Stroncek and Reichert, 2008) 

After a peripheral nerve has been damaged, Schwann cells play a crucial role in the 

repair process, due to their ability to de-differentiate, proliferate, phagocytose debris, 

express growth promoting factors , guide regenerating axons and myelinate new axons 

(Hall, 2005). This is explained in more detail in the next section (1.2). 
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1.2 Peripheral nerve damage 

In this research the focus was peripheral nerve injury as a result of trauma. It has been 

reported that 5% of all open wounds of the limbs are complicated by peripheral nerve 

trauma (Mumenthaler and Mattle, 200 I). Each year approximately 300,000 people of 

working age in Europe are affected by peripheral nerve injury (PNI) (Ruijs et al., 2005); 

of these less than 50% regain full function after treatment (lchihara et al., 2008; Kehoe 

et al., 2012). The most frequent cause of PNI is motor vehicle accidents, while gunshot 

wounds, stabbings, sports and birth trauma are also common causes. PNI incurs high 

healthcare, rehabilitation, social and unemployment costs. Patients with disabilities as a 

result of PNIs can be costly to the healthcare system, with average hospital stays of 28 

days each year in America (Noble, 1998). Forearm PNI patients take an average of 273 

sick days (Rosburg et al., 2005), and the estimated cost to society may exceed 50,000 

euros per person for a median nerve injury in the forearm (Dahlin, 2008). Nerve damage 

can have a major impact on the patient's quality of life and can be the cause of lifelong 

pain, numbness and discomfort; often leading to a permanent disability. PNI is more 

common in young people within the working generation, the average age of patients is 

33 years (statistics from a retrospective study in America that reviewed 96 patients with 

various kinds of PNI) (Wangensteen and Kalliainen, 2010), so a successful therapy 

would have a great impact on lifetime productivity. 

Injury to a peripheral nerve induces a series of cellular and molecular changes in the 

injured neurons and their microenvironment (Fu and Gordon, 1997). After a nerve is 

severed, there are cellular and molecular changes that occur in the neuron body, known 

as retrograde reaction and chromatolysis. In these changes, neurons switch from their 

adult phenotype (the transmission state) to a growth state where there are changes in the 

expression of genes that encode for transcription factors (Leah et al., 1991), which 
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regulate the expression of genes involved In cell survival and neurite outgrowth 

(Raivich and Makwana, 2007). 

In the segment of the axon distal to the injury, which is no longer connected to the cell 

body, Wallerian degeneration begins (Dahlin and Brandt, 2004). Wallerian degeneration 

is an active process controlled by specific genes (Wlcf) and signals (Aldalbert et al., 

2005). During Wallerian degeneration, macrophages penetrate the basal lamina and 

invade the Schwann cell tube, where they degrade the myelin sheaths and phagocytose 

debris (Glass, 2004, Dailey et al., 1998). Schwann cells de-differentiate into their 

"survivor" phenotype, resembling immature Schwann cells, changing the expression of 

genes to promote cell proliferation. This switch in phenotype in the denervated 

Schwann cells is associated with the up-regUlation of several growth associated genes 

including those coding for the proteins GFAP and p7S, and neurotrophic factors such as 

NT-3, NGF, BDNF, NT-4, GDNF and IGF-l (Gillen et al., 1997; Fawcett and Keynes, 

1990). The Schwann cells then proliferate by mitosis and align themselves into columns 

inside the basal lamina and form the "bands of Bungner" - these longitudinal structures 

are crucial in the repair process and they lie within the endoneurial tubes and form 

continuous chains of cells (Hall, 2005). 

In the PNS, nerves can successfully regenerate and spontaneously repair two (class I 

and 11) out of the three types of PNS injuries which are possible: class I (neuropraxia) 

involves temporary disruption of conduction without loss of axonal continuity; class 11 

(axonotmesis) involve loss of continuity of the axons and myelin with preservation of 

connective tissue frame work; and class III is where there is a complete cut through the 

nerve (epineurium and endoneurium) (as classified by Sedden, 1943). Axon sprouts will 

begin to emerge from the proximal end of the nerve and elongate along the Schwann 
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cell columns, which provide a pathway that serves as a guide for sprouts of regenerating 

axons to follow (figure 1.3). The regeneration of an axon that has been cut (class 11 and 

III injuries) involves the transfonnation of a stable axonal segment into a highly motile 

tip, called the growth cone. Each regenerating axon can initially give rise to about 10 

axonal sprouts (Witzel et al., 2005), but the branches that do not make peripheral 

connections (innervate muscle or skin) undergo atrophy and disappear with time. The 

growth cones can sense their environment and are guided by neurotrophic (e.g. NGF, 

GDNF, BDNF, NT-3) and neurotropic (e.g. laminin, collagen) factors produced mainly 

by Schwann cells. Once the regenerating axons make contact with the Schwann cells, 

the Schwann cells differentiate and re-myelinate the re-growing axon, however, the 

newly fonned myelin is thinner than nonnal and the newly fonned intemodes (portion 

of nerve fibre between two Nodes of Ranvier, see figure 1.2) are shorter than nonnal 

(Hall, 2005). However, axons are not necessarily functional immediately; the fibre 

diameter (axon + myelin sheath) and motor conduction velocities are a better indication 

of functional recovery and have been shown to increase with time (Ikeda and Oka, 

2012). Although this spontaneous axonal regeneration occurs naturally in vivo after 

class I and 11 peripheral nerve injuries, complete recovery is rare and so surgical 

intervention is often required. Surgical intervention is also required when there is a 

complete cut in the nerve (class III injury). 
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Figure 1.3 Schematic of the events after a peripheral nerve has been cut, shown at the level 
of a single axon 

euron in red, Schwann cells (Schw) in green, myelin in black, macrophages (m) in pink. After 
a peripheral nerve has been cut, the proximal part seals (A) and Wallerian degeneration begins 
in the axon distal to the injury. The Schwann cells de-differentiate to thei r survivor phenotype; 
macrophages clear away debris (B), and the Schwann cells align to form the Bands of Blingner 
to guide regenerating axons (C). Schwann cells differentiate back to their myelinating 
phenotype and remyelinate the new axon (D). Changes known as chromatolys is, also occur in 
the cell body, where the chromatin and cell nucleus are displaced to the cell periphery (E). 
Adapted from Hall , 2005 . 
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Chronically denervated Schwann cells progressively down-regulate growth promoting 

molecules such as neuregulin (Sulaiman and Gordon, 2000). So where there is a large 

defect, it is likely that the regenerating axons will eventually reach "non-responsive" 

Schwann cells, and this has been related to poor motor recovery (Sulaiman and Gordon, 

2000). With time, Schwann cells that have not been reinnervated apoptose (Hall, 2005). 

In ideal conditions, axons grow at a constant rate of around 1-2 mm per day (Jacobson 

and Guth, 1965). The greater the distance the nerve injury is from the target, the longer 

it will take for the axons to reconnect. Therefore the rate of axonal regeneration in the 

complicated environment after trauma, limits how effective the functional outcome may 

be even when the growth is directed. Delayed reinnervation is associated with poor 

muscle recovery, as the extent of muscle atrophy depends on the time that the muscle 

has been denervated. Damage to extremeties due to lack of sensation is also more likely 

to occur during longer recovery periods. The goal is to accelerate and optimise 

regeneration to reduce the delay and thus maximise function. 
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1.3 Current treatments for peripheral nerve injury 

1.3.1 Primary repair 

If there is a small clean cut (creating a gap of usually no more than a few millimetres) in 

the nerve the surgeon can bring the ends together and perform end-to-end surgical 

reconnection of the damaged nerve ends by suturing (figure lA). In 1973 Hueter 

achieved end-to-end repair by an epineurial suturing technique, which became the 

standard method of short gap repair (Millesi, 1973). This particular therapy carries a 

risk of causing fibrosis; however it can be very effective when the nerve ends are 

directly adjacent and can be brought together without introducing any tension (Schmidt 

and Leach, 2003). Localised tension could cause fibroid adhesions in repaired nerves. 

During normal daily activities, peripheral nerves bend and stretch as limbs move, 

exposing the nerves to various mechanical stresses (Topp and Boyd, 2006; Mason and 

Phillips, 2011). This is also accompanied by 'intraneural' movement, of the internal 

structures to accommodate this stress (Abrams et aI., 1998). Peripheral nerves can 

withstand a certain degree of stress and deformation without adverse effects. However, 

failure to restore the biomechanical integrity of peripheral nerves after injury can 

compromise the repair, as a result of the localised tension causing damage to neural 

elements (Topp and Boyd, 2006). The use of conduits or grafts to bridge longer gaps 

(more than a few millimetres) can alleviate tension and is therefore used to improve 

repair. 
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Epineural Repair 

Figure 1.4 Schematic of epineurial repair 
End-to-end repair of a severed nerve by suturing the epineurium of the two stumps, drawing the 
two ends together. (http://www.vet.purdue.edu/cpr/essaysl .html) 

1.3.2 Clinically available devices for peripheral nerve repair 

1.3.2.1 Conduit repair devices 

For lesions more than a few millimetres in length, where a tension-free repair is not 

possible, empty silicone or bioresorbable tubes can be used to bridge the gap at the 

injury site. In 1997 Lundborg et al. used silicone conduits to repair 3-4 mm defects in 

the ulnar and median nerves in the human forearm (Lundborg et aI., 1997). A five year 

follow-up study showed no significant difference in sensory and motor function 

between repair using the silicone conduits and standard microsurgical repair, except that 

cold intolerance was significantly less severe with the tubular technique (Lundborg et 

aI. , 2004). Silicone is not biodegradable and, in 8 out of 17 cases in the Lundborg study, 

the tubes were removed because they caused discomfort. Ideally a tube used for 

peripheral nerve repair should be biodegradable and not cause any discomfort or an 

inflammatory response during degradation. Only 4 absorbable synthetic conduits, 

involving 3 materials (collagen, polycaprolactone and polyglycolic acid) have obtained 

the US Food and Drug Administration (FDA) and the European approval (CE) for 
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clinical use (these have been summarised in table 1.1) (Kehoe et al., 2012; Bell and 

Haycock, 2012). These devices function by providing a conduit to concentrate factors 

and offer overall tissue guidance/containment, with reduced fibrosis/adhesion 

(Danielsen et al., 1993). However empty tubes are only used to bridge gaps of less than 

3 cm in damaged peripheral nerves, the critical gap length in humans, because beyond 

this length structural and trophic support is required to allow regenerating neurites to 

bridge the gap (Gu et ai., 2011; Bell and Haycock, 2012). A study by Maeda and 

colleagues in 1993 tested empty conduits to bridge an 18 mm gap using a 20 mm 

silicone conduit in rat sciatic nerve, which is beyond the critical gap length in a rat 

(Bellamkonda, 2006). During a 16 week observation period no axons were found in any 

of the conduits (Maeda et ai., 1993). This could be due to the lack of an intraluminal 

guidance structure and the absence of living cells (Daly et al., 2012; Bellamkonda, 

2006). 
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C(ll11pall~ N,1I1h: 1\ Iakria I 

SaluMedica SaJubridge polyvinal alcohol (PV A) 

SaluMedica Salutunnel Nerve Protector PVA 

Integra NeuraGen Nerve Guide Neuragen Nerve Guide Bovine type I collagen 

Integra NeuraWrap Nerve Neurawrap Nerve Protector Bovine type I collagen 

Protector 

Synovis Micro companies Neurotube Polyglycolic acid (PGA) 

Alliance Inc. 

Collagen Matrix Inc. Neuroflex Bovine type I collagen 

Collagen Matrix Inc. Neuro Matrix Bovine type I collagen 

Collagen Matrix Inc. Neuromend Bovine type I collagen 

Cook Biotech Products Axo Guard Nerve Connector Porcine small intestine 

submucosa (SIC) 

Cook Biotech Products Axo Guard Nerve Protector Porcine SIC 

Polyganics Neurolac lactide 

caprolactone co-

polyesters (PCL) 

Table 1.1 Clinically approved conduits for peripheral nerve repair 

Decellularised allografts are also available for peripheral nerve repair. These are 

typically prepared by processing harvested nerves with detergent to selectively remove 

cellular components and debris, and they are then terminally sterilized (Brooks et al., 

2011). Decellularised allografts preserve the correct three-dimensional architecture for 

cell migration and nerve fibre elongation and provide the appropriate biomechanical 

properties to the repair site. However these grafts do not contain any living cells, 

limiting their application to the repair of gaps less than 5cm (Brooks et al., 2012; 

Karabekmez et al., 2009). This is discussed in more detail in the next section (1.3.2.2). 
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1.3.2.2 Decellularised repair devices 

AxoGen are the fIrst company to develop a product, Avance® Nerve Graft, for repair of 

gaps > 3 cm in peripheral nerves. A vance ill Nerve Graft is a processed nerve allograft 

which is a decellularised, sterile extracellular matrix from donor human peripheral nerve 

tissue (Brooks et al., 2012; Karabekmez et ai., 2009). A vance® functions include all 

those mentioned above for conduit repairs, and in addition it provides the inherent and 

relevant structural characteristics of peripheral nerve, the structure can be remodelled by 

the host cells and has similar handling properties to the nerve autograft. Additionally, 

chemically decellularised nerve grafts maintain the laminin component within the 

collagen matrix (Karabekmez et al., 2009), which is known to enhance axon 

regeneration (Hall, 1986). 

1.3.3 Nerve autograft 

The current 'gold standard' to bridge larger gaps (> 3 cm) is to use a live nerve 

autograft (Bhandari et al., 2007). Philipeaux and Vulpian fIrst showed that nerve 

regeneration was possible with autografts in a dog model (Philipeaux and Vulpian, 

1870). Later in 1878, Albert Verhandlungen described the fIrst clinical experience of 

nerve grafting (Verhandlungen, 1878). The nerve autograft is typically harvested from a 

cutaneous sensory nerve from the patient, most commonly the sural nerve, and is 

connected to the proximal and distal stumps with micro-sutures. 

A nerve autograft does not provide neurons, as the axons in the nerve grafts degenerate 

leaving the endoneurial tubes and Schwann cells (autologous, denervated). It provides a 

cell-rich environment with the correct tissue architecture (Schwann cell basal laminae) 

to promote cell adhesion and migration, biomechanical properties and guidance cues, 

which promote axon regeneration from the proximal nerve stump. Disadvantages of the 
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nerve autograft therapy include the requirement for an additional surgery, limited nerve 

availability and donor site morbidity, which can include a loss of sensation within the 

harvest area, neuroma formation, pain and scarring (Rappaport et al., 1993; Staniforth 

and Fisher, 1978). 

The success of the nerve autograft depends on the age of the patient, timing of surgery, 

the size of the defect, altered fascicular architecture causing axons to scatter during 

regeneration, the type of nerve injured, the amount of scarring in the surrounding tissue, 

and the distance to the denervated end-organ (Wolford and Stevao, 2003; Matejcik, 

2002). The extent of vascularisation at the site of injury also has an effect on outcome. 

Free-vascularised nerve grafts (where vasculature in the graft is connected to recipient 

vasculature) have a better outcome than non-vascularised nerve grafts (standard 

autograft repair) (Koshima et ai., 1981, Restrepo et ai., 1985). Free-vascularised grafts 

can be used if the wound bed is heavily scarred or poorly vascularised, and when long 

and large calibre grafts are necessary. Harvesting free-vascularised grafts is time

consuming and requires great clinical expertise. 

Nerve allografts have been used previously, which give similar regeneration to that 

observed in the autograft; however the requirement for immunosuppression and the risk 

of rejection are a major drawback (Rustemeyer and Dicke, 20 I 0; Mackinnon et al., 

200 I). Other biological materials have also been used as a nerve guidance conduit, such 

as vein (Walton et al., 1989; Risitano et al., 2002), muscle (Battiston et ai., 2000) and 

small intestine submucosa (Badylak et al., 1998). 

After peripheral nerve repair, patients are advised to perform physical and occupational 

therapy to aid the cortical remodelling process. Only 50% of patients treated with an 
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autograft regained the function they had prior to their nerve injury (Kehoe et al., 2012; 

Ichihara et al., 2008). In addition, 20% of autograft repairs do not achieve any 

functional recovery (Chiu, 1995). Without being able to guarantee success, most 

surgeons would prefer to avoid a second operation, and in turn, avoid permanent loss of 

function at the donor site. As a result, extensive research efforts have focussed on 

developing an alternative to the nerve autograft or allograft therapy. 

1.4 Neural tissue engineering 

Tissue engineering is a multi-disciplinary field where biology, material science, 

theoretical modelling and engineering combine towards the development of tissue 

replacements that restore or establish normal function (Langer and Vacanti, \993). 

Conventionally, tissue engineering has relied on the use of scaffolds as temporary 

structures to facilitate cell migration into the repair site and then eventually be replaced 

with native extracellular matrix (ECM). More recently scaffolds have been developed 

that can also confer bio-functionality, and this need is reflected in recent reviews which 

describe how the addition of cells and combination of molecular and mechanical signals 

can enhance the repair and regeneration process (Bell and Haycock, 2012; 

Bellamkonda, 2006). In addition to this, other implant properties that are critical to 

function include the scaffold structure and biomechanical properties (Brown and 

Phillips, 2007). It is not essential for a tissue-engineered implant to exactly reproduce 

every feature of the native tissue; the success of tissue engineering is dependent on the 

restoration of adequate function. For some tissues, function must be restored 

immediately, for example covering a skin wound. For peripheral nerve, function is 

restored in time through regenerative processes including the elongation of neurites, 

reconnection of neurons to target organs and subsequent cortical remodelling. The 

initial design requirement for a peripheral nerve repair device therefore is for it to be 
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able to facilitate the repair process, providing an environment for nerve structure and 

function to be restored. 

Recent academic reviews agree that the optimal solution for peripheral nerve repair 

would be an aligned cellular conduit that can (1) mimic the nerve graft to provide 

guidance and growth-promoting factors (secreted by the cells) to enhance regeneration; 

(2) provide adequate mechanical support for the regenerating axons; and (3) prevent the 

infiltration of fibroblasts that inhibit the repair process. However for cell-containing 

conduits, there are hurdles to be overcome regarding the source and availability of 

suitable cells before this can become a viable clinical option (Bell and Haycock, 2013; 

Nectow et al., 2012; Gu et ai., 2011). 

Recent approaches for making guidance conduits include the use of aligned fibres or 

channels, patterned surfaces, electrical and magnetic fields, mechanical loading and 

gradients of physical and chemical cues to organise engrafted and/or infiltrating cells 

(Yao et ai., 2010; Ceballos et al., 1999; Maeda et al., 1993; Eastwood et ai., 1998). 

Various materials are being explored, with surface modifications to support cell 

attachment and the incorporation of growth factors. Ideally the scaffolds would satisfy 

many properties, for example they would be: 

Biocompatible, to be able to support nonnal cellular behaviours, without 

eliciting any undesirable effects or immune responses. 

Biodegradable, to be able to degrade after the regeneration process and be 

remodelled or resorbed into the host tissue. This would avoid the requirement 

for a second operation to remove the device, which is currently required for non

biodegradable scaffolds (Lundborg et ai., 2004). Clinical and experimental data 
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suggest that the ideal scaffold should biodegrade m 1-2 years (Bell and 

Haycock, 2012). 

Suitable, in terms of its mechanical properties, to be able to withstand the 

loads that nerves are subjected to during nonnal daily activities, i.e. bending and 

stretching. 

Easy to handle and suture, to be robust enough for easy handling and capable 

of implantation. 

These properties are mainly detennined by the scaffold material, manufacturing process 

and structure. The types of scaffolds used can be divided into two categories: natural 

and synthetic materials, which will now be discussed in more detail. 

1.4.1 Neural scaffolds 

1.4.1.1 Natural biomaterials 

Naturally-derived materials, such as the major components in ECM: collagen, laminin 

and fibronectin, have beneficial properties such as stimulating Schwann cell adhesion, 

migration and proliferation (Babington et ai., 2005; Grimpe and Silver, 2002; Gardiner 

et ai., 2007). 

Collagen 

Collagen is a large complex family of molecules, most commonly found as fibrous 

bundles, that interact with each other and other ECM molecules to provide a range of 

structures and functions throughout tissues of the body, for example, bone, cartilage, 

tendon, cornea, blood vessels, skin and nerve (Cen et ai., 2008). Collagen has a triple a

helical structure, dependent on a highly characteristic sequence of amino acids, with 

glycine in every third position and also has a high content of proline and hydroxyproline 
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(Gordon and Hahn, 2010). Native type I collagen can aggregate into fibrils 

(fibrillogenesis). In fibrillogenesis, the collagens are cleaved by specific enzymes 

(procollagen metalloproteinases). Fibrillogenesis would not occur without these 

proteinases (Alovskaya et al., 2007). Collagen is a highly conserved protein across 

species and there are various types of collagen currently being used in the clinic for 

peripheral nerve repair (see table 1.1 in section 1.3.2.1; Meek and Coert, 2008). 

Collagen has also been used in the clinic for cosmetic surgery (e.g. Zyplast, Zyderm), 

nerve (e.g. Integra) and skin (e.g. Apligraf). 

Various methods have been used for producing aligned collagen materials. These 

include: high strength magnetic field (Guido and Tranquillo, 1993); micro-fluidic 

channels (Lee et al., 2006); electro spinning (Barnes et al., 2007); hydrodynamic flow 

(Edwina et al., 2011) and cellular self-alignment in tethered gels (Phillips et ai., 2005). 

Additionally, collagen can interact directly with cells to influence cell adhesion, growth 

and differentiation, and play an important role in supporting axon growth and synaptic 

connection and maintenance (Fox, 2008). 

Fibrin 

Fibrinogen molecules are comprised of two sets of disulfide-bridged Aa-, B~-, and y

chains. Each elongated 46 nm structure contains two outer D domains connected to a 

central E domain by a coiled-coil segment (Laurens et al., 2006). Fibrin is formed after 

thrombin cleavage of fibrinopeptides A and B from fibrinogen Aa- and B~-chains, thus 

initiating fibrin polymerization. Double-stranded fibrils form through end-to-middle 

domain (D:E) associations, and fonn a network of fibrin fibres which create a clot 

network (Laurens et ai., 2006). Fibrin plays an important role in the repair process after 

PNI. Within the first 24 hours after PNI, a fibrin cable forms between the two nerve 
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stumps, serving as a scaffold for cell migration, and also becomes populated with ECM 

proteins (Liu, 1992; Williams et a!., 1983). 

Fibrin is currently being used in the clinic in the fonn of 'fibrin glue', as an alternative 

to micro-surgical sutures in peripheral nerve repair (Anani and El-Sadek, 2009) and as 

an outer tube and as a filler for conduits (Kalbennatten et al., 2009). Improved 

regeneration was observed for the repair of a 15 mm gap in rabbit peroneal nerve using 

a vein graft filled with autologous fibrin glue (Choi et a!., 2005). The commercial kits 

for fibrin glue comprise of fibrinogen and thrombin, which react to fonn fibrin at the 

time it is being used (Currie et a!., 2001). 

Other natural biomaterials 

Other ECM proteins have also been used to engineer nerve repair devices; these include 

laminin (Kuappila et al., 1993; Toba et al., 2002), fibronectin (Whitworth et aI., 1995; 

Ahmed and Brown, 1999), hyaluronic acid (Ozgenel, 2003; Wang et al., 1998; Seckel et 

al., 1995), keratin (Lin et al., 2012; Hill et al., 2011; Apel et al., 2008), chitosan (Wang 

et al., 2012; Wang et al., 2005) and silk fibroin (Huang et al., 2012; Ghaznavi et al., 

2011; Yang et al., 2007). 

Laminin can be found in tissues such as endothelium, smooth muscle and bone marrow 

(Durbeej, 2010; Miner, 2008). It has been shown that the expression of lam inin binding 

integrin subunits is upregulated in DRG neurons after sciatic nerve transection in rats 

(Wallquist et al., 2002), and is considered to play an important role in peripheral nerve 

regeneration (Wallquist et al., 2002; Fried et al., 2005). Laminin, collagen, fibrin and 

hyaluronate matrices were compared within tubes for peripheral nerve repair. It was 

found that longer axons were extended and more axons innervated their targets in the 
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repairs using a laminin matrix (Labrador et al., 1998; Navarro et al., 1996). However 

there have been contrasting results, for example, Valentini and colleagues found that 

collagen and laminin-containing gels impeded regeneration in the rat (Valentini et al., 

1987). 

In the repair process after PNI, hyaluronic acid plays a role in organising the ECM in 

the fibrin matrix phase of regeneration to facilitate migration of regenerating axons 

(Wang et al., 1998). Topical application of hyaluronic acid to transected and 

immediately repaired rat sciatic nerve has been shown to prevent scar formation, 

resulting in faster functional recovery (Ozgenel, 2003). It also permits increased nerve 

conduction velocities after a 12 week recovery period following primary repair of 

sciatic nerve with a topical application of hyaluronic acid, compared to application of 

saline (Ozgenel, 2003). Nerve conduction velocities are also increased when hyaluronic 

acid is injected into conduits bridging the gap in rat sciatic nerve after a 4 week 

recovery period, compared to saline controls (Wang et al., 1998). 

Keratin gel has been used to fill empty conduits and improved functional recovery was 

observed in a mouse model after 6 months, compared to an empty conduit or an 

autograft (Apel et al., 2008). 
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1.4.1.2 Synthetic materials 

The main advantage with using synthetic materials is that their chemical and physical 

properties, such as porosity, degradation rate, and mechanical strength, can be 

controlled. The biocompatibility of some synthetic materials is the main challenge, 

because they require surface modifications to support cell attachment and adhesion if 

they are to be used as core elements ofPNI repair conduits (Bell and Haycock, 2012); 

and so laminin, collagen I and fibronectin have been used as coatings (Bell and 

Haycock, 2012). 

Silicone is a non-biodegradable synthetic material that has been investigated for use as 

an outer tube in peripheral nerve repair since the 1960s (Gu et al., 2011). The inert and 

flexible properties of silicone make it a useful experimental tool (Lundborg et aI., 

1982). However the use of silicone in the clinic may cause a chronic foreign body 

reaction that could ultimately inhibit full functional recovery because silicone is non

biodegradable and remains in situ as a prosthesis (Merle et aI., 1989). Therefore a 

second operation would be required to remove the tube, which has clear disadvantages 

to the patient. 

Biodegradable synthetic scaffolds have been fabricated for use in peripheral nerve 

repair, including poly(lactic acid) (PLA) (Evans et al., 2002; Evans et aI., 2000), 

poly(caprolactone) (Bertleff et al., 2005), polyesters such as polyglycolic acid (PGA) 

for Neurotube® (Shin et aI., 2009) and poly-3-hydroxybutyrate (PHB) (Young et al., 

2002). These can be fabricated with tailored properties, for example a suitable 

degradation rate and permeability. In PLA-based scaffolds, these properties can be 

controlled by electrospinning the PLA with miscible poly(lactide-co-glycolide) (PLGA) 

random copolymers (Kim et al., 2003). 
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1.4.2 Growth factors 

Neurotrophic factors play an important role in nerve regeneration; they promote 

neuronal growth and survival (Rich et al., 1989; Whitworth et al., 1996; Steme et al., 

1997; Bloch et al., 2001). They are produced and secreted by the cells of the nervous 

system (for example, Schwann cells) and are known to regulate neural cell division, 

survival, and neurite outgrowth of certain neuron populations (Lewin and Barde, 1996; 

Terenghi, 1999). Many neurotrophic factors have been identified, and some of the main 

ones are listed below. 

• Nerve Growth Factor (NGF): This neurotrophin is vital for the development and 

the survival of PNS neurons. NGF is synthesised in peripheral targets. NGF 

binds to specific cell surface receptors on the nerve terminals and is retrogradely 

transported to the cell bodies of the neurons. The decrease in retrograde axonal 

transport of endogenous NGF after PNI informs the neuronal cell body that its 

axon has been disconnected from its target. NGF is secreted from denervated 

peripheral targets for a period of time post-injury, and this facilitates 

reinnervation, for example in laboratory tests involving rats with severed 

sensory nerves (Rich et al., 1989; Rush et al., 1995; Bloch et al., 2001). NGF 

has been shown to act specifically on primary sensory neurons and on 

sympathetic neurons (Levi-Montalcini, 1987). It is needed for collateral 

sprouting of nociceptive and sympathetic axons into denervated skin (Gloster 

and Diamond, 1992). However it has been shown that the addition ofNGF after 

PNI could also delay the regeneration process (Gold, 1997). 

• Neurotrophin-3 (NT-3): NT-3 is produced at the motor end plates of adult 

skeletal muscles and has a trophic role on neurons (motor, sensory and 

autonomic) innervating muscles (Braun et al., 1996). 
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• Fibroblast Growth Factor, basic (FGF-2): FGF-2 has been shown to be the most 

important factor for the initiation of nerve repair after trauma or injury (Grothe 

and Nikkah, 2001; Meisinger et al., 1996). It has been shown to increase axonal 

branching, enhance regeneration and promote Schwann cell proliferation in vitro 

and in vivo (Klimaschewski et al., 2004; Jungnickel et al., 2006; Davis and 

Stroobant, 1990). 

• Glial derived neurotrophic factor (GDNF): GDNF has been shown to have a 

trophic effect on sensory. motor and autonomic neurons in vivo (Hoke et al., 

2000; Trupp et aI., 1995). It has also been shown to have an effect on neuronal 

cell survival after axotomy (Zhao et al., 2004; Henderson et al., 1994). 

• Others: brain-derived neurotrophic factor (BDNF), insulin-like growth factor 

(IGF), ciliary neurotrophic factor (CNTF), which can induce pro-regenerative 

responses in neurons (Kirsch et al., 2003; Funakoshi et al., 1993). 

The use of exogenously applied neurotrophic growth factors can be an effective method 

of enhancing PNS nerve regeneration. The NTFs can be conjugated directly to the 

scaffolds for an enhanced biological effect (Bell and Haycock, 2012). Further research 

and development of devices to deliver these neurotrophic factors to the nerve injury site 

is required. Current challenges that are faced in the delivery process include local 

toxicity and poor stability associated with these factors. 
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1.4.3 Support cells 

It is widely reported that conduits filled with glial cells show much better regeneration 

for longer gaps (> 15 mm in rat, and> 30 mm in human) compared to acellular conduits 

(Bryan et aI., 2000; Bellamkonda, 2006; Gu et aI., 2011; Rodrigues et ai., 2012). 

Naturally occurring peripheral nerve regeneration in the body involves Schwann cells, 

which support axonal regeneration by clearing debris, secreting growth factors and 

ECM proteins and guiding axonal growth (Frostick et aI., 1998; Hall, 2005; Madduri 

and Gander, 2010). Cells could be delivered to the site of injury within a hollow tube, 

within a hydrogel, or on the surface of aligned fibres or channels. Schwann cells are a 

potential cellular source for supplying neurotrophic factors at the injury site (Rodrigues 

et aI., 2012). Other cells that may also have the potential to enhance nerve regeneration 

are stem cells i.e. mesenchymal stem cells (MSCs) and neural stem cells (NSCs), which 

are discussed in more detail in section 1.4.3.2 

1.4.3.1 Schwann cells 

The role of Schwann cells in the natural repair and regeneration processes of damaged 

nerves makes them obvious candidates for use in the development of an implantable 

repair device to provide support and guidance to regenerating axons following PNI. 

Promising results have been reported in the rat sciatic nerve model of PNI that show 

implanted Schwann cells assisting in the regeneration process (Ansselin et al., 1997; 

Bryan et al., 2000; Hadlock et aI., 2000; Phillips et ai., 2005). 

There are several challenges facing Schwann cell therapies, in particular the source and 

availability of the cells. Currently there is no clinically approved Schwann cell line. 

Obtaining autologous Schwann cells would require an invasive nerve biopsy, which 

carries some of the same disadvantages as the nerve autograft therapy. Autologous 
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Schwann cells could alternatively be obtained from a pre-degenerated nerve (at the 

injury site) to avoid sacrificing a healthy nerve. However, for any autologous Schwann 

cell source, the long periods currently required for the expansion of these cells in vitro 

would add a time delay to the surgery to repair the nerve (Gu et al., 2011). An 

allogeneic source of Schwann cells has been explored; however, this would require the 

patient to be immunosuppressed to reduce the risk of the cells being rejected (Gu et al., 

2011). An alternative to these approaches would be to use Schwann cell-like cells that 

have been differentiated from stem cells. 

1.4.3.2 Stem cells 

Stem cells are cells that have the ability to self-renew and differentiate, giving rise to at 

least one other cell type. There are three potential sources of stem cells that can be used 

in tissue engineering: embryonic stem cells (ESCs), adult stem cells (ASCs) and 

induced pluripotent stem cells (iPS). ESCs are pluripotent cells derived from embryos 

that have been fertilised in vitro. They have the ability to self-renew through mitotic cell 

division, and have the capability for unlimited, undifferentiated proliferation. This, 

combined with their ability to give rise to any somatic cell except extra-embryonic 

tissue, gives them great potential for use in medical therapies. ASCs are stem cells 

harvested from adults, e.g. mesenchymal stem cells (MSCs) from bone-marrow or 

adipose tissue. Additionally, normal somatic cells can be taken from an adult and de

differentiated to form iPS, which are ESC-like cells. This is ethically less controversial 

than using ESCs in an allogeneic therapy, but has not been shown to be safe and 

effective in therapy yet. 

Researchers have investigated the potential of stem cells to be used in nerve 

regeneration. Implanted neural stem cells have been shown to participate in tissue repair 

47 



and regeneration after injury to promote regeneration of peripheral nerve (Murakami et 

al., 2002; Marchesi et al,. 2007; Rodrigues et al., 2012). Table 1.2 shows some of the 

different types of adult stem cells that have been explored for peripheral nerve repair. 
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,1l1ln:1: SI ra ill 

BM-MSC Hu et al., Rhesus 40 mm gap in Enhanced regeneration (more 

2007 monkey ulnar nerve, 6 axons) and functional recovery, as 

month recovery assessed by muscle recovery and 

period. electrophysiological studies, 

compared to acellular controls. 

Chen et Sprague- 15 mm gap in Improved walking behaviour as 

al. , 2007 Dawley sciatic nerve, 10 measured by footprint analysis, 

(SD) rat week recovery reduced loss of gastrocnemius 

period. muscle weight and greater number 

of regenerating axons within the 

tube, compared to control 

(acellular 2 % gelatin). 

Dezawa et Wister 15mm gap in Differentiated BM-MS Cs, 

al., 2001 rat sciatic nerve, 3 enhanced regeneration as assessed 

week recovery by axon numbers and myelination, 

period. compared to undifferentiated BM-

MSCs. 

Zhang et SD rat Injected into MSCs had differentiated into 

al. , 2004 mechanically Schwann cell-like cells in vivo. 

injured sciatic 

nerve, 3 week 

recovery period. 

Shimizu et Wistar 10 mm gap in Axons regenerated across the gap. 

al., 2007 rat sciatic nerve, 3 Undifferentiated MSCs and those 

week recovery that differentiated into SI 00-

period. With positive cells were compared. 

immunosuppress More axons regenerated when 

ion (human BM- using the differentiated ce1Js. 

MSCs). 

ADSCs Reid et al. , SDRat 10 mm gap in Differentiated ADSCs were 

2011 sciatic nerve, 2 injected within PCL tubes before 

week recovery implantation. DRG protection 
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period. from apoptosis, compared to 

empty tube controls. 

Di Summa SDRat 10 mm gap in Axons regenerated further into the 

et aI., sciatic nerve, 2 conduit with differentiated 

2010 week recovery ADSCs compared to the empty 

period. tubes, but not as far as in devices 

containing differentiated MSCs 

and Schwann cell repairs. 

Sun et aI., SDRat 8 mm gap in More axonal regeneration and 

2011 facial nerve better reinnervation outcomes 

branch, 8 week with ADSCs compared to the 

recovery period. acellular control. 

Hippoca- Murakami Fischer 15 mm gap in After 10 weeks, more myelinated 

mpal et al., rat sciatic nerve, 6 axons and enhanced 

neuronal 2003 or 10 week electrophysiological recovery, 

progenitor recovery period. compared to acellular controls. 

cells 

Neonatal Marchesi Wistar 16mm gap in More regenerated axons in the 

skin/neur- et ai., rat sciatic nerve. cellular repairs, compared to 

al crest- 2007 acellular controls. 

like 

precursors 

McKenzie Shiverer Sciatic nerve Differentiated skin-derived 

et al., or wild was crushed and precursor cells can myelinate 

2006 type cells were axons in Shiverer mice (genetic-

mouse injected into the ally deficient in myelin basic 

nerve distal to protein). 

the injury, 6 

week recovery 

period. 

Table 1.2 Summary table for cells that have been used in peripheral nerve repair 
(Rodrigues et al., 2012, Walsh and Midha, 2009) BM-MSCs = bone marrow-mesenchymal stem 
cells; ADSCs = adipose-derived stem cells. 
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Stem cells could either be used in their "stem" state or pre-differentiated to the desired 

cell type prior to implantation. Delivery of undifferentiated stem cells to the injury site 

can encourage the stem cells to differentiate into the appropriate cell type in vivo (e.g. a 

Schwann cell-like cell in the case of PNI) as a result of cues from their 

microenvironment. In vitro studies have demonstrated that neural stem/progenitor cells 

in co-culture with cells from the nervous system will adopt a phenotype similar to that 

of their neighbouring cells. For example, dorsal root ganglion cultures (mixed cell 

population of neurons and glia) will induce differentiation of neural stem cells into a 

peripheral neuron, Schwann cell or smooth muscle phenotype (Brannvall et al., 2008). 

1.4.3.3 Considerations for translation of cell therapies to the clinic 

The use of stem cells in regenerative medicine is a relatively new field that is quickly 

expanding. Previous accomplishments using stem cells in the clinic encourage further 

research on stem cells for future cell therapies (Hayani et aI., 2007; Rama et aI., 2010); 

although there are many issues associated with their use at the moment, such as their 

source and availability, the lack of control over cell differentiation and their long term 

safety. 

Recent reviews have predicted that the optimal peripheral nerve repair device would 

include a combination of features including guidance and the presence of living cells 

(Bellamkonda, 2006; Bell and Haycock, 2012; Gu et aI., 2011). Under current 

regulations, the European Medicines Agency (EMA) categorises a cell-based therapy as 

"an advanced therapy medicinal product" (A TMP). The nerve repair device developed 

in this study would be further classed as a tissue engineered product, which is defined 

by the EMA as follows. 
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"A product that contains or consists of engineered cells or tissues and is presented as 

having properties for, or is used in, or administered to human beings with a view to 

regenerating, repairing, or replacing human tissue. A tissue engineered product may 

contain cells or tissues of human or animal origin, or both. The cells or tissues may be 

viable or nonviable. It may also contain additional substances such as cellular 

products, biomolecules, biomaterials, chemical substances, scaffolds, or matrices. " 

The US Food and Drug Administration (FDA) classify such a device as a combination 

product: biological (derived from living sources) and medical device class III (intended 

to affect the structure or function). 

There are many hurdles to be overcome before a cell therapy can reach the patient. 

These include: identifying cells/materials that will not cause adverse effects such as 

formation of tumours/ectopic tissue; fully defining the production process and final 

product; meeting regulations and designing appropriate assays to classify the product; 

confirming safety and efficacy. These hurdles and safety issues in some part explain 

why only one autologous cellular nerve repair device has progressed to clinical trials 

(Sabelman and Hentz, clinical trial, 1999). 

1.4.4 Guidance structures within tissue engineered scaffolds 

Anisotropic guidance structures are considered to be critical within a peripheral nerve 

repair device to efficiently bridge large nerve gaps (Kim et al., 2008; Gupta et al., 2009; 

Wang et al., 2011; Daly et al., 2012). When engineering intraluminal guidance 

structures, it is important to consider the scale of the different structural elements; nano

(tropocollagen, the molecular component ofa collagen fibre ~300 nm), micro- (collagen 
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fibrils -I Jlm) and macro-scale (collagen fibres -10 Jlm). The scale of the structural 

elements determines the dimensions of the environment on a cellular level. Cells 

binding to channels or fibre-based scaffolds with micro-scale architecture flatten and 

spread over them, similar to how they would in monolayer culture. representing a 

pseudo-third dimension. The scale of the material relative to the cells on/within it, plays 

an important role in cell phenotype, influencing cell shape and gene expression (Dutta 

and Dutta, 2009; Leong et aI., 2003: Behonick and Werb, 2003; Cukierman, 200 I ). 

Cells also respond differently when cultured in 3D, compared to 20 cultures, and can 

adopt more in vivo-like morphologies in 3D culture (East et al., 2010). In 3D culture, 

the cells are able to attach to the substrate through most of their membrane surface 

(Stevens and George, 2005). 

The orientation of the scaffold elements directly affects its mechanical properties and 

also provides topographical cues to cells (Murugan and Ramakrishna, 2007; East et al., 

2010; Nisbet et aI., 2009). Directional organisation is displayed in the cell shape and 

cytoskeleton. Contact-guided cellular alignment is primarily due to the orientation of 

actin filaments or microtubules (Oak1ey and Brunette, 1993; Wojciak-Stothard et al., 

1995). Weiss was first to correlate the orientation of substrate and the directional 

growth of cells as contact guidance (Weiss et al., 1945). Table 1.3 provides a summary 

of some of the materials and techniques that have been reported to create anisotropic 

guidance substrates for peripheral nerve repair. 
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Technique i\latel"ial SI rue( IIn' I{e'i lilt Ih'''erenee 

Magnetic Collagen I Aligned fibres guided neurite Guido and 

alignment outgrowth Tranquillo, 

1993; Ceballos 

et al. , 1999; 

Dubey et al., 

1999 

Fibrin Dubey et al., 

2001 

Injection Poly(lactic- Porous conduits Reduced dispersion Hadlock et al .. 

moulding co-glycolic with of regenerating 2000; Sundback 

acid) longitudinal axons, guided et al., 2003 

channels outgrowth 

Collagen Micro-fluidic Guided channels Lee et al., 2006 

channels 

Electrospun Collagen Aligned fibers Improved Tong et al. , 

fibers fibre regeneration in rat 1994 

bundles sciatic nerve model 

Poly- Nanofibres Guided cell Schnell et al., 

[epsilon]- migration and 2007 

caprolactone neurite outgrowth 

(PCL) 

Polyamide Aligned Supported Lundborg et a/. , 

filaments regeneration across 1997 

15mm gap in rat 

sciatic nerve model 

Self- Collagen Columns of improved Phillips et al. , 

alignment type I aligned cells regeneration in vivo 2005 

in tethered within an in rat sciatic nerve 

gels aligned collagen model 

matrix 

Table 1.3 Some of the current techniques and materials used to fabricate anisotropic 
neural scaffolds 
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Hydrogels consist of nano-scale fibres and represent true 3D substrates. They possess 

the desired properties for engineering: capacity for water retention, nano/micro-porosity 

to allow cells to grow and arrange in 3D, biodegradability and porosity to permit 

oxygen and nutrient diffusion (Dutta and Dutta, 2009). Phillips and colleagues used a 

tethered hydrogel with columns of aligned Schwann cells to repair a 5 mm gap in rat 

sciatic nerve (Phillips et aI., 2005). In this study the cellular hydrogel was tethered 

within a silicone tube. The Schwann cells in the collagen formed stable integrin

mediated attachments with the collagen fibrils. Over time, the cells generated contractile 

forces, which led to gel compaction (Brown and Phillips, 2011). The tethering self

aligning system avoids the need to manufacture elaborate scaffolds with surface 

modification to support cell attachment, and for a cell-seeding and/or cell alignment 

step. It also uses native collagen rather than synthetic materials. 

The high fluid content of hydrogels means that they have poor mechanical stability 

(Cheema et al., 2007), limiting their use as a scaffold for tissue engineering 

applications. If the gels can be made mechanically stable then a simple and effective 

aligned cellular material could be made, which is the focus of this project. 

Brown and colleagues previously reported that a compressive load can be applied to 

fully hydrated collagen gels to rapidly remove most of the interstitial fluid from the gel 

(Brown et al., 2005). This increases the collagen and cell density by - 50 fold without 

affecting cell viability, producing more robust cellular collagen sheets; this process is 

called plastic compression (Brown et al., 2005). 

This project began with the hypothesis that combining the tethered self-alignment 

technology with the plastic compression process could produce robust, mechanically 
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stable collagen sheets with chains of aligned supporting cells. The key advantage of this 

approach is that it achieves a stable 3D structure without the use of chemical cross

linking agents, and provides guidance, neurotrophic factors and biological cues in a 

single approach. The purpose of this work was to develop a material that could promote 

guided neuronal growth for use in a peripheral nerve repair device. 
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1.5 Aims and objectives 

The overall aim of this PhD was to develop an implantable tissue-engineered device for 

the surgical repair of the peripheral nervous system. This was divided into three main 

objectives: 

1. To develop and optimise a robust biomaterial with highly aligned cells 

[Engineered Neural Tissue (EngNT)] that could potentially form the basis of a 

peripheral nerve repair device. 

2. To engineer an 'endoneurium' using EngNT that supported the re-growth of 

axons across the gap in injured nerves. 

3. To investigate the feasibility of constructing a repair device from EngNT using 

clinically relevant cells and materials. 

Objective I was addressed by first investigating whether the alignment achieved in 

tethered hydrogels could be stabilized when the gel is removed from the tethering bars 

for implantation, and optimising EngNT. An in vitro co-culture experiment with 

primary adult neurons was used to investigate whether EngNT could support guided 

neurite outgrowth. The next step (objective 2) was to investigate whether EngNT could 

form the basis of a functional peripheral nerve repair device in vivo. This was addressed 

through the exploration of two different EngNT arrangements (rods and sheets) within 

an outer tube in the short gap rat sciatic nerve model, with the best arrangement taken 

forward for testing in a long gap model, which is representative of the clinical situation. 

The fmal part of this study was addressed by testing different types of stem cells 

(undifferentiated and differentiated) within EngNT and assessing their ability to 

promote guided neurite outgrowth in vitro. Promising cell types were taken forward for 

testing in a pilot in vivo study to assess whether they could support neuron regeneration 

across a long gap in the rat sciatic nerve. 

57 



2.0 Materials and methods 

2.1 Materials 

The following tables list the cell lines purchased (table 2 .1 ), the consumables (table 

2.2), and the antibodies (table 2.3) used for this project. 

Cell line Supplier C~'tul()gue numher 

F7 Schwann cell line, rat Health Protection Agency 93031204 

Culture Collections, UK 

ReNcell CX cells, human MiIlipore, UK SCC007 

Table 2.1 Cell lines used in this project 
This table includes the names of the cell lines, suppliers and catalogue numbers. 
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n,cagcll t/so III t ionlc,1 h l' r SlIpplier ( 'atalogul'lIlImher 

Dulbecco's modified Eagle's Sigma-Aldrich, UK 06426 

medium (DMEM) 

Fetal bovine serum (FBSIFCS) Sigma-Aldrich, UK F74524 

Penicillin-streptomycin (PIS) Sigma-Aldrich, UK P0781 

DMEM-complete is OMEM supplemented with 10% FCS and 1 % PIS 

ReNcell Neural Stem Cell Millipore, US SCM005 

Maintenance Medium 

Trypsin-EDTA solution (IX) Sigma-Aldrich, UK T3924 

Accutase™ Millipore, US SCR005 

Poly-O-Iysine Sigma-Aldrich, UK P7886 

Poly-L-lysine Sigma-Aldrich, UK P6282 

Lam in in Sigma-Aldrich, UK L-2020 

Phosphate buffered saline (PBS) Sigma-Aldrich, UK P44J7 

Paraformaldehyde (PF A) Fischer-Scientific, UK P/0840153 

Sodium borate BOH, UK 3023 1 

UranyJ acetate Agar Scientific, UK Rl206A 

Osmium tetroxide Agar Scientific, UK R1015 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, UK 05879 

Cytosine Arabinoside (Ara-C) Sigma-Aldrich, UK CI768 

Collagenase type IV Sigma-Aldrich, UK C9407 

£-amino Caproic acid (E-ACA) Sigma-Aldrich, UK A2504 
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2-mercaptoethanol Sigma-Aldrich, UK M3148 

All-trans-retinoic acid Sigma-Aldrich, UK R2625 

Platelet-derived growth factor -
PeproTech, UK 315-17 

AA (PDGF-AA) 

Basic fibroblast growth factor 
Sigma-Aldrich, UK F0291 

(FGF-2) 

Forskolin Sigma-Aldrich, UK F6886 

Glial growth factor-2 (GGF-2) Millipore, US GF030 

Neuregulin-l (NRG-l) Millipore. US 01-201 

Recombinant human fibroblast 
Millipore, US GF003 

growth factor-basic (FGF-2) 

Epithelial growth factor (EGF) 
Millipore, US GF144 

human recombinant protein 

Minimum essential medium 
Sigma-Aldrich, UK M0275 

(MEM) lOX 

Rat tail collagen type I First Link (UK) Ltd. 60-30-810 

Bovine collagen type I 
Invitrogen ™ Life 

A 10644-01 
Technologies, US 

Sodium hydroxide (NaOH) Fischer-Scientific, UK S/4930/17 

Fibrinogen (Fb) Sigma-Aldrich, UK F8630 

Thrombin (Th) Sigma-Aldrich, UK T9549 

CellTracker™ Green CMFDA Invitrogen TM, US C7025 

Hoechst 33258 (Bisbenzimide) Sigma-Aldrich, UK 861405 
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Propidium Iodide (PI) Sigma-Aldrich, UK 81845 

Trypan blue solution (0.4%) Sigma-Aldrich, UK T8154 

Toluidine blue VWR,UK JTW143-3 

Triton® X-lOO Sigma-Aldrich, UK T9284 

Goat serum Dako, Denmark X0907 

FluorSave ™ CalbioChem®, UK 345789 

Isoflurane anaesthetic Minrad Inc, UK From the pharmacist 

Rimadyl analgesic Pfizer, US From the pharmacist 

Lacri-lube Allergan®, UK From the pharmacist 

Opsite skin spray Smith & Nephew, UK From the pharmacist 

10-0 sutures eSutures 2830G 

4-0 sutures Westons W392H 

Neura Wrap ™ Integra LifeSciences, US NW340 

Silicone tubing (medical grade) SF Medical, US SFM3-3050 

aCT Embedding matrix Thermo Scientific 12678646 

Gelatin from porcine skin, type 
Sigma-Aldrich, UK G1890 

A 

Table 2.2 Consumables used in this project 
This table includes the names of the reagents, solutions and other, the supplier and catalogue 
numbers, which were used in this project. 
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Rabbit, polyc1onal anti-S 100 I 1:200 I Dako, Denmark I Z03 11 IOyLight® 488 1:200 Vector I DI-1488 

or 549. Goat Laboraties, 
Rabbit, polyc1onal anti-glial fibrillary 1 :300 Dako, Denmark Z0334 

anti -rabbit IgG US 
I or 

acidic protein (GFAP) 
(H+L) I DI-1549 

Rabbit, anti-integrin ~ 1 1:500 Millipore, US AB 1952-20 

Rabbit, anti-nerve growth factor receptor 1:200 Chemicon, UK I ABI554 

p75 

Rabbit, polyclonal anti-sox 10 1:200 Millipore, US MAB5727 

Mouse, monoclonal anti-~-tubulin III 1 :400 Sigma-Aldrich, UK T8660 OyLight® 488 1:200 Vector I DI-2488 or 

or 549. Goat Laboraties, DI-2549 
Mouse, anti -neurofilament 11:1000 1 Covance, UK 1 AMI-35R 1 anti-mouse IgG US 

Mouse, anti-nest in /1:200 / Millipore, US MAB5326 
I (H+L) 

Mouse, anti -CD54 /1:100 / Millipore, US MAB2130 

Mouse, anti -CD45 I : lOO Millipore, US 2003607 

Mouse, anti -CDl4 1:000 Millipore, US 2003608 

Table 2.3 Antibodies used in this project 
The table includes the names, suppliers and catalogue numbers of the antibodies used within this project, and the dilutions they were used at. 
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2.2 Cell culture 

2.2.1 Schwann cells (F7 cell line) 

The rat Schwann cell line SCL 4.11F7 (obtained as frozen stocks from the Health 

Protection Agency) was originally derived from neonatal Wistar rat Schwann cells 

(Haynes et aI., 1994). These cells were chosen for the initial experiments to optimise the 

production of EngNT, to ensure a ready supply of cells in the quantities required. 

Cells were cultured on standard tissue culture plastic and the nutrient medium. DMEM

complete, was replaced every 2-3 days until cells were approximately 80 % confluent, 

as observed under phase-contrast microscopy, at which point they were either sub

cultured or used for experiments. Cells were removed from the culture dishes by 

trypsinisation with 0.25 % trypsin-EDTA solution for 7-10 minutes at 37 cC, 5 % CO2 

in air; and were recovered by centrifugation at 400 x g for 5 minutes and the pellet was 

resuspended in DMEM-complete for use in the various systems in this study. 

2.2.2 Primary adult rat neurons 

All animal tissue was obtained according to the UK Home Office regulations following 

approval by the Open University Animal Ethics Advisory Group. Adult rats were 

euthanized by carbon dioxide asphyxiation (schedule 1 method) according to the UK 

Animals (Scientific Procedures) Act 1986. 

To obtain the dorsal root ganglia (DRGs), first the spinal column was excised from 

adult Sprague-Dawley rats (250-350 g) that were culled using carbon dioxide (C02) 

asphyxiation. The column was divided in half in the sagittal plane to expose the spinal 

cord, and the cord tissue was removed to expose the DRG and roots in the intervertebral 

foramen. Using the Olympus SZ40 dissecting microscope with Volpi, Intralux® 6000 
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optical fibre light source, the DRGs were removed and placed in a petri dish containing 

DMEM-complete. Twenty DRGs were collected from the thoracic and lumbar regions, 

and cleaned by removal of the roots, capsule and capillaries. Cleaned DRGs were 

placed in a fresh petri dish containing DMEM-complete. The cleaned DRGs were 

dissociated after incubation in 2 ml 0.125 % collagenase type IV (prepared in serum

free DMEM medium supplemented with 100 f.1g/ml PIS solution) at 37°C, 5 % C02 in 

air for 90 minutes. The collagenase-treated explants were mechanically dissociated 

(triturated) with a 1 ml Gilson pipette. Collagenase was removed by two 20 ml spin 

washes in DMEM-complete at 400 x g for 5 minutes. The pellet was resuspended in 

DMEM-complete supplemented with 0.0 I mM cytosine arabinoside (to deplete the 

dividing satellite glial cells and any fibroblasts, leaving an enriched primary culture of 

adult rat neurons), and plated in a poly-d-Iysine (PDL)-coated (50 mg/ml, RT, 30 

minutes) T75 flask (1-2 rats per flask) and incubated at 37°C, 5 % CO2 for 24 hours 

before use. 

DRG neurons were maintained in PDL-coated flasks and used within 48 hours. They 

were removed by trypsinisation with 0.25 % trypsin-EDTA solution for 7-10 minutes at 

37°C, 5 % CO2• Cells were recovered by centrifugation at 400 x g for 5 minutes and 

then resuspended in DMEM-complete medium for use in the various systems in this 

study. 

2.2.3 Primary rat bone marrow-mesenchymal stem cells 

The femurs of 20 day old Sprague-Dawley rats were harvested from both hind legs 

following C02 asphyxiation. Femurs were trimmed to exclude the proximal and distal 

epiphyses and trimmed of excessive muscular tissue. The bone marrow was flushed out 

with DMEM-complete using a 23G needle. Bone marrow was flushed from both 
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directions, in turn, until all material was recovered. The bone marrow was mechanically 

dissociated using a lml pipette and plated on to PDL-coated T75 flasks (1-2 rats per 

flask; flasks coated as previously described). Daily media changes were required to 

remove the non-adherent haematopoietic cells. Cells were used when 80 % confluent 

without passaging, at which point they were dissociated by trypsinisation (as described 

previously). 

2.2.4 Primary rat Schwann cell-like cells derived from adipose stem cells 

Adipose-derived stem cells (ADSCs) were isolated and differentiated into Schwann 

cell-like cells by Dr Paul Kingham, Umea University, Sweden, using previously 

published protocols (Kingham et al., 2007). 

Isolation of ADSCs 

ADSCs were obtained from adult Sprague-Dawley rats. Visceral fat encasing the 

stomach and intestines was carefully dissected and minced using a sterile razor blade. 

Tissue was then enzymatically dissociated for 60 minutes at 37 cC using 0.15 % (w/v) 

collagenase type I. The suspension was passed through a 70 Jlffi filter to remove 

undissociated tissue, enzymes were neutralized by the addition of Modified Eagle 

Medium (a-MEM) containing 10 % (v/v) foetal bovine serum (FBS) and cells were 

recovered by centrifugation at 800 x g for 5 minutes. The stromal cell pellet was 

resuspended in MEM containing 10 % (v/v) FBS and 1 % (v/v) PIS solution. Cultures 

were maintained at sub-confluent levels in a 37 QC incubator with 5 % CO2 and 

passaged with trypsin-EDT A as required. 
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Differentiation of ADSCs to a Schwann cell phenotype 

Growth medium was removed from sub-confluent ADSC cultures at passage 2 and 

replaced with medium supplemented with I mM ~-mercaptoethanol for 24 h. Cells were 

then washed and fresh medium supplemented with 35 ng/ml all-trans-retinoic acid was 

added. A further 72 h later, cells were washed and medium replaced with differentiation 

medium: cell growth medium supplemented with 5 ng/ml platelet-derived growth 

factor-AA (PDGF-AA), 10 ng/ml basic fibroblast growth factor (bFGF), 14 IlM 

forskolin (FSK) and 252 ng/ml glial growth factor (GGF-2). Cells were incubated for 2 

weeks under these conditions, with fresh medium added approximately every 72 h. 

The resulting Schwann cell-like cells were cultured on standard tissue culture plastic 

and the nutrient medium [DMEM-complete supplemented with 10 mM FSK, 100 Ilg/ml 

bFGF, 100 Ilg/ml Neuregulin-l (NRG I)] was replaced every 2-3 days until cells were 

approximately 80 % confluent, as observed under phase-contrast microscopy, at which 

point they were either sub-cultured or used for experiments before passage 8. Cells were 

passaged by trypsinisation, as described previously. Cells were recovered by 

centrifugation at 400 x g for 5 minutes and the pellet was re suspended in DMEM

complete for use in the various systems in this study. 

2.2.5 Human neural progenitor cells (ReNcell ex cell line) 

ReNcell CX (Millipore UK Ltd.) is an immortalized human neural progenitor cellline 

with the ability to readily differentiate into neurons and glial cells (ReNcell CX 

immortalized cell line, Millipore, 2012, SCC007, data sheet). ReNcell CX was 

originally derived from the cortical region of human fetal brain. 
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Undifferentiated CX cells (uCX) were cultured on laminin-coated flasks (20 Ilg/ml 

laminin in DMEMlF12 for at least 4 h at 37°C, 5 % CO2). Cells were cultured in 

ReNcell NSC Maintenance Medium supplemented with 20 ng/ml FGF-2 and 20 ng/ml 

EGF. Nutrient medium was replaced every 2-3 days until cells were approximately 80 

% confluent, as observed under phase-contrast microscopy, whereupon they were either 

sub-cultured or used for experiments. Cells were dissociated with 3-5 ml Accutase™ for 

3-5 minutes at 37 cC, 5 % CO2 and cells were recovered by centrifugation at 300 x g for 

3-5 minutes. 

Differentiation of uCX to a population of mixed glia 

Differentiation was initiated when cells were approximately 50-60 % confluent (to 

prevent overgrowth of the cells by the end of the two-week differentiation protocol), by 

replacing medium with fresh ReNcell NSC Maintenance Medium that did not contain 

FGF-2 and EGF. Medium was replaced every 2-3 days for 2 weeks, with no FGF-2 and 

EGF in the basal medium. Cells were dissociated with 3-5 ml Accutase™ for 3-5 

minutes at 37 QC, 5 % CO2 and were recovered by centrifugation at 300 x g for 3-5 

minutes. 
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2.3 3D hydrogels 

After trypsinisation of cells to be used in culture systems, the number of cells recovered 

was determined using a haemocytometer. The haemocytometer was moistened and a 

coverslip was fixed over the top, creating a chamber between the coverslip and the 

haemocytometer. Cell suspension (7 J.ll) was added to this chamber and then observed 

under the 10X objective on a light microscope. The number of cells in the grid of the 

four corners (16 squares per corner) were counted. The total number of cells was 

divided by four to give an average per corner, and then multiplied by 104 to give the 

number of cells per ml. 3D hydrogels (collagen type I or fibrin) were prepared as 

described below. Details of the cell densities used in the gels are provided for individual 

experiments or protocols. 

2.3.1 Collagen type I 

Type I collagen (2 mg/ml in 0.6 % acetic acid) and 10x MEM were mixed and kept at 

2-4 QC until neutralisation with drop-wise addition of concentrated (10 mM) and dilute 

(1 mM) sodium hydroxide (NaOH). CollagenlMEM solution was mixed by swirling 

after each addition of NaOH and neutralisation was indicated by a colour change of 

phenol red pH indicator in the medium (from yellow to peach/orange). The neutralised 

collagenIMEM solution was then added to the cell suspension containing the 

appropriate number of cells, and swirled to mix, in a final mixture ratio of: 80 % (v/v) 

collagen, 10 % (v/v) 10x MEM and 10 % (v/v) cell suspension. The gel mixture was 

dispensed into appropriate culture vessels or moulds (section 2.4) and left to set for 10-

15 minutes at 37°C before overlaying with appropriate culture medium. 
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2.3.2 Fibrin 

Fibrinogen (5 mg/ml in PBS) was mixed with the appropriate cell suspension (in 

DMEM-complete), and then added to the thrombin (2 V/ml in PBS). These were mixed 

slowly by triturating in a final mixture ratio of: 67 % (v/v) fibrinogen, 16.5 % (v/v) cell 

suspension and 16.5 % (v/v) thrombin. Gels were cast into the tethered moulds (see 

section 2.4.1 for detail) and left to set for 20 minutes at 37°C. Gels were then topped up 

with 7 ml of culture media containing 1 mg/ml of €-Amino Caproic Acid (E-ACA), to 

inhibit enzymatic degradation of the fibrin gel by fibrinolysis. E-ACA prevents the 

binding of plasmin to fibrin and thus blocks fibrinolysis. Fibrin tethered gels were left 

for 18 hours to permit contraction. 
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2.4 Engineered neural tissue protocol 

EngNT is a tissue-like robust hydrogel with highly aligned cells (prepared as described 

in East et al. , 2010). Rat tail and bovine collagen I, and fibrin hydrogels were used for 

preparation of EngNTs for the experiments in this project. The process for making 

EngNT can be divided in two parts: making tethered gels, and then stabilising them 

using the plastic compression process (figure 2.1). 

1. The cellular collagen 
gel i, ca,t into a rectangular 
mould and tethered at 

2. The cell' attach to the 
extracellular matrix 

each end. 

tethering 
~rs 

rectangular 
mould 

petri 
dish 

5. Engineered Neural Tissue (EngNT): 
A tissue-like robust hydrogel wrtIl 
highly Iligned cells 

Figure 2.1 Production of EngNT 

12 hours 

3. The cells contract the gel and 
become elongated. forming chains 
along the longitudInal 
axis of the gel 

..-. 

4. Stabilisation of aligned cellular gel 
by removal of intersbtial ftu id 

This shows the general scheme for the production of EngNT using collagen. However the 
materials and timings were varied in the experiments. 
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2.4.1 Tethered cellular gels 

Cellular hydrogels were prepared as described in section 2.3 and cast in the tethering 

system (Figure 2.2), which was within a petri dish and on a cold block to reduce the rate 

of fibrillogenesis. The cellular collagen solution was integrated with the tethering bars 

using a 200 III Gilson pipette, incubated for 10-15 minutes to allow it to set at 37 DC, 5 

% CO2 and then overlaid with 7 ml of DMEM-complete mediwn before returning it to 

the incubator for 24 hours to pennit gel contraction and cellular self-alignment. 

Figure 2.2 Tethered gel preparation 
Stainless steel mould and tethering bars used for self-aligning tethered gels (A), mould with 
tethering bars in position that will anchor the gel at opposite ends (B), contracted, aligned 
hydrogel (c), and a rolled plastic compressed collagen construct (adapted from East et al., 
2010). 

The cells within this tethering system self-align along the long axis of the gel as a result 

of the tension they generate between the two attachment sites (Eastwood, 1998; Brown 

and Phillips, 2004; Phillips et al. , 2005 ; Alovskaya et al. , 2007). 
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2.4.2 Plastic compression 

Plastic compression (Brown et ai., 2005) is the process used to stabilise the cellular 

alignment in the hydrogel (figure 2.3), once it is removed from the tethering system. 

This process involves loading the gel with a 120 g weight to irreversibly expel most of 

the interstitial fluid held within the mesh of collagen fibrils (the fluid being absorbed by 

filter papers), thereby increasing the matrix and cell density and producing a robust, 

aligned cellular hydrogel (EngNT). 

120g load ---..!>..J 

/ 
glass 

hydrogel-~~~""'~"'.a.:;:-
st ainles s .-.r,.......,tI:-lr::~ __ _ 

on mesh 

steel mesh L-___ -=:...::.:. __ ---.:~-filter paper x3 

Figure 2.3 Stabilisation of cellular alignment by plastic compression 
The gel is placed between the two nylon meshes, and the weight is applied for I minute (unless 
otherwise stated). 
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Fully-hydrated gels in 24 well-plates were gently removed using a spatula (for initial 

experiments in chapter 3). Tethered gels were cut away from tethering bars (in the 

stabilisation process), so the tethering mould could be gently lifted away from the gel. 

The gel was placed between the two nylon meshes and the 120 g load was applied for I 

minute (unless otherwise stated). For experiments to assess cell survival and alignment 

post-plastic compression, and for co-culture with DRGs, the top layer of nylon mesh 

was slowly peeled away leaving the bottom layer of nylon still in contact with the 

compressed gel. The compressed gel on the nylon mesh was then submerged in a petri 

dish of media, allowing the gel to float away from the nylon. For experiments where the 

tethered cellular gels were compressed and used to generate EngNT rods, the 

compressed gel, with the fluid-leaving surface (FLS) exposed, was gently rolled otT the 

top layer of nylon along the longitudinal axis (the FLS on the inside) forming a rod 

shaped structure (Figure 2.2D). These rods were then placed in a petri dish of DMEM

complete and, when cut to size, were ready for device assembly. 

2.5 In vitro co-culture of EngNT with neurons 

EngNT was made as described in the previous section. DRG neurons were prepared as 

described in section 2.2.2. These were seeded onto the surface (not the FLS) of EngNT 

sheets in a petri dish with no medium, allowed to settle for 30 minutes, then constructs 

were immersed in culture medium at 37 °C in a humidified incubator with 5 % C0 2/95 

% air. After 3 days the EngNT-neuron co-cultures were washed briefly in phosphate 

buffered saline (PBS) and fixed with 4 % paraformaldehyde (PF A) for 24 hours, then 

immunofluorescence staining was carried out as described in section 2.9.1, to detect 

PIII-tubulin-positive neurons and to label the cells used in the EngNT with a suitable 

antibody against a specific marker. 
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2.6 Tensile testing 

This experiment was conducted by Dr Darren Burke from Bose Limited. Tensile testing 

was used to compare the mechanical behaviour of fresh rat sciatic nerve and acellular 

sheets of plastic compressed collagen. For this experiment, 40 mm lengths of sciatic 

nerve (starting from 5 mm distal to the hip joint) were collected from female 240-300 g 

Sprague-Dawley rats killed by CO2 asphyxiation, and acellular plastic compressed 

sheets of collagen were made. Nerves were maintained at their in situ length on a frame 

made from a piece of card. For each experiment, nerves and sheets of collagen were 

connected to a Bose ElectroForce 3100 system (Bose, UK). Each nerve or construct was 

stretched at a rate of Imm per minute and was tested until point of breakage. WinTest 

Control software was used to produce force/extension curves, from which the resistance 

to deformation of each nerve and sheet of collagen could be assessed. 

2.7 In vivo testing in the rat sciatic nerve model 

2.7.1 Device assembly 

The outer sheath of the device (a silicone tube with a longitudinal slit or NeuraWrapTM) 

was cut to 8 mm for a 5 mm gap and 18 mm for a 15 mm gap to allow a 1.5 mm overlap 

with each nerve stump. EngNT rods or sheets were positioned within the conduits. The 

silicone closed naturally due to its elastic structure, and NeuraWrapTM was closed using 

10-0 sutures along the seam. 

2.7.2 Surgery 

Surgery and animal care were performed in compliance with institutional guidelines, 

under a Home Office Licence. Adult (250-400 g) Sprague-Dawley rats (a transgenic p. 

actin-green fluorescent protein (GFP) reporter line or wild type) were deeply 

anaesthetised by inhalation of isofluorane and oxygen, and maintained under anaesthetic 
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with a gas mask throughout the surgery, which was carried out on a heated table (set to 

40°C). The breathing of the animals was monitored throughout the surgery as an 

indication of depth of anaesthesia, and the anaesthetic dose was adjusted accordingly. 

Lacri-Iube eye ointment was applied to both eyes of the rat to prevent drying during the 

surgery. The skin over the left femur was shaved and a 3 cm lateral skin incision was 

made parallel to and approximately 5 mm dorsal to a straight line between the knee and 

hip joint, to reveal the intennuscular plane, which was then separated using blunt 

dissection to expose the sciatic nerve. Viewed with a Zeiss Sterni DV4 spot 

stereomicroscope, the sciatic nerve was separated from surrounding tissue before a 

transection was made in the nerve mid-way between the hip and the knee, above the 

bifurcation. The repair device or graft was secured to the proximal and distal stumps of 

the transected nerve with 2-3 surgeon's knots per stump, using 10.0 non-absorbable 

nylon sutures. The injury site was closed with separate fascia and skin sutures. 0.1 ml 

Rimadyl analgesic was administered sub-cutaneously to the injury site and Opsite skin 

spray was sprayed over the sutured skin wound to reduce the risk of infection and the 

animal disrupting the wound. Animals that were immunosuppressed received an 

injection (sub-cutaneous) of Cyclosporine A (15 mg/kg) 24 hours prior to the surgery 

and then daily throughout the recovery period. 

During recovery, animals were kept separately in a heated chamber and monitored 

closely until they had regained consciousness before being returned to their previous 

social group. Animals had free access to food and water after recovery from 

anaesthesia. All rats were kept in cages within ventilated Scantainers with room 

temperature maintained at 21 ± 0.5°C and a lighting condition of 12 hour light/dark 

cycle. For each experiment, the weight of the animals was monitored. Animals were 

culled following the recovery period using C02 asphyxiation. 
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2.7.3 Device harvest 

Repaired nerves were excised under a dissecting microscope and harvested devices with 

proximal and distal stumps were maintained at in situ tension using a card frame, which 

keeps the nerve at the same length during fixation. 

2.7.4 Gastrocnemius muscle dissection 

The gastrocnemius muscle is the major calf muscle on the posterior surface of the lower 

hind leg. Both the experimental and contralateral gastrocnemius muscles were exposed 

and then separated from the surrounding tissues before being cut out at the Achilles 

tendon and knee to be weighed. 

2.8 Sectioning 

2.8.1 Vibratome sections 

The vibratome was used to section devices which had a silicone outer tube. Following 

fixation by immersion in 4 % PF A overnight at 4°C, the fixative was aspirated and the 

tissue was washed (3 changes of PBS for five minutes for each wash). The tissue was 

then embedded in warmed (37°C) 20 % gelatin in PBS and left to set for 20-30 minutes 

at 4 °C before adding 4 % PF A at 4 °C overnight. The fixed gelatin block was secured 

to the specimen holder with super glue and 100 Jlm thick sections were cut using the 

Leica vibratome VTl 000. Sections were collected in water using a fine brush and stored 

in PBS prior to immunostaining. 

2.8.2 Cryo-sections 

Frozen sections were cut from the devices which were implanted within the 

NeuraWrapTM outer tube. Following fixation by immersion in 4 % PFA overnight at 4 

QC, the fixative was aspirated and the tissue was washed in PBS. Tissue was placed in a 
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rectangular plastic mould and overlaid with OCT at room temperature. It was oriented 

and frozen quickly in liquid nitrogen. The frozen block containing the tissue was 

removed from the mould and secured to the specimen holder with OCT in the required 

orientation in the -25°C cutting chamber of a Leica CM 1900 Cryostat. 10 Ilm sections 

were cut and collected on poly-L-Iysine (PLL) coated slides and immunostained 

immediately. 

2.9 Staining 

2.9.1 Immunofluorescence labelling protocol 

The following method was used to stain fully hydrated gels, EngNT (with and without 

neurons) and tissue sections from harvested devices and autograft repairs. 

Following fixation of gels by incubation in 4 % PF A overnight at 4 °C, the fixative was 

aspirated and material was washed. Washes for the gels: 3 changes of 2-3 ml PBS for 

five minutes for each wash; washes for tissue sections on slides: immersed in 300 ml 

PBS). Samples were then incubated in 0.1 % Triton-X solution for 30 minutes. After 

another wash in PBS, the material was immersed in a blocking solution containing 5 % 

goat serum in PBS for 40 minutes. Following another wash, material was incubated 

with primary antibody(s) at the appropriate dilution(s) in PBS (see table 2.3) for 18 h at 

4°C. After 18 h, the material was washed and then incubated with secondary 

antibody(s) at the appropriate dilution(s) (see table 2.3) and Hoechst 33258 (l: 1000) in 

PBS for 90 minutes. Finally the material was washed and stored in PBS ready for 

microscopy. 

For staining cells on covers lips the following adaptations were made to the above 

immunofluorescence protocol: primary and secondary antibody incubation was for 90 

77 



and 45 minutes, respectively, at room temperature. Covers lips were mounted on slides 

using FluorSave TM. 

2.9.2 Flow cytometry 

Following fixation of cells in suspension with 4 % PF A for 10 minutes at 4 °C, cells 

were washed and then stained in suspension. Washes were carried out by the addition of 

5 ml PBS and centrifugation at 400 x g for 5 minutes. After the first wash, the cell pellet 

was resuspended in I ml of 0.1 % Triton-X solution for 1 minute and then washed. 

Cells were then resuspended in 500 III of blocking solution containing 5 % serum in 

PBS and incubated for 30 minutes at 4 °C. Cells were washed and counted, and then 

resuspended into tubes each containing 2 x 105 cells. Following this, 10 J.l1 of primary 

antibody (anti-CD54, I: 10 dilution) was added to each tube and incubated for 1 hour at 

4 0c. Next 1 ml PBS was added and cells were washed by centrifugation, before 

incubation of 100 III of the secondary antibody (dilution 1 :40) for 40 minutes at 4 °C. 

Cells were washed with 500 III PBS and then resuspended in 300 J.l1 PBS before being 

read using the F ACSCalibur. Data was analysed using CellQuestPro software. 

2.9.3 CellTracker™ staining 

Living cellular EngNT was incubated with green CellTracker™ (50 Ilg in 10 III DMSO) 

at 1: 1000 in cell culture media for 45 minutes at 37 °C in a humidified incubator. Gels 

were then washed with media before fixing or using in in vitro experiments. 
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2.10 Electron microscopy 

2.10.1 Scanning electron microscopy 

EngNT sheets were fixed in 4 % parafonnaldehyde in PBS for 24 hours at 4°C. They 

were then prepared from SEM by Francis Colyer. They were post-fixed in I % osmium 

tetroxide in phosphate buffer (PB), dehydrated through a graded series of acetone and 

infiltrated in liquid carbon dioxide in a critical point drying apparatus (Polaron, UK) 

before drying at the critical point of 31°C. The dried samples were mounted on 

aluminium SEM stubs with double-sided carbon sticky tabs (Agar Scientific, UK), 

sputter coated with gold (Polaron sputter coater SC7640, UK) and examined by Gordon 

Imlach in a Zeiss Supra 55 VP field emission guns scanning electron microscope 

(FEGSEM) at 3 k V. 

2.10.2 Transmission electron microscopy 

After excision and dissection of the middle of the repair constructs, samples were fixed 

in 4 % PF A in PBS for 24 h at 4°C. These were then prepared and imaged by Heather 

Davies. Samples were post-fixed in 1 % osmium tetroxide in PB, dehydrated through a 

graded series of acetone, flat-embedded in Epon epoxy resin and polymerised at 60°C 

for 48 h. Semi-thin sections of I J.lm were cut using a glass knife on a UCT 

ultramicrotome (Leica, UK), dried onto poly-L-Iysine coated microscope slides and 

stained with I % toluidine blue with added 5% sodium borate. Ultrathin sections of 70 

nm were cut with a diamond knife (Diatome, UK) and collected on copper slot grids 

with Pioloformlcarbon support films. Sections were counter-stained with aqueous 

uranyl acetate and Reynolds' lead citrate before examination in a JEM 1400 

transmission electron microscopy at 80kV (TEM) (lEOL, UK). 
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2.11 Analyses 

2.1l.1 Cell death quantification 

Cell death analysis was by propidium idodide (PI) exclusion and Hoechst 33258 was 

used as a counterstain to establish total cell numbers. PI is commonly used as a marker 

of cell death because it only enters cells with damaged plasma membranes (i.e. those 

undergoing late apoptotic and necrotic cell death) where it binds to DNA. Cell death 

thus results in cells with condensed, bright red PI-stained nuclei. Cellular gels were 

incubated with PI (20 mg/ml, used at 1: 100) and Hoechst 33258 (1 mg/ml, used at 

I: 1000) in cell culture medium for 30 minutes at 37°C, 5 % CO2 and then washed with 

three changes of cell culture medium for 10 minutes for each wash. 

2.11.2 Assessment of cellular alignment 

Confocal microscopy (Leica SP5) was used in the assessment of cell alignment in 

EngNT. Equivalent fields were analysed per gel using a standardised sampling protocol 

(figure 2.4A). Images were captured using a x40 oil immersion lens; z-stacks were 20 

Ilm with a step size of 1 Ilm. Image analysis was conducted using VolocityTM software 

(Perkin Elmer, Waltham, MA) running automated 3D image analysis protocols to 

measure the angle of cell alignment in each field relative to the long axis of the gel 

(figure 2.4B). 

80 



A Gel 

= sampled area 

Figure 2.4 Automated 3D analysis of cell alignment in EngNT using VolocityTM 
Sample fi elds of hydrated and compressed gels looking down at the surface on which DRG 
neurons were seeded (A); and the automated analysis using VolocityTM recognises the ce lls, in 
EngNT-Schwann cell in this example, based on colour and intensity. VolocityTM a igns a line 
for the longest length and reports the angle of deviation from the long axis of the gel (B). 

2.11.3 Assessment of neurite growth in vitro 

Con focal microscopy (Leica SP5) was used in the assessment of neurite outgrowth on 

EngNT. The same image acquisition protocol was used as described in section 2. 11 .2. 

Image analysis was conducted using VolocityTM software (Perkin Elmer, Waltham, 

MA) running automated 3D image analysis protocols to measure the length and 

orientation of each neurite for each field. VolocityTM recogn ises th e neurites based on 

colour channel and intensity and traces over th em using the 'skeletal length' tool, which 

gives length (f.lm) and bearing (degrees) read outs relative to the long axis of the gel, to 

enable the amount and direction of neurite growth to be quantified. 
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2.11.4 Assessment of neuronal regeneration ill vivo 

Fluorescence microscopy (Olympus BX61) was used to capture images from 

immunostained transverse cryosections. To assess neuronal regeneration, aIJ of the 

neurofilament positive axons present in each transverse section were counted. In some 

cases the localisation of each axon in relation to the EngNT material was asses ed, in 

which case EngNT was visualised using autofluorescence. 

2.11.5 Analysis of myelin ill vivo 

At least 50 myelin profiles were sampled from each of 5 electron micrographs at the 

mid-point of the constructs that were taken from the densest regions of regeneration, 

identified using corresponding semi-thin sections. For each myelinated axon, the axon 

diameter and fibre diameter (axon + myelin sheath) were measured at the widest part of 

the fibre. For the unmyelinated axons, only the axon diameter was measured. 

Measurements were made using Image J software, Figure 2.5 swnmarises this process . 

..... -. . .. .. . ..... , .... " 

Figure 2.5 Example measurements to assess myelination from an electron micrograph 
using Image J. M = myelinated axon. Axon diameter measurements are shown using the red 
arrows and fibre diameter measurement is shown using the orange arrow. 
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3.0 Development and optimisation of Engineered Neural Tissue (EngNT) 

3.1 Introduction 

An important area of research in neural tissue engineering is concerned with how to 

promote and guide neurite extension across a gap in a damaged nerve (Bellamkonda, 

2006, Daly et al., 2012; Bell and Haycock, 2012). Directing regeneration is important 

for an efficient repair and to increase the likelihood of a functional outcome, as guided 

axons will reach their targets faster than those crossing a gap without guidance, 

reducing the time in which a target organ is denervated (Hall, 2005). It is widely agreed 

that the presence of living cells is essential for supplying the signals required for 

optimal neurite extension and for the repair of gaps larger than 3 cm in human nerve/s 

(Duemans et al., 2010). 

Schwann cells tend to be the starting cell type for tissue engineers developing a repair 

device because they are the appropriate resident PNS glial cell type and play an 

important role in the regeneration process (Rodrigues et al., 2012). Previous studies 

have investigated how alignment of Schwann cells can affect neuron regeneration, 

providing topographical and biochemical guidance cues to regenerating neurites 

(Thompson and Buettner, 2005; Weinstein, 1999; Rodrigues et al., 2012). Schwann 

cells secrete factors such as NGF and deposit laminin, which have been shown to 

enhance the effects of Schwann cell topography and orientation. Some approaches focus 

on the development of anisotropic materials that confer alignment to seeded Schwann 

cells (e.g. guidance cues on the material through the influence of surface architecture 

such as, channels, fibres and grooves), which in turn direct neurite outgrowth (Lietz et 

al., 2006). The migratory movement of cells and their interactions with the 

physiochemical properties of their substrata was first described by Weiss as contact-
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guidance, from his experiments on cell and axon orientation (Weiss, 1934; Weiss, 

1945). 

In previous investigations in this area, Schwann cells were cultured on the surfaces of 

three-dimensional scaffolds, owing in large part to the relative ease of fabrication of 

surfaces using many different materials. Ultimately it is the presence of the aligned 

Schwann cells that is important, and efforts to align the material are generally aimed at 

causing alignment of Schwann cells rather than a direct effect on neurites. Some studies 

have used endogenous tension from cell contraction to align cells (Eastwood et al., 

1998, Phillips et al., 2005, East et al., 2010). This approach of enabling the Schwann 

cells to self-align due to tension is employed in this project. 

It is widely agreed that Schwann cell-neurite interactions are very important during 

regeneration, and Schwann cells and neurons are usually found to be in close contact in 

vivo and in experimental models (Terenghi et al., 1999). Additionally, there is a lot of 

evidence to suggest that a cellular element is needed for regeneration across gaps larger 

than 3 or 4 cm in human (Bellamkonda, 2006; Gu et al., 2011; Rodrigues et al., 2012). 

Therefore, it is rational to include a cellular element and focus on aligning this directly, 

instead of developing an aligned material and waiting for the seeded cells to migrate and 

elongate on and along it. 

A wide variety of materials have been evaluated for nerve repair. These can be divided 

into two categories: native materials and synthetic materials. Native tissues such as 

autologous vein (Risitano et al., 2002) and autologous muscle (Battiston et al., 2000) 

have been used as nerve guidance conduits. Although they are able to successfully 

support neuronal regeneration, the disadvantage remains that there is a limited source of 
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these tissues and the lack of Schwann cells is also a disadvantage for longer gaps. As a 

result, materials made from extracellular matrix (ECM) proteins have been explored, 

such as collagen (Yoshii et al., 2001; Dubey et al., 1999; Ceballos et al., 1999),laminin 

(Kuappila et aI., 1993; Toba et al., 2002), fibrin (Kalbermatten et al., 2009) and 

fibronectin (Whitworth et al., 1995; Ahmed et al., 1999). The FDA-approved bovine 

collagen I tube, NeuraGen™, is currently used in the clinic for repairs up to 3 cm in 

length. 

Another alternative for nerve repair is to use synthetic conduits, which are chemically 

pure, easier to make into elaborate structures, better suited to GMP production, cheaper, 

less likely to transmit disease, easier to source and less immunogenic than biological 

materials. The degradation time of bio-degradable synthetic materials such as 

poly(glycolic acid) (PGA) and poly(lactic acid) (PLA) can, for example, be manipulated 

(Evans et ai., 2000; Evans et al., 2002). There are currently FDA-approved synthetic 

conduits available, such as Neurotube (PGA) and Neurolac [poly(DL-lactide

caprolactone)] (PLC), for short gap repairs up to 3 cm. 

It is important to consider scaffold degradation when developing materials for 

implantation. The initial scaffold for any implanted 3D tissue that is not intended to be a 

permanent prosthesis must eventually be resorbed. Importantly, the timescale for the 

degradation of the implanted scaffold needs to relate to the formation of new, 

replacement tissue from the resident cells. The implanted scaffold must be resorbed to 

avoid compression of the regenerated nerve, which could become restricted as it gets 

thicker. However the implanted scaffold must not degrade before the new nerve tissue 

has formed or it could compromise mechanical integrity. Native protein-based 

materials, where fibrillogenesis and potential for telopeptide cross-linking sites are not 
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impaired (Marenzana et al., 2006) represent a natural part of the cell-matrix 

environment, participating in biological turnover and remodelling. They tend to be 

removed by cell action as new matrix is produced, with no harmful breakdown 

products. Based on this and because of previous expertise, this project used natural 

protein materials, rather than synthetic polymers. 

The matrices explored here for the development of an Engineered Neural Tissue 

(EngNT) are collagen I and fibrin: 

i) Collagen I is the most abundant ECM protein in mammalian tissue and it is the 

predominant structural protein present in peripheral nerve tissue (Ricard-Blum, 

2010; Soderhall et aI., 2007). Collagen fibrils and their networks play a 

dominant role in maintaining the structural integrity of ECM, while being highly 

dynamic and undergoing constant remodelling (Cen et aI., 2008). Collagen is 

one of the most widely used materials for three-dimensional cell culture and 

tissue-engineering applications, partly because of the ability of purified collagen 

I monomers to self-assemble into three-dimensional gels at physiological 

temperature and pH. 

ii) Fibrin was also selected for consideration based on its role in the natural repair 

process that occurs in wound healing. After peripheral nerve injury where 

defects are repaired using an empty conduit, on day 1 the conduit will be filled 

with blood proteins (Belkas et al., 2004). In days 2-6 an hourglass shaped fibrin 

cable forms between the two nerve stumps (for short defects) and in days 7-14 

support cells migrate on to the protein cable and other ECM proteins are 

deposited. Axon elongation (regeneration) begins from day 15 (Belkas et aI., 

2004). Using fibrin to make EngNT to form the core of a repair device may 
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therefore speed up the repair process by removing the delay due to formation of 

the fibrin tissue bridge. 

Several methodologies exist for using collagen and fibrin to guide axonal re growth 

(Ahmed et ai., 2000; Dubey et ai., 2001; Phillips et ai., 2005); the method used in this 

study is a tethering system. The tethering approach results in an aligned cellular 

hydrogel that provides mUltiple stimuli in an effort to mimic the milieu of signals 

normally found in a nerve autograft, i.e. biological, physical and chemical. It facilitates 

cell growth, organisation and differentiation, permitting the cells to self-align and 

remodel the matrix generating a three-dimensional environment for repair and 

regeneration. 

The Open University owns the granted patent for self-alignment of cells in tethered 3D 

hydrogels in Europe, US, Canada and Australia (Brown and Phillips, 2004). It is a 

simple and effective way of aligning cells in a 3D environment and has been used to 

generate tissues with aligned architecture, such as cardiac muscle (Boudou et ai., 2012) 

and nervous system tissue (Phillips et al., 2005; East et al., 2010). Our lab has shown 

that aligned Schwann cells within a tethered collagen gel can promote and guide neuron 

regeneration in vitro and in vivo (Phillips et al., 2005). In that study the cellular collagen 

gel was tethered within the conduit before implantation, generating aligned Schwann 

cells in a 3D collagen environment. This device guided neuronal regeneration across a 5 

mm gap in the rat sciatic nerve model more effectively than an empty tube control. 

However there is limited scope for scale up and translation of that design, which relies 

on a hydrated hydrogel remaining tethered within a conduit, due to the skill required for 

integration and potential for tethering to fail during handling, implantation or post

implantation. The initial aim of this project therefore was to retain the aligned cellular 
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architecture achieved in these 3D tethered gels but to develop the material to a more 

stable and robust form. 

Plastic compression, a method developed by Brown et al., increases the mechanical 

strength and stability of hydrogels by irreversibly removing most the interstitial fluid 

from the gel, generating a more dense and robust material (Brown et aI., 2005). Plastic 

compression has been used to stabilise collagen hydrogels containing various cell types 

including rat astrocytes (East et aI., 2010), human limbal epithelial cells (Levis et al., 

2010), human bladder smooth muscle cells (Micol et aI., 2011) and human 

osteosarcoma cells (Bitar et al., 2008) with no reported adverse effects on cell viability. 

Plastic compression technology is commercially available (RAFT™ by TAP 

Biosystems) for the fabrication of tissue-like constructs. The Open University and TAP 

Biosystems are currently working in collaboration to develop an advanced RAFT ™ 

process for the production of aligned tissue-like constructs, combining the plastic 

compression and tethering technology. 

In preliminary studies aiming to understand the effect of aligning astrocytes on neuronal 

growth, tethered collagen I gels with aligned astrocytes were successfully compressed to 

generate robust constructs in which astrocyte alignment was maintained (East et al., 

2010). We hypothesized that this method could be developed further in order to stabilise 

tethered hydrogels with PNS glia, retaining the cellular alignment following their 

removal from the tethering system. This could enhance the mechanical properties so the 

material can withstand surgical handling and movement in vivo after implantation. 

This study first tested the hypothesis that combining cellular self-alignment and the 

plastic compression process will produce a robust cellular biomaterial with the potential 
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to support and guide neuronal growth. This was tested by a series of experiments with 

the following aims: 

(i) to investigate Schwann cell survival after plastic compression of collagen 

gels; 

(ii) to assess whether the cellular alignment achieved in tethered rectangular 

collagen gels was retained following plastic compression and whether plastic 

compression was sufficient to stabilise the alignment; 

(iii) to assess whether neurons cultured on the surface of this engineered neural 

tissue (EngNT) with aligned Schwann cells (EngNT-Schwann cell) can 

extend neurites in a directed manner. 

Fibrin was also explored as an alternative hydrogel to collagen, repeating the key 

experiments for the development of the collagen EngNT. 

Despite the evidence that cellular therapies enhance regeneration, the application of 

such therapies in the clinic currently faces a number of biological and regulatory 

hurdles, mainly regarding the source and availability of cells (Bell and Haycock, 2012). 

Approved decellularised nerve guides are currently available, such as A vance ™ from 

AxoGen for nerve defects up to 7 cm. In these, native nerve has been stripped down to 

its extracellular matrix, removing immunogenic cell components and retaining the 

intricate ECM architecture. Such decellularised nerves have been shown to provide a 

3D scaffold to support regeneration in experimental and clinical studies (reviewed by 

Szynkaruk et aI., 2012). In consideration of these fmdings, the potential of aligned 

Schwann cells to precondition the collagen biomaterial, before they are freeze-killed, 

leaving a decellularised guidance matrix was assessed in the present study; in terms of 

the ability of the decellularised material to support and direct neuronal growth. 
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3.2 Results 

3.2.1 Schwann cell characterisation 

The rat Schwann cell line SeL 4.11F7 (Haynes et al., 1994) wa used for the initial 

experiments to develop and optimize the protocols and design of the material. The 

Schwann cell s were plated on coverslips and stained to confiml they were 100 

positive, a marker for Schwann cells (Spreca et aI. , 1989) (figure 3.1 ). 
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Figure 3.1 Schwann cells on coverslips stained to detect S100 
Schwann cells were plated on coverslips and fixed after 24 hrs before staining to detect S I 00. 

The first step was to establish the optimum Schwann cell seed ing density to give 

consistent and reliable contraction of collagen gels within 12 hours. This is important 

because sufficient gel contraction is needed in the tethered ge ls to ensure cellular se lf-

alignment. Contraction profiles were generated using a range of Schwann cell seed ing 

densities within a 2 mg/ml collagen gel (figure 3.2). Subsequent experiments were 

conducted using a cell density of 4 x 106 cells/m!, which gave over 70% contract ion 

(figure 3.2). 
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Figure 3.2 Contraction profile for Schwann cells in collagen gels 
Cells were seeded at a range of seeding densities (1-6 x 106 cells/ml) within 300 ~l collagen gels 
(2 mg/ml) in a 96-well plate. Following a 12 h incubation, gels were photographed and % 
contraction determined [(% contraction = (cross-sectional (cs) area of gel at 0 h - cs area of gel 
at 12 h) / (cs area of gel at 0 h)). Data are means ± SEM from 4 separate gels. 

3.2.2 The effect of plastic compression on Schwann cell death 

To assess the effect of plastic compression on Schwann cell death, collagen gels 

containing Schwann cells in wells of a 96-well plate were subjected to plastic 

compression for 1 or 5 minutes. Cell death was assessed using propidium iodide and 

Hoechst 1 hour after compression or after a further 20 hours in culture and compared 

with uncompressed control gels. Thee fields of view were sampled per gel. Two time 

points were used to determine the relative contribution of immediate or delayed 

mechanisms to any cell death. There was no significant difference in the amount of cell 

death observed following 1 or 5 minute plastic compression at both 1 hour (183 ± 25 

cells were counted per gel) and 20 hours (132 ± 14 cells were counted per gel) 

compared to controls (Figure 3.3, one-way ANOV A, P> 0.05). There was a significant 
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difference in the amount of cell death observed in the control gels that were stained 

either 1 or 20 hours after compression (T-test, P < 0.005). 
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Figure 3.3 The effect of plastic compression on Schwann cell viability 
There was no significant difference in the amount of cell death observed between minute 
compression or 5 minutes compression assayed at 1 and 20 hours post-compression, or in 
uncompressed control gels, P>0.05. However, the amount of cell death differed significantly in 
the uncompressed control gels that were stained I and 20 hours after the gels had set, 
* * P<O.005. n=6 independent gels. 

3.2.3 The effect of plastic compression on Schwann cell alignment 

After confirming that plastic compression did not cause cell death, the next part of this 

investigation was to assess cellular alignment post-plastic compression. It is specu lated 

that if the matrix stiffness is increased so that cytoskeletal contraction force is no longer 

sufficient to deform it in a way that results in cells losing their alignment or overall 

changes in gel size/shape, it could limit further remodeling of the collagen matrix by the 

cells. Therefore it was hypothesized that, by increasing the cell and collagen density, 

plastic compression could stabilize the cellular alignment observed in fu lly hydrated 

tethered collagen gels, producing a robust and mechanically stronger aligned 

biomaterial. 
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To assess cellular alignment, cells within tethered gels were labelled with CellTracker™ 

dye and analysed either before or after plastic compression. Schwann cell alignment 

was determined by comparing the angle of the long axis of each cell to the long axis of 

the gel. Fluorescence micrographs show that cells in fully hydrated and plastic 

compressed gels appeared similar in terms of exhibiting an overall aligned appearance, 

with cells elongated and aligned parallel to the long axis of the gel (figure 3.4). Cell 

alignment was quantified by measuring cell elongation and orientation using 

standardised image capture and analysis protocols (protocol described in methods -

chapter 2, section 2.11.2). Figure 3.5 (i) shows that cells are elongated with a mean 

aspect ratio (width/length) of 0.16 ± 0.00 (± SEM) in hydrated gels and 0.18 ± 0.00 (± 

SEM) in plastic compressed gels (Le. about 6 times longer than their width). This 

difference is not significant, demonstrating that the alignment is stabilised post-plastic 

compression. Figure 3.5 (ii) shows a frequency distribution of the angle of deviation of 

cell orientation from the long axis of the gel. There is a clear trend showing that most of 

the cells were orientated parallel to the long axis of the gel. The quantification revealed 

that 63 ± 15% (± SEM) of the cells within the fully hydrated gel and 51 ± 12% of cells 

within the plastic compressed gel, did not deviate by more than 20° from the long axis 

of the gel. Additionally, only II ± 7% and 16 ± 5% (± SEM) of the cells within, 

respectively, the fully hydrated and plastic compressed gels deviated by more than 50° 

from the long axis of the gel. 
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Figure 3.4 Self-aligned Schwann cells in fully hyd,oated and plastic compressed gels 
(i) Representative confocal micrographs showing Schwann ce ll s (green) labelled with 
CellTracke?M dye in a fully hydrated gel and in a compressed gel; (i i) and within EngNT using 
immunofluorescence, z-distance 20 Ilm, step size I Ilm. Scale bars are 50llm. 
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Figure 3.5 Schwann cell elongation and orientation pre- or post-plastic compression 
(i) The aspect ratio (width/length) of cells was not significantly different in gels pre- or post
plastic compression. (ii) Frequency distribution of the angle of deviation of cell orientation from 
the long axis of the gel in 10 degree bins. Data are means ± SEM from 3 gels, 6 regions per gel 
were analysed. 
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Alignment was a lso seen at the sub-micron scale. Scanning electron micrograph images 

of the surface of plastic compressed collagen with aligned Schwann cells (EngNT-

Schwann cell) show that the Schwann cells and collagen fibril s are a ligned and 

orientated in the same direction, compared to the random orientation of fibrils in the 

acellular plastic compressed collagen (figure 3.6). 
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Figure 3.6 Scanning electron micrographs of plastic compressed collagen with aligned cells 
and without cells 
Scanning electron micrographs of the surface of plastic compressed acellular collagen (A-B) 
and plastic compressed collagen with aligned Schwann cells (EngNT -Schwann cell) (C-D) at 
low (left) and high (right) magnifications. Scale bars are 2 Ilm. 

These initial studies indicated that sheets of robust a ligned ce llular biomaterial could be 

formed using Schwann cells to self-align within a tethered collagen gel that was then 

stab ilized using plastic compression. 
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3.2.4 Neuronal growth on the surface of collagen EngNT -Schwann cell 

The next stage was to investigate neuronal growth on the surface of EngNT -Schwann 

cell and to assess whether the cellular alignment could confer alignment to growing 

neurites. Primary adult rat neurons were cultured on the surface of EngNT-Schwann cell 

for 3 days before fixing overnight and then immunostaining to detect S 100 (a marker 

for Schwann cells), ~III-tubulin (a marker for neurons) and Hoechst to label cell nuclei 

(Figure 3.7). The angle of deviation (between 0-90 degrees) of neurite growth from the 

average direction of Schwann cell alignment on a per field basis was measured. This 

revealed that the angle of neurite growth observed after 3 days corresponded to the local 

Schwann cell alignment within EngNT-Schwann cell. Figure 3.8 shows the distribution 

of neurite deviation from the angle oflocal Schwann cell alignment, with approximately 

80% of neurites not deviating from the orientation of the local Schwann cell population 

by more than 20°, and almost none of them deviating by more than 50°. 
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Figure 3.7 eurona l growth on EngNT-Schwann cell 
Fi emerged con focal micrographs showing the Schwann cells (green) with in the collagen 
EngNT- ch\ ann cell and the neurites (red), stajned for SlOO and ~III-tubulin respective ly. 

uclei (blue) were labelled with Hoech t (A-E). An image containing the red channel o nly is 
also shown for each field (F-J). cale bars are 50~m. 
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Figure 3.8 Orientation of neuronal growth on EngNT -Schwann cell 
Frequency distribution showing the angle of neurite deviation from the Schwann cell al ignment 
angle in that field (determined using automated analys is in Volocity, see section 2.11.3) , 332 
neurites were counted in total. Data are means ± SEM from n=3 independent gels, 6 regions per 
gel were analysed. 

The images in figure 3.7 show that the Schwann cells within EngNT fonned parallel 

chains, which were usually continuous within a field of view. The neurites appear to be 

growing along parallel chains of Schwann cells. The neurite length that was in contact 

with a Schwann cell was measured and expressed as a percentage of the total neurite 

length on a per field basis; 91 ± 4% (n = 3) of extended neurites, were found to be in 

close contact with a Schwann cell. 
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3.2.5 Exploring the use of fibrin to engineer EngNT -Schwann cell 

Fibrin plays a role in the natural repair process that occurs in wound healing. Having 

first developed EngNT using collagen, fibrin was investigated to see whether it cou ld be 

used in a similar manner to generate an aligned cellular biomaterial suitable for use 

within a nerve repair device. To explore the use of fibrin for making EngNT with 

Schwann cells, fibrin gel formation was fustly optimised. Initial experiments that 

attempted to construct a contraction profile in 96-well plates failed because the fibrin 

gels could not be freed from the edges of the wells without causing extensive disruption 

to the gels (figure 3.9). As a result, it was not possible to determine the effect of cell 

density on contraction of the fibrin gels (as had been done for the collagen hydrogel). 

Thus the same cell density was used to produce a fibrin based EngNT as was used for 

the production of collagen EngNT-Schwann cell, namely 4 x 106 cells/ml. 

Figure 3.9 Fibrin gel disruption in wells after attempting to free the edges 
Fibrin gels were photographed within the wells containing media after attempting to tree the 
edges from the well using a needle, which caused much disruption. 

Fibrin gel contraction in the stainless steel moulds was simi lar to what was observed 

with the tethered collagen hydrogels. The fibrin could be freed from the straight long 

edges of the mould using a scalpel without disrupting the gel. The first step was to 

assess cell death following plastic compression of fibrin gels containing Schwann cells 

by propidium iodide exclusion with Hoechst. This demonstrated that the plastic 
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compression process, when applied to cellular fibrin gels, did not increase cell death 

compared to uncompressed controls; 2.0 ± 1.5% (mean ± SEM, n=3) cell death was 

observed immediately after plastic compression, compared to 2.0 ± 0.4% (± SEM, n=3) 

in the fully hydrated gels. 

The next step was to investigate Schwann cell self-alignment in fully hydrated and 

plastic compressed fibrin gels. Schwann cells (SIOO, labelled green) appeared elongated 

and weakly aligned in uncompressed or plastic compressed fibrin gels (figure 3.10), 

compared to the Schwann cells in uncompressed or plastic compressed collagen (figure 

3.4). Alignment relative to the long axis of the gel was quantified in the same way as in 

section 3.2.3, and Schwann cells in both fully hydrated and plastic compressed fibrin 

gels were elongated with cell aspect ratios (width/length) of, respectively, 0.15 ± 0.00 

and 0.15 ± 0.00 (figure 3.11) (i.e. about 6 times longer than wide, comparable to the 

Schwann cell elongation seen in collagen gels). Gels were immunostained to detect 

SIOO and cell orientation was quantified by image analysis following confocal 

microscopy. The quantification of cell orientation, in comparison to the long axis of the 

gel, shows that the cells were orientated in different directions with no overall 

alignment in hydrated or plastic compressed fibrin gels. However there were patches of 

alignment in areas. There was a similar distribution of cell orientation angles in 

hydrated and plastic compressed gels (figure 3.11). 
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Figure 3.10 Schwann cells in tethered hydrated or plastic compressed fibrin gels 
Representative confoca1 micrographs of the Schwann cells (green), labelled with S I 00, and 
nuclei (b lue), label led with Hoechst, in full y hydrated (A, B) or plastic compressed (C, D) fibrin 
gels. cale bars are l OOflm . 

102 



(i) 

.2 

1 

0.9 

0.8 

0.7 

ct; 0.6 ... 
'0 0.5 
Cl) 

~ 0.4 
« 0.3 

0.2 

0.1 

0 +---

(ii) 25 

20 

-;- 15 -
~ 
o 
~ 10 o 

5 

o 

Fully hydrated fibrin gel Plastic compressed fibrin gel 

Fully hydrated 
• Plastic corn ressed 

10 20 30 40 50 60 70 80 90 

Angle of cell deviation from the long axis of the gel 

Figure 3.11 Schwann cell elongation and orientation pre- or post-plastic compression of 
fibrin gels 
(i) The aspect ratio of the cells was not significantly different in gels pre- or post-compression. 
(i i) Frequency distribution of the angle of deviation of each cell relative to the long axis of the 
gel. Data are means ± SEM from n=4 independent gels, 6 regions per gel were analysed. 
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Scanning electron micrographs of the surface of fibrin EngNT -Schwann cell and an 

acellular fu lly hydrated fibrin gel showed that there was a flat plaque-like structure 

evident on the surface of all the fibrin materials, which appeared to be most dense and 

obvious in the fibrin EngNT-Schwann cell. This was also evident on the acellular fully 

hydrated fibrin (not plastic compressed), figure 3.12. 

Figure 3.12 Scanlling electron micrographs of fibrin gels in fully hydrated acellular fibrin 
and fibrin EngNT-Schwann cell 
Scanning electron micrographs of the surface of fuIJy hydrated aceIJular fibrin (A) and fibrin 
EngNT-Schwann cell (4 x 106 cells/ml) (B). Scale bars are 2 ~m. Arrow heads point out plaque
like structures. 

Although there was no clear demonstration of overall Schwann cell alignment in 

tethered fibrin gels, neuronal growth on fibrin EngNT -Schwann cell was still assessed. 

Con focal micrographs show that neurite growth (stained with ~III-tubulin , red) was 

associated with the Schwann cells (stained with S100, green) within fibrin EngNT-

Schwann cell (figure 3.13). The degree of alignment was quantified in the same way as 

in section 3.2.4; i.e. the angle of neurite deviation from the mean direction that the 

Schwann cells are orientated in was determined on a per field basis. These 

measurements supported the observations from the images, which showed the majority 
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of neurite growth was along the Schwann cell s; 70 ± 4% (± SEM ) of neurite growth did 

not deviate by more than 20° from the cell orientation on a per field bas is (figure 3.13). 
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Figure 3.13 Neuronal growth on fibrin EngNT-Schwann cell 
(i) Confocal micrographs showing Schwann cells (green) and neurons (red) stained for SI 00 
and PllI -tubulin, respecti vely, and Hoechst staining of nuclei (blue) (A-C). An image showing 
only the red channel is also shown for each fi eld (D-F). Scale bars are I OO~m. (ii) Frequency 
distribution hO\ ing the angle of neurite deviation from the cellular alignment angle o f that 
field; 570 neurites were counted in total. Data are means ± SEM, n=3 independent gels, 4 
regions sampled b gel. 
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Thus, whilst the collagen EngNT -Schwann cell gave consistent and reliable alignment, 

the fibrin EngNT -Schwann cell showed a more complex pattern of localised orientation, 

and hence in further investigations only the collagen system was employed. 

3.2.6 Exploring the use of decellularised collagen EngNT -Schwann cell 

In view of the overall aim of this project, to develop a nerve repair device for use in the 

clinic, this study went on to investigate the ability of a decellularised material to 

promote and guide neuronal growth. This is based on the hypothesis that the aligned 

Schwann cells could precondition the collagen biomaterial, before being freeze-killed to 

leave a decellularised guidance matrix. Having already shown that cellular constructs 

can support and guide neurite outgrowth, decellularised constructs were investigated 

because they would potentially have a faster route to the clinic than constructs that 

contain living cells. Thus the neuron co-culture experiment was repeated using the 

decellularised material to assess its ability to support and guide neurite outgrowth. 

Collagen EngNT-Schwann cell was made as described previously (figure 2.1) and then 

dipped in liquid nitrogen once to kill the Schwann cells (Hadjipanayi et al.. 2010). Cell 

death in the freeze-killed EngNT-Schwann cell was assessed by propidium iodide 

exclusion with Hoechst and showed that 96 ± 3% (± SEM) of Schwann cells were dead. 

Neurite outgrowth on the freeze-killed material (EngNT-freeze-killed) was compared to 

EngNT-Schwann cell and EngNT-acellular (no Schwann cells, plastic compressed 

collagen only). The images in figure 3.14 shows neurites that had been extended on the 

surface of these materials. Quantification of the neurite growth showed that there was 

47-fold more neurite outgrowth (in terms of the total length extended in the sampled 

fields) on the live EngNT-Schwann cell material than on the EngNT-acellular 

biomaterial, and 26-fold more growth on the live EngNT-Schwann cell material than on 
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the EngNT-freeze-killed material (figure 3.14). These data highlight the importance of 

living Schwann cells for efficient nerve repair, and this will be discussed in some detail 

in section 3.3. 

The direction of neurite outgrowth was assessed for all three materials by measuring the 

deviation of the angle of each neurite compared to the long axis of the gel. Consistent 

with previous fmdings from this study, there was a trend showing guidance of neurites 

parallel with EngNT-Schwann cell (figure 3.14). However there was no evidence of 

guidance by EngNT -acellular and little guidance provided by EngNT -freeze-killed 

(figure 3.14). 
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Figure 3.14 Neuronal growth on EngNT-Schwann cell, EngNT-acellular and EngNT
freeze-killed 
(i) Confocal micrographs showing neurites (green) stained for PIII-tubulin on EngNT -acellular, 
-freeze-killed and -Schwann celL Scale bars are 50 J..Lm. (ii) The total length of neurite staining 
detected per mm2 was compared in EngNT and freeze-killed and acellular controls; data are 
means ± SEM from 3 independent co-cultures for each condition and 3 fields (total area 0.368 
mm2) were sampled in each ge l. (iii) The angle of neurite growth was compared to the 
longitudinal axis of the construct in each case; data are means ± SEM of the number of neurites 
with angles of deviation from the long a,,, is of the gel within each 10 degree bin. 
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3.3 Discussion 

In this part of the study it has been shown that Schwann cells survive the plastic

compression process in both collagen and fibrin hydrogels. Schwann cell alignment 

achieved in tethered collagen gels was retained post-plastic compression. Co-culture of 

collagen EngNT-Schwann cells with neurons showed that neurite growth was supported 

and the orientation of neurite outgrowth corresponded to that of the Schwann cells. In 

fibrin gels, there was some evidence of patches of Schwann cell alignment. However 

this was not sufficiently consistent to significantly affect the quantification. In either 

type of substrate material, the results suggested that the presence of a living cellular 

element supports and guides neurite growth. 

An important step in the development of EngNT was to determine whether the plastic 

compression process caused any cell death. Consistent with other fmdings, the 

stabilisation process did not cause cell death in either the collagen (Brown et al., 2005; 

Levis et aI., 2010) or the fibrin (Haugh et aI., 2012) matrices. There was a significant 

decrease in the amount of cell death in the control gel (not compressed) fixed after 20 

hours, compared to that fixed after 1 hour. This may be because the cells that are dead at 

1 hour may no longer be detected after 20 hours; or because of cell proliferation. 

Plastic compression successfully stabilised the collagen gels so that cellular alignment 

was preserved in collagen EngNT-Schwann cell immediately after and 3 days after 

plastic compression. This fmding is consistent with a previous study using plastic 

compression to stabilise astrocyte alignment in collagen gels (East et al., 2010), 

although in that study the persistence of alignment after compression was described but 

not measured. Although the mechanism for the stabilisation of alignment was not 

investigated here, it can be speculated that increased collagen concentration reduces the 

109 



ability of cells to undergo the alterations in shape and alignment associated with 

cytoskeletal contraction in a fully hydrated gel. This is in line with previous findings 

that show hydrogel rigidity and stiffness govern cell-matrix interactions during motility 

(Grinnell, 2003; Tomasek et al., 2002). 

Previous studies have investigated how plastic compression can be used to modulate the 

mechanical properties of cellular collagen I gels (Brown et aI., 2005) and fibrin gels 

(Haugh et aI., 2012), although East et al. were the only previous investigators to use 

plastic compression as a way to stabilise alignment specifically (East et al., 20 I 0). The 

plastic compression technology became commercially available in a multiwell plate 

fonnat (RAFfTM, TAP Biosystems, UK) during the course of this project, and is 

currently being developed in our lab to combine it with the self-alignment technology 

for the production of tissue-like constructs with aligned cells. If successful, that 

commercial development will provide a GMP-compliant production process that could 

be adapted to generate EngNT in a form that would be suitable for future translational 

studies. 

The scanning electron micrographs showed that the Schwann cells and collagen fibrils 

were co-aligned, whereas the collagen fibrils in the plastic compressed acellular 

collagen were randomly oriented. This is in agreement with Eastwood and colleagues 

who imaged a fully hydrated tethered collagen gel with aligned fibroblasts using the 

scanning electron microscope, and showed both the cells and the collagen fibrils were 

aligned in the same direction (Eastwood et aI., 1998). 

Both collagen I and fibrin matrices used to make EngNT created a permissive 

environment for neurites to elongate along Schwann cell columns, which guided and 
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promoted neurite outgrowth in vitro. These results are consistent with fmdings from 

previous co-culture experiments with DRG neurons and Schwann cells, that showed 

neurites were closely associated with columns of aligned Schwann cells (Thomson and 

Buettner, 2006). In this study, the majority of neurite outgrowth was in close contact 

with a Schwann cell, and grew parallel along the Schwann cell chains. This observation 

is in agreement with the current understanding of peripheral nerve repair, where neurite 

regeneration is associated with close contact with Schwann cells and/or their basal 

lamina (Guenard et al., 1992; Dubey et al., 1999; Thomson and Buettner, 2006). 

However, to understand the precise interactions between regenerating neurites and the 

Schwann cells within EngNT it would be interesting to study neurite growth cones 

using time lapse microscopy to see whether neurites seek and follow the aligned 

Schwann cells as one would predict, or whether some alterations to Schwann cell 

position and shape may occur in response to neuronal growth. The fluorescence images 

suggest that there is not a change in Schwann cell morphology because the surrounding 

Schwann cells, which are not in contact with a neurite, are similar in shape to the 

Schwann cells that are already in contact with a neurite. 

In addition to the physical cues from the aligned cells and collagen fibrils, the 

biochemical influence of the live Schwann cells enhanced neurite outgrowth compared 

to acellular and freeze-killed controls. The cellular and freeze-killed EngNT -Schwann 

cell materials both provided guidance, but the presence of living cells resulted in 

considerably greater neuronal growth. This is consistent with reports demonstrating that 

denervated Schwann cells secrete the ECM components laminin 1 and 2 (merosin), 

which have been shown to promote neurite outgrowth in vitro (Anton et al., 1994; Chen 

and Strickland, 2003; Cohen and Johnson, 1991). Denervated Schwann cells also 

secrete neurotrophins which aid regeneration (Rich et al., 1989; Bloch et aI., 2001). 
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This is supported by studies that show the presence of living cells enhances neurite 

outgrowth by cell-neurite contact and through trophic factors (Thomson and Buettner, 

2006; Richardson et al., 2011; Seggio et al., 2010) and is necessary for the repair of 

damaged nerves with a gap larger than 3 cm between the injured stumps in human 

(Nadim and Anderson et al., 1990). 

The overall aim for this part of the study was to develop and test EngNT in vitro. This 

has been done in terms of establishing the density of the cells required to generate 

sheets of EngNT and the time required for compression. In this part of the study it was 

established that the collagen was better than fibrin for the production of aligned EngNT

Schwann cell. Collagen I was used for subsequent experiments because it gave 

consistent and reliable contraction and alignment. Additionally, collagen I is a well

defined material, can be obtained in a GMP-compliant form and it is the material used 

in the RAFTTM system; which is also currently being used within the production of 

cornea transplants, for phase I clinical trials which are due to begin in 2013 (Genetic 

Engineering and Biotechnology News, 2012). The next step in this present study was to 

see whether EngNT -Schwann cell could be used as the basis for a repair conduit to 

support nerve regeneration in vivo, which is the subject of the next chapter. 
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4.0 Investigating ways to deliver EngNT within a nerve repair conduit 

4.1 Introduction 

The previous chapter showed that EngNT can support and guide neuronal growth in 

vitro. This material displayed structural characteristics and biological guidance cues 

that are beneficial for nerve repair; therefore it was appropriate to investigate ways in 

which it could be incorporated into a nerve repair conduit in order to bridge peripheral 

nerve lesions in vivo. 

The addition of an 'engineered endoneurium' or core within a repair device would 

potentially be a way to improve current commercial options consisting of hollow nerve 

guidance conduits and decellularised allografts, which do not effectively support 

regeneration across gaps of more than 3 cm in humans (Oeumans et aI., 2010). 

Insufficient levels of regeneration in 'empty' conduits may be attributed to the 

inadequate formation of a tissue bridge across the long gap in the initial stages of 

regeneration. This, in turn, will affect subsequent processes such as migration of host 

Schwann cells into the injury site, such that the guidance structure of the Bands of 

Biingner fails to form or is inadequate (Oaly et al., 2012). An appropriate core or 

intraluminal guidance structure in a conduit, could act as a replacement for, or speed up 

the formation of, the tissue bridge and/or the Bands of Bungner (Bellamkonda, 2006), 

Studies comparing conduits (empty tubes) to repair devices with a core, have found that 

the presence of intraluminal guidance structures enhances nerve regeneration in rat (10-

20 mm gaps) (Yoshii and Oka, 2001; Ngo et al., 2003; Kim et aI., 2008; Koh et aI., 

2010) and in an 80 mm gap in a dog model (Matsumoto et al., 2000). Others have added 

a cell component to the core of devices with intraluminal guidance structure and seen 

further enhancement to the regeneration process, when compared to acellular devices 
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(with guidance structures) or an empty tube in rat and dog models (Chang and Hsu, 

2004; Kalbermatten et ai., 2007; Di Summa et al., 2010; Ladak et ai., 2011). This 

indicates that cells and intraluminal guidance structures are beneficial within a nerve 

repair device. 

The next step in this study was to use EngNT -Schwann cell to form the core of a 

peripheral nerve repair device. Bands of Biingner are known to be important for repair 

because columns of aligned cells provide a guidance structure and also secrete 

neurotrophic factors that promote regeneration (Dahlin and Brandt, 2004; Hall, 2005). 

The EngNT material could be used to create something analogous to this because it is 

an aligned collagen matrix containing aligned Schwann cells and it can potentially be 

arranged in various ways to form an 'engineered endoneurium' for a repair device. 

EngNT could promote the regeneration ofaxons by providing trophic factors, 

intraluminal guidance and Schwann cells. To explore this possibility, various core 

designs were developed using EngNT -Schwann cell and these were tested within an 

outer tube in the rat sciatic nerve model. 

It is important that the outer tube or 'sheath' of the repair device can mimic the 

epineurium, containing the core and providing mechanical support at the repair site. The 

epineurium has been shown to be about 6.5 times stronger than the core in the rat sciatic 

nerve (Georgeu et ai., 2005); and ideally a repair device containing EngNT would have 

an outer tube with similar tensile strength and the ability to support sutures. Under 

normal physiological conditions peripheral nerves in the limbs bend and stretch, being 

exposed to combinations of tensile, shear and compressive stresses. The change in the 

length of a nerve caused by longitudinal tensile stress (for example as a result of joint 

movement) is called strain. Human nerves need to be able to bend and stretch to 
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accommodate up to 11% strain (Topp and Boyd, 2006). Changes to the structural 

components of peripheral nerves during surgery can lead to extraneural fibrosis and 

wound-bed adhesions and may cause increases in intraneural tension, which would 

compromise the clinical outcome (Hall, 2005). Localised increases in tension could also 

result from repair of nerves at joints in which a rigid outer tube is used, which could 

prevent the repaired nerve from bending with normal movement, so using materials that 

give a device appropriate mechanical properties is a critical feature of repair device 

design. For example, outer tube materials for repairing a nerve at a joint would ideally 

have more compliance than that for repairing a nerve at a location that would not need 

to bend (Phillips et al., 2004; Mason and Phillips, 2011). It is potentially possible to 

engineer a more complex tailored outer sheath that could have a compliant section and a 

stiff section to match particular anatomical locations. 

The first experiment in this chapter used a silicone tube as the outer part of the device, 

whereas later experiments used biodegradable conduits. Silicone tubes used to 

investigate peripheral nerve regeneration were described as a useful experimental tool 

for studying biological mechanisms in rat sciatic nerve (Lundborg et al., 1982). It has 

subsequently been demonstrated that silicone tubes are well-tolerated in humans (Gu et 

al., 2011), even five years after implantation (Lundborg et al., 2004). The main 

objection to the use of non-biodegradable nerve guides, such as those made of silicone, 

is that they remain in situ as prostheses after the nerve has regenerated. Whilst this is 

not an issue in short term experimental models, the use of non-biodegradable tubes in 

the clinic can require a second surgery to remove the tube, which has clear 

disadvantages for the patient (Merle et al., 1989). 
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Plastic compressed collagen was also explored for use as the outer sheath of a repair 

device. The potential advantages of this would be that the mechanical properties could 

be tailored, by varying the collagen concentration and amount of compression, to match 

those required at specific anatomical locations. Other conduits that have been used 

experimentally include: polylactic acid, poly caprolactone, silicone, fibrin and collagen 

(Schmidt and Leach, 2003, Angius et al., 2012). Silicone tubes provided an economical 

way to test EngNT in initial experiments, but for later experiments that required a more 

clinically relevant conduit, NeuraWrapTM, a clinically approved conduit was used. 

Various biodegradable conduits which remain in the nerve injury site long enough to aid 

the repairs have been developed and are currently in clinical use. A literature search was 

conducted to identify the different commercially available tubes and materials for 

clinical use. Only 4 biodegradable synthetic conduits (by Integra LifeSciences, 

Polyganics, Synovis Micro Companies Alliance Inc. and Collagen Matrix Inc.), 

involving 3 materials (collagen, polycaprolactone and polyglycolic acid) have obtained 

the US FDA and the CE approval for clinical use (Kehoe et al., 2012). These conduits 

are used to bridge gaps of less than 3 cm in damaged human peripheral nerves. They 

provide a conduit to concentrate factors, overall tissue guidance/containment, and 

reduce fibrosis/adhesion (Kehoe et al., 2012; Schmidt and Leach, 2003). 

After considering the various available conduits, the NeuraWrapTM tube was chosen for 

use in these experiments, partly because it is based on a similar material to EngNT, 

namely collagen type I (NeuraWrapTM is composed of cross-linked bovine collagen, 

whereas the EngNT was made from native rat tail collagen). Also, the NeuraWrapTM 

conduit has a longitudinal slit that allows it to be spread open, permitting insertion of 

the engineered core (figure 4.6 and 4.7), and the resilience of the material allows it to 
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recover and maintain closure when not being held open. The mechanical strength of the 

material is sufficient for it to be able to be sutured and NeuraWrapTM is flexible enough 

to be accommodated in the surgery site. While there was little data available about the 

mechanical properties of the tube, the publicly available summary from the FDA 

approval process states that "NeuraWrapTM Nerve Protectors are able to hold a suture, 

resist repeated compression from surrounding tissues." (FDA approval number 

K041620, 2004 http://www .accessdata. fda. gov / cdrh docs/pdf4lk041620. pdD. 

Having used in vitro approaches for the development of EngNT (chapter 3), initial 

attempts to develop the assembly of an EngNT -based conduit were also made using in 

vitro techniques. Advantages of using in vitro models rather than in vivo testing for 

these initial experiments include: improved ability to control specific variables, greater 

accessibility for monitoring purposes, and more efficiency in terms of cost and time. In 

view of these advantages, and considering the principles of the 3Rs, it was decided to 

see whether a novel in vitro approach might allow testing of the ability of a construct 

made from EngNT to support and guide neuronal growth. However, a new in vitro 

model that attempted to use primary adult sensory neurons in culture to mimic the 

interaction between a nerve stump and a conduit containing EngNT was not successful. 

In these experiments dissociated DRG neuronal cell bodies were applied at one end of 

the EngNT devices so that neuronal growth through the device, from end to end, could 

be investigated, and two different approaches were tested. The first approach was to 

place the device vertically and seed the neurons at the top end. This was unsuccessful 

because the neuronal cell bodies were subsequently discovered to be distributed 

throughout the constructs rather than remaining at the top. The second attempt was to 

seed them within a gel at the top end; however this was also unsuccessful because the 

gel volume was too small to support a sufficient number of neuronal cells near the 

117 



device core. It was therefore decided that the priority was to move forward with the 

device development using conventional in vivo approaches. 

A review of animal models used to study nerve regeneration from the 1950s to 2010, 

showed that 17 different peripheral nerves had been studied in 8 different species. The 

rat sciatic nerve model was the most commonly used model for the study of synthetic 

scaffolds; it was used for 86% of the studies reviewed (308 studies were reviewed in 

total) (Angius et al., 2012). The gap size used in initial in vivo experiments, to compare 

the extent of directed neuronal growth in repair devices of different arrangements, was 5 

mm at 2 or 4 weeks. While this is not a critical sized defect, so no difference would be 

expected in the amount of regeneration through an empty tube compared to a graft, it is 

a useful model for understanding how materials are likely to behave in a nerve repair 

situation (Angius et al., 2012; Phillips et al., 2005). The most optimal device design, in 

terms of the amount/density of neurite regeneration, was then used to repair a critical 

sized long gap (15 mm) in rat sciatic nerve, where an empty tube fails but a graft is able 

to bridge the gap and regeneration was assessed after 8 weeks. 
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The main objective of this part of the study was to engineer an 'endoneurium' that 

supported the re-growth ofaxons across the gap in injured nerves. In addition to this, 

the use of plastic compressed collagen as an outer sheath of a device was also assessed. 

The following specific objectives/questions were addressed: 

(i) The first hypothesis that was tested, based on results from the previous chapter, 

was that EngNT-Schwann cell could support neuronal growth in a more directed 

manner in vivo than equivalent collagen constructs that were either acellular or 

contained unaligned Schwann cells. 

(ii) The next part was to investigate different arrangements of EngNT-Schwann cell 

to see which was the most optimal in terms of supporting neuronal growth. 

(iii)Following this, an experiment was carried out to investigate whether different 

numbers of cells and amounts of material, and different sizes of EngNT 

structures could affect the amount of neuronal regeneration through the device in 

vivo. 

(iv)Next a proof-of-principle experiment was conducted to assess the feasibility of 

using EngNT in the device core to repair a gap in the rat sciatic nerve that is 

representative of the clinical situation (15 mm). 

(v) Finally, a preliminary experiment compared the mechanical strength and 

stiffuess of plastic compressed collagen to rat nerves and silicone tubes as a 

prelude to the possible future development of this material as the outer sheath 

component of repair devices requiring specific mechanical properties or non

standard dimensions. 
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4.2 Results 

4.2.1 Investigating the contribution of cells and alignment to neuronal regeneration 

through EngNT rods in vivo 

The first approach used to engineer 'endoneurium' was to roll the EngNT sheets into 

rods, bundle them together and then pack them within an outer tube to fonn the core of 

a repair device (figure 4.1). EngNT -Schwann cell, an equivalent cellular construct 

without alignment, and an acellular collagen construct control, were tested in a 5 mm 

gap in the rat sciatic nerve for 2 weeks. For each experimental group, 2 EngNT rods or 

controls (5 mm in length) were packed within a silicone tube (as shown in figure 4.2). A 

longitudinal slit was made in the silicone for the insertion of the engineered 

' endoneurium ', and three holes were made at each end for the suture material to pass 

through (figure 4.2). Each construct was then sutured at either end to the stumps of the 

rat sciatic nerve following a single transection. The animals used in this surgery showed 

no obvious external signs of inflammation/infection, weight loss or distress ; and they all 

survived the entire period (2 weeks) of recovery post-implantation. 

EngNT 

Figure 4.1 The rod-based device design. 

EngNT 

rods packed 
together within 
NeuraWrapTlol 

A sembly ofEng T-Schwann cell rods to form the core ofa peripheral nerve repair device. 
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Figure 4.2 Assembly of a nerve repair device with an EngNT core within a silicone tube 
A silicone outer tube was held open using a clamp and two EngNT -Schwann cell rods (5 mm in 
length) were positioned inside. Holes for the suture materi al are marked with arrow heads. The 
tube returned to its cylindrical shape when the clamp was removed, and the ends were trimmed 
so there was a length of 1.5 mm between the holes for sutures and the end of the tube. 

The total amount of neuronal growth was not compared between treatment groups 

because inconsistent stump-core contact was observed in some samples after harvesting 

(figure 4.3). 

Figure 4.3 : EngNT - chwann cell within a s ilicone outer tube after 2 weeks in vivo. 
Embedded in 20% gelatin and fixed with 4% PF A. In this case, the ends of the EngNT, 
indicated by the arrov head , did not make sufficient contact with the proximal stump, as was 
observed in some other sample . PS = proximal stump; DS = distal stump. 
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The devices were implanted into GFP-positive animals which allowed the infiltrating 

host cells to be distinguished from implanted Schwann cells. Combined fluorescence for 

Hoechst and GFP identified the host cells, whereas implanted cells were positive for 

Hoechst and negative for GFP. There were GFP-positive host cells present in all 

conditions but little neuronal growth in the acellular grafts (figure 4.4). Con focal 

micrographs in figure 4.4 are from longitudinal sections in the proximal part of the 

device, and show an overall longitudinally-aligned pattern of cell staining in all cases. 

The nature of neuronal growth within the device core was assessed by measuring how 

aligned each neurofilament-positive neurite was in relation to the long axis of the 

device, in longitudinal sections in the proximal part of the device. In all groups most of 

the neurites showed longitudinal alignment, although there was a trend towards more 

alignment in the EngNT condition (especially looking at the 200 deviation category) 

(figure 4.4B). 
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B device 
type: EngNT -Schwann cell Acellular Unaligned 

- I- . 
Angle of % frequency of % frequency of % frequency of 
deviation neurites neurites neurites 

from 
longitudinal 

axis Means±sem Means±sem Means:l:sem 

10 46 tS 46 ±27 47 :1:17 

20 34 :1:6 22 ±22 22 ±7 

30 13 :1:7 6 :1:6 18 ±9 

40 2 :1:2 7 ±7 6 ±2 

50 0 to 13 ±13 3 ± 1 

60 4 :t2 0 ±O 2 ±2 

70 0 :to 0 ±O 1 ±1 

80 0 :to 7 ±7 0 ±O 

90 0 :to 0 ±O 1 ±1 

Figure 4.4 Comparison of neurite alignment between EngNT with aligned Schwann cells, 
unaligned Schwann cells and acellular collagen in vivo 
Neurite angle was measured relative to the long axis within the proximal part of the devices in a 
5mm gap in the rat sciatic nerve after 2 weeks. (A) Confocal images from longitudinal sections 
in the proximal part of the device showing host cells (a-f) (GFP, green), nuclei (Hoechst, blue) 
and axons (g-!) (neurofilament, red); (B) Table showing the angle of neurite deviation from the 
long axis of the devices, highlighting the SEM within the groups. There was a directional trend 
for regenerating axons in all device groups. N=3, data are means ± SEM. 

The location of the regenerated axons was investigated to see whether they were within 

the rods or between the rods and results are shown in figure 4.5 part (A). In the EngNT-

Schwann cell devices, the neurites grew preferentially within the rods. In the EngNT 

condition 95 ± 5% of total neuronal growth within the device was within the rods, 

compared to 54 ± 28% in the equivalent cellular constructs without alignment; and in 

the implanted material which contained no Schwann cells there were no neurites 

detected within the rods. No neurites were observed in the areas surrounding the rods, 

and there was less variation in the EngNT-Schwann cell group for the location of 

regenerating neurites, compared to the constructs without alignment and the acellular 

materials. Figure 4.5 part (B) shows the number of host cells (GFP-positive) within and 

between the rods. In all the device groups, over 90% of total host cells were present 

within rods rather than between the rods and the outer tube. 
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Figure 4.5 The location of regenerating axons in the proximal part of the device 
(A) Neurites within the devices grew preferentially within the rods in the cellular devices and 
between the rods in the acellular devices; and (B) host cells in all device groups were present 
within the rods. N=3, data are means ± SEM. 

An optimal device core element would be expected to support more neuronal 

regeneration than the surrounding areas. In this case, despite the limitations of the 

experiment due to the inconsistent proximal stump interface, the EngNT -Schwann cell 

material demonstrated advantages over the unaligned or acellular controls in terms of 

distribution of regenerating neurons. 
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4.2.2 Optimisation of the device core design using EngNT -Schwann cell 

4.2.2.1 Device core assembly 

The rods used in the previous experiments in this study had -4 layers from central axis 

to surface and a mean diameter of -200llm. This is a modular design that provides a 

simple way to generate devices of different sizes using the adjustable NeuraWrapTM 

tube, for example more rods can be used for the repair of nerves with a larger diameter. 

Additionally, the diameter of the rods can be altered by adjusting the size of the initial 

EngNT sheet, providing further versatility. An alternative to the use of rods is a sheet

based device in which the NeuraWrapTM tube is lined with two sheets of EngNT

Schwann cell, maintaining a lumen (figure 4.6). This is also a modular design since the 

number and size of the sheets can be varied in order to accommodate a range of nerve 

diameters. The rod-based device design that was used in the experiments described 

above (figure 4.1) was compared to a sheet-based device design (figure 4.6). 

During implantation of the devices, the stumps were inserted 1.5 mm into the device in 

all cases to ensure experimental consistency and improve stump-core contact (figure 

4.7). Subsequent experiments from here on moved from using silicone to NeuraWrapTM 

as the outer tube material, which is a step towards making a translational device and 

also made the device assembly easier. 
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Figure 4.6 The sheet-based device design 
The EngNT-Schwann cell sheet is placed on the inside surface ofNeuraWrapTM, maintaining a 
lumen. Two sheets were used in this experiment, one on top of the other. 
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Figure 4.7 Implantation of rod- and sheet-based devices within a NeuraWrapTM outer tube 
(A) A schematic of the implanted device, showing EngNT within the outer tube; PS = proximal 
stump, PO = proximal part of the device, DD = distal part of the device and OS = distal stump; 
CB) A euraWrapTM outer tube (held open by forceps to prevent it from returning to its normal 
cylindrical hape), containing an Eng T-Schwann cell rod of 15 mm in length; (C) End-on 

iew ofa closed euraWrapTM tube with two Eng T-Sch'vvann cel\ sheets lining the lumen. 
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4.2.2.2 Investigating the effect of different EngNT arrangements on neuronal 

regeneration in vivo 

The next step was to investigate the effect of two different device designs (both within a 

NeuraWrapTM tube) on the amount of neuronal regeneration. The EngNT arrangements 

tested here were the rod-based and sheet-based designs (figure 4.1 and 4.6), which were 

compared to an empty NeuraWrapTM tube. The devices were assembled using the same 

amount of collagen and the same starting cell density for each design, then implanted 

into a 5 mm gap in the rat sciatic nerve. Devices were harvested after 4 weeks in vivo. 

and frozen transverse sections were taken from the centre of the proximal part of the 

device region (see figure 4.7 part A) and stained to detect neurofilament, a marker for 

axons. 

The number and position of neurofilament-positive axons was assessed in 10 Ilm thick 

cross sections. The auto-fluorescence from the collagen was used to locate the position 

of the implanted EngNT structures. The cross-sectional area was divided into zones: 

zone I - within the EngNT -Schwann cell material, zone 2 - the immediate surrounding 

area (within 25 Ilm) of the surface of EngNT -Schwann cell, and zone 3 - the remaining 

area (more than 25 Ilm away from the surface of the EngNT -Schwann cell) within the 

conduit lumen (figure 4.8). 
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NeuraWrap® 

Zone 3 - the remaining 
surrounding ar8. 

Figure 4.8 The different zones within cross-sections from the rod- and sheet-based devices 
CA) A key ro sho' the different zones within the implanted Eng T-Schwann cell and empty 

eura WrapTM devices after 4 weeks in vivo in a 5 mm gap in rat sciatic nerve (not drawn to 
scale); (B-D) are 10 !lm cross sections, as observed using auto fluorescence on a fluorescence 
microscope for the different device designs: Eng T-Schwann cell rods (B), EngNT -Schwann 
cell sheets (C), and the empty euraWrap tube (D). The red outlines the EngNT-Schwann cell 
materi al and the blue outlines the device core. Scale bar is 200 Ilm. 

There wa no ignificant difference between the three devices when comparing the total 

number of axon in the cross sections using a one-way ANOV A, figure 4.9 A. Although 

the same amount of material was implanted for each design, the cross sectional area of 

zone 1 in the heet-based design, 0.15 ± 0.02 mm
2 

(mean ± SEM), was about twice the 

s ize of zone 1 in the rod-based des igns, 0.06 ± 0.01 mm2 (mean ± SEM). The numbers 

of axon in the different zones were counted to give an axon density for each zone in 

each device (figure 4.9 B). There was a trend towards more axons in zone 1 of the 

sheet-ba ed de ign (400 ± 100, m ean ± SEM) than zone 1 of the rod-based design (200 

± 40 mean ± EM) although there was considerable variability and the trend was not 

sign ificant (using either !-test to compare the two zone 1 regions, or ANOV A to 

compare all zones). 
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In both groups, the axon density was greater in zones 1 and 2 compared to zone 3 

(figure 4.9 B). The axon density was significantly greater in zone 1 than in zone 3 in 

both the rod-based and sheet-based design (P<0.05, one-way ANOVA with Tukey's 

post-test). The axon density in zone 2 was also significantly greater than in zone 3 for 

the rod-based devices (P<0.05, one-way ANOVA with Tukey's post-test). The axon 

density in zones 1 and 2 in the rod-based design appeared to be slightly greater than that 

in zones 1 and 2 in the sheet-based design, although this was not significant. The axon 

density in the empty tube group was similar to that of the zone 3 in both device designs 

and zone 2 of the sheet-based design. The axon density in the empty tube was lower 

than zone 1 in both devices, although this was not significant. 
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Figure 4.9 The number and location ofaxons within cross sections from the proximal 
parts of rod- and sheet-based EngNT devices. 
(A) There was no significant difference in the three devices when comparing the total number of 
axons per cross section (one-way ANOVA). (B) Axon density was greater in zones 1 and 2 
(within or near EngNT-Schwann cell), compared to zone 3 in both device groups. This was 
significant between zones 1 and 3 for the rod-based and the sheet-based device designs; and 
between zones 2 and 3 for the rod-based devices (one-way ANOVA, *P<O.05. n=4, data are 
means ± SEM). 
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4.2.2.3 Investigating how different amounts of EngNT -Schwann cell affects 

regeneration using the rod-based device design in vivo 

The previous experiment showed that the axon density was greater within (zone 1) and 

near (zone 2) the EngNT-Schwann cell material, than in the other surrounding areas 

(zone 3) (figure 4.9 B). The rod-based design was easier to assemble and more robust, 

so this was selected in preference to the sheet-based design and investigated further in 

an experiment to compare different numbers of rods or rods of different diameters 

(thinner rods give an increased surface area). 

To investigate the influence of multi-rod structures on axonal regeneration, the 

following designs were compared: 

(i) 2 standard rods of EngNT-Schwann cell; 

(ii) 4 thin rods of EngNT-Schwann cell (each one contains half the amount of 

EngNT -Schwann cell material that is used to make one standard rod; cut in half 

longitudinally post-plastic compression); 

(iii) 4 standard rods of EngNT-Schwann cell. 

These devices were tested within NeuraWrapTM in a 5 mm gap in the rat sciatic nerve 

(n=3 animals per group). Devices were harvested after 2 weeks, which was a shorter 

time point than in the previous experiment, to permit examination of any differences in 

the initial amount of regeneration between the groups. The animals used in this 

experiment showed no obvious external signs of inflammation/infection, weight loss or 

distress, and they all survived the period of recovery after surgery. Frozen 10 Ilm thick 

longitudinal sections from the proximal part of the device and cross sections from the 

distal part of the device (figure 4.7 A) were stained to detect neurofilament protein. 
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In the proximal part of the devices the infiltrating axons were orientated longitudinally, 

with 50-75% of them deviating by less than 20° from the longitudinal axis (figure 4. 10). 

There did not appear to be any clear advantage or disadvantage associated with any of 

the device designs in terms of orientation of neuronal growth in the proximal part of the 

device. 
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Figure 4.10 Frequency distribution showing the angle of deviation of axon growth from 
the long axis of the device, in longitudinal sections from the proximal part of each device 
There is a directional trend in all device groups, with a slightly higher proportion of neurites 
(- 75%) in the 4 rods-EngNT devices deviating by less than ± 20° from the long axis, N=3, data 
are means ± SEM. 

Regeneration was assessed in the distal part of all the device groups. Figure 4.11 shows 

the number of neurites counted in cross sections from the distal part of each device (n=3 

per group). There were not any clear differences in the amount of regeneration when 

there was more guidance material and cells (4 rods-EngNT) or increased surface area 

(thin rods-EngNT) compared to 2 rods-EngNT. 
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Figure 4.11 The number of neurites in cross sections from the distal part of the each device 
Devices were implanted in a 5 mm gap in the rat sciatic nerve for 2 weeks in vivo. 10 !lm thick 
cross sections were stained to detect neurofilament. The number of neurofilment-positive axons 
was counted for each cross section. N=3, data are means ± SEM. 

The two rod arrangement was the easiest to assemble. It used fewer cells and materials 

than having four rods, and so the two rod arrangement was taken forward for testing in 

the long gap (15 mm) model. 

4.2.3/n vivo proof-of-principle testing in the rat sciatic nerve 

To test the ability of EngNT to support neuronal regeneration In a clinically more 

challenging model, compared to the short gap model, two EngNT rods were packed 

within NeuraWrapTM to form an implantable device (figure 4.1) and used to repair a 

critical-sized defect of a 15 mm gap in the rat sciatic nerve. The EngNT devices were 

compared to empty NeurawrapTM tubes and to grafts taken from the sciatic nerves of 

littermates to simulate the clinical gold standard autograft. The extent of neuronal 
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regeneration across a 15 mm gap in the rat sciatic nerve was compared in these three 

surgical treatment groups, with assessment after 8 weeks of recovery. 

The diameter of the NeuraWrapTM lumen is approximately 1.2 mm; this was similar to 

the diameter of the graft nerve used (figure 4.12). The diameter of one EngNT rod is 

approximately 200 Jlm. The scanning electron microscope (EM) images of the cross 

sections through the middle of the repair site show dense material in the graft group 

(figure 4.12), compared with the empty tube. In the EngNT group the rods are visible as 

the regions of highest density within the core and look similar to the appearance of a 

nerve fascicle in the graft. Among the fIrst animals from all the groups to undergo 

surgery in this long gap experiment, 50% showed a tendency to autotomy, necessitating 

culling before the 8 weeks. Following veterinary advice, this was controlled in 

subsequent procedures by daily administration of 0.05 ml Carprofen analgesic. At the 

defined end-point, all the devices showed no signs of collapse, but there were some 

showing minor signs of degradation. In one instance, one of the empty tubes had 

degraded at the mid-point leaving only a thin visible tissue bridge; this was excluded 

from further analysis. There were no signs of adhesions and fibrosis in any of the 

repairs. 

There were a number of outputs from this experiment, including EM analysis at the 

mid-point, muscle weight measurements, and histological analysis of various positions 

within the graft and stumps (figure 4.13). The next section (4.2.5.1) describes the results 

from the mid-point of the repair site in each group. 
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EngNT-cellular rods ---

Figure 4.12 Sca nning electron microscopy images of the mid-point of the different device 
groups after 8 weeks ill vivo 
CA-C) Low power images of the mid-point of the devices after 8 weeks in vivo. Scale bars are 
200 ~m. CA) graft, (B) Eng T-Schwann cell rods and CC) the empty NeuraWrap tube. (D-F) 
High power images of the core of the devices fo r graft, EngNT -cellular and empty tube, 
respectivel . Scale bars are lOO ~m . Red outline in image E is around the EngNT rods. 
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Figure 4.13 Schematic of harvested device/graft with stumps, s howing the 5 sampling 
positions for analysis 
These are PS (proximal stump), PO (proximal part of the device), mid-point, DD (distal part of 
the de ice) and OS (the distal stump). 

4.2.3.1 Mid-point analysis 

Tran erse sections were taken from the middle of the repair site and prepared for 

transml ion M. Regenerated nerve ti ssue in each group was revealed in semi-thin 

section u ing toluidine blue staining (fi gure 4 .1 4) . Dense neural tissue can be observed 
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throughout the nerve grafts and EngNT-Schwann cell devices, whereas the empty tube 

group had only very few patches of neural tissue present. Closer examination of the 

toluidine blue stained sections revealed the presence of longitudinally orientated nerve 

fibres at the mid-point of all the repairs, identified by the presence of dense myelin 

staining, within the densely stained areas. To maximise the neural material present for 

analysis in all groups, particularly in the empty tubes where the material was sparse, 

EM analysis was carried out in the densest areas of regeneration, as identified using the 

toluidine blue stain. Figure 4.15 shows transmission electron micrographs that reveal 

the detailed ultrastructure of the regenerated nerve tissue at the mid-point of the repair 

site. The axons were measured by image analysis from the electron micrographs, 

sampling 1232 ~m2 from each device in each group to capture at least 50 myelin 

profiles per repair. 

Graft EngNT Empty tube 

" .. 

Figure 4.14 Light micrographs of semi-thin transverse sections from the mid-point of each 
repair after 8 weeks in vivo, stained with toluidine blue 
Representative semi-thin sections stained with toluidine blue show the differences in density of 
neural ti ssue between the three groups at low (top row) and higher (bottom row) magnification 
(scale bars 200 J.lm and 100 J.lm respectively). 
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Figure 4.15 Transmission electron micrographs of transverse sections through 
regenerated nerve at the mid-point of the repair site after 8 weeks in vivo 
Areas with the highest density in each case were sampled for transmission EM (M = Myelinated 
axon, S = Schwann cell nucleus, scale bar 2 Ilm), with 10 fields selected from the densest 
regions of each corresponding semi-thin section (which was stained using toluidine blue). 

Myelinated axons, unmyelinated axons and Schwann cell nuclei were present in all 

groups (figure 4.15). Even after selecting the areas with the highest density of material , 

there was a greater density of regenerated fibres per field in the graft and EngNT-

Schwann cell, than in the empty tube device, by visual inspection (figure 4.15). The 

number ofaxons at the different points of the device was quantified and is shown later 

(figure 4.18). 

For each myelinated fibre the diameter of the axon and the diameter of the fibre (axon 

+ myelin sheath) was measured, allowing the myelin thickness and the G-ratio (axon 

diameter/fibre diameter) to be determined and compared (figure 4.l6) to explore the 

quality and extent of myelination present in each group. Both the axon diameter and the 

fibre diameter were significantly lower in the empty conduit group compared to the 
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nerve graft group when compared using a one-way ANOV A (P<0.05), whereas there 

was no significant difference between the EngNT-Schwann cell group and the nerve 

graft group (figure 4.16). The myelin was thicker in the nerve graft group than both the 

EngNT and empty conduit group, and there was no significant difference in G-ratio 

between the three groups, which was approximately 0.7 across aJl groups. The 

myelinated axons were smallest in the empty tube group, with a mean axon diameter of 

1.93 ± 0 .10 ~m (± SEM), figure 4.16. 
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Figure 4.16 Morphological analyses of regenerated nerve fibres at the mid-point of the 
repair site after 8 weeks in vivo 
The following were assessed from transmission EM ultrathin sections: fibre diameter, axon 
diameter, myelin thickness and G ratio. 1232 ~m2 was sampled from each device in each group, 
to capture at least 50 myelin profiles per repair. Data are means ± SEM, n = 5 individual 
devices/grafts, * P<O.05 , ** P<O.O 1, one-way ANOV A with Tukey ' s post-test. 
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The regeneration of different fibre types can be evaluated in each device group. Fibre 

types were categorised according to axon diameter (classified into 4 groups: <1 ~m, 1-6 

~m, 6-12 ~m and 12-20 ~m) and whether it is myelinated or not (Michael-Titus et al., 

2010). The distribution of diameters for the unmyelinated and myelinated nerve fibres 

shows that the population of neuronal fibre types that EngNT supported was equivalent 

to that present in the nerve graft (figure 4.17). There was no significant difference in the 

proportions of the different types of fibres that were present in the regenerated nerve 

sampled for each repair, when compared using a one-way ANOVA (figure 4.17). Most 

of the myelinated axons were in the 1-6 ~m group, with a smaller proportion in the < 1 

~m group and very few larger diameter fibres present. The unmyelinated fibres were 

mainly <1 ~m in diameter with some 1-6 ~m and no larger diameter fibres. 
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Figure 4.17 Distribution of myelinated and unmyelinated fibres by diameter at the mid
point of the repair site after 8 weeks in vivo 
The different fi bre types are classified according to (i) whether they are myel inated or not and 
(ii) axon diameter: Band C fi bres are <I f.!m, AS and Ay and B fibres are 1-6 f.!m , A~ fibres are 
6-1 2 !lm and a fibres are 12-20 f.!m. Analysis was done from electron micrographs in a 1232 
f.!m2 sample area in the region where there was the most amount of regeneration in the mid
point of the device for each group. The proportion of the types ofaxons in the regenerated nerve 
was simi lar for each device group. No significant difference when compared using a one-way 
ANOV A, n=5 individual grafts/devices and data are means ± SEM. 
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4.2.3.2 Neurite regeneration analysis 

In addition to characterising the nature and distribution of neuronal regeneration and 

myelination at the mid-point of the EngNT -Schwann cell conduit, further analyses were 

conducted using transverse sections through the proximal and distal ends of the repair 

site and in the stumps to investigate the effectiveness of EngNT -Schwann cell in 

supporting regeneration across the 15 mm gap during the 8 week experiment (figure 

4.18 and 4.19). The 15 mm gap in the rat sciatic nerve is a critical sized defect, where 

there is little regeneration in an empty conduit compared to a nerve graft. The number of 

axons in the distal stumps of the empty conduit repairs was 105 ± 29, which is 

considerably lower than the number ofaxons in the distal stumps of the graft repairs, 

3776 ± 326 (figure 4.18). There was no significant difference between the number of 

axons that were present in the proximal part of the EngNT -Schwann cell conduit and 

the empty conduit, however there were approximately twice as many axons in the 

proximal part of the nerve grafts (4584 ± 231) than the conduits (2014 ± 501) (figure 

4.18). To assess regeneration across the gap in the two conduit groups, the number of 

axons in the distal end of the conduit and the distal stump was expressed as a percentage 

of the number ofaxons detected in the proximal part of the conduit. There was no 

significant difference between the number of neurites detected in the proximal conduit 

and distal conduit of the EngNT-Schwann cell devices (repeated measures ANOVA), 

although there was a trend towards there being (-30%) fewer neurites in the distal 

device than had entered the proximal part of the device (figure 4.19). In contrast, there 

were significantly (-90%) fewer neurites in the distal part of the empty conduit than 

entered the proximal part of the empty conduit. 
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Figure 4.18 The number of regenerated axons in 10 Ilm thick cross-sections from different 
parts of each device from each experimental group 
The ability of each conduit to support neuronal growth was assessed by comparing the number 
ofaxons detected at the different positions within the repairs. Total numbers of neurofilament
positi ve axons were counted per cross-section. PS = proximal stump, PO = proximal part of the 
device, OD = distal part of the device, OS = distal stump. Data are means ± SEM, n = 5 for all 
groups except EngNT-dADSC, which is n = 3. *P<O.05, ***P<O.OOI , one way ANOVA with 
Tukey 's post-test for n = 5 repair groups. 
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Figure 4.19 Histological overview ofaxons (neurofilament-positive) in the different parts 
of the device 
Transverse sections were taken at different positions within NeuraWrapTM conduits containing 
EngNT and empty euraWrapTM controls, and in the distal nerve stumps, and neurofilament
positive regenerated a.,xons were detected using neurofilament immunoreactivity. Scale bars are 
I 00 ~m (A). The ability of each conduit to support neuronal growth was assessed by comparing 
the number ofaxons detected at the proximal end to those detected at the distal end and in the 
distal stump (8 ). Data are means ± SEM showing the number ofaxons at each position as a % 
of those present in the proximal device (proximal device axon counts were 2313 ± 260 for 
EngNT and 2059 ± 446 for empty conduit). There was no significant difference in the number 
of a.,xons present in the distal compared to the proximal EngNT conduit (** P<O.Ol , *** P<O.OOI , 
repeated measures A OVA with Dunnett 's post-test comparing proximal regions to distal 
device in each case). 

The atrophy of the gastrocnemius muscle, innervated by the sciatic nerve, gives an 

indication of the extent of motor neuron degeneration/regeneration. Relative muscle 

weight ratio defmed as the ratio of the gastrocnemius muscle weight from the 

experimental side to that of the contralateral control side (E/C), is therefore an 

additional way to estimate the regeneration of the motor neuron component in sciatic 

nerve (figure 4.20). The relative gastrocnemius muscle weight in the graft group was 

significantly greater than that in the EngNT-Schwann cell and empty tube groups (P = 

0.025, one-way ANOVA and Tukey's test). The EngNT devices and empty NeuraWrap 
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repairs were all similar to each other in tenns of relative gastrocnemius muscle weight, 

with values of between 65 and 70% of that of the graft group. 
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Figure 4.20 Relative gastrocnemius muscle weight ratios after the 8 week recovery period 
for each experimental group 
The gastrocnemius muscles (innervated by the sciatic nerve) from both experimental and contra
lateral hind legs of the animal were dissected and weighed. This figure shows the percentage 
weight of the experimentallhealthy gastrocnemius muscle. The graft group ratio was 
significantly greater than the EngNT -Schwann cell and empty tube groups, P = 0.025 (one-way 
ANOV A with Tukey's post-test). Data are means ± SEM, n = 5. 
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4.2.4 Preliminary investigation into whether sheets of plastic compressed collagen 

would have the appropriate mechanical properties for use as an outer sheath for a 

nerve repair device 

Rather than rely on current commercially available conduits to form the outer sheath of 

a device, initial studies were conducted to explore the feasibility of using sheets of 

plastic compressed collagen as an alternative to NeuraWrapTM for the delivery of 

EngNT. This experiment tested the strength and stiffness of plastic compressed collagen 

as a potential sheath element for the device and compared it to rat sciatic nerve tissue 

and a silicone tube. Based on previous reports on the tensile strength of acellular plastic 

compressed collagen hydrogel, it was predicted that a 5.3 mm2 cross-sectional area of 

this material would have a similar tensile strength to that of a rat sciatic nerve (Brown et 

a/., 2005). When a nerve is extended there will be a reduction in cross sectional area, 

and so a nerve with a bigger cross-sectional area (and thicker perineurium) could resist 

more stress before deformation and have greater tensile strength than a nerve of a 

smaller cross-sectional area. 

The biomechanical behaviour of nerve, compressed collagen and silicone were tested by 

putting the materials under strain, increasing their length by 1 mm per minute, 

generating a load extension curve (figure 4.21). The x axis of the curve displays the 

extension as a percentage of the starting length and the y axis is the force required to 

stretch the material. The peak of the curve, the force at which the material fails, is 

defined as the tensile strength. If the slope of the curve is steep, as it is for silicone, the 

material is stiffer and less compliant to elongation than tissue giving a shallow curve, 

such as the nerve and compressed collagen samples (figure 4.21). The three rat sciatic 

nerves that were tested showed different tensile strength readings to each other but had a 

consistent characteristic profile in terms of the 'toe-region' (initial elongation with 
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relatively little resistance) followed by a linear extension profile (figure 4.21). They 

failed between 2-3 N load. The tensile strength of the plastic compressed collagen was 

similar to one of the nerves, which was 2 N. In contrast, the silicone curve had no ' toe 

region' , and the stiffuess, under the lower strains, was considerably greater than the 

plastic compressed collagen and nerves. 
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Figure 4.21 Tensile strength testing of nerves and selected sheath elements 

Nerve 

Compressed collagen 

Silicone 

Three different materials were tested, silicone (black), plastic compressed collagen (red) and rat 
sciatic nerve (blue). The maximal load for a material is a measure of its tensile strength (the load 
at which the material fails) and the slope of the linear part of the extension curve provides an 
indication of the stiffness of the material. 
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4.3 Discussion 

In this work EngNT -Schwann cell was used to fonn the basis of a peripheral nerve 

repair device, and the results demonstrated that EngNT -Schwann cell devices can be 

used for the repair of critical sized defects in rat. Different arrangements and amounts of 

guidance material were initially tested within a silicone or NeuraWrapTM tube in a short 

gap (5 mm) model of rat sciatic nerve injury. These experiments, which used relatively 

low numbers of animals, were perfonned to identify features of construct design that 

were particularly favourable or unfavourable, and allowed decisions to be made 

regarding the EngNT arrangement within the core of the device prior to the more 

substantial in vivo experiment described in section 4.2.5. 

A long gap (15 mm), 8 week experiment was used to assess the support that could 

potentially be provided by EngNT-Schwann cell to neurons regenerating within a 

conduit. At the mid-point of the repair there was considerably more tissue present in the 

EngNT group compared to the empty conduits, and electron microscopy revealed that 

the tissue associated with the EngNT contained densely packed nerve fibres associated 

with Schwann cells. Detailed analysis of the fibre types (based on diameter and 

presence of myelin) showed similar populations in all repair groups, with mainly 

smaller diameter fibres being present, in common with previous studies showing a shift 

towards smaller fibres in regenerating nerves compared to undamaged tissue (Ikeda and 

Oka, 2012). 

Neuronal regeneration resembled the pattern observed in vitro (chapter 3), where 

neurites grew preferentially within the material that contained aligned Schwann cells, 

compared to the acellular and unaligned cellular material. Despite this, there was little 

difference in the orientation of neuronal growth between conduits containing aligned 
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and unaligned cells. Longitudinal orientation of neuronal regeneration was detected in 

acellular constructs too. Thus, in this short-gap model after 2 weeks, the presence of 

cells, aligned in EngNT or unaligned, did not significantly improve axonal guidance 

when compared to an acellular material. 

A similar rolled conduit design, but with unaligned cells on the surface of unaligned 

collagen sheets, was reported by Goto et al. in 2009. They seeded primary rat Schwann 

cells on the surface of a collagen gel, above a calcium alginate gel on a porous 

membrane. The calcium alginate layer dissolved and the collagen gel layer with the 

Schwann cells detached and was then rolled to form a cellular device. In their culture 

study, they compared the rolled-rod design (which, like ours, had 3-4 layers of gel from 

central axis to the surface) with cells to a rolled-rod design without cells. They observed 

more neuronal growth between the layers in the rolled-rod design with cells, than in the 

equivalent device design without cells. This is in agreement with our findings, which 

showed more regenerating neurites within EngNT -Schwann cell rods than in acellular 

EngNT rods, and is also in agreement with most of the literature which shows neurites 

grow preferentially in close contact with Schwann cells (Guenard et al., 1992; Fawcett 

and Keynes, 1990; Dubey et al., 1999; Thompson and Buettner, 2006; Wang et al., 

2011). 

EngNT could potentially be arranged in many different ways within a conduit. Two 

possibilities (rods and sheets) were compared and a clearer understanding of the 

distribution of neuronal regeneration associated with the constructs was obtained. The 

experiments demonstrated that the rod-based design supported a greater axon density 

within and adjacent to EngNT -Schwann cell than did the sheet-based design. Despite 

the increased EngNT volume and surface area present in the sheet constructs, there was 
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no associated increase in the axon density after 8 weeks, compared to the rod constructs. 

There was no significant difference in the numbers of neurites detected within the 

EngNT sheets compared to the EngNT rods (zone 1), although there was a trend 

towards the sheets containing a greater number (which may reflect the greater cross 

sectional area present in the sheets). 

The increased cross-sectional area of the sheets compared to the rods (zone 1) may be 

due to the sheets being less compact and therefore more able to expand under 

physiological conditions. Rolling the EngNT into rods means they are likely to remain 

orientated longitudinally in vivo, in contrast to the sheet arrangement, which may twist 

or kink post-implantation. EngNT rolled to form rods will combine cell-level guidance 

provided by the EngNT-Schwann cell material with 'z' direction guidance across the 

cross section of the construct (Bellamkonda, 2006). 

Neurite growth was observed within the layers of the rods, although it was hard to 

establish precisely whether the growth was on the surfaces or within the collagen. 

However when the amount of surface area (zone 2) was increased using sheets there 

was not an increase in the growth. This is in contrast with the study by Goto et af. where 

more growth was observed in the cellular rolled-rod design than in a cellular rod design 

(where there are no layers) (Goto et al., 2009). 

The rod-based devices were easier to handle and therefore could be assembled within 

conduits reproducibly, compared to the sheet-based devices in which it was difficult to 

position the layers of the material. The greater neurite density associated with the rods 

(3350 ± 143 axons/mm2
) compared to the sheets (2920 ± 587 axons/mm2

), although not 

significant, implies that multiple rods may be more optimal for regeneration within a 
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conduit than the equivalent amount of sheet material; so the rod-based design was taken 

forward for use in the subsequent experiments. 

In the experiment to investigate the various EngNT rod fonnats, to see whether 

increasing the surface area by having thinner rods or increasing the amount of guidance 

material and cells by implanting more EngNT rods. would affect the amount of 

neuronal regeneration; there was a similar amount of regeneration in the distal parts of 

the devices for all device groups. The 5 mm gap model at 2 weeks may not fulIy 

demonstrate the advantages or disadvantages of the different device designs in tenns of 

their ability to support neuronal regeneration. The differences between the devices in 

this respect may be better highlighted by using a 5 mm gap model at a shorter time point 

or a longer gap model at 2 weeks. A previous study by Yao and colleagues compared 

the number ofaxons that had grown through multi-channelled collagen conduits: 1-

channel versus 2-, 4- and 7-channel conduits. No significant difference was observed 

between groups in a 7 mm gap for 6 weeks in the rat sciatic nerve model, showing that 

the difference in surface area did not affect the amount of axon regeneration in this 

model (Yao et ai, 2010). In this experiment, there was no difference in the amount of 

regeneration in the distal parts of the devices, if the rods are thinner, or double the 

number of them. This may be because in short gaps the presence or absence of Schwann 

cells makes little difference; it is only in longer gaps where they become more important 

(Angius et al., 2012). 

It would be interesting to examine other ways to organise EngNT within conduits in 

future experiments using critical-sized gaps, in order to optimise regeneration support 

and ease of assembly. Other tissue engineering approaches for the development of 

repair devices with intraluminal guidance structures are more conventional in their 
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approach (Bell and Haycock, 2012; Daly et al., 2012; Nectow et al., 2012), in which 

porous or fibrillar scaffolds are manufactured with surface modification to support cell 

attachment, followed with a cell seeding step prior to implantation. Similarly to the 

EngNT approach, these approaches can deliver cell-level and longitudinal guidance 

through the repair site and the designs can be adapted for the repair of different sized 

nerves. However they are in contrast to the EngNT approach in tenns of their cell

scaffold relationship, where in EngNT the cells are more intimately associated with the 

matrix, which resembles natural endoneurium (aligned fibrils of type I collagen) 

(Mason and Phillips, 2011). The cell matrix interactions that shape the anisotropic 

structure in EngNT are similar to those that occur naturally in tissue development and 

remodelling, and the complex spatial and mechanical cues that arise when cells are 

forced to grow on stiff surfaces (such as within pores and channels or on the surfaces of 

fibres) are thus avoided (Grinnell, 2003; Phillips and Brown, 2011). Furthennore, the 

use of plastic compression to stabilise the material avoids the need for chemical cross

linking agents and retains the protein in a native state suitable for integration with host 

tissue. 

Based on observations from the short gap experiments, EngNT -Schwann cell rolled to 

fonn rods was selected for a more detailed investigation of regeneration support in vivo 

using a longer gap. A 15 mm gap length and 8 week time point were appropriate for this 

investigation because under these conditions a clear difference in regeneration between 

the empty tube and the autograft group was evident, which was not apparent in shorter 

gap experiments (Angius et al., 2012). 

Investigation of nerve regeneration at the mid-point of the repairs, showed there was 

considerably more regenerated neural tissue present in the EngNT -Schwann cell groups 

153 



compared to the empty conduits, and electron microscopy revealed that the EngNT

Schwann cell contained densely packed nerve fibres associated with Schwann cells. 

The quality of regeneration in the EngNT -Schwann cell devices, as quantified by 

transmission EM, is similar to that observed in the graft group. There was not much 

difference in the profile of myelin, axon and fibre diameter in the graft and EngNT 

groups. However, the fibre diameters were significantly greater in the graft group than 

the empty tube group (**P < 0.01) and axon diameter was significantly lower in the 

empty tube group than the grafts (* P < 0.05). 

Detailed analysis of the fibre types (based on diameter and presence of myelination) 

showed similar populations in all repair groups, with mainly smaller diameter fibres 

being present, in common with previous studies showing a shift towards smaller fibres 

in regenerating nerves compared to undamaged tissue (lkeda and Oka, 2012). At the 8 

week time point in a 15 mm sized defect, there was no difference in the types of fibres 

that had regenerated. Axons that do not make peripheral connections undergo atrophy 

and eventually disappear, whereas axons that do make peripheral connections mature 

and enlarge in size (Allodi et al., 2011). Perhaps therefore, in repairs where axons 

reinnervate target organs, a later time point than used in this study, fewer and/or larger 

axons would be observed. Also, one regenerating axon may support over 10 axon 

sprouts (Witzel et ai., 2005), which would decrease in time as they do not all make 

peripheral connections, so fewer axons may be observed at a later time point. 

In addition to the transmission EM data obtained from the mid-point of the repair, 

histological analysis of the number of neurites present at 4 positions within the repaired 
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nerve revealed details about the ability of this initial EngNT -based device to support 

neuronal regeneration from proximal to distal stump. 

Approximately half as many neurites entered the EngNT devices compared to the nerve 

graft, possibly because the two EngNT rods only occupied a fraction of the lumen so 

did not form a complete interface with the cross-section of the proximal stump. Future 

work should therefore include optimising the quantity and arrangement of EngNT 

components within a device in order to maximise proximal ingrowth. Of the neurites 

present in the proximal part of the EngNT -Schwann cell repair devices, approximately 

70% successfully reached the distal part of the devices and approximately two thirds of 

these entered the distal stump. This was in contrast to the empty tube, where only 10% 

of the neurites present at the proximal end regenerated through the empty conduit. 

The in vivo experiments demonstrated that there is potential for EngNT to be used 

within a nerve repair conduit in order to promote neuronal regeneration across a critical 

sized defect. The EngNT device was more effective than the empty conduit. Further 

work will be required to optimise the device design and investigate different amounts 

and arrangements of the EngNT within NeuraWrapTM to increase the amount of 

neuronal growth entering the device. 

EngNT mimics neural graft tissue, in which key cellular features are known to 

contribute to the repair process (aligned Schwann cells in an aligned matrix). The 

aligned Schwann cells within EngNT resemble the Bands of Bilngner to provide 

physical guidance cues to the regenerating axons. The in vitro experiments (chapter 3) 

suggest that the cells within EngNT secrete factors to promote regeneration, which is in 

line with previous reports (Hall, 2005; Rodrigues et ai., 2012). However, although 
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EngNT does not initially mimic the basement membrane, laminin structures, perineurial 

cells or vasculature, over time, the cells could modify the environment. By providing 

the essential elements (the Schwann cells, alignment and collagen), theoretically it is 

possible to facilitate modifications post-implantation, such as the laying down of other 

extracellular matrix proteins (e.g. laminin) or vascularisation as a result of blood 

vessels growing through the device. 

There was no significant difference in the gastrocnemius muscle weight ratio for the 

experimental to the contralateral muscle. In a peripheral nerve regeneration study using 

a graft, empty fibrin conduit and a fibrin conduit with Schwann cells after a 16 week 

recovery period, higher muscle weight ratios were observed of 0.51 ± 0.03 for the graft 

group and 0.45 ± 0.02 for the repairs with implanted Schwann cells (di Summa et aI., 

2011), compared to the ratio observed in this study with Schwann cells after 8 weeks 

(23.8 ± 1.9). Thus, suggesting that a longer-term group is needed to assess the effects of 

functional recovery. 

The acellular plastic compressed native rat tail collagen (5.3 mm2 cross sectional area) 

for use as a device sheath is close to rat sciatic nerve in terms of strength and stiffness. 

Therefore for a sheath to encompass a lumen that is 2 mm in diameter, the thickness of 

the sheath would need to be 1.3 mm, which is reasonable. It would be important to 

calculate the stiffness modulus to compare to other materials, including human nerve 

and NeuraWrapTM. For example, if the cross sectional area is measured accurately then 

the stiffness modulus could be calculated. An initial attempt to estimate the stiffness 

modulus, indicated by the gradient of the linear part of the curve, is about 2.43 ± 0.33 

N/mm for plastic compressed collagen and 2.25 ± 0.18 N/mm for rat sciatic nerve. 

These values are higher than those reported in the literature for rat sciatic nerve, which 
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are about 0.37 ± 0.13 N/mm, as calculated from force/extension curves (Hayes et al.. 

2007). This difference may be because the sciatic nerve has a number of branch points 

which may influence the local mechanical environment. Therefore, plastic compressed 

collagen for use as a sheath material shows promise in terms of its mechanical 

properties. There are studies that have shown that collagen guidance tubes enhance 

peripheral nerve regeneration, compared to silicone tubes (Chamberlain et ai, 1998; 

Spilker, 2000). Further to this, a study in 2012 also showed there was significantly less 

extraneural adhesion with collagen membranes than vein grafts, which are also currently 

used in the clinic, when tested in the rat sciatic nerve model after 3 months in vivo 

(Mathieu et aI., 2012). Further work is required to investigate other properties of plastic 

compressed collagen, including suture pull-out thresholds, degradation rate and 

resistance to extraneural adhesions. Since outer sheath development was not the main 

focus of the current project, this was not pursued further, and instead the remaining 

experiments focussed on testing core element constructs within the clinically approved 

NeuraWrapTM outer tube. 

The main goal of this part of the study was to optimise the arrangement of EngNT 

within the core of a device in a short gap model (in terms of axon regeneration density), 

and then use the optimal device design to assess the feasibility of using EngNT in the 

device core to repair a gap in the rat sciatic nerve that is representative of the clinical 

situation ( 15 mm). 

The standard EngNT rod constructs supported high density axon growth and there were 

not any clear advantages to increasing the surface area or quantities of EngNT -Schwann 

cell in terms of regeneration using the short gap and time point models. It has also been 

demonstrated that EngNT -Schwann cell can be used for the repair of critical sized 
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defects in which an empty conduit perfonns poorly compared to a nerve graft. The 

production of this device is simple, rapid and reproducible. The adjustable diameter of 

the NeuraWrapTM outer tube and the modular rod design would be advantageous for the 

production of a range of devices with different diameters. Finally, the three-stage 

process of self-alignment, plastic compression and rolling is potentially appropriate for 

scale-up and automation for use in clinical and commercial settings. 
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5.0 Investigating the feasibility of making an EngNT nerve repair device using 

clinically relevant cells and materials 

5.1 Introduction 

Having demonstrated that an implantable device containing EngNT -Schwann cell could 

support neuronal growth in vivo, this study went on to investigate the feasibility of 

constructing a repair device from EngNT using clinically relevant cells and materials. 

The design of the peripheral nerve repair device can be divided into two parts: the outer 

sheath and the core. A range of clinically relevant outer sheath materials are available 

(discussed in chapter 4) such as the NeuraWrapTM tube manufactured by Integra, which 

was used in these experiments. This part of the study begins to investigate some 

therapeutic cell types and collagen sources that can potentially be used to make EngNT 

to form the device core. 

Schwann cells have been used in previous studies to promote regeneration in nerve 

repair models (Duncan et al., 1981; Bunge, 1994; Ide, 1996; Terenghi, 1999; Wiberg 

and Terenghi, 2003; Angius et al., 2012); however, for clinical use there are limitations 

to the availability of these cells. Autologous human Schwann cells would need to be 

derived from invasive nerve biopsies and sufficient numbers for regeneration would 

only become available after a lengthy expansion time in vitro (Guest et a/., 1997). 

Schwann cell-like cells derived from stem cells are therefore a more attractive source 

(Walsh and Midha, 2009). There are a range of cell types that can potentially be used 

within a nerve repair device, including autologous and allogeneic cells. 
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Autologous cells 

An autologous therapy is where the patient's own cells are used, whereas allogeneic 

cells are derived from another person. Autologous cells are generally considered to be 

more readily accepted by the patient because they do not provoke an immune reaction 

(Mosahebi et aI., 2002; Rodrigues et al., 2012). 

There are drawbacks associated with autologous cell therapies, including variability 

between patients in yield and quality of cells, a more complex clinical route to patients 

than with an off-the-shelf allogeneic therapy, and in particular the time delay that results 

from expanding the cell populations. Such delays can, in turn, delay the repair 

operation, which can negatively impact regeneration. A study by Wu et al., compared 

nerve regeneration in the rat sciatic nerve model when it was repaired (using the 

primary repair method) at 1, 4, 6, 8 and 12 weeks after damage. Their results showed 

that whilst there was no significant difference in regeneration in the repairs carried out 

after 1 and 4 weeks in terms of compound muscle action potential (CMAP) amplitudes, 

repairs after 4 weeks showed reduced amplitudes (Wu et al., 2013). 

Adult stem cells can be obtained from the patient for use in an autologous therapy; 

however, before these cells can be approved for use in clinical applications, there are 

challenges to overcome such as availability of the cells, efficacy, safety and ethical 

issues. Table 1.3 (chapter 1) summarised some of the cell types that have been or are 

being used in research in the field of peripheral nerve repair. Schwann cells are 

embryologically derived from the neural crest (Le Douarin and Dupin, 2003; Woodhoo 

and Sommer, 2008). Some neural crest stem cells (NCSCs) persist in adults in sites of 

gliogenesis such as the sciatic nerve and dorsal root ganglia (DRG), and in the bulge 

area of hair and whisker follicles, where they give rise to melanocytes (Sieber-Blum et 

160 



aI., 2004; Rodrigues et aI., 2012). A study by Aquino et al. has shown that mouse 

NCSCs can be differentiated into Schwann cell-like cells in the presence of neuregulins 

and implanted in suspension within a silicone tube to promote neuron regeneration in a 

10 mm gap in rat sciatic nerve (Aquino et al., 2006). Dental pulp is also a source of 

NCSCs that is easily accessible (Gronthos et al., 2000). Some NCSCs express neural

progenitor protein markers, even in basal culture conditions (Janebodin et al., 2011; 

Gronthos et al., 2002). The main disadvantage is that the yield of NCSCs is low in 

comparison to adipose or bone-marrow tissue sources. 

Bone marrow mesenchymal stem cells (BM-MSCs) are another source of adult stem 

cells, which have been extensively studied and characterised for use in cell therapies 

(Walsh and Midha, 2009). BM-MSCs can be differentiated into Schwann cell-like 

phenotypes expressing GFAP, S100 and p75 and have been used to enhance neuron 

regeneration (Dezawa et aI., 2001; Shimizu et al., 2007). Wakao et al. have shown that 

autologous BM-MSCs differentiated in vitro to Schwann cell-like cells within a conduit 

containing a collagen sponge structure that filled the lumen, and promoted regeneration 

of median nerve injuries in monkeys (Wakao et aI., 2010). Interestingly, there have also 

been studies that have used undifferentiated BM-MSCs directly for peripheral nerve 

repair. A study by Hu et al. (2007) demonstrated that allogeneic decellularised nerves 

filled with autologous undifferentiated BM-MSCs also promoted functional recovery 

when placed in ulnar nerve gaps of non-human primates. 

Autologous adipose tissue is another source of mUltipotent MSCs. Stem and progenitor 

cells usually make up less than 5% of the total cell population in adipose tissue (Fraser 

et al., 2006), but this is 2500-fold more than the frequency of such cells in bone marrow 

(D'Ippolito et al.. 1999). The abundance of adipose-derived stem cells (ADSCs) and the 
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ability to collect large amounts of adipose tissue via liposuction potentially eliminates 

the need for cell expansion. A study that compared different sources of MSCs from the 

same rats, reported that ADSCs proliferate significantly faster than BM-MSCs in vitro 

(Yoshimura et al., 2007). Culture studies have shown that ADSCs have protective 

effects on DRGs; and implantation of these cells causes significantly increased 

expression of mRNA of anti-apoptotic Bcl-2 and decreased mRNA of pro-apoptotic 

Bax and caspase-3 in DRGs, therefore promoting a neuro-protective effect (Reid et al., 

2011). Rat ADSCs differentiated into Schwann cell-like cells (dADSCs) express a range 

of Schwann cell proteins such as GFAP, p75 and s100 and can promote neurite 

outgrowth in vitro (Kingham et al., 2007; Tomita et al., 2012). It has also been reported 

that dADSCs can promote nerve regeneration in the rat sciatic nerve injury model (Gu 

et al., 2012; di Summa et al., 2010; Tomita et al., 2012). 

Certain important features of ADSCs mean that, compared with BM-MSCs, these cells 

offer advantages in tenns of therapeutic potential. These features include a less invasive 

harvest procedure, high cell viability, and favourable culture and expansion properties. 

ADSCs have also shown promise in other therapeutic areas and are in clinical trials for 

autologous treatment of acute myocardial infarction (Europe, ClinicalTrials.gov 

Identifier: NCT01216995 and NCT00442806), chronic myocardial ischaemia (Europe, 

ClinicalTrials.gov Identifier: NCT00426868) and in the area of reconstructive surgery 

after lumpectomy in breast cancer (ClinicalTrials.gov Identifier: NCT00616l35). Cytori 

Therapeutics, Inc. have developed a Tissue Processing System (the Celution® 800/CRS 

Device), which is approved for certain uses in Europe and which is used in the above 

clinical trials. This device automates and standardises the extraction, washing, and 

concentration ofa patient's own ADSCs. 
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Allogeneic cells 

Alternative cell types are being used to create cell lines for potential allogeneic cell 

therapies. An allogeneic cell therapy is where the donor cells are not from the patient. 

Allogeneic cells are human in origin and potentially immunogenic and so are likely to 

evoke a reaction unless the patient is immunosuppressed prior to and post-implantation 

(Mosahebi et al., 2002). 

Potential allogeneic cell lines that could be used in EngNT within a repair device were 

identified through a comprehensive literature study (carried out in November 2012) to 

identify the cells currently used in clinical trials for nervous system cell therapies 

(reported in Table 5.1 in the next section). For example, the ReNcell CTX cells (human 

neural progenitors), which are currently in a clinical trial to treat Stroke, by ReNeuron 

(Guildford, UK); and MultiStem cells (human adult mesenchymal stem cells), which are 

currently in clinical trials for the treatment of multiple diseases and conditions, 

including neurological conditions by Athersys (Cleveland, Ohio, US). 

Based on the literature study, the following cells were selected for investigation within 

this project: 

• Adipose-derived stem cells differentiated into Schwann cells (dADSCs) -

potential for high yield; derived from ADSCs which are in Table 5.1; existing 

technology for harvest and purification; literature on nerve repair. 

• ReNcell CX neural progenitors: undifferentiated (uCX) and differentiated (dCX) 

- neural; availability of research grade equivalent cells ('CX' refers to the cell 

line available to buy for research, whereas 'CTX' refers to the cells used in their 

clinical trials); factor-free differentiation. 
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• Neural crest stem cells (NCSC) - potential for minimally invasive autologous 

harvest; demonstrated efficacy in SC!; correct Schwann cell lineage. 

• Mesenchymal stem cells (MSC) -long-established transplantable cells; potential 

for allogeneic or 'off-the-shelf use, for example MultiStem cells. The cells used 

in this study were primary rat bone-marrow mesenchymal stem cells. 
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C(l111P.lIl) CL' II I) pI.' I k\ L'II )111111.'111 Illdil.'al iPIl 

Geron (US) GRNOPCl Phase I Acute spinal cord 
(oligodendrocyte 5 Patients treated. injury. Therapy 
progenitor cells, derived indicated at 7 -14 days 
and differentiated from after injury. 
hESCs) 

ReNeuron ReNcell CTX cells are Phase 1111 Ischaemic stroke. 
(UK) neural progenitors (adult First patient has Therapy indicated at 6 

neural stem cells derived been treated months to 2 years after 
from 12-week-old foetal injury. No 
tissue). Committed, not immunosuppression 
pluripotent. Genetically 
engineered to be 

conditionally immortal. 

Some technology licensed 

from Stem Cells Inc. 

Stem Cells, HuCNS-SC (adult stem Phase 1111 Chronic spinal cord 

Inc. (Europe) cells derived from fetal First patient has injury. Patients are 
tissue). been treated immunosuppressed 

Cytori Autologous adipose- Phase IIII Heart disease and 

Therapeutics, derived regenerative cells First patient has reconstructive surgery. 

Inc. (Europe) (ADRCs, also called been treated. No immunosuppression 
ADSCs) 

Advanced Retinal pigment epithelial Phase 1111. Stagardt's Macular 

Cell (RP£) cells derived from 3 patients have Dystrophy and dry 

Technology human embryonic stem been treated AMD 

(ACT) (US) cells 

Athersys, Multistem® derived from Phase 1111 for all Cardiovascular disease, 

Inc. human bone marrow 3 areas immune system 
investigated. disorders and 
Pre-clinical for neurological disorders 
spinal cord like ischaemic stroke. 

lDJUry. Inflammatory bowel 

disease. 

No immunosuppression 

Table 5.1 Therapeutic cells currently in clinical trials for nervous system 
repair/regeneration 
Literature search was conducted in November 2012. 
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In this chapter, the results of using these three types of autologous cells (NCSCs, BM

MSCs, and ADSCs) and ReNcell CX (research grade) cells, for a potential allogeneic 

therapy, within EngNT are described. To investigate whether these cell types could be 

used to fonn EngNT and whether the resulting material would support and guide neurite 

outgrowth, they were fIrst tested in the in vitro assay described in section 3.2.4. In cases 

where initial data looked promising, analysis of gel contraction and cellular alignment 

were carried out. The differentiated ADSCs (dADSCs) and the differentiated CXs 

(dCXs) were taken forward for testing in vivo in a pre-clinical model. The EngNTs with 

aligned cells were rolled into rods and tested within a NeuraWrapTM tube (see figure 

4.1). Using the rat sciatic nerve model, repair of a long gap (15 mm) was assessed after 

8 weeks. This was so the study could test the potential of therapeutic ce]]s in a pre

clinical model, and use the previous long gap experiment (section 4.2.3) as control data. 

In addition to exploring some of the possible options for selecting a clinically relevant 

source of cells for EngNT, this part of the study also explored suitable sources of 

collagen. Bovine collagen is currently being processed according to GMP regulations 

and implanted in various fonns such as, for example, the NeuraWrapTM conduit for 

nerve repair. However the collagen that is generally used for current surgical purposes 

would not be suitable for EngNT since it tends to contain enzymatically prepared 

atelopeptides rather than native acid-solubilised type I collagen. As a step towards 

finding a more suitable alternative to the acid-solubilised rat collagen used in the 

previous chapters, a commercially available source of bovine collagen was tested to see 

ifit could be used to fonn EngNT. 
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The overall aim of this part of the study was to investigate the feasibility of constructing 

a repair device from EngNT using clinically relevant cells and materials. This was 

divided into two objectives: 

(i) To test bovine collagen type I for use in EngNT; 

(ii) To identify and test appropriate cell types, exploring both autologous and 

allogeneic cells in vitro. The cells that were able to promote guided 

neuronal growth in vitro were tested in the rat sciatic nerve model. 

The rat sciatic nerve model was used to compare the nerve graft (current gold standard 

treatment), device containing EngNT-Schwann cell and an empty NeuraWrapTM tube to 

a device containing EngNT -dAOSC rods and a device containing EngNT -dCX rods 

within a NeuraWrapTM tube. The aim of this in vivo experiment was to provide an 

indication of the efficacy of dADSCs and dCXs in a peripheral nerve therapy based on 

EngNT, to support and guide neuronal regeneration across a critical sized defect. 
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5.2 Results 

5.2.1 Investigating the use of bovine collagen for the production of EngNT 

A contraction profile using free-floating gels containing Schwann cells was established 

to give an indication of the ability of the cells to generate tension within bovine collagen 

gels. Figure 5.1 shows the contraction profile for Schwann cells in bovine and rat type I 

collagen (2 mg/m!) at a range of cell densities: 1-6 x 106 cells/ml of gel. The percentage 

of gel contraction increased with cell density and began to plateau at a density of 4 x 106 

cells/ml in the bovine collagen gels. There was more contraction (80%) in the bovine 

collagen gels at this density than in the rat collagen gels, which was around 70%. 

Having established that similar contraction behaviour occurred with Schwann cells in 

bovine collagen as in rat collagen, the same Schwann cell density that was used in 

previous experiments, 4 x 106 cells/m 1, was used for subsequent experiments. 
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Figure 5.1 Contraction profile for Schwann cells in bovine and rat collagen gels 
Schwann cells were seeded at a range of cell densities (1-6 x 106 cells/ml) within 75J.11 collagen 
gels (2 mg/ml bovine or rat collagen) in a 96-well plate. Gels were photographed following 
overnight incubation and % contraction was determined {[(original gel area - contracted gel 
area) / o riginal gel area] * lOO}. Data are means ± SEM from 4 replicate gels within one culture. 
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The next step was to assess the effect of plastic compression on Schwann cell survival 

in bovine collagen gels. Cellular gels were subjected to compression for 1 minute and 

cell death was assessed using propidium iodide and Hoechst immediately after 

compression. Less than 1% cell death was observed post-compression, 0.9 ± 0.7% 

(mean ± SEM; n=4). 

Following this, cellular alignment was assessed in EngNT made using bovine collagen. 

Bovine collagen EngNT sheets with Schwann cells were fixed and stained to detect 

SlOO and alignment was quantified as previously (chapter 3). Figure 5.2 A and B show 

the aligned Schwann cells in EngNT made using bovine collagen (cells were elongated 

and orientated in the same direction). Cell elongation was similar to that of Schwann 

cells in rat collagen, figure 5.2 C. The line of best fit shows that the degree of cell 

elongation is slightly less pronounced in bovine collagen than in rat collagen, but cells 

were still considerably more elongated than the predicted line of best-fit for a randomly 

organised population of cells. 
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Figure 5.2 Schwann cell orientation in EngNT made with bovine collagen 
A-B, Representative confocal micrographs showing Schwann cells (S I 00, green) in EngNT 
made with bovine collagen (z stack is 15 -20~m thick, I ~m step size). C Scatter plot showing 
the aspect ratio for each Schwann cell in the areas sampled, after compression in bovine 
(orange) and rat (red) type I collagen gels. 4x 106 cells/ml cell density was used. Sampled 
640,000 ~m2 per gel, n=3 independent gels. 

These results indicated that Schwann cells can contract the bovine type 1 collagen 

matrix and self-align within the fully hydrated tethered gel. Schwann cell alignment is 

retained in bovine EngNT (post-plastic compression). 

5.2.2 Cell characterisation of the different clinically relevant cell types investigated 

for peripheral nerve repair 

The following cell types were tested experimentally within this study: primary rat hair 

follicle NCSCs, primary rat BM-MSCs, primary rat Schwann cell-like cells from 

ADSCs and undifferentiated and differentiated human neural progenitor cells (uCX and 

dCX, respectively). Initial characterisation of each cell population was followed by 

testing the ability of each cell type to form EngNT, this includes assessing cell survival 

post-plastic compres ion, cell alignment and ability of the material to promote guided 
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neurite outgrowth in vitro, using a cell density of 4 x 106 cells/ml in rat type [ collagen 

(the same coll agen a the previous in vitro and in vivo experiments in chapters 3 and 4). 

Immunofluorescence labelling ofNCSC cultures on coverslips showed positive staining 

fo r ox lOin 100% of the population. This transcription factor is expres ed by C Cs 

and plays a role in the differentiation of peripheral glial cells (Brit ch et al .. 200 I ; 

Bremer et al. . 2011 ) (fi gure 5.3). dADSCs were stained to detect the typical chwann 

cell markers, GFAP p75 and soxlO, and were po itive for all three (figure 5.4). Or Paul 

Kingham of Umea university (the supplier of these cells), previous ly characteri ed th e 

cells by immunofluore cence and western blotting and showed they were pos itive for 

the ame markers (Kingham et al., 2007). 

Figu re 5.3 Identification of Sox lOin neural cre t stem cells 
lmmunofluore cence staining of cu ltured primary rat neural crest stem cells that were seeded 
onto coverslip and maintai ned in culture fo r 24 hour before fixation and immunolabelling to 
detect ox I 0 (green). In the merged images blue is Hoechst and green i ox 10 taining. The 
top ro\\' ho\\'s an area positi e fo r ox 10 and the bottom row show the negative control, no 
primary ant ibody. All C C nuclei were positive for Sox 10. Scale bars are 100 J.lm . 
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Figure 5.4 Cha racterisation of dADSCs on coverslips 
Immunofluorescence staining of dADSCs on coverslips after 24 h in culture, for the typical 
Schwann cell markers: GFAP, p75 and Sox 10. (Scale bars are IOO)lm). In the merged images , 
blue is Hoechst and the green is for the antibody. dADSCs were positive for all of these 
markers. 
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Flow cytometry analysis was perfonned on BM-MSCs to detect anti-CD54, a marker 

for mesenchymal stem cells (Mafi et al., 2011). BM-MSCs were positive for CD54 

(figure 5.5) (isotype IgG 1 antibody was included as a control). Immunofluorescence 

labelling of BM-MS Cs on coverslips revealed that 51 % of the population of BM-MS Cs 

was positive for anti-integrin ~1 (CD29), a marker present in mesenchymal stem cells 

(Mafi et al. , 2011). 
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Figure 5.5 Characterisation of BM-MSCs by flow cytometry 
Histogram showing CD54 expression on BM-MSCs (blue). Two experimental runs were carried 
out, with average median fluorescence for anti-CD54 of 46.8 ± 1.1 (mean ± SEM) and the 
average median fluorescence for the isotype IgGI control was 5.6 ± 0.3 (green peak). A no 
primary antibody control was also used, represented by the dashed pink peak. 
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The research grade ReNcell CX cell s, were characterised previously by 

immunofluorescence staining by Millipore (figure 5.6), so no further characterisation 

was performed on this commercially-sourced cell line. The uCX cells were cultured 

with FGF-2 and EGF to maintain their undifferentiated state. The removal of these 

factors from the media initiates differentiation, which is a two week process. The uCX 

cells were positive for nestin, which is required for the self-renewal of neural stem ce lls 

(park et aI. , 20 I 0), and sox-2, a marker for neural stem cells (Ellis et aI., 2004). The 

dCX cells were positive for neuronal and glial markers (~TII-tubulin and GF AP, 

respectively). 

ReNcell CX eel s (Millipore Cat. No. SCCOO7) are grown as monolayers (A) and express NSC markers. Nestin (8 . red; Cat. 
1'«>. MAB5326) and Sox·2 (B. green; A85603). ReNeell CX ceDs are able to differentiate into neurons express ng ~III· 
tubUlin (C; Cat No. MAB1637) and glial cells expressing GFAP (D; Cat. No. A85804). 

Figu re 5.6 Characterisation of undifferentiated (A, B) and differentiated (C, D) CX 
ReNcells by supplier, MilIipore (Reproduced from data sheet, Millipore, Cat. No. 
SCCOO7). 

integrin 
5100 GFAP p75 sox10 sox2 Nestin CD54 

NCSC - - - ,/ - - -

Rat BM-MSCs - - - - - - ,/ 

uCX - - - - ,/ ,/ -
dCX - ,/ - - - - -
dADSCs ,/ ,/ ,/ ,/ - - -

Table 5.2 Summary table for cell characterisation 
The ,/ indicates the cells are positive for the corresponding antibody; the - indicates where the 
test was not performed. 
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The primary rat neural crest stem cells were not explored further for use within the 

EngNT due to their low cell yield (less than one million cells were obtained after 2 

weeks in culture). Following characterisation of the cell populations, BM-MSCs, 

dADSCs, uCX and dCX cells were selected for further testing. Cell death post-

compression was assessed first using propidium iodide. Tethered gels were compressed 

fo llowing overnight incubation to pennit gel contraction. Samples from compressed 

gels were stained with propidium iodide immediately after compression, and then fIXed 

with 4% PF A and stained with Hoechst. As shown in table 5.3, there was little cell 

death post-compression for all the cell types tested. 

Rat BM-MSC 1.90 ± 0.28 

RatdADSC 0.50 ± 0.14 

Human uCX 0.10 ± 0.03 

Human dCX 0.20 ± 0.06 

Table 5.3 Cell death in compressed gels in rat collagen I gels 
Fully hydrated tethered gels (4 x 106 cells/ml) were incubated overnight to permit contraction 
before plastic compression. A sample from one end of the cellular EngNT was taken for 
live/dead analysi immediately after compression (before the remaining EngNT was used in the 
in vitro assa with neurons). 
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5.2.3 Assessing the capacity of (rat collagen) EngNT containing different cell types 

to support and guide neurite outgrowth in vitro 

5.2.3.1 Primary rat BM-MSCs 

Rat BM-MSCs were tested as an initial way to investigate the feasibility of using the 

equivalent human cells to make EngNT (EngNT-BM-MSC). As previously in chapter 3, 

primary rat DRG neurons were cultured on the surface of this material, EngNT-BM

MSC, for 3 days before fixing overnight and then stained to detect PIII-tubulin. Rather 

than conduct a detailed analysis of BM-MSC orientation within the EngNT, a more 

rapid assay was conducted to screen for the ability of the final material to support 

neurite growth and provide overall guidance parallel to the long axis of the construct. 

Figure 5.7 A-C show confocal micrographs of neurites that were extended on the 

surface. The direction of neurite outgrowth was measured in the sampled area 

(640,OOOllm2 per EngNT-BM-MSC), and there was no obvious directional trend (figure 

5.7 part D). The total neurite length measured in the sampled area per EngNT -BM

MSCs was 4233 ± 1590llm (mean ± SEM), which is low in comparison to the EngNT 

material with the other cell types tested (figure 5.13). No further analyses were carried 

out using the BM-MSCs, such as the quantification of BM-MSC alignment, because the 

amount of neurite growth extended on EngNT -BM-MSCs was lower than with the other 

cell types within EngNT (section 5.2.2.5). 
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Figure 5.7 Neurite outgrowth on the surface of EngNT-BM-MSCs after 3 days in culture 
A-C Con focal micrographs of DRG neurons extending neurites (PllI -tubulin, grey) on the 
surface, scale bars are 100 ).lm; D Distribution of angle of neuri te deviation from the long axis 
of the gel. eurite length measured in the sampled area per EngNT -BM-MSCs was 4233 ± 
I 590).lm (mean ± SEM). Data are means ± SEM, n=4. 
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5.2.3.2 Schwann cell-like cells differentiated from rat ADSCs 

Schwann cell-like cells differentiated from ADSCs (dADSCs) were tested as a potential 

source of cells for an autologous therapy. Before repeating the in vitro neuron co-culture 

experiment using EngNT-dADSC, the contractility of the cells was assessed in collagen 

gels at a range of cell densities 1-6 x 106 cells/m\. Similar to prior observations with 

Schwann cells in collagen gels (figure 5.1), the amount of contraction observed for 

these cell types at the 4 x 106 cells/ml density is between 60-80% (figure 5.8). 
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Figure 5.8 Contraction profile for rat tail type I collagen gels with Schwann cells or 
dADSCs 
Cells were seeded within 75/l1 collagen gels (rat tail type I, 2mg/ml) in 96-well plates and 
photographed following overnight incubation to determine % contraction {[(original gel area 
contracted gel area) / original gel area] * lOO} . Data are means ± SEM, from 4 replicate gels 
within one culture. 

dADSC alignment and elongation within EngNT was quantified; EngNT -dADSC sheets 

were fixed after 24 hours and then stained to detect SIOO immunoreactivity. Results are 

shown in figure 5.9 parts A and B. The confocal images show the aligned and elongated 

cells (red) within EngNT. Aspect ratio of cells was quantified and results are shown in 
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figure 5.9 part C; the degree of cell elongation is greater in EngNT-Schwann cell than in 

EngNT-dADSC. Cells were mostly orientated parallel to the long axis of the gel, 54 ± 

8% (mean ± SEM) of the cells did not deviate from this by more than 20°, figure 5.10. 
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Figure 5.9 Cell elongation within EngNT-dADSC 
A and B Confocal micrographs showing the cells (S 1 00, red) within EngNT, scale bars are 100 
Jlm ; C catter plot showing each cell aspect ratio/elongation within Eng T-dAOSC (red) and 
Eng T-Schwann cell (blue). n=3 individual gels. 
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Figure 5.10 dADSC orientation in EngNT-dADSC 
Frequency distribution showing the deviation of the orientation of each cell from the long ax is 
of the gel , on a per field basis. Data are means ± SEM, n=3 individual gels. 

The ability of dADSCs within EngNT to support and direct neuronal growth was 

assessed in the same way as the previous neurite outgrowth in vitro assay experiments. 

Confocal micrographs in figure 5.11 A show neurite outgrowth in grey, stained for ~II1-

tubulin. The ability of the cells to confer alignment to the growing neurites was assessed 

and results are shown in figure 5.11 C. There is a clear directional trend in neurite 

outgrowth, with 52% of extended neurites on EngNT-dADSC within 20° of the long 

axis of the gel, and only 1.0 ± 0.6% (mean ± SEM) were extended perpendicular to the 

long axis of the gel. The confocal micrograph in figure 5.11 part B shows neurites 

(green) growing along, and in very close contact with, dADSCs (red). 
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Figure 5.11 Neurite outgrowth on EngNT-dADSC 
A Con focal micrographs of neurites stained for PIlI-tubulin (grey), scale bar is 1 00 ~m ; B 
confocal micrograph showing dADSC (S I00, red) and neurons (PIII-tubulin, green) and C 
frequency distribution showing the angle of neurite deviation from the long axis of the gel. 
Total length of extended neurites in sampled area was 9447 ± 171 O~m, mean ± SEM. Data are 
means ± SEM, n=3 individual gels. 
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5.2.3.3 Human neural progenitor cells (ReNcell) 

The human neural progenitor cells (ReNcell CX) were tested as a potential source of 

cells for an allogeneic approach to making therapeutic EngNT. They were used in their 

undifferentiated state (uCX) as supplied from Millipore, and in their differentiated state 

(dCX) as a population of mixed glia. The differentiation of the CX cells was initiated 

through the removal of growth factors. The in vitro assay to assess neurite outgrowth 

was repeated using these cells within EngNT, EngNT-uCX and EngNT-dCX, assessing 

their ability to support and guide neuronal growth. The cells were used at 4 x 106 

cells/ml, as with the Schwann cells, BM-MSC and dAOSCs. 

Neurite growth was assessed as described previously, using the neurite outgrowth in 

vitro assay. The images in Figure 5.12 show that the amount of neurite outgrowth on 

EngNT-dCX (18888 ± 1043J.1m, mean ± SEM) (images B) was - 8 fold greater than that 

on EngNT-uCX (2313 ± 521 J.1m) (images A), when equivalent areas were sampled. The 

direction of neurite outgrowth was assessed in the same way as described previously. 

The results are shown in frequency distribution graphs in figure 5.12. Neurite extension 

on EngNT-uCX is quantified in figure 5.12 part C; the quantification supports the 

images showing the neurites were extended in all directions, because there was a similar 

portion of neurite outgrowth in all the angle ranges. There was a clear directional trend 

in neurite outgrowth on the surface of EngNT-dCX shown in figure 5.12 part 0, 46 ± 

6% (mean ± SEM) ofneurites extended on EngNT-dCX do not deviate from the long 

axis of the gel by more than 20°. The amount of neuronal growth on the EngNTs with 

the different cell types tested is compared in figure 5.13. 
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Figure 5.12 euronal growth on th e surface of EngNT-uCX and EngNT-dCX 
A Con focal micrograph showing neuronal growth (PllI-tubulin, grey) on the surface of EngNT
uCX (23 13 ± 52 1 ~m, mean ± SEM); B confocal micrograph of neuronal growth on Eng T
dCX ( 18888 ± 1 043 ~m)' and C Frequency distribution of neurite angle that have been extended 
on the urface of Eng T-uCX; and D Frequency distribution of neurites that have been 
extended on the urface ofEng T-dCX. n=4 indi vidual gels, data are means ± SEM, scale bars 
are 100 ~m. 
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5.2.3.4 Cell type comparison 

The relative ability of the different candidate cell types to support neurite extension in 

vitro on EngNT with the different cell types was compared by measuring the amount of 

neurite outgrowth per mm2 for each gel. Primary rat neurons from a single culture were 

seeded on the surface of the EngNTs with aligned Schwann cells, dADSCs, uCX and 

dCX. The results from the neuron co-culture on EngNT-BM-MSC were included, 

however this was from a different experiment using a different neuron culture so results 

should be interpreted with caution. The cell types that promoted neurite outgrowth the 

least were the BM-MSCs (6.2 ± 2.2 mm-2
) and uCX (4.9 ± 1.5 mm-2) so these were 

excluded from subsequent parts of the study. The differentiated cells promoted neurite 

growth the most; dCX (38.5 ± 3.0 mm-2
) and dADSC (12 ± 1.0 mm-2

) (figure 5.13). 

These differentiated cells were selected for testing in vivo. 
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Figure 5.13 Neurite outgrowth per mm 2 quantification on aligned cellular EngNT 
The total length of neurite outgrowth measured in the sample region (640,000 11m2) of each 
Eng T, data are means ± SEM, n=3 individual gels. 
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5.2.4 Initial in vivo testing in rat sciatic nerve 

Having established that the dADSCs and the dCX cells could be used to generate 

EngNT which supported directed neuronal growth in vitro, they were taken forward for 

testing in the long gap (15 mm) in vivo model and compared to the groups tested in the 

previous long gap experiment (section 4.2.3): a nerve graft (obtained from litter mates 

to simulate the clinical gold standard autograft) and an empty tube. This was a 

preliminary experiment using small numbers of animals. These groups were compared 

using a 15 mm gap in the rat sciatic nerve with assessment after 8 weeks of recovery. 

5.2.4.1 EngNT -dAD se devices 

To test the ability of EngNT-dADSC to support regeneration in the long gap model, two 

15 mm rods were packed within a NeuraWrapTM outer tube to form the implantable 

device (n=3) (figure 4.1). As before (section 4.2.3), transverse sections were taken from 

the middle of the devices and prepared for transmission EM. Toluidine blue staining in 

the semi-thin sections revealed regenerative tissue throughout the cross section of the 

device (figure 5.14), as was observed in EngNT-Schwann cell and autograft groups and 

in contrast to the empty tube group where material was sparse (figure 4.14). The 

transmission EM images revealed the ultrastructure of the regenerated nerve tissue at 

the mid-point of the devices. The mean axon diameter for myelinated axons in EngNT

dADSC (2.16 ± 0.06 J.lm) was similar to that observed in the EngNT-Schwann cell 

group (2.33 ± 0.10 J.lm) (figure 4.16). The mean fibre diameter for myelinated axons in 

EngNT-dADSC was 3.12 ± 0.18 J.lm, which is approaching the mean fibre diameter 

measured for the graft group (3.29 ± 0.13 J.lm) and greater than that for the empty tube 

(2.64 ± 0.14 J.lm). Myelin thickness in EngNT-dADSC (0.48 ± 0.08 J.lm) was similar to 

that observed in the graft group (0.44 ± 0.01 J.lm), and greater than the myelin thickness 

in the empty tube and EngNT-Schwann cell groups (0.35 ± 0.03 and 0.34 ± 0.02 J.lm, 
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respectively). Similar to the control gro)Jps, the g ratio m EngNT -dADSC was 

approximately 0.7 (figure 4 .16). The different fibre diameters were evaluated as done 

previously (figure 4.17). The distribution of the different fibre types was s imilar in 

EngNT-dADSC to the graft , EngNT-Schwann cell and empty tube groups. 
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Figure 5.14 Micrographs of transverse sections from the mid-point of the EngNT-dADSC 
devices after 8 weeks in vivo 
Representati e semi-thin sections stained with toluidine blue show the regenerated neural ti ssue 
within the de ice, as observed by light microscopy (A) scale bars are 200 and 100 Ilm for the 
images on the left and right, respectively. (B) Representati ve transmission electron micrographs 
taken from the areas of highest density (as determined from toluidine blue stained sections); S = 

Schwann cell nucleus, M = myelinated axon, scale bars are 2 Ilm. 

Neurite regeneration was analysed using transverse sections through the proximal and 

dista l parts of the device and in the stumps, to investigate if EngNT -dAOSC could 

support regeneration across the 15 mm gap during the 8 week recovery period, as done 

previous ly. Figure 5 .1 5 shows representative images of the neurofil ament positive 

axons in the different parts of the repair site. The axon counts in the three EngNT-
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dAD se devices tested gave a similar mean number ofaxons in the different parts of the 

device as were observed with EngNT -Schwann cell devices. There was a greater 

number ofaxons supported in the DD (distal part of the device) in the EngNT devices 

(EngNT-Schwann cell and EngNT-dADSC), compared to the empty tube group, which 

had 290 ± 112 (mean ± SEM) axons, which is approximately a third of the number 

detected in EngNT-Schwann cell (955 ± 348) and EngNT-dADSC (719 ± 306) (figure 

4.18). 

The relative muscle weight ratio was also calculated to give an indication of the extent 

of motor neuron regeneration/degeneration. EngNT-dADSC devices after 8 weeks in 

vivo to bridge a 15 mm gap, had a relative muscle weight ratio 21.0 ± 0.4 % (n = 3), 

which is similar to that observed in EngNT-Schwann cell, 23.8 ± 1.9 % (n = 5), and 

lower than that observed in the graft group, 34.7 ± 2.5 % (n = 5). 
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Figure 5.15 Fluorescent micrographs of transverse sections through the different part of 
the repair site after repair with E ngNT -dADSC devices after 8 weeks ill vivo 
1 0 ~m thick sections were stained to detect neurofilament, scale bars are I 00 ~m . 

5.2.4.2 E ngNT -dCX devices 

Eng T-dCX devices were tested in the same way, within a NeuraWrapTM tube to bridge 

a 15 mm gap in the rat sciatic nerve (n=5) (figure 4. 1). The dCX ce ll are human ce lls 

and so the animals were immunosuppres ed using cyclosporine A (1 5 mg/kg) 24 hours 

prior to implantation and then daily throughout the recovery period. Two out of the fi ve 

devices were pre-Iabel\ ed with Hoechst to allow the implanted cells to be distinguished 

from the ho t cells in the harvested devices, in addition to u ing the GFP label 

expressed in host cells to distinguish them also. 
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The analyses were carried out as described previously (section 4.2.3). Figure 5.16 

shows images of transverse sections through the mid-point of the devices stained with 

toluidine blue (A) and transmission EM (B). Two out of the five devices (one was pre

labelled with Hoechst and one was not) had regenerated tissue present within the 

devices, however no regeneration was observed in three of the devices (the images in 

figure 5.16 are representative of the two implanted devices that supported regeneration). 

The regeneration observed in the two devices (figure 5.16) shows myelinated axons at 

the mid-point of the repair, however this was sparse and much less than the amount of 

neural tissue observed in the EngNT -Schwann cell and EngNT -dADSC devices, and 

also less than that observed in the empty tube group. Although these cannot be 

compared directly as only the animals in the EngNT -dCX group received were 

immunosuppressed. 
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Figure 5.16 Micrographs of transverse sections from the mid-point of the EngNT-dCX 
devices after 8 weeks in vivo 
Representative semi-thin sections of two of the devices stained with toluidine blue show the 
neural tissue within the device, as observed by light microscopy (A) scale bars 100 ~m ; 

Representative transmission electron micrographs of the two devices taken from the areas of 
highest density (as determined by toluidine blue stained sections), S = Schwann cell nucleus, M 
= myelinated axon, scale bars are 2 J!m and 500 nm for the images on the left and right, 
respectively. 

Transverse sections were taken from the proximal part of the devices and stained to 

identify neurofilament positive axons. All devices were implanted into GFP+ rats, and 

there was evidence of Hoechst staining that was not associated with GFP+ cells, 

indicating persistence of the dCX cells at the repair site (figure 5.17 image A). The 

neurofilament-positive axons shown in red in image B indicated EngNT-dCX can 

support neuronal growth. 
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Figure 5.1 7 Confocal micrographs of transverse sections from the proximal part of 
EngNT-dCX devices after 8 weeks in vivo 
(A) Hoechst-labelled dCX nuclei were present within the implanted dev ice at 8 week 
(indicated by white arrows), and were distinct from host GFP-Iabelled cells, indicating 
persistence of the dCX cells at the repair site (B) The EngNT -dCX devices supported neuronal 
regeneration (red). 

At the time of device harvest, the relative muscle weight ratio was also calculated to 

give an indication of the extent of motor neuron regeneration/degeneration. This was 

greater than the other EngNT device , at 24.8 ± 1.3 % (n=5), compared to 2 1.0 ± 0.4 % 

for EngNT-dADSC (n=3) devices and 23 .8 ± 1.9 % for EngNT-Schwann cell (n=5) 

device; but wa lower than that observed in the graft group, 34 .7 ± 2.5 % (n = 5). 

191 



5.3 Discussion 

This part of the study tested whether clinically relevant cells and materials could be 

used to make a peripheral nerve repair device based on EngNT. Importantly, it 

demonstrated that sources of collagen and cells similar to those that have already been 

developed for use in clinical trials can be used to engineer neural tissue, providing 

useful evidence to underpin future translational studies. 

This study showed that bovine collagen, which is more clinically relevant than rat 

collagen, supported Schwann cell self-alignment and could be subjected to plastic 

compression to produce EngNT. Studies have reported other cell types contracting 

bovine type I collagen, such as human gingival fibroblasts and human oral keratinocytes 

(Techatanawat et a/. , 2011). The contraction profile experiment (section 5.2.1, figure 

5.1) showed that the amount of contraction after 24 hours with Schwann cells was 

similar in both rat and bovine collagen. A study comparing contraction rates in type I rat 

and bovine collagen, using fibroblasts, showed that rat collagen had a slower 

contraction rate compared to bovine collagen over a 9 day period (Techatanawat et al., 

2011); though the contraction rates reported in that study were similar after a 24 hour 

period, which is in line with the results shown here. 

The form of bovine collagen currently used in the clinic (e.g. for lip fillers in cosmetic 

surgery) is not suitable for use within this method, to form a hydrogel, because it 

contains telopeptide-free collagen, which cannot form a hydrogel. Collagen has been 

used for a considerable period of time in the clinic, providing evidence of safety and 

biocompatibility, making it desirable for use in more advanced tissue engineering. A 

study by Charriere et a/. in 1989, showed that only a small percentage, 2.3%, of the 
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patients treated with bovine collagen implants had an adverse reaction, from the 656 

patients tested (Charriere et al .. 1989). 

The cells investigated in this study were: primary rat bone-marrow mesenchymal stem 

cells, Schwann cell-like cells from differentiated adipose-derived stem cells, 

undifferentiated and differentiated CX cells. Primary neural crest stem cells were 

considered initially but were not used for experiments. The neurite outgrowth in vitro 

assay was used to screen the cell types and showed the undifferentiated cells (BM

MSCs and uCX) did not enhance neurite outgrowth as much as the cells that had 

differentiated into glial cell types (dADSC and dCX). 

Interestingly, other studies using rat BM-MSCs to repair rat sciatic nerve have shown 

that transplanting stem cells that are not fully differentiated can be effective due to 

subsequent in vivo differentiation (Zhang et al.. 2004; Chen et al.. 2007). Chen et al. 

showed the BM-MSCs differentiated post-transplantation into S lOO-positive Schwann 

cell-like cells that myelinated the regenerated axons (Chen et al.. 2007). Transplanting 

undifferentiated cells could be useful in the clinical setting because transplanting stem 

cells at the time of injury and permitting their differentiation to a Schwann cell-like 

phenotype in vivo would potentially reduce the delay associated with expanding and 

differentiating autologous cell populations. However, when comparing undifferentiated 

and differentiated BM-MSCs directly, the differentiated cells secrete greater amounts of 

neurotrophic factors, which can enhance regeneration (Dezawa et al.. 2001). 

Additionally, using differentiated/more mature cells may ensure a more precise and 

complete therapeutic effect because the cell population will be more homogeneous than 

the cell population from transplanted undifferentiated cells, where their differentiation 
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to a particular cell type is not controlled or monitored and the long term safety is 

unknown. 

The undifferentiated cell types tested in the in vitro assay, BM-MSCs and uCX, were 

not taken forward because they did not promote neurite outgrowth as well as the 

Schwann cells. The dADSe and dCX cells however were better in promoting neurite 

outgrowth and could be used to make EngNT which supported directed neurite 

outgrowth. The ex cells are equivalent to the clinical grade CTX cells, which are 

already being transplanted into patients, with no immunosuppression, to treat stroke. 

Their differentiation into glial cells is mediated through the removal of factors, which is 

an appealing feature from a regulatory point of view since no additional factors would 

need to be used to manipulate the CTX cells. 

Having established that an EngNT -based device could be assembled using clinically 

relevant cells, the effectiveness of these devices was investigated in a long gap in vivo 

model. EngNT -dADSe or EngNT -dCX devices were implanted into a 15 mm gap in the 

rat sciatic nerve for 8 weeks. Data obtained using the EngNT-Schwann cell devices, 

empty NeuraWrapTM tubes and nerve grafts from littermates reported in chapter 4 were 

used as comparators, and hence were not repeated for the dADSC and dCX in vivo 

experiments. 

The EngNT -dADSe devices showed equivalent regeneration to the EngNT -Schwann 

cell devices, in terms of the amount of neural tissue at the mid-point of the devices and 

the number of regenerated axons that were supported at the distal part of the device, 

although no statistical analysis was done because the number of animals used in the 

EngNT-dADSe group was n=3 only. 
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The regeneration across a 15 mm gap after 8 weeks using the EngNT -dCX devices was 

less clear because there was no regeneration present in three out of the five implanted 

devices, and so no quantification was carried out because of the inconsistency within 

the group. The regeneration observed in the two EngNT -dCX devices that did show 

some regeneration, was less than that observed in the other EngNT devices. This may 

be due to species differences and the immune response to the human cells and indeed 

the animals receiving immunosuppression lost up to 20 % of their weight prior to the 

surgery. 

Interestingly, the relative gastrocnemius muscle weight ratio was similar in the EngNT

dCX repairs (n = 5), compared to EngNT-Schwann cell (n = 5) and EngNT-dADSC (n 

= 3) groups, even though less regeneration was observed in the mid-point of EngNT

dCX. This may be because in the EngNT -dCX repairs, the degeneration of the 

gastrocnemius muscle is not as rapid. The effect of cyclosporine A (CsA) on neuron 

regeneration is not clear from the literature. CsA has been known to promote neuro

protection and neuro-regeneration (Strittmatter et al., 1992; Ibarra et aI., 2007). The 

dose of CsA used in this experiment was 15 mg/kg body weight. A study comparing 

different doses of Cs A (2,4,8 and 16 mglkg), administered daily after primary repair of 

the rat sciatic nerve, concluded that CsA had adverse effects on peripheral nerve 

regeneration (Meirer et al., 2002). In this study by Meirer and colleagues, histology 

revealed significantly reduced numbers of myelinated axons, reduced myelin sheath 

thickness, and reduced diameters in all CsA treatment groups compared with the 

untreated control group, which seemed to be dose related for sensory neuron 

recovery (Meirer et al.. 2002). It would be essential to conduct control experiments 

using the same immunosuppression protocol in conjunction with the control groups 
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before the fmdings can be interpreted. However this was an initial experiment to 

investigate the feasibility of using the dCX cells, and while the data are not promising, 

they are inconclusive (without the controls) and it may be worth exploring these cells 

more in the future because the failure may be due to the technical challenge of testing 

human cells in rats. To avoid this issue, an alternative to immunosuppression would be 

to use nude rats or mice. 

The overall aim for this part of the study was to investigate the feasibility of 

constructing a repair device from EngNT using clinically relevant cells and materials. It 

has shown that bovine collagen, which is currently used in the clinic, can be used to 

produce EngNT. Furthermore, autologous (dADSC) and allogeneic (dCX) cells were 

tested within EngNT and results from the in vitro assay showed that they could promote 

guided neurite outgrowth within EngNT. The EngNT-dADSC devices could support 

neuron regeneration across a long gap in vivo, where regeneration was equivalent to that 

observed using EngNT-Schwann cell devices. There was some regeneration in the 

EngNT -dCX devices, however this was not consistent and requires further 

investigation. In summary, there is evidence of the efficacy of dADSCs and dCXs in a 

peripheral nerve therapy within EngNT devices. 

The findings of the present study suggest that the dADSCs have potential to be used for 

peripheral nerve repair. There are many advantages of using Schwann cell-like cells 

differentiated from a patient's own adipose-derived stem cells, these include: no 

immune reaction as it would be an autologous therapy, large amounts of adipose tissue 

can be collected via liposuction, eliminating the need for cell expansion and dADSCs 

have been reported to promote peripheral nerve regeneration in animal models. 

Peripheral nerve repair using the dCX cells is less clear, but that may be due to the 
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complications of using immunosuppression, so it is worth investigating them further. 

There is a clear advantage in using the dCX cells in that they are allogeneic and can be 

used for an off-the-shelf therapy; however allogeneic cells are potentially immunogenic 

and so are likely to evoke an immune response unless the patient is immunosuppressed. 

In summary, this part of the study demonstrates that EngNT can be constructed using 

clinically relevant cells and materials. Furthermore, the in vivo experiments provide an 

indication of efficacy of dAOSCs and dCXs in a peripheral nerve therapy based on 

EngNT, to support and guide neuronal regeneration. 
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6.0 Discussion 

The overall aim for this thesis was to develop an implantable tissue-engineered device 

for the surgical repair of the peripheral nervous system. The primary goals were to 

develop an aligned cellular biomaterial that could promote guided neuronal growth and 

be used to form the basis of a peripheral nerve repair device, with a proof-of-principle 

study to demonstrate efficacy in vivo in a model representative of the clinical situation. 

The main objectives were outlined in section 1.5: 

1. To develop and optimise a robust biomaterial with highly aligned cells 

[Engineered Neural Tissue (EngNT)) that could potentially form the basis of a 

peripheral nerve repair device. 

2. To engineer an 'endoneurium' using EngNT that supported the re-growth of 

axons across the gap in injured nerves. 

3. To investigate the feasibility of constructing a repair device from EngNT using 

clinically relevant cells and materials. 

As described in chapter 3, the alignment of cells in tethered hydrogels was preserved by 

plastic compression (stabilisation) once the gel was removed from the tethering bars, 

thereby forming EngNT. The studies in this chapter showed that EngNT-Schwann cell 

could support and guide neurite outgrowth in vitro (objective I). The next step was to 

investigate whether this material could be used to form the basis of a repair device. The 

studies described in chapter 4 assessed the different ways in which EngNT could be 

incorporated into a repair device, investigating different arrangements, amounts of 

'surface' and material, and cell density. This allowed decisions to be made regarding the 

EngNT arrangement within a conduit and indicated an arrangement based on ease of 

assembly and amount of regeneration in a short gap model (objective 2). A proof-of-
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principle study using EngNT -Schwann cell in a long gap model, representative of the 

clinical situation where an autograft would be indicated, showed that the EngNT

Schwann cell devices supported regeneration across the gap (15 mm) at the injury site 

better than the empty conduit group (objective 2). 

The next step was to assess the feasibility of constructing an EngNT device from 

clinically relevant cells and materials (chapter 5). In these studies, a bovine source of 

native collagen was used to construct EngNT-Schwann cell, which was equivalent to 

the rat collagen EngNT -Schwann cell, in tenns of gel contraction and cellular alignment 

(objective 3). A comprehensive literature search was conducted to identify cells that 

might be suitable for this approach. Potential therapeutic cells were tested within 

EngNT; EngNT -dADSC devices showed promising preliminary results in the long gap 

(15 mm) in vivo model, indicating their potential for use in an autologous therapy 

(objective 3). An allogeneic source of cells was also used within EngNT (EngNT -dCX) 

and tested in the same model; results showed evidence of regeneration, however further 

investigation into their use is required (objective 3). 

This thesis began with the hypothesis that combining two techniques (cellular self

alignment in tethered gels and plastic compression) could produce a robust material 

(EngNT) that could support guided neuronal growth. The combination of these two 

techniques had been attempted before (East et al., 2010); however established protocols 

for the procedure, and a quantitative assessment of the efficacy of this approach, were 

lacking. This project has developed protocols to identify some of the parameters 

required to construct aligned gels (e.g. contraction profiles to establish the required cell 

density), and an in vitro assay to assess the ability of EngNT to support and direct 

neurite outgrowth (i.e. amount and guidance) using 3D image analyses. The 
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combination of alignment and compression is now being developed for commercial use 

by TAP Biosystems (UK) in collaboration with Or James Phillips at The Open 

University, building on existing RAFT~ technology. 

The EngNT material constructed in this present study was used to form a repair device, 

demonstrating regeneration across a repair gap in a relevant model and showing it could 

be used with clinically relevant cells and materials. This study has moved this project 

significantly forward to a point where it is being developed further to construct a 

translational peripheral nerve repair device using therapeutic cells, in collaboration with 

two companies with the relevant expertise. 

There are limitations to the experimental models used in this study. For example, the in 

vitro model used to assay different cell types within EngNT used neurons from 

dissociated dorsal root ganglia, which comprised only the sensory neuronal bodies, 

therefore it does not permit the model to predict the ability of the cells to promote motor 

neuron regeneration. There are differences between motor and sensory neuron 

regeneration (Madorsky et al., 1998). In that study, Madorsky and colleagues showed 

that in the repair of 10 mm gap in rat sciatic nerve using collagen conduits, only 6.2 % 

of motor neurons regenerated and 63 % of sensory neurons regenerated, compared to 

primary (end-to-end) repair where 65 % of motor neurons and 79 % of sensory neurons 

had regenerated (Madorsky et aI., 1998). This could be because of a difference in the 

rate of neuron regeneration. It has been reported that motor neurons regenerate at a 

slower rate (1. 7 mm! day) than sensory neurons (5 mm/day) after primary repair in 

patients following a 2 year follow up (Dolenk and Janko, 1976). 
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The in vivo rat sciatic nerve model also has limitations in that rat nerve microstructure, 

composition, inflammatory response, fibrosis and capacity for nerve regeneration are 

not the same as they are in humans. The rat sciatic nerve used in the in vivo model has 

one fascicle at the level of the hips, whereas human sciatic nerve has multiple fascicles, 

which would potentially make the repair of human sciatic nerve different. Additionally, 

peripheral nerve regeneration is reported to be slower in humans than it is in rats 

(Buchthal and Kuhl, 1979). Furthermore, the proximal stump in humans is less able to 

respond to regenerative cues with time (Fu and Gordon, 1997); and fibrosis occurs after 

PNI in humans, which is inhibitory to the repair process, and so complete recovery is 

less likely to occur after PNI in humans, compared to rat. There is also a key difference 

in the critical sized gap length for rats (15 mm) and humans (30 mm). Despite these 

differences, there are advantages to using the rat sciatic model, these include: rats are 

easy to handle and care for, resistant to surgical infections, economical and can be 

investigated in large groups, which is why it is the most widely used animal model of 

peripheral nerve repair (Angius et al., 2012). 

For the rat sciatic nerve model, it is considered to be important to use a gap size that is 

at least 15 mm in length and to include an autograft control (Bellamkonda, 2006). The 

autograft control data can be used to defme the success criteria of the peripheral nerve 

repair device. Anatomical and histological analyses were used in this study, which are 

adequate to address the experimental questions, to assess the amount of axon 

regeneration at different points along the repair site. A limitation could be the sample 

size of five animals per group was used could be considered too low for reliable 

statistical analysis. However, this is a typical group size for these kinds of experiments 

and represents a compromise between statistical power and the principles of the 3Rs. 

There is currently no consensus on which models should be used to assess nerve 
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regeneration, but it is suggested that a rodent model could be used for initial 

experiments, before progressing to a larger animal for the repair of longer nerve gaps, 

for example in sheep or primate models (Angius et al., 2012). 

Whilst this project has made good progress in addressing the objectives outlined in 

section 1.5, there is scope for considerable additional future work to develop and fully 

characterise EngNT as a nerve repair material. The mechanisms of alignment of cells 

within collagen gels, and longer term effects of stability of EngNT, in terms of cellular 

alignment and guidance were not investigated. The mechanisms of alignment could be 

investigated by looking at how the cells attach to the collagen, by for example, blocking 

integrin attachments and assessing the extent of cell attachment by measuring the 

differences in gel contraction profiles. This could be useful for identifying desirable or 

undesirable cell-matrix interactions, which could identify ways to speed up cellular 

alignment and/or retain cellular alignment. It is important that cellular alignment 

persists in vivo for the duration required to support regeneration, and also alignment 

duration has implications for storage and transport of devices. It would be useful to 

assess whether the cells survive the freeze-thaw process within EngNT and also if the 

alignment is retained after thawing. Future work could investigate these and also some 

features such as cell differentiation or de-differentiation within the material. The 

phenotype and purity of the cells within EngNT should be characterised and monitored 

throughout the process of making EngNT devices, for example, after stabilisation and 

rolling to form rods. The EngNT could be characterised by immunostaining for 

antibodies to detect desirable or undesirable cell markers. 

Further investigation into using fibrin to construct EngNT is required, as there was an 

indication that fibrin could be used to generate EngNT that can promote guided neurite 
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outgrowth, however the cellular alignment in fibrin EngNT was inconsistent. Fibrin was 

not pursued in this study; however future work could investigate, for example, different 

concentrations and proportions of the constituents used to make fibrin EngNT to 

achieve reliable alignment, ability to support regeneration, stability and feasibility. 

The in vivo pilot work to assess the ability of differentiated human neural (CX) cells 

within EngNT to guide neurite regeneration across a 15 mm gap in rat sciatic nerve 

gave inconsistent results. There was some evidence of regeneration and some animals 

with no regeneration. The animals became unresponsive, lost weight and were eating 

much less than usual, as a result of immunosuppression with CsA, which may have also 

had an effect on regeneration. Future work could investigate the dose required for the 

immunosuppression and also the length of time the animal needs to be 

immunosuppressed for. The clinical grade ReNeuron CTX cells (undifferentiated) have 

been used in various species without immunosuppression (personal communication with 

ReNeuron), suggesting that immunosuppression may not be required at all. 

Alternatively, other methods of testing human cells in vivo could be employed such as 

using mutant strains of animal that are immunosuppressed, e.g. nude rats; or other 

immunosuppressive drugs, such as FK506. 

In the future, it would be interesting to understand the mechanisms by which cells in 

EngNT promote regeneration. Two areas to explore would be growth factor release and 

surface proteins. This could be investigated using in vitro models. For example, ELlS As 

to measure factors in the media, co-cultures using transwells to distinguish between 

contact-mediated and diffusible factors. Surface proteins could be identified by 

immunostaining co-cultures of neurons and glia. This would help determine optimal cell 

choice and differentiation state. Beneficial factors could be over-expressed or inhibitory 
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factors could be inhibited. This would also help to optimise the device design; for 

contact-mediated factors the cells would need to be on the surface of the material, or if 

the beneficial factors are diffusible than they could be distributed throughout the 

material. 

The in vivo experiments showed that the EngNT devices could support regeneration 

across the gap; however the growth into the repair device was significantly less than 

that observed in the graft groups. Further work to optimise the rod design is required, 

for example investigating the effect of altering the shape (for example expanded or 

tapered ends) or other physicaVchemical properties (for example using depots of 

immobilised neurotrophic factors) of the EngNT rods at the proximal part of the device 

to promote axonal ingrowth. The incorporation of neurotrophic factors or gradients of 

factors along the length of the device could also enhance regeneration into the device, as 

well as the incorporation of ECM components such as laminin (Dodla and 

Bellamkonda, 2(08). 

Future work could also explore alternative approaches for the construction of EngNT, 

such as using blends of materials, for example collagen and fibrin in order to exploit 

beneficial aspects of each. Combinations of materials could even be used to construct 

different sections within one rod, for example building EngNT rods with one end 

enriched in fibrin and the other enriched in collagen. The fibrin end of the rod could be 

positioned near the proximal stump, providing a fibrin bridge for rapid initial 

regeneration (Liu, 1992), with the potentially more stable collagen elements persisting 

for a longer duration to support sustained repair. Another approach could be to explore 

the potential of composite devices containing collagen rods and fibrin rods in various 

proportions within the repair conduit to promote regeneration. 
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The ultimate aim of this research is to develop a peripheral nerve repair device that can 

be implanted into patients. This will require further studies like the ones mentioned 

above, and also efficacy data for EngNT constructed with clinically relevant cells and 

materials, to obtain regulatory approval to begin clinical trials. An allogeneic device 

would be simpler to produce and administer because the device could be made and 

stored until it is required for use. This is in contrast to an autologous device, which 

would need to be prepared after the patient has sustained an injury, thereby adding a 

time delay to the treatment whilst the patient's cells are expanded and used to construct 

EngNT. A hypothetical scenario would be a patient with a forearm injury that includes 

extensive damage to the median nerve resulting in a gap. An EngNT device would be 

indicated as an alternative to the nerve autograft treatment. The EngNT rods with 

allogeneic cells, for example, dCTX (clinical grade differentiated human neural cells 

from ReNeuron), would be prepared from frozen and the required number of rods 

(corresponding to the size of the injured nerve) placed within an adjustable sheath, and 

then used to bridge the gap at the injury site. 

The field of regenerative medicine is progressing rapidly, particularly in terms of stem 

cell technology (for example iPS cells), and so in a few years there might be a totally 

different environment for tissue engineering technology. The technology reported here 

offers a simple. rapid and effective method for the manufacture of an aligned cellular 

biomaterial and can be made using various therapeutic cells. The most advanced cell 

therapies being used at the moment tend to be injections of cells. This project was 

centred on the next generation of tissue-engineered constructs that go a step further and 

organise the cells into tissues. 
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It is difficult to predict what the future holds in this dynamic field; perhaps off-the-shelf 

cells that require no immunosuppression and can be adapted to over-express 

neurotrophic factors and contract collagen to fonn EngNT in a matter of minutes? Or 

perhaps constructs with a functional neuronal element that can be connected to the 

proximal and distal stumps of the injured nerve to restore patients' function 

immediately? This work may be quite an early step along the road to a useful therapy, 

but it provides an exciting new alternative to the 'seeding cells into scaffolds' paradigm. 

In summary. this project demonstrated that there is potential for EngNT to be used 

within a nerve repair conduit in order to promote neuronal regeneration across a critical 

sized defect in vivo. 
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