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Abstract 

MicroRNAs (miRs) are small non-coding regulatory RNAs that act through repression of 
protein translation and/or mRNA degradation at the post-transcriptional level. MiRs 
are critical players in the pathogenesis of many diseases, including neuroinflammatory 
disorders such as multiple sclerosis (MS). MS is characterized by leukocyte adhesion 
and infiltration subsequently leading to demyelination of nerve fibres. Leukocyte 
adhesion on brain endothelial cells (BEC) - the main cellular constituent of the blood­
brain barrier (BBB) - is a complex multi-step process where activated BEC overexpress 
chemokines such as CCL2 and endothelial adhesion molecules (CAM) such as selectins, 
VCAM1 and ICAM!. Several therapies for MS target the common known mechanisms 
of leukocyte adhesion. 

Here, we studied whether specific endothelial miRs act as regulators of 
leukocyte adhesion to cultured human BEC in vitro, and hence whether they could be a 
potential therapeutic tool to prevent adhesion to endothelium. First, we characterised 
leukocyte adhesion using the monocytic (THP1) and T cell (Jurkat) lines under static 
conditions, interacting with the immortalized hCMEC/D3 endothelial cell line as an in 
vitro model of the human BBB. Increased adhesion of both leukocytic cell lines to BEC 
was observed following treatment with TNFa and IFNy compared to unstimulated 
cells. Increased expression of both ICAM1 and VCAM1 by hCMEC/D3 cells was also 
observed following cytokine treatment. Cytokine-induced maximal VCAM1 and ICAM1 
expression coincided with the observed maximal leukocyte adhesion to BEC at 24 h. 
Next, we established a novel flow-based leukocyte adhesion assay coupled with time 
lapse image acquisition, to mimic more closely the in vivo conditions. We successfully 
cultured and transfected hCMEC/D3 cells in six-channel chambers, connected to a flow 
system, to study leukocyte-endothelium interactions and firm adhesion. Second, we 
performed an initial screening of five cytokine-regulated BEC miRs. Of these five, miR-
126 and miR-155 appeared to have the most significant effects on leukocyte adhesion 
to hCMEC/D3celis. We further investigated the roles of miR-126, miR-126* (the 
complement of miR-126), and miR-155 in leukocyte adhesion to BEe. MiR-126 and -
126* were down-regulated in cytokine stimulated BEe. Low levels of miR-126 
increased adhesion of both cell lines, while low levels of miR-126* increased THP-1, 
but reduced Jurkat adhesion. Elevated miR-126 and miR-126* levels significantly 
prevented Jurkat and THP-1 cell adhesion to BEC both in unstimulated and cytokine­
treated conditions. Furthermore, elevated miR-126 partially prevented cytokine­
induced VCAM1 and CCL2 expression on BEC and an increased level of miR-126* 
partially prevented cytokine-induced E-selectin expression. In cytokine stimulated-BEC 
miR-155 was up-regulated, and decreasing the level of miR-155 reduced both T cell 
and monocyte adhesion to endothelium and VCAM1 expression both in basal and in 
cytokine-stimulated conditions. The opposite effect on leukocyte adhesion was 
observed when miR-155 expression was increased in unstimulated hCMEC/D3 cells, 
but not in cytokine-stimulated endothelium. These data suggest that miR-155, miR-126 
and miR-126* modulate leukocyte adhesion on human brain microvascular 
endothelium. To our knowledge, this study is the first to report a role for miR-1S5 and 
miR-126* in the interactions between human brain endothelium and immune cells and 
the first to confirm the regulation of VCAMl and CCL2 by miR-126 in brain 
endothelium. 
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Chapter 1: Introduction 

1.1 The blood-brain barrier in health 

In the late 19th century, Paul Ehrlich observed that, following injection of water­

soluble vital aniline dyes in the peripheral circulation, all organs were stained except 

the brain and spinal cord [Ehrlich 1885 cited in (Bechmann, Galea et al. 2007)]. Edwin 

Goldmann observed, some years later, that following injection of aniline dyes in the 

cerebrospinal fluid (CSF), the central nervous system (CNS) was stained but not 

peripheral tissues [Goldmann 1913 cited in (Bechmann, Galea et al. 2007)]. These 

observations suggested that the CNS is a unique anatomical compartment separated 

from the rest of the body. In 1900 Lewandoski demonstrated that different 

compounds when injected directly in the brain were highly neurotoxic, while injected 

intravenously they were not [Lewandowski cited in (Bechmann, Galea et al. 2007)]; this 

observation led Lewandoski to conclude that the capillary wall can apparently block 

the access of certain molecules. 

The concept of a blood-brain barrier (BBB) was thus established but, it was not 

until the 1960s, when electron microscopy techniques allowed the identification of the 

anatomical site of the barrier, that it was discovered that the CNS is tightly sealed from 

other organs at the level of the endothelial cells (EC) within the CNS vasculature (Reese 

and Karnovsky 1967; Bodenheimer and Brightman 1968). More recently, the BBB has 

also been termed the neurovascular unit (NVU) as it has been shown that the barrier 

properties of the cerebral vasculature is the result of elaborated interactions between 

many cell types. 
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The BBB is one of a number of blood-CNS interfaces, which also includes the 

blood-CSF barrier (BCSFB), the blood-retinal barrier, the blood-nerve barrier and the 

blood-labyrinth barrier, all of which are important for the physiological function of the 

CNS (Neuwelt, Bauer et al. 2011). The BBB is one of the three principal barrier sites 

between blood and brain (Abbott, Patabendige et al. 2010), which constitutes the 

largest interface for blood-brain exchange with a surface area between 12 and 18 m2 

for the average human adult brain [Nag S. and Begley DJ cited in (Abbott, Patabendige 

et al. 2010)]. A second interface is the above mentioned BCSFB, and the third one is 

the arachnoid epithelium (Abbott, Ronnback et al. 2006). 

1.1.1 Localization of the blood-brain barrier 

The CNS, formed by the spinal cord and the brain (Fig. 1.1 left), is highly 

vascularised. All together, it has been estimated that the total perfused cerebral 

vascular length in the adult human is approximately 600-700 km (Zlokovic 2005). 

Constant blood supply is critical and fundamental to maintain constant oxygen levels in 

the brain and the spinal cord. The brain receives blood from the internal carotid 

arteries and the vertebral arteries which join the circle of Willis, at the base of the 

brain. These arteries divide into pial arteries, after penetrating into the CNS by the 

intracerebral arteries, and finally branching into the human brain microvasculature. 

Arteries branches and narrow into arterioles, then further into capillaries (5-10 11m) 

inside the CNS parenchyma (Fig. 1.1 right). After the CNS has been perfused, capillaries 

become post-capillaries venules, venules and veins, with a gradual increase in 

diameter vessel. The cellular composition of the BBB varies from arteriole, to capillary 

and to venule (Bechmann, Galea et al. 2007) (Table 1.1). Leukocyte adhesion and 
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infiltration mainly occurs at the level of post-capillary venules (reviewed in (Engelhardt 

and (oisne 2011). 

CENTRAL NERVOUS SYSTEM (CNS) 

Brain 

Spinal 
Cord 

HUMAN BRAIN VASCULATURE 

Capillaries­
Venules 

C?~~ • 

Post­
Capillary 

HUMAN BRAIN MICROVASCULATURE 

Fig. 1.1: Central nervous system (CNS) (left) and human brain vasculature and 
microvasculature (right). Pictures of brain, spinal cord and human brain vasculature 
adapted from three sources: 
http://riaus.org.a u/ a rticles/boffi ns-use-bra i n-powe r -to-fi re-gu n-1S-decem ber -2010/, 
http://www.scienzachiropratica.com/visita/. 
http://cochin.inserm.fr/departments/3i!group-p.o.-couraud. 

Cell and features Arteriole Ca~illary Venule 

Mean diameter 30 11m 811m 20 11m 

Mean wall thickness 6 11m 0.5 11m 111m 

Smooth muscle cells + + 

Pericytes + + + 

Endothelia l tight junctions N.d. Belts ofTJ Non specialized 

Permeability for BBB markers N.d. No Yes 

Intimate cont act between ast rocytic end-
feet and the vascula r wall/perivascular No/Yes Yes/No No/Yes 
space 

Perivascular macrophages + + + 

Table 1.1: Features of the cellular components of the eNS microvasculature. 
Abbreviations: + (present), - (absent), N.d. (not determined). Table from (Bechmann, 
Galea et al. 2007) pictures from www.as .miamLedujchemistry/2086j .. ./new­
cha p21_ class _partl. htm. 
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1.1.2 The structure of the neurovascular unit 

The BBB is formed by the brain endothelial cells (BEC) that line the cerebral 

microvessels. The periendothelial structures of the BBB comprise pericytes, astrocytes, 

neurons and the basal lamina (Fig. 1.2). All these components interact and contribute 

to maintain barrier functions in BEC and, collectively, have been recently referred to as 

the NVU. In addition to pericytes and astrocytic end-feet, neurons and microglia have 

been defined as part of the extended NVU (Neuwelt, Abbott et al. 2008; Neuwelt, 

Bauer et al. 2011). 

NEUROVASCULAR UNIT (NVU) 

Tight Junctions (TJ) 

Basal Lamina 

Brain endothelial 
cell (BEC) 

Astrocyte 
end-foot 

Fig. 1.2: Cellular structure of the neurovascular unit. Cross-section of the NVU shows 
that the microvasculature vessel is formed by a single brain endothelial cell BEC 
(yellow, nucleus in lilac) closed by tight junctions (black). The EC formed-vessel is 
surrounded by the basal lamina (pink) which includes pericytes (purple). The astrocyte 
end-feet (blue) completely surround the basal lamina to maintain the structure of the 
BBB completing the so-called NVU. Illustration based on (Abbott, Ronnback et al. 
2006) 
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Brain endothelial cells 

The BEC are the cells of the BBB that represent the interface between the 

blood (luminal membrane surface) and the brain (abluminal membrane surface). BEC 

are considered the main anatomical site of the BBB for their unique characteristics 

which distinguish them from all other EC. Morphologically, the cytoplasm of BEC has a 

uniform thickness with very few pinocytotic vesicles. It lacks fenestrations (Abbott, 

Ronnback et al. 2006) and has a high number of mitochondria compared with non-CNS 

EC. 

Structurally, BEC express a unique feature essential for their biological barrier 

function, mainly related to a 'physical barrier' (Persidsky, Ramirez et al. 2006). This 

feature involves an elaborate network of key complex junctions (Fig. 1.3) composed by 

transmembrane proteins, which interconnect the BEC to form the brain microvascular 

vessels (Engelhardt and Sorokin 2009). These interconnections between the EC tightly 

regulate paracellular permeation of polar solutes between the blood and the brain 

(Brightman and Reese 1969; Wolburg, Noell et al. 2009). BEC express two types of cell­

cell junctions between them (Fig. 1.3), adherens junctions (AJ) and unique tight 

junctions (TJ). TJ reduce the ion or polar solute diffusion through the paracellular space 

and block penetration of large macromolecules resulting into the high in vivo electrical 

resistance of the BBB, >1000 n·cm2 (Butt, Jones et al. 1990; Santaguida, Janigro et al. 

2006). TJ are formed by occludin, claudins and junctional adhesion molecules (JAM) 

(Abbott 2000; Wolburg and Lippoldt 2002; Wolburg, Noell et al. 2009; Alsam, Kim et al. 

2003). Occludin and claudins are four transmembrane molecules with two symmetrical 

loops. 
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Brain Endothelial Cell 
N Apical membrane 

-<::::---~-: ( c ) Oedudin 

r-E.~~~~~~~~~ClaUdins~ ~~~~:ions 
Basolateral membrane -

Extracellular 
matrix 

CNS 

(1,-3,-5,-12) (TJs) 

JAMs 
(-A,-B, -C) 

Basal Lamina 

Fig. 1.3: Simplified and partially incomplete scheme showing the molecular 
composition and structure of brain endothelial junctions. Luminal side (blood, red), 
BECs (yellow) and apical side (CNS, blue) of the BBB. Representation of tight junctions 
(TJ) and adherens junction (AJ) structures at the interface between EC plasma 
membranes. Transmembrane proteins of the TJ include occludin, claudins (for 
example, claudin-3, -5, -12) and JAM (for example, JAM-A, -B and -C}. AJ are composed 
by PECAM-1 (platelet EC adhesion molecule-1) and vascular endothelial (VE}-cadherin. 
Schematic representation based on illustrations in (Abbott 2000; Gonzalez-Mariscal, 
Betanzos et al. 2003; Stamatovic, Keep et al. 2008; Engelhardt and Sorokin 2009; 
Abbott 2010). 

Occludin was the first integral TJ transmembrane protein described (Furuse, Hirase et 

al. 1993). The first extracellular loop is mostly involved in intercellular adhesion, while 

the second one is responsible for transendothelial electrical resistance (TEER) 

regulating the TJ (Nusrat, Brown et al. 2005). Claudins are the principal barrier-forming 

proteins, and they belong to the claudin family formed by more than twenty different 

isoforms (1-20) with unique patterns of expression in different tissues. BEC possess 

claudins-1,-3, -5 and -12 (Stamatovic, Keep et al. 2008; Verma, Kumar et al. 2010). 

Claudin-5 is a major adhesion molecule in TJ specifically and highly expressed by BEC 

with a key role in BBB permeability (Nitta, Hata et al. 2003). It has been shown that 
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loss of claudin-S expression in mice led to increased permeability to small molecules 

through an otherwise morphologically normal BBB (Nitta, Hata et al. 2003). Occludin 

and claudins are linked to zonula occludens (ZO) -1, -2, -3, cingulin and other protein 

complexes, which control the interaction between the TJ and the actin filaments 

(cytoskeleton) (Wolburg and Lippoldt 2002). JAM-A, -B, -C are members of 

immunoglobulin family and are involved in promoting the localization of ZO-l and 

occludin at points of cell-cell contact, and indirectly help to establish cell polarity 

(Bazzoni and Oejana 2004). VE-cadherin and PECAM-l in AJ initiate and maintain 

endothelial cell-cell contact holding the BEC together to give structural support. In 

addition they are essential for TJ formation during development and it has been 

reported that their disruption leads to the BBB breakdown (Wolburg and Lippoldt 

2002). AJ are linked to actin filaments by a complex of proteins - u- and ~-catenins, 

vinculin and u-actinin (reviewed in (Ebnet 2008)). 

In order to provide the CNS with necessary nutrients and remove waste 

products, the BEC also constitute a 'transport barrier' that regulates the transport of 

micronutrients and macronutrients in and out of the CNS parenchyma (for a review 

see (Begley 2003; Abbott, Ronnback et al. 2006). Moreover BEC regulate a key 

physiologic event such as leukocyte trafficking in immunologically-mediated diseases 

(Persidsky, Ramirez et al. 2006). 

The blood-stream surface of BEC has a 0.4 Jlm thick layer of irregularly shaped 

membrane-bound glycocalyx, which contains glycosaminoglycans (GAG) including 

heparan sulphate, chondroitin sulphate and hyaluronan (Reitsma S 2007). It has been 

demonstrated that the principal role of the glycocalyx is to maintain plasma and vessel 

wall homeostasis, acting as 'barrier of the barrier' to transvascular exchanges of fluid 
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and macromolecules (Weinbaum, Tarbell et al. 2007). Moreover, the glycocalyx being 

negatively charged, it contributes to maintain the antiadhesive nature of the EC 

surface, preventing leukocyte adhesion (Constantinescu, Vink et al. 2003). 

Pericytes 

Pericytes were described in the late 1800s by Rouget, a French scientist, and 

were initially called the Rouget cells (reference cited in (Dore-Duffy and Cleary 2011)). 

In the early 1900s, Rouget's finding was confirmed by Dore and due to their 

anatomical location, abluminal to the BEC and luminal to the parenchyma, the Rouget 

cell was renamed as pericyte (Dore-Duffy and Cleary 2011). Although pericytes were 

discovered almost 150 years ago, their biology was investigated only recently. 

Pericytes are flat and undifferentiated connective tissue cells which are uniquely 

located at the abluminal surface of EC of different tissues, more abundantly in the CNS. 

At the NVU, pericytes are located within the capillary basal lamina (Fig. 1.2) 

surrounding the BEC (Engelhardt and Sorokin 2009). The association of pericytes with 

blood vessels suggested that they may regulate BEC proliferation, survival, migration, 

differentiation and vascular branching (Lai, Kuo et al. 2005). It has been reported that 

pericytes (i) regulate the permeability of the BBB (Armulik, Genove et al. 2010), 

thereby modulating BBB-specific gene expression patterns in EC, and, inducing 

polarization of astrocytic end-feet surrounding blood vessels. However, pericytes are 

also located in non-CNS tissues, suggesting that astrocytes may be an important helper 

for pericytes; (ii) regulate BBB maturation during development, including the 

formation of TJ and vesicle trafficking in BEC (Daneman, Zhou et al. 2010); (iii) control 

neurovascular function, integrity and phenotype, thereby maintaining the 
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microcirculation at the capillary level and modulating blood flow thanks to the 

expression of contractile proteins and serum proteins uptake and/or distribution 

(Peppiatt, Howarth et al. 2006; Bell, Winkler et al. 2010). Moreover, pericytes are 

thought to constitute a second barrier of defence due to their ability to phagocytose 

(Dore-Duffy 2008), to play a critical role in both angiogenesis and vasculogenesis 

(Kamouchi, Ago et al. 2011), and to help maintain high TEER (Garberg, Ball et al. 2005). 

All these studies indicate that pericytes are essential for the maintenance of all the key 

functions and structure of NVU, suggesting that pericyte loss results in neurovascular 

dysfunction leading to neurodegenerative diseases. 

Basal lamina 

BEC are connected to astrocytic end-feet by a thin and continuous layer of 

basal lamina that also surrounds pericytes (Fig. 1.2). The basal lamina is extracellular 

matrix composed of more than 27 proteins including collagen type IV, elastin, fibrillin, 

laminin, fibronectin, fibrinogen and tenascin, which together contribute to maintain a 

negatively charged interface (Scherrmann 2002). The basal lamina also contains cell 

adhesion molecules (CAM) and integrins at the endothelial abluminal surface 

(Persidsky, Ramirez et al. 2006; Engelhardt and Sorokin 2009), and neural cell adhesion 

molecules L1 (Chun, Scott et al. 2011). BEC, astrocytes and pericytes all probably 

contribute to form the basal lamina. In vitro, pericytes secreting laminins induced BEC 

to secrete basal lamina components (Brachvogel, Pausch et al. 2007). Matrix 

metalloproteinases (MMP), in particular MMP9, affect the integrity of the BBB related 

to basal lamina degradation (Rosenberg 2002; Rosell, Cuadrado et al. 2008). Disruption 
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of the basal lamina can lead to BBB breakdown due to alterations in BEC cytoskeleton 

and TJ protein expression (Stolp and Dziegielewska 2009). 

Astrocytes 

Astrocytes are characteristic star-shaped glial cells that envelop 99% of the BBB 

endothelium with their astrocytic perivascular end-feet (Hawkins and Davis 2005, Will 

and Doris 2008). Astrocytes have a number of important physiological functions that 

help maintain the function of the NVU (Dong and Benveniste 2001). One of their main 

functions is to induce and modulate the development of the specific BEC phenotype 

(Davson and Oldendorf 1967) and contribute to the structural and functional integrity 

of the BBB (Dong and Benveniste 2001). Astrocytes are essential for proper neuronal 

function, and the low distance (10 Jlm) of the neuronal body from the vessels indicates 

that the astrocyte and BEC interactions are essential for a functional NVU. 

In cell culture studies, it was observed that astrocytes can up regulate many 

BBB features leading to tighter cell-cell junctions and to the expression and polarized 

localization of transporters and of specialized enzyme systems, but the factors 

responsible for inducing these features are not yet fully established (Abbott, Ronnback 

et al. 2006). For example, the astrocytic perivascular end-feet appear to regulate water 

transport as evidenced by the polarized expression of aquaporin-4 (AQP4) on the 

astrocytic terminals (Satoh, Tabunoki et al. 2007). Indeed, recent studies have 

extensively shown that astrocytes are able to secrete a range of agents that induce the 

barrier phenotype in vitro, suggesting that the cross-talk between BEC and astrocytes 

is crucial for maintaining the BBB phenotype. 
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Neurons 

Due to their activity and to the dynamic nature of their metabolic needs, 

neurons require a tight regulation of the microcirculation and tissue supply of 

metabolites. There is a close relationship between neurons and astrocytes that 

modulate microvessel blood flow by constriction and dilatation and that regulate the 

entry of nutrients and oxygen to the eNS when necessary (Lee and Benveniste 1999). 

1.2 Functions of the blood-brain barrier 

The BBB is a highly specialized and sophisticated barrier that changes its 

features in accordance with the needs of the eNS (Willis and Davis 2008). The BBB has 

several roles, the predominant one being the regulation of the brain 

microenvironment through several functions, all focused on the homeostasis of the 

brain (Abbott, Ronnback et al. 2006). 

1.2.1 Physical barrier 

The main function of the BBB is to regulate the passage of substances from the 

blood to the brain (and vice-versa) maintaining the homeostasis of the neural 

microenvironment that is crucial for neuronal activity and function (Abbott, Ronnback 

et al. 2006). The presence of TJ limits paracellular diffusion of hydrophilic molecules 

(water-soluble agents) across the BBB (Engelhardt 2008). Small lipid-soluble agents 

such as barbiturates and ethanol can diffuse freely through the phospholipid 

membrane (Abbott, Ronnback et al. 2006). The BBB is a strictly regulated gate 

between eNS and peripheral nervous system (PNS), restricting entry not only of blood-
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borne cells thereby constituting a barrier for leukocyte trafficking, but also of 

neurotoxins and macromolecules (Abbott, Patabendige et al. 2010). 

1.2.2 Transport barrier 

The function of the BBB goes beyond a simple compartmentalization between 

the blood and the interstitial fluid (ISF) of the brain. The BBB regulates the ability of 

some solutes to cross from one compartment to the other (Neuwelt, Abbott et al. 

2008). Indeed, the BBB supplies the brain with essential nutrients (influx) and mediates 

the efflux of many waste products (Abbott, Ronnback et al. 2006) by the actions of 

several fundamental brain endothelium transport proteins (carriers). Blood-to-brain 

influx transporters (passive carriers or secondary active transporters) include, for 

example, glucose transporter-l (GLUT-l), L-type amino acid transporter 1 (LAT1), 

concentrative nucleoside cotransporter 2 (CNT2) and Na-dependent organiC cation 

transporter (OCTN2) which supply glucose, amino acids, nucleosides and other 

substances to the brain (Abbott, Ronnback et al. 2006; Ohtsuki and Terasaki 2007). 

Drug efflux pumps, the most important element of the barrier to limit movement of 

drugs and toxins, are the adenosine triphosphate (ATP)-binding cassette transporters, 

so-called ABC-transporters, a large super family of 48 members in humans, including p­

glycoprotein (pgp), breast cancer resistance protein (BCRP) and the multidrug 

resistance-associated protein (MRP) (Begley 2004). Brain-to-blood efflux transporters 

prevent accumulation of metabolites and neurotoxic compounds in the brain (for a 

review see (Ohtsuki and Terasaki 2007)). In addition, the BBB regulates ionic traffiC, 

with specific ion transporters and channels, that provide an optimal composition for 

neuronal and synaptic signalling (Abbott, Patabendige et al. 2010). 
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1.2.3 Enzymatic and Metabolic barrier 

The BBB expresses asymmetrically localized enzymes (Abbott, Ronnback et al. 

2006; Biegel 2005) such as peptidase and nucleotidase at the abluminal membrane to 

metabolize peptides and ATP, whereas at the luminal membrane, it presents enzymes 

such as y-glutamyl transpeptidase, alkaline phosphatase (Pardridge 2005), cytochrome 

P450 that can inactivate neuroactive and toxic compounds and aromatic acid 

decarboxylase to metabolize drugs and nutrients (Abbott, Ronnback et al. 2006; 

Persidsky, Ramirez et al. 2006). Also substances that act as neurotransmitters such as 

monoamines or dopamine are taken up by brain capillaries and transformed and 

released as inactive products from BEC (Betz 1986). 

1.2.4 Immune barrier 

The BBB is more than a metabolic and transport barrier, it possesses a very 

important neuroimmune function. It secretes substances such as cytokines, 

chemokines, prostaglandins and nitric oxide (Persidsky, Ramirez et al. 2006) which can 

be secreted either in the blood or in the CNS compartments. Indeed, the BBB is unique 

in that, it can receive stimulation from one compartment and at the same time 

respond by secretion of immunomodulators into another one. Furthermore, the 

constant cross-talk between neurons, astrocytes, pericytes and BEC influences BBB 

function in the context of immune regulation, and the ability of this unit to 

communicate with circulating leukocytes forms a major basis for neuroimmune 

interactions (Quan and Banks 2007; Neuwelt, Abbott et al. 2008). 
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1.3 Cell trafficking and blood flow at the blood-brain barrier 

1.3.1Immunosurveillance 

Under physiological conditions, immune cells exert their immunological 

function mainly through direct contact with antigens. In order to do this, lymphocytes 

have to navigate through blood vessels and across the EC to the target organs; this 

process is called homing or immunosurveillance. In the past, because of the presence 

of the BBB, the CNS was described as an immune privileged site where there was 

complete absence of immunosurveillance, but later studies demonstrated 

physiological trafficking of leukocytes (T and B cells, monocytes and others) across the 

BBB to screen the CNS parenchyma for antigens and re-enter the blood stream (Hickey 

1991). Leukocyte traffic into the CNS is very low, tightly controlled and occurs solely at 

the post-capillary venules level (Engelhardt 2006). However, studies of leukocyte entry 

into the non-inflamed CNS produced contrasting results, possibly due to different 

experimental approaches (Engelhardt and Ransohoff 2005). 

Blood-borne lymphocytes can reach the CNS through several routes via: 1) the 

choroid plexus, 2) the subarachnoid space, and 3) the EC of brain vessels and 

circumventricular organs (Ousman and Kubes 2012), but immune cells have to 

overcome one of the CNS barriers at some point (Engelhardt and Ransohoff 2005; 

Loeffler, Dietz et al. 2011). Leukocyte trafficking for extravasation across the BBB is a 

multi-step process (Butcher 1991; Springer 1994), where leukocytes, recruited from 

the blood, are (1) captured by the endothelium with immediate arrest as there 

appears not to be any rolling (Vajkoczy, Laschinger et al. 2001), (2) and then activated 
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for (3) adhesion and (4) transmigration. This process and the molecules involved will 

be described in Section 1.4.4 in the context of inflammation. 

1.3.2 Central nervous system blood flow and leukocyte recruitment 

The blood is a suspension of red blood cells, white blood cells (leukocytes), and 

platelets in plasma. Blood plasma is an incompressible Newtonian fluid with dynamic 

viscosity about 1.2 cP (centipoise) = 0.012 gram per centimetre-second (= 0.0012 

Pascal second, SI for dynamic viscosity), but during inflammation, blood cells are highly 

concentrated at specific sites and influence the blood rheological properties. 

Leukocytes are spherical, 6-8 ~m in diameter, not greatly deformable and constitute 

only 1% of the total volume of blood. Leukocytes were not usually used to study 

hemodynamic flow, reproduced in glass microvessels in vitro, but recent studies 

reported that leukocytes are critical for the resistance to flow due to their interaction 

with BEC (Sugihara-Seki 2001; Sugihara-Seki and Schmid-Schonbein 2003). 

In microvessels with a diameter smaller that 25 /lm, every leukocyte that 

adhered to the endothelial surface, increased significantly the flow resistance 

(Sugihara-Seki and Schmid-Schonbein 2003; Fu, Adamson et al. 2005). In addition, the 

geometry and topology of the vasculature influence the blood flow, depending on how 

the individual vessels connect to each other, and how the circulating cells are 

distributed (Hirsch, Reichold et al. 2012). Decreases in vessel lumen (Fig. 1.4) have 

been shown to lead to fewer blood-borne cells passing through the vessel and 

decreased blood viscosity (Papaioannou and Stefanadis 2005). Moreover, due to the 

high physical plasticity of brain capillaries, the geometry of the vessel appears to adapt 

to abnormal physiological and metabolic conditions as a result of increases or 
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decreases in blood flow when needed. Within the microvessels, exchange of cells and 

molecules takes place contributing to pressure changes (Ito, Kanno et al. 2003) . 

The blood velocity of the rat microvasculature has been measured with different 

techniques, and appears to vary between 0.34 to 3.15 mm/s (Hudetz, Feher et al. 

1996), 0.7 to 4.6 mm/s (Ma, Koo et al. 1974) and 0.5 to 1.5 mm/s in rat cerebral 

capillaries (Ivanov, Kalinina et al. 1981). In humans, blood velocity is similar, from 0.52 

to 3.26 mm/s, measured at the conjunctival pre-capillary level (Koutsiaris, Tachmitzi et 

al. 2010). 
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Fig. 1.4: Blood flow along the vascular tree. Cartoon. Relative cross-sectional area of 
different vessels of the vascular bed, capillaries in the middle. Top graph. Total cross­
sectional area in cm2 in different vessel types. Bottom graph. Blood flow velocity in 
cm/s in different vessel types. Capillaries possess the highest cross-sectional area, 
since they have the lowest blood flow velocity. From 
http://faculty.pasadena.edu/dkwon/chapter%2015jchapter%2015_files/textmostly/sli 
de16.html 
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1.3.3 Shear stress in blood vessels 

The hemodynamic conditions inside blood vessels promote superficial stresses 

near the vessel walls: the circumferential stress (due to the pulse pressure variation 

inside the vessels), and the shear stress due to the blood flow against the vessel walls. 

It has been found that in the microvasculature the flow is laminar, which is 

characterized by flow in parallel layers due to unvaried pressure (Hirsch, Reichold et al. 

2012). Shear stress will be further described as follow. Shear stress (1) (Table 1.2) 

depends on shear rate (y) and dynamic viscosity (ilL which are related to the 

properties of the fluid, and the geometry of the vessel. Blood and water's dynamic 

viscosities are 1.2 cP and 1 cP, respectively. It has been shown that in cat capillaries 

shear stress is 40 dyn/cm2 (Lipowsky, Usami et al. 1980), while in normal human 

conjunctival capillaries the shear stress was 15.4 dyn/cm2 (Koutsiaris, Tachmitzi et al. 

2007). However it has been reported that the physiological shear stress in small veins 

is on average 0.5-6 dyn/cm
2 

(Papaioannou and Stefanadis 2005; Hudetz 1996). 

Parameter Equation 

Shear rate Y= 8v 
(y) d 

DynamiC 
F=f.1.A!:f:. 

viscosity (~) 
(mu) 

y 

Flow rate 
ct> = v· A 

(ct» 

Shear stress 
('t) 

't=Il ' Y 

Definitions 

Y = Shear rate 
V= Linear fluid velocity 
d= Inside diameter of the vessel 

The magnitude F of this force is found to be 
proportional to the speed u and the area A of 
each wall, and inversely proportional to their 
separationy. 

V = Velocity of the blood flowing 
A = Cross sectional vector of the vessel 
Newtonian fluids flowing upon a planar 
surface 

't = Shea r stress 

Y= Shear rate 
~ = Dynamic viscosity 

Unit 

[lIs] 

cP(centipoise) 
lcP= lmPa s 

=[O.Oldyn.s/cm2
] 

= 11 (eta) 

<t> [ml/min] 

[dyn/cm2] 

Table 1.2: Parameters to determine shear stress for vessel blood flow. Assuming that 
the vessel is inelastic, cylindrical and straight, and, the blood is a Newtonian fluid and 
flow is laminar, the Haagen-Poiseuille equation indicates that the shear stress is 
directly proportional to blood shear rate and inversely proportional to vessel diameter 
From (Sirs 1991; Sutera and 1993). 
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1.3.4 Shear stress on endothelial cells 

Shear stress on the endothelium activate various downstream pathways that result in 

alteration of EC functions (for a review see (Ando and Yamamoto 2013)). Different 

levels of shear stress at different times act on the so-called shear stress sensors in EC 

(Fig. 1.5), such as CAM, cell-cell matrix adhesion molecules, G-protein coupled 

receptors and the glycocalyx. For example, variations in flow may change the 

glycocalyx conformation on EC, when randomly coiled heparan sulphate proteoglycans 

become unfolded. This conformational change results in exposure of binding sites for 

Na+, facilitating its transport by concentration gradient as well as transport of other 

ions, growth factors and amino acids. 

: :: 
PECAM·1 
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Ion ch.:tnnels TK receptor 
cr 
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Fig. 1.5: Shear stress sensors. Ion channels. Ion channels including K+ channels, cr 
channels, and Ca2+ channels have been shown to be shear-stress-responsive. GPCRs 
have been shown to be activated by shear stress. Caveola. Caveolae membrane 
microdomains containing a variety of receptors, ion channels, and signalling molecules, 
and their component protein, caveolin-l, have been demonstrated to be involved in 
shear stress sensing and response mechanisms. Adhesion proteins. Cell-cell and cell­
matrix attachment are subjected to tension under shear stress, resulting in the 
activation of downstream signal transduction pathways. PECAM-l and AJ (VE­
cadherin) . Cytoskeleton is responsible for cell shape regulation and its components 
such as actin filaments and microtubules may directly sense mechanical forces that 
deform cells . Glycocalyx. Random-coiled glycocalyx unfolds into a filament structure 
under flow. Plasma membrane. Shear-stress-induced changes in the physical 
properties of the plasma membrane lead to activation of various membrane­
associated molecules and microdomains. Adapted from (Ando and Yamamoto 2013). 
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Shear stress can also affect the passage of blood through narrow capillaries and 

leukocyte adhesion and their interactions with EC in post-capillary venules (Lawrence, 

Kansas et al. 1997; Lipowsky and Lescanic 2013). It has been shown that shear stress 

down-regulated vascular adhesion molecule 1 (VCAM1) expression on the cell surface 

of EC in mouse venules (Ohtsuka, Ando et al. 1993) and at the messenger RNA (mRNA) 

level in a time-dependent manner (1 to 24 h) in vitro (Ohtsuka, Ando et al. 1993; 

Korenaga, Ando et al. 1997). Furthermore, a decrease in the number of endothelium­

adhered lymphocytes cultured from mouse lymph nodes was observed (Ando, Tsuboi 

et al. 1994). Contrastingly, Cucullo reported that long exposure (days) to shear stress 

increased transcription of relevant adhesion molecules such as VCAMl and 

intracellular adhesion molecule 1 (ICAM1), but decreased both P- and E-selectin 

facilitating endothelial-leukocyte interactions on primary human microvascular BEC 

(HBMEC) in vitro (Cucullo, Hossain et al. 2011). Moreover, the same study reported 

that shear stress promoted BEC tightness by inducing TJ formation. 

1.4 The blood-brain barrier in neuroinflammation 

Alterations in BBB function have been observed in many CNS pathologies (Table 

1.3). In neuroinflammation, the modifications at the level of BBB are related to two 

main events: BBB breakdown and BBB activation. The first one implies an increase of 

endothelial permeability and alteration of junctional components (and also possibly of 

transporters). BBB activation is related to the capacity of BEC, astrocytes and pericytes 

to express and secrete immune factors able that influence the recruitment of 

leukocytes from the blood to the brain (Alvarez, Cayrol et al. 2011). These alterations 

19 



Chapter 1: Introduction 

in BBB function are usually identified through histological analysis in brain samples or 

by using imaging techniques such as magnetic resonance imaging (MRI). To understand 

these two pathogenic events, it is fundamental to first describe some key elements 

involved in BBB inflammation in the next paragraphs. 

Pathological states involving BBB breakdown or disorde~r ________ ---, 
Stroke 
• Astrocytes secrete transforming growth factor-~ (TGF~), which down-regulates brain capillary endothelial expression of 
fibrinolytic enzyme tissue plasminogen activator (tPA) and anticoagulant thrombomodulin (TM). 

• Proteolysis of the vascular basement membrane/matrix. 

• Induction of AQP4 mRNA and protein at the sites of BBB disruption. 

• Decrease in BBB permeability after treatment with arginine vasopressin V1 receptor antagonist in a stroke model. 

Trauma 
• Bradykinin, a mediator ofinfiammation, is produced and stimulates production and release of interleukin-G (IL-G) from 
astrocytes, which leads to opening of the BBB. 

Infectious or inflammatory processes 
Examples include bacterial infections, meningitis, encephalitis and sepsis. 

• The bacterial protein lipopolysaccharide affects the permeability of BBB tight junctions. This is mediated by the 
production of free radicals, interleukin (IL)-6 and IL-1~. 

• Interferon-~ prevents BBB disruption. 

Multiple sclerosis 
• Breakdown of the BBB. 

• Down-regulation of laminin in the basement membrane. 

• Selective loss of claudin 1/3 in experimental autoimmune encephalomyelitis. 

HIV 
• BBB tight junction disruption. 

Alzheimer's disease 
• Increased glucose transport, up-regulation of glucose transporter GLUT1, altered agrin levels, up-regulation of AQP4 

expression. 

• Accumulation of amyloid-f3, a key neuropathological feature of Alzheimer's disease, by decreased levels of P­
glycoprotein transporter expression. 

• Altered cellular relations at the BBB, and changes in the basal lamina and amyloid-f3 clearance. 

Parkinson's disease 
• Dysfunction of the BBB by reduced efficacy of P-glycoprotein. 

Epilepsy 
• Transient BBB opening in epileptogenic foci, and up-regulated expression of pgp-1 and other drug efflux transporters in 
astrocytes and endothelium 

Brain tumours 
• Breakdown of the BBB. 

• Down-regulation of tight junction protein claudin 1/3; redistribution of astrocyte AQP4 and Kir4.1 {inwardly rectifying K' 
channel}. 

Pain 
• Inflammatory pain alters BBB TJ protein expression and BBB permeability. 
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Table 1.3: Diseases of the eNS involving blood-brain barrier breakdown. From 

(Abbott, Ronnback et al. 2006). 

1.4.1 Blood-brain barrier activation 

Inflammation in the CNS is characterized by the development of activated, 

adhesive and inflamed BEC which mediate the adhesion and migration of activated 

leukocytes (Hickey 1991). During this process, there is production of proinflammatory 

cytokines/chemokines (Olson and Ley 2002) and increased expression of endothelial 

CAM which lead to the recruitment of immune cells from the blood (Bartholomaus, 

Kawakami et al. 2009). 

1.4.2 Role of proinflammatory mediators (cytokines and chemokines) in 
neuroinflammation 

Cytokines are soluble polypeptides, generally associated with inflammation, 

immune activation and cell differentiation or death (Allan and Rothwell 2001). 

Cytokines found in early stages of neuroinflammation include IL, interferons (IFN), 

tumor necrosis factors (TNF), chemokines and growth factors (Allan and Rothwell 

2001). The most studied cytokines in CNS inflammation that contribute to early brain 

injury are TNFa, INFy, IL-1 and IL-6 (de Vries, Blom-Roosemalen et al. 1996) (Feghali 

and Wright 1997). 

Cytokines 

Human TNFa or cachectin is a trimer of 17 kDa involved in acute inflammation 

(Vilcek and Lee 1991). TNFa expression is induced in inflammation and in autoimmune 
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diseases and its increase precedes that of most other cytokines in CNS disorders (Allan 

and Rothwell 2001). TNFa has been considered as a possible master inflammatory 

regulator (Kraft, McPherson et al. 2009); It is produced by activated 

macrophages/monocytes, fibroblasts, mast cells, some T and natural killer (NK) cells 

(Vilcek and Lee 1991), and by BEC (Verma, Nakaoke et al. 2006). 

TNFa acts through its two receptors TNF-R1 and TNF-R2 (Vandenabeele, 

Declercq et al. 1995; Pober 2009), that are differentially controlled and expressed in 

human EC (Bradley, Thiru et al. 1995) and in the BEC line, human cerebral 

microvascular endothelial cell line D3 (hCMEC/D3) (Lopez-Ramirez, Fischer et al. 2012). 

Moreover, TNFa has been demonstrated to be relocated from the apical surface 

(bloodstream) to the cytoplasmic side by TNF-Rl and -R2 (Pan and Kastin 2007) and 

mouse BEC can respond to activation from one side of the neuroimmune axis by 

releasing cytokines into the other (Verma, Nakaoke et al. 2006). TNF-R1 and -R2 

activation by TNFa (Fig. 1.6) has been shown to lead to the downstream activation of 

nuclear factor kappa-light-chain of activated B cells (NF-KB), JNK and p38MAPK 

signalling pathways which trigger diverse biological responses (see (Montgomery and 

Bowers 2012) for a review). 

In particular, TNFa has been shown to induce overexpression of multiple 

CAM by BEC (Butcher 1991; Kallmann, Hummel et al. 2000; Wosik, Biernacki et al. 

2007), and to promote leukocyte adhesion and migration to the CNS (see (Pober 2002) 

for a review). In addition, increases in leukocyte adhesion to TNFa-stimulated mouse 

aortic and human BEC (SV-HCEC) in vitro have been previously reported (Butcher 1991; 

Chandrasekharan, Siemionow et al. 2007; Dasgupta, Yanagisawa et al. 2007). Other 
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actions of TNFa on the BBB include an increase in permeability altering the expression 

and localization of endothelial TJ proteins (Lopez-Ramirez, Fischer et al. 2012). 
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Fig. 1.6: TNFa signalling pathways through TNF-Rl and -R2. left. Canonical pathway 
of TNFa signalling through TNF-R1 and -R2. Right. Human TNFa signalling through 
TNF-R1 which is partly shared by the IL-1 signalling pathway. Adapted from 
(Montgomery and Bowers 2012) and (Pober and Sessa 2007). 

Human IFNy or immune interferon is a homodimer of 20 kDa and belongs to 

the type II group of interferons (Boehm, Klamp et al. 1997). IFN-y is a pleiotropiC 

cytokine whose expression has been associated with a number of inflammatory and 

autoimmune diseases (Schoenborn, Wilson et al. 2007) and it has been reported to be 

produced by activated T cells and NK cells (Boehm, Klamp et al. 1997). The functional 

IFNy receptor (IFNGR) is constitutively expressed by human brain endothelium (Lopez-

Ramirez, Fischer et al. 2012), and its activation by homodimeric IFNy initiates the Janus 

kinase- signal transducer and activator of transcription (JAK-STAT) pathway (Fig. 1.7), 
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which is a common pathway for numerous cytokines, activating transcription factors 

including IFN regulatory factor-1 (IRF-1) and NF-lCB (Gough, Levy et al. 2008). An 

alternate IFNy signalling cascade has been proposed which involves the activation of 

MEK1/ extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated 

protein kinase (MAPK) (Gough and Levy 2008). IFNy induces an increase of CAM such 

as ICAM1 in high EC (HEC) (revised in (Ledeen and Chakraborty 1998)) and of 

chemokines such as CCL2, which mediates monocyte recruitment, in human 

saphenous vein EC (Marx, Mach et al. 2000). It has been shown that IFNy is able to 

alter the architectural organization of the TJ and AJ of primary human BEC in vitro 

(Huynh and Dorovini-Zis 1993). 

A synergistic action between TNFa and IFNy has been observed in the 

endothelial response to inflammation, controlling expression of cytokines, 

chemokines, chemokine receptors and cell surface molecules (Cassatella, Gasperini et 

al. 1997; Ohmori, Schreiber et al. 1997; Piali, Weber et al. 1998; Hillyer, Mordelet et al. 

2003; Matsumiya, Ota et al. 2010). In a microarray analysis revealing genes modulated 

by TNFa and IFNy in primary microvascular and macrovascular human EC, it appeared 

that expression of cytokines, chemokines and CAM was most altered in cytokine­

activated endothelium (Sana, Janatpour et al. 2005). The main mechanism to explain 

the synergistic effect of TNFa and IFNyon these genes, focused on signal transducers 

and activators of transcription 1 (STAT1), activated by IFNy, and NF-lCB activated by 

TNFa (Lombardi, Cantini et al. 2009). As previously described, these two Signalling 

molecules, when translocated to the nucleus from the cytoplasm, induce 

transcriptional activation of several genes encoding cytokines and CAM. 
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Fig. 1.7: Human IFNy signalling pathway through IFNGR. Adapted from (Schroder, 
Hertzog et al. 2004). 

Chemokines 

Chemokines are a superfamily of chemoattractant cytokines of 8-10 KDa that 

includes Cc, CXC, and CX3 subfamilies of ligands and their GPCRs. Chemokines are 

complex and critical extracellular mediators of inflammation and immune system 

development, which direct important events such as leukocyte chemotaxis, adhesion 

to endothelium and migration (Baggiolini 1998; Sallusto and Baggiolini 2008). 

Chemokines and their receptors are expressed and secreted by 

microglia/macrophages, astrocytes and neurons in the CNS (Mennicken, Maki et al. 
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1999}. Chemokines are also expressed by brain endothelium (Subileau, Rezaie et al. 

2009) and leukocytes (Comerford and McColl 2011) in inflammation which trigger both 

endothelium and leukocyte activation through integrins (see (Constantin 2008) for a 

review}. 

CCl2,CCL19 , CCl21, CXCl12 are constitutively expressed by human BEC (see 

(Holman, Klein et al. 2011) for a review}; CCl2, CCl3, CClS and CXCl8, CXCll0, CXCL12 

are overexpressed by cytokine-stimulated human BEC, hCMECjD3, and in cerebral 

vessels of multiple sclerosis (MS) patients (Subileau, Rezaie et al. 2009). CCl2, CCl3, 

CCls, CXCl12 and CCl7 trigger leukocyte adhesion via their appropriate receptors 

(Tsou, Peters et al. 2007). Moreover, it has been reported that the endothelial 

glycocalyx interacts with chemokines to mediate leukocyte extravasation (Celie, Beelen 

et al. 2009). In particular, it has been shown that CCl2 or monocyte chemotactic 

protein 1 (MCP-i) is secreted by EC to mediate activation of monocytes in the step 

between the selectin-mediated rolling and VCAM1-mediated firm adhesion. In 

addition, human BEC express chemokine receptors such as CXCRl to -5 and CCRl to -6 

which are expressed on hCMECjD3 cell membranes (Weksler, Subileau et al. 2005) 

although their function in neuroinflammation is less well known. Recent studies have 

also suggested CXCR3 or fractalkine receptor, as one of the principal inflammatory 

receptors involved in T cell trafficking (Constantin 2008). 
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1.4.3 Molecules involved in leukocyte-endothelial cell adhesion in 
neuroinflammation 

Selectin family 

Selectins belong to the C-type lectin (N-terminal calcium-dependent) family of 

sialoglycoproteins. There are three types of selectins: L-selectin, expressed by 

peripheral blood leukocytes, E-selectin expressed by endothelium, and P-selectin, 

previously called endothelial-leukocyte adhesion molecule 1 (ELAM-1), expressed by 

platelets and EC. Selectins are adhesion molecules involved in the cell-cell adhesion 

between endothelium and leukocytes (Graber, Gopal et al. 1990) (Fig. 1.8 and 1.10). P-

and E-selectin play an important role in leukocyte rolling (Ulfman, Kuijper et al. 1999) 

(Abbassi, Kishimoto et al. 1993), and the initial adhesion of monocytes (Carlos, Kovach 

et al. 1991; Lim, Snapp et al. 1998), T lymphocytes (Alon, Rossiter et al. 1994) and 

neutrophils (Zarbock, Ley et al. 2011). 

There are contrasting results about basal E- and P-selectin expression on EC. It 

has been reported that P- and E- selectin are exclusively expressed by EC under shear 

stress (Kubes and Ward 2000). However, in a static culture model, E- and P-selectin 

were found to be expressed by HUVEC (Charles, Karen et al. 1997) and endothelium 

from different vascular beds (Hillyer, Mordelet et al. 2003) under resting conditions. 

Under inflammatory conditions, both selectins appear to be up-regulated on cytokine-

stimulated endothelium. Indeed, E- and P-selectin expression is regulated by mediators 

such as TNFa, IFNy and IL-1 (Charles, Karen et al. 1997; Gough, Levy et al. 2008). 
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Immunoglobulin superfamily of cell adhesion molecules 

Endothelial CAM are adhesion molecules (Fig. 1.8) belonging to the 

immunoglobulin super family, which is characterised by repeated immunoglobulin 

domain-like loop structures (Ig-Ioops) and a single transmembrane domain (see review 

(Frijns and Kappelle 2002). VCAMl or C0106 is a molecule of 110 kOa with 6 or 7 Ig-like 

domains. VCAMl is constitutively expressed by EC, leukocytes, epithelial cells and 

fibroblasts (Osborn, Hession et al. 1989). ICAMl or C054 is a protein of 80-114 kOa 

formed by a single chain with 5 Ig-like domains, a single trasmembrane region and a 

short cytoplasmic domain, while intracellular cell adhesion molecule 2 (ICAM2) or 

C0102 is a protein of 55-65 kOa with 2 Ig-like domains. 

E-SELECTIN P-SELECTIN ICAMl ICAM2 
(CD62E) (CD62P) A. (CD54) (CD102) 

Cytoplasm Cytoplasm 

VCAMl 
(CD106) 

B. 

Fig. 1.8: Some membrane-associated endothelial molecules involved in 
neuroinflammation. A. Selectin structure. Each selectin is composed by a short 
cytoplasmic C-terminal domain (grey), a transmembrane domain (blue), complement 
regulatory protein (CRP) like domains (green), epithelial growth factor (EGF) like 
domain (purple) and an N-terminal C-type lectin domain (NH 2-lectin) (pink) B.CAM 
structure. Each CAM is composed by a short cytoplasmic C-terminal domain (grey), a 
transmembrane domain (blue) and a variable number of Ig-Ioops (pink). Schematic 
representation based on illustrations in (Springer 1994; Vestweber 1999). 
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Pro-inflammatory cytokines such as IL-1, TNF-a and IFN-y increase VCAM1 and 

ICAM1 expression on primary cultures of human BEC between 4 and 24 h (Cayrol et al. 

2008). This effect has been extensively shown in vitro and in vivo on human EC 

including the BEC line, hCMEC/D3 (Weksler, Subileau et al. 2005). Furthermore, it has 

been shown that in HUVEC, ICAM2 is down-regulated by TNFex and IL-1 (McLaughlin, 

Hayes et al. 1998). Endothelial CAM mediate binding of activated leukocytes to the 

inflamed endothelium through activation of integrins as it will be described in the next 

subsection. 

Integrin family 

Integrins are a large group of calcium-dependent cell adhesion glycoproteins/ 

transmembrane receptors that consist of ex and ~ chains subunits. They are expressed 

at high levels on the membrane by all nucleated cells, including leukocytes (for a 

review see (Barczyk, Carracedo et al. 2010). Integrins are activated through a process 

termed inside-out signalling. External stimuli such as chemokines, cytokines, cell 

surface receptors for selectins and antigens activate intracellular signalling pathways 

to change the conformational state of integrins and their avidity for extracellular 

ligands (Zarbock, Kempf et al. 2012). Integrins are crucial for homeostasis and for 

inflammation-driven leukocyte trafficking from the bloodstream across EC (for a 

review see (Rose, Alon et al. 2007)). Indeed, expression of these proteins by immune 

cells is responsible for all steps that characterise leukocyte trafficking to BEC during 

inflammation (Table 1.4). 
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Chapter 1: Introduction 

1.4.4 Leukocyte trafficking at the blood-brain barrier in neuroinflammation 

In inflammation, there is an increased blood supply (to provide, for example, 

antibodies and complement molecules) to the inflamed area and an increase in the 

leakiness of local microvessels, that result in an increase in infiltrated leukocytes from 

the blood to the inflamed organ and/or tissue. In the brain, under inflammatory 

conditions, there is a high increase of leukocyte adhesion and migration across the BBB 

at post-capillary level (Owens, Bechmann et al. 2008). In neuroinflammation, leukocyte 

trafficking across the BBB is a mUlti-step process (Fig. 1.9) characterized by: 1) 

endothelial activation and leukocyte tethering and rolling on activated endothelium, 2) 

activation of leukocytes which involves the inside-out signalling by chemokine 

stimulation of GPCR leading to affinity and avidity changes in integrins due to 

clustering. 3) leukocyte firm adhesion mediated by a specialized set of CAM expressed 

by BEC and integrins expressed by leukocytes, 4) firm arrest, polarization and crawling, 

and finally 5) transmigration across the BBB (Nourshargh, Hordijk et al. 2010 ; Luster, 

Alon et al. 2005; Ley, Laudanna et al. 2007). Once in the CNS parenchyma, leukocytes 

(T and B cells, monocytes and other immune cells), exert their immunological function 

mainly through direct contact with antigens or antigen presenting cells (APCs) (AlOisi, 

Ria et al. 1998; Aloisi, Ria et al. 1999), and by triggering key inflammatory events such 

as increasing the expression of CAM, cytokines and chemokines to recruit additional 

immune cells to the CNS. 

The steps involved in leukocyte trafficking across the BBB will be further 

described in the following subsections. 
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Fig, 1.9: Leukocyte trafficking cascade across the blood-brain barrier in inflammation, 
Schematic representation based on illustrations in (Nourshargh, Hordijk et al. 2010; Carlos 
and Harlan 1994; Engelhardt 2008), 
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Leukocyte tethering and rolling 

Leukocyte traffic across the BBB is initiated by the transient contact between 

the circulating antigen-activated leukocytes in the blood and BEe. After the initial 

tether, leukocytes roll slowly along the BEC surface (Luster, Alon et al. 2005; 

Engelhardt 2008). Tethering and rolling are important steps for the successful 

recruitment of leukocytes from blood into the CNS in inflammation. From a 

biomechanical aspect, rolling is a unique process considered a state of dynamic 

equilibrium where binding between endothelial selectins and their ligands at the 

leading edge of the leukocyte lead to bond breakage at the trailing edge as shown in 

Fig. 1.10. These events need rapid bond formation, high tensile strength and fast 

dissociation rate. It has been shown that endothelial selectins posses these essential 

characteristics when they interact with specific glycoproteins expressed by leukocytes, 

under flow (Sperandio, Pickard et al. 2006; Sundd, Pospieszalska et al. 2011). 

TRAILING END 

Bonds breaking 

Bonds streched 

Bonds relaxed _ _ +--______ -' 

Endothelial cell (Ee) 

Rolling leukocyte 

E·SELECTIN 
(C062E) 

Cytoplasm 

P-SELECTIN 
(C062P) 

Fig. 1.10: Leukocyte rolling on endothelium. Bonds between endothelial selectins and 
glycoproteins, expressed by leukocytes, in a relaxed, stretched and breaking state 
which characterise rolling. Enlargement. E- and P-selectin expressed on endothelial 
membranes mediating leukocyte selectin ligands (P-selectin glycoprotein ligand-i) 
binding during rolling. Adapted from (Sperandio, Pickard et al. 2006). 
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Rolling and tethering were widely studied using intravital microscopy on mouse 

CNS microvessels in vivo, while studies on human leukocyte rolling on EC have been 

performed using in vitro (Luu, Rainger et al. 2003) or in silico (Hammer and Apte 1992; 

Beste and Hammer 2008). Cell tethering and rolling has been shown to be mediated by 

both P- and E-selectin, and either one, if adequately expressed on EC, is sufficient for 

this process (Kubes and Ward 2000). Selectins expressed by BEC bind P-selectin 

glycoprotein ligand-l (PSGL-l) expressed by circulating CD4+ and CD8+ T cells 

(Westmuckett, Thacker et al. 2011), slowing down the leukocytes circulating in the 

blood in mouse brain microvessel in vivo (Battistini, Piccio et al. 2003), and on human 

HEC in vitro (Luscinskas, Ding et al. 1995) and in HBEC (Bahbouhi 2009). It has been 

demonstrated that to support this binding both selectins and their ligands need to be 

associated and anchored onto the cytoskeleton (Setiadi, Sedgewick et al. 1998; Snapp, 

Heitzig et al. 2002). In addition, it has been shown that leukocytes induce clustering of 

E-selectin and its association with cytoskeletal proteins in HUVEC in vitro (Yoshida, 

Westlin et al. 1996). 

However, these interactions form bonds that eventually break or even are not 

formed in high flow conditions (Efremov and Cao 2011), suggesting that rolling takes 

place in the presence of stable, low shear stress (Phan, Waldron et al. 2006). Different 

studies to measure and quantify the tethering/rolling step have been performed, but 

contrasting data has been obtained, probably due to different techniques and 

approaches used (Luu, Rainger et al. 2003; Westmuckett, Thacker et al. 2011; Lee, Kim 

et al. 2012; Su, Lei et al. 2012). 
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Leukocyte activation 

leukocytes rolling with reduced speed are able to sense chemokines present on 

the BEC surface or released in the blood. Chemokines bind to serpentine 7-

transmembrane GPCR on the leukocyte surface, delivering a G-protein mediated 

signal, thereby activating 'inside-ouf signalling to increase integrin affinity. In acute 

inflammation, chemokines such as CCl2, CClS, CCl19, CCl21, CXCl-4, 9, -10, -11 and-

12 are expressed/released into the blood stream to activate leukocyte integrins such 

as al-~2 integrin (lFA-1) (Butcher 1991; Engelhardt 2008; McCarty 2009; Kuckleburg, 

Yates et al. 2011) . 

Cell-cell adhesion (leukocytes-BEC) 

The firm adhesion between activated leukocytes and inflamed BEC is mediated 

by tightly regulated binding of integrins to the Ig superfamily CAM expressed on the 

BEC surface (Fig. 1.11). To have a good firm adhesion, high affinity of the integrins for 

the active conformation of their endothelial ligands on EC is needed. The most critical 

integrins involved in leukocyte firm adhesion are a4~1 integrin or very late antigen-

4(VLA-4} (Chan, Hyduk et al. 2001; Chigaev, Zwartz et al. 2003) as well as al~2-integrin 

lymphocyte function-associated molecule-1 (lFA-1) which binds ICAMl and ICAM2, 

and is important especially for adhesion of monocytes/macrophages and THP-1 cells 

(Kim, Carman et al. 2003; Engelhardt and Ransohoff 2012). 

It has been shown that either VLA-4 or lFA-1 are required for peripheral blood 

mononuclear cells (PBMC) firm adhesion under flow to TNF-a stimulated HUVEC 

(Cinamon, Shinder et al. 2001) and to transfected human microvascular BEC (THBMEC) 

(Man, Tucky et al. 2009). In addition, blocking VLA-4 and lFA-l, reduce adhesion of 
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peripheral blood lymphocyte to TNFa.-stimulated HUVEC by 85% (Cinamon, Shinder et 

al. 2001). LFA-1 binds to ICAM1 (Rothlein, Dustin et al. 1986) and ICAM2 on brain 

endothelium, whereas VLA-4 binds VCAM1 (Lobb, Antognetti et al. 1995) as shown in 

the Fig. 1.11. In addition to CAM and integrins, other inflammatory mediators such as 

chemokines are involved in leukocyte firm adhesion to endothelium. Chemokine CCL2 

has been shown to mediate lymphocyte adhesion to human brain-derived 

microvascular endothelium (Maus, Henning et al. 2002) through LFA-l (Jiang, Zhu et al. , 

1994) . 

As indicated above, firm adhesion occurs in postcapillary venules in vivo 

(reviewed in (Engelhardt and Coisne 2011). Most studies in vitro on leukocyte adhesion 

to brain endothelium have been performed using static assays omitting physiological 

flow. More recently interesting results about leukocyte adhesion in inflammation were 

obtained using flow based assays, in which it was shown that VCAMI and ICAMI, but 

not ICAM2, mediate shear-resistant firm PBMC adhesion to mouse brain endothelium 

(Steiner, Coisne et al. 2010), and polymorphonuclear leukocyte adhesion to cytokine-

stimulated HBMEC (Wong, Prameya et al. 2007). 
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Leukocyte cells 

a.4~1-integrin 
VLA-4 

~2-integrin 

LFA-I 

ICAMI ICAM2 
(CDS4) (CD102) 

Cytoplasm 

VCAMl 
(CD106) 

Chapter 1: Introduction 

Fig. 1.11: Leukocyte adhesion. Leukocyte integrins a4~1 (VLA-4) and aL~2-integrin 

(LFA-1) bind VCAM1 and ICAM1 and ICAM2 expressed on endothelial cell (EC) 
membrane, respectively. Schematic representation based on illustrations in (Springer 

1994; Carlos and Harlan 1994). 
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Leukocyte arrest-polarization-crawling 

Leukocyte adhesion to inflamed BEC triggers the release of chemokines and 

other chemoattractants that lead to a further rapid integrin activation. This event leads 

to conformational changes of integrins and initiates a series of signalling pathways. In 

particular, conformational changes of the cytosolic tail of LFA-i upon ICAMi binding 

may playa role in leukocyte arrest, the next step after rolling-adhesion (Shamri, 

Grabovsky et al. 2005). In addition, signalling related to the 'outside-in' signalling 

seems to be important maintaining firm leukocyte adhesion under flow, acting via LFA-

1 (Giagulli, Ottoboni et al. 2006; Smith, Deem et al. 2006) and VLA-l integrin (Hyduk, 

Oh et al. 2004). It has been shown that VLA-l integrin can engage laterally CD44 

improving the leukocyte's ability to arrest on endothelium under flow (Nandi, Estess et 

al. 2004). Using in vitro time lapse imaging, it has recently been reported that 

leukocytes arrest and polarize on cytokine-stimulated primary mouse BEC and start to 

crawl on the surface of EC, preferentially against the direction of flow as shown in Fig. 

1.12 (Steiner, Coisne et al. 2010). 

Firm adhesion 
~ __________________ ~A~ __________________ ~ 
I \ 

Polarizat ion ~ Crawling Arrest 

Direction of flow 

Fig. 1.12: Leukocyte firmly adhered : arrest-polarization-crawling. Adhered leukocytes 
firmly arrest on EC (left), and then polarize (middle) and start to crawl for long 
distances before transmigration. From (Lyck and Engelhardt 2012). 
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Leukocyte migration 

Following leukocyte arrest, leukocytes can extravasate from the BEC surface to 

the CNS, by either paracellular or transcellular migration (Wittchen 2009). In the 

paracellular route, the leukocyte diapedesis occurs across the TJ, thereby reducing 

barrier properties of BEe. The transcellular route leaves the TJ intact (for a review see 

(Muller 2011), and leukocytes are engulfed by BEC and released at the abluminal side 

(Stolp and Dziegielewska 2009). Leukocyte transmigration requires a rapid 

reorganization of the cytoskeleton of leukocytes to migrate from the apical side to the 

abluminal side of endothelium (for a review see (Nourshargh, Hordijk et al. 2010)). 

Regardless the route of migration, adherent leukocytes expressing chemokine 

receptors extend pseudopods to bind the abluminal chemokines which guide the 

migration process. ICAM1 and PECAM-1 play an important role in the leukocyte 

infiltration in the brain, mediating the step after firm adhesion between leukocytes 

and activated EC (Alvarez, Cayrol et al. 2011 ; Banks and Erickson 2010 ; Persidsky, 

Ramirez et al. 2006; Engelhardt 2008; Stolp and Dziegielewska 2009). 
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1.5 Multiple Sclerosis 

MS is associated with alterations in BBB function, as reported in Table 1.5. MS 

affects approximately one million people in the world and is one of the most common 

chronic and disabling autoimmune disorders of the CNS. MS is primarily characterized 

by progressive neurodegeneration caused by demyelination (loss of the myelin sheath) 

of nerve fibres. This neurological condition was first identified by Robert Carswell in 

1838 who described it as 'a remarkable lesion of the spinal cord accompanied with 

atrophy' (Carswell 1838). 

MS mainly starts in young adulthood, and almost 70% of patients with clinical 

symptoms are between the ages of 20 and 60 years old. This disease affects women 

more than men with a ratio of 2:1 (Maria Malfitano, Matarese et al. 2005). The 

worldwide distribution and incidence of MS is highly variable (Noseworthy, Lucchinetti 

et al. 2000). The incidence of MS is higher in northern and central Europe, North 

America, Canada and Australia than in the rest of the world and it is considered that 

both genetic and geographical factors, yet to be unravelled, influence its prevalence 

(Weiner 2009; Compston and Coles 2008). 

In the early 1970s it was observed that there is an association between MS and 

the major histocompatibility complex (MHC), the major genetic factor in MS. Genetic 

studies identified MHC gene variants that are associated with MS, and that the alleles 

linked to disease severity were DRB5*0101 and DRB1 *1501 allele encoding MHC class 

II cell surface receptor (HL-DR)2b and alleles of the human leukocyte antigen (HLA) 

class II region which are the highest risk-conferring genes for this major autoimmune 
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disease (Dyment, Ebers et al. 2004). The role of environmental factors is much less well 

defined (Compston and Coles 2008). Epidemiological observations indicate that viruses 

might contribute to the development of MS. Among the studied viruses, Epstein-Barr 

virus, a ubiquitous virus, is a major candidate for triggering MS even if the mechanisms 

responsible for this association are far from understood (Kakalacheva, MUnz et al. 

2011). Four main clinical forms of MS have been described as shown in Table 1.5 

(Rejdak, Jackson et al. ; Lassmann, BrUck et al. 2007; Malfitano, Proto et al. 2008; Bradl 

and Lassmann 2009). 

Forms of MS 

Relapsing-remitting 

form of MS (RRMS) 

Secondary­
progressive form of 

MS (SPMS) 

Primary-progressive 

form of MS (PPMS) 

Progressive-relapsing 

form of MS (PRMS) 

More than 80% of the patients develop the RRMS which is 
characterised by recurring periods of disease in which clinical symptoms 
worsen (once a year), but from which the majority of the patients make 
a full or a partial recovery. 
RRMS appears to be driven, mostly, by the inflammatory process which 
causes focal demyelinating lesions mainly in the white matter of the 
brain and spinal cord . Over time the number of relapses decrease, and 
10% of RRMS patients have benign MS, where relapses are rare and, 
normally, does not result in disability. 

It is a progressive neurological deterioration phase that occurs 
following RRMS and is developed by 70% of MS patients. 

The remaining 20% of MS patients develop a primary progressive 
(PPMS) form characterised by a steady neurological decline, without 
relapses. 

A small percentage of MS patients develop a rare fourth form, 
progressive relapsing MS (PRMS), considered a variant of PPMS where 
there is a gradual neurological decline from the onset of disease but 
with relapses. 

Table 1.5: Forms of multiple sclerosis (MS). 

The most common symptoms observed in MS patients are generally the 

result of a progressive loss of muscle control, sensation, vision, speech and/or 

intellectual ability, but its clinical manifestations are manifold. 
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In the context of pathology, MS is characterized by four main features: 

inflammation, demyelination, axonal loss and gliosis. The earliest pathogenic event in 

MS is the inflammation caused by infiltrating lymphocytes, monocytes and antibody­

producing plasma cells from blood into the CNS, specifically in the periventricular 

region of white matter in the brain and the spinal cord, to form a perivascular cuff. The 

perivascular cuff is the area surrounding an inflamed vessel, containing inflammatory 

leukocytes, and delimited by endothelium on one side and basement membrane on 

the other side (Steinman 2009). 

It was observed that C04+ T cell and C08+ T cell migration into the CNS causes 

secretion of cytokines, chemokines and other molecules, damaging oligodendrocytes. 

At the same time, T cell infiltration activates microglia and astrocytes in the CNS 

(Lassmann, Bruck et al. 2001). Infiltrating plasma cells produce myelin-specific 

antibodies that result in further demyelination (Steinman 2009). The subsequent 

axonal injury and axonal loss are caused by the chronic activation of microglia, in the 

absence of lymphocytic inflammation, due to a failed remyelination of the axons, 

which involve a redistribution of the ion channels on demyelinated axons (Coman, 

Aigrot et al. 2006). In experimental autoimmune encephalomyelitis (EAE), an animal 

model of MS, axonal injury can also occur before myelin loss (Tsunoda, Tanaka et al. 

2007), which means that demyelination could be independent or secondary to axonal 

degeneration (Huizinga, Linington et al. 2008). Gliosis is caused by proliferation of 

astrocytes in the injured areas in response to chronic tissue injury, leading to scars. 
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1.5.1 Chemokines in multiple sclerosis 

A high number of chemokines are involved in MS (for a review see (Hamann, 

Zipp et al. 2008)) to convert low affinity interactions mediated by integrins between 

leukocytes and activated BEC into high affinity interactions that promote leukocyte 

migration across the BBB (Murphy, Long et al. 2000). 

CXCL12 is increased by brain blood vessels and in astrocytes both in active and 

inactive MS lesions (Alexander, Zivadinov et al. 2011). In both MS and in EAE, it has 

been shown that CXCL12 shifts from the abluminal side of brain endothelium to the 

blood-stream surface where it is recognized and bound by activated CXCR4 on 

leukocytes, with consequent infiltration and formation of the perivascular cuff 

(McCandless, Zhang et al. 2008). It was suggested that CXCL12 relocation promotes 

leukocyte infiltration, increasing their capture at the BBB level (reviewed in (Holman, 

Klein et al. 2011) and induced monocyte transmigration across THBMEC in vitro under 

flow (Man, Tucky et al. 2012). In addition, it had been reported that CXCL12 and CXCR4 

are important in the recruitment of C08+ T cells by BEC in vitro (liu 2009). However, it 

appears that CXCL12 is more important in angiogenesis than in inflammation. 

CCR1 and 2 chemokine receptors, as CXCR4, are involved in T cell and 

monocyte infiltration to the CNS, targeting CCL7 and CCL2. CCL2 is expressed in MS 

lesions and it is increased by proinflammatory cytokines in hCMEC/03 cells in vitro 

(Subileau, Rezaie et al. 2009). CCR2, expressed by immune cells, binds CCL2 and it is 

down-regulated by CCL2 itself once leukocytes infiltrate into the brain across the BBB 

(Mahad, Callahan et al. 2006). CX3CRl receptor is increased in late active and inactive 
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demyelination, In addition, its deletion in EAE mice results in increased mortality 

(Hulshof, van Haastert et al. 2003). 

1.5.2 IFNy and TNFa: proinflammatory cytokines in multiple sclerosis 

In RRMS patients there are high levels of proinflammatory cytokines IFNyand 

TNFa in plasma during relapses, which dramatically increase during long periods of 

active disease and decreased rates of remission (Minagar and Alexander 2003). 

Indeed, elevated plasma TNFa has been correlated with disease progression (Sharief 

and Hentges 1991), it has been detected in acute and chronic MS lesions (Selmaj 1991; 

Canella 1995), and TNFa has also been detected in lesions in post-mortem MS brains. 

Indeed, TNFa is produced by astrocytes and microglia in acute and chronic active MS 

brain lesions (Navikas and Link 1996) to trigger T cell responses, lymphocyte infiltration 

and many other events in MS pathogenesis (reviewed in (Constantinescu and Gran 

2010)). Therefore, anti-TNFa antibodies ameliorate disease in EAE mice (Selmaj, Raine 

et al. 1991), it has been hypothesized that TNFa may have a dual action in MS 

pathogenesis: it carries out a proinflammatory function being involved in 

inflammation, demyelination, neuronal apoptosis and astrocytic toxicity, and at the 

same time, a neuroprotective function supporting tissue regeneration (Weihong and 

Kastin 2008). 

IFNy was found expressed on circulating lymphocytes in MS patients (Navikas 

and Link 1996) and on infiltrated lymphocytes in MS lesions (Lock, Hermans et al. 

2002), in CSF of MS patients (Nicoletti, Patti et al. 1996) and in the CNS of EAE mice 

(Renno, Krakowski et al. 1995). 
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Together, IFNy and TNFa, have been shown to have a synergistic effect on 

endothelium by activating transcription factors, such as NK-KB, which induce the 

expression of CAM (VCAMl and ICAM1) and E-selectin (Pober and Sessa 2007). 

I.S.3 Leukocyte trafficking across the blood-brain barrier in multiple sclerosis 

During MS relapses, there is a massive adhesion and migration of activated 

lymphocytes and monocytes across the BEC (Hickey 1991). Cytokines, chemokines and 

CAM cooperate in the control of leukocyte adhesion and migration across the BBB and 

determine the cellular composition of the inflammatory infiltrate in MS (Schall and 

Bacon 1994; Hohlfeld 1999). In brain endothelium, it is widely accepted that both EAE 

and MS endothelium highly express VCAM1, ICAMl and P- and E-selectin (Lee and 

Benveniste 1999; Carrithers, Visintin et al. 2000; Piccio, Rossi et al. 2002; De Vries 

1997, Engelhardt 2008). 

In MS inflammatory infiltrates, T lymphocytes, monocytes, macrophages and B 

cells are present (Lucchinetti, BrOck et al. 2000; Bradl and Lassmann 2009), and both 

ICAMl and VCAMl overexpressed on endothelium (Alvarez, Cayrol et al. 2011). CD4+ 

and CD8+ T cells migrate into the CNS, following the multi-step process described in 

Section 1.4.4 which includes rolling via P-selectin-PSGL-l and firm adhesion via 

VCAM1-VLA-4 integrin interactions (Piccio, Vermi et al. 2005). It was found that CD4+ 

and CD8+ T cells from RRMS patients expressed an increased level of PSGL-l (Battistini, 

Piccio et al. 2003). In addition, it has been shown that CD4+ and CD8+ T cells 

expressing LFA-l (R.A.Sobel 1990) and VLA-4 (Engelhardt 2006), first roll on brain 

endothelium prior to becoming firmly adhered (Kerfoot and Kubes 2002). It has been 
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shown that VLA-l and LFA-l expression on lymphocytes and monocytes in both blood 

and CFS of PPMS and SPMS patients were highly increased when compared with non­

MS immune cells (Ukkonen, Wu et al. 2007). 

1.5.4 Multiple sclerosis therapies related to leukocyte infiltration 

Current treatment of MS is based on anti-inflammatory, immunosuppressive, 

and immunomodulatory drugs, but normally this kind of therapy is only partially 

effective. Clinical studies on Natalizumab, a humanized monoclonal antibody against 

the cellular adhesion molecule VLA-4, were completed with good results (Sidorenko, 

KOLYAK et al. 2009), but with some important side effects. Natalizumab has been 

designed to bind the integrin VLA-4 expressed on leukocyte surface, to prevent 

leukocyte binding to VCAMl and extravasation. The big limitation of this treatment is 

that is not selective: Natalizumab does not act only at the BBB level, but on many other 

sites in the body, preventing immune cell entry into inflamed, infected and/or injured 

organs not affected by MS. Recently, a combination therapy targeting leukocyte 

adhesion using monoclonal antibodies for VCAMl and ICAMl have been successfully 

used during a clinical trial, but disappointingly still with systemic side effects 

(Compston and Coles 2008). 
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1.6 MicroRNAs 

1.6.1 Definition of microRNAs 

MicroRNAs (miRs) are a class of 20-25 nucleotide-long highly conserved, single­

strand, non-coding RNA molecules, that modulate gene expression (Carthew and 

Sontheimer 2009). In 1993 the first miR was identified in the nematode Caenorhabditis 

e/egans, Iin-4 (Lee, Feinbaum et al. 1993; Wightman, Ha et al. 1993). The Lin-4 gene, or 

small and non-protein-coding transcript, regulates Iin-14 through the 3'UTR region of 

its messenger RNA (mRNA) at the post-transcriptional level. A second miR, let-7, was 

discovered in 2000 in Caenorhabditis e/egans (Pasquinelli, Reinhart et al. 2000; 

Reinhart, Slack et al. 2000). These two findings triggered a revolution in the 

investigation of miRs and the field has grown massively and quickly, becoming soon 

clear that miR expression was critical for a myriad of biological processes such as 

differentiation, cell cycle, development, apoptosis and disease in various organisms 

and in humans (Friedman and Jones 2009). Current estimates suggest that the human 

genome contains over one thousand distinct miRs (Bartel 2009). 

Mirs are named using the 'miR' prefix and a unique identifying number (e.g., 

miR-1, miR-2, ... miR-126 etc) (Ambros and Bartel 2003). 

1.6.2 MicroRNAs on the genome 

In humans, 1% of the genes have been found to encode for miRs, which are 

often highly conserved across species (Bartel 2009), and all miR genes have been 

mapped in all chromosomes, except in the V-chromosome (UI Hussain 2012). Based on 

their location, human miR genes have been identified either as intergenic, intronic or 
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exonic (Rodriguez, Griffiths-Jones et al. 2004), and may be located in non-coding 

regions or in coding regions (Fig. 1.13) {see for reviews (Olena and Patton 2010; UI 

Hussain 2012)). 
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Fig. 1.13: Genomic organisation of miRs. An intergenic miR is under the control of its 
own promoter, either as a single gene (miR a) or as a cluster (miR b-d). An intronic 
miR is present in the intronic region of a functional transcriptional unit and is under 
the control of a protein-coding promoter as a single intronic miR (miR e) or a cluster of 
intronic miRs (miR f, miR g) or as a mirtron (miR h) in which the whole intron of a 
protein-coding gene acts as the exact sequence of the pre-miR and hence a 
microprocessing step is not required in this case. Mi rtrons having a sequence 
extension at the 5' end are called 5'-tailed mirtrons (miR i), whereas mirtrons having a 
sequence extension at the 3' end are called 3'-ta iled mirtrons (miR j). Exonic miRs (miR 
k), Legend: bent arrow, P promoter, hairpin miRs, rectangular boxes [Exon] protein­
coding exons), Taken from (UI Hussain 2012). 
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1.6.3 MicroRNA biogenesis 

The canonical pathway of miR biogenesis to generate mature miRs is a complex 

process as shown in Fig. 1.14. In the nucleus, miR genes are transcribed by RNA 

polymerase II (RNA pol II) with a similar transcription mechanisms of genes coding for 

protein-coding mRNA (lee, Kim et al. 2004). The RNA primary transcript of a miR gene 

is capped, polyadenylated and contains one or more hairpin-like structures of about 80 

bases called pri-miR (also known as pri-miRNA). The structural features of pri-miR 

hairpins are unique as they contain a long imperfect stem of approximately 30 bp with 

flanking 5' and 3'-single-stranded ends (Zeng, Vi et al. 2005). The pri-miR flanking 

regions are recognized and cut by a microprocessor complex which includes the 

nuclear enzyme Drosha (RNAse III type endonuclease) and a RNA-binding protein 

DGCR8 (DiGeorge syndrome critical region gene 8) (Morlando, Ballarino et al. 2008). 

The hairpin sequence generated is denoted as a pre-miR, which is about 70 nucleotides 

(nt) long (Han, lee et al. 2006). The pre-miR is actively transported from the nucleus to 

the cytoplasm by exportin-5 proteins and the guanine triphosphatase Ran (lund, 

Guttinger et al. 2004). 

In the cytoplasm, the pre-miR is recognized at the 3'-end generated by Drosha, 

and cleaved by DICER RNAase III type endonuclease complex and by TAR RNA-binding 

protein (TARBP) near the terminal loop into a 20 nt mature miR/miR* duplex (without 

loop) (Bernstein, Caudy et al. 2001). One strand, the most abundant, called the leading 

or guide strand (mature miR) of about 20-25 nt is transferred and incorporated into 

the RNA-Induced Silencing Complex (RISC), while the passenger strand (miR*), the less 

abundant, is thought to be degraded and removed (Inui, Martello et al. 2010; Bi, Liu et 
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al. 2009). It has been shown that in some miRs the data are not sufficient to determine 

which sequence is the predominant one, so the names are like miR-number-5p (from 

the 5' arm) and miR-number-3p (from the 3' arm). If two or more miRs have closely 

related mature sequences, letter suffixes are used (e.g. miR-146a, miR-146b). 

Recent findings are in contrast with the view of the canonical pathway for miR 

biogenesis, as reported below. RISC is an RNA polymerase-RNA dependent 

endonuclease which contains Argonaute (AGO) family and other accessory proteins. 

The proteins of the AGO family contain three conserved domains PAZ, MID and PIWI, 

which are known to interact with 3'- and 5'-ends of miRs (Kawamata and Tomari 

2010). AGO proteins 1-4 (AGOl-4) mediate the miR-mRNA translational repression. 

AG02 has a RNaseH-like PIWI domain which cleaves the mRNA of the miR target 

internally (Peters and Meister 2007). Recent studies show that miRs can be processed 

without Dicer, but instead require AG02 (Dueck and Meister 2010). 

Very recent findings underline how the miR star (miR*) species are not all 

degraded, but they can act as mature miRs too, albeit less abundant. Yang et al. have 

calculated, based on mirbase database, that of over 2 x 106 mature strands reads in 

human, 78.500 are star strands (Yang, Phillips et al. 2011) Furthermore, it has been 

found that more than 3% of star miR strands are associated with Ago complexes in 

humans (Yang, Phillips et al. 2011) and in Drosophila Melanogaster (Okamura, Phillips 

et al. 2008; Czech, Zhou et al. 2009; Ghildiyal, Xu et al. 2010), providing evidence that 

miR* species also contribute substantially to the endogenous miR population in 

eukaryotic cells. In addition, it has been shown that miR* species are stringently 

conserved over vertebrate (human, mouse, dog, chicken) evolution (Yang Phillips 

2011). 
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Experimentally, expression levels of both species miR and miR* can be 

measured using different techniques in vivo and in vitro . One of the most used 

techniques is the microarray analysis of miR gene expression followed by validation by 

real time reverse-transcription PCR (RT2_qPCR) . 

NUCLEUS 

CYTOPLASM 

c EXPORTIN 5 

Pre-miR 

miRNA! miRNA'" DUPLEX 

MATURE mlRs 

I 

Leading Passenger 
strand strand 

Fig. 1.14: Biogenesis of miRs. miR biogenesis takes place in the nucleus (violet) and in 
the cytoplasm (yellow) of the cell. A miR gene is transcribed to generated Pri-miR, 
which is further processed as described in the text to originate mature miRs, which 
include miR (leading) and miR* (passenger) species. Mature miRs in the cytoplasm are 
incorporated into the RiSe complex by AG02 to carry out their functions. Schematic 
representation based on illustration in (Inui, Martello et al. 2010). 
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1.6.4 Function of microRNAs: target mRNA 

MiRs regulate gene expression mostly, but not always, by repression of their 

target genes at the post-transcriptional level (Pillai, Bhattacharyya et al. 2007; 

Vasudevan, Tong et al. 2007). In mammals, miRs are predicted to control more than 

60% of all protein coding genes (Friedman, Farh et al. 2009). In particular, mature miRs 

recognize the target mRNA via hybridization to the 3' UTR by Watson- Crick base 

pairing in the RISC complex (Fig. 1.15). 
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3' HO-N N 
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UoU..:.J.lJ.UJ.:!/ N -P S' 
7 !) 3 1 

6 4 Z 

Fig. 1.lS: MiRs recognize their targets by Watson-Crick base pairing. miRs recognize 
partially complementary binding sites, which are generally located in 3' UTRs. 
Complementarity to the 5' end of the miR, the 'seed' sequence, containing nt 2- 7, is a 
major determinant in target recognition and is sufficient to trigger silencing. For most 
miRNA binding sites the complementarity is limited to the seed sequence (seed­
matched sites). Adapted from (Huntzinger and Izaurralde 2011). 

Out of the 22-25 nt that form the miR sequence, only 2-7 nt called a 'seed ' region, 

form a perfect match with the 3'UTR of the target mRNA (Bartel 2009). MiRs can (i) 

repress translation of mRNA into protein, blocking it at the initial stage or at the post-

initiation stage when there is an missmatch base pairing between mRNA and miR 

(Bartel 2004), or (ii) degrade the mRNA target by deadenylation if there is a perfect 

match (Fig. 1.16) (Filipowicz, Bhattacharyya et al. 2008). 
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miR* species exhibit great conservation in their seed regions and directly 

repress the 3' UTR region of their target mRNA (Okamura, Phillips et al. 2008; Yang, 

Phillips et al. 2011). It has been reported that miR-19* in Hela cells directly represses 

five targets via its seed site (Yang Phillips 2011) and that miR-30c-2* directly represses 

XBP1 in human fibroblasts (Byrd A.E. 2012). Furthermore, it has been shown that miR-

155* directly targets IRAKM in human plasmacytoid dendritic cells (Zhou, Huang et al. 

2010) and IFN regulatory factor 3 (IRF3) in human astrocytes (Tarassishin, Loudig et al. 

2011). Therefore miR* species regulatory activity has been compared with that of miR 

species. However, the regulatory effect of miRs* I being less abundant, is modest 

compared to miR species. Nevertheless, miR* should also be considered as important 

regulator at the post-transcriptional level. 

The mechanism by which miRs repress mRNA is still poorly understood, and 

results of different studies are sometimes contradictory. It is still highly debated 

whether the identified mechanisms of miR repression depend on the specific features 

the mRNA targets and their abundance. In addition, mRNA turnover is highly related to 

the mRNA decay rate, which is highly variable in mammalian cells and can range from 

minutes to days (Ross 1995). It has been shown that the more an mRNA is unstable the 

less it is targetable by miRs (Larsson, Sander et al. 2010). Figure 1.16 summarises the 

possible mechanisms of translational repression and degradation of mRNA targets 

mediated by miRs. 
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C~..c.==>C.B--+~~+-AAAAAA 

Fig. 1.16: Mechanisms of mRNA target translational repression and degradation by 
miRs. A. mRNA undergoing translation in the absence of a bound miR. B. Inhibition of 
translation initiation by competition between RISC and elF4E for cap binding. C. 

Inhibition of translation initiation at a step after cap recognition, such as by impeding 
the association of the small and large ribosomal subunits. D. Inhibition of translation 

elongation coupled to premature termination . E. Cotranslational degradation of 
nascent polypeptides. F. mRNA undergoing endonucleolytic cleavage by Ago2, as 
guided by a fully complementary miR. G. mRNA undergoing poly(A) removal by the 
Ccr4/Not deadenylase (Pac-Man), as directed by a partially complementary miR. 
Legend: Black square, m7G 5'cap; amber cylinder, protein-coding region; and AAAAAA, 
poly(A) tail. Ribosomes are coloured green, nascent polypeptides are brown, and the 

elF4E subunit of the cap-binding complex is violet, RISC is depicted as a 
ribonucleoprotein complex comprising a miR (red), Ago (pink), and other protein 
subunits. Adapted from (Wu and Belasco 2008) . 
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1.6.5 Prediction of microRNA targets using bioinformatic tools 

From 1997 when Grimson combined computational and experimental 

approaches to predict with accuracy the miR:mRNA pairs, a number of databases were 

created using software based on different algorithms, numerical parameters and 

position-specific roles. Most of these databases are freely available on-line for 

researchers in a 'convenient and transparent form', that can be used to find out the 

predicted gene targets for a particular miR, or the predicted miRs targeting one single 

gene. 

miRBase targets 

miRBase targets is a database available on-line on www.microrna.org. The mammalian 

and fish 3' UTR were scanned for miR potential target sites using the miRanda software 

(Fig. 1.17). The scanning algorithm was based on sequence complementarity between 

the mature miR and the target site, binding energy of the miR-target duplex, and 

evolutionary conservation of the target site sequence by matching with currently 

known miR sequences and target position in aligned UTR of homologous genes. A total 

of 2,273 target genes have been identified in mammals with one conserved target 

(90% conservation) and 660 target genes with 100% conservation. The algorithm and 

cut-off parameters were chosen to provide a flexible mechanism for position-specific 

constraints and to capture what is currently known about experimentally verified miR 

target sites: (1) non uniform distribution of the number of sequence-complementary 

target sites for different miRs; (2) 5'-3' asymmetry; and (3) influence of G:U wobbles 

on binding. In choosing these parameters, they drew on experience from careful 
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analysis of target predictions in Drosophila as well as proposed human targets of virus-

encoded miRs (Griffiths-Jones, Grocock et al. 2006; Griffiths-Jones, Saini et al. 2008). 

Human 24,261 
Mouse 24,948 
Rat 21,276 
Zebra fish 20,036 
Fugu 35,180 

Orthologs? 

UTRs 

Position of target sites? 
Target conservation >90%1 

More than 1 target site? 

microRNAs 

Human 162 
Mouse 191 
Rat 45 
Zebrafish 192 
Fugu 174 

OrthologS? 
Target conservation >70%1 

More than 1 target site? 

Fig. 1.17: Scheme of how miRBase predicts targets for miRs. From (Griffiths-Jones, 
Grocock et al. 2006; Griffiths-Jones, Saini et al. 2008). 
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available online on 

http://www.ebLac.uk/enright-srv/microcosm/htdocs/targets/v5/ developed by the 

Enright Lab at the EMBL-EBI. They used the miRanda algorithm to identify potential 

binding sites for a given miR in genomic sequences (Fig. 1.18). The algorithm uses a 

weighted scoring system and rewards complementarity at the 5' end of the miR. 

Currently they demand strict complementarity at this so-called seed region in 

accordance with recent publications, that is, all alignments where more than one base 

in this region is not complementary to a target site are discarded. Target sites selected 

in this fashion are passed through the Vienna RNA folding routines in order to estimate 

their thermodynamic stability (Enright, John et al. 2003; Griffiths-Jones, Grocock et al. 

2006; Griffiths-Jones, Saini et al. 2008). 

Targetscan Human: prediction of microRNA targets 

Targetscan Human was developed by David Bartel's group and is available on­

line on http://www.targetscan.org. TargetScan predicts biological targets of miRs by 

searching for the presence of conserved 8 mer (an exact match to positions 2-8 of the 

mature miRNA (the seed + position 8) followed by an 'A') and 7 mer (7mer-m8: an 

exact match to positions 2-8 of the mature miR (the seed + position 8)) sites that 

match the seed region of each miR (Lewis, Green et al. 2003). As an option, non 

conserved sites are also predicted. Also identified are sites with mismatches in the 

seed region that are compensated by conserved 3' pairing (Friedman, Farh et al. 2009). 

In mammals, predictions are ranked based on the predicted efficacy of targeting as 

calculated using the context + scores of the sites. As an option, predictions are also 
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ranked by their probability of conserved targeting (Friedman, Farh et al. 2009). 

TargetScanHuman considers matches to annotate human UTRs and their orthologs, as 

defined by UCSC whole-genome alignments. Conserved targeting has also been 

detected within open reading frames (ORFs). 
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Fig. 1.18: Scheme of how Targetscan Human predicts targets for miRs. 
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Other databases 

Others databases available on-line are DIANA-microT-CDS (coding DNA 

sequence), PicTar and Target Miner. 

DIANA-microT-CDS database is based on the 5th version of the microT algorithm and is 

on-line on http://www.microrna.gr/microT-CDS.ltis specifically developed to assess a 

positive and a negative set of miR Recognition Elements (MREs) located in both the 3' 

UTR and CDS regions. 

PicTar is an algorithm developed by Rajewsky's Lab for the identification of 

miRs targets, which provides details on 3' UTR alignments with predicted sites 

regarding miR target predictions in vertebrates (Krek, Grun et al. 2005). It is available 

on-line on http://pictar.mdc-berlin.de/. 

Another robust tool for miR target prediction with systematic identification of 

predicted targets is Target Miner available on-line on 

http://www.isical.ac.in/ ... bioinfo_miu/ (Bandyopadhyay and Mitra 2009). 

Experimental approaches to investigate microRNAs 

Experimentally, miRs have been studied both in vivo and in vitro. Most in vitro 

studies modulate miR/miR* and study the effect on predicted miR targets. It has been 

shown that both endogenous and synthetic human miRs are able to inhibit the cognate 

target (Zeng, Wagner et al. 2002). To modulate miR levels in human cells, different 

techniques have been used, but the most popular nowadays is the transient 

transfection of synthetic miRs as shown in Table 1.6. 

59 



Chapter 1: Introduction 

miR miR Supplier Synthetic T ra nsftection Transfected cell line Ref 

m imic (Pre) inhibitor (Anti) mIRs(nM) Reagent 

Human endothelial (Chen, Huang e l al. 

126 and 125 Ambion Lipofectamine 2000 
progenitor 

2009; Mens, (30 et 
al. 2012) 

126 Ambion 30 Siport NeoFX 
Human homozygote (aalesby, 8 ray 01 a l. 

bronchial epithelial 2010) 

Ambion 100 Lipofectamine 2000 
Human gastric (Fong, Chen el .1. 

126 cancer 2010) 

Ambion 30 Lipofectamine 2000 
Renal microvascular (long, W.ng 01 01. 

93 93 endothelia l 2010) 

146a 
Applied 

30 and 100 Siport NeoFX HUVEC 
(Vasa-Nicot era, Chen 

146a Biosystem e l .1. 2011) 

19a 19a Ambion 40 Lipofectamine 2000 HUVEC 
(Qin, w ang et at 
2010) 

34a Dharmacon 100 Dharmafect 1 
Endothelial 
progenitor 

(Zh.o, li 01 .1. 2010) 

51 RNA transfection (Fasanaro, 

210 210 Exiqon 40 
reagent Santa Cruz 

HUVEC O'Alessandra el al. 
2008) 

126 Dharmacon 100 Dharmafect 1 HUVEC 
(Kuhnert, M ancuso 
el.1. 2008) 

126 Exiqon 100 Siport NeoFX Lung carcinoma (Crawfo<d, 8r11wnor 
01 al. 2008) 

3,15,30 
Siport NeoFX or 

HUVEC 
(Harris, Vamakuchi et 

126 Amine reagent .1. 2008) 

146a Ambion 40 lipofectamine 2000 THP-1 
(Nahid, Pauley et at 

146a 2009) 

Applied 
10-20 pM lipofectamine plus Synovial fibroblast 

(U, Gibson 01 al. 

146a Biosystem 2011) 

146b 50 Lipofectamine 2000 Human glioma (Xia, Oi et 01. 2009) 

155 Genepharma 
10,20,80 

lipofectamine 2000 HEK293A 
(Song, liu e l . 1. 

155 and 200 2012) 

Ambion 3,30,100 lipofectamine 2000 
Human (lIu, van Mil et a!. 

155 155 cardiomyocyte 2012) 

Table 1.6: List of transient transfections aimed at modulating miR levels in human 

cells adopted in previously published studies 

Moreover, predicted targets need to be experimentally validated using 

different strategies such as reporter assays using luciferase with the 3'UTR of the 

putative target mRNA. TarBase 6.0 lists all experimentally validated miR targets 

{http:/ / www.microrna.gr/tarbase) . ltis the largest available manually curated target 

database, indexing more than 65,000 miR-gene interactions. The database includes 

t arget s derived from specific, as well as high throughput experiments, such as 

microarrays and proteomics (Vergoulis, Vlachos et al. 2012). 
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1.7 MicroRNAs in autoimmune and neuroinflammatory disorders 

Recent studies have shown that miRs are integral elements in the post­

transcriptional control of gene expression during the immune response (Baltimore, 

Boldin et al. 2008). MiRs are also involved in the regulation of the immune system 

(Sassen, Miska et al. 2008) and are particularly important in Band T cell homeostasis 

and immunological function (Li, Chau et al. 2007; Xiao, Calado et al. 2007; Xiao and 

Rajewsky 2009), suggesting that miRs may be also involved in the development of 

inflammatory and/or autoimmune diseases (Ceribelli, Satoh et al. 2012), in particular 

in neuroinflammation and in vascular inflammation (Pauley and Chan 2008; Urbich, 

Kuehbacher et al. 2008; Bi, Liu et al. 2009; Carissimi, Fulci et al. 2009). Several studies 

have shown miR dysregulation in neuroinflammatory and autoimmune diseases such 

as MS (Otaegui, Baranzini et al. 2009; Lindberg, Hoffmann et al. 2010; Junker, Hohlfeld 

et al. 2011). 

A study of miR expression in active and inactive MS lesions revealed the most 

up-and down-regulated miRs as shown in Table 1.7 (Junker, Krumbholz et al. 2009). 

Studies of miR expression by miR microarray of total RNA extract from whole blood 

samples of RRMS patients have shown that there are 165 genes with changes in their 

expression, where miR-145 appears to be a suitable single marker for disease status. 

As for the other miRs, 43 miRs are in common with other human diseases (Human 

microRNA Disease Database) and 122 are probably exclusively associated with MS 

(Keller, leidinger et al. 2009). Other studies have been performed on miR expression in 
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PBMC, whole blood, lymphocytes and regulatory T cells of MS patients, but the role of 

endothelial miRs in 

miRs up­
regulated in 
lesions 

Percent Fold regulation in 
surrogate lesions compared to 
housekeeping normal brain white 
gene in lesions atter 

miR profiles in active multiple sclerosis lesions 
miR-650 5.7 15.1·· 
miR-155 37.1 11.9·· 

miR-326 1.5 8.9·· 

miR-142-3p 68.5 7.7'· 
miR-146a 73.7 6.4** 

miR-146b 5004 5.1·· 

miR-34a 9.3 4.9** 

miR-21 82.7 3.9" 

miR-23a 104 3.9** 

miR-199a 1.2 3.3" 

miR-27a 88.3 3.1** 

miR-142-5p 8.3 3.0** 

miR-193a 10.5 2.90' 
miR-1Sa 12.3 2.8** 

miR-200e 2.3 2.80• 

miR-130a 9.8 2.6'0 

miR-223 167.9 204** 

miR-22 25.1 204" 

miR-320 49.2 2.2·· 

miR-214 2.5 2.1" 

miR profiles in inactive multiple sclerosis lesions 

miR-629 104 10.1" 

miR-148a 16.1 9.8" 

miR-23a 2.9 8.8" 

miR-28 1504 6.9·· 

miR-19s 214.9 5.0·· 

miR-497 11.2 4.8" 

miR-214 4.5 4.3·· 

miR-130a 16.0 4.2·· 

miR-13sa 37.8 3.7·· 

miR-204 127.0 3.2·· 

miR-200e 2.7 3.1·· 

miR-660 32.5 3.1·· 

miR-152 5404 3.1·· 

miR-30a-5p 424.8 3.0·· 

miR-30a-3p 73.7 3.0** 

miR-365 37.0 2.90' 
miR-532 16.2 2.9·· 

miR-126 288.0 204** 

letle 136.2 204·' 

miR-20b 7.0 204" 

miR-30d 67.0 2.3'· 

miR-9 239 .8 2.2** 

miRsdown- Percent Fold regulation in 
regulated in lesions surrogate leSions compared to 

housekeeping normal brain white 
gene in lesions matter 

miR-656 0.2 0.15'· 
miR-184 0.9 0.21·· 
miR-139 1.1 0.36** 
miR-23b 16.9 0.37" 
miR-328 34.1 0046·' 
miR-487b 4.7 0046·' 
miR-181c 2.1 0.48** 
miR-340 7.2 0.50" 

miR-219 0.9 0 .02" 
miR-338 1.1 0.0400 

miR-642 0.3 0.060• 
miR-181b 55 .0 0.130• 
miR-18a 0.7 0.14·· 
miR-340 3.9 0.150• 
miR-190 0.5 0.160' 
miR-213 104 0.22'· 
miR-330 3.5 0.2400 

miR-181d 22.0 0.32'· 
miR-151 20.7 0.37'· 
miR-23b 1504 0.370' 
miR-140 52.6 0.50** 

Table 1.7: MiR profiles in active and inactive multiple sclerosis lesions. Taken from 
(Junker, Krumbholz et al. 2009) 

MS was investigated only in one recent study, where they suggested miR-12Sa-Sp as 

key regulator of BBB tightness and immune cell migration in neuroinflammation and in 
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MS (Reijerkerk, Lopez-Ramirez et al. 2013). However, the role of miRs in MS and 

neuroinflammation is only starting to emerge and requires further investigation. This 

study has concentrated on identifying the roles of one miR (miR-1SS) and a miR:miR* 

pair (miR-126:miR-126*) in BBB dysfunction and these miRs will be further described in 

the context of neuroinflammation in the introduction to their respective Chapters. 

1.7.1 MiR-126 and miR-126* 

MiR-126 (referred to as miR-126-3p) and its complement miR-126*(referred to 

as miR-126-Sp) are highly conserved and in mammals are encoded by intron 7 (Fig. 

1.19) of the EGF-like domain 7 (Eg/17) gene in chromosome 9 (Ioc. 9q34.3). The egfl7 

gene consists of 10 exons, 10 non-coding introns and 1 miR locus, the intron 7. In this 

intronic region, there is the pre-miRNA structure from which both miR-126 and miR-

126* are originated (Kuhnert, Mancuso et al. 2008; Meister and Schmidt 2010). 

EGFL7 is specifically produced by endothelium and is implicated in EC migration and 

blood vessel formation, both under physiological and pathological angiogenesis 

(Musiyenko, Bitko et al. 2008). 

MiR-126 has been shown to be specific to endothelium and it is the most highly 

enriched miR in EC (van Solingen 2009). In further studies, it has been shown to govern 

vascular integrity and angiogenesis both in vivo and in vitro (Fish, Santoro et al. 2008; 

Wang, Aurora et al. 2008; Zou, Li et al. 2011; Sessa, Seano et al. 2012). Indeed, miR-

126 null mice developed vascular abnormalities which led to partial embryonic 

lethality due to vascular rupture (Wang, Aurora et al. 2008). Moreover, these mice 

showed cerebral edema and vascular leakage, loss of capacity to build an integrated 

retinal and corneal vascular network (Kuhnert, Mancuso et al. 2008). Mir-126 in vitro 
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regulates EC migration, organization of the cytoskeleton and capillary network stability 

in EC in vitro (reviewed in (Wu, Yang et al. 2009)). In vascular inflammation, increased 

expression of miR-126 has been shown to result in a decrease of VCAMl expression 

and diminished leukocyte adhesion to TNFa stimulated-HUVEC (Harris, Yamakuchi et 

al. 2008). Furthermore, miR-126 was found down-regulated in HUVEC by TNF-a 

(Suarez, Wang et al. 2010). 

Very little is known about the biological function/s of miR-126*. It has been 

shown that miR-126* is involved in cell proliferation, migration and invasion in 

different type of cancer (Meister and Schmidt 2010; Felli, Felicetti et al. 2013; Zhang, 

Yang et al. 2013) and that it inhibits erythropoiesis (Huang, Gschweng et al. 2011). 

MiR-126 and -126* are also involved in many other different biological events, 

targeting non vascular and non inflammatory genes as shown in Table 1.8, indicating 

that these two miRs are not only key regulators of vascular inflammation but also EC 

biology. However, further investigation on miR-126 and -126* is needed to unravel the 

role of these two intronic miRs in EC, in particular in brain endothelium, regulation of 

leukocyte trafficking. 
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Fig. 1.19: Mir-126 and -126* originate from the same pre-miR structure, located in 
the intron 7 of the egfl7 gene. Top. Structural organization and products of the egfl7 
gene. Middle. Pre-miR structure located in intran 7, and mature mir-126 and -126* 
sequences. Bottom. Conserved mir-126 and -126* sequences in different species. 
Taken f rom (Meister and Schmidt 2010). 
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VALIDATED TARGET listed in TARBASE 
Reference miR description gene name 

126 VEGFA (Zhu, Zhang et al. 2011) 

126 EGFL7 EGF-like domain-containing protein 7 Precursor (Zhu, Zhang et al. 2011) 

126 P8Sbeta (Kuhnert, Mancuso et al. 2008) 

126 PIK3R2 Phosphatidylinositol 3-kinase regulatory subunit beta (Kuhnert, Mancuso et al. 2008) 

126 TOM1 Target of Myb protein 1 (Oglesby, Bray et al. 2010) 

126 SLC4SA3 Solute carrier family 4S member 3 (Musiyenko, Bitko et al. 2008) 

126 VCAM1 Vascular cell adhesion protein 1 (Harris, Yamakuchi et al. 2008) 

126 RGS3 Regulator of G-protein signaling 3 (Zhang, Du et al. 2008) 

126 V-CRK (Zhu, Zhang et al. 2011) 

126 CRK Proto-oncogene C-crk (p38) (Crawford, Brawner et al. 2008) 

126 SPRED1 Sprouty-related, EVH1 domain-containing protein 1 (Fish, Santoro et al. 2008) 

126 PLK2 Serine/threonine-protein kinase PLK2 (Li, Lu et al. 2008) 

126 HOXA9 Homeobox protein Hox-A9 (Shen, Hu et al. 2008) 

126 TWFl Twinfilin-1 (Li, Song et al. 2010) 

126 IRS-1 (lee, Choi et al. 2011) 

126 TWF2 Twinfilin-2 (Li, Song et al. 2010) 

126 CCNE2 G1/S-specific cyclin-E2 (Zhang, Du et al. 2008) 

126 IRS1 Insulin receptor substrate 1 (Zhang, Du et al. 2008) 

126 SOX2 Transcription factor SOX-2 (Otsubo, Akiyama et al . 2011) 

126 E2F2 Transcription factor E2Fl (Diaz, Silva et al. 2008) 

126* prostein Solute carrier family 45 member 3 (Musiyenko, Bitko et al. 2008) 

126* SLC45A3 (Musiyenko, Bitko et al. 2008) 

126" NM_033102 (Musiyenko, Bitko et al. 2008) 

Table 1.8: miR-126 and -126* experimentally validated targets. Since miR-126 and -
126* have different sequences, they have different gene targets. Mir-126 and -126* 
targets are components of different cellular pathways involved in several physiological 
and pathological conditions. 
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1.7.2 MiR-155 

MiR-155 is highly expressed in HUVEC (Zhu, Zhang et al. 2011) and originates 

from an exon of a non-coding sequence of the bie gene located in chromosome 21q21. 

The gene encoding miR-155 bie was classified as an oncogene, implicated in promotion 

of a tumor phenotype (Xu, Fewell et al. 2010). MiR-155 is highly conserved in different 

species, and it is one of the most studied miRs. It has been shown to be a 

multifunctional miR involved in numerous biological processes such as inflammation, 

cancer, immunity and hematopoiesis (for a review see (Faraoni, Antonetti et al. 2009)). 

In particular, it has been reported that proinflammatory cytokines such as TNF-a and 

IFN-y increase miR-155 expression levels in human retinal pigment epithelial (HRPE) 

cells (Kutty, Nagineni et al. 2010). It has also been shown that TNF-a alone was 

sufficient to up-regulate miR-155 in HUVEC (Suarez, Wang et al. 2010). In addition, 

miR-155 and its passenger strand, miR-155*, were found to be up-regulated in MS 

active lesions (Table 1.7) (Junker, Krumbholz et al. 2009). Furthermore, mir-155 

promotes the production of proinflammatory cytokines in human CD14+ cells such as 

TNF-a and IL-1~ (Kurowska-Stolarska, Alivernini et al. 2011). 

Concerning its biological function on endothelium, miR-155 appears to 

regulate the inflammatory response of HUVEC in response to angiotensin II, a 

vasoactive peptide, by down-regulating VCAM1 and CCL2 and decreasing Jurkat T cell 

adhesion (Zhu, Zhang et al. 2011). MiR-155 targets angiotensin II type 1 receptor 

(AT1R) and decreases ERK1/2 phosphorylation in fibroblasts, suppressing angiotensin 

efficacy (Zheng, Xu et al. 2010). AT1R activation by angiotensin II triggers endothelial 

dysfunction, structural remodelling and vascular inflammation (Kim and Iwao 2000). 
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Furthermore, a silent polymorphism +1166 A/C of the 3'UTR of the human AT1R gene 

was reported to playa role in vascular inflammation and cardiovascular complications. 

In addition, miR-1SS targets Est-1 in HUVEC (Zhu, Zhang et al. 2011), a critical 

transcription factor involved in vascular angiogenesis (Sato 2001), inflammation and 

remodelling (Zhan, Brown et al. 2005). Est-1 is induced in response to stimuli such as 

TNFa and angiotensin II in EC, to act on genes involved in vascular inflammation such 

as VCAM1 and CCl2 (Sato 2001; Zhan, Brown et al. 2005). Taken together, the results 

of these studies have identified miR-155 as one of the miRs that contributes to specific 

endothelial inflammation and disease (Urbich, Kuehbacher et al. 2008). 

In the CNS, miR-155 has been shown to be involved in neuroinflammation as a 

pro-inflammatory miR that contributes to activate macrophage and microglia, by 

targeting anti-inflammatory molecules (such as FADD, SOCS-1, IKK, SMAD-2) 

(Ponomarev, Veremeyko et al. 2013), and astrocytes by targeting a negative regulator 

of cytokine signalling (Tarassishin, loudig et al. 2011). 
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1.8 In vitro models of the blood-brain barrier 

1.8.1 Human brain endothelial cell lines 

To study the BBB under physiological and/or pathological conditions, in vivo 

models and/or in vitro models using primary brain endothelium based on rat, mouse, 

sheep, cattle, pig, and human, have been widely used (Fig 1.20). However, these 

models are complex, expensive and, in the case of human, the samples are very 

difficult to obtain. For these reasons, from the 90s, BEC lines started to be created as a 

tool to overcome these complexities. Most of the immortalized cell lines used in BBB 

models were isolated from murine (Marelli-Berg, Peek et al. 2000) and rat (Tunkel, 

Rosser et al. 1991) tissues (Fig. 1.20). 

The first immortalized human BBB cell line was developed in 1997 from 

capillaries and microvessels derived from small samples of human temporal lobe 

excised surgically from a patient treated for idiopathic epilepsy, transfected with 

simian vacuolating virus 40 SV40 large T antigen to develop an immortalized human 

cerebral endothelial cell (HCEC) line (Muruganandam, Herx et al. 1997). However, this 

cell line did not satisfy the major requirements that an ideal in vitro BBB model should 

meet, listed in Table 1.9 (Naik and Cucullo 2012). In effect, HCEC did not express 

selectins or adhesion molecules or TJ, but expressed BBB specific enzymes, and 

showed a partial endothelial phenotype (Weibel Palade bodies, Von Willebrand factor 

secretion and plasminogen activators) and lower (or equal) leakiness and higher TEER 

when compared to non-CNS primary microvascular EC (Bou'is, Hospers et al. 2001). 
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Static BBB models 1 Brain endothelial cells 

2 

- Primary endothelial cells: 

Lumen 

"'-2 

Co-culture or not with 

- Glial cells / Astrocytes (Cecchelli et aI. , 1999) 

- Pericytes (Zozulya at aI., 2008) 

- Astrocytes and Pericytes (Nakagawa at aI., 2007) 

- Neurons (Stanness et aI. , 1999) 

bovine (Cecchelli et aI., 1999) 

porcine (Meyer et aI., 1990) 

rat (Perrisre et aI., 2007) 

mouse (Coisne et aI., 2005) 

human (Persidsky et aI., 1997; Biernacki et aI., 2005) 

- Endothelial cell lines: 

bovine : SV-BEC (Duriau-Trautmann at aI., 1991) 

porcine : PBMEC (Teirel M & Friedl , 1996) 

rat: RBE4 (Roux et aI., 1994) 

mouse: bEnd5 (Laschinger & Engelhardt B, 2000) 

human : hCMEC/D3 (Weksleret aI. , 2005) 

Fig. 1.20: Static blood-brain barrier models of the blood-brain barrier and 
neurovascular unit in vitro that have also been used for leukocyte trafficking studies. 
1. Primary BEC or EC lines, grown in the upper compartment of Boyden chambers or 
filter transwells, 2. In order to model the NVU, various other cell types (glial cells, 
pericytes or neurons) can be co-cultured in the lower compartment, Taken from 
(Weiss, Miller et al. 2009). 

Functional Features of an Ideal In Vitro BBB Model 

Enable the expression ofTJ between adjacent EC 

Negligible paracellular diffusion between EC 

Selective and asymmetric permeability to physiologically crucial ions (Na +, K+, (1 -). 

Functional expression of efflux systems and selective transport mechanisms 
(e.g., P-gp, MRPs, hexose, aminoacid, monocarboxylic acid, and other relevant transporters). 

Expression of drug-metabolizing enzymes (P4S0s, MAO, etc.) . 

Exposure to laminar shear stress (apical membrane}, glia (basal membrane), and other permissive 

factors that promotes growth inhibition and differentiation of endothelial cells. 

Responsiveness to permeation modulators (e.g., hyperosmolar mannitol) as well as other stimuli 
(endogenous and exogenous) that can affect BBB integrity and function. 

Ability to reproduce the effect of a wide range of phYSiological and pathological stimuli 
(hypertension, flow arrest, inflammation, etc.) that affect the BBB in vivo. 

User friendly, scalable, and cost effective. 

Table 1.9: Functional and structural requirements for an ideal in vitro blood-brain 
barrier model to mimic the in vivo blood-brain barrier. Taken from (Naik and Cucullo 

2012). 
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In 2005 a new immortalized cell line of brain endothelial cells was isolated and 

characterised, the hCMEC/D3 (Weksler, Subileau et al. 2005). BEC were isolated from 

the temporal lobe of an adult female with epilepsy, and transduced with hTERT 

(telomerase reverse transcriptase) and SV40 large T antigen. This cell line has been 

widely used in the last eight years (for a review of all studies made using this cells line 

see (Weksler, Romero et al. 2013). In 2008, THBMEC were immortalized and 

characterised and compared with HUVEC (Man, Ubogu et al. 2008). THBMEC strongly 

and continuously expressed ZO-l and occludin, and exhibited higher TEER than HUVEC. 

In addition, Man et al. showed that the new model was more restrictive to monocyte 

and T cell migration than HUVEC and migration was promoted by CCl3 and CClS (Man, 

Ubogu et al. 2008). 

To study the role of endothelial miRs in leukocyte adhesion in vitro we used the 

immortalized hCMEC/D3 cell line (Weksler, Subileau et al. 2005). hCMEC/D3 cells are 

the most characterised out of the three existing immortalized cell lines. Weksler et al. 

have shown that hCMEC/D3 cells expressed BBB-specific ABC transporters, tight 

junctions, adhesion molecules such as ICAM1, ICAM2, VCAM1, chemokines and 

chemokines receptors (Weksler, Subileau et al. 2005). However, hCMEC/D3 cells have 

a lower TEER compared to THBMEC. To study leukocyte adhesion to brain 

endothelium, this parameter seems not crucial as other more important parameters 

such as adhesion molecules and selectins. Recently, THBMEC were used to investigate 

leukocyte migration mediated by CXCl12 although no data on the adhesion molecules 

involved in migration was reported (Man, Tucky et al. 2012). 
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1.8.2 In vitro flow-based systems to study leukocyte trafficking with live cell imaging 

Leukocyte trafficking has been extensively studied in vitro using static transwell 

culture models (Fig. 1.20), however, the lack of shear stress has been an experimental 

limitation because in vivo this event is subjet to continuous shear stress due to the 

blood flow. Since the mid-80s biomedical engineers have developed flow chambers 

capable of maintaining defined and stable laminar flow (Luscinskas, Lim et al. 2001). 

The first approach to flow-based assays was based on the observation of interactions 

between immune cells and a ligand (selectin or CAM) incorporated (Diacovo, Roth et 

al. 1996) or coated (Brunk and Hammer 1997) on a parallel plate flow chamber (Figs. 

1.21 A and C) or incorporated into a flow-based system as described in Fig. 1.21 B. 

These methods were used to further investigate the early steps of leukocyte 

trafficking, rolling and adhesion, in vitro, which beforehand could only be observed in 

vivo by intravital microscopy (reviewed in (Sperandio, Pickard et al. 2006). 

The in vitro flow-based assays have been further developed by using EC, 

particularly HUVEC, instead of single molecules (Abbassi, Kishimoto et al. 1993; Bahra, 

Rainger et al. 1998; Cinamon and Alon 2003; Sheikh, Rahman et al. 2005). These newer 

models use either the flow assay system described in Fig. 1.21 or the adapted system 

depicted in Fig. 1.22, which involve growing cells on either flattened glass capillaries 

(microslides), porous filters (Chakravorty, McGettrick et al. 2006) or transwells 

(McGettrick, Buckley et al. 2010) instead of glass slide supports. These systems may be 

used with different cells types, which can be cultured, stimulated, used for rolling­

adhesion-migration assays and harvested for further studies. However, attachment of 

the growth support to the flow system is difficult and a high number of cells are 

required to obtain proper monolayers. 
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Fig. 1.21: Schematic diagrams showing the parallel plate flow chamber widely used 
for leukocyte adhesion to endothelial cells. A. The parallel plate flow chamber first 
described by Lawrence et al. (Lawrence, Mcintire et al. 1987) B. The first flow-based 
assay system to investigate leukocyte trafficking set up by Lawrence et al. C. The 
parallel plate flow chamber as described by Lawrence et al. depicted by (Brown and 
Larson 2001) to study leukocyte rolling and adhesion to EC. D. The parallel plate 
available from Glycotech. Taken from (Lawrence, Mcintire et al. 1987) for the top and 
(Brown and Larson 2001) for the bottom panels. 
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Fig. 1.22: Schematic diagram of apparatus for culture of endothelial cells in 
microslides under steady flow delivered by a syringe pump and for leukocyte 
adhesion. Taken from (Sheikh, Gale et al. 2004) originally developed by (Bahra, Rainger 

et al. 1998). 

While tubing and temperature are important parameters that may influence 

leukocyte adhesion to EC in these models (Sheikh, Gale et al. 2004), shear stress is a 

crit ical factor that influences activation of endothelial cells. It has been shown that in 

these models, different shear stress rates (range: 0 to 15 dyn/cm2) can be applied with 

steady or pulsatile flow. However, these models are technically difficult and not sterile. 

Recently, a new generation of flow-based systems has been produced to study 

leukocyte adhesion to BEC. Cucullo et al. used a dynamic in vitro 8BB model (Cucullo, 

Hossain et al. 2013), using hCMEC/D3 cells (Cucullo, Couraud et al. 2008) or with 

primary human microvascular BEC (primary, ScienCell) (Cucullo, Marchi et al. 20ll). 

THP-l ext ravasation was studied using a commercially available primary cell line of 
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human BEC seeded on the inner side of hDIV-BBB polypropylene hollow fibers (0.33 

mm ¢) with pores and primary astrocytes on the external side of the fibres (Hassain 

and Mazzone 2011). This was connected to a pump that pushed (0 to 4 dyn/cm2) THP-1 

cells through the hDIV-BBB module, while hCMEC/D3 cells were used in this system 

only for pharmaceutical studies (Cucullo, Couraud et al. 2008). 

Coisne et al. developed a custom-made silicon flow chamber (0.6 cm ¢, 0.28 

cm2 area) shown in Fig. 1.23 to study rolling, adhesion, crawling and migration of CD4+ 

T cells on TNF-a stimulated mouse immortalized (bENDS) and primary mouse BEC 

(pMBMEC) (Coisne, Lyck et al. 2013). The silicon chamber was covered with glass, EC 

monolayers on culture dish integrated in the flow chamber (Fig 1.23), then silicon was 

removed and the channel connected to a precision pump that pulled T cells at 1.5 

dyn/cm2. Man et al. modified a chemotaxis chamber (Neuro Probe AA12) made of 

acrylic top, middle, and bottom plates, with a silicone top and bottom silicon gaskets 

(Man, Tucky et al. 2012) to investigate transmigration of CD4, 8, 14 and 19+ cells 

across TNF-a and IFN-y stimulated THBMEC line under flow (0.2 dyn/cm2
). These two 

innovative in vitro BBB model systems enabled flexible analysis of leukocyte trafficking 

across the BBB under physiological shear forces (flow) using immortalized models of 

the BBB. However, these systems are difficult to reproduce due to the high specialist 

material engineering knowledge and technology required. 
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Fig. 1.23: An in vitro blood-brain barrier model system with a flow chamber for 
studying leukocyte rolling, adhesion, crawling and migration. A. The flow chamber is 
shown from the side, B. from the base C. and from the top. White arrows in panel A. 
show the inlet and outlet tubes. Black arrows in panels B. and C. show the field of 
view. A rectangle within the thin silicon mat visible in panel B surrounds the inflow and 
the outflow and restricts medium flow to a small chamber 2 mm wide and 0.25 mm 
high. White arrows in panel C. show the magnets embedded into the flow chamber to 
fix the chamber to fix the chamber via a metal ring opposed on the base of the culture 
dish. The cloning ring shown with a diameter of 0.6 cm in image D. restricts the surface 
area of brain endothelial cells 0.28 cm2. Scale is in cm. Taken from {(oisne, Lyck et al. 

2013). 
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Aims of the thesis 

There is a real need to further our understanding of how endothelial miRs 

modulate BBB function not only in the context of unravelling the complex 

pathophysiological mechanisms involved in neuroinflammation but also as potential 

therapeutic targets for neuroinflammatory disorders such as MS. The overall aim of 

this study is to investigate the role of endothelial miRs on leukocyte adhesion to BEC in 

neuroinflammation. To do so, the current study has been carried out with the 

following specific objectives in mind: 

1. To establish whether the hCMEC/D3 cell line, an in vitro model of human brain 

endothelium, is suitable to study specific endothelial miRs and static leukocyte 

adhesion to the pro-inflammatory cytokine-stimulated brain endothelium. 

2. To establish a new flow based assay to study leukocyte adhesion mimicking the 

blood flow in microvasculature using the hCMEC/D3 cell line as model of human brain 

endothelium. 

3. To identify specific pro-inflammatory cytokine-up/down-regulated endothelial miRs 

with a role in alterations in leukocyte adhesion to brain endothelium, and, identify 

specific inflammatory gene targets. 
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Chapter 2: Materials and methods 

2.1 Materials 

A list of chemicals and solutions used for this project is shown in Table 2.1. 

Table 2.1: List of chemicals or solutions used in this project. List includes supplier and 

catalogue number. 

[g,emical or solution Su~~ner Catalogue # 
Alexa Fluor® 488 Goat Anti-Mouse Applied Biosystems, A-11001 

IgG secondary antibody Warrington, UK 
- f..--

BSA albumin from bovine serum Sigma-Aldrich, Dorset, UK ~9085 -Cell tracker™ green CMFDA (5-
-

Invitrogen LTD, Paisley, UK (2925 
chloromethylfluorescein diacetate) 

-f-- -
Citric acid Bdh analar, Sussex, UK 10081 - I-

Collagen type I from calf skin Sigma-Aldrich, Dorset, UK C9791 - - -
DAPI-fluoromount-G™ Southern biotech, 0100-20 

4',6-diamidino-2-phenylindole Birmingham, USA 

DMSO Dimethyl sulfoxide Sigma-Aldrich, Dorset, UK D2438 
-

EGM ®-2 MV supplements Lonza, Basel, Switzerland CC-4147 
I 
I Endothelial Basal Medium-2 Lonza, Basel, Switzerland CC-3156 

EBM ®-2 complete media 

FBS Foetal bovine serum Sigma-Aldrich, Dorset, UK F7524 
I 

Ficoll-Paque PLUS GE Healthcare, Chalfont St N.A. 
Giles, UK 

f-- - - -
I Goat serum Sigma-Aldrich, Dorset, UK G9023 

Glutaraldehyde Agar, Essex, UK R1311 
--

HBSS Hank's Balanced Salt Solution Sigma-Aldrich, Dorset, UK H8264 
with sodium bicarbonate, calcium 
and magnesium free, no phenol 

red 
HBSS Hank's Balanced Salt Solution Sigma-Aldrich, Dorset, UK H6648 
with sodium bicarbonate, calcium t and magnesium, no phenol red 

Sigma-Aldrich, Dorset, UK H1009 Hydrogen peroxide solution 

t-Upofectamine™ 2000 
-

Invitrogen, Paisley, UK 11668-027 
r-

N,N,N',N'-Tetramethylbenzidine Sigma-Aldrich, Dorset, UK T2885 
r-----

Ambion I RNA Life 
-

Nuclease free water AM9932 
Tecnologies™, Paisley, UK 

Optimem® I reduced serum Gibco® Invitrogen, Paisley, 31985 

medium UK 

p-formaldehyde Sigma-Aldrich, Dorset, UK P6148 ~ PBS Phosphate-buffered saline Sigma-Aldrich, Dorset, UK P4417 
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polyclonal goat anti-mouse IgG Dako A/S Denmark E0433 

biotinylated 
----

Recombinant human IFNy R&D systems, Abingdon, UK 285-IF 

Recombinant human TNFu R&D systems, Abingdon, UK 210-TA 
~-

--~-- I-
RPMI 1640 w/glutamax Gibco® INVITROGEN, Paisley, 61870010 

UK 

Siport™ Polyamine Transfection Applied Biosystems, AM4503 

Agent Warrington, UK 
r--C 

Sigma-Aid ric!', Do..!:~e~!~_K __ Sodium acetate 89718 
--- ------

Streptavidin-biotinylated GE Healthcare, Chalfont St RPN1051 
horseradish peroxidase complex Giles, UK --
Streptomycin/Penicillin (15140- Gibco® INVITROGEN, Paisley, 15140 

110000Ilg{ml+10000units/ml UK 

I Sulfuric acid Sigma-Aldrich, Dorset, UK 339741 
----

Trizma® Hydrocloride Tris HCI Sigma-Aldrich, Dorset, UK T5941 
---

TRlzol® reagent Ambion I RNA Life 15596-018 

Tecnologi_~_~~!_Pai~~y, UK 

Trypsin-EDTA solution Sigma-A-'_~I!0,_J?_orsetLl)~ T4049 
f-------'---- . __ ._ ... _----

Twee n-20 Po Iyoxyethyle neso rb ita n Sigma-Aldrich, Dorset, UK P7949 

monolaurate --
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2.2 Cell culture 

2.2.1 hCMEC/D3 cell line 

The immortalized human brain endothelial cell line hCMEC/D3 used in this study had 

been previously derived from a primary cell culture at passage 0 through co-expression 

of hTERT and the SV40 large T antigen via a highly efficient DNA-flap lentiviral vector 

system (Weksler, Subileau et al. 2005). hCMEC/D3 cells were grown in Endothelial 

Basal Medium-2 (EBM-2) and supplements (0.025% v/v VEGF, IGF and EGF, 0.1% v/v 

bFGF, gentamycin and ascorbic acid, 0.04% v/v hydrocortisone, and 2.5% v/v foetal 

bovine serum (FBS)), hereafter referred to a EBM-2 complete media, and ch anged 

every two days unless specified. Prior to seeding cells, tissue culture surfaces were 

coated with 1/20 (v/v) collagen type I from calf skin (0.1% solution in 0.1 M acetic acid) 

in Han ks' Balanced Salt Solution (HBSS) for 1 h at RT. For all experiments, hCMEC/D3 

cells (passage 25-35) were grown on collagen-coated plates/slides (Table 2.2) in a 95% 

air and 5% C02 incubator at 37°C until confluent (_ lx105 cells/cm2) and treated with 

recombinant human (E. coli-derived) TNFa and IFNy cytokines at the times and 

concentrat ions ind icated for each experiment. 

ASSAY Plate/chamber Company Collagen 

Static Leukocyte Adhesion 96 well plate, white, II clear Greiner Bio One (Stonehouse, UK) 5Olli/well 

Flow based Leukocyte Adhesion 1l51ide VI - flat with 6 parallel channels Ibld}- (Martinsried, Germany) 3Olli/channel 

ELISA 96 well plate, Il clear Greiner Bio One (Stonehouse, UK) 5Olli/well 

Sample for RNA extraction 12 well plate, II clear Greiner Bio One (Stonehouse, UK) 500 Ill/well 

Table 2.2: Types of tissue culture plates and slides and collagen solution volumes 
used to seed hCMEC/D3 cells. 
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2.2.2 hCMEC/D3 cell culturing on slides 

Collagen-coated Ibidi® j..lSlide VI-flat (Ibidi® GmbH, Martinstreid, Germany) 

with six parallel channels were seeded with 6xl0s hCMEC/D3 cells/channel in 30 j..ll of 

EBM-2 complete media. Cells were left to grow in complete EBM-2 media until the 

required confluence for the experiment and treated at the times and concentrations 

indicated for each experiment. Prior to the adhesion assay, hCMEC/D3 cells were 

washed three times with HBSS and rested in complete EBM-2 media. 

2.2.3 Jurkat and THPl cell lines 

The T lymphocyte cell line Jurkat from acute T cell leukaemia and the 

monocytic cell line THPl from acute monocytic leukaemia were a kind gift from Dr V 

Male (Cambridge University). Jurkat and THPl cells were grown in suspension in RPMI 

1640 W/GLUTAMAX I culture medium (containing 10% FBS and 100 j..lg/ml + 100 

units/ml Streptomycin/Penicillin) in a 95% air and 5% C02 incubator at 37°C. 

2.2.4 Peripheral blood mononuclear cells 

PBMC were isolated from MS patients recruited by Dr. Giulio Podda and Dr. 

Bruno Gran during their routine consultations in the Neurology department at 

Nottingham Hospital. Blood samples were collected, transported, handled and used for 

the experiments following the approved protocols by the local research ethical 

committee at both Nottingham and the QU, the approved human tissue transfer 

agreement and the signed informed consents obtained from all blood donors. PBMC 

were isolated from fresh heparinised blood of three MS patients (Table 2.3) by density 

centrifugation using Ficoll-Paque PLUS by Dr. Laura Edward and frozen in liquid 
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nitrogen in 10% DMSO until use. Just before the adhesion assay, PBMC were thawed, 

counted and suspended at 2x106 cells/ml in EBM-2 complete media. 

MS patient PBMC sample 
MSl 
MS2 

MS3 

MS patient disease stage 
RRMS 
SPMS 

PPMS 

Sex 
Male 

Female 

Male 

Age 
48 
64 

S9 

Treatment 
Interferon-beta 
no treatment 

no treatment 

Table 2.3: Clinical characteristics of peripheral blood donors with multiple sclerosis. 
Relapsing remitting MS (RRMS), secondary progressive MS (SPMS), primary 
progressive (PPMS). 
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2.3 Flow cytometry analysis 

For quantification of transfection efficiency, hCMEC/D3 cells were trypsinized 

with 0.25 % (w/v) Trypsin-EDTA solution and centrifuged (800 x g, 5 min, 4 DC) and 

suspended in HBSS at 4 DC. For each transfected sample, 1x104 cells were analyzed on a 

FacScan analyser (Becton Dickinson, Franklin Lakes, NJ, USA), with detector voltage set 

so that >90% of isotype-control cells registered <10 fluorescence units. The 

wavelengths used for Cy3-labelled scrambled miR were Excitation wavelength (Aex) 

max 550 nm and Emission wavelength (Aem) max 570 nm, while for FAM-Iabelled 

scrambled miR, Aex max 495 nm and Aem max 516 nm. Data were analyzed using Cell 

Quest (Pro BD Biosciences) software. The results were expressed as median 

fluorescence in arbitrary units. 

For characterization of subpopulations in isolated PBMC, cells were thawed in 

warm RPM I and counted. PBMC were resuspended at 0.sx106 cells/ml in phosphate 

buffered saline (PBS) and placed in FACS tubes (1x106 cells/2ml/tube), then spun down 

for 10 min at 254 x g. The cell pellet was resuspended in 50 III of PBS (lx106/100IlI) 

and incubated with fluorescently labelled primary antibody for 30 min at 4 DC at the 

concentrations indicated in Table 2.4. Followed by two washes in PBA (1/200 (v/v) 20% 

sodium azide + 1/60 (v/v) 30% bovine serum albumin (BSA) in PBS), PBMC were 

resuspended in 400 III in a solution of 0.5% methanol in PBS and stored at 4 DC until 

analysis using flow cytometry with Becton Dickinson FacsCanto II (BD, Oxford, UK). 

Data were analyzed using FACSDiva software (BD, Oxford, UK). Results are expressed 

as percentage of positive cells. 
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2.4 MicroRNA transfection 

hCMEC/D3 cells were grown to 30-40% confluence in complete EBM-2 media, 

then media was replaced with EBM-2 complete media without antibiotics. At - 70% 

confluence hCMEC/D3 cells were transfected with either miR precursors (pre-miRs) or 

antagonists (anti-miRs). For hsa-pre-miR transfections, the Siport™ Polyamine 

Transfection Agent was used, while, for hsa-anti-miR transfections a lipid-based 

Transfection reagent, the Lipofectamine® 2000 was used. 

For both transfection reagents, the supplier's protocols were followed. Pre- and 

-anti-miR oligonucleotides were transfected in hCMEC/D3 cells using the transfection 

protocols depicted in Fig. 2.1 and the concentrations indicated, together with their 

nomenclature, in Table 2.5. 

In TRANSFECTION a: 
'e SEED CHANGE MEDIA with CHANGE MEDIA 

hCMEC/D3 cells with EBM·2 
Upofectamlnee 2000 

with EBM·2 
I In complete w/o antibiotic complete media Cytoklne tratment .~ 

t: media EBM·2 
6h <t 

~ 

0 8h 2411 30h 48h TIME 
In a: 

24h 'e SEED CHANGE MEDIA TRANSFECTION Cytoklne tratment 
I 

hCMEC/D3 cells wlthEBM·2 with Siport'" Polyamine ell In complete w/o antibiotic 
~ Transfection Agent 
~ media EBM·2 

Fig. 2.1: hCMEC/D3 cells seeding and transfection timeline. 

Briefly, Siport™ Polyamine Transfection Agent or Lipofectamine® 2000 was 

mixed with Opti-mem®1 reduced-serum media to form the transfection complex. 

Negative control or pre- or anti-miR oligonucleotides were dissolved at the indicated 

concentrations in RNA-ase free water and mixed with Opti-mem®1 reduced-serum 

media. The oligonucleotides were gently added to the transfection reagent complex, 

mixed and finally dispensed onto - 70% confluent hCMEC/D3 cells in EBM-2 complete 
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media without antibiotics. Anti-miRTM miRNA Inhibitor and Pre-miWM miR precursor 

negative controls were undisclosed random sequence RNA oligonucleotides that have 

been extensively tested in human cell lines and tissues and validated to produce no 

identifiable effects on known miR function by the manufacturers (Life Technologies, 

Warrington, UK). Cy3™ and FAMTM dye-labelled anti- and pre-miR negative controls 

were used for monitoring transfection efficiency in all experiments. Anti - or Pre-miR 

Negative controls are labelled at their 5' end and have the same oligonucleotide 

sequence as unlabeled Negative Controls (Life Technologies, Warrington, UK) used as 

scrambled Anti- or Pre-miRs. 

Mature Sequence 
Concentration Concentration 

MiR 
Pre-miR Anti-miR 

hsa-miR-126 (126-3p) UCGUACCGUGAGUAAUAAUGCG 60nM 60nM 

hsa-miR-126* (126-Sp) CAUUAUUACUUUUGGUACGCG 60nM 

hsa-miR-155 (155-5p) UUAAUGCUAAUCGUGAUAGGGGU 30nM 60nM 

hsa-miR-146a (146a-5p) UGAGAACUGAAUUCCAUGGGUU 30nM 

hsa-miR-146b (146b-Sp) UGAGAACUGAAUUCCAUAGGCU 30nM 

hsa-miR-30c (30c-Sp) UGUAAACAUCCUACACUCUCAGC 30nM 

hsa-miR-126 chamber UCGUACCGUGAGUAAUAAUGCG 60nM 60nM 

hsa-miR-126* chamber CAUUAUUACUUUUGGUACGCG 60nM 60nM 

hsa-miR-15S chamber UUAAUGCUAAUCGUGAUAGGGGU 30nM 60nM 

Negative Controls 
Scrambled-miR N.A. 

30nM or 

60nM 
60nM 

Cy3™or FAMTM 
N.A. 

30nM or 
60nM 

scrambled-miR 60nM 

Table 2.5: List of the miRs transfected into hCMEC/D3 cells, their mature sequences 
and concentrations used. MiR names or ids from MiRBase listed are the miR names 
used for the entire manuscript, while mature miR sequence names from MiRBase are 
listed in (). Anti-miR-155 and its scrambled anti-miR negative control were from 
Thermo Scientific (Dharmacon), Waltham, USA. All other miR-modulating 
ol igonucleotides were from Ambion, Paisley, UK. Negative control was used at the 
same concentration as the corresponding miR-modulating oligonucleotide. Note that 
the sequence of t he miR-modulating oligonucleotides (pre- and anti-miRs) or their 
negative controls are not disclosed by the manufacturing company. N.A. = sequence 

not available. 
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As experimental negative control and to establish the baseline fluorescence 

intensity, hCMEC/D3 cells were transfected with Siport'M Polyamine Transfection Agent 

or Lipofectamine® 2000 mixes without oligonucleotides. 

The fluorescent label enabled direct observation of the cellular uptake, 

distribution, and localization of control oligonucleotides. Fluorescently labelled 

controls or the transfection reagent mix alone were added to hCMEC/D3 cells seeded 

in parallel to the experiment. To determine transfection efficiency, cells were then 

washed three times following the transfection procedure and visualized using a 

fluorescent inverted OLYMPUS IX70 microscope. Representative phase-contrast and 

fluorescent images (Cy3™ .... Aem 554/ Aex 568 nm and FAMTM .... Aem 650/ Aex 670 nm) 

were taken with a QICAM Fast (Qlmaging) camera and processed using Image Pro Plus 

software (Media Cybernetics Bethesda, USA) (Fig. 2.2). 

Thereafter, hCMEC/D3 cells were collected by trypsinization and the median of 

cell fluorescence and the percentage of fluorescent cells were quantified by flow 

cytometry (FACS) as described in Section 2.3. First, negative control, cells with 

transfection mix only, were assessed to establish the baseline fluorescence intensity by 

adjusting the peak to the left of the histogram's X-axis (the control and standard peak). 

Then the samples, cells transfected with fluorescent oligonucleotides were quantified 

(Fig. 2.3). 

The results were calculated by subtracting negative control background 

consisting of the average (median) fluorescence of hCMEC/D3 cells transfected with 

reagent mix only from the average (median) fluorescence of hCMEC/D3 cells 

transfected with Cy3™ or and FAMTM dye-labelled Anti- or Pre-miR drawing a marker 
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(M1) with <1% of the negative control peak inside the marker's left edge as shown in 

the top panel of Fig. 2.3. 

Fig. 2.2: Representative image of oligonucleotide transfection efficiency in 
hCMEC/D3 cells determined by fluorescence microscopy. hCMEC/D3 cells were 
transfected with Cy3-anti-miR using Lipofectamine™ 2000 following protocols 
depicted in Fig. 2.1 and the concentrations indicated in Table 2.S. After 24 h, 
transfected hCMEC/D3 cells monolayers were washed three times, then, Cy3-anti-miR 
expression was assessed using a fluorescence microscope. Representave phase­
cont rast (left) and fluorescent (right) pictures were taken at x20 (top) ad x40 (bottom). 
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B C 

FL2~ 

Vo Total Mean Geo Mean CV Median 

~OO.OO 3.13 2.13 194.93 1.81 

3.55 24.55 20.32 90.76 17.94 

Vo Tota Mean Geo Mean CV Median 
100.00 3.17 2.17 174.94 1.84 

2.60 27.73 24.09 73.21 20.72 

% Tota Mean Geo Mean CV Median 

100.00 166.83 115.06 103.02 124.09 

96 .92 171 .89 126.13 100.17 128.64 

% Tota Mean Geo Mean CV Median 
100.00 835.69 484.07 97.35 577.72 

98.65 847.01 512.93 96.02 588.21 

Fig. 2.3: Representative histogram showing transfection efficiency of anti-miR in 
hCMEC/D3 cells quantified by FACS. TOP. Representative histogram showing the 
fluorescence intensity in hCMEC/D3 cells (x axes-FL2-H) versus the number of 
hCMEC/D3 cells (y axes- counts) and, the drawn Ml marker. BElOW. Data relative to 
the curves/peaks in the histogram of All cells (events 10 X 104

) or above negative 
control values Mi, quantified by FACS. Left grey box highlights the percentage of 
gated fluorescent positive cells (All and Ml) and the right grey box highlights the 
average (median) cell fluorescence (All and Ml) as (A) hCMEC/D3 cells transfected 
with reagent mixes only, Siport™ or Lipofectamine® 2000 (controlL (only showed one 
histogram in the top figure) (B) hCMEC/D3 cells transfected with Cy3™ dye-labelled 
Anti -miR Negative using Siport™ Polyamine Transfection Agent (C) hCMEC/D3 cells 
transfected with Cy3™ dye-labelled Anti -miR Negative using Lipofectamine® 2000. 
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2.5 Static leukocyte adhesion assay 

Cell loading with cell tracker™ green CMFDA (5-chloromethylfluorescein 

diacetate) was carried out as indicated by the manufacturer (Invitrogen, Paisley, UK). A 

pilot study to determine an optimal concentration of CMFDA to label leukocytes was 

initially performed (Fig.2.4). 2xl03
, 2xl04 and 2xl0s Jurkat cells were labelled with 0.5, 

1 or 5 mM CMFDA or left unlabelled in 100 III RPMI media without serum and 

antibiotics for 30 min at 37°C. Leukocytes were then centrifuged at (190 x g) and re-

suspended in RPMI media without serum or antibiotics for 30 min at 3r C. 

Fluorescently labelled leukocytes were then centrifuged at 190 x g, counted again and 

re-suspended at 2xl06/ml cells in complete EBM-2 media. 100 III cell suspension was 

dispensed onto a well in a 96 multi-well plate and fluorescence was measured using a 

FLUOstar Optima fluorescence plate reader (BMG LABTECH) at t..ex and t..em of 485nm 

and 520nm, respectively. Fig. 2.4 shows that incubation of 2xl0s cells with 5 mM 

CMFDA led to maximal total fluorescence intensity by labelled cells and these 

conditions were then selected for further adhesion experiments. 

=i 
c:i. 

60000 

.E: 40000 

fl 
c: 
8 
~ 20000 ... 
o 
:::l 

u::: 
o 

2xlcf 2xl<f 2xl ()I 

number of cells 

o 

o 0.5 mM 

ImM 

.SmM 

o no cell tracker 

Fig. 2.4: Standard curves of fluorescently labelled leukocytes with different 

concentrations of CMFDA. The experiment was carried out once with two replicates. 
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Fluorescently labelled leukocytes in EBM-2 complete media (2x105 leukocytes 

cells/well) were added onto cytokine-treated hCMEC/D3 cells for 1 h at 37°C. After 

washing three times with 200 J.11 HBSS, the fluorescence of leukocytes remaining 

adherent to the hCMEC/D3 monolayer was measured using a FLUOstar Optima 

fluorescence plate reader (BMG LABTECH) as above. This assay was adapted from 

static assays used previously (Solito, Romero et al. 2000; Hisano, Namba et al. 2005). 

The software Optima version 2.00R3 (BMG LABTECH, Tampa, USA) was used to acquire 

and analyse the data. The percentage of adherent leukocytes was calculated using the 

following formula: 

Fluorescence signal in experimental well - fluorescence signal blank well 

Fluorescence signal in input well- fluorescence signal input blank well 
X 100 

Where the experimental wells were hCMEC/D3 cells plus adhered leukocytes in EBM-2 

media and the blank wells were hCMEC/D3 cells in EBM-2 media only. The input wells 

were 2x10
s 

leukocytes and the input blank wells were HBSS. A standard curve using 

the fluorescence intensities of labelled leukocyte suspensions with 2x103, 2x104 and 

2x105 cells in HBSS corresponding to 1, 10 and 100% input, respectively, was then 

plotted to determine the % of adherent leukocytes. 
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2.6 Flow-based leukocyte adhesion assay: live cell adhesion imaging under flow 
conditions 

The flow-based adhesion assay was developed by adapting previously 

published assays (Sheikh, Rahman et al. 2005; Man, Tucky et al. 2009; Steiner, Coisne 

et al. 2011). For the flow based leukocyte adhesion assays, an Ibidi® Jl-Slide VIO.4 (six 

parallel channels 0.4 mm height, see Fig. 2.5 top and lower panel) containing confluent 

hCMEC/D3 cell monolayers was connected to two syringe pumps (Harvard Apparatus, 

Kent, UK), as depicted in Fig 2.5 (top panel), and placed onto the stage of a time lapse 

inverted OLYMPUS IX70 microscope within a 37°C incubator. The flow rate (8) applied 

to produce the required shear stress 1 (dyn/cm2) was calculated by Ibidi® for the fl-

slideVI 0.4 according to the equation 1 [dyn/cm2] = 11 [(dyn*s)/cm2]·176.1 <1> ml/min], 

where the relationship between shear stress (1 ) and flow rate (<1» is based on the 

dynamic viscosity (11) of water at 22°C, 11=0.01 dyn's/cm2 and other parameters specific 

to the geometry of the system. leukocytes (2x106 cells/ml) were allowed to flow 

through the channel at low shear stress (0.5 dyn/cm2 = 0.28 ml/min) for 5 min, then 

EBM-2 complete media was pulled trough the channel at a physiological shear stress 

(1.5 dyn/cm2 = 0.85 ml/min) for 30 s or 1 min (Cinamon, Shinder et al. 2001; Steiner, 

Coisne et al. 2011). Dynamic T cell (Jurkat), monocyte (THP1) or PBMC interactions 

with hCMEC/D3 observed using a X10 objective, were recorded by Q-IMAGING Q/CAM 

FAST 1394 mono 12-bit camera connected to the Image Pro Plus software (Media 

cybernetics Inc. Bethesda, USA). Time lapse videos were created by merging frames 

taken every 1 second (Image Pro Plus software, Media Cybernetics Bethesda, USA and 

Image J, Java-based image processing program developed at the National Institutes of 

Health). An example is shown in the attached CD-ROM (Appendix 1). 
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T cells (Jurkat), monocytes (THP1) or PBMC that remained stationary on human 

brain endothelium in the field of view (FOV: 640 x 480 J..lm Area = 0.307 mm2) 

throughout the accumulation time (0.5 dyn/cm2) and immediately after increasing the 

flow to 1.5 dyn/cm2 were considered as cells that were firmly adhered. Leukocytes that 

adhered for at least 1 second to endothelial cells and thereafter detached were 

classified as transiently adhered. Leukocyte-endothelium interaction distance 

measurements were calculated from the point of initial contact between leukocytes 

and EC to the point of firm adhesion. Both transient adhesion and leukocyte­

endothelium long interaction were quantified during the leukocyte accumulation 

phase and were manually tracked using Image Pro Plus software (Media Cybernetics 

Inc. Bethesda, USA), while firmly adhered leukocytes were manually counted at the 

end of the experimental time within five random FOVs along the centreline of the flow 

channel using Image Pro Plus software (Media CybernetiCS Inc. Bethesda, USA). 
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Fig. 2.5 (left): Flow based leukocyte assay: (top) Schematic representation of the live 
cell adhesion imaging assay under flow conditions (middle) List of elements used in the 
assembly of the flow-based system for live cell adhesion (bottom) dimensions of the 
Ibidf- ~-slideVI used for the experiments and (*) illustration of how Ibidf- ~-slideVI was 
connected to the flow system. 
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A Fluorescently labelled leukocytes 
B EBM-2 complete media 
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MANUFACTURER 
N.A. 
Lonza 

C IbidfGP Jl-slideVI O.4LUer, ibiTreat, sterile with hCMEC/03 cells monolayer(red) Ibidf 
o Pumps PHD ULTRA pulling at 0.5 dyn/cm2 

Syringe Sml 
E Pumps PHD ULTRA pulling at 1.S dyn/cm2 

Syringe 2Sml 
F Time lapse microscope 
G Software Image Pro Plus for acquisition 

CONNECTOR 
Tygon 33S0 Sanitary Silicone Tubing 
Y connectors with 400 Series Barbs 3/32" Natural Polypropylene 
Female Luer Lug Style to classic series barb 1/16" Natural Polypropylene 

Jl-slideVI 0.4 Luer flow kit, ibiTreat, T /Ctreated, sterile 

Harvard Apparatus 
Hamilton 

Harvard Apparatus 
Hamilton 

OLYMPUS IX70 
Media Cybernetics 

Saint Gobain 
Value Plastic, Inc. 
Value Plastic, Inc. 
Ibidf 

Dimensions Ibidr- ll-s lideVI O.4LUer, ibiTreat, sterile Connection Ibidr- ll-slideVI to the flow system 

umber of channels 

Cffilnnel volume 

Chilnnel length 

Channel width 

Channel height 

Adapters 

Volume per reservoir 

Growth areil 

Coating ilrea using 30 III 
Bottom miltches coverslip 

6 

30 111 

17mm 

3.8mm 

0.4mm 

ferMJe Luer 

60 111 

0.6 crn2 per channe I 

1.2an2 per ch=el 
o. 1.5 

--
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2.7 ELISA assay (Enzyme-linked Immunosorbent Assay) 

Confluent hCMEC/D3 cells grown on collagen-coated 96-multiwell plates were 

fixed with 0.1% glutaraldehyde in PBS for 10 min. After blocking with 0.05 M Tris/HCI 

pH 7.5 for 20 min, cells were incubated with primary antibodies in Elisa buffer (PBS lX 

+ 5mg/ml BSA + 0.1% Tween-20) overnight at 4 °C (Fig. 2.6) at the concentrations 

indicated in Table 2.6, followed by three washes (wash buffer = 0.05% Tween-20 in 

PBS) and a secondary antibody incubation with 1/1000 polyclonal goat anti-mouse IgG 

biotinylated for 1 h at RT. Cells were then washed and incubated with 1/700 

streptavidin-biotinylated horseradish peroxidase complex for 45 min at RT. 

Antibody Company Clone Isotype Concentration 

MONOCLONAL Anti -human R&D SYSTEMS 
BBIG-V1 (4B2) 

VCAM1 (C0106) (Abingdon, UK) 
Mouse IgG1 2!lg/ml 

MONOCLONAL Anti -human R&D SYSTEMS BBIG-11 

ICAM1 (C054) (Abingdon, UK) (l1C81) 
Mouse IgG 1 2!lg/ml 

MONOCLONAL Anti-human AbO SEROTEC 
B-Tl 

ICAM2 (C0102) (Oxford, UK) 
Mouse IgG 1 3!lg/ml 

MONOCLONAL Anti -human AbO SEROTEC 
TEA 2/1 

E-SELECTIN (CD 62E) (Oxford, UK) 
Mouse IgG2b 3!lg/ml 

MONOCLONAL Anti -human AbO SEROTEC 
PseI.KO.2.12 

P-SELECTIN (CD 62P) (Oxford, UK) 
Mouse IgG1 3~/ml 

Table 2.6: List of monoclonal antibodies and the concentrations used for Elisa 

Chromogen solution (O.lM sodium acetate/citric acid buffer + 100 Ilg/ml 

N,N,N',N'-Tetramethylbenzidine in DMSO + 30% (v/v) hydrogen peroxide solution) was 

added to each well as a developer substrate (5-20 min) followed by addition of 1:4 

(V:V) of stop solution (10% v/v sulfuric acid) per well. The optical density (OD) was then 

measured using a FLUOstar Optima spectrometer (BMG LABTECH) at a wavelength of 

450 nm. This assay was adapted from (Hillyer, Mordelet et al. 2003). 
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Absorbance in the blank wells (without primary antibody) was deducted from 

each of the corresponding samples. ICAM2 was selected as a cell adhesion molecule 

whose levels are not increased by cytokine treatment (McLaughlin, Hayes et al. 1998) 

and hence served as a negative control for VCAM1 and ICAM1 primary antibodies in 

stimulated conditions whereas VCAM1 was used as a positive control for E- and P-

selectin primary antibodies. 

rO + Chromogen ~ Colour (M50nm) 

~ ) _ Streptavidin-Biotinylated 
, -- HRP (Horseradish Peroxidase) Complex 

1- Anti-Mouse Biotinylated Anti-lgG Secondary antibody 

-- Mouse Anti-Human-Primary antibody 

E-~~- PROTEIN of interest 
a well 

Fig. 2.6: Schematic representation of the Elisa assay. 
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2.8 Capture or sandwich ELISA assay 

Culture supernatants of confluent hCMEC/D3 cells grown on collagen-coated 

96-multiwell plates were collected and frozen at -20°C. For chemokine quantitative 

determination, the human MCP-3 or CCl7 and the human MCP-1 or CCl2 Quantikine® 

ELISA kits (R&D systems, Abingdon, UK) were used following the supplier's protocols 

(Fig. 2.7). The detection limits ranged from 15.6 pg/ml for CCl7 to 31.2 pg/ml for CCl2 

whereas signal saturation was observed at concentrations of 1000 or 2000 pg/ml and 

above for CCl7 or CCl2, respectively. Unstimulated hCMEC/D3 cell culture 

supernatants were first diluted in assay diluent at ratios of 1/3 (v/v) and 1/10 (v/v) for 

CCl7 and CCl2, respectively, while stimulated hCMEC/D3 cells culture supernatants 

were diluted in assay diluent at ratios of 1/3 (v/v) or 1/50 (v/v) for CCl7 and CCl2, 

respectively. The optical density (OD) was measured using a FlUOstar Optima 

spectrometer (BMG LABTECH) at a wavelength (A) of 450 nm. Absorbance in the blank 

wells (assay diluent only) was deducted from the absorbance of each sample and the 

standards. The concentration of chemokines was determined by interpolation from the 

standard curve. 

a well 

_-... Colour 

Chromogen (hydrogen peroxide + tetra methyl benzidine) 

Anti-human CCLl or CCL7 Polyclonal antibody 
conjugated to horseradish peroxidase 

Protein of interest (in supernatant) 

Monoclonal antibody specific for human CCLl or CCl7 
(Capture antibody) 

Fig. 2.7: Schematic representation of the capture or sandwich Elisa assay. 
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2.9 Reverse transcription-Real time-qPCR 

For assessment of miR levels in cultured cells, total RNA was isolated from 

confluent cells either treated with TNFa and IFNy at the indicated concentrations (0.1-

1 ng/ml) or left untreated, using TRlzol® Reagent following the manufacturer's 

protocol. cDNA was generated from total RNA using a TaqMan High Capacity cDNA 

Reverse Transcription kit (Applied Biosystem, Life Technologies, Warrington, UK) with 

specific primers for miRs as shown in Table 2.7. RT2-qPCR was performed using the 

TaqMan MicroRNA assay (Applied Biosystem Life Technologies, Warrington, UK) with 

specific primers according to the manufacturer's protocol. 

Cellular hsa-miR levels were detected using DNA Engine Opticon2 Real-Time 

system (MJ Research, St. Bruno, Canada) thermal cycler and Opticon Monitor software 

(MJ Research, St. Bruno, Canada) for data analysis. 

MicroRNA 

Hsa-mir-126 
Hsa-mir-126* 
Hsa-mir-155 

Control 

U6snRNA 

Catalog # 
002228-4427975 
000451-4427975 
002623-4427975 

Catalog # 

001973-4427975 

Company 
Applied Biosystems (Foster City, USA) 
Applied Biosystems (Foster City, USA) 
Applied Biosystems (Foster City, USA) 
Company 
Applied Biosystems (Foster City, USA) 

Table 2.7: List of specific miR primers used for reverse transcription and real time 
PCR. Note that the sequence of the miR-primers is not disclosed by the manufacturing 

company. 

The relative amount of miR was calculated using the 2-M Ct (delta-delta Ct) 

method (Livak and Schmittgen 2001) and normalized with an internal control, the 

small nuclear RNA U6. Threshold cycle (Ct) values were determined by the number of 

cycles required for the fluorescent signal to cross the threshold (background 

fluorescence), which in our experiments was between 5 and 10 times the standard 
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deviation of the background fluorescence. The difference in Ct between the target 

(miRs) and the internal control (the small nuclear RNA U6) was calculated according to 

the following formula: 

~Ct= [(Ct target) - (Ct internal control)] 

The differences between ~Ct of treatment (cytokines) and the vehicle (media) was 

calculated according to the following formula: 

MCt= [~Ct treatment)- [~Ct vehicle) 

From this formula, a positive result indicated a decrease in the expression of miR 

studied in hCMEC/D3 cells, whereas a negative result would indicate an increased 

expression of miR. The relative levels of miR (MCt) were transformed into absolute 

values calculated according to the following formula: 

miR relative expression levels = 2 -Met 

Results of hsa-miR relative levels in treated and/or transfected hCMEC/D3 cells were 

expressed as fold increase over hsa-miR levels in unstimulated and control transfected 

hCMEC/D3 cells. 
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2.10lmmmunocytochemistry 

2.10.1 Detection of VCAM1 expression in hCMEC/D3 cells grown on flow chambers 

hCMEC/D3 cell monolayes in Ibidf chambers were washed twice with pre-

warmed HBSS and fixed for 10 min at RT with 4% p-formaldehyde in PBS pH 7.4, and, 

washed three times with PBS. hCMEC/03 cells were incubated with blocking solution, 

5% (v/v) goat serum in PBS for 2 h and then 1/20 (v/v) anti-human VCAM1 primary 

antibody (Section 2.7, Table 2.6) in PBS + 5mg/ml BSA (Sigma) + 0.1% (v/v) Tween-20 

(Sigma Ultra) was added at 4 DC in a wet chamber overnight. After washing nine times 

with PBS, hCMEC/D3 cells were incubated with 1/200 (v/v) Alexa Fluor® 488 Goat Anti-

Mouse IgG secondary antibody for 1.5 h. Cells were washed six times with PBS and 

mounted using mounting media with OAPI. Pictures were acquired with a Zeiss 

microscope using axiophot prism filter set (J"ex-Aem: blue 450-490 nm, green 395-440 

nm) with X40 objective. The signal was quantified using the software, Image J (Java-

based image processing program developed at the National Institutes of Health). 

2.10.2 Identification of subpopulations CD4+, CD8+, CD14+ and CDS6+ adhered cells 
to hCMEC/D3 monolayers 

Following leukocyte adhesion assays as described in Section 2.6, hCMEC/D3 cell 

monolayers in Ibid! chambers were washed twice with pre-warmed HBSS and 

incubated with a cocktail of fluorescently labelled primary antibodies (anti-human C04, 

CD8, CD14 and CD56) (Section 2.3, Table 2.4) for 15 min at RT in the dark. After three 

washes slides were mounted using mounting media with DAPI. Pictures were acquired 

with a Leica DMIRBE confocal microscope (Leica Microsystems, Milton Keynes, UK) 

101 



Chapter 2: Materials and methods 

using Leica LAS imaging software. Pictures were the projection of twenty-five 1 11m 

sections in the Z plane. 

2.11 Bioinformatic analysis 

Predicted mRNA targets for hsa-miR-126 and 126* were identified using eight 

well known miRNA target prediction programs/databases (2in of April 2012 latest 

access date): 

Targetscan vS.O (http://www.targetscan.org/), 

Mira nda (http://www.microrna.org/microrna/home.do ), 

Pictar (http://pictar.mdc-berlin.de/), 

Microcosm (http://www.ebLac.uk/enright-srv/microcosm/cgibin/targets/v5/search.pl). 

Tarbase (http://diana.cslab.ece.ntua.gr Itarbase/), 

DianaLab Microt (http://diana.cslab.ece.ntua.gr/microT I), 

Diana Lab (http://diana.cslab.ece.ntua.gr/mirgen/), 

Target Miner (http://www.isical.ac.in/ ... bioinfo_miu/). 

MirDB (http://mirdb.org/miRDB/). 

All hsa-miR-126 and -126* targets were listed in Tables (4.2 and 5.5) and 

elaborated as described in Chapters 4 and 5. 
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2.12 Statistical analysis 

All data are presented as mean ± standard error of the mean and are the result 

of a number of independent experiments (n) with replicates specified in each legend. 

Paired t tests were used for multiple comparisons in cell culture experiments. 

Statistically significant differences are presented as probability levels of P < 0.05 (*), P 

< 0.01 (**), P < 0.001 (***). Calculations were performed using the statistical software 

GraphPad Prism 5 (Graph Pad Software, La Jolla, USA). 
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Chapter 3: Characterization of a human in vitro model of the blood-brain 
barrier to study leukocyte adhesion in inflammation 

3.1 Introduction 

The pathogenesis of neuroinflammatory diseases such as MS is characterized 

by increased leukocyte trafficking across the cells forming the BBB. Leukocyte 

extravasation into the CNS is a multistep cascade involving first tethering or capture, 

slow rolling and firm adhesion. These early critical steps are mediated by endothelial 

CAM and selectins and their cognate ligands on leukocytes both in immuno-

surveillance and inflammation. Pro-inflammatory cytokines TNFa and IFNy are locally 

secreted by endothelium, other CNS-resident cells and/or activated infiltrating 

leukocytes (Schroder, Hertzog et al. 2004) and have been shown to be abundant in MS 

active demyelinating lesions (Sospedra and Martin 2005). They modulate specific EC 

surface molecules (Stolpen, Guinan et al. 1986; Stins, Gilles et al. 1997) which enhance 

leukocyte rolling and firm adhesion (Thornhill, Wellicome et al. 1991). However, the 

exact mechanisms of leukocyte trafficking, and in particular the early events leading to 

firm adhesion into the brain still remain to be fully elucidated. 

Few in vitro models of the human BBB have been established to study 

leukocyte adhesion (Stins, Gilles et al. 1997; Zakrzewicz, Grafe et al. 1997; Kallmann, 

Hummel et al. 2000; Man, Tucky et al. 2009). Experimentally, most of the studies about 

leukocyte trafficking in vitro have been performed using static models involving human 

primary peripheral EC (i.e. HUVEC) or non-human primary CNS EC (i.e. rat, mouse or 

bovine)(Engelhardt and Ransohoff 2005; Ley, laudanna et al. 2007). However, human 

brain primary cells are difficult to obtain, then immortalized non-human and human 
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BEC lines, described in Section 1.8, have been used as a model of BBB (Weiss, Miller et 

al. 2009)_ In particular the human brain endothelial cell line, hCMEC/D3 has been 

defined as a suitable model for experimental studies on the BBB (Poller, Gutmann et 

al. 2008). 

In addition, because in vivo leukocyte recruitment and adhesion occur in a 

dynamic system dominated by the shear flow of the circulating blood on the 

endothelium, an in vitro model of the human BBB should incorporate a flow 

component in order to mimic the in vivo environment more closely. The first in vitro 

studies on leukocyte-endothelium interactions under flow conditions were published 

in the 90s (Shen, Luscinskas et al. 1992; Luscinskas, Kansas et al. 1994) although with 

limitations due to the complexity of the cellular composition of the NVU, blood 

composition and hemodynamic shear forces. Recently, effective parallel plate-based 

flow systems have been developed (Cucullo, Marchi et al. 2011; Michell, Andrews et al. 

2011; Srigunapalan, Lam et al. 2011; Walsh, Murphy et al. 2011; Man, Tucky et al. 

2012) and commercialized (www.cellixltd.com) (BenOit, Conant et al. 2010), but a 

system that mimics features of the complex milieu of the inflamed human BBB during 

leukocyte adhesion (suitable to study endothelial microRNAs), has not previously been 

developed. 

Here, an immortalized human brain microvascular EC line, hCMEC/D3, as 

described previously in Section 1.8, was used as an in vitro human model of the BBB. 

The suitability of the hCMEC/D3 cell line to study leukocyte trafficking in vitro was first 

determined by investigating the expression of CAM and selectins. To study leukocyte 

adhesion, we used a well-established static assay (Greenwood, Wang et al. 1995; 

Solito, Romero et al. 2000; Grunewald and Ridley 2010; Michell, Andrews et al. 2011) 
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as well as a flow-based assay adapted from a recently developed system using a mouse 

BBB model (Steiner, Coisne et al. 2011) and others described in Section 1.8. The 

suitability of this novel flow-based leukocyte adhesion assay was assessed. Finally, the 

adhesion of a monocytic and a T cell line to hCMEC/D3 cells was investigated under 

basal and inflammatory conditions using the static and flow-based adhesion models. 

3.2 Aims 

The aim of the work described in this chapter was to set up and characterize a 

human in vitro model of leukocyte adhesion to the BBB both under static and flow­

based conditions. 
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3.3 Results 

3.3.1 Basal expression of CAM and selectins in hCMEC/D3 cells 

Leukocyte rolling and adhesion are mediated mainly by selectins and CAM 

expressed by endothelium (Graber, Gopal et al. 1990; Carlos, Kovach et al. 1991; 

Lawrence and Springer 1991; Kallmann, Hummel et al. 2000). Previous studies have 

shown that the expression of VCAM1, ICAM1 (Weksler, Subileau et al. 2005) and P­

selectin (Bahbouhi, Berthelot et al. 2009) by hCMEC/D3 cells increased following 

stimulation with TNFa. E-selectin expression has been shown to increase in TNFa­

stimulated human BEC (Wong and Dorovini-Zis 1996). E-selectin is thought to mediate 

rolling of eosinophils (Ulfman, Kuijper et al. 1999), so we also included this selectin in 

our study on hCMEC/D3 cells. Therefore, the basal expression of VCAM1, ICAM1, 

(CAM2, and, P- and E-selectin by hCMEC/D3 cells was first investigated using ELISA (Fig. 

3.1). The basal expression of these molecules was investigated using specific 

monoclonal antibodies against VCAM1, (CAM1, ICAM2, P- and E-selectin. Higher 

concentrations of colorimetric reaction product were detected in samples (presence of 

primary antibody) than in the negative control (absence primary of antibody) (Fig. 3.1), 

suggesting that these CAM were expressed by hCMEC/D3 cell under basal conditions. 

However, the signal intensities for different CAM and selectins were different from 

what the literature reported (Zhang, Chopp et al. 1998; Love and Barber 2001), 

reflecting the differences in either the affinity of the monoclonal antibodies for their 

specific epitopes or the actual CAM expression levels on hCMEC/D3 cells under basal 

conditions. 
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Fig. 3.1: Basal expression of cell adhesion molecules and selectins in hCMEC/D3 cells. 
Anti-human-VCAM1, -ICAM1, -ICAM2, P- and E- selectin antibodies were used to 
determine basal expression of VCAM1, ICAM1, ICAM2, P- and E-selectin by hCMEC/D3 
cells using ELISA (see Section 2.7, Table 2.6)}. Negative control (absence of primary 
antibody) signal intensity was subtracted from all samples. Experiments were carried 
out three times with six replicates. Data are mean ±SEM. 
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3.3.2 Cytokines increase VCAMI and ICAMI expression in hCMEC/D3 cells 

TNFa in combination with IFNy has been previously shown to increase CAM 

expression and leukocyte adhesion on EC (HUVEC, and human BBB-endothelial cells) to 

a greater extent than TNFa alone (Thornhill, Wellicome et al. 1991; Calabresi, Prat et 

al. 2001; Cayrol, Wosik et al. 2008). Weksler et al. observed increases of ICAMl and 

VCAMl expression by hCMEC/D3 cells stimulated with a combination of TNFa and IFNy 

(100 U/ml + 100 ng/ml) using flow cytometry. To evaluate the most suitable cytokine 

stimulus for further experiments, the expression of VCAM1, ICAMl and ICAM2 on 

hCMEC/D3 cells stimulated with proinflammatory cytokines TNFa, and IFNy, alone or 

in combination, was first quantified. TNFa alone (0.1 ng/ml) increased ICAMl (Fig. 3.2 

A) and VCAMl (Fig. 3.2 B) expression on hCMEC/D3 cells at 24 h by 1.S respectively, 

and 2-fold, compared with basal levels. A similar, but larger, effect of TNFa on both 

VCAMl and ICAMl expression was observed at a higher dose (10 ng/ml). When 

hCMEC/D3 cells were stimulated with TNFa in combination with IFNy (0.1 ng/ml) the 

increase in VCAMl expression by hCMEC/D3 cells was significantly higher than that 

induced by TNFa alone (Fig. 3.2 B). However, no differences where observed when 

higher concentration of both cytokines were used. ICAMl expression was not further 

increased by IFNy in combination with TNFa. 

In addition, IFNy alone did not induce any changes in ICAMl or VCAMl 

expression levels at the concentrations tested (Figs. 3.2 A and B). No differences in 

ICAM2 expression were observed when hCMEC/D3 cells were stimulated either with 

TNFa alone or in combination with IFNyfor 24 h at all tested doses (0.1 and 10 ng/ml) 

compared to basal levels (Fig 3.2 C). 
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Fig. 3.2: IFNy potentiates TNFa-induced VCAMl expression on hCM~C/D3 cells. 

Confluent hCMEC/D3 cell monolayers were treated with TNFa or IFNy alone or TNFa 

and IFNy in combination at 0.1 and at 10 ng/ml for 24 h. A. Anti-human ICAMl or B. 
Anti-human VCAMl or C. Anti -human ICAM2 monoclonal antibodies were used to 
detect ICAMi or VCAMl expression levels by ELISA (see Section 2.7 for the antibodies 
and method details). Experiments were carried out three times with three replicates. 
Data are mean ±SEM. (#p<O.OS, ###P<O.OOl, *P<O.OS, $p<O.OS, # significantly different 

compared with unstimulated cells; * significantly different compared to O.ing/ml; $ 

significantly different compared to TNFa alone). 
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3.3.3 Time- and dose-dependent effect of cytokines on VCAM1 and ICAMl 
expression by hCMEC/D3 cells 

To assess the most suitable cytokine concentration and time of treatment to 

study leukocyte adhesion on hCMEC/D3 cells, a cytokine dose-response and a time-

course study on VCAMI and ICAMl expression was performed. 

An increase in VCAMI (3-fold) and ICAMl (l.5-fold) was observed at the lowest 

concentration of cytokines used (0.1 ng/ml) (Fig. 3.3 A, see Fig. 1 Appendix 4 for an 

example of raw data). This effect was greater with 1 ng/ml (TNFa + IFNy), but there 

was no further increase using higher (10 and 100 ng/ml) concentrations of cytokines. 

ICAM2 is constitutively expressed on endothelium (de Fougerolles, Stacker et al. 1991) 

and does not increase in response to inflammatory stimuli (Nortamo, Li et al. 1991), 

thus ICAM2 was used as a control of a CAM whose levels are not altered by pro-

inflammatory cytokines. However, a slight but significant increase of ICAM2 expression 

levels by hCMEC/D3 cells was observed at the lowest concentration (0.1 ng/ml) of 

cytokines used, while at higher tested doses (~10 ng/ml) ICAM2 expression was 

decreased compared to the basal levels (Fig. 3.3 A). 

The earliest increases in VCAMI and ICAMl expression by hCMEC/D3 cells 

were observed at 1 and 6 h, respectively (Fig. 3.3 B). VCAM1 and ICAMl maximal 

expression, of 6- and 2-fold over the basal level, was at 24 h after stimulation and was 

maintained until 48 h after treatment. As previously observed (McLaughlin and Haise 

1998; Huang, Mason et al. 2005), we found that cytokines decreased ICAM2 

expression after 6 and 24 h following treatment on stimulated hCMEC/D3 cells (Fig. 3.3 

B). Taken together, our results show that maximal expression of VCAM1 and ICAM1 
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was observed at 6-24 h following treatment with TNFa + IFNy in combination at lor 10 

ng/ml indistinctly. 
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Fig. 3.3: Combination of cytokines (TNFa and IFNy) increased VCAMl and ICAMl, but 
not ICAM2, expression in hCMEC/D3 cells in a dose- and time-dependent manner. A. 

Confluent hCMEC/D3 cell monolayers were treated with TNFa and IFNyat different 
concentrations (0, 0.1, 1, 10, 100 ng/ml) for 24 h. B. Confluent hCMEC/D3 cell 
monolayers were treated with TNFa and IFNy at different times (0, 1, 3, 6, 24,48 h) at 
10 ng/ml. Anti-human VCAM1, ICAM1 and ICAM2 monoclonal antibodies were used to 
detect VCAM1, ICAM1 and ICAM2 expression levels by ELISA. Experiments were 
carried out three times with three replicates. Data are mean ±SEM. 
(*,#P<0.05**,##P<0.01 ***,###P<O.OOl, # significantly different vs. unstimulated cells, * 
significantly different between different doses (A) or treatment times (B)) . 
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3.3.4 A combination of cytokines (TNFa and IFNy) increases E- and P-selectin 
expression in hCMEC/D3 cells 

Selectins are predominantly detected on endothelium of postcapillary venules, 

as previously described in Chapter 1, the main site where leukocyte trafficking takes 

place during inflammation (Bevilacqua and Nelson 1993). TNFa alone increased E- and 

P-selectin expression on primary human cerebral endothelium (Wong and Dorovini-Zis 

1996), but not in HBMEC in vitro (Oostingh, Schlickum et al. 2007). No studies on E-

and P-selectin expression on endothelium stimulated with a combination of TNFa and 

IFNy have been published to date. Here we quantified E- and P-selectin expression on 

24 h cytokine-stimulated hCMEC/D3 cells. A combination of cytokines (TNFa + IFNy 10 

ng/ml) increased P-selectin expression by >2 fold (Fig. 3.4 A) and the induction was 

maximal 1 h after stimulation. P-selectin was detectable after 30 min of stimulation 

and declined after 3-6 h to return to basal levels by 24 h (Fig. 3.4 A). E-selectin levels 

were significantly increased on hCMEC/D3 cells by TNFa and IFNy, with a maximal 

induction (12-fold) at 6 h and returned to basal levels by 48 h (Fig. 3.4 B). VCAMl was 

used as a positive control for the cytokine effect on CAM expression in these 

experiments (Figs. 3.4 A and B). These results demonstrate that this combination of 

pro-inflammatory cytokines can increase E- and P-selectin expression with different 

time courses in the human in vitro BBB model used. 
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Fig. 3.4: Combination of cytokines (TNFa. and IFNy) increases E- and P-selectin 
expression on hCMEC/D3 cells. Confluent hCMEC/D3 cell monolayers were treated 
with 10 ng/ml of TNFa and IFNy in combination for different times (0, 0.5, 1, 3, 6, 24 
and 48 h). A. Anti-human-P-selectin and -VCAMl monoclonal antibodies were used to 
detect P-selectin and VCAMl expression levels by ELISA. B. Anti-human-E-selectin and 
-VCAMl monoclonal antibodies were used to detect E-selectin and VCAMl expression 
levels by ELISA. Experiments were carried out three times with three replicates. Data 
are mean ±SEM (*,#P<O.OS, ##P<O.Ol # significantly different vs. unstimulated cells, * 
significantly different between different doses). 
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3.3.5 E- and P-selectin expression increase in a dose-dependent manner on 
hCMEC/D3 cells by a combination of cytokines 

To better understand the cytokine effect on P- and E-selectin expression by 

hCMEC/D3 cells, we performed a dose-response at their maximal expression times, 1 

and 6 h respectively (Figs. 3.4 A and B). In addition, we carried out a dose-response for 

E-selectin expression at 24 h, where we observed the maximal expression of VCAMl 

and ICAMl (Figs. 3.3 A and B). P-and E-selectin expression increased in a dose-

dependent manner on hCMEC/D3 cells after 1, 6 and 24 h of stimulation with TNFa 

and IFNy (Figs. 3.5 A and B). E- and P-selectin maximal expression was observed after 

simulation with the higher dose tested (10 ng/ml), although the lowest dose used (0.1 

ng/ml) was also sufficient to induce both E- and P-selectin at all times tested (Figs. 3.5 

A, B and C). After combining these findings with our previous observation that VCAMl 

and ICAMl maximal expression is at 24 h on hCMEC/D3 cells stimulated with TNFa and 

IFNy at 0.1 or 1 ng/ml (Figs. 3.2 and 3.3), the most suitable conditions to study 

leukocyte adhesion and observe rolling mediated by E-selectin on hCMEC/D3 cells 

were selected at 24 h following stimulus with 1 ng/ml of a combination of TNFa and 

IFNy. 
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Fig. 3.5: Combination of cytokines (TNFa and IFNy) increases E- and P-selectin 
expression in hCMEC/D3 cells. Confluent hCMEC/D3 cell monolayers were treated for 
1, 6 and 24 h with TNFa and IFNy in combination at different doses (0, 0.1, 1, 10 
ng/ml). A. Anti -human-P-selectin monoclonal antibody was used to detect P-selectin 
expression by ELISA following 1 h cytokine treatment. B. and C. Anti-human-E-selectin 
monoclonal antibody was used to detect E-selectin expression levels by ELISA following 
6 (8) and 24 (C) h cytokine treatment. Experiments were carried out three times with 
three replicates. Data are mean ±SEM (*,#P<O.OS, **P<O.Ol ***,###P<O.OOl # 

significantly different compared to unstimulated cells, * significantly different between 

cytokine treatments). 
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3.3.6 Jurkat and THP-l cell adhesion to hCMEC/D3 cells increases in a dose­
dependent manner using a static adhesion assay 

Given the observed increases of CAM and selectin expression on cytokine-

treated hCMEC/D3 cells, we next investigated whether the in vitro BBB model was 

suitable to study leukocyte adhesion using the static adhesion assay described in 

Section 2.5. We quantified adhesion of THP-l, a monocytic cell line, and Jurkat, a T cell 

line, to hCMEC/D3 cells. Both Jurkat and THP-l cell lines adhered to cytokine-

stimulated hCMEC/D3 in a dose-dependent manner (Fig. 3.6 A, see Fig. 2 Appendix 4 

for raw data). Indeed, a combination of cytokines (TNFa + IFNy) increased Jurkat and 

THP-1 adhesion (Fig. 3.6 A) at all doses used, with a maximal effect observed at 

concentrations as low as 1 ng/ml, as observed previously with VCAM1 expression 

(Section 3.3.3, Fig. 3.3). We also quantified adhesion of THP-1 and Jurkat to hCMEC/D3 

cells stimulated for 0,0.5, 1,3,6,24 and 48 h. Both Jurkat and THP-l cell lines adhered 

to hCMEC/D3 cells in a time-dependent manner (Fig. 3.6 B). When BEC were 

stimulated with 10 ng/ml of TNFa and IFNy in combination, both Jurkat and THP-l 

adhesion increased significantly at all time points tested (Fig. 3.6 B). Both Jurkat and 

THP-1 adhesion to unstimulated hCMEC/D3 cells was between 2 and 20% of the input 

(see Pag. 90), normalized to 1 in result graphs. 

However, Jurkat adhesion to cytokine-stimulated endothelium increased to a 

greater extent compared to THP-1 cells. Both Jurkat and THP-1 maximal adhesion was 

observed between 6 and 24 h, but 1 h of cytokine stimulation was already sufficient to 

increase monocyte and T cell adhesion above basal levels (Fig. 3.6 B). Taken together, 

these results show that pro-inflammatory cytokines (TNFa + IFNy) increased both 
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monocyte and T cell adhesion to hCMEC/D3 cells. Hence the current in vitro BBB model 

is suitable to study leukocyte adhesion under static conditions. 

* 
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Fig. 3.6: A combination of cytokines (TNFa and IFNy) increases adhesion of 
leukocytes to hCMEC/D3 cells in a dose- and time-dependent manner using a static 

adhesion assay. Confluent hCMEC/D3 cell monolayers were treated with TNFa and 
IFNy in combination A. at different concentrations (0, 0.1, 1, 10, 100 ng/ml) for 24 h or 
B. with 10 ng/ml at different times (0, 1, 3, 6, 24 and 48 h). Fluorescence of adhered 

THP-l or Jurkat cells to hCMEC/D3 cell monolayers was quantified at A.ex= 485nm and 

A.em= 525nm. Data are normalized to leukocyte adhesion levels on unstimulated 
hCMEC/D3 cell monolayers. Experiments were carried out three times with six 
replicates each . Data are mean ±SEM (*,#p<0.05**,##p<0.01, ***,###p<O_OOl, # 

significantly different vs. unstimulated cells, * significantly different between cytokine 
doses or time points). 
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3.3.7 A combination of cytokines (TNFa and IFNy) increases Jurkat and THP-l 
adhesion on hCMEC/D3 cells under flow in a dose-dependent manner 

In addition to the static assay, we set-up a novel system to study leukocyte 

adhesion under flow conditions, using the in vitro BBB model, hCMEC/D3 cells, 

previously characterized. We investigated the interaction between THP-1 or Jurkat and 

hCMEC/D3 cells under shear stress in both unstimulated and cytokine-stimulated 

conditions. Jurkat or THP-1 cells were first allowed to adhere to the endothelium at 

low shear stress (0.5 dyn/cm2) for 5 min. Next, shear stress was increased to 1.5 

dyn/cm2 for 0.5-1 min and firmly arrested cells counted (Fig. 3.7 A). Combination of 

cytokines increased Jurkat and THP-1 adhesion to hCMEC/D3 cells in a dose-dependent 

manner (Figs. 3.7 B and C). Similar numbers of Jurkat or THP-1 cells adhered on 

unstimulated BEC (4.1±1 and 3.46±1 cells/FOV, respectively) (Figs. 3.7 B and C). Jurkat 

and THP-1 adhesion on 24 h cytokine-stimulated endothelium significantly increased in 

a dose- dependent manner (Figs. 3.7 B and C). 
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Fig. 3.7: Combination of cytokines (TNFa and IFNy) increases Jurkat (T cell) and THP-l 

(monocyte) adhesion on hCMEC/D3 cells under flow in a dose-dependent manner. 
Confluent hCMEC/D3 cell monolayers, grown on Ibidf® chambers, were stimulated 

with TNFa and IFNy in combination at different concentrations (0, 0.1, 1, 10 ngjml) for 

24 h. A. Representative pictures of firmly adhered Jurkat cells/FOV: (Top) confluent 

hCMEC/D3 cell monolayers (phase contrast), (Middle) adhered Jurkat cells 

(fluorescence), (Bottom) overlap of hCMEC/D3 cells (phase contrast) and Jurkat cells 

(fluorescence). Adhered B. Jurkat and C. THP-l cells to hCMEC/D3 cell monolayers 

were counted and results expressed as number of adhered cells per field of vision 

(FOV). Experiments were carried out three times with five FOV each. Data are mean 

±SEM (*,#p<O.OS, #significantly different vs . unstimulated cells, * significantly different 

between cytokine treatments) . 
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3.3.8 A combination of cytokines (TNFa and IFNy) decreases Jurkat (T cell) cell 
interaction with endothelium and transient adhesion on hCMEC/D3 cells under flow 

To better characterise the new in vitro flow-based model and its strengths to 

study leukocyte roiling/adhesion, we measured the distance of leukocyte-endothelium 

interaction before arrest, the number of cells showing transient adhesion and the 

number of cells showing firm shear resistant adhesion in a series of experiments 

involving Jurkat cells and hCMEC/D3 cells under flow. Measurements were quantified 

and counted using all frames captured along the time of the experimental setup using 

the Image Pro Plus distance tool. 

The cell-cell interaction distance of Jurkat cells over unstimulated endothelium 

prior to adhesion was significantly greater (350±45 Ilm), within three different 

experiments, than the distance covered by Jurkat cells over cytokine-stimulated 

endothelium (49±13 Ilm) (Fig. 3.8 A), suggesting a reduced leukocyte-endothelial cell 

interaction distance prior to adhesion. 

The number of T cells transiently adhered to unstimulated endothelium was 

comparable to or even higher than the number of firmly adhered T cells (Fig. 3.8 B, 

left), while in cytokine-stimulated conditions, transient adhesion was negligible 

compared to the number of total shear-resistant firmly adhered T cells (Fig. 3.8 B, 

right). 
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Fig. 3.8: A combination of cytokines (TNFa and IFNy) decreases Jurkat (T cell) cell­

endothelial cell interaction distance and transient adhesion on hCMEC/D3 cells 

under flow. Confluent hCMEC/D3 cell monolayers, were stimulated with TNFa and 

IFNy in combination at 1 ng/ml or left untreated for 24 h. A. T cell -endothelium 

interaction distance and B. n of transient and firm adhered Jurkat cells were measured 

and counted in a field of view (FOV= 640 x 480 Jlm). Experiments were carried out 
three times. Data are mean ±SEM (*** p<O.OOl, * significantly different between 
unstimulated and cytokine treated). 
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3.3.9 A combination of cytokines (TNFa and IFNy) increases VCAMl expression in 
hCMEC/D3 cells grown on flow chambers in a dose dependent manner 

To further determine whether the Ibidf- chamber (described in Fig 2.5) is 

suitable to study hCMEC/D3 cells in inflammation, we then measured VCAMl 

expression in cytokine-stimulated EC by immunocytochemisty (Fig. 3.9 A). A 

combination of cytokines (TNFa + IFNy) increased significantly VCAMl expression at 

both 0.1 and 1 ng/ml (Fig. 3.9 B) confirming previous observations with the static 

model by ELISA (Section 3.3.3). In absence of primary antibody, no fluorescent signal 

was detected. 
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Fig. 3.9: A Combination of cytokines (TNFa and IFNy) increases VCAMl expression in 
hCMECjD3 cells in a dose dependent manner. Confluent hCMEC/D3 cell monolayers, 

grown on Ibidf® chambers, were stimulated with TNFa and IFNy at different 
concentrations (0, 0.1, 1 ng/ml) for 24 h. Anti-human-VCAMl was used to detect 
VCAMl expression by immunofluorescence A. (Upper panel) Representative picture of 
DAPI staining cell nuclei (left), VCAM1-FITC fluorescence (middle) and merged fields 
(right). (Lower panel) Representative pictures of VCAM1-FITC fluorescence B/W on 
stimulated hCMEC/D3 at 0, 0_1 and 1 ng/ml. B_ VCAM1-FITC fluorescence 
quantification by Image J expressed in integrated density (A.U.). Experiments were 
carried out two times in duplicate with five FOV each. Data are mean ±SEM (*** , 
###p<O_OOl, #sign ificantly different vs_ unstimulated cells, * significantly different 
between cytokine treatments)_ 
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3.4 Discussion 

Leukocyte trafficking plays a central role in neuroinflammatory diseases such as 

MS, and the two early steps, rolling and adhesion are crucial for the leukocyte 

recruitment through the BBB. From our results we demonstrate that the hCMEC/D3 

cell line is a suitable model human brain microvasculature to study inflammation and 

leukocyte adhesion to human brain microvasculature both under static and shear­

stress conditions. In addition, we have developed and validated a novel system to 

study leukocyte adhesion and leukocyte-endothelial interactions under flow, a 

versatile tool that can improve the study of leukocyte trafficking in vitro. 

3.4.1 Basal expression of CAM and selectins in hCMEC/D3 cells 

It has been previously shown that the basal levels of CAM and selectins are 

variable between species (Coisne, Faveeuw et al. 2006) and organs (Oostingh, 

Schlickum et al. 2007) and different EC. Moreover, the results on basal selectin 

expression on endothelium are often contradictory. Weksler et al. studied the basal 

expression of ICAM1, VCAM1 and ICAM2, but not of selectins, on hCMEC/D3 cells by 

FACS, reporting that ICAM1 and ICAM2, but not VCAM1, are constitutively expressed 

by unstimulated endothelium. Our results are in line with Weksler et al. except those 

for VCAM1, but in line with Stins et al. were VCAM1 is expressed by resting HBMEC. 

This can be due to the different technique adopted to detect this protein and/or to the 

different anti-human-VCAMl monoclonal antibody used in the present study. 

However, it has been shown that VCAMl was expressed at low levels on resting 
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primary culture of human bone marrow endothelial cells and of human brain 

microvessel EC (HBMEC) while ICAM1 appeared to be expressed at higher levels (van 

Buul, Mul et al. 2004), in line with our findings. In vivo, it has been found that ICAM1 is 

faintly expressed in human brain microvessels (Lindsberg, Carpen et al. 1996) while 

another study reported that ICAM1 is not constitutively expressed by human brain EC 

(Love and Barber 2001). 

We also determined by ELISA that hCMEC/D3 cells constitutively expressed low 

levels of E- and P-selectin. It has been found that P-selectin is expressed by 

unstimulated hCMEC/D3 cells by FACS (Bahbouhi, Berthelot et al. 2009). In addition, 

basal P- and E- selectin expression has been observed in other studies using cultured 

human BEC (Wong and Dorovini-Zis 1996; Wiese, Barthel et al. 2009) and HUVEC 

(Hattori, Hamilton et al. 1989; Oostingh, Schlickum et al. 2007). 

In vivo, expression of either P- or E-selectin was not observed on brain tissue of 

sham rats by immunostaining (Zhang, Chopp et al. 1998), but basal expression of E­

selectin was observed on blood vessel walls in CS7BL/6 mice (Stielke, Keilhoff et al. 

2012). In human brain it has not been detected any P-selectin expression in 

microvessels (Navratil, Couvelard et al. 1997; Love and Barber 2001). 

Selectin expression by BEC is still a strongly debated subject due to the 

contrasting results obtained across species, both in vivo and in vitro. Here, our findings 

are in line with studies using other human BEC lines or primary human BEC (Wong and 

Dorovini-Zis 1996; Wiese, Barthel et al. 2009), but are in contrast with 

immunohistochemical studies on human brain microvessels in vivo (Navratil, Couvelard 

et al. 1997; Love and Barber 2001). This can be due to the process of immortalization 

of human BEC or the conditions used to maintain them in vitro. Indeed, it has been 
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reported that culture conditions influence the expression of many brain endothelial 

markers, either leading to down-regulation (e.g. tight junctional proteins (Steiner, 

Coisne et al. 2011)) or up-regulation (e.g. daudin-l, (Fletcher and McKeating 2012)) of 

specific genes associated with a barrier phenotype. It is thus possible that E- and P-

selectin maybe up-regulated by cultured human BEe. 

3.4.2 Combination of cytokines (TNFa and IFNy increase synergistically VCAM1 and 
ICAM1 expression in hCMEC/D3 cells 

Previous studies have reported that TNFa either alone or in combination with 

IFNy increased VCAMl and ICAMl on HCEC (Kallmann, Hummel et al. 2000) and on 

hCMEC/D3 cells (Weksler, Subileau et al. 2005). Here, we compared the expression of 

VCAMl and ICAMl on hCMEC/D3 cells stimulated with TNFa alone or combined with 

IFNy at different doses (0.1 and 10 ng/ml compared to 100 U/ml or 1 ng/ml in previous 

studies). We observed that TNFa-induced VCAM1, but not ICAM1, expression was 

enhanced by co-stimulation with INFy as shown in cultured human macrophages 

(Tengku-Muhammad, Cryer et al. 1998) and on HUVEC (Ozaki, Ishii et al. 1999). 

The synergistic effect of IFNy to that of TNFa is thought to be mediated by 

NF-KB. It has been reported that TNFa alone activates NF-KB in hCMEC/D3 cells 

(Fasler-Kan, Suenderhauf et al. 2010) and that activated NF-KB following translocation 

to the nucleus is responsible for VCAMl and ICAM1, but not ICAM2, gene transcription 

with consequent increases in VCAM1 and ICAMl protein expression at the plasma 

membrane level (reviewed in (Pober and Sessa 2007)). IFN-y may activate NF-KB 

indirectly, as it induces TNFa and IL-l~ production and increases TLR4 receptor 

expression, thereby up-regulating VCAM1, by STAT1, and ICAMl expression (reviewed 
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in (Schroder, Hertzog et al. 2004)). However, we did not observe any significant 

increases in ICAMl expression on IFNy-stimulated hCMEC/D3 cells suggesting that if 

IFNy can activate NF-KB indirectly it may only do so in the presence of another stimulus 

such as TNFa. Nevertheless, we can speculate that the observed synergistic effect of 

IFNy with TNFa on VCAMl expression may occur possibly through potentiation of NF­

KB activation. However, TNFa-induced increased ICAMl expression may require other 

transcriptional regulators in addition to NF-KB, as IFNy does not influence ICAMl 

expression at the times and doses used in hCMEC/D3 cells. For example, it has been 

reported that JNK and ERK1 mediate ICAM1 expression via AP-1 activation (reviewed in 

(Lebedeva, Dustin et al. 2005) and it has been shown that PECAM-1-associated 

tyrosine phosphatase activity is required for ICAM1 expression in cultured rat BEC 

(Couty, Rampon et al. 2007). Indeed, ICAM1 expression is regulated by many different 

molecules of different patways activated either directly or indirectly by other stimuli. 

Lopez-Ramirez et al. (2012) have shown that high concentrations (100 ng/ml) 

of cytokines (TNFa and IFNy) in combination or alone induced caspase-3/7 activation 

and apoptotic cell death in hCMEC/D3 cells so we used lower cytokine doses in this 

study to avoid cell damage. It has been shown that increased apoptosis in rat retinal 

vascular endothelium is associated with leukocyte rolling and adhesion (Koizumi, 

Poulaki et al. 2003), and activation of NF-KB in EC (reviewed in (Pober 2002)) with 

consequent increase in VCAMl and ICAMl protein expression at the plasma 

membrane level. The observed increases in VCAM1 and ICAM1 expression by 

hCMEC/D3 cells stimulated with 0.1 ng/ml, demonstrate that this dose is sufficient to 

activate the signalling pathways induced by IFNy and TNFa without activation of 

apoptotic mediators. 
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3.4.3 Combination of cytokines (TNFa. and IFNy) increases CAM and selectin 
expression and leukocyte adhesion on hCMEC/D3 cells 

CAM and selectins mediate the early leukocyte trafficking on endothelium in 

response to inflammatory stimulus (Springer 1994), so the regulation of their presence 

on the cell surface is crucial for leukocyte adhesion. Here, we observed that increased 

expression of ICAM1, VCAM1, P- and E-selectin in a time- and dose-dependent manner 

on TNFa- and IFNy-stimulated hCMEC/D3 is associated with the changes in T cell and 

monocyte adhesion. In particular, CAM is consistent with leukocyte rolling/capture 

preceding firm adhesion. Indeed, hCMEC/D3 cells expressed P-selectin on their surface 

a few minutes after stimulation as previously reported in hCMEC/D3 cells (Bahbouhi, 

Berthelot et al. 2009) due to rapid mobilization of the stored P-selectin in the Weibel-

Palade bodies to the cell surface of EC as previously demonstrated (Bonfanti, Furie et 

al. 1989; Johnston, Cook et al. 1989). Up-regulation of P-selectin on cytokine-

stimulated hCMEC/D3 cells was detected after 3 and 6 h of induction with the 

combination TNFa and IFNy as found in HBEC. These increases of P- selectin are 

referable to a second regulation mechanism where TNFa. is able to stimulate the 

transcript level and protein level of P-selectin (Weller, Isenmann et al. 1992; Hahne, 

Jager et al. 1993), as observed in E-selectin. E-selectin, confirming previously 

observations in TNF-a-stimulated primary human microvessel BEC (Wong and 

Dorovini-Zis 1996), was up-regulated slightly later, between 6 and 24 h on stimulated 

endothelium, because it requires de novo mRNA and protein synthesis (Bevilacqua, 

Pober et al. 1987) dependent on transcription factors such as NF-KB and AP-l 

(Montgomery, Osborn et al. 1991; Whelan, Ghersa et al. 1991). Moreover, E-selectin is 

not induced by INFy (Leeuwenberg, von Asmuth et al. 1990), so probably its increased 
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expression on hCMEC/D3 cells is exclusively due to the action of TNFa as observed for 

ICAMi. TNFa and IFNy stimulus for 24 h clearly and consistently induced a maximal 

monocytic and T cell adhesion on hCMEC/D3 cells using the static model. However, the 

monocyte adhesiveness to endothelium was less than that of T cells, possibly due to 

THP-i cells showing a lower avidity for P-selectin, or to them having lower expression 

of P-selectin ligands (e.g. PsGL-1), which are essential for monocyte capture 

(Kuckleburg, Yates et al. 2011), or of the co-factor CD63, essential for P-selectin 

function (Ley K et al 2011). 

3.4.4 THP-l and Jurkat cells, models to study leukocyte adhesion 

We used resting THP-1 and Jurkat cells which are widely used to study 

leukocyte adhesion to endothelium. It has been shown that CCR2 (Chuang, Yang et al. 

2011), PsGL-1, and both VLA-4 (Semina rio, sterbinsky et al. 1998) and LFA-1 (Quek, Lim 

et al. 2010) integrins are expressed on the surface of THP-1 and Jurkat cells. These two 

cell lines were isolated from leukemic patients, therefore an innate activation appears 

to be kept even though they are not activated by specific antigens. As previously 

described in Chapter 1, both resting THP-1 and Jurkat cells adhere to hCMEC\D3 cells, 

this event is due to two different mechanisms. First, increased integrin avidity for the 

ligands due to the integrins clusting on the leukocyte surface and, second an increased 

intrinsic integrin affinity for its ligands. Hence, THP-1 and Jurkat cells express active 

integrins that can mediate firm adhesion. 

3.4.5 A new in vitro model based on hCMEC/D3 cells to study leukocyte-endothelium 
interaction under flow 
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Brain endothelial cells in vivo are continuously subjected to shear stress, the 

force generated by blood flow. To preserve this physiological condition during in vitro 

studies of leukocyte adhesion to hCMEC/D3, we used Cellix Vena 8 and Bioflux systems 

without success (Appendix 1), due to the detachment of the endothelial monolayer 

and absence of constant leukocyte flow, respectively. Thereafter, we successfully 

assembled an in vitro model to study leukocyte adhesion to hCMEC/D3 cells during 

inflammation under flow as described before (Section 3.2.2). Ibidi® Jl-slideVI 0.4 was 

selected to assemble the flow-system, where hCMEC/D3 cells were successfully 

cultured to confluence after an accurate comparison between the three models tested 

(Table 3.1). 

Chamber Set-up Fairly easy 

Chamber Sterility Yes 

Coating Collagen 

Cell monolayer (static) 100% properly formed 

Cell monolayer (flow) Shear stress resistant 

Transfection Successful 

Leukocyte adhesion Successful 

Cost chamber/assay Low 

Cost Pumps Low 

System Set-up 100% Manual, Fairly easy 

Transfection Efficiency N100% 

Cellix 
Easy 

No 

Fibronectin and collagen 

100% properly formed 

Cell detachment, 30% cases 

Successful 

Successful 

Medium 

High 

50% Manual, Fairly easy 

-70% 

Bloflux 
Difficult 

Yes 

Fibronectin and collagen 

100% properly formed 

Shear stress resistant 

Problematic, unsuccessful 

Unsuccessful 

High 

Very High 

50% Manual, Difficult 

Not efficient 

Table 3.1: Quality, limitations and conditions of the three flow-based systems tested. 

The flow pattern at the post-capillary level has been defined as a laminar shear 

flow with a parabolic velocity (Nieto, Frade et al. 1997; Luscinskas, Lim et al. 2001). By 

contrast, Cucullo et al. argued that the physiological blood flow in vivo had a pulsatile 

nature (Cucullo, McAllister et al. 2002; Desai, Marroni et al. 2002). We perfused the 

leukocytes through the chambers with endothelial monolayers applying a constant 

laminar flow without any pulsatory force assuming that the vessel is inelastic, 

cylindrical and straight and that the blood is a Newtonian fluid. 
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The shear stress in the post-capillary venules is believed to be between 0.25 and 4 

dyn/cm2 (Lawrence, Smith et al. 1990). We pulled leukocytes in culture media at 0.5 

dyn/cm2
, for the accumulative phase (or so-called bolus phase), and afterwards 

increased the flow to 1.5 dyn/ cm2 to count the shear-resistant leukocytes adhered to 

the hCMEC/D3 as in previous flow-based leukocyte adhesion studies (Table 3.2). 

Cell Type 

HUVEC 

HUVEC 

THBMEC 

hBMEC-60 

HDMEC, HBMEC, 

HUVEC 

HUVEC 

HUVEC 

HUVEC 

HUVEC 

bENOS 

pMBMEC 

CHO-E cells 

1 

1 

0.25 

0.3 t04.2 

1.04 

1 

0.75 

1.5 

1.8 

0.25 

0.25 

0.75 to 36 

Leukocyte 

Neutrophils 

PBL or neutrophils 

PBMS from M5 patients 
KG1 human hemopoietic 
Progenitor 

PBMC from healthy donors 

Neutrophils 

PBLs 

PBMC from healthy donors 
and Jurkat cells 

Human Monocytes 

(PLP)-specific C04+ Thi 
effector/memory T cell line 
(PLP)-specific C04+ Thi 

effector/memory T cell line 

(PLP)-specific C04+ Thi 
effector/memory T cell line 

Time of Washout 
interaction Time 

(min) (min) 

4 

4 

20 

Every lSs 

4 

40s 

1 

10 

4 

4 

2 at 0.75 

2min 

2 and 11 

5 

20 mins at 
5dyn/ cm2 

N.A. at 1.5 

dyn/ cm2 

N.A. at 1.5 

dyn/ cm
2 

Increasing 
every 20sec 

Reference 

(Burton, Butler et al. 
2011) 
(McGettrick, Buckley et 
al. 2010) 
(Man, Tucky et al. 2009) 
(Wiese, Barthel et al. 
2009) 
(Oostingh, 5chlickum et 
al. 2007) 

(Sheikh, Rahman et al. 
2005) 
(Cinamon, Shinder et al. 
2001) 
(Grabovsky, Feigelson et 

al. 2000) 
(Luscinskas, Kansas et al. 
1994) 
(Steiner, Coisne et al. 

2011) 
(Steiner, Coisne et al. 

2010) 

(Alon, Rossiter et al. 
1994) 

Table 3.2: Parameters of flow-based assays previously used to study 
endothelium/leukocyte interactions. 

When we counted the shear-resistant adhered THP-l and Jurkat cells on 24 h 

TNFa- and IFNy-stimulated hCMEC/D3 cells, we observed a striking difference between 

unstimulated and TNFa- and IFNy-stimulated endothelium compared with the static 

adhesion results. Moreover, with low doses of cytokines (0.1 and 1 ng/ml) we 

observed consistent and clear-cut increases of Jurkat and THP-l adhesion of 5 and 15 
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times, respectively, compared to basal levels. The flow-based model used enabled us 

to count the adhered monocytes and T cells on the endothelium very easily. 

Furthermore, we quantified transient adhesion (T cell attachment and 

detachment to and from endothelium) and cell-cell interaction between T cells­

endothelium successfully. However, we were not able to study proper leukocyte 

rolling. On unstimulated hCMEC/D3 cells, the few T cells that interacted with 

endothelium along the 5 min bolus were in contact for relative long distances and 

almost 50% of them transiently adhered to detach immediately. In cytokine-stimulated 

endothelium, a high number of T cells heavily firmly adhered without much cell-cell 

interaction or detachment, while under basal conditions, there was high cell-cell 

interaction distances prior to adhesion probably due to low expression of selectins and 

CAM by brain endothelium. In addition, the low levels of selectin and CAM expression 

by hCMEC/D3 may not be sufficient to induce firm adhesion between T cells and 

endothelium, thereby leading to leukocyte detachment after short interaction with 

BEe. By contrast, in inflammatory conditions, CAM and selectins are overexpressed by 

brain endothelium and T cells straight firmly adhered with very short cell-cell 

interaction and rare detachment. 

Due to technical limitations of acquisition of images at 1 frame/sec, we were 

not able to quantify leukocyte rolling. In agreement with our results, it has been 

reported that the rolling of T lymphocytes on immobilized P-selectin last from 0 to 30 

seconds with a displacement of 600 to 800 Jlm (Lee, Kim et al. 2012), but rolling of 

leukocyte on HUVEC was estimated to be much faster, at about 10 Jlm/s (Burton, 

Butler et al. 2011), whereas in vivo leukocyte rolling on mouse post capillary venules 

and on venules was 70 Jlm/s (Su, Lei et al. 2012) and 30 Jlm/s (Westmuckett, Thacker 
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et al. 2011), respectively, using a setup that acquired 30 frames/sec. Indeed, under 

inflammatory conditions, most of the leukocyte-endothelial cell interaction distances 

fell below the threshold of 24.62 11m in our experimental setup. Then, we concluded 

that in order to confirm whether leukocyte rolling was being determined, further 

experiments needed to be performed to improve the acquisition system in order to 

capture 20-30 frame/sec. Nevertheless, cell-cell interaction distances and transient 

adhesion measurements gave important information about early leukocyte trafficking 

in vitro. 

Taken together our results show that cytokines (TNFa and IFNy) increased 

VCAM1, ICAM1, and P- and E-selectin expression on hCMEC/D3 cells which is 

associated with increased THP-1 and Jurkat adhesion on both assays used. The flow­

based model, mimicking the physiological conditions characterized by shear stress, 

results in a more appropriate model to study leukocyte adhesion on human brain 

endothelium in vitro, however far to mimic in vivo conditions. 

In this chapter we presented evidence that both static and flow-based in vitro 

assays to study leukocyte adhesion on human brain endothelium, using hCMEC/D3 

cells, are valuable model systems to study leukocyte trafficking under both basal and 

cytokine-stimulated conditions with the advantages and disadvantages reported in 

Table 3.1 and 3.3. However, we obtained more evident and consistent results using the 

flow-based model mainly due to the continuous passage of leukocytes on EC (shear 

stress) that reduced weak and unspecific leukocyte adhesion. 
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STATIC (96 well plate) 

I + 
Protein 
expression 

Leukocyte 

Adhesion 

High sensitivity 
(ELISA) 

Fast, 
easy and cheap 

Time-consuming 

High unspecific 
adhesion, 
experimental 
variability 

FLOW (lbidi4D chamber) 
+ 

Fast (immunofluorescence) 

more physiological conditions, 
high specificity and sensitivity, 
opportunity to quantify more 
parameters and detects small 
changes 

Low sensitivity 

Longer, 
technically 
more difficult 

and more 
expensive 

Table 3.3: Advantages (+) and disadvantages (-) of static and flow-based adhesion 

systems. 

3.5 Conclusions 

Results show that the hCMEC/D3 cell line is an appropriate in vitro model of the 

human BBB t o study leukocyte adhesion in neuroinflammation and that the flow-based 

system represents a significant improvement to study leukocyte trafficking over 

previous stati c assays, where cells can be analyzed by fluorescence and harvested for 

further an alysiS. 
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Chapter 4: The role of endothelial hsa-miR-126 
in leukocyte adhesion to human brain endothelium 

4.1 Introduction 

Recent studies have identified miRs as key regulators of a vast number of 

biological processes including the development of different physiological systems and 

the maintenance of cellular homeostasis and normal function. Regulatory miRs are 

also involved in inflammation (Dai and Ahmed 2011) and autoimmunity (Ceribelli, 

Satoh et al. 2012). Only in the last years have some miRs been characterised as 

regulators of the endothelial inflammatory response (Zhou, Wang et al. 2011; Rippe, 

Blimline et al. 2012), leukocyte trafficking (Harris, Yamakuchi et al. 2008; Yoshizaki, 

Wakita et al. 2008; Schmidt, Spiel et al. 2009) and CAM (Kuehbacher, Urbich et al. 

2007; Fish, Santoro et al. 2008). The au BBB group in collaboration with Drs. Arie 

Reijekerk and Helga De Vries (VU Medical Centre, Amsterdam, Netherlands) have 

recently published a study in which miR arrays were used to identify changes in miR 

levels in cytokine-stimulated and astrocyte-conditioned media-stimulated hCMEC/D3 

cells compared to unstimulated cells (Reijekerk, Lopez-Ramirez et aI., 2013). Of the 

miRs most altered by the combination of cytokines (Table 4.1), five miRs were 

selected, three up-regulated (hsa-miR-155, -146a and b) and two down-regulated (hsa-

miR-126 and -30c), to investigate their role in leukocyte adhesion to the human brain 

endothelium in vitro. These were identified as the highest fold change from basal 

levels (miRs-155, -146a and b, and -30c) or the most abundant endothelial miRs that 

showed a reduction in levels in response to cytokines (miR-126). Following this initial 
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screening, this chapter describes the role of miR-126 in leukocyte adhesion to 

hCMEC/D3 cells. 

miRs up-
I Fold 

miRs 
Fold I Highly \ Fold 

increase decrease expressed miRs decrease 
Most abundant regulated following 

down-regu lated 
following down-regulated following 

miRs in BEC by TN Fa+1FN'y 
TNFa+IFNy 

by TNFa+IFNy and 
TNFa+IFNy by TNFa+IFNy TNFa+IFNy 

and TNFa+ Il I treatment TNFa+ Il 
treatment andTNFa+ Il treatment 

Hsa-miR-720 Hsa-miR-155 4.5 Hsa-miR-30c 6.3 Hsa-miR-126 2.1 

Hsa-miR-21 Hsa-miR-146b-5p 3.0 Hsa-miR-27b 5.4 Hsa-miR-16 1.9 

Hsa-miR-1274b Hsa-miR-146a 2.5 Hsa-miR-324-sp 5.0 Hsa-miR-923 2.0 

Hsa-miR-126 Hsa-miR-21 * 2.5 Hsa-miR-301b 4.9 Hsa-miR-7a 2.4 

Hsa-miR-923 Hsa-miR-23b 4.6 Hsa-miR-7f 2.6 

Hsa-let-7a Hsa-mi R-l7* 4.0 Hsa-miR-1sb 2.3 

Hsa-let-7f Hsa-mi R-148b 3.9 

Hsa-miR-1sb Hsa-miR-31 * 3.9 

Hsa-miR-7b Hsa-miR-361-sp 3.8 
Hsa-miR-128 3.8 

Table 4.1: List of selected miRs up/down-regulated by cytokines in cultured human 

brain endothelium. Complete list: 
(http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE44694). 

Previous works have shown that the endothelial miR-126 was able (i) to 

suppress lung metastasis in breast cancer in mice (Png, Halberg et al. 2012; Zhang, 

Yang et al. 2013), (ii) to regulate human hematopoietic stem/progenitor cell trafficking 

from the bone marrow to peripheral sites (Salvucci, Jiang et al. 2012), (iii) to decrease 

adhesion migratory and invasive capacity of human non-small cell lung cancer cells 

(Crawford, Brawner et al. 2008) and (iv) to decrease human neutrophil adhesion to 

HUVEC through direct regulation of VCAM1 expression at the posttranscriptionallevel 

(Harris, Yamakuchi et al. 2008). In this study, first, we investigated whether modulating 

endothelial hsa-miR-126, either by decreasing or increasing miR-126 expression in 

hCMEC/D3 cells could influence the inflammatory response by altering leukocyte 

adhesion (T cells, monocytes and PBMC) to brain endothelium. Then, possible 

predicted targets of miR-126 involved in leukocyte adhesion were selected using 

bioinformatic databases. Finally, whether endothelial hsa-miR-126 modulated 
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regulated levels of the selected predicted targets was tested potentially providing a 

mechanism for its effect on leukocyte adhesion. 

4.2 Aims 

First, a suitable method to modulate endothelial miR levels in hCMEC/D3 cells 

was investigated. Then static leukocyte adhesion assays were employed to determine 

the role of the five selected miRs on leukocyte adhesion (T cells) to brain endothelium. 

Finally, the effect of varying levels of miR-126 in BEC on T cell, monocyte and PBMC 

adhesion to endothelium and its putative mechanism of action were further 

investigated. 
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4.3 Results 

4.3.1 Role of seeding cell density on hCMEC/D3 cell confluence 

To study cytokine-induced leukocyte adhesion, confluent monolayers of BEC 

are required whereas modulation of endothelial miRs by lipofection usually requires 

non-confluent cells in order to achieve maximal transfection efficiency. Therefore, we 

first investigated the relationship between seeding cell density and confluence at 

different key time-points. To determine whether hCMEC/D3 cells were able to form 

confluent monolayers within 22-24 h, 0.5, 1, 1.5 and 2xlOs cells/cm2 were seeded as 

described in Section 2.2.1 in 2 cm2 plates, and, random phase-contrast pictures were 

taken at 19, 24,42,48 and 72 h after seeding. We observed 70-80 % of hCMEC/D3 cell 

confluence at 24 h when 1.5x10s cells/ cm2 were plated, and at 48 h this density of 

hCMEC/D3 cells formed a 100% confluent monolayer (Fig. 4.1). At 72 h, this seeding 

cell density of hCMEC/D3 cells maintained a confluent monolayer. The other tested 

seeding cell densities, both at 24 and at 48 h, generated either sub-confluent (0.5 and 

1x10s cells/cm2) or supra-confluent (2x10s cells/cm2) hCMEC/D3 monolayers not 

optimal for transfection of miR modulators (Fig. 4.1). 

Therefore, a cell seeding density of 1.5x10s cells/cm2 was used in all further 

experiments, in order to achieve 70-80% hCMEC/D3 cell confluence at 24 h, optimal 

for lipofection studies, and 100% hCMEC/D3 confluent monolayer at 48 h, optimal for 

cell-cell adhesion studies. 
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Fig. 4.1: Cell density of hCMEC/D3 cells at different times after seeding. hCMEC/D3 
cells were seeded at different densities (0.5, 1, 1.5 or 2xlOs cells/cm2) and phase­
contrast pictures were taken at 19, 24, 42, 48 and 72 h after standard incubation (3rC, 
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42h 

48h 

72h 

5% C02) in complete media. hCMEC/D3 cell confluence was studied particularly at 24 h 
and 48h which are the start and end points of the cell transfection. Results are from 
three experiments in duplicate. Representative images at magnification x10 are shown. 
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4.3.2 Lipofection of microRNA modulators in hCMEC/D3 cells 

It has been shown that miR expression is species-, tissue- and cell-specific. It is 

possible to modulate endogenous levels of miRs by introducing synthetic miR mimics 

or inhibitors. Here, to study the role of endothelial cytokine-regulated miRs in 

leukocyte adhesion in vitro, we modulated specific endothelial miRs in hCMEC/03 cells 

by transfection either with miR precursors (pre-miRs), that are incorporated into RISC 

and behave like endogenous miRs hence increasing their levels, or with 

oligonucleotides with complementary sequence to mature miRs thereby blocking their 

biological function and/or reducing levels of endogenous miRs ('antagomirs' or anti-

miRs). 

One of the most efficient approaches to introduce small RNA or miRs into 

cells to modulate their expression is by lipofection. Commercially available complexes 

to transfect small RNA or miRs require cells to be sub-confluent. To transiently 

modulate miRs in hCMEC/03 cells, we tested two reagents, Lipofectamine® 2000 and 

Siport™ to transfect both miRs mimics and the inhibitors. hCMEC/03 cells were four 

times more efficiently transfected with hsa-pre-miR by Siport-formed complexes than 

Lipofectamine reagent (Fig. 4.2). Indeed, using a Cy3-labelled pre-miR, the median 

fluorescence of Siport™ reagent-transfected cells was four times higher than those 

transfected with Lipofectamine® 2000 (Fig. 4.2 A). Similarly, the percentage of 

fluorescently-Iabelled hCMEC/03 cells was 1.5 fold higher than those transfected with 

Lipofectamine® (Fig. 4.2 B). In contrast, hCMEC/03 cells were more efficiently 

transfected with anti-miR by Lipofectamine® 2000 (Fig. 4.2 Band 0). Using Cy3-labelled 

anti-miR the median fluorescence of cells was seven times higher when cells were 

transfected with Lipofectamine® 2000 (Fig. 4.2 0), while only a slight but significant 
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increase in the percentage of transfected cells was observed with the same 

transfection reagent when compared to Siport™ (Fig. 4.2 D). 

In all further experiments Lipofectamine® 2000 and Siport™ were used to 

transfect hCMEC/D3 cells with anti- and pre-miRs, respectively. 
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Fig. 4.2: Siport™ and Lipofectamine® 2000 mediate efficient Pre- and Anti-miR 
transfection in hCMEC/D3 cells, respectively. 70% confluent hCMEC/D3 cells were 
transfected with Cy3-premiR (A and C) or Cy3-antimiR (8 and D) using either Siport™ or 
Lipofectamine® 2000 reagents and 48 h later transfection efficiency was quantified by 
FACS. A. and B. Median fluorescence is expressed in arbitrary units. C. and D. 
Percentage of fluorescent cells are the positive transfected cells in the sample. 
Experiments were carried out three times with three or two replicates. Data are mean 
±SEM (*P<O.OS, ** P<O.Ol.* significantly different between transfection reagents). 

143 



Chapter 4: Role of endothelial hsa-miR-126 in leukocyte adhesion to human broin endothelium 

4.3.3 Screening of five selected TNFa. and IFNy-regulated endothelial miRs for static 

Jurkat leukocyte adhesion 

To study the role of endothelial miRs in leukocyte adhesion we screened five 

miRs using the static adhesion assay of Jurkat T cell adhesion to confluent hCMEC/D3 

cells. The inflammatory miRs hsa-miR-155, -146a and b were up-regulated in 24 h 

TN Fa. and IFNy-stimulated hCMEC/D3 cells while hsa-miR-30c and -126 were either the 

miR with the highest fold down-regulation or the most abundant miR which was down 

regulated by cytokines, respectively (Table 4.1). 

Increasing the levels of hsa-miR-155 increased Jurkat adhesion to 

unstimulated hCMEC/D3 cells compared to Jurkat adhesion on scrambled hsa-pre-miR 

(control) transfected hCMEC/D3 cells (Fig. 4.3 D). By contrast, increased levels of hsa-

miR-126 reduced Jurkat adhesion to both unstimulated and cytokine-stimulated 

hCMEC/D3 cells (Fig. 4.3 E). Pre-miR-146a decreased Jurkat adhesion to unstimulated 

cells (Fig. 4.3 A), but none of the other treatments including modulation of miR-30c 

and miR-146a and b levels had any significant effect on Jurkat T cell adhesion to 

hCMEC/D3 cells (Figs. 4.3 A, B and C). Taken together, these results showed that 

modulation of endothelial hsa-miR-126 and -155 levels in endothelium had significant 

effects on Jurkat adhesion to hCMEC/D3 cells using a static assay. For this reason hsa-

miR-126 and 155 merited further studies to determine their role in leukocyte 

adhesion. 
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Fig. 4.3: Increased levels of hsa-miR-126 and hsa-miR-1SS affect Jurkat static 
adhesion on hCMEC/03 cells. hCMEC/D3 cells were transfected with scrambled Pre­
miR (control) or Pre-miR-, A. -146a B. -146b, C. -30c, O. -155 and E. -126 followed by 
treatment with a combination of cytokines (TNFa + IFNy) at different doses for 24h. 
Fluorescence of adhered Jurkat is expressed in comparison with unstimulated cells. 
Data are mean ±SEM (* ,#P<0.05**,##P<0.01. # significantly different compared to 
unstimulated cells *significantly different between Pre-miR and scrambled control). 
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4.3.4 Hsa-miR-126 is down-regulated in TNFa- and IFNy-stimulated hCMEC/D3 cells 

Hsa-miR-126 was found to modulate Jurkat adhesion (Fig. 4.3) and its levels 

appeared reduced in cytokine-stimulated hCMEC/D3 cells as detected by the Agilent 

vB miR microarray platform (Reijerkerk, Lopez-Ramirez et al. 2013). We then 

confirmed hsa-miR-126 down-regulation in cytokine-stimulated and in hsa-anti-

miR126-transfected hCMEC/D3 cells by qRT2-PCR. The results of qRT
2
-PCR were in 

agreement with the results of miR array analysis. We found that hsa-miR-126 was 

down-regulated by cytokines (TN Fa- and IFNy) at 1 ng/ml. In addition, hsa-anti-miR-

126 further reduced hsa-miR-126 levels both in the absence and presence (1 ng/ml) of 

cytokines in hCMEC/D3 cells. 
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Fig. 4.4: hsa-miR-126 down-regulation in hCMEC/D3 cells. hCMEC/D3 cells were 
transfected with scrambled anti-miR or anti-miR-126 followed by treatment with a 

combination of cytokines (TNFa + IFNy) at different doses (0.1, 1 ng/ml) for 24 h. The 
expression of mature miR-126 was measured by qRT2-PCR. The small nuclear RNA U6 
was used as internal control. Experiments were carried out three times with two 
replicates (#p<O.OS, ** P<O.Ol # significantly different compared to unstimulated cells 
*significantly different between anti-miR and scrambled control). 
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4.l.5 Hsa-miR-126 modulates Jurkat static adhesion on hCMEC/Ol cells in both 
control and inflammatory conditions 

After confirming that hsa-miR-126 levels are down-regulated in cytokine-

treated hCMEC/D3 cells (Fig. 4.4) and finding that hsa-pre-126 reduced Jurkat adhesion 

on both unstimulated and cytokine stimulated EC (Fig. 4.3, reproduced in Fig. 4.5 A), 

we investigated Jurkat static adhesion with reduced hsa-miR-126 expression in 

hCMEC/D3 cells modelling the conditions observed in cytokine-activated cells. 

Decreasing hsa-miR-126 levels in resting hCMEC/D3 cells increased Jurkat 

adhesion under static conditions (Fig. 4.5 B). However, when hCMEC/D3 cells were 

stimulated with a combination of cytokines (TNFa and IFNy), further down-regulation 

of hsa-miR-126 levels by anti-miR transfection did not result in a further increase in 

cytokines -induced Jurkat adhesion (Fig. 4.5 B). 

Jurkat adhesion on control hCMEC/D3 cells, transfected with hsa-pre-

scrambled or hsa-anti-scrambled, was comparable with Jurkat adhesion on non 

transfected cells (see Fig. 3.6). 
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Fig. 4.5: hsa-miR-126 modulates Jurkat (T cell) static adhesion on hCMEC/D3 cells. 

hCMEC/D3 cells were transfected followed by treatment with a combination of 

cytokines (TN Fa + IFNy) at different doses (0.1, 1 ng/ml) for 24 h. Fluorescence of 

adhered Jurkat (T cell) is expressed as all conditions over scrambled unstimulated. A. 
Scrambled Pre-miR or Pre-miR-126 were used to transfect hCMEC/D3 cells B. 
Scrambled Anti-miR or Anti-miR-126 were used to transfect hCMEC/D3 cells. 
Experiments were carried out three times with six replicates. Data are mean ±SEM 
(*,P<O.OS, ##P<O.Ol, # significantly different vs. unstimulated cells, * significantly 
different between scrambled and miR transfections). 
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4.3.6 Hsa-miR-126 modulates THP-l static adhesion on hCMEC/D3 cells in both 
physiological and inflammatory conditions 

As said above, MS lesion infiltrates include activated macrophages, which 

adhere and migrate from the blood into the brain during inflammation. We evaluated 

whether hsa-miR-126 also regulated monocytic adhesion to hCMEC/D3 cells under 

basal and inflammatory conditions using the static adhesion assay. 

Increased levels of endothelial hsa-miR-126 (hsa-pre-miR-126) significantly 

reduced THP-1 adhesion by 5-10% on both stimulated and cytokine-treated EC (Fig. 4.6 

A). Decreased levels of endothelial hsa-miR-126 (hsa-anti-miR-126) did not significantly 

affect monocytic adhesion on hCMEC/D3 cells when compared with the control (hsa-

pre-scrambled) (Fig. 4.6 B). 

THP-1 adhesion on control hCMEC/D3 cells, transfected with hsa-pre-

scrambled or hsa-anti-scrambled, was comparable to Jurkat adhesion on non 

transfected cells (see Fig. 3.7). 
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Fig. 4.6: Hsa-miR-126 modulates THP-l (monocyte) static adhesion to hCMEC/D3 
cells. hCMEC/D3 cells were transfected followed by treatment of combination of 

cytokines (TNFa + INFy) at different doses (O, 0.1, 1 ng/ml) for 24h. Fluorescence of 
adhered THP-1 is expressed as all conditions over scrambled unstimulated. A. 

Scrambled Pre-miR or Pre-miR-126 were used to transfect hCMEC/D3 cells B. 
Scrambled Ant i-miR or Anti-miR-126 were used to transfect hCMEC/D3 cells. 
Experiments were carried out eight and three times with six replicates, respectively. 
Data are mean ±SEM (*P<0.05, ## P<O .Ol, # significantly different vs. unstimulated cells, 

* significa nt ly different between scrambled and miR transfections). 
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4.3.7 Hsa-miR-126 modulates Jurkat flow-based adhesion on hCMEC/D3 cells in both 
physiological and inflammatory conditions 

Hsa-miR-126 plays a role in Jurkat T cell adhesion to hCMEC/D3 cells under 

static conditions. Here, we carried out the studies on hsa-miR-126 in a leukocyte 

adhesion assay using the flow-based in vitro model characterized in Chapter 3. 

Increased levels of endothelial hsa-miR-126 in hCMEC/D3 cells prevented shear 

resistant Jurkat cell adhesion to endothelium by almost 50% in both basal and 

cytokine-stimulated conditions (Figs. 4.7 A and C). Decreased hsa-miR-126 levels in EC 

cells, increased Jurkat adhesion by 50% (Fig. 4.7 B), but no further increases in Jurkat 

adhesion were observed to cytokine-stimulated cells under flow conditions (Fig. 4.7 D). 

Similar numbers of Jurkat cells were found to firmly adhere to control hCMEC/D3 cells 

both in hsa-pre-miR-scrambled and hsa-anti-miR-scrambled transfected cells. 

4.3.8 Hsa-miR-126 modulates in THP-l flow-based adhesion on hCMEC/D3 cells in 
both physiological and inflammatory conditions 

We also evaluated the role of hsa-miR-126 in monocyte shear-resistant 

adhesion on hCMEC/D3 cells using the flow-based in vitro model. 

Increased levels of endothelial hsa-miR-126 in hCMEC/D3 cells prevented shear 

resistant adhesion of THP-l cells to endothelium by almost 50% in both basal and 

cytokine-stimulated conditions (Figs. 4.8 A and C). Decreased endothelial hsa-miR-126 

levels promoted monocyte adhesion by 50% (Fig. 4.8 B) and 20% (Fig. 4.8 D) to 

unstimulated and cytokine-stimulated hCMEC/D3 cells, respectively. 
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Fig. 4.7: hsa-miR-126 modulates Jurkat flow-based adhesion on hCMECjD3 cells. 
hCMEC/D3 cells were transfected followed by treatment with a combination of 
cytokines at different doses (0, 0.1, 1 ng/ml) for 24 h. Jurkat cells adhered to the 
hCMEC/D3 cell monolayer were counted/field of view (FOV). A. and C. Scrambled Pre­
miR or Pre-miR-126 were used to transfect hCMEC/D3 cells B. and D. Scrambled Anti­
miR or Anti-miR-126 were used to transfect hCMEC/D3 cells. Experiments were carried 
out three to five times with five replicates. Data are mean ±SEM (*,P<O.05**p<O.Ol, 
###p<O.OOl # significantly different compared to unstimulated cells, * significantly 
different between scrambled and miR transfections). 
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4.3.9 Hsa-miR-126 modulates in PBMC flow-based adhesion on hCMEC/D3 cells in 
inflammatory conditions 

Given the effects of hsa-miR-126 on monocyte and T cell adhesion, we next examined 

whether endothelial hsa-miR-126 plays a role in the adhesion of PBMC from MS 

patients to cytokine-stimulated hCMEC/03. An increased level of endothelial hsa-miR-

126 significantly reduced PBMC adhesion to cytokine-treated hCMEC/03 by almost 40 

and 50% in all experiments (Fig. 4.9 A). Cytokine-stimulated control endothelial cells 

(scrambled-transfected) firmly captured -BO PBMC/FOV (Fig. 4.9 A) in all three 

experiments performed with MS patient samples. In addition, when PBMCs firmly 

adhered to hCMEC/03 cells, initially single cells were captured individually, followed by 

in some areas, the formation of racemes of adhered PBMC around the previously 

adhered cell as shown in Fig. 4_9 B. 

As a preliminary experiment, we also tried to identify which subpopulations 

of leukocytes adhered to cytokine-stimulated hCMEC/03 cells, using markers for T 

helper cells (C04), cytotoxic T cells (COB), monocytes (C014) and NK cells (C056) (Fig. 

4.11). In this pilot experiment, CDB+ cells appeared to be preferentially adherent in the 

conditions studied. However, these are the results from one single experiment with 

PBMC from patient MS3 and thus there were insufficient replicates in this experiment 

to draw firm conclusions. 

At the same time the percentages of C04, C08, C014 and C056 subpopulations in the 

four PBMC samples were measured by FACS by Dr Laura Edwards (Hospital of 

Nottingham, UK)(Fig. 4.10). The results showed that all four subpopulations were 

present in the three samples in approximately the same proportion. Within each 

sample, the proportion of monocytes was much lower that of T cells and NK cells. In 
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addition, samples MS1 and MS3 contained a higher proportion of the subpopulations 

studied than sample MS2. 
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Fig. 4.9: Hsa-miR-126 regulates flow-based adhesion on hCMEC/D3 cells of PBMC 
from MS patients. hCMEC/D3 cells were transfected followed by treatment with a 

combination of cytokines (TNFa. + IFNy) at 1 ng/ml for 24 h. A. Adhered PBMC to 
hCMEC/D3 cell monolayer were counted/field of view (FOV). B. Representative 
pictures of adhered PBMCs on cytokine-stimulated hCMEC/D3 cell monolayers 
transfected with hsa-pre-miR (c. and d.) or with hsa-pre-scrambled (a. and b.). 
Experiments were carried out two times with eight FOV. Data are mean ±SEM 
(***P<O.001, * significantly different between scrambled and miR transfections). 
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Fig. 4.10: Quantification of monocyte, T cell and NK (natural killer) cell 
subpopulations by FACS in MS patient PBMC (peripheral blood mononuclear cells) 
and percentages of C04, C08, C014 and COS6 positive cells in the samples. 

Fig. 4.11 (next page): Identification of monocyte, T cell and NK cell subpopulations in 
PBMC of MS patient 3 adhered to hCMEC/03 cells by immunostaining. A. hCMEC/D3 
cells transfected with SCRAMBLED Pre-miR and stimulated with a combination of 

cytokines (TNFa + IFNy) at 1 ng/ml and B. hCMEC/D3 cells transfected with Pre-miR-
126 and stimulated with a combination of cytokines (TNFa + IFNy) at 1 ng/ml. Bar -

1001lm. 
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4.3.10 Systematic collation of hsa-miR-126 predicted targets available on-line 

We observed that hsa-miR-126 plays a role in monocyte, T cell and PBMC 

adhesion to brain endothelial monolayers, but we do not know the molecular 

mediators for this observed biological response. Mature miRs sequences become 

competent following biogenesis to target mRNAs for decay or for translational arrest 

(Chedrimada 2007, Tjsterman 2004 and Pillai 2007). As described in Section 1.6.4, 

mRNAs are targeted by the mature miR by base-pairing between the miR seed 

sequence, nt 2-8 numbered from the 5'-end of the miR, and 3'-UTR of the target 

mRNA. Here, we systematically collated predicted targets of hsa-miR-126 using on-line 

available databases based on different algorithms, to predict target gene transcripts. 

Seven on-line available databases of predicted targets for hsa-miR-126 were consulted 

and the collated gene targets are listed according to database in alphabetic order 

(Tables 4.2 A, B and C). We found more than 900 predicted targets for hsa-miR-126 

when Mirbase (Table 4.2 A) and Microcosm (Table 4.2 B) were used, while the number 

of predicted transcripts was hardly reduced when Target Scan, MicroRNA.org, 

DianaLab-Microt, DianaLab, Pictar, TargetMier and MirDB databases were used. We 

also listed the twenty predicted and validated hsa-miR-126 targets collected in the 

Tarbase 6.0 database. 
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c D. 
TargetScanHuman 5.2 

Diana Lab 
PicTar 

Target 
MiRDB Mlcrot Miner 

TARBASE 

ADAM9 IGF1R 
AGAP2 IGSF9B 
AGPAT3 IL21R 
AIPLl IRSl 
AKAP13 IRS2 
ALG10B ITIH5 
AMMECR1L KANK2 
ANTXR2 KAZN 
APOAS KBTBD8 
ARAP2 KCMFl 
ARL8A KCNJl 
ARMCXl KlAA1456 
ARSA KIAA1715 
ATG2B KIAA1755 
ATG7 KLHL3 
B4GALT4 L2HGDH 
BCL2 LARGE 
BICD2 LARP6 
C14orfl84 LPAR2 
C17orf51 LRP6 
Clorf55 LYNXl 
C2orf55 MAGIX 
C2orf69 MAP3K13 
C5orf47 MCTS1 
CAMSAPl MGEA5 
CDKN2AIP MGRNl 
CHST3 MICAL3 
CHST6 MMGTl 
CKMT2 NFASC 
CNKSR2 NOSl 

CNP NR2F2 
CRK NUAKl 

CTSB OPA3 
CXorf23 ORMDL3 
DFFB PARP16 
DIP2C PARVA 

EFHD2 PBLD 
EGFL7 PCDH7 
EMILlN3 PEX5 
EP400 PHF15 
ERAPl PHF21B 

EVI5 PHOSPHOl 

F8A1 PIK3CD 
FAM118A PIK3R2 

FBXL2 PKD1Ll 
FBX033 PKD2 
FERMTl PLA2G12A 
FOX03 PLK2 

FRS2 PLXNB2 
GALNT 12 PMMl 
GATAD2B PPP3CB 
GNA13 PTPN18 
GOLPH3 PTPN9 
HEPACAM ODPR 
HERPUDl RGS3 

RNF165 
RNF182 
RPL27A 
SAMD12 
SDC2 
SEMMD 
SERPINB13 
SLC12A3 
SLC15A4 
SLC41A2 
SLC7A5 
SLC7A8 
SMOC2 
SOX2 
SOX21 
SPG20 
SPONl 
SPREDl 
SRSFl l 
STX12 
TEL02 
THAP6 
TMEM132B 
TMEM40 
TNFRSF10 
TOMl 
TRAF7 
TRPC4AP 
TSCl 
nC22 
UBE2a1 
UBaLN2 
UNC11 9B 
VPS53 
ZADH2 
ZNF131 
ZNF219 
ZNF470 
ZNF611 
ZNF709 
ZNF784 
ZNF813 

ADAM9 
AKAP13 
B4GALT4 
BAKl 
BMPl 
CAMSAPl 
CDKN2AIP 
CRK 
DIP2C 
EGFL7 
FRS2 
GOLPH3 
HERPUDl 
IRSl 
ITGA6 
KANK2 
PHF15 
PLK2 
PLXNB2 
PTPN9 
aDPR 
RGS3 
RNFl65 
SLC7AS 
SPREDl 
TRAF7 
ZNF131 
ZNF219 

CARF 
CRK 
FBX033 
GOLPH3 
HOXA9 
IRSl 
ITGA6 
KIAA0934 
PHF15 
PLK2 
PTPN9 
RGS3 
SLC7A5 
SPREDl 
TOMl 

NM_OO0368 
NM_018440 
NM_021961 
NM_030650 
NM_ 144778 
NM_207304 

PLXNB2 MirDB 
CCNE2 
CRK 
E2F1 
EGFL7 
HOXA9 
IRSl 
IRS·1 
p85beta 
PIK3R2 
PLK2 
RGS3 
SLC45A3 
SOX2 
SPRED l 
TOM1 
TWFl 
TWF2 
VCAM1 
V·CRK 
VEGFA 

Table 4.2: lists of hsa-miR-126 predicted targets (gene names) available on-line 
grouped by database and sorted in alphabetical order. A. Mirbase database B. 
Microcosm database C. Target Scan, DianaLab Microt, Target Miner and MirDB 

databases. D. Tarbase 6.0, listed all experimentally validated hsa-miR-126 targets A" B. 
and C. List of all genes predicted as target of hsa-miR-126 or hsa-miR-126-3p. 
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4.3.11 Selection of hsa-miR-126 predicted target genes with a role in leukocyte 
trafficking 

In order to select specific predicted hsa-miR-126 targets involved in leukocyte 

trafficking across hCMEC/03 cells, we shortlisted all the predicted hsa-mir-126 targets 

involved in leukocyte rolling or adhesion from all seven databases (Table 4.2). In 

addition, we selected those genes that are expressed at the mRNA level under 

physiological and/or inflammatory conditions (Lopez-Ramirez MA, PhO thesis). CAM, 

selectins and chemokines are molecules produced, expressed and/or released by 

proinflammatory cytokine-stimulated EC, which promote leukocyte adhesion as 

described in Section 1.4.4. 

HEPACAM (hepatocyte cells adhesion molecule), CCL2, CXCL12, CXCR4, ICAM4 

and VCAM1 are predicted targets according to these criteria (Fig. 4.12). The HEPACAM 

gene encodes the HEPACAM protein which is an immunoglobulin-like cell adhesion 

molecule and its function is to modulate adhesion and migration in cancer (Zhang, 

Moh et al. 2010). ICAM-4 is mainly expressed by erythrocytes, promoting sickle red 

blood cell adhesion to the endothelium (Zennadi, Whalen et al. 2012). CCL2 and 

CXCL12 are two chemokines. CCL2 recruits monocytes, memory T cells, and dendritic 

cells to sites of inflammation while CXCL12 stimulates transmigration of C04(+) and 

C08(+) T cells, C019(+) B cells, and C014(+) monocytes across the BBB (Liu and 

Oorovini-Zis 2009; Man, Tucky et al. 2012). Moreover, Increased expression of CCL2 on 

cerebral endothelium followed by LPS or a combination of TNF-a and IFN-,,(, but not 

IFN-,,( alone, suggests an important role for these chemokines in regulating the 

trafficking of inflammatory cells across the BBB in CNS inflammation (Liu and Oorovini-

Zis 2012). VCAM1 is a well-studied adhesion molecule, which has been predicted as a 
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target for hsa-miR-126 and validated in HUVEC cells (Fig. 4.12 B), but no publications 

were found about VCAM1 as target of miR-126 in human brain endothelium. For these 

reasons we selected the VCAM1 and CCL2 genes to evaluate whether their regulation 

by mature hsa-miR-126 in hCMEC/D3 cells at the post-transcriptional level may be 

responsible for its role in modulation of leukocyte adhesion. 

Function Database 
Expression in Selected for 

Gene hCMEC/D3 cells further study 
hsa·mIR-126 

HEPACAM Hepatic and glial cell adh mol TARGETSCAN yes 

CCL2 Chemokine ligand 2 MIRBASE - MICROCOSM yes V 

CXCL12 Chemokine ligand 12 MIRBASE - MICROCOSM yes 

CXCR4 Chemokine receptor 4 MIRBASE - MICROCOSM yes 

ICAM4 Intercellular adhesion molecule 4 MIRBASE - MICROCOSM yes 

VCAMl Vascular adhesion molecule 1 TAR BASE yes 

A. 

--- ' --
I ,'0 '" DO 40 i&? iOO va eo 8~ 
SoqUQnce NR 019695 : Hono SapllI"' rnicroRNA. 126 (MIR1 lS) . mCfoRNA ' i 

?=;p;g?l;: m;;sg:q;;ngm£g:ggq:::::g;q?gpgg!!g;:;;t!gq:~gg§ 
I 

Gene; - E><on I 

Genes 

'''' '1~==::====-~~~~ tm~ft·I 2S· 

» 
____________ ... R· l~ 

hsa-miR-126 3' G ~ I ~ u A ~ ~ A ~ I ~ I ~ ~ I - I ; ~ u ~ I ~ ~ I ~ ~ ~ C , U 5' 

mRNA VCAM1(CD106) 5' T G T A - TAG T ACT G G CAT G G T A eGG 3' 

B. 

Fig. 4.12: VCAM1 and CCl2 are hsa-miR-126 predicted gene targets. A. All the genes 
of proteins involved in leukocyte trafficking and expressed by hCMEC/D3 cells were 
selected from all predicted targets of hsa-miR-126 listed in FigA.11. Amongst these 
hsa-miR-126 targets, two were further selected as candidates to be further 
investigated - VCAM1 and CCl2 as the most likely candidates to regulate leukocyte 
adhesion to human brain endothelium. B. hsa-miR126 is partially complementary to a 
region in the VCAM1 mRNA 3'-UTR. 
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4.3.12 Hsa-miR-126 modulates VCAM1 and CCl2 expression in hCMEC/D3 cells 

As shown in Chapter 3, VCAM1 was increased by combination of cytokines 

(TNFa + IFNy) in hCMEC/D3 cells in a dose-dependent manner. Here, we evaluated the 

effect of hsa-miR-126 on VCAM1 expression on hCMEC/D3 cells by ELISA. Furthermore, 

we investigated whether ICAM1 and ICAM2 expression was affected by hsa-miR-126 

by hCMEC/D3 cells, although they were not predicted targets of hsa-miR-126. 

Increased or decreased levels of hsa-miR-126 significantly reduced (Fig. 4.13 left) or 

enhanced (Fig. 4.13 right) VCAM1 expression at basal level by 30 % and 10%, 

respectively. When hCMEC/D3 cells were stimulated with a combination of cytokines 

(TNFa and IFNy), VCAM1 was significantly reduced by almost 25% by pre-miR-126 (Fig. 

4.13 right). However, further decreased hsa-miR-126 levels by anti-miR-126, already 

reduced by cytokines (TNFa and IFNy), did not further increase VCAM1 expression (Fig. 

4.13 right). Increased or decreased levels of hsa-miR-126, in both unstimulated and 

cytokine-stimulated hCMEC/D3 cells, did not change either ICAM1 or ICAM2 

expression (Fig. 4.13). 

CCl2 is another selected predicted hsa-miR-126 target as shown in Fig. 4.12 A. 

Here, we evaluated the effect of hsa-miR-126 on CCl2 expression in hCMEC/D3 cell 

supernatants by ELISA. Increased levels of hsa-miR-126 reduced (Fig. 4.14 B) CCl2 

expression in cytokine-stimulated conditions, but no changes were detected in 

unstimulated cells (Fig. 4.14 A). Decreased levels of hsa-miR-126 did not result in any 

significant differences in CCl2 expression by hCMEC/D3 cells (Figs. 4.14 C and D right). 
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Fig. 4.13: Hsa-miR-126 modulates VCAM1 expression in hCMEC/D3 cells in both basal 
and inflammatory conditions. hCMEC/D3 cells were transfected with the indicated 

oligonucleotides followed by treatment with a combination of cytokines (TNFcx. + IFNy) 
at different concentrations (0, 0.1 and 1 ng/ml) for 24 h. Anti-hurnan-VCAM1, -ICAMl 
and -ICAM2 monoclonal antibodies were used to detect VCAM1, ICAMl and ICAM2 
expression levels by ELISA. Experiments were carried out three times with three 
replicates. Data are mean ±SEM (* ,#p<O.05, ##p<O.Ol , ###p<O.OOl, # significantly 

different vs. unstimulated cells, * significant ly different between scrambled and miR 

transfections). 
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Fig. 4.14: Hsa-miR-126 modulates CCl2 expression in hCMEC/D3 cells in 
inflammatory conditions. hCMEC/D3 cells were transfected with the indicated 

oligonucleotides followed by treatment with a combination of cytokines (TNFa + IFNy) 

at different concentrations (0 and 1 ng/ml) for 24 h. Anti-human-CCL2 monoclonal 

antibodies were used to detect CCL2 expression levels by sandwich ELISA. Experiments 

were carried out four times with three replicates . Data are mean ±SEM (*p<O.OS, 
###p<O.OOl, # significantly different vs. unstimulated cells, * significantly different 

between scrambled and miR transfections). 
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4.3.13 Hsa-miR-126 does not modulate E- and P-selectin expression in hCMEC/D3 

cells 

In view of their role in leukocyte rolling, here we tested whether hsa-miR-126 

regulated E-and P-selectin expression on EC, even though they were not predicted 

targets of hsa-miR-126 in any databases (Table 4.2). No changes in E- or P- selectin 

were observed when levels of miR-126 were either increased or decreased (Fig. 4.15). 
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Fig. 4.15: Hsa-miR-126 does not modulate E- or P-selectin expression in hCMEC/D3 
cells under basal or inflammatory conditions. hCMEC/D3 cells were transfected with 
the indicated oligonucleotides followed by treatment with a combination of cytokines 
(TN Fa + IFNy) at different concentrations (0 and 1 ng/ml) for 24 h. Band C Anti­
human-E-selectin and A P-selectin monoclonal antibodies were used to detect E- and 
p-selectin expression levels by ELISA. Experiments were carried out three times with 
three replicates. Data are mean ±SEM. (#p<0.05, # significantly different vs. 
unstimulated cells). 
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4.4 Discussion 

Leukocyte adhesion at the BBB level is believed to be a critical step in leukocyte 

extravasation that characterizes neuroinflammatory diseases. Recently, miRs have 

been shown to regulate multiple aspects of endothelial biology, including 

inflammation, vascular disease and autoimmunity (Dai and Ahmed 2011 ; Urbich, 

Kuehbacher et al. 2008; Qin, Yang et al. 2012; Schroen and Heymans 2012). MiRs are 

known to regulate a large number of different mRNA targets (members of distinct 

signalling pathways) decreasing their expression (Lim, Lau et al. 2005; Guo, Ingolia et 

al. 2010), although quantitatively the changes are often small (Baek, Villen et al. 2008). 

Therefore, it has been reported that expression level changes of one single miR are 

significantly able to impact on the target gene expression and/or complex cellular 

processes (Inui, Martello et al. 2010). 

4.4.1 Modulation of endothelial microRNAs in hCMEC/03 cells 

In our study we used the hCMEC/D3 cell line, a simple and well characterised 

brain endothelial cell line (see Chapter 3) to study endothelial miRs in human brain 

inflammation (Romero, Weksler et al. 2013). 

We first demonstrated that miR levels could be successfully modulated in 

hCMEC/D3 cells, by transient transfection of either miR inhibitors or precursors, 

following specific times and reagent doses adapted from the supplier's protocol. When 

incubation times suggested by the manufacturer's protocol were used, we observed a 

low cytotoxic effects with the LipofectamineQl) 2000 reagent (not shown), possibly due 

to the high sensitivity to cationic liposomes of this cell line. For this reason, we used 

the experimental timeline depicted in Section 2.6. Another issue was to obtain a high 
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transfection efficiency suitable for the experimental assay (>80%). For this purpose, we 

adopted different reagents to transfect anti- and pre-miR, lipofectamine and Siport, 

respectively, with different transfection efficiencies perhaps due to the different 

oligonucleotide size and/or shape of these miR modulators. 

4.4.2 Deregulation of hsa-miR-126 in endothelium 

Brain endothelial hsa-miR-126 is down-regulated in cytokine-stimulated 

hCMEC/D3 cells at 24 h post stimulation. MiR-126 has been described as an important 

player in inflammation and in particular in vascular inflammation. When this project 

started, only Harris at al. had reported that miR-126 was involved in vascular 

inflammation in HUVEC cells, in particular in the modulation of neutrophil adhesion to 

these endothelial cells (Harris, Yamakuchi et al. 2008). Since then, miR-126 has been 

proved to be involved in inflammation in mouse kidney microvasculature 

(Asgeirsdottir, van Solingen et al. 2012), airway tissue (Collison, Herbert et al. 2011) 

and in human aortic EC (Kin, Miyagawa et al. 2012, Rippe, Blimline et al. 2012), in 

HUVEC (Dentelli, Rosso et al. 2010), colonic epithelial cells (Wu, Zikusoka et al. 2008), 

adipocytes (Arner, Mejhert et al. 2012) and circulating blood as marker for 

cardiovascular diseases, such as coronary artery disease and myocardial infarction 

(Fichtlscherer, De Rosa et al. 2010; Zampetaki, Willeit et al. 2012). Our data are in 

accordance with previous studies showing that hsa-miR-126 is reduced by cytokines 

(TNFu) in HUVEC (Harris, Yamakuchi et al. 2008) and in coronary artery disease, type 2 

diabetes (Zampetaki, Kiechl et al. 2010) and other inflammatory and/or autoimmune 

diseases triggered by prO-inflammatory cytokines such as TNF-u, Il-6, Il-3 and 

chamokines such as CCl2 (Suarez, Wang et al. 2010). However, this is not the case for 
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other immune-related conditions since in airway tissue miR-126 was found increased 

during chronic asthma (Collison, Herbert et al. 2011). 

In the context of the MS, miR-126 is decreased in peripheral blood of MS 

patients (Cox, Cairns et al. 2010) while it appears to be up-regulated in inactive MS 

lesions (Junker, Krumbholz et al. 2009). It is well known that in MS cerebral white 

matter there is an increase in blood vessel density and EC proliferation (Holley 2010, 

Zhong, Li et al. 2012), for this reason we can speculate that miR-126 was found 

increased because there were an increased vessel density due to angiogenesis, not 

because there was an actual up-regulation of miR levels within each EC. In addition, it 

has been reported that also C04+ T cells express miR-126 (Zhao, Wang et al. 2011), 

then the miR-126 up-regulation in inactive MS lesions can be due to the increase of 

infiltrated T cells although leukocyte activation within these lesions is minimal. An 

alternative explanation involves an increase in miR-126 levels exclusively in blood 

vessels without perivascular infiltrates. In any case these observations imply that miR-

126 is an important regulator in the early stage and in the chronic phase of 

inflammation, but possibly playing different roles within each phase. 

4.4.3 Role of endothelial hsa-miR-126 in leukocyte adhesion 

The role of brain endothelial hsa-miR-126 has not been described in leukocyte 

adhesion to human CNS endothelium before. We demonstrated that hsa-miR-126 is 

involved in the regulation of Jurkat and THP-1 adhesion to a human immortalized BEC 

line. Previously, it has been shown that increased levels hsa-miR-126 in HUVEC 

prevented HL-60 (human promyelocytic cell line) adhesion (Harris, Yamakuchi et al. 

2008). In cancer, a high level of hsa-miR-126 in human microvascular endothelial cells 
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has been shown to prevent primary human bronchial epithelial cell adhesion, 

migration and invasion (Crawford, Brawner et al. 2008). As a result, endothelial miR-

126 has been defined to playa dual role as a metastatic suppressor and a tumour 

suppressor in breast cancer, by reducing adhesion and migration of MDA-MB-231 

breast cancer cells towards mouse lung epithelium in vitro and in vivo (li, Shen et al. 

2009; Png, Halberg et al. 2012). 

We have detected changes in leukocyte adhesion due to modulation of hsa-

miR-126 in hCMEC/D3 cells using static conditions (described in Chapter 3). However 

we did not measured by real time PCR the miR-126 increase in hCMEC/D3 cells by pre-

miR-126 transfection, Dr. Lopez and Dr. Wu detected by RT2-PCR an increase of miR 

expression by thousand times following pre-miR trasfection (personal communication). 

We used a flow-based in vitro model (characterised in Chapter 3) to increase the 

sensitivity of the leukocyte adhesion assay, to observe small changes in adhesion due 

to modulation of miR levels and to mimic the characteristic shear stress that occurs in 

vivo. Therefore, the flow-based assay revealed changes in adhesion due to the 

endothelial hsa-miR-126, which were not detectable using the static assay. We 

presented for the first time an in vitro system to study leukocyte trafficking under flow, 

where brain endothelial miRs are modulated exogenously. 

4.4.4 Hsa-miR-126 plays a significant role in leukocyte adhesion on unstimulated 
brain endothelium 

Taking into account the observation that in cytokine-stimulated hCMEC/D3 

cells hsa-miR-126 is down-regulated, decreased hsa-miR-126 levels, to simulate the 

cytokines effect, in resting hCMEC/D3 cells led to increased adhesion of both T cells 

and monocytes and to increased endothelial VCAM1 basal expression, but not P- or E-
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selectin nor CCL2 and ICAMl. Furthermore, we reported for the first time that 

increasing hsa-miR-126 levels prevented T cell and monocyte adhesion to resting 

hCMEC/D3 cells and reduced basal VCAM1 expression, but not ICAM1, CCL2 and E­

selectin_ 

VCAM1 has been shown to be a hsa-miR-126 target in non-brain endothelial 

cells (Harris, Yamakuchi et al. 2008). Our observation that VCAM1 expression is 

modulated in BEC by hsa-miR-126 is in accordance with previous studies on HUVEC 

and hematopoietic stem/progenitor cells (Salvucci, Jiang et al. 2012; Harris, Yamakuchi 

et al. 2008). These findings suggest that hsa-miR-126 may be involved in leukocyte 

adhesion to endothelium, by modulating VCAM1, but probably not in rolling which 

mainly occurs via E-selectin (Sperandio, Pickard et al. 2006). This is in accordance with 

another previous study reporting that E-selectin is not regulated by hsa-miR-126 in 

renal microvasculature (Asgeirsdottir, van Solingen et al. 2012). However, miR-126-

mediated modulation of leukocyte adhesion could be due to other molecules involved 

in rolling and adhesion such as chemokines and CAM not studied here, that can be 

direct (Fig. 4.12) or indirect targets of hsa-miR-126. hCMEC/D3 cells, in addition to 

VCAM 1, CCL2 and selectins, express ALCAM (activated leukocyte cell adhesion 

molecule), ICAMI-5, MADCAM1 (mucosal vascular addressin cell adhesion molecule 1) 

and PECAM1 adhesion molecules known to be involved in the early step on leukocyte 

trafficking (Ley, Laudanna et al. 2007). 

Chemokines CCL3-5, -17, -19-21 and -22, CXCL9, -10 and -12, CX3CL1 and CXCR3 

and -4 receptors, which trigger lymphocyte adhesion to brain endothelium (Piali, 

Weber et al. 1998; Matsumiya, Ota et al. 2010)(see for reviews (Laudanna, Kim et al. 

2002; Charo and Ransohoff 2006; Constantin 2008), are all expressed by hCMEC/D3 
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cells and up-regulated by cytokines (http://www.ncbLnlm.nih.gov/projects/geo 

/query/acc.cgi?acc=GSE44694). Both CXCR4 and its ligand CXCLl2 (SOF-l) were 

putative targets for miR-126 and their regulation/expression playa critical role in C04+ 

and COS+ T cell adhesion to and migration across human BEC (Liu and Oorovini-Zis 

2009). In addition, it has been proposed that miRs can control signal transduction, 

targeting signalling pathway components, thereby potentially regulating indirectly the 

expression of endothelial cell surface molecules involved in leukocyte adhesion (Inui, 

Martello et aI.20l0). Indeed, it has been shown that Spredl is a direct target of miR-

126 (Fish, Santoro et al. 200S), and it is a protein phosphorylated by tyrosine kinases 

upstream of the signalling cascade of NF-KB, JNK and ERK (Mennicken, Maki et al. 

1999; Phoenix and Temple 2010; Meng, Cao et al. 2012). NF-KB and JNK are known 

transcription factors for E-selectin and CAM (VCAMl and ICAM1) (Meager 1999; 

Zhong, Li et al. 2012) and therefore the expression of these CAM may be indirectly 

affected by modulation of endothelial miR-126 levels, either promoting or repressing 

their levels through directly targeting Spredl. However, we did not observed any 

change in E-selectin expression at 24 h due to miR-126, in addiction Spredl has been 

considered to be involved mainly in angiogenesis and vascular remodelling but not in 

leukocyte adhesion to endothelium. 

MiR-126 gene targets may be targeted by other miRs expressed by the cell (see 

Reijekerk et al 2013 for a full list of miRs, which expression was changed by cytokines 

in human brain endothelium) that can also affect the expression of molecules involved 

in adhesion acting positively or negatively on pathways related to adhesion. For 

example VCAMl is targeted by other 33 miRs in addition to miR-126 in Homo sapiens 

(http://www.ebi.ac.uk/enright-srv/microcosm/cgi-bin/targets/vS/detaiLview.pl? 
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transcript_id=ENST00000294728). Finally, it has been shown that shear stress can 

modulate miR and gene expression in endothelium (Chapter 1), but since our 

experimental setup is mainly based on static conditions, it is debatable whether five 

minutes of 0.5 dyn/cm2 flow to study leukocyte adhesion, could influence the 

endothelium in such a way to change expression of CAM and chemokines. Indeed, the 

earliest observable changes in cell surface molecule expression such as VCAM1 in 

cultured mouse endothelium subject to shear stress appeared at 1 h after applied flow 

(Ohtsuka, Ando et al. 1993). 

Modulation of leukocyte adhesion by hsa-miR-126 under basal conditions 

may also indicate a role for this miR in immunosurvellance mainly (but not exclusively) 

via interactions between endothelial VCAM1 and its cognate integrin on leukocytes 

(VLA-4), which have been implicated in leukocyte adhesion to brain endothelium of 

healthy individuals (Kleine and Benes 2006). 

4.4.5 Effect of miR-126 on leukocyte adhesion to cytokine-activated brain 

endothelium 

In cytokine-treated hCMEC/D3 cells, sustained levels of hsa-miR-126 prevented 

T cell, monocyte and PBMC adhesion to hCMEC/D3 cells and this effect was associated 

with decreased VCAM1 and CCl2, but not E-selectin, levels. 

These findings are in line with the literature reporting the hsa-miR-126 

modulates VCAM1 and CCl2 expression by directly binding to the 3'UTR of VCAMl 

(Harris, Yamakuchi et al. 2008) and CCl2 (Arner, Mejhert et al. 2012; Zhang, Yang et al. 

2013) mRNAs in mesenchymal stem cells and adipocites. Our study further 

demonstrates that these two important leukocyte adhesion-regulating molecules 

appear to be targets for miR-126 in human BEC. In addition, we have shown almost 
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50% decrease in PBMC adhesion in cytokine-stimulated BEC. Indeed, the inhibitory 

effect of miR-126 on adhesion of PBMC from MS patients appeared to be greater than 

that observed with leukocytic cell lines_ In addition, most of the adhered PBMC 

appeared to be C08+ T cells, corroborating the observations that in RRMS patients, 

where there was a selective increase of infiltrated C08+ T cells compared to C04+ T 

cells (Battistini, Piccio et al. 2003). These findings are promising for future in vivo or 

more complex ex vivo tests. However, further studies will still be required to 

understand the complex molecular mechanisms of miR-126 in relation to leukocyte 

trafficking. 

Further decreases of hsa-miR-126 induced by pro-inflammatory cytokines, 

induced further increases in monocytic adhesion, but not in T cell adhesion and 

VCAM1, ICAMi, P- and E- selectin, CCl2 expression to and by endothelium. Monocytes 

and T cells express different integrins (Meager 1999; Pribila, Quale et al. 2004) and 

adhere/extravasate at different times due to differential chemokines expression to 

different adhesion molecules expressed by the endothelium in inflammatory 

conditions (Yonekawa and Harlan 2005). Thus the differences observed between T cell 

and monocyte adhesion could depend on selectins and/or CAM and/or chemokines 

expression by hCMEC/D3 cells, therefore we were not able to observe further increase 

in T cells adhesion_ 

4.5 Conclusions 

Here, we report that human brain endothelial miR-126 regulates leukocyte 

adhesion to the human brain endothelium in vitro by a mechanism possibly involving 

thought its targets VCAMi and CCl2. 
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Chapter 5: The role of endothelial hsa-miR 126* 
in leukocyte adhesion to human brain endothelium 

5.1 Introduction 

The miR* species are not as well studied as the leading miR species, but in 

recent years research in the field of miRs has started to unravel the role of miR*s in 

post-trascriptional regulation of gene expression. In particular, many studies have 

examined whether miR*s are conserved across different species (Okamura, Phillips et 

al. 2008). It has also been shown that miR* species play an important role in 

inflammation. For example, miR-155* is the most induced miR in cytokine-activated 

astrocytes and it shares a proinflammatory function with miR-1SS (Tarassishin, Loudig 

et al. 2011). In addition, miR-27a* and -27b* were also found to be involved in 

inflammation through modulation of the NK-KB pathway in macrophages 

(Thulasingam, Massilamany et al. 2011; Cheng, Kuang et al. 2012). 

At the beginning of this part of the project aimed at investigating the role of 

hsa-miR-126* in leukocyte adhesion to brain endothelial cells, only three publications 

had been published on the subject. miR-126* has been studied by different groups 

focused on erythropoiesis (Huang, Gschweng et al. 2011), cancer cell motility (Meister 

and Schmidt 2010) and prostate cancer (Musiyenko, Bitko et al. 2008). Subsequently, 

two studies on miR-126* have been published. Zhang et al. recently found that in 

breast cancer epithelial cells miR-126* is down-regulated and promotes monocyte 

recruitment through increased level production of miR-126*'s targets Sdf-la (CXCL12) 

(Zhang, Yang et al. 2013), a chemokine known to mediate monocyte recruitment. Felli 
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et al. reported that in a metastatic melanoma cell line miR-126* is down-regulated, but 

restoring miR-126* levels to those of non-malignant melanocytes plays an 

antineoplastic role by targeting ADAM9 and MMP7, pivotal regulators of melanoma 

progression (Felli, Felicetti et al. 2013). 

5.2 Aims 

In this chapter, we aimed to study the role of endothelial hsa-miR-126* in T cell 

and monocyte adhesion to hCMEC/D3 cells. We then systematically searched for hsa­

miR-126* predicted targets and selected two, that has been previously shown to be 

involved in leukocyte trafficking. Finally, we determined whether the expression of 

these two proteins was regulated by hsa-miR-126* in BEe. 
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5.3 Results 

5.3.1 TNFa and IFNydown-regulate hsa-miR-126* expression in hCMEC/D3 cells 

The miR array data performed on hCMEC/D3 cells (Reijerkerk, Lopez-Ramirez et 

al. 2013) showed that the non-leading hsa-miR-126 strand, hsa-miR-126*, was also 

down-regulated by a combination of cytokines (TNFa and IFNy) in hCMEC/D3 cells. 

Here, we confirmed by RT2-qPCR that cytokine treatment for 24 h decreased hsa-miR-

126* levels in hCMEC/D3 cells by approximately 60% (Fig. 5.1 grey). Transfection with 

hsa- anti-miR-126* further reduced miR-126* expression in both unstimulated and 

cytokine-stimulated cells (Fig. 5.1 white). 

5.3.2 hsa-miR-126* mediates monocyte adhesion, but not T cell adhesion to 
hCMEC/D3 cells in both unstimulated and inflammatory conditions using a static 

assay 

We investigated the role of hsa-miR-126* in leukocyte adhesion, which was 

also down regulated in cytokine-treated hCMEC/D3 cells in a similar fashion to hsa-

miR-126 (Chapter 4, Section 4.3.4). 

Decreasing levels of endothelial hsa-miR-126* to simulate inflammatory 

conditions did not affect Jurkat adhesion to hCMEC/D3 cells either in non-stimulated 

and cytokine-stimulated hCMEC/D3 cells (Fig. 5.2 A). By contrast, low levels of hsa-

miR-126* slightly increased, but significantly, THP-l adhesion to EC under both basal 

("'20%) and cytokine-stimulated conditions ("'10%) (Fig. 5.2 B). These results suggest 
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that hsa-miR-126* is involved in the regulation of monocyte adhesion to human brain 

endothel ium. 
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Fig. 5.1: Cytokine- and anti-miR-induced hsa-miR-126* down-regulation in 
hCMEC/D3 cells. hCMEC/D3 cells were transfected with scrambled Anti-miR or Anti­

miR-126* followed by treatment with a combination of cytokines (TNFa + IFNy) at 0 
and 1 ng/ml for 24 h. The expression of mature miR-126* was measured by qRT2-PCR. 
U6 was used as internal control. Experiments were carried out three times with two 
repl icates. Data are mean ±SEM. (* ,#P<O.OS, #significantly different compared to 

unstimulated cells * significantly different when compared with scrambled Anti-miR). 
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Fig. 5.2: hsa-miR-126* modulates THP-l (monocyte), but not Jurkat, static adhesion 
on hCMEC/D3 cells. hCMEC/D3 cells were transfected followed by treatment of 
combination of cytokines (TNFa + IFNy) at 0 and 1 ng/ml for 24 h. Fluorescence of 
adhered THP-l (monocyte), is expressed as fold increase over unstimulated cells 
transfected with scrambled oligonucleotides. A. Scrambled Pre-miR or Pre-miR-126 
were used t o transfect hCMEC/D3 cells B. Scrambled Anti-miR or Anti -miR-126 were 
used to transfect hCMEC/D3 cells Experiments were carried out four times with six 
replicates. Data are mean ±SEM. (*P<O.OS, ###P<O .OOl # significantly different vs. 
unstimulat ed cells, * significantly different when compared with scrambled Anti-miR). 
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5.3.3 hsa-miR-126* mediates monocyte and T cell adhesion to hCMEC/D3 cells in 
both unstimulated and inflammatory conditions using a flow-based assay 

To better understand the effect of miR-126* in THP-l and Jurkat adhesion, we 

used the flow-based assay described in Chapter 3. We confirmed that decreased levels 

of hsa-miR-126* increased THP-l firm adhesion to both unstimulated (Fig. 5.3 C) and 

stimulated (Fig. 5.3 D) hCMEC/D3 cells. In addition, to counteract hsa-miR-126* down-

regulation, increased levels of hsa-miR-126* by transfection with pre-miR-126* 

prevented THP-l firm adhesion either in unstimulated (Fig. 5.3 A) or in cytokine-

stimulated (Fig. 5.3 B) EC under shear-stress. Furthermore, we investigated whether 

miR-126* was implicated in Jurkat adhesion to hCMEC/D3 cells. By contrast with the 

static model, the more sensitive flow-based adhesion model indicated that miR-126* 

was significantly involved in T cell firm adhesion in both unstimulated and cytokine-

treated EC with sustained levels of miR-126* (Figs. 5.4 A and B). However, when the 

miR-126* levels were decreased following transfection with an anti-miR, we did not 

observe any increase, but a significant decrease, in Jurkat T cell adhesion to hCMEC/D3 

cells under either control or inflammatory conditions (Figs. 5.4 C and D). 
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hCMEC/D3 cells. hCMEC/D3 cells were transfected followed by treatment of 
combination of cytokines (TNFa + IFNy) at 0 and 1 ng/ml for 24 h. Firmly adhered THP-
1 cells to hCMEC/D3 cell monolayer were counted/field of view (FOV). Scrambled A. 
Pre- or C. Anti -miR and B. Pre- or D. Anti-miR-126* were used to transfect hCMEC/D3 
cells . Experiments were carried out three times with five replicates. Data are mean 
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Fig. 5.4: hsa-miR-126* regulates Jurkat (T cell) flow-based adhesion to hCMEC/D3 

cells. hCMEC/D3 cells were transfected followed by treatment with a combination of 

cytokines (TNFa + IFNy) at 0 and 1 ng/ml for 24 h. Firmly adhered Jurkat cells to 
hCMEC/D3 cell monolayer were counted/field of view (FOV). Scrambled A. Pre- or C. 

Anti-miR and B. Pre- or D. Anti-miR-126* were used to transfect hCMEC/D3 cells. 
Experiments were carried out three times with five replicates. Data are mean ±SEM 
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5.3.4 Systematic collection of hsa-miR-126*predicted targets 

Following the approach that we employed for hsa-miR-126, we systematically 

collected the predicted targets of hsa-miR-126* using the same databases based on 

different algorithms to predict target gene transcripts used for miR-126 target 

prediction. 

We found that hsa-miR-126* (hsa-miR-126-5p mature sequence 

CAUUAUUACUUUUGGUACGCG and miRbase accession MIMAT0000444) predicted 

targets differed completely from those for hsa-miR-126 (hsa-miR-126-3p mature 

sequence UCGUACCGUGAGUAAUAAUGCG and miRbase accession MIMAT0000445) 

due to their different sequences. 

The number of predicted targets of hsa-miR-126* in humans using different 

databases was the following: 1000 in MirBD (Table 5.1 B), 700 in Microcosm (Table 5.1 

A), 300 in Pictar and only 30 in DianaLab (Table 5.1 C). Hsa-miR-126* validated target 

are only three to date in Tarbase (Table 5.1 C): the transporter SLC45A3 and the 

cytoplasmatic prostate specific prostein protein (Xu et al. 2001), but none of these 

have been previously shown to be involved in leukocyte trafficking. Here, we did not 

list all hsa-miR-126* targets found using the Miranda database because of the vast 

number, 8000 targets. 
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A. Microcosm 

All4Hl_H 8RC2 
MSS BOll 
ABCA6 BRl'I 
A8CC2 BRP44l 
ABro3 BTF3 
ACOX2 BtD13 
ACSMI Cl00rf119 
ACYP2 Cl00rf58 
NJAM7 Cllorf65 
AFF4 C120<f26 
AlGI C12orf39 
AKR1Q.l C12orf56 
AlB C12orf57 
AlDH1A1 C120rf64 
AlG10B CI30rf31 
AlS~ C14orfl02 
AN<3 C14orf135 
AN<RD32 C14orf153 
ANKR07 CI40rf37 
NfXA7 CI40rf39 
APOOl C18orf17 
ARHGAP9 C1GAlT1Cl 
ARl..I7P1 Clorf19 
ARPC1B Cl0rf31 
ARPC3 Clorf41 
ARPM1Ji Clorf67 
ARTJ C2 
ARYl C200rfl07 
ASMT C2OO<fI96 
ATNJ2 C2Oorf26 
ATBF1 C2Oorf51 
ATHI C21orf88 
ATPSH C20rf25 
ATP6V1G2 C2orf42 
ATP7A C2orf46 
AlR C30rf41 
ATXNl C3orf6O 
AXJ\I1 C48PA 
AYTLI C5orf34 
BAGJ C7orf16 
BAD C7orf46 
BAT5 H C90rf134 
BCAR3 C90rf138 
BCCIP C90rf25 
AOH2 C90rf46 

CAMK4 CYP2A7 
CAT CYP39Al 
ca>c13 CYP7Bl 
CCDC22 00136 H 
CCVC29 0BND2 
CCOC32 OBP 
CCOCJ8 DOX43 
ca>c44 DEPDCl 
CCOC45 DIRC2 
CCOC5J DlSP2 
CCOC85B DJEI' H 
ca.7 OMID 
CCNA2 DNAH5 
co.J3 DNAl.l 
CCT4 DNMTI 
C052 DOCK7 
COH9 0R03 
CEtPE OSGJ 
CflRl OIDI 
Cf1-R4 Ow.t>1 -CFI DUSP28 
CKlll DVM 
CKlNA5 OYN..TJ .. 
CKlhIJl EAF2 
001 EBNA1BP2 
ClDN14 EBPI.. 
a..EC7A ECHDC2 
CMPK EFRI H 
ChIJOl EF1APl 
CNGAI EF2A 
CNGBJ EF3S1 
COBlll Ell.3 
COlEC12 EN)OG -
COMM010 ENOX1 
COM~ Et.IPP3 
COX4I1 ENSlOOOOO311104 
COXIC ENSlOOOoo367310 
CPA6 EPHAB 
CRI3N EPOR 
CRSP6 EPYC 
CSF2 ERCCI 
CSF2RA EX0SC9 
CTGlF7 F9 
CYO<fI5B FABP3 
CYP2A13 FAF1 

FAM111A 1GHV(11)-22-2 MAP2Kll'l 
FAMI88 lGHV3-n MAP9 
FAM26A 1GSF11 MAPKAPKS 
FAM260 L17F MARS 
FAM48A L1F9 MCTPI 
FAM81B L6 - WHI 
FGF21 INADl. WEOl1 
FGFBPI N'PI MELK 
FGG INSl5 MFS08 
FGll 1'07 ~ 

FPGT RS4 ~1 
FRY RX3 - MMAOiC 
FSm RX5 MMP10 
GABRA2 ISCU MMP12 
G8A3 JARI>1D MMP20 
G6P7 KARS MMP3 
GFRAt. KCNM MORG1Ji 
GlMN KC»l2 MORN2 
GlRX2 KCNMB3 MORN2 
GOLG81 KDElCl MPP6 -
GPR137B KERA MPVI71 
GPRI71 KF27 ~13 

GPR31 KF3A ~ 

GPR98 KFAPJ ~43 

GTF2fl KUt] ~26 
GUCY2E KRRI MRPS30 
HASI KSRI MSH2 
t£ATR5B l2HGDH MSH4 
HBCH LCE4A MTIG 
HFIA L.LR85 MTIH 
HST1H2flJ LOCI45853 MTHFDI 
HST1H3H LOC402120 MTHFD2l 
HST2H2BA L0C646871 MTOI 
I-flRPAJ L0C728378 MY016 
HOXB2 LOC728403 NCAP03 
HOXD8 LOC730602 NCOA6 
HPS1 LOX NCOA6 
fRSP12 l.P1M NCOR1 
HS011B1 LRlGJ NlJU"A9 
HSOllB1 l.RRC3B NDU'B5 
HSFY2 LRRC42 _ tEDD9 
HTR2B lXN /£K3 
HYDIN MAGEE2 N'E2l3 
IClI MAK10 NFXl 
FI44 MAP2 NGFRAP1Ll 

NlTl OR52E8 PRSS22 Q9\ffi9 H 
NOJO OR52H1 PSCOEI' Q9UHZ6:H 
NP 001011724.1 OR8A1 PSIPI RAB9A 
"'- 001013710.1 0RC3l PSMAS RAG2 
"'- 001030177.1 OSTFI PSMAl H RAt.GPSl 
"'- 001032308.1 OSTH PSMC6- RASAl.2 
"'- 001074319.1 P2RY10 PSt.1)5 RASGEFIB 
"'-056350.1 P2RY12 PSPCl RC3H2 
"'- 056409.1 PAFAH1B2 PTGERJ REGlG 
"'-057209.3 PAPI PTH REV31 
"'-0574872 PAUoIJ PTPRQ REXOll1 
"'- 060101.2 PAPPA2 PTTGI REXOll2P 
W-060404.3 PAR06G PVGl REX01L5P 
""-060761.2 PCOKl13 PYHINI REXOll6P 
NP-079189.3 PCGF5 QJUC9 H REXOll7P 
""-115813.1 PCSK5 a3W3rH RfTN2 
NP-115813.1 PDF Q5T5W8H RGR 
""-612147.1 PEN< Q5WGCH RGSl0 
""- 612420.1 PEX5l 06NSFJ-H RGS18 
""-620158.2 PGBOI 06NZ63-H RGS9BP 
""-620158.2 PGC <l6PDI34H RHAG 
""-6594552 PGMJ Q6ZMKt-H RHAG 
""-690872.2 PHC3 Q6ZN80 -H RBC1 
""-710154.1 PHKAI Q6Z1N2-H RKHD3 
NP-m590.1 P1Gl Q6ZP06- H Rf.F13 
""-GG1111 .1 PIGO Q6ZRMfH Rf.F170 
""-995324.1 P1GV Q6ZTZOH RPAJoI 
NP- GGn54.2 P1I.AA 06ZU57-H RPl14 
NPYGR P1.A2G48 06Zl-"4H RPl23 
NRIlBl PlOO2 06ZVXS-H RPl26l1 
NR2£J PLXNA4A OfiZW5()-H RPSAP15 
NR2Fl - POU 071M28-H RSBNl 
NRBF2 POlR2I( 086TS21i RSHI2 
NRPI POPOC3 086X01H RYK 
NSUN2 POTE2 H Q8IVRI H SIDDAll 
NT5DC4 POU1F1 Q8IVY1-H S1DDA8 
NTF5 POU3F2 08N1B8H S11Y H 
MPI60 f'PA1 O8N1Y7-H SAMSNI 
NXTI PPUIA Q96QEO- H SAP30 
095108 H PROMS Q9BVM4-H SBOS 
0I..FM..1 PRIM2A Q9H7S7H SCAP 
OPNISW PRIR O9N'M'OH SCEL 
OR2L13 PROCR Q9P145 Ii 5a..T1 
OR4MI - PRPFS Q9P1H6-H SCN7A 
OR4M2 PRSS12 Q9P1KO-H SCRGI H 

SCY12 SYt.V02l 
SOCCAGI TAF13 
SETD6 TAFIB 
SETX TAF9 
SF384 TAF9 
SFRSll lBC1015 
SFT201 1BCE 
51 TCEAJ 
SlC26A7 TCEAJ 
SlC35A2 TCfH.l 
SlC35E3 lEPl 
SlC39A12 TFCP2 
SlC46A3 TFE3 
SlC5All n£Xl 
SlC7A4 THSOI 
SlC06Al TMC03 
SUTRK2 TMC04 
SMARCAS TMC04 
SNAPCl TMEM176A 
stR'Al TMEM26 
SI'H'02 TMEM27 
S/lR'ELI TMEM33 
SNX24 TMEM41B 
SP7 TMEM5 
SPACAI TMEM63B 
SPAGllA TMEM67 
SPAGI1B TMS18 
SPAG9 nFRSF10B 
SPATA6 nFRSF19 
SPIC TOP2B 
SPINK2 TORJA 
SPOIl TPM4 
SPTB TPP2 
SPTlCl TPX2 
SRFBPI TRAF6 
SRGAP1 lRAVS-2 
SSBP3 TRBVl1-1 
STBSIAJ TRBV15 
STAG2 TREMLI 
STAU2 lRlM42 
SIDNI lRlPG 
SUlT1C4 TSC22D4 
SlJPT7l TSm 
SVEP1 nC15 
SYCPJ TTYl1 H 

TUB82A 
TXN0C3 
TYRPI 
UAPI 
UBTD2 
UBX06 
UGT2fl17 
~2 
UMOO 
USP15 
USP45 
USP48 
UTP18 
UTS2D 
VANGll 
VGll.l 
VLl 
VNN2 
VPREB3 
VPS45 
VRKI 
WOR78 
WFDC8 
XR 019154.1 
XRCc2 
ZB1B2 
ZCCHC5 
ZCRBI 
ZDtflC9 
ZFP2 
ZIC5 
ZMYM5 
ZNf287 
n.F334 
ZNF354A 
zr.F354C 
ZNF407 
ZNF428 
n.F507 
n.F583 
n.F606 
n.F613 
n.F622 
ZNF642 
ZNF669 

ZNF684 
n.F687 
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B. MirDS 
A2LDI ARL~C 

A2M...1 ARL5A 
"AAKI ARPC3 

AASDHPPT ARSK 
AASS ASB4 
ABCAI ASCC3 
ABCB10 ASMT 
ABaxJ ASPH 
ABCEI ASPH02 
ABRA ASPN 
ACAN ATAD2 
ACN9 ATFI 
ACTR10 ATNI 
AOAM22 ATP2Bl 
ADAMS ATRN 
ADAMS AT7.N1L 
A0AAITS4 AXINI 
AIlAMIs6 B2M 
ADCY B3GNn 
ADCYAPI 84GALH 
AOH4 BACEI 
AOK SAGa 
AFF4 BAI3 
AGPS SAIN>2Ll 
AlGI BBS12 
AII.4PI BCAP29 
AK2 BCAR3 
AKIRINI BCCIP 
ALDH1Al BCLllB 
ALG10B BCL2L2 
AlAACR BCLAFI 
AMFR BDH2 
~ECRIL BEN04 
ANAPC7 BEN06 
ANGPTLI BICD2 
ANKIB I ~ 

ANKRD12 BlFR1B 

~~~ BRAF 
BRDI 

ANKRD34B BRDa 
AN03 BRP44L 
AN05 BRWD3 
ANTXR2 81801 
AP 1Gl eTC 
AP1S3 BTF3L4 
AP381 BZWI 
APOPTI C1Dorl32 
ARF6 Cl1orlB2 
ARHGAP28 Cllorl87 
ARHGAP32 C12orf23 
ARIOlA C12orl4 
ARID2 C12orl40 
ARL11 C12orl48 
ARLI38 C12orl156 

Cf40f11~ CALC0C02 
C14off39 CALHlAI 
CI50<f29 CALJ-N3 
Cl5Orf40 CALU 
C15otf41 CAMl<2A 
Cl5orf43 CASK 
CI50tf61 CASP3 
CI60rf72 CAST 
C170tf7S CBWDI 
C180ff32 CBW02 
C191lt1!l2 CBWD3 
CI90_ CBWDII 
C1GALTl CCBP2 
C1GALnCl CCDC I 22 
Clorfl09 CCDCI3 
Clorf27 CCDC148 
Cl0tf52 CCDC149 
Clorl55 CCDC15 
Cl0TNF7 CCDC36 
CIRL CCOC5O 
C211Hft12 CCDC53 
C210tf7 CCOC82 
C21orf91 CCNT2 
C22off39 CCP110 
C2C04A CCPGl 
C2orl1i9 CCRI 
C3otf15 CCRLI 
C3orfl7 COlDORl 
C3orf23 CD2AP 
C40rf26 C044 
C4orl34 COB-4 
C50rl3D CDC14B 
CSorl34 CDC7 
C50rf47 CDCA7 
C5orl51 CDH9 
C60rf118 CDK13 
C6orfl68 CDK19 
C7orf42 CEACAAA8 
C7orl46 CELF2 
C7orl57 CEPI70 
C7orf58 CEPTI 
CBorl34 CFTR 
CBorl37 CHAMP 1 
CBorf44 CHOIL 
caorl46 CHD9 
C9orf5 CHICI 
CSorf72 CHLI 
CAl CHU 
CA13 CHUP5 
CA3 CHODL 
CACHAIA CHRACI 
CACNB4 CHRNAS 
CACM 1 CHRNBI 

CALCB CHST11 

CHST7 DCAF13 EH04 F1<TN 
CHUK DCAF7 ENOX2 FLTI 
CHURCI DCAF8l1 ENPP5 FLT4 
C ISH DC!( EPHBI FM02 
CLCN5 DCLK3 EPOR FN0C3B 
CLDNI [X;P2 EfT FNOo.I 
CLDN22 DCUN1D3 ERBB2P FOLHIB 
CLECI2B DENI«l18 ER0C6 FOXOI 
CLEC1&. DGKB EREG FPGT 
u.EC1A DHFK ~RGIC2 FPG 
CLLUI DHX35 EROIL FRYL 
CLTC DIMTI ESMI FRlB 
CN>fAS DIRCl ESRRG FSDIL 
CNOT4 DLGI ElYl FSffl 
CNPVl DLK I EVllA FSIPI 
CNTN5 CMBXl EXD2 FUT9 
COBLL1 CMD EXPHS FXN 
COG6 DMRT2 EYA4 FY8 
COl 1,0.1 !JU)(l ~' S FYCOI 
COUlA2 DNAHI 4 F5 FZD2 
COlEC12 DNAH5 F9 GABRA4 
COUUOID DNAJB4 FABP3 GABRAS 
COMMD2 DNAJB9 FAFI GABRB2 
CPO DNAJC3 FAM1D5B GALNT4 
CPEB4 OOK6 FAM111 GATA3 
CPNEB DPP8 FAMII6A GBPI 
CRBN DPYI9L2 FAMI29f. GBP3 
CRCP DSC2 FAMI35,t,. G8P4 
CREBI DSEL FAM165B GB~ 

CREB3L2 DSGI FAM17lA GBP7 
CRLSI OTDI FAM175B Gml 
CRNKLI DTL FAM 189f. 1 GGAI 
CRTAM DTX3L FAM190A GGT6 
CRYI DUXA FAMI988 GHR 
CRYZ DYNLTJ FAMI99X G INS 1 
CSFI OYRKl FAM27E3 GJB2 
CSFlRA E2F6 FAM63B GJCl 

CSRNPJ E2F7 FAM75,t. GK 
C7AGE!5 EARS2 FAM76B GLEI 
CTBS EBFI FAM78A GLlPRl 
CTR9 EBPL FMC84A GLRA2 
CUBN EDA2R FAMBAI GLYAT 
CULl EFCAB7 FANCL GNB4 
CX3CRI EFHA2 FBNl GNE 
C'fB56 01 EFR3A FBRSLI GNG12 
C'fP2OAl EGLNI FBXL14 GN02 
CYP39Al EIFIAX FBX025 GNLf 
CYSI EIFlA FBX036 GOSRI 
CYTIP EIF3J FBX06 GPBP1 

DAB21P EIF4A2 FGF12 GPC6 
DAPPI ELAIIL3 .ut-" GPCRL1"M7 
DBFt ELK4 FGF7 GPRI37B 
DBRI ELLa FGFRLI GPR64 
DCAFl0 EUP2 FOG GPRS5 

GPRSB ILlS KRAS """'" 
GPSII4~~ --}~7D KRRI MAPK10 
GRHL2 IL6 KSRI MAPK11P1L 
GRIA2 IL7 L2HGDH MAPKlI 
GRIM IMPAI L3M8TL4 MARO<S 
GRIKI II14PADl LACCI MARK 1 
GRIKl INGJ LAll4T0R3 MATlB 
GRINlA INHBE LARP4 UBL2 
GRIN3A IN080D LOHA UBLAC2 
GRM8 INPPI LDLRA02 MBNU 
GSIC!8 INPP5D LlN9 UBOAT I 
GUCY1A3 INSC LU07 UBP 
GUFI INTS6 LOCI 00 130451 UCART6 
GXYLTI IRS2 LOC100130705 MCHR2 
H3F3A ISPD LOC100131091 MCMBP 
HBPI ITGB8 LOCI00500938 M<,;I"'-~ 

H8S 1L IVD LOCI 00506255 MCTSI 
HCFC2 .lAR1D2 OC 00509575 MCU 
HUH JKAMP LOC100M2S25 1AOHI 
HOAC4 .JMY LOC1DOM3112 MOM4 
HECTD2 JPHI LOC1DOM3325 MEl 
HIFIA JRKL L0C389831 MEDII 
HINT3 KATlB L0C4006B2 MED14 
HIPKl KBTBD10 L<>C646lI51 MED17 
HIVEP3 KBTBD6 LONRFl MED21 
HLF KCMNB LOX METAPI 
HMCNI KCNAI LPHNl UETTL10 
Hll4GXB4 KCNJ 6 LPHN3 METTL17 
HNIL KCNMAI LPINl METTL2 1D 
HNRNPU KCNN3 LPP METTL2A 
HOMEZ KCNQ5 LPPRS MEX3A 
HOOKJ KCTD3 LRCHl MEX3B 
HOXA13 KDELC2 LRPI MFAP4 
HOXB5 KDIII6A RPIB MFSDll 
HOXB6 KIAAD355 LRP2BP MOATJ 
HOXCB KlAAIl430 LRRC19 MOAT4A 
HOXD8 KJA.I0564 LRRC3B MOP 
HPGD K1AA1!124 LRRC57 MIBI 
HPS5 K1AA1033 LRRCBB MIDI 
HPSE KIAAI377 LSAUP UlPOL1 
HRH4 KlAAl430 LTNI UITF 
HS3ST3Bl KIAAI456 LUC7L2 MLL 
HS6ST3 KlAAI468 LYRU2 MLLTfD 
HSDllBl KlAAI644 LZTFLI MLPH 
HSPBB KIAAI826 MAB21l1 MMAA 
IAHI K1F3A MACCI MMACHC 
lAPP KITLG MAGEFI LIUE 
ICK KL MAGI3 MMP16 
lOS KLFI7 MAK MMRN I 
IFI44 KLHDC10 MANIAI 1\,r.1S22L 
IGFBP3 KLHL32 MAN1A2 MOS18 
IGSFI KLHL4 MANEA MOB3B 
IGSFll KLHL7 MAP3K2 MOO 
1KZF2 KLLN MAP3K7 MORel 

MPP7 NPHSI 
MRI NPR3 
URP63 NPTXR 
MRPU3 NR1D2 
MRPL42 NR2Cl 
MRPL43 NR2C2 
MRS2 NR3Cl 
MS4Al NRXN3 
MSRI NSU'=----

MSRB3 NSRPI 
MTAP NT5DCl 
UTCH2 NUAKI 
MTFRI NU!JT12 
UTLS NU!JT16L1 
UTURl0 NUDT7 
mus NUPI53 
uYD88 NUP43 
uYEFl NWD 
uYTl NXT 
uYZAP NXT2 
N4BP2Ll OCLN 
NAA50 ODF2L 
NAALAD2 OGT 
NACCl OLFMJ 
NADKDl OLFMLI 
HAFI 0f'1N 
_LCN OR51E2 
NAPG ORCa 
NATI OSMR 
NeALD OSTFI 
NCAN OTU03 
NCOA4 OTU04 
NCOA7 OTUD6B 
NCORI OXNADI 
NDUFAS P2RY12 
~AF3 PAFAHIB2 
NDUFB5 PALM2 
I'VUFS 1 PALMD 
NEGRI PANXI 
NETOI PAPD5 
NEl.I3 PAPPA 
foFAT5 PARPll 
NFlA PARP12 
NFlB PATEl 
NFXl PAX2 
NFYA PAXli 
NHLRC2 PC8D2 
NHSLf PCOHB13 
NlTl PCDHB16 
NLGN4X PCOHB7 
NLGN4Y PCGF6 
NLN PCLO 
NOVA 1 PCNX 
NOX I PCSKl 

PDC02 
PDCL 
PDElB 
PDE4D 
PDE7B 
PDGFD 
PDGFRA 

h DLIMS 
PDZRN4 
PELI3 
PERP 
PEX!iL 
PGBDI 
PGC 
PGM2Ll 
PGMJ 

PHACTRl 
PHAX 
PHC3 
PHF14 
PHKAI 
PHKB 
PHLPPl 
PI15 
PIASl 
PIGK 
PIKFYVE 
P IP4K2A 
PIP4K2C 
PITPNB 
PKHOI 
PKIA 
PLAlGI2A 
PLAGI 
PLCBl 
PLEKfe2 
PLEKHFl 
PLEKHF2 
PLEKHG7 
PLEKH-a 
PLEKtN3 
PLOD2 
PLXDCl 
PNLlPRP3 
PNN 
PNPLA8 
PNRCI 
POC1~NT4 

POCXl 
POFUTI 
POLK 
POLR2K 
POPDC3 
'VU'.l 1 
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PPARGCtA r---ppAT 

PPFIAI 
PP-FlA2 
PPIL1 
PP ILII 

CpPP1R10 
~P1R12B 

PPP1R15B 
CpP?2R5E 

PPP4R4 
PPP6RJ 

'PRAlllEFl 
PRAMEF13 
PRAIIIEF14 
PROt.I8 
PRKAU;\ 
PRKCA 
PRKX 
PROCR 
PRPF8 
PRRG2 
PRTG 
PRUNE2 
PSATI 
PSGI 
?SMAIl 
?SIIIB2 
PTGFR 
PTGS2 
PTPNll 
PTPN12 
PTPN14 
PTPN20A 
PTPN20B 
PTPN21 
PTPRC 
PTPRD 
PTPRO 
?US 10 
PWWP2A 
QRSLI 
RA.Bl1FIP2 
RAB30 
RAB338 
RAB31P 

""RAB8B 
RAB9B 
RABGEFI 
RABL3 
RAG 1 
RALGPSI 
RALGPS2 

RAPGEF3 

RAPGEF6 
RASA12 
RASSFII 
RBAK 
RBL2 
RBII.I12 
RBIII19 
_1 

RCBTBI 
ROHl1 
ROX 
REEPl 
REEP5 
REGlG 
REV3L 
REX01Ll 
RFTI 
RFTN2 
RFX4 
RG9UTtl2 
RGAGI 
RGMB 
RGPD4 
RGP05 
RGPD6 
RGPD8 
RGR 
RGSl0 
RGS14 
RGS18 
RGS5 
RGSSBP 
RHOBTB3 
RlIIIS 1 
RlNL 
RMll 
RNASEL 
RNF141 
RNF19A 
ROCKI 
RORA 
R?2 
RPFI 
RPL17 
RPL26Ll 
RPRDIA 
RPSA 
RSBNl 
RTKN2 
RTN4RL1 
RUFY3 
RUNX1Tl 
RWD04 
SlPRJ 

SAA2 SLC35B~_ 
SAEI SLC35Gl 
SAM013 SLC3M9 
SAMD4A SLC41A.2 
SAMSNI SLC46AI 
SARIB SLC47A.2 
SCAI SLC4Al0 
SCAUP 1 SLC4A5 
SCAP SLC4A7 
SCEL SLCSA3 
SCN3A SLa5A15 
SCRN1 SLC7A14 
SDPR SLC01Cl 
SEcotAl SLFN13 
SECXi2 SLITRK4 
SECISBP2L SWU)4 
SELE SMARU;l 
SELT SIIICHD1 
SEIllA.5A SMS 
SElllA6D SUYDI 
SEMA.7A SNAI2 
SEPSECS SNAPCl 
SEPT14 SNCA 
SE?T7 SNRPN 
SERFIA SNURf 
SERFIB SNXI 
SESTDI SNX13 
SETBP1 SNX4 
SETDS SOCS3 
SETD8 SOCS6 
SFJAI SOX13 
SFRP4 SOX6 
SGCB SPI 
SGK3 SP5 
SGPP1 SPAG16 
SGTS SPAST 
SfGBGR SPATA18 
SfGBGRL2 SPATA2 
SfGTC2 SPATP6 
SHANK3 SPATS2L 
SHROOUJ SPCS3 
SKAP2 SPlCE 1 
SLCl6A9 SPOP\. 
SLC17A8 SPREDI 
SLC25A12 SPRYJ 
SLC25A24 SPRY4 
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Chapter 5: Role of endothelial hsa-miR-126* in leukocyte adhesion to human brain endothelium 

5.3.5 Selection of hsa-miR-126*predicted targets with a putative role in leukocyte 
trafficking 

Here, we shortlisted hsa-miR-126* predicted target gene names of proteins 

that have been shown to be related to adhesion such as chemokines, CAM and 

selectins (Carlos and Harlan 1994; Muller 2003; Ley and Kansas 2004; Engelhardt and 

Ransohoff 2005) (Table 5.2). 

Expression in 

Gene Description Database hCMEC/D3 

cells 
hsa-mIR-126' 

CX3CRl Chemokine receptor 1 MIRDB yes 

SCAMPi Secretory carrier membrane protein 1 MIROB yes 

CEACAM8 Carcinoembryon antigen-rei cell adhesion molecule 8 MIROB yes 

CHli Cell adhesion molecule with homology to L1CAM MIRDB yes 

SElE E-selectin or ELAM-l MIROB yes 

C044 Cell surface glycoprotein involved in cell-cell adhesion MIROB yes 

C0200 
Receptor 1 ox-2 membrane glycoprotein containing 2 

MIROB 
immuglobulin domains 

yes 

C02 is a surface antigen of the human T-Iymphocyte 

CO2 lineage that is expressed on all peripheral blood T cells MIROB yes 

or LFA-2 

CCl7 Chemokine ligand 7 MICROCOSM yes 

CADMi Cell adhesion molecule 1 MIROB yes 

Table 5.2: Selected hsa-miR-126* predicted targets for further study. 

Selected 

for further 
study 

We found eleven predicted target expressed by hCMEC/D3 cells, related to 

cellular adhesion or trafficking, and out of these we selected E-selectin (SELE) and 

CCl7. The chemokine CCL7 is a small cytokine previously known as monocyte-specific 

chemokine 3 (MCP3). CCL7 has been reported to mediate firm adhesion to 

endothelium by CD4+ T lymphocytes (Loetscher, Seitz et al. 1994) and monocytes 

(Gerard and Rollins 2001; Mackay 2001). 

E-selectin also known as CD62E, ELAM-1, or leukocyte-endothelial cell adhesion 

molecule 2 (LECAM2) is a cell adhesion molecule expressed only on EC and it plays an 
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Chapter 5: Role of endothelial hsa-miR-126* in leukocyte adhesion to human brain endothelium 

important part in inflammation, in particular in leukocyte rolling on endothelium as 

described in 1.4.4. 

Because CCL7 and E-selectin were most likely to be involved in inflammation 

and leukocyte trafficking, we have chosen to study these proteins further as potential 

hsa-miR-126* targets in BEe. 

5.3.6 E-selectin expression is modulated by hsa-miR-126* in hCMEC/D3 cells 

E-selectin was a predicted target of hsa-miR-126* that was selected for further 

investigation. Here we studied whether hsa-miR-126* was able to regulate E-selectin 

expression on hCMEC/D3 cells both in unstimulated and cytokine-stimulated 

endothelium. We observed that decreasing the levels of miR-126*, and mimicking 

inflammatory conditions, caused a small, but significant increase in E-selectin under 

control conditions (Fig. 5.5). Due to decrease of miR-126* with cytokines, E-selectin 

expression was increased. When miR-126* was increased, no differences were 

observed in E-selectin expression in all conditions tested. 
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Fig. 5.5: Hsa-miR-126* modulates E-selectin expression in hCMEC/D3 cells in basal or 
inflammatory conditions. hCMEC/D3 cells were transfected with A. Pre-miR-126* and 
B. Anti-miR-126* followed by treatment with a combination of cytokines (TNFa + IFNy) 

at 0 and 1 ng/ml for 24 h. Anti-human-E-selectin monoclonal antibody was used to 
detect E-selectin expression levels by ELISA. Experiments were carried out three times 
with three replicates. Data are mean ±SEM (#'*p<O.OS ##, **p<O.Ol # significantly 
different vs. unstimulated cells, * significantly different when compared with scrambled 

Pre- or Anti-miR). 
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5.3.7 CCL7 expression is not modulated by hsa-miR-126* in hCMEC/D3 cells 

CCl7 was another one of the predicted targets of hsa-miR-126* that was 

selected for further investigation. Here we studied whether hsa-miR-126* was able to 

regulate CCl7 expression on hCMEC/D3 cells both in unstimulated and cytokine-

stimulated endothelium. 

First of all, we found that resting hCMEC/D3 cells did not secrete CCl7, or they 

secreted less than 15.6 pg/ml, the lowest detectable amount above the assay's 

threshold. We found that decreasing the levels of miR-126*, and mimicking 

inflammatory conditions, did not affect CCL7 secretion under basal conditions (Fig 5.6). 

This was also the case under inflammatory conditions in which hCMEC/D3 cells 

increased their secretion of CCl7 but this effect was unaffected my modulation of miR-

126*. These results suggest that miR-126* modulates leukocyte adhesion via 

regulation of expression of genes other than CCl7. 

400 

100 

o 

.J!¥- -.--

- '-

--L-

o 

24h TNFa. + IFNy (ng/ml) 

c::J SCRAM BLED Anti·miR 

c::J Anti-mi R-126* 

Fig. 5.6: Hsa-miR-126* does not modulate CCL7 expression in hCMEC/D3 cells. 
hCMEC/D3 cells were transfected followed by treatment with a combination of 
cytokines (TNFa + IFNy) at 0 and 1 ng/ml for 24 h. Anti-human-CCl7 monoclonal 
antibody was used to detect CCL7 expression levels by ELISA. Experiments were carried 
out three times with three replicates. Data are mean ±SEM (###P<O.OOl # significantly 
different vs. unstimulated cells). 
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5.3.8 VCAMl expression is not modulated by hsa-miR-126* in hCMEC/D3 cells 

VCAMl was a validated target of hsa-miR-126 in HUVEC, and we confirmed its 

regulation of expression by this miR in hCMEC/D3 cells. However, VCAMl is not a 

directly predicted target for miR-126*, however ROCK2 is a predicted target gene of 

miR-126* (Table 5.1), which has been implicated in the regulation of VCAMl 

expression by lysophosphatidic acid (LPA) in HUVEC (Shimada and Rajagopalan 2010). 

Therefore, we tested whether the levels of VCAMl expression by hCMEC/D3 cells 

could be indirectly affected by decreased levels of miR-126* in hCMEC/D3 cells. As 

expected, VCAMl expression by hCMEC/D3 cells was not modulated by hsa-miR-126* 

(Fig. 5.7). 
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Fig. 5.7: Hsa-miR-126* does not modulate VCAMl expression in hCMEC/D3 cells. 
hCMEC/D3 cells were transfected followed by treatment with a combination of 

cytokines (TNFa + IFNy) at 0 and 1 ng/ml for 24 h. Anti-human-VCAMl monoclonal 
antibody was used to detect VCAMl expression levels by ELISA. Experiments were 
carried out three times with three replicates. Data are mean ±SEM (#P<0.05 # 
significantly different vs. unstimulated cells). 
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5.4 Discussion 

5.4.1 The role of the non leading strand microRNA in leukocyte adhesion 

In Chapter 4 we showed that miR-126 regulates monocyte and T cell adhesion 

(Harris, Yamakuchi et al. 2008). Here we demonstrated that hsa-miR-126*, the 

complement of hsa-miR-126 was involved in the regulation of leukocyte adhesion. 

Overexpression of hsa-miR-126* prevented both T cell and monocyte adhesion which 

was comparable to hsa-miR-126 (shown in Chapter 4). These observations could 

suggest that miR-126 and -126* have the same role and function in leukocyte adhesion 

because they originate from the same gene and pri-miR precursor, although they have 

different sequences. Probably for these reasons most studies, assuming that both miRs 

have the same functions, have considered miR-126 and -126* as a single entity (Huang, 

Gschweng et al. 2011; Felli, Felicetti et al. 2013; Zhang, Yang et al. 2013). However, our 

results are in contrast with these assumptions, because miR-126 and -126* may 

regulate the same cellular process or event, but having different sequences, they may 

do so by acting on different gene targets, as shown here in results section and in 

Chapter 4. In addition, taking into consideration that (i) miR biogenesis is tissue­

dependent, (ii) miR and miR* species can be co-accumulated or not, depending on the 

cell type and/or extracellular signals and that (iii) the target selection mechanism is not 

standard (Ro, Park et al. 2007), it is expected that miR-126 and -126* can be expressed 

in a tissue-specific way and may have different regulatory functions as shown in 

human BEC in this study and in HUVEC and prostate cancer cells (Musiyenko, Bitko et 

al. 2008). It has been previously shown that miR/miR* can play opposite roles, as is the 

case for miR-155* and -155 in human dendritic cells where are inversely regulated by 
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type I interferons (Zhou, Huang et al. 2010), or a similar function, as is the case for 

miR-1SS* and -155 in human astrocytes where both miRs are co-regulated by 

cytokines and have the same proinflammatory function (Tarassishin, Loudig et al. 

2011). As reported by Byrd et aI., miR-30c and its passenger strand (mir-30c2*) are 

both expressed by fibroblast cells, but only mir-30c2* regulates the endoplasmic 

reticulum by targeting the specific gene XBP1 gene (Byrd, Aragon et al. 2012). The 

results from these studies suggest that miR star species, in addition to their own 

regulatory activity, may have antagonistic or supportive regulatory functions when 

compared with their leading strand (Yang, Phillips et al. 2011). 

5.4.2 Different role of mir-126* in T cell and monocyte adhesion 

Our results demonstrate for the first time that hsa-miR-126* modulated THP-1, 

but not Jurkat, adhesion to brain endothelium in static conditions. When the flow­

based assay was used, a significant modulation by hsa-miR-126* on both Jurkat and 

THP-1 cells firm adhesion was observed. However, we observed contrasting results 

about T cell adhesion when inflammation was mimicked (miR-126* down-regulation). 

When hsa-miR-126* expression levels were decreased in BEC, T cell adhesion was 

unexpectedly prevented in a similar manner to the effect observed when hsa-miR-

126* expression levels were increased. Jurkat cell adhesion to BEC may be more 

sensitive than THP-1 cells to a fine balance in the levels of miR-126* and its leading 

strand. It is possible that miR-126* can indirectly or directly target genes involved in 

intracellular pathways or adhesion molecules, which mediate selectively monocyte and 

T cell adhesion. For example, CCl7 is a predicted target of miR-126*, which has been 

reported to mediate preferentially monocyte adhesion (Gerard and Rollins 2001; 
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Mackay 2001), although to our knowledge CCl7 was not regulated by miR-126*. 

Regarding the observation that decreased levels of hsa-miR-126* lead to reduced T cell 

adhesion, we can speculate that decreasing miR-126* induces transcriptional 

activation of the eg/17 gene (where miR-126 and -126* originate), increasing the 

endogenous levels of both miR-126 species (miR-126 and -126*) leading to reduced T 

cell adhesion. Indeed, miR-126* levels were reduced by transfection with anti-miR-

126* but we observed in preliminary data that miR-126* down-regulation led to 

increased levels of miR-126 in hCMEC/D3 cells. This suggests a compensatory 

regulation or autoregulatory feedback that it taking place in miR responses which has 

been previously observed in different cell types of different species (Shen-Orr, Milo et 

al. 2002; Tsang, Zhu et al. 2007) such as miRs being involved in transcriptional control 

(Martinez, Ow et al. 2008). However, we have not produced any evidence of this 

regulatory mechanism for miR-126/-126* of transcription factors, nor on the effect of 

a possible complete depletion of miR126* on cell signalling. We can speculate that 

decreased level of miR-126* enhanced a positive feedback on production and 

expression of miR-126 which targets specific genes involved in T cell recruitment such 

as CXCl12, possibly leading to the prevention of T cell adhesion observed in hCMEC/D3 

cells in Fig S.4. 

5.4.3 Effect of miR-126* modulation on its predicted targets in hCMEC/D3 cells 

When a computational search to identify all possible miR-126* targets was 

performed, these targets were totally different from those for miR-126 due to the 

differences in the miR sequences. Two genes were chosen for further studies because 

they are known to be mediators of inflammation and leukocyte trafficking on brain 
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endothelium: CCL7 (Takeshita and Ransohoff 2012) and E-selectin (Wiese, Barthel et al. 

2009). MiR-126* down-regulation led to a small increase in E-selectin protein 

expression on BEC, which may have mediated, at least partially, the observed increase 

in monocyte capture and firm adhesion. In addition, VCAMl expression was not 

modulated by hsa-miR-126*, then THP-1 adhesion was probably mediated by other 

proteins likely modulated by hsa-miR-126* neither directly nor indirectly indicating 

that this CAM was not involved in the modulatory effect of hsa-miR-126* on leukocyte 

adhesion. By contrast, increased concentration of endothelial miR-126* prevented T 

cell and monocyte adhesion, but it did not significantly decrease E-selectin expression 

on hCMEC/03 cells nor were cytokine-induced CCL7 levels affected. It is possible that 

CCL7 is not a direct target of miR-126* in hCMEC/03 cells or that the effect of miR-

126* on CCL7 is not sufficient to counteract the strong cytokine-inducing effect on 

CCL7 in hCMEC/03 cells. Thus, it is likely that other endothelial gene targets than the 

ones investigated here are modulated by miR-126* such as fractalkine receptor, C0200 

or C044, which are known to promote adhesion. 

5.5 Conclusions 

Here, we report that human brain endothelial miR-126* regulates leukocyte 

adhesion to the human brain endothelium in vitro by a mechanism possibly involving 

partially E-selectin. In this study we reported for the first time that miR-126* plays a 

role in both monocytic and T cell adhesion. 
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Chapter 6: The role of endothelial hsa-miR-1SS in leukocyte adhesion to 
human brain endothelium 

6.1 Introduction 

miR-155 is a multifunctional miR (Faraoni, Antonetti et al. 2009) and plays a 

crucial role in both physiological processes (Kluiver, Poppema et al. 2005; Vigorito, 

Perks et al. 2007) such as innate immunity (Leng, Pan et al. 2011) and in pathologies 

such as cancer (TiIi, Croce et al. 2009; Mattiske, Suetani et al. 2012), and inflammation 

(Leah 2011). In addition, miR-155 has been defined as a pro-inflammatory miR 

(o'connell, Rao et al. 2012) induced by inflammatory cytokines including TNFu and 

IFNy and its expression was found either up/down-regulated in monocytes, 

macrophages, dendritic cells and epithelial cells (Kutty, Nagineni et al. 2010; 

Ponomarev, Veremeyko et al. 2013). 

Hsa-miR-155 is up-regulated in human EC (Suarez, Wang et al. 2010) and in 

hCMEC/D3 cells (M.A. Lopez PhD thesis) by cytokines. Pulkkinen et al. reported that 

hsa-miR-155 expression in EC is triggered by TNFa via NF-KB (Pulkkinen, Yla-Herttuala 

et al. 2011). In addition, hsa-miR-155 is up-regulated in brain lesions from MS patients 

(Junker, Krumbholz et al. 2009) and in human brain microvessels of ALMS (M.A. Lopez 

PhD thesis 2012). 

Recent studies reported that miR-155 is indirectly involved in adhesion and 

migration. High expression of hsa-miR-155 in angiotensin II-activated HUVEC cells 

attenuated Jurkat T cell adhesion (Zhu, Zhang et al. 2011), while in gastric cancer cells 

(Li, Nie et al. 2012), ovarian cancer-initiating cells (Qin, Ren et al. 2013) and human 

cardiomyocyte progenitor cells (Liu, van Mil et al. 2012), has-miR-155 suppressed cell-

cell adheSion and invasion by targeting SMAD2, claudin-1 and MMP-16, respectively. 
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6.2 Aims 

To the best of our knowledge, no studies on the role of brain endothelial miR-

155 in leukocyte adhesion have been previously reported in the literature. As shown 

previously, hsa-miR-1S5 was up-regulated in cytokine-treated hCMEC/D3 cells. In the 

screening at the beginning of Chapter 4, miR-155 modulated Jurkat adhesion under 

basal conditions. Here, we further investigated the role of hsa-miR-155 in leukocyte 

adhesion using the flow-based assay. 
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6.3 Results 

6.3.1 Hsa-miR-155 modulates Jurkat and THP-1 static adhesion on hCMEC/D3 cells at 

basal level 

As shown in Fig. 4.3, increased hsa-miR-1SS levels in hCMEC/D3 cells, to 

simulate inflammatory conditions, led to increased with Jurkat cells. Here we observed 

increases THP-l adhesion to resting hCMEC/D3 cells (Figs. 6.1 A and 6.2 A) but not in 

cytokine-activated EC (at 1 ng/ml). Lower concentration of cytokines (0.1 ng/ml), 

which still increased Jurkat T cell adhesion to hCMEC/D3 cells, did not induce any 

further increase in adhesion suggesting that either cytokine-induced increase in miR-

lSS levels are already sufficient to increase Jurkat and THP-l adhesion or that the miR-

lSS-mediated increase in cytokine-induced leukocyte adhesion is too small to be 

detected using a static assay. 

Decreased levels of miR-1SS by transfection with anti-hsa-miR-1SS slightly 

reduced Jurkat (Fig. 6.1 B), but not THP-1 (Fig. 6.2 B) adhesion to endothelium under 

resting conditions. In cytokine-stimulated endothelium, down-regulation of hsa-miR-

lSS levels did not lead to significant differences in Jurkat or THP-l adhesion to 

hCMEC/D3 cells {Figs. 6.1 and 6.2}. These results would suggest that either cytokine-

induced increases in miR-1SS levels are not involved in the cytokine-induced increase 

in Jurkat and/or THP-l adhesion or that the miR-1SS-mediated increase in cytokine-

induced leukocyte adhesion is again too small to be detected using a static assay. 
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6.3.2 Hsa-miR-155 modulates Jurkat and THP-l flow-based adhesion on hCMEC/D3 

cells 

To determine whether the absence of effect on cytokine-induced leukocyte adhesion 

by modulation of miR-155 levels was due to a teecnicallimitation of the method used, 

the static leukocyte adhesion assay, we used the more discriminating flow-based assay 

described in Chapter 3. 

First, we confirmed that high levels of hsa-miR-155 increased both Jurkat and 

THP-1 firm adhesion under basal conditions (Figs. 6.3 A and 6.4 A). Moreover, reducing 

hsa-miR-155 levels in hCMEC/D3 cells slightly, but significantly, decreased THP-1 

adhesion (Fig. 6.4 C) to unstimulated endothelium. However, in contrast with the static 

assay, Jurkat adhesion to hCMEC/D3 cells was not significantly decreased by reducing 

miR-155 levels in unstimulated endothelium. 

In addition, in cytokine-stimulated conditions further up-regulation of hsa-miR-

155 increased both THP-l (Fig. 6.4 B) and Jurkat (Fig. 6.3 B) adhesion to hCMEC/D3 

cells, while decreased levels of hsa-miR-155 reduced adhesion of both THP-l (Fig. 6.4 

D) and Jurkat cells (Fig. 6.3 D) to cytokine-activated endothelial cells under shear 

stress, by almost 50%. 
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6.3.3 Hsa-miR-155 modulates VCAMI and ICAMI expression in hCMEC/D3 cells at 

basal level 

The changes in monocyte and T cell adhesion to endothelium due to hsa-miR-

lSS modulation led us to investigate whether hsa-miR-lSS was implicated in VCAMl 

and ICAMl expression, even though they were not predicted direct targets of miR-l55 

in any species, including humans (according to the databases listed in Section 2.l0). 

Modulating endothelial hsa-miR-l5S levels did not significantly induce changes 

in ICAM2 expression on hCMEC/D3 cells in any conditions tested probably due to the 

high variability in ICAM2 expression observed between experiments (Fig. 6.5 ICAM2). 

However, decreasing the levels of hsa-miR-lSS induced a reduction in VCAMl and 

ICAMl, while high levels increased only VCAMl expression on resting BEC. No changes 

in VCAMI and ICAMI were observed in cytokine-stimulated endothelium either with 

increased or decreased hsa-miR-lSS levels (Fig. 6.S). 

These results suggested that VCAMl and ICAMl are implicated in miR-l55 

modulation of leukocyte adhesion under basal conditions. However indirectly, these 

observations indicated that miR-ISS modulates adhesion of both T cells and 

monocytes in inflammatory conditions through other molecules involved in adhesion, 

other than ICAMl and VCAMl. 

206 



Chapter 6: Rale of endothelial hsa-miR-155 in leukocyte adhesion to human brain endothelium 

7 

6 

51 5 

~ 4 
() 

c: 
:; 3 

VCAM1 

7 

6 

51 5 

~ 4 
o c: 
:; 3 

~ 2 • & 2 

25 

2.0 

~ 
~ 1.5 
o 
c: 
:; 1.0 . 

& 
0.5 

2.0 

5: 1.5 

~ 
() 

. S 1. 
-c 
"0 
... 0.5 

24h TNFa + IFNy (nglmJ) 

= VCAMl SCRAMBLED Pre-miR 

CJ VCAM1 Pre-miR-155 

ICAM1 

o 0.1 

24h TNFa + IFNy (nglml) 

CJ ICAMl SCRAMBLED Pre-miR 

CJ ICAMl Pre-miR-155 

2.5 

2.0 

~ 
~ 1.5 
o 
c: 
:; 1.0 . 

& 
0.5 

ICAM2 

2.0 

~ 1.5 
Q) 

o 
.5 1 . 
-c 
"0 
u. 0.5 

0.0-LL_ ..l.----1.--L--'---.......J.--L-...I....----'-
o 0 .1 

24h TNFa + IFNy (nglml) 

CJ ICAM2 SCRAMBLED Pre-miR 

CJ ICAM2 Pre-miR-155 

24h TNFa + IFNy (nglml) 

o 

= VCAMl SCRAMBLED Anti-miR 

CJ VCAM1 Anti-miR-155 

0.1 

24h TNFa + IFNy (nglml) 

o 

CJ ICAMl SCRAMBLED Anti -miR 

CJ ICAMl Antl-mIR-155 

0.1 

24h TNFa + IFNy (nglml) 

CJ ICAM2 SCRAMBLED Anti-miR 

CJ ICAM2 Anti-miR-155 

Fig. 6.5: Hsa-miR-iSS modulates VCAMi and ICAMi expression in hCMEC/D3 cells at 
basal level. hCMEC/D3 cells were transfected followed by treatment with a 

combination of cytokines (TNFa + IFNy) at different concentrations (0, 0.1 and 1 ng/ml) 
for 24 h. Anti-human-VCAM1, - ICAMl and ICAM2 monoclonal antibodies were used to 
detect VCAM1, ICAMl and ICAM2 expression levels by ELISA. Experiments were 
carried out three times with three replicates each. Data are mean ±SEM 
(*,#p<0.05**,##p<O .01 # significantly different vs. unstimulated cells, * significantly 
different when compared with scrambled Pre- or Anti-miR). 

207 



Chapter 6: Role of endothelial hsa-miR-155In leukocyte adhesion to human brain endothelium 

6.4 Discussion 

6.4.1 Hsa-miR-155 is a proinflammatory microRNA in brain endothelium 

hsa-miR-155 is one of the most studied miRs in inflammation as a regulator of many 

different processes such as inflammation and autoimmunity (O'Connell, Rao et al. 

2012). Here, at the OU, we have previously demonstrated that hsa-miR-155 acts as a 

novel barrier permeability regulator of human brain endothelium during inflammation 

by modulating TJ and cell to matrix interactions (Lopez-Ramirez et aL, PhD thesis 

2012). Indeed, hsa-miR-155 was the most up-regulated miR in cytokine-stimulated 

hCMEC/D3 cells and, in EAE spinal cord vessels at acute stages of the disease (clinical 

score, 4) where the BBB is compromised. 

In addition, the present study showed that hsa-miR-155 modulated Jurkat 

adhesion to unstimulated endothelium using a static assay (Chapter 4), and here we 

also demonstrated that hsa-miR-155 plays an important role in both monocyte and T 

cell adhesion to both resting and cytokine-stimulated human brain endothelium using 

a more sensitive flow-based assay (as discussed in Chapter 3). These results reinforce 

the role of miR-1S5 in two important functions mediating inflammatory pathogenic 

mechanisms at the BBB, increased barrier leakage and support of leukocyte 

extravasation at inflamed sites, which are compatible with its proposed function in 

contributing to the initiation of immune responses (Rodriguez, Vigorito et al. 2007; 

Vigorito, Perks et aL 2007; Kurowska-Stolarska, Alivernini et aL 2011). 
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6.4.2 Hsa-miR-155 promotes leukocyte adhesion and increased CAM expression in 

brain endothelium 

We have shown that elevation of hsa-miR-155 levels in unstimulated human brain 

endothelium leads to increased expression of VCAM1 and ICAM1, probably leading to 

the sma" increases in Tee" and monocye adhesion to these cells. Indeed, ICAM 1 and 

VCAM1 are we" know endothelial mediators of leukocyte adhesion in inflammation 

(Rijcken, Krieglstein et al. 2002; Engelhardt 2006). Interestingly, preliminary results 

carried out by our collaborators in Ottawa (Drs Danica Snatnimirovic and Arsalan 

Haqqani) using proteomic analysis of membrane proteins in hCMEC/D3 cells 

transfected with scrambled pre-miR oligonucleotides or pre-miR-155 confirmed 

VCAM1 and ICAM1 increased expression induced by elevated levels of miR-155 

together with a decrease in ICAM2 expression (see Table in Appendix 2). However, our 

findings are in contrast with those of Zhu et al. who reported that increased levels of 

miR-155 prevented Jurkat adhesion to angiotensin II-stimulated HUVEC, and decreased 

VCAMl and CCl2 mRNA relative expression (Zhu, Zhang et al. 2011). 

Several factors may have been involved in the apparent discrepancy between 

our study and that of (Zhu, Zhang et al. 2011). First, Zhu et al. used a static leukocyte 

adhesion assay which we found to be less sensitive than the flow-based assay in 

discriminating miR actions on leukocyte adhesion. It is worth noting here that the 

experiments by Zhu et al. did not include unstimulated cells transfected with pre- or 

anti-miR-155, the only conditions in which an effect of miR-155 on leukocyte adhesion 

could be demonstrated using the static assay. Second, the effects of miR-155 may be 

cell-type specific, which may include endothelium from different vascular beds 

(HUVEC). It is well known that the modulatory actions of miRs on cell function depend 
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on the existence and/or abundance of their mRNA targets in a particular cell type 

(lagos-Quintana, Rauhut et al. 2002). In addition, BEC are unique in their phenotype 

compared to endothelium from other vascular beds (Aird 2007). Hence, it is possible 

that different mRNA targets co-exist with miR-l55 in HUVEC and brain endothelium. 

Finally, the actions of miR-155 may also be specific to the stimulus used to 

activate endothelium. Angiotensin II induces endothelial dysfunction by increasing 

ICAM1 and VCAM1 expression (Nakashima, Suzuki et al. 2006) as does TNFa. However, 

their signalling pathways and induced transcription factor activity are different (as 

discussed below) and could lead to different modulation of CAM expression by miR-

155. Angiotensin II activates two signalling pathways related to vascular inflammation. 

First, it induces RhoA-mediated NF-KB activation which is resposible for the 

trascription of molecules such as VCAMl, ICAM1 and Il-6, and second, the secreted IL-

6 induces STAT3 to transcribe CCl2 (reviewed in (Han, Runge et al. 1999; Brasier 2010). 

Indeed, RhoA is a validated miR-155 target in murine mammary gland epithelial cells 

(Kong, Yang et al. 2008). By contrast, TNFa induces VCAMl, ICAMl and E-selectin 

expression via either APl or the canonical NF-KB pathway involving IKB degradation, 

but not RhoA activation (Pober and Sessa 2007; Montgomery and Bowers 2012). 

In addition, angiotensin-II receptor itself is a target for miR-l55 in HUVEC 

(Martin, lee et al. 2006) and it is likely that miR-lS5 may act as a negative feedback 

modulator of the angiotensin-induced response whereas miR-155 may still be a pro­

inflammatory mediator in the presence of cytokines. All together, our findings are in 

line with all the literature supporting the theory that in neuroinflammatory conditions, 

miR-l55 is up-regulated and regulates many pro-inflammatory processes (O'Connell, 

Rao et al. 2012). 
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6.4.3 Possible pro-inflammatory intracellular patwhays regulated by hsa-miR-1SS in 
brain endothelium 

MiRs can act directly or indirectly on transcription factors (Martinez, Ow et al. 2008; 

Zhou, Wang et al. 2011). Ets-1 is a transcription factor responsible for angiogenesis, 

vascular remodelling, inflammation (Sato 2001; Zhan, Brown et al. 2005) and adhesion 

in ECs . However, in resting hCMEC/D3 cells Est-1 seems barely expressed, although it 

increased eight times in cytokine-treated BEC (http://www.ncbLnlm.nih.gov 

/projects/geo/query/acc.cgi?acc=GSE44694), so some of the differences in leukocyte 

adhesion observed between unstimulated and cytokine-treated endothelium may be 

due to the differential expression of this miR-155 target. Moreover, we can also 

speculate that Ets-1 targeting by miR-155 may lead to other functional consequences 

(Zhu, Zhang et al. 2011). Indeed, Ets-1 down-regulation decreases transactivation of 

egfl7 and leads to miR-126/-126* down-regulation (Harris, Yamakuchi et al. 2010), 

which would lead to increased VCAM1 expression and leukocyte adhesion as we 

observed in Chapters 4 and 5. Therefore, we cannot exlude that miR-155 acts indirectly 

on VCAM1 expression, by targeting different signalling pathways involved in leukocyte 

adhesion. 

RhoA has been shown to be a target of miR-155 in epithelial cells (Kong, Yang 

et al. 2008), and of RhoA and PKC crosstalk in inflammatory conditions has been shown 

to be critical for TJ maintenance in BEC (He, Yin et al. 2012). In addition, it has been 

shown that ICAM1 crosslin king (mimicking interactions with LFA-1) activates Rho and 

induces actin cytoskeletal reorganization via PKC (Etienne, Adamson et al. 1998; 

Etienne-Manneville, Manneville et al. 2000). Taken together, these observations may 

suggest an anti-inflammatory role for miR-155 in the context of leukocyte adhesion. 
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However, it is important to stress here that, as with many so-called pro-inflammatory 

cytokines, miR-1SS may be involved in different functions depending on disease state. 

6.S Conclusions 

Here, we report that human brain endothelial miR-lSS regulates leukocyte 

adhesion to the human brain endothelium in vitro possibly related to an indirect 

regulation of VCAM1 and ICAMl expression. 
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Chapter 7: General discussion 

Neurodegenerative and autoimmune diseases such as MS are characterised by 

inflammation with subsequent increase of immune cell adhesion and infiltration from 

the blood to the CNS across the BBB. Immune cell adhesion to the BBB has been 

deeply studied. However, its molecular regulation remains to be fully elucidated. The 

overall aim of this thesis was to study whether brain endothelial miRs which 

expression was changed by TNFa and IFNy-stimulation in hCMEC/D3 cells were 

involved in leukocyte adhesion and, if so, through which gene target/so 

Our results have shown that: 

i) The hCMEC/D3 cells line is a suitable human in vitro model to study leukocyte 

adhesion to brain endothelium and to investigate brain endothelial miRs and their 

potential as novel therapeutic target to prevent leukocyte adhesion/infiltration in the 

CNS in disorders such as MS. 

ii) A novel flow-based in vitro system, to mimic the blood flow in the brain 

microvasculature, coupled to a live cell imaging technique was successfully set up, to 

model leukocyte interactions with the human BBB, using the hCMEC/D3 cell line. 

iii) We propose that out of the five more either up or down-rugulated miRs in cytokine­

stimulated hCMEC/D3 cells tested, miR-126, miR-126* and miR-1SS are significantly 

involved in the regulation of leukocyte adhesion by mechanisms that may involve, at 

least partially, endothelial CAM and chemokines. 

213 



Chapter 7: General discussion 

7.1 A new flow-based in vitro system to study leukocyte adhesion to the human 
blood-brain barrier, using the hCMEC/D3 cell line as model 

While focusing on leukocyte trafficking from the blood to tissues in vitro, 

mimicking the blood flow is one of the most challenging elements. Nevertheless, a 

variety of models have been set up in the past (Chapter 1, section 1.8.1), but all of 

them have limitations in term of cell culture treatments and number of cells required. 

However, we successfully developed a new flow-based system to mimic the 

microvasculature in vivo (Chapter 3). The system is based on commercially available 

six-channel chambers and hCMEC/D3 cells, in which we modulated intracellular miR 

levels by transfection. Compared to other commercially and custom-made available 

flow based systems to study adhesion, ours was easy to assemble, cost-effective and 

hCMEC/D3 cells formed proper monolayers and were easily transfected with synthetic 

miR sequences using small volumes. This flow-based system has allowed us to study 

leukocyte adhesion to brain endothelium, minimizing unspecific adhesion due to the 

discrimination of the flow. In addition, it was possible to detect small, but significant, 

changes in leukocyte adhesion due to regulation by miRs. The chamber allows six 

parallel experiments to be carried out simultaneously, and from each 

experiment/channel it was possible to capture more than ten FOV within the same 

experiment. In leukocyte trafficking research, flow-based in vitro systems and/or 

models have become necessary to better mimic in vivo conditions and to understand 

the fine mechanisms of immune cell trafficking across endothelium. Few in vitro 

systems have been established to study cell trafficking at the BBB, and no one to date 

has studied endothelial miRs. We believe that this new system can contribute to better 

understanding of the biology of both human brain microvasculature and leukocyte 
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trafficking, while improving the specificity, accuracy and quality of the research data. 

Although this system was developed in order to study leukocyte rolling, adhesion, 

crawling and migration under flow in a flexible, consistent and very accurate way, 

there are still many way to improve the chamber, tubing and the time-lapse 

micrOscopy/software. The chamber is not optimal to investigate 

migration/transmigration, because it lacks a lower part where migrated cells could 

physically be separated from the endothelium and be better quantified/studied. In 

addition, co-cultures or 3D cultures cannot be performed with this chamber. The 

closed system of tubing which connects syringes and chambers has connectors and 

tubing, that could be subjected to accumulation of pulled cells and/or bacterial 

contamination if used for long periods of time. To overcome this problem, silicone 

tubing with moulded fittings and connectors, custom designed, connected to a sterile 

closed container with silicone bottle stoppers and a sealing system could be used but 

to the expense of a higher cost. In addition, a de-bubbler between the chamber and 

the leukocyte bottle could be very helpful to avoid bubbles from entering the 

experimental channel. 

To quantify the length of leukocyte-endothelial cell interactions prior to firm 

adhesion we captured one frame per second, which was the maximal capacity of our 

camera/software. To study rolling properly, it has been reported that twenty 

frames/second are required to be able to analyse rolling distances and speed, which 

requires a more powerful computer and camera. 
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7.2 Endothelial microRNAs as modulators of leukocyte adhesion to the human blood­
brain barrier: miR-126, miR-126* and miR-155 

The results of the current study show that the brain endothelial miR-126*, miR-126 

and miR-155 regulate monocyte and T cell adhesion in vitro targeting molecules such 

as E-selectin VCAMl and CCl2, either directly or indirectly (Fig 7.1). Prior to this work, 

Harris et al. reported that endothelial miR-126 regulates leukocyte adhesion in HUVEC 

via VCAMl down-regulation (Harris, Yamakuchi et al. 2008) whereas another study 

showed miRs targeting another key cell adhesion molecule, ICAM1, where miR-222 

and miR-339 promoted resistance of cancer cells to cytotoxic T lymphocytes via ICAMl 

down-regulation (Ueda, Kohanbash et al. 2009). Our findings help to unravel miR 

regulation of leukocyte adhesion to endothelium, a field that to date is poorly 

understood. In particular, our finding - if confirmed in vivo - can improve 

understanding of the molecular regulation of leukocyte adhesion to human brain 

endothelium in inflammation. Furthermore, leukocyte adhesion is crucial event for 

neuroinflammatory diseases, then our approach might be translated into a possible 

molecular therapy, targeted at modulating the expression of up-/down-regulated miR 

in brain endothelium, such as miR-126, -126* and -155 (see Section 7.3). 

We found that miR-126, -126* and -155 have a significant role in the regulation 

of leukocyte adhesion targeting different gene directly and indirectly. Overall, the 

results about miRs shown in this thesis are novel in the fields of BBB and 

neuroinflammation, introducing new brain endothelial players in monocyte and T cell 

adhesion in acute inflammation. However, in vivo studies need to be performed to 

investigate whether miR-126 and -126* are down-regulated in MS lesions with acute 

inflammation when compared to normal appearing white matter (NAWM) (Appendix 
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3). In addition, it would be interesting to perform further experiments to investigate 

which populations of PBMC from MS patients selectively adhere to BEC in vitro, and 

whether the modulation of miR-126, -126* and miR-155 specifically prevent adhesion 

of a particular leukocyte population. Furthermore, it would be interesting to modulate 

the levels of all three miRs in BEC in combination in order to dtermine whether 

synergistic effects occur when down-regulation of miR-126 and -126* and up­

regulation of miR-155 occur concomitantly. In addition, modulation of miR levels that 

countreact the changes induced by cytokines would be informative to determine the 

relative contribution of these miR to the effect induced by cytokines. 
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Fig. 7.1: MiR-126, -126*and -155 may prove therapeutic targets for leukocyte 
adhesion related disorders. A. In healty conditions brain endothelium express normal 
levels of miRs, and proteins, while blood immune cells (leukocytes) exert their role of 

immunosurveillance. B. In inflammatory conditions (TNFa + IFNy) the brain 
endothelium is activated, up-regulating the expression of VCAM1, E-selectin,CCl2 and 
CCl7 proteins and miR-155 and decreasing the level of miR-126 and -126* . C. Cytokine-
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activated endothelium leads to an increase in leukocyte adhesion to endothelium and 
possible migration to the brain triggering neuroinflammatory disease. D. Ectopic 
modulation of miR-155, -126 and -126* in brain endothelium, to couteract the 
cytokines effects, prevents leukocyte adhesion via VCAM1, CCl2 and E-selectin . 
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7.3 Endothelial microRNAs as potential therapeutic targets in neuroinflammation 

Leukocyte adhesion to the BBB is a common early step that characterises a 

wide range of neuroinflammatory and autoimmune diseases such as MS. New 

therapies have been developed to physically prevent the interaction between T cells 

expressing VLA-4 and VCAM1 expressed by endothelium such as Natalizumab which 

targets VLA-4. However, these therapies are not brain endothelium selective, but 

selective for VCAM1 (and/or its leukocyte ligand, VLA-4) whose expression generally 

increases in inflammation both on CNS and non-CNS. Indeed, continuous treatment 

with these therapies has been shown that may lead to progressive multifocal 

leukoencephalopathy in some MS patients (Soilu-Hanninen, Paivarinta et al. 2013). 

Nevertheless, these targeted therapies are still the best therapeutic option to date but 

a novel therapy aimed at the selective prevention of leukocyte adhesion and migration 

to the CNS in neuroinflammatory diseases is still required. 

We propose CNS endothelial miRs as possible therapeutic targets that act 

endogenously at the post-transcriptional level. MiR-based gene therapy for cancer and 

other non-brain diseases has been already approved in clinical trials (Broderick and 

Zamore 2011), although only for diseases that can be easily treated locally such 

chronic asthma with miR-126 and liver cancer with miR-26a (Kota, Chivukula et al. 

2009; Collison, Herbert et al. 2011). MiRs exert fine regulation of gene expression, 

acting endogenously on specific targets, for these reasons the three endothelial miRs 

identified in the present study could be targeted in combination as a potential therapy 

to decrease leukocyte adhesion in autoimmune diseases such as MS, that is, by 

specifically increasing miR-126 and 126* with mimetics and decreasing miR-155 with 

antagomiRs in CNS endothelium. However, to prove their potential in vivo, an 
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adequate delivery system would still be required. Some of the miR delivery systems in 

vivo are based on recombinant adeno-associated viruses (Christensen, Larsen et al. 

2010), rabies virus glycoprotein-disulphite linked PEl nanocarriers (Hwang do, Son et 

al. 2011), cationic lipoplexes injected systemically (Wu, Crawford et aJ. 2013), but no 

specific miR-delivery tools for BEC have been tested in vivo. Since miRs are species­

specific and tissue-specific, further work may look for more specific miR targets 

belonging to endothelial pathways involved in leukocyte adhesion to inflamed CNS 

endothelium. 
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Appendix 1 

Appendix 1 is supported by a CD-ROM attached to the thesis, with a Power Point 
presentation of the set-up and videos of the three flow-based systems tested in this 
project to study leukocyte adhesion. 

Here, a hard copy of Figs. 1-5 Appendix 1. 

Appendix 1 Jurkat T cell adhesion to hCMEC/D3 cells using 
Bioflux flow based system set up: 

flow-based leukocyte adhesion assay 

ho 
FLUXION 

\ ~ 3. Bioflux " " 
1. Fluorescently 2. Bioflux plate '.; plate ,' ,/ 

labelled enlargement 
leukocytes 

\ ' I I 
, I I I 

\ ' I I 
I I I 

5. Fluxion pum~ push 
0.5 dyne/cm for 5 min 

Fig. 1 Appendix 1: Bioflux flow-based adhesion assay set-up. hCMEC/D3 cells were 

seeded in the Bioflux plate (3) and treated with TNFa + IFNy proinflammatory 
cytokines. Fluorescent labelled leukocytes (1) were added to the inlet wells (2), then 
the bioflux plate (3) was sealed, connected to the pump (5) and positioned on the 
platform of a time-lapse microscope (4). The leukocyte suspension in the inlet wells 
was pushed at 0.5 dyne/cm2 for 5 min towards the outlet wells . 
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Appendix 1 

Jurkat T cell adhesion to hCMEC/D3 cells using Bioflux flow based system set up: 
cell seeding is not consistent in all Bioflux plate channels 

Fig. 2 Appendix 1: Cell seeding is not consistent in all Bioflux plate channels. Bioflux 
plate channels were coated with fibronectin and collagen added to the inlet wells. 
Shown are representative pictures of hCMEC/D3 cells seeded in the Bioflux plate 
channels parallel. At 18 h after seeding, EC confluence appeared non homogeneous. 

(bar indicates 400 )lm) 
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Appendix 1 
Jurkat T cell adhesion to hCMEC/D3 cells using Bioflux flow based system set up: 

Oh 

A. 

High number of cells is required for confluent monolayers in 24h, 
and transfection is not consistent 

2 x 10"/ml cells (2 x 105/50111) 35 x 10"/ml cells (1.75 x10"/501!l) 

PRE-cy3-miR ANTI-cy3-miR 
Negative control Negative control • 
B. 

Fig. 3 Appendix 1: Cell seeding and transfection of Bioflux plate channels. A. Bioflux 
plate channels were seeded with different concentrations of hCMEC/D3 cells. 
Representative pictures of hCMEC/D3 cells at 0 and 24 h after seeding are shown. In 
order to obtain a confluent monolayer at 24 h, a seeding density of 35xl06 /ml cells is 
required. B. Transfection with fluorescent negative control miRs (anti- and pre-miR) 
was performed on 70% confluent hCMEC/D3 cell monolayers. Representative pictures 
showing different transfection efficiencies are included. Left channel shows cells 
transfected with pre-miR which was unreliable (lower panel picture shows fluorescent 
aggregates trapped in the inlet well of the plate), while transfection with anti-miR 
appeared to be highly efficient as shown in the right channel. 

Video 1 Appendix 1: Representative video of T cell Jurkat adhesion to hCMEC/D3 cells 
performed with the system described in Fig. 1 Appendix 1. 

252 



Appendix 1 

Appendix 1 
Jurkat T cell adhesion with Cellix flow-based system: 

flow-based leukocyte adhesion assay 

5. MirusTM Nanopump 2.0 
pulls 0.5 dyne/cm2 

connected to a computer 
with Cellix' s software ..-of-_~ 
to program the nanopump 

3. Time-lapse microscope 

hCMEC\D3 
cells 

1. Vena ECTM 
substrate 
(base) 

4. Fluorescently labelled 
leukocyte 

QI-For 30 sec 
= or 1 min 
- or more 

7. Complete endothelial media 

Fig. 4 Appendix 1: Cellix flow-based adhesion assay set-up. hCMEC/D3 cells were 
seeded in the Vena ECM biochip (1) and treated with TNFa + IFNy proinflammatory 
cytokines . The Vena ECM substrate is sealed by Vena EC ™ biochip (2) on top, with 2 
parallel microcapillaries, via a customized frame that was positioned on the platform 
of the time-lapse microscope (3) and connected to the MirusTM Nanopump (5). 
Fluorescently labelled leukocytes (4) were pulled at 0.5 dyne/cm2 for 5 min towards 
the waste (6). Then after 5 min complete endothelial media was pulled at 1.5 

dyne/cm2
. 

Video 2 Appendix 1: Representative video of T cell Jurkat adhesion to hCMEC/D3 cells 
performed with the system described in Fig. 4 Appendix 1. 
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Appendix 1 
Jurkat T cell adhesion with Ibid! flow-based system: 

flow-based leukocyte adhesion assay 

4.Syringe pump 
pu lls 0.5 dyne/cm2 

6.Syringe pump 
pulls 1.5 dyne/cm2 

2. Time-lapse microscope 

For 5 min 

3. Fluorescently labelled 
leukocytes 

For 30 sec 
or 1 min 

5.Complete endothelial media 

Fig. 5 Appendix 1: Ibid! flow-based adhesion assay set-up. hCMEC/D3 cells were 
seeded in Ibidf chambers (1) and treated with TNFa + IFNy proinflammatory cytokines. 
The Ibidf chamber was positioned on the stage of a time-lapse microscope (2) and 
connected to the syringe pumps (4 and 6). Fluorescently labelled leukocytes (3) were 
pulled at at 0.5 dyne/cm2 for 5 min towards the syringe (4). Then after 5 min complete 
endothelial media was pulled at 1.5 dyn/cm2 (6). 

Video 3 Appendix 1: Representative video of T cell Jurkat adhesion hCMEC/D3 cells 
performed with the system described in Fig. 5 Appendix 1. 
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Appendix 2 

Appendix 2 consists of a table showing the results using mass spectrometry (MS)­
based proteomic analysis of pre-miR-155 transfected cells performed by DRs Arsalan 
Haqqani and Danica Stanimirovic (NRC, Ottawa, Canada). 

The table is in a Excel file in the CD-ROM attached to the thesis named 
NRC-I BS-HBECdatabase-TN F-I N F-MembProteins-2009-07-24--2010-02-17v2.xls. 

NRC -IBS-HBECdata b 
ase-1NF-INF-MerrbPr 
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1. Human brain tissues and mouse spinal cord tissues 

Snap-frozen brain tissue blocks were collected at post-mortem time ~ 22 h by 

the UK Multiple Sclerosis Tissue Bank at the Division of Neuroscience and Mental 

Health, Imperial College London (Hammersmith Hospital Campus, London, UK) and 

stored at -80 0c. The snap frozen brain tissue blocks were from patients that had a 

history of MS and each block was characterised for pathogenic markers of disease. 

Details are listed in Table Appendix 3. Tissue regions were characterised by the UK MS 

tissue bank as grey matter lesion (GM), white matter lesion (WML), normal appearing 

white matter (NAWM), chronic active lesion (CAL), chronic lesion (CL) and active lesion 

(AL) using Oil-Red-O and anti-MOG antibody. Further histological characterisation of 

each specimen was performed using haematoxylin/eosin, Luxor fast blue (LFB) and 

immunostaining for CD68 and MHC II. 

Sample, 

MS 
patient 

case 
MS154 
MS168 

MS050 

Age 
(years) 
/gender 

34/ F 
88/F 

72/F 

Post 
mortem 
(hours) 

12 
22 

8 

Type Duration 
of disease 
MS (years) 

SPMS NIA 
PPMS 30 
RRMS-
SPMS 41 

Activity 

Lesion Al NAWM of 

activity block block disease 
Cause of death 

at death 
Al/CAL/Cl PSC7 PSD4 Progression Pneumonia 
Al/CAl A1E2 P3D3 Progression Broncopneumonla 

Al/CAL/Cl P1E2 P5E3 Progression Bronchopneumonia 

Table 1 Appendix 3: Demographic and clinical characteristics and details of multiple 

sclerosis patients and their snap-frozen brain tissue block. N IA= no information 
available, chronic active lesion (CAL), chronic lesion (CL) and active lesion (AL). 
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Spinal cords from animals with EAE were a kind gift from Drs David Baker and Gregory 

J. Michael (Center for Neuroscience and Trauma, Blizard Institute Barts and The 

London School of Medicine and Dentistry, London, Queen Mary University of London, 

UK.). EAE was induced in Biozzi ABH mice with 1 mg freeze-dried mouse spinal cord 

homogenate in Freund's adjuvant supplemented with 60 mg Mycobacterium 

tuberculosis H37Ra and Mycobacterium butyricum as previously described (AI-Izki et 

aI., 2012). Animals were monitored daily to assess the development of relapsing­

remitting paralysis and scored as follows: O=normal; l=limp tail; 2=impaired righting 

reflex; 3=hind-limb paresis and 4=complete hind-limb paralysis (AI-Izki et aI., 2012). 

Each frozen brain tissue was left to reach -20°C and then carefully positioned 

and attached on the sample stub with Tissue-Tek O.C.T. (Qiagen, Crawley, West 

Sussex, UK) and cut using a Leica CM-3050-S Cryostat (Leica, Milton Keynes, UK) on 

superfrost Plus microscope slides (Thermo Scientific, Langenselbold, Germany) and 

stored at -80°C. The snap-frozen human brain tissue analyses were carried out on 12-

J..lm th ick sections. 
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2. In Situ Hybridization (ISH) 

Table 2 Appendix 3: List of chemicals and solutions used for in situ hybridization. 

Chemical or solution Supplier 
Anti-Digoxigenin-AP, Fab fragments 

from sheep Roche, Mannheim, Germany 

Blocking Reagent for nucleic acid 
hybridization and detection Roche, Mannheim, Germany 
DAPI-Fluoromount-GTM 4',6-
diamidino-2-phenylindole Southern biotech, Birmingham, USA 

Ethanol Ethyl alcohol Sigma-Aldrich, Dorset, UK 

Hydrochloric acid HCL Sigma-Aldrich, Dorset, UK 

ImmEdgeTM PEN VECTOR Laboratories, Peterborough, UK 

Levamisole (S)-6-Phenyl-2,3,5,6-
tetra hydroi midazo[2, 1b 1 [l,31th iazole VECTOR Laboratories, Peterborough, UK 

Magnesium chloride (MgCI2) Fischer scientific, Loughboroig, UK 
NTB/BClP 8.75 mg/ml nitro blue 
tetrazolium chloride and 9.4 mg/ml 
5-bromo-4-chloro-3-indolyl-
phosphate, toluidine-salt in 67% 

(v/v) DMSO Roche Diagnostics, Mannheim, Germany 

p-formaldehyde Sigma-Aldrich, Dorset, UK 

Potassium chloride (KCI) Sigma-Aldrich, Dorset, UK 

Proteinase K Promega, Madison, USA 

Saline-Sodium Citrate buffer, made 
with ultrapure water SSC Buffer 20x Sigma-Aldrich, Dorset, UK 

Sodium Cloride (NaCI) 
Tris Trizma® base 2-Amino-2-
(hyd roxymethyl)-1,3-propa nediol Sigma-Aldrich, Dorset, UK 

Trizma" hydrocloride (TRIS HCI) Sigma-Aldrich, Dorset, UK 
TWEEN-20 Polyoxyethylenesorbitan 

monolaurate Sigma-Aldrich, Dorset, UK 

Table 3 Appendix 3: Solutions used for in situ hybridization. 

Solution 
Buffer 1 

Buffer 2 

Buffer 3 

Composition 
--------~---------

Tris HCI pH 7.5 100 mM, NaCI 150 mM in H20 

Buffer 1 with O.S % Roche Blocking solution in H20 

Tris HCI pH 9.5 100 mM, NaCl100 mM, MgCl2 SO mM in H20 

Catalogue # 

11093274910 

11096176001 

0100-20 

E7023 

H1758 

H-4000 

SP-5000 

M/0600/53 

11681451001 

P6148 

4504 

V3021 

S6639 

T6066 

TS941 

P7949 

NBT/BCIP 

Proteinase K 

Hybridization 
solution 

1% NBT/BClP, 0.5% levamisole chromogen solution, 0.1% Tween 20 in Buffer 3 

21lg /ml of proteinase Kin 10% Tris HCl100 mM pH 7.5, 10% ETDA O.SM in H20 

50%formamide, 5X SSC, 40 Il-g/ml salmon sperm DNA, 0.1% Tween 20 in H20 

20X SSC 3 M NaCI, 0.3 M Tri-sodium citrate pH 7.0 in H20 

KTBS Tween SOmM Tris HCI pH 7.4, 150 mM NaCl,10 mM KCI, 0.5% Tween20 
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The ISH analysis was carried out on 12-llm thick snap-frozen human brain tissue 

sections cut using the Leica CM-3050-S Cryostat (Leica, Milton Keynes, UK) and stored 

at -80°C. Sections were thawed at RT for 5 min, and the tissue sections circumscribed 

with ImmEdge™ PEN (Vector Laboratories, Peterborough, UK) and fixed with 4% p­

formaldehyde for 5 min at RT, then they were treated with 2 Ilg/mL Proteinase K 

(Promega, Southampton, UK) for 10 min at 3rC and washed two times with PBS for 5 

min. The sections were dehydrated with a graded ethanol series of 1 min each (70,95 

and 100% ethanol) and left to dry at RT for 15 min. Then, the hybridization step with 

double digoxigenin (DIG) - labelled Locked Acid Nucleic (LNA) specific probe (Exiqon, 

Vedbaek, Denmark), the Mercury LNA microRNA detection probe sequence 5'-3' for 

miR-126 /5DigN/GCATTATTACTCACGGTACGA/3DIG_N/, was performed at 

hybridization temperature of 54°C for 1.5 h in a SI-600R Incubated Shaker (Medline 

scientific, Oxon, UK) with gentle shaking, followed by stringent washes (once in 5x SSC 

40 ml in a glass jar at 55 DC for 5 min, twice in 1x SSC 40 ml at 55 DC for 5 min, three 

times 0.2x SSC 40 ml at 55 DC for 5 min and finally in PBS at RT for 5 min). 

After blocking with 0.5% Roche blocking solution (Roche Diagnostics, Germany) 

in Buffer 1, sections were incubated in 1/800 polyclonal sheep anti-digoxigenin-AP 

antibodies (anti-DIG AP) Fab fragments from sheep coupled to alkaline phosphatase 

(Roche Diagnostics, Germany) to detect the DIG labelled probe (miR-126) for 2 h at RT. 

After three washes with Buffer 1 for 5 min, sections were stained with NTB/BClP for 2 

h at 37°C, changed with fresh one overnight at 37 dc. Samples were washed with KTBS 

Tween and mounted on slides using fluoromount-G (Southern Biotech, Cambridge, 

UK). For image acquisition, a Nikon Microphot-FX microscope with x40 objective and 

Image Pro Plus software (Media Cybernetics Bethesda, USA) were used. 
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3. MiR-126 expression on human MS and EAE spinal cord tissues 

To set up in situ hybridisation for miRs, we performed an initial study for miR-126 

expression on MS (Fig. 1 Appendix 3 ) and EAE (Fig. 2 Appendix 3) tissues, where we 

were able to detect miR-126. 

Control Lesion 

hsa-mR-126 

DAPI 

Fig. 1 Appendix 3: Hsa-miR-126 expression in MS brain sections. Twelve micron snap 
frozen brain sections of MS patients were hybridized with hsa-miR-126 probe . X40 
images are shown for hsa-miR-126 expression and DAPI nuclei staning in left panels. 
Control (brain snap frozen tissue from patient with no history of MS) and right panels. 
MS lesion. Experiment performed with Dr. Dongsheng Wu, The Open University, UK. 
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AGO 

AGl 

AG4 

AG4 
DAPI 

REMISSION 

Lumbar ----

Appendix 3 

Cervical -- - ---

\ 
'-' ~ ... - .... 

Control 

Fig. 2 Appendix 3: mmu-miR-126 expression in lumbar EAE spinal cord. Twelve 
micron frozen EAE cervical and lumbar spinal cord sections at different stages of 
disease (AGO, AG1, AG4) and in remission sections were hybridized with hsa-miR-126 
probe (the sequence of mmu-miR-126 is identical to has-miR-126). Representative X40 
images of hsa-miR-126 expression are shown for AGO, AG1, AG4 and remission phases 

and dapi nuclei staining (AG4 DAPI). Bar represents lOOIlM. Experiment performed 

with Dr. Dongsheng Wu, The Open University, UK. 
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Fig. 1 Appendix 4: VCAMi and ICAMi expression on hCMEC/03 cells. 
Raw data of a representative experiment expressed in arbitrary units. 
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Fig. 2 Appendix 4: THP-l and Jurkat adhesion to hCMEC/D3 cells. Raw data of a 
representative experiment expressed in arbitrary units. 
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