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Abbreviations 

The following abbreviations are used within this thesis. 

Abbreviation Definition 

AA Automobile Association 

AA-CAES Advanced Adiabatic Compressed Air Energy Storage 

Alcm< Amps per square centimetre 

AC Alternating Current 

AM Air Mass Coefficient 

ARC Anti-Reflective Coating 

BAP Biodiversity Action Plan 

BAU Business As Usual 

BBC British Broadcasting Corporation 

BSR Brine Stream Recovery 

BWEA British Wind Energy Association 

CCS Carbon Capture and Storage 

CDM Clean Development Mechanism 

CEO Chief Executive Officer 

CH4 Methane 

CO2 Carbon Dioxide 

C02e Carbon Dioxide equivalent 

CoP Coefficient of Performance 

CoFP Coefficient of Financial Performance 

CSP Concentrated Solar Power 

CTA The International Centre for Technology Assessment 

DAC Direct Air Capture 

DC Direct Current 

DCF Discounted Cash Flow 

DTI Department of Trade and Industry 

ECF European Climate Foundation 

EDLC Electric Double Layer Capacitor 

EPRI Electric Power Research Institute Incorporated 

EREC European Renewable Energy Council 

EU European Union 

EU SETIS European Union Strategic Energy Technologies 
Information System 

ExternE Externalities of Energy, A research project of the 
European Commission 

FAO Food and Agriculture Organisation 

FCTec Fuel Cell Test and Evaluation Centre 

FiT Feed in Tariff 

GDP Gross Domestic Product 

GEAS Global Environmental Alert Service 

GENI Global Energy Network Institute 

GTZ Gesellschaft fUr Technlsche Zusammenarbelt 
I (German Technical Cooperation) 

GW Glga Watts 

GWh/year Giga Watt hours per year 

H2 Hydrogen 
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Abbreviation Definition 
HFC Hydro Fluorocarbon 

HOMER Energy Modelling Software for Hybrid Renewable 
Energy Systems 

HP PIp High Pressure Pump 

lEA International Energy Agency 

IGCC Integrated Gasification Combined Cycle 

IIASA International Institute for Applied Systems Analysis 

IPCC Intergovernmental Panel on Climate Change 

IWA International Water Association 

MED Multi-Effect Distillation 

MGD Millions of Gallons per Day 

MSF Multi-Stage Flash Distillation 

MW Mega Watts 

MWh Mega Watt hours 

NASA National Aeronautics and Space Administration 

NEEDS New Energy Externalities Developments for 
Sustainability 

N02 Nitrogen Dioxide 

NOABL The Department of Trade and Industry wind speed 
database 

NPV Net Present Value 

NPW Net Present Worth 

0 3 Ozone 

OECD Organisation for Economic Cooperation and 
Development. 

OPEC Organisation of Petroleum Exporting Countries 

PEM Proton Exchange Membrane 

PFC Per Fluorocarbons 

PM Particulate Matter 

POST Parliamentary Office of Science and Technology 

ppm parts per million 

PRODES Promotion of Renewable Energy for Water production 
throlJllh Desalination 

PV Photovoltaic 

PW Pelton Wheel 

PX Pressure Exchanger 

R Correlation Coefficient 

R< Coefficient of Determination 

R&D Research and Development 

REDDES Commission of the European Communities 
Directorate-General for Energy and Transport 
AL TENER Programme - Renewable Energy Driven 
Desalination Systems 

REN21 Renewable Energy Networks for the 21 6 Century 

RO Reverse Osmosis 

ROC Renewable Obligation Certificate 

SEEDA South East England Development Agency 

SMES Super Conducting Magnetic Energy Storage 

SNCI Site of Nature Conservation Importance 

S02 Sulphur Dioxide 

SSSI Site of Special Scientific Interest 

STC Standard Test Conditions 

SWRO Seawater Reverse Osmosis 

TDS Total Dissolved Solids 

UK United Kingdom 
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Abbreviation Definition 
ULCDS Ultra-Low Carbon Dioxide Steelmaking 

UN United Nations 

UNDESA United Nations Department of Economic and Social 
Affairs 

UNESCO United Nations Educational, Scientific and Cultural 
Organisation. 

UNEP United Nations Environment Programme 

UNFCCC United Nations Framework Convention on Climate 
Change 

UNICEF United Nation's Children's Fund 

UNIDO United Nations Industrial Development Organisation. 

UPHS Underground Pumped Hydro Storage 

USA United States of America 

UV Ultra Violet 

VA Volt-amperes or apparent power 

VSL Value of Statistical Life Lost 

WHO World Health Organisation 

WBCSD World Business Council for Sustainable Development 

WWF World Wildlife Foundation 
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Nomenclature 

Abbreviation Definition 

I'i (delta) . Rate of pure time preference 

11 (eta) , determines how strongly economic growth 
affects the discount rate. A larger value of 11 implies a 
larger discount rate, and hence less need to provide 
today for future generations (as long as per capita 
consumption is growing). 

!-1m Mlcrometre 

Adwat Percentage of additional water produced by using 
hydrogen fuel 

A/cm< Amps per square centimetre 

CoP Coefficient of Performance 

Costhf The cost of hydrogen conversion and storage 
equipment, and fuel cells to achieve Costsav 

Costsav The reduction in cost of scaled-up RO plant and power 
installed due to use of hydrogen fuel 

Enwa. Percentage of energy produced by the plant that was 
wasted. 

g Growth rate of per capita consumption. If per capita 
consumption is constant, implying that g = 0, then the 
discount rate r = I'i. 

GW Giga Watts 

GWh/y Giga Watt hours per year 

H. Significant wave height 

i The discount rate (the return that could be earned on 
an investment in the financial markets with similar 
risk.); the opportunity cost of capital. 

k Weilbuli shape factor 

K Kelvin 

km kilometre 

km< Square kilometre 

km" Cubic kilometre 

kVA Kilo Volt Amps 

kW/A Kilowatt per Annum 

kW. 1 Kilowatt electrical power 

kWh Kilo Watt hour 

kWhlmo Kilo Watt hour per cubic metre of water produced 

kWH2 Kilowatt hydrogen power 

kW/m kilowatts per metre 

mJ/day cubic metres per day 

m"/h/day cubic metres per hour per day 

mm millimetre 

m/s Metres per second 

R< Coefficient of determination 
Rt The net cash flow (the amount of cash, inflow (value of 

water sold) minus outflow (the cost to maintain the 
power source and ROQlant) at time t 

t The time of the cash flow. 
TW Terra Watts 

TWh Terra Watt hours 

TWhly Terra Watt hours per year 

W/m< Watt per metre 

W/m2/day Watts per square metre per day 
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Abstract 

This research Investigates the viability of renewable energy and energy storage to meet a significant and 

fundamental human need (in this case, large-scale drinking water supplies) unassisted by conventional 

power. 

The use of renewable energy to power reverse osmosis desalination plants to provide potable water for 

around 50,000 people In Newhaven, In South East England, and in Massawa In Eritrea, was Investigated. 

The following energy sources, In a variety of combinations were specifically assessed: 

• Wind Power 

• Wave Power 

• Solar Power 

• Tidal Current Power 

• Hydrogen production, storage and use In Fuel Cells 

The following types of reverse osmosis plants were studied: 

• No Brine Stream Recovery (BSR) reverse osmosis plant 

• Pelton Wheel BSR reverse osmosis plant 

• Pressure Exchanger BSR reverse osmosis plant 

Modelling was conducted to derive the amount of water that each reverse osmosis plant would deliver 

from various combinations and amounts of renewable power Input, at varying feedwater temperatures. 

Scenarios that were not able to deliver enough water to meet the users' needs were scaled-up so that 

they could. 

The cost of the scaled-up scenarios that were able to meet the users' water demands were compared 

with the costs associated with the equivalent conventionally-powered scenario over a 25-year life. 

Specifically, the following were considered: 

• A coal-fired plant with carbon capture and storage (CCS) at Newhaven and 

• A diesel generator at Massawa. 

This comparison was made with and without the external costs associated with conventional energy 

production and use. 

The most financially-attractive scenario at each site was then assessed for Its ability to meet the dally 

demand for water, over the course of a year. 

A comparison of the most financially-attractive renewable energy option and the equivalent 

conventionally-powered scenario at Massawa was undertaken, based on Net Present Value (NPV) 

methodology. 
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1 Background 

One of the major problems with the use of renewable sources of energy is their tendency to vary 

(sometimes referred to as 'intermittency'). This frequently means that they are unable to service a 

demanded load with confidence due to unavoidable natural fluctuations. Renewable energy is therefore 

currently considered to only have viability for a small portion of energy delivery within a larger system and 

is generally restricted to supplying major grid networks. 

This intermittency potentially undermines the energy security advantages on offer from decentralisation 

of supply. 

The purpose of this research is to investigate the use of renewable energy sources in such a way that 

they could be justified for use without reliance on conventional energy sources and to stand alone as an 

independent and viable power source in their own right. This was investigated by modelling the use of 

renewable energy for a fundamental human use on a significant scale, as a thought experiment, to see if 

it was possible to use renewable electricity derived from local energy sources where conventional 

electricity would normally be employed. 

1.1 Energy 

As the world population of seven billion people strives for a standard of living that is taken for granted in 

the developed world, energy demand will increase, thereby straining the entire supply chain from 

exploration to refining. 

1.1.1 Humans and energy use 

Originally humankind supplemented human muscle power with energy from other sources, such as draft 

animals. Now, technology based on external energy Inputs such as the internal combustion engine 

provides humans with the means to support a population density that is far in excess of other species. 

Technology (and energy at its base) ultimately defines the carrying capacity of the Earth for humans, and 

today's population far exceeds that which could be maintained by traditional means (estimated at around 

3 billion [Mearns, 2007]). 
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In terms of primary energy consumption, the average American consumes roughly 100 times their 

metabolic power inputl
, and maintenance of such an elevated carrying capacity requires continued 

access to readily available energy. The global energy consumed in 2010 was around 150000TWh 

[Enerdata, 2011] and the trend over the last 20 years has been an increase of almost 50%. 

This presents potential problems if the continued (and increasing) access to readily available power is 

based upon conventional supplies. These conventional supplies: 

• Have the potential to run out (and therefore not meet the expected user demand) 

• Have a direct impact on our health and this impact has the potential to increase with more 

widespread use 

• Are a contributory factor to climate change. 

The following sections will look into the potential for conventional energy to continue to supply the 

increased energy demand and maintain our elevated population densities. 

With regard to the potential difficulties with the continued supply of conventional energy, oil is taken as 

the example for analysis. 

1.1.2 The oil peak 

The main argument that conventional energy supplies will fail to continue to meet demand is based 

around Hubbert's peak. 

Hubbert describes a peak oil hypothesis, and indicates that the limitations in oil supply will make 

themselves felt long before all the oil has been consumed. It assumes a logistic curve for the extraction 

of 011, and suggests that maximum production will be reached when half of all the oil is consumed2
• 

How close we are to the oil peak Is a pOint of much debate. A thorough debate on the existence, timing 

and significance of an Impending 'peak' of global oil productlon3, was held In 2004. 

The first presentation was by Chris Skrebowskl4 who noted that the quality of the available data was the 

reason that Interpretations of the situation were both variable and ambiguous, and it was considered that 

1 With a population density about 100 times larger than the expected "natural" level, and energy consumption 100 times 
larger than the metabolic level, Europeans and Americans enter the ecological system with power consumption per unit area 
which exceeds that of other species by about four orders of magnitude. 

2 Based on this logic, K. Hubbert in 1956 predicted correctly the peak in the oil production in the continental United States 
which occurred in 1970. 

S This debate was conducted at the Energy Institute in London on 10 November 2004. It was reported by Petroleum Review 
In the January 2005 edition of the Energy Institute publication 'Energy World' under the title 'Oil depletion - crisis, concern or 
no problem?' 

4 Editor of the Energy Institutes Petroleum Review. 
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this enabled some to conclude that there was concern or crisis, and others were able to conclude that 

there was no problems. 

Dr Roger Bentley6 was the second speaker on the subject of data discrepancies, and noted that the way 

that data was interpreted fell Into two distinct categories: 

• Geologists generally saw peak oil as being relatively close, while 

• Economists either considered it some way into the future, or denied the possibility of it 

occurring7. 

Dr Bentley considered that there were four key unresolved issues: 

• The real size of reserves 

• The size and significance of discovery growth 

• The size and significance of reserves growth, and 

• The speed of development of non-conventional oil and oil substitutes. 

He contrasted the enormous size of the unrecovered oil in place, with the latest production forecasts 

which indicate peak oil and liquids production around 2012. This was supported by (mainly geologists) 

estimates of peak production between 2005 and 2025, but was countered by mainly economists' 

estimates which either did not indicate a peak or (where they did) one that occurred after 2030. He noted 

that the economists justified their estimates by stating that other estimates failed to credit human 

ingenuity, and that higher prices increased supply and decreased demand, and that there was a large 

technology gain. 

Dr Bentley concluded his presentation with his own peak estimates: 

Non-OPEC conventional oil 

Global conventional oil peak 

Global all oil 

Global oil and gas 

Global gas 

now 

2010-2015 

2015-2020 

2015-2020 

2020 - 2025 

Francis Harper of BP, gave the geologist'S view and his overall conclusions that: 

• Existing discovered reserves are unlikely to sustain the world's population for more than about 

15 years 

6 Richard Pike, a former oil industry Advisor and Chief Executive of the Royal Society of Chemistry (reported in the New 
Scientist. 11 June 2008) blamed flawed statistical calculations, which he claimed were potentially significantly 
underestimating the available reserves. 

• From the University of Reading who gave a presentation entitled: 'Global 011 depletion: viewpoints in collision'. 

70r Bentley considered that the main reason for this was the quality of the reserves data, and the discrepancies between the 
industry data often accessible by the geologists, and the public data more commonly used by the economists. 
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• Exploration cannot be expected to replace production, and its contribution may continue to 

decline 

• Reserves growth is likely to continue as the dominant form of reserve additions, but much of it 

will only slow the post-peak production decline 

• Non-conventional oil will become Increasingly important - there Is a very large resource, but 

converting it into reserves has significant financial and environmental cost, and 

• The non - OPEC contribution Is likely to reach a resource constrained peak from conventional 

011 in the next 10 years - thereafter, production capacity will be concentrated in progressively 

fewer countries, 

Professor Peter Odell was the fourth speaker, and presented the economist's viewS, 

He noted that the Issue of future 011 supply has been a recurring theme, as encapsulated in the pamphlet: 

'Oil Crlsis".Again?' [BP,1979], which foresaw 011 production outside the Soviet Bloc peaking in 19859, 

and then explained that such analysis failed because of: 

• The rigidity of the assumptions about discovery, and; 

• The 'absurd' notion that oil had a perfect elastic supply price curve', 

He then went on to explain that (as far as he was concerned) using the publicly available reserves 

databases, discovery had exceeded consumption meaning as he put it that: 

'the world was running Into oil' rather 'than running out of it', 

Although only oil was discussed above, all conventional fuels (including coal, oil shale, tar sands, etc) are 

finite, Though there are enough of these conventional fuels to last for a considerable time, although this 

Is also questioned within 'The great coal hole' [Strahan, 2008], It will become more difficult and! or 

expensive to extract and process them for energy production as explained in 'scrapping the bottom of the 

barrel' [Strahan, 2009], Even then, the lEA Chief Economist, Faith Birol says that: 

'",non conventional fuels [011 shales and tar sands] will probably only defer peak 011 to 'around 2030', 

1.2 Environmental and health Impacts of energy use 

The greater constraint on the continued use of conventional fossil fuel is likely to come from 

environmental concerns, especially: 

• Professor OdeD gave a presentation entitled 'Oil's long term future - 85% yet to be exploited', 

• This forecast Is examined by Dr, Roger Bentley (who was the second speaker at this event) at his 'Past 011 Forecasts' 
webpage http;ltwww.Qildepletlon.ofQtroger/Keytopics/Pastforecasts/Pastforecasts1.htm [Last viewed on 7 August 2011). 
Making adjustments to the report's findings to account for assumptions about the fuel types and sources, and 011 production 
aligning with demand gives a more reasonable forecast of a fall in global conventional all production from around the year 
2000. 

24 



• The direct effects of conventional energy use on human health, and 

• The rising concentration of atmospheric CO2 , a greenhouse gas. 

The main outputs of conventional fossil fuel combustion are shown below in Table 1. 

Table 1: Health Impacts of fossil fuel combustion 
DetaJl 

Carbon Carbon dioxide is the principle product of the combustion of hydrocarbon fuels. It is a 
dioxide colourless and essentially odourless gas that is one and a half times as dense as air. It is not 

particularly toxic, although a large concentration could result in suffocation simply by causing 
a lack of oxygen in the body. 
The effects of carbon dioxide in the atmosphere are controversial. However, the average 
temperature of the Earth is rising, especially when measured at the Poles, and it is 
noteworthy that the average Earth surface temperature correlates well with the amount of 
CO2 in the atmosphere (Le. as the CO2 levels in the atmosphere have increased, the surface 
temperature has gone up). Also, half of the extra CO2 from the atmosphere will dissolve in 
the oceans, making the water more acidic, which will have an impact on marine life. 

Carbon All fossil fuel combustion systems emit some carbon monoxide, but it is generally associated 
monoxide with sub-stoichiometric combustion. Its significance is related to its highly toxic nature. It is 

colourless and odourless, and gives no sensory warning of its presence. It binds to the 
haemoglobin in blood, and in that situation the haemoglobin cannot combine with oxygen. A 
concentration of less than one percent in inspired air seriously impairs oxygen binding 
capacity, and if exposed to this level for a sustained period, death will ensue. 
Carbon monoxide has an indirect effect on the 'Greenhouse Effect' by depleting atmospheric 
levels of hydroxyl radicals and slowing the destruction of methane, which is a powerful 
'Greenhouse Gas' in its own right. 

Oxides of Oxides of nitrogen are produced during high-temperature combustion. 
nitrogen The emission of nitrogen oxides to the atmosphere has led to the acidification of rain and 

aquatic systems. 
Oxides of Coal burning is the single largest anthropological source of sulphur dioxide, accounting for 
sulphur about 50% of annual global emissions, with oil burning accounting for a further 25-30%. 

Sulphur dioxide (S02) is a colourless, non-flammable gas with a penetrating odour that 
irritates the eyes and air passages'o. 

Ozone Ozone is a naturally occurring gas that is found in two layers of the atmosphere. In the layer 
surrounding the Earth's surface (the troposphere) ground-level or "bad" ozone is an air 
pollutant that is a key ingredient of urban smog. The troposphere extends up to the 
stratosphere, where "good" ozone protects life on Earth by absorbing some of the sun's UV 
rays. Stratospheric ozone is most concentrated between 10 to 50 Km above the Earth's 
surface. 

Particulates Coarse particulates are classified as those with a diameter greater than 2.5 micrometres 
(~m), and fine particles are those with a diameter less than 2.5 micrometres. A further 
distinction that can be made, is to classify particulates as either primary or secondary, 
according to their origin" . 
Particulate matter is emitted from a wide range of anthropological sources, includin~ 
industrial combustion plants and processes and can have significant health impacts 2. 

Exposure to ambient air pollution caused in part by use of conventional fossil fuels, has been linked to a 

number of different health problems [WHO, 2004] ranging from modest transient changes in the 

respiratory tract and impaired pulmonary function, continuing to restricted activity/reduced performance, 

'0 The health effects of sulphur dioxide pollution were exposed graphically during the "Great Smog" of London in 1952. This 
resulted in approximately 4000 premature deaths through heart disease and bronchitis . Since then, however, emissions have 
been significantly reduced through legislative controls and the introduction of clean fuel technology. Research has shown 
that exposure for asthmatics is significantly more damaging than for normal subjects, and sulphur dioxide pollution is 
considerably more harmful when particulate and other pollution concentrations are high. This is known as the "cocktail 
effect." 

" Primary particulates are those emitted directly to the atmosphere, while secondary particulates are those formed by 
reactions involving other pollutants. In the urban environment, most secondary particulate matter occurs as sulphates and 
nitrates formed in reactions involving sulphur dioxide and nitrogen oxides. 

'2 Particulates may be seen as the most critical of all pollutants, and some estimates have suggested that particulates are 
responsible for up to 10,000 premature deaths in the UK each year. Fine particles of less than 10 micrometres (~m) in 
diameter can penetrate deep into the lung and cause more damage, as opposed to larger particles that may be filtered out 
through the airways' natural mechanisms. 
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emergency room visits and hospital admissions, and to mortality. There Is also Increasing evidence for 

adverse effects of air pollution not only on the respiratory system, but also on the cardiovascular system. 

The results from a World Health Organisation (WHO) Review strongly suggest that a reduction In air 

pollution witllead to health beneflts13
• 

The WHO Review also considered whether no effect thresholds 14 exist for the main pollutants of 

Particulates, Ozone and N02• Based on recent scientific studies, It was unable to Identify such thresholds 

and was not able to confirm that the current limitations were adequate to guarantee no adverse health 

effects. 

Carbon dioxide (and specifically the carbon dioxide emitted by the combustion of conventional fossil 

fuels15
) Is attributed to playing a significant part in the greenhouse effect18 and causing climate change. 

The actual physical Impacts and consequences of climate change are controversial and difficult to Judge 

with any accuracy, but Table 2 below (taken from the Intergovemmental Panel on Climate Change 

[IPCC, 2007] report on climate change Impacts) provides an overview of the potential Impacts. 

13 The WHO states that their conclusion regarding the benefit of reductions In air pollution Is also In line with recent 
"Intervention studies" that have demonstrated health benefits following the reduction of pollution levels under various 
circumstances. 

I. This Implies no effects of increasing air pollution until a "threshold" concentration Is surpessed, at which stage risk rises. 

16 Fossil fuels at present provide 85% of the commercial energy that Is consumed world wide, and for every ton of carbon 
consumed, 3.7 tons of carbon dioxide are emitted to the atmosphere. 

" The critics point out that the dynamics of the water cycle In the atmosphere Is very complex, and that It Is not very well 
captured by the current generations of models. The overall effect one Is looking for Is quite small and It depends on fine 
detailsln the water distribution between clouds, and water vapour, between the upper and the lower troposphere. Changes 
In these parameters could, In principle, also explain the lower-than-expected rise in temperature, in which case the global 
warming may not be as large as has been suggested. 
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Table 2: Predicted Dhvslcallmpacts of Climate Chanoe 
Phenomenon and dlractlon LIkelihood of Examp'- of major ~ Impacta by aactor 
of trend tutura trenda 

baaadon Agrlcultura, Water Human health Industry and society 
proJactIona forestry and resourcea 
tor 21st acoayatama 
century 

Over most land areas, warmer Virtually Increased yields In Effects on Reduced human Reduced energy demand for 
and fewer cold nights, warmer certain colder water mortality from heating. Increased energy 
and more frequent hot days environments. resources decreased cold demand for cooling. DeClining 
and nights. Decreased yields In relying on exposure. air quality In cities. Reduced 

warmer snowmelt. disruption to transport due to 
environments. Effects on snow and ice. Effects on 
Increased Insect some water winter tourism. 
outbreaks. sUDDlies. 

Warm spells and heat waves. Very likely Reduced yields In Increased Increased risk of Reduction In quality of life for 
Frequency increases over warmer regions due water demand. heat related people in warm areas without 
most land areas. to heat stress. Water quality mortality, appropriate housing. Impacts 

Increased danger problems, e.g. especially for the on the elderly, very young 
of wildfire. algal blooms. elderly, and poor. 

chronically sick, 
very young and 
soclallv isolated. 

Heavy precipitation events. Very likely Damage to crops. Adverse Increased risk of Disruption to settlements, 
Soil erosion. effects on deaths, Injuries commerce, transport and 
Inability to cultivate quality of and infectious, societies due to flooding. 
land due to surface and respiratory and Pressures on urnan and rural 
waterlogging of groundwater. skin diseases. Infrastructure. Loss of 
solis. Contamination property. 

of water 
supply. Water 
scarcity may 
be relieved. 

Area affected by drought Likely Land degradation. More Increased risk of Water shortages for 
Increases. Lower yleldsl crop widespread food and water settlements, Industry and 

damage and failure. water stress. shortage, societies. Reduced 
Increased livestock malnutrition, hydropower generation 
deaths. Increased water and food potentials. Potential for 
risk of wildfire . borne diseases. population migration. 

Intense tropical cyclone Likely Damage to crops. Power outages Increased risk of Disruption by flood and high 
activity increases. Windthrow causing deaths, injuries, winds. Withdrawal of risk 

(uprooting) of trees. disruption to water and food coverage In vulnerable areas 
Damage to coral public water borne diseases, by private Insurers. Potential 
reefs. supply. post traumatic 

stress disorders. 
for population migration. Loss 
of oroPertv. 

Increased incidence of Likely Sallnatlon of Decreasing Increased risk of Costs of coastal protection 
extreme high sea level. This Irrigation water, freshwater deaths and vs. costs of land-use 
excludes tsunamis. estuaries and availability due Injuries by relocation. Potential for 

freshwater to saltwater drowning In movement of populations and 
systems. Intrusion. floods. Migration Infrastructure. 

related health 
effects. 

The Impacts reported in the table are entirely qualitative, but there are some more specific estimates 

[nowpubllc.com]. 

For example, Wong Poh Poh, a Professor at the National University of Singapore, told a regional 

conference that global warming was disrupting water flow patterns and increasing the severity of floods, 

droughts and storms - all of which reduce the availability of drinking water. 

Professor Wong said: 

' .. . the U.N. Intergovernmental Panel on Climate Change found that as many as 2 billion people won't have 

sufficient access to clean water by 2050. That figure Is expected to rise to 3.2 billion by 2080 - nearly 

tripling the number who now do without It. ' 

Although there are many possible negative outcomes, it is important to also appreciate the potential 

positive aspects. A slight warming may: 

• Make some locations more habitable, and 
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• Improve our ability to feed ourselves 17. 

There Is a range of levels of stabilisation of carbon dioxide In the atmosphere being considered, based 

on the perceived consequences of a continued accumulation of carbon dioxide in the atmosphere. 

One option would be to aim for 550ppm. Others who have confidence in the IPCC predictions may want 

to set the level at 450ppm. Those who are sceptical about the details of the models, and who may have a 

rather high tolerance for ecological change may settle for 650 or even 750ppm. 

Whatever the number, the fact is that uncontrolled growth of fossil fuel energy usage has to be 

slowed. The option to do nothing Is apparently no longer viable according to the Stern Report. 

1.2.1 Stern Report 

The Stern Report [Stern, 2007] discussed the effect of global warming on the world economy and its 

conclusions were that action on climate change Is required now1S
• This has caused much debate 

amongst economists, which is concisely collated in 'Debating Climate Economics: The Stern Review vs. 

Its Critics' [Ackerman' 2007]. 

A precis of the Report's main conclusions Is listed below: 

• The benefits of strong, early action on climate change outweigh the costs. 

• The scientific evidence points to increasing risks of serious, irreversible impacts from climate 

change associated with buslness-as-usual (BAU) paths for emissions. 

• Climate change threatens the basic elements of life for people around the world - access to 

water, food production, health, and use of land and the environment. 

• The Impacts of climate change are not evenly distributed - the poorest countries and people 

will suffer earliest and most. 

• If and when the damages appear, it will be too late to reverse the process. Thus we are forced to 

look a long way ahead. 

• Climate change may initially have small positive effects for a few developed countries, but it is 

likely to be very damaging for the much higher temperature Increases expected by mid-to-Iate 

century under BAU scenarios. 

17 In the case of agriculture where a good caee could be made that net total changes are positive, there will be winners and 
losers. It may well tum out that plenty of land In Canada and Siberia will become accessible to modem agriculture and thus 
lower the coat of food, while at the same time a smaller amount of land in warm zones of the globe becomes either too hot, 
too dry or too variable in rainfall to continue to support agriculture. 

l' Although not the first economic report on climate change, It Is significant as the largest and most widely known and 
discussed Report of lis kind to date. 
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• Integrated assessment modelling provides a tool for estimating the total Impact on the economy, 

and this is likely to be higher than previously suggested. 

• Emissions have been, and continue to be, driven by economic growth; yet stabilisation of 

greenhouse gas concentration in the atmosphere is feasible and consistent with continued 

growth. 

• Central estimates of the annual costs of achieving stabilisation between 500 and 550ppm C02e 

(I.e. equivalent CO2) are around 1 % of global GOP, if we start to take strong action now. It would 

be very difficult and costly to aim to stabilise at 450ppm C02e. If we delay, the opportunity to 

stabilise at 500-550ppm C02e may 'slip away.' 

• The transition to a low-carbon economy will bring challenges for competitiveness but also 

opportunities for growth. Policies to support the development of a range of low-carbon and high

efficiency technologies are required urgently. 

• Adaptation policy is crucial for dealing with the unavoidable impacts of climate change, but it has 

been under-emphasised in many countries. 

• There is still time to avoid the worst impacts of climate change If strong collective action starts 

now. 

It is clear that the option to 'do nothing' regarding climate change is widely acknowledged as being 

unacceptable. 

This, when combined with: 

• The envisaged scarcity of conventional fossil fuels and the adoption of potentially costly 

alternatives. 

• The health impacts associated with air pollution and the significant benefits to be achieved by a 

reduction in air pollution, means that it is doubtful that conventional energy will be viable to 

support any Increased energy need for a Significant perlocl. 

It is concluded that continued reliance on fossil fuels does not seem a reasonable option, but there will 

stili be an Increasing need for energy. 

To meet this ongoing need for energy, It is proposed that renewable energy Is employed In place of 

convention fossil fuels. 

There are of course other options to mitigate the Impact of climate change such as extracting CO2 and 

other greenhouse gases from the atmosphere to reduce the current CO2 loading. 
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The direct air capture (DAC) of CO2 from the air generally Involves funnelling airflows over a chemical 

sorbent that selectively removes the CO2• The CO2 is then released as a concentrated stream for 

disposal or reuse, while the sorbent is regenerated and the CO2·depleted air is returned to the 

atmosphere. The viability of this process Is discussed at length at Direct Air Capture of CO2 with 

Chemicals [APS, 2011] which having conducted a lengthy investigation concluded that, although there 

was future merit, the technology is not currently an economically viable approach to mitigating climate 

change. 

1.3 Using renewable energy in place of conventional fuels 

There are several scenarios being presented how 100% reliability on renewable energy may be 

achieved. The following sections present an overview of these scenarios for: 

• Britain 

• Europe, and 

• The world as a whole. 

1.3.1 The UK 

The Centre for Alternative Technology in Wales has published 'Zero Carbon Britain' [CAT, 2010], a 

comprehensive report which indicates all the changes that must be made to achieve zero carbon in 

Britain, by 2030. 

A precis of the changes required to achieve this scenario is given below, in Table 3. It is noteworthy that 

there is a heavy reliance on carbon sequestration. 
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Cement 

Iron and steel 

processes e.g. 
glass and 
chemical 

1.3.2 Europe 

""""U"' "V. nVUlrOUIBn. heat 

Assumes that by 2030 emissions from the super greenhouse gases 
wlll have 
Assumes i to more 
techniques, which actually sequester carbon. In case of cement, 
this can also be reduced through combining it with pulverised fuel 
ash. 
It Is therefore assumed that emissions from cement production will fall 

its associated emissions are trebled, due to the 
of biomass for energy production and carbon 

It Is possible to produce Iron are using either hydrogen or electrolysis 
Instead of carbon and the processes have been demonstrated at a 
small scale (Ultra-LOW Carbon Dioxide Steelmaking [ULCOS, 
20f 0)'8. Assuming the electricity is renewably produced, producing 
steel using electrolysis should be able to reduce greenhouse gas 
emissions to close to zero, but the reduction of Iron ore by these 
methods is considered to be decades away from commercialisation. 
For this reason It has not been Included In the scenario, but it Is 
useful to note that in the term It should be possible to almost 

These remain unchanged In the scenario although It may be possible 
to reduce some or all of them. Further work would be necessary to 
establish where reductions 
That town planning Is adapted with the aim of Increasing the density 
of existing settlements rather than encouraging continued outward 
urban sprawl. For this reason it Is assumed that emissions from land 
conversion to settlements are reduced by 30% In the 2030 scenario, 

Roadmap 2050: a practical guide to a prosperous, low-carbon Europe [ECF, 2011] concludes that 

Europe could move to low carbon sources of electricity, with up to 100% coming from renewables by 

2050, without: 

• Risking energy reliability, or 

• Raising energy bills. 

,9 Details of the electrolysis process employed to produce steel are available at the Ultra- Low Carbon dioxide (C02) 

Steelmaking (ULCOS) 'Alkaline Electrolysis' web page available at http://www.ulcos.org/enlresearchlelectrolysis.php [Last 
viewed on 7 August 201 1]. 
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To account for increased demand, it looked at scenarios supplying 40% more electricity than at present 

by 2050, with various mixes of renewables, from 40% up to 100%20, all of which are claimed to be 

technically viable. 

However, the Report notes that the transition to zero carbon power Is heavily reliant upon European 

Union (EU) member states prlorltising energy efficiency measures, and supporting the rapid development 

of a European electricity 'supergrid', to help distribute and balance the green energy, and manage 

demand. 

For the 40-80% renewable scenarios, there would also be a need for 190 to 270 GW of back-up 

generation capacity to maintain the reliability of the electricity system, but the European Climate 

Foundation (ECF) notes that 120 GW of that already exists. For new back-up, it looks to more gas-fired 

plants, biomasslbiogas fired plants, and hydrogen-fuelled plants, potentially in combination with hydrogen 

production for fuel cells. 

For the 100% renewables scenario: 

• 15% of the energy would be imported via a 'supergrid' link from Concentrating Solar Power 

(CSP) plants in North Africa, and 

• 5% would be derived from enhanced geothermal sources around the EU. 

'100% renewable electricity - A roadmap to 2050 for Europe and North Africa' [PwC, 2010] is also of the 

view that Europe and North Africa could be powered exclusively by renewable electricity by 2050, but 

relies on a single European power market, linked with a similar market in North Africa. 

As is the case with Roadmap 2050, the use of a Super Smart Grid is proposed to allow for load and 

demand management, and to Integrate the renewable energy. The 100% scenario calls for: 

• Concentrating Solar Power Plants in the deserts of North Africa, and also in southern Europe. 

• The hydropower capability of Scandinavia and the European Alps. 

• Onshore wind farms and offshore wind farms in the Baltic and North Sea, and 

• Tidal and wave power and biomass generation across Europe. 

This study concludes that: 

• 'The most recent economic models show that the short term cost of transforming the power 

system may not be as large as previously thought. ' 

• Overall reliability would not be compromised. 

20 It is noteworthy that carbon capture and storage (CCS) and nuclear are not Included In the 100% renewable scenario. 
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• The development of North African resources 'could pay big dividends in terms of regional 

development, sustalnability and security.' 

The European Renewable Energy Council [EREC. 2010] claims that the EU could not only meet up to 

100% of its electricity demand from renewables by 2050. but also all of its heating/cooling and transport 

fuel needs. 

As with the studies above. it assumes a major commitment to energy saving21
, with a rapid rise in 

renewables, with an average annual growth rate of renewable electricity capacity of 14% between 2007 

and 2020, and then an even more rapid expansion of some options. 

Between 2020 and 2030, geothermal electriCity is predicted to see an average annual growth rate of 

installed capacity of about 44%, followed by ocean energy with about 24% and Concentrated Solar 

Power (CSP) with about 19%. This is closely followed by 16% for Solar Photovoltaic (PV), 6% for wind, 

2% for hydropower and biomass with about 2%. By 2030, total installed renewable capacity amounts to 

965.2 GW, dominated In absolute terms by PV, wind and hydropower. Between 2020 and 2030, total 

installed renewable capacity would increase by about 46% with an average annual growth rate of 8.5%. 

And after 2030, expansion continues leading to almost 2,000 GW of installed capacity by 2050. 

1.3.3 The World as a whole 

The German Energy Watch Group [Energy Watch Group, 2008] claims that (non-hydro) renewables 

could supply 62% of global electricity, and 16% of global final heat demand, by 2030. 

In November 2009, a scenario was published in the 'Scientific American' [Jacobson and Delucchi, 2009], 

which suggested that 100% of global energy could be obtained from renewables by 203022
, with 

electricity also meeting heating and transport needs. 

As can be seen, 100% reliance on renewable energy is apparently technically and economically feasible 

even on a global scale, but it is predicated on the will to unilaterally move to a carbon-free world, which is 

itself predicated on the perceived need to move to a carbon-free world. 

As stated previously, there are three main reasons to dispense with conventional power: 

1. It will run out 

2. It is bad for our health, and 

al The EREe claims that energy use can be reduced by 30% against the consumption assumption for 2050. 

12 Although It was claimed that 100% was technically feasible by 2030, in the conclUSion it was qualified to, 'WIth sensibie 
pOlicies', nations could set a goal of generating 25% of their new energy supply from renewables 'In 10 to 15 years and 
almost 100% of new supply in 20 to 30 years'. But they insisted that 'With extremely aggressive policies, all existing fossil-fuel 
capacity could theoretically be retired and replaced In the same period' although, 'With more modest and likely policies full 
replacement may take 40 to 50 years '. 
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3. It plays a significant part in causing global warming. 

Of these three reasons, the most highly-charged and politically-contentious is the association with global 

warming and climate change. 

The radio programme 'Uncertain Climate' [Harrabin, 2010] concluded that there were several issues 

around climate change and global warming that were not well communicated and! or understood. 

These included that: 

• The public under-estimate the degree of consensus among scientists that humans have already 

contributed towards the heating of the climate (only around 3% disagree), and will almost 

certainly heat the climate more. 

• Politicians and the media often fail to convey the huge uncertainty over the extent of future 

climate change23
• 

• Although the great majority of scientists fear that computer models suggest we are facing 

potentially catastrophic warming, some climate scientists think the warming will be restricted to a 

tolerable 111C or 1.5I1C. 

When faced with the size of the reaction required to mitigate climate change (especially the disruption, 

and effort required to move to 100% renewables as explained above), there has apparently been a 

desire for a convincing and unequivocal case to underpin this (frequently political) decision. 

It Is currently not clear with the current prediction technology whether the 'Climate Change Debate' will 

ever provide the required degree of certainty to underpin that political decision. The potential to achieve 

the clarity of understanding required has also been undermined recently by issues such as 'climate gate' 

and the probability of 'IPPC predlctlons,24 where the effort to manage the public consumption of 

uncertainty and the presentation of results based on 'grey' (un-peer reviewed literature) respectively has 

brought the Integrity of the scientists and the quality of the underlying science, Into question. 

as In essence that the media, allow little room for doubts and uncertainties - several examples were quoted of ranges of 
results, and words such as 'likely', 'probably' etc, being removed from media reports to provide a concise conclusion where 
In fact there was not a concise definitive conclusion, only a most probable one. This means that while there is scientifiC 
evidence for holes in the ozone layer, rising temperatures and changing rainfall pattems, there are degrees of uncertainty 
about Inferring their causes, rate of change and scale of danger, the media considered It simpler for the public to understand 
'Yes It is' or 'No It isn't', and the arguments between these two camps are usually attributed to 'Believers' or 'Sceptics'. 

1M A recent report from the Intergovemmental Panel on Climate Change contained a highly contentious claim about the 
speed at which glaciers in the central and eastem Himalayas are melting. This prediction was based solely on a 10-year 
article. 'Flooded Out', reported in the New SCientist by Fred Pearce. 5 June 2009. Issue No 2189, which was further 
extrapolated to Include all glaCiers In the Himalayas and quoted as being 'very likely', I.e. more than 90% certain. 
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1.4 Conclusion 

The prospects for a 100% conversion or part conversion to renewabie energy, although apparently 

technically achievable, appear to be limited in the short term unless it makes justifiable sense to 

implement it on: 

• Financial grounds 

• Health and Safety grounds, or 

• Socially/ Political grounds. 

It Is concluded that, although it Is still worth pursuing a 100% conversion in the long term as there are no 

obvious examples that are Immediately encouraging for full scale conventional fuel replacement In the 

short term, there Is a more immediate need and benefit in identifying a stand-alone discrete fundamental 

use for renewable energy on a significant scale that can be implemented in isolation, without reliance on 

conventional power sources. Therefore, this research attempted to define and model a power plant that 

not only has the potential to demonstrate that renewable energy has potential to stand alone as an un

supported power source in a justified manner, but also on a significant scale as an Interim step on the 

road to 100% replacement of conventional power sources. 

This is especially relevant to developing communities where it could meet new needs for power 

rather than acting as a replacement for existing conventional power sources. 

The following chapter of this thesis details the uses renewable energy could be put to. 
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2 The use of renewable energy. 

Having decided to employ renewable energy, the question now was what to use it for that: 

• Would meet a fundamental human need, and 

• Represent a significant scale of use. 

The first step was to decide what the most fundamental human need is. Maslow's hierarchy of needs2s 

was investigated to identify the fundamental human need that renewable energy should be used to 

address . 

2.1 Maslow's hierarchy of needs 

At its most basic conceptual level , Maslow's hierarchy of needs shows that each of us is motivated by 

needs, which can be represented graphically as a five-stage model26
, shown below in Figure 1. 

To satisfy the most fundamental needs, the application of renewable energy should be as low down the 

triangle as possible, i.e. for the satisfaction of biological and physiological needs, such as air, sleep, food, 

warmth and drink (water). 

persona) growth and ful fLImcnt 

Esteem needs 
achievement. status , responsibility. reputation 

Belongingness and Love needs 
family. affection, relationships, work group, CI'C 

Sarety needs 
protectio n. security, order. law. limi!.". stability. etc 

Blologk:.al and PhyslologJcal needs 

basic life need.c; · air. food. drink. shelter. warmth. sleep, etc. 

I 

Figure 1: Maslow's hierarchy of needs five stage model 

25 Maslow's original Hierarchy of Needs model was developed between 1943 and1954, and first widely published in 
Motivation and Personality in 1954. 

2li Maslow's Hierarchy of Needs provides three fundamental rules which have been appl ied to all areas that require 
motivation: 

• 

That we must satisfy each need in turn , starting with the first , which deals with the most obvious needs for survival 
itself. 
Only when the lower order needs of physical and emotional well-being are satisfied, are we concerned with the 
higher order needs of influence and personal development. 

Conversely, if the things that satisfy our lower order needs are swept away, we are no longer concerned about the 
maintenance of our higher order needs. 
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This section assesses the fundamental human needs presented by Maslow's hierarchy in terms of: 

• How fundamental the need is 

• What the most pressing problem with it is 

• The potential to use Renewable Energy to alleviate this pressing problem. 

2.1.1 Air and sleep 

Air and sleep are clearly essentials for life but are not primarily dependent on use of energy. The 

main contribution that renewable energy could make to these is to reduce the level of pollution and 

consequent health impacts. 

2.1.2 Food 

Food once again is fundamental to us as human beings, and if deprived of it, we would starve and die. 

The most pressing problem faced by the world at the moment with food is of there not being enough to 

feed everyone, especially with predicted increases in population shown below in Table 4. 

By the Food and Agriculture Organisation's [FAD, 1996] estimate, based on population growth and 

changing eating habits, the world will require several times the current food productivity by the year 2050. 

Africa will require over five times as much, and the world as a whole will require more than twice as much 

food as it did in 1995. 

Table 4: FAO Food Demand Forecast (2050 11995 Comparison In multiples of 1995 de mand) 
AfrIca Central MIa North Developing Developed Globally 

and America Countrle. Countrilla 
South 
America 

Population 3.14 1.80 1.69 1.31 1.95 1.02 1.76 Increase 
Changing 
Eating 1.64 1.07 1.38 1.00 1.40 1.00 1.28 
Habits 
Total 5.14 1.92 2.34 1.31 2.74 1.02 2.25 

The other significant problem with food supply is its reliance on energy. Vast amounts of oil and gas are 

currently being used as raw materials and energy in the manufacture of fertilisers and pesticides, and at 

all stages of food production, Including: 

• Planting 

• Irrigation 

• Feeding 

• Harvesting 

• Processing 

• Distribution, and 

• Packaging. 
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In addition, fossil fuels are essential to facilitate this industry, including operating farm machinery, 

processing facilities, storage facilities, ships and trucks. The industrial food supply system is one of the 

biggest consumers of fossil fuels, and one of the greatest producers of greenhouse gases, with energy 

use by Americans for food making up 12% to 17% of total current American energy usage [Minn, 2009]. 

It is noteworthy that this energy usage In food production and distribution is to achieve a higher level in 

Maslow's triangle, I.e. what the developing world aspire to. Food production at the fundamental level of 

Maslow's triangle is dependant upon water production. 

It is not clear that there is any significant application of renewable energy that could be used to directly 

address the fundamental human need for food. 

2.1.3 Warmth 

As human beings we need to maintain a state of homeothermy at a core temperature of about 3'PC, and 

in many cases this requires that internal spaces are heated and! or cooled. 

The majority of space heating is achieved using conventional fuel, but examples of the use of renewable 

energy on a large scale for space heating and cooling is presented at 'Renewables in district heating and 

cooling' [Euroheat and Power]. This document illustrates a variety of renewable energy sources used in 

European district heating Infrastructures to warm and cool human living spaces. 

It is evident that renewables can be employed on a significant scale to meet the human need for a 

temperature-controlled environment, and when combined with energy use minimisation initiatives, can 

make efficient use of renewable energy. 

2.1.4 Water 

Without water, we as human beings would die. It Is the very essence of our being making up some 60% 

by mass of our bodies. 

Although water Is In abundance on Earth, there Is only a limited amount of water available for human 

consumption that Is renewable, as shown by Table 6 below, adapted from 'the Global Water Cycle' 

[Berner and Berner, 1987]. 

2.1.4.1 Water for human use 

Although water Is the most widely occurring substance on earth, It can be seen from Table 5 below that 

only 2.75 percent Is freshwater, while the remainder Is oceanic salt water. 
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Over two thirds of this freshwater is locked up in glaciers and permanent snow cover which leaves less 

than 1 % available for human consumption27
• 

In addition to the accessible freshwater in lakes, rivers and aquifers, storage in reservoirs adds a further 

8,000 cubic kilometres (km3
). 

Table 5: Global water reservoirs and thelr~J~ortlons. 
Rnervolr Volum. (In million. of Percent 01 

cubic k1lometrH) total 
Oceans 1370.0 97.25 
Ice caps and glaciers 29.0 2.05 
Deep groundwater"" (750·4.000 
metres) 

5.3 0.38 

Shallow groundwater (less than 
4.2 0.30 750 metres) 

Lakes 0.125 0.01 
Soil moisture 0.065 0.005 
Atmosphere~ 0.013 0.001 
Rivers 0.0017 0.0001 
Biosphere 0.0006 0.00004 

Total 1408.7 100 

Precipitation is the main source of water for all human uses and for ecosystems. 

This precipitation is taken up by plants and soils, it then evaporates into the atmosphere via 

evapotranspiration, and then runs off to the sea via rivers, and to lakes and wetlands30
• 

The percentage of appropriated water is increasing, but there are several issues including the legal 

limitations on abstraction, and the global disparity of the distribution of this water. 

2.1.4.2 Further constraints on water use 

The availability of these renewable sources for human use is further constrained by: 

• Environmental legislation 

• Global disparities between availability and demand for water 

• The envisaged increase in human demand for water, and 

• The potential impact of global warming . 

Appendix A of this thesis gives greater detail of these constraints, and It is evident that: 

• There are increasing legal limitations (particularly In developed countries) on the water that can 

be abstracted. 

27 Water that is not deep underground, trapped in the soil or biospherel atmosphere. 

28 The total interstitial water In the pores of sediments is in the order of 50-300(108) km3• 

29 As liquid equivalent of water vapour. 

30 The water of evapotranspiration supports forests, rain-fed cultivation and grazing lands, and ecosystems. As human 
beings, we are also gaining greater control of both runoff and evapotranspiration and are becoming ourselves Significant 
players in the hydrological cycle. 
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• There are many locations in the world (particularly in developing countries) with 

disproportionately small amounts of water available considering the volume of people being 

served. 

The developing world will: 

• Require substantial water supplies for irrigation for food production to feed their fast-growing 

populations, and 

• Potentially suffer the greatest impact on their water supplies due to global warming and climate 

change. 

These constraints are causing significant hardship, and the need to supply water to many in the world is 

not being met. In many cases, those most in need of water today are likely to experience an increased 

need, and suffer the most lethal and severe impacts on their water supplies, due to the effects of climate 

change. 

2.1.5 Conclusion 

Although there are avenues that could employ renewable energy to meet a fundamental human need, 

specifically space heating! cooling and food production, these mainly address comfort and convenience 

requirements. 

There is a need at a fundamental level on Maslow's triangle which is not being addressed, which is the 

provision of water to those most in need. 

Therefore this research Investigated renewable energy for water production for human consumption. 

2.2 How could Renewable Energy be used to Increase water supply for human 

consumption? 

Figure 2 below provides an overview of the constraints on water for direct human consumption. These 

Include: 

The limited amount Initially available for consumption 

• The expected reductions as Global Warming Impacts are felt 

• The amount needed for Irrigation, and 

• The amount needed for Industry. 

40 



Available Water Further reductions before direct human 

~ 97% is salt water I 
consumption 

Water on 
and 

I--., 2% is trapped in ice I 
around caps and glaciers. 
Earth 

Uses before direct y Remaining 1% is 

~ 
Expected 

available and f+ reductions due to f+. human consumption. 
~ 

Direct human 

renewable. Global Warming 
Irrigation consumption. . Industry . 

Figure 2: Water available and reductions before human consumption 

The limitations on the renewable water available and potential impacts of global warm ing , are explained 

at Appendix A. This section will concentrate on water for food production and for industry. Food 

production and industry use a significant amount of water, and the amount of water used in each of these 

areas is variable, depending on the economic status of the area. 

2.2.1 Water for food production 

Food production is particularly intensive in its water use, and that it is likely that developing countries 

(already experiencing limited water supply issues) , will experience the greatest increase in water demand 

to feed their fast growing populations. 

The main source of the world's food supply is agriculture, which includes crops, livestock, aquaculture 

and forestry. Unmanaged earth systems can only feed a fraction of the current world population , so 

systematic agriculture is essential. 

2.2.1.1 Maintaining food supply 

The water requ irement for most agriculture is met directly by rain , but irrigated land accounts for about 

one fifth of the total arable area in developing countries. Some 15 percent of agricultural water is used by 

irrigation, totalling about 2,000-2,500 km3 per year. In 1998, in developing countries, irrigated land 

produced two-fifths of all crops, and three-fifths of all cereals. Cereals are the most important crop, 

provid ing 56 percent of calories consumed worldwide [FAO, 2003]. Developed countries account for 

about 25 percent of the world 's irrigated areas, but their populations have relatively slow growth. So, the 

greatest irrigation development is expected to occur in the developing world , where population growth is 

stronger. 
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2.2.1.2 Irrigation water use 

Currently, according to the World Business Council for Sustainable Development [WBCSD, 2009], 

Irrigation accounts for 70 percent of all water withdrawals, and several nations (India, China and Egypt) 

are using In excess of 90 percent of their water to meet Irrigation needs. 

It Is forecast by a United Nations World Water Development Report [UNESCO], that: 

• These amounts will Increase by 14 percent In the next thirty years, as the area of Irrigated land 

expands by a further 20 percent 

• By 2030,60 percent of all land with Irrigation potential will be In use, and of the ninety-three 

developing countries surveyed by FAO, ten are already using 40 percent of their renewable 

freshwater for Irrigation. 40 percent Is taken as the level at which difficult choices can arise 

between agriculture and other users 

• By 2030, it Is estimated that South Asia will have reached this 40 percent level, and Near 

East/North Africa will be using about 58 percent 

• However, for sub-Saharan Africa, Latin America and East Asia, irrigation water demand will be 

below the critical threshold although at local level, serious problems may arise. 

2.2.1.3 Water use In food production 

Table 6 below shows the volume of water used in the production of a variety of foodstuffs. 

It Is clearly apparent that: 

• A large amount of water Is required to produce our food, and 

• Cereals, oil crops and pulses, roots and tubers consume far less water per unit than meael
• 

31 Meat production requires large amounts of grain to be used as feed for the animals. The production of 1 kg of beef requires 
11kg of grain (using corn as the measure), and one kilogram of pork or chicken requires 7kg and 4kg of grain respectively. 
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a e : T bl 6 W ater requirement 0 main 00 pro uctlon. . f d d 
Product Unit Equivalent water in Equivalent water in 

cubic metres based cubic metres based 
on FAO estimates" on New Scientist 

estimates 
Bovine, cattle head 4,000 

Sheep and goats head 500 

Coffee kilogram 20 
Meat bovine 

kilogram 15 
fresh 
Meat burQero

• 11 

Meat sheep fresh kilogram 10 

Meat poultry 
kilogram 6 

fresh 

Cheese Kilogram 5 

Rice Kilogram 5 

Sugar kilogram 3 

Palm oil kilogram 2 
Milk litre 2 

Cereals kilogram 1.5 

Citrus fruit kilogram 1 
Pulses , roots and 

1 
tubers kiloQram 

"[FAO, a] 

"" [Pearce, 2006] 

2.2.1.4 Current situation 

Worldwide, the total irrigated land surface has increased five times from 50 million hectares in 1950, to 

250 million hectares in 1998. Also , according to the [FAO· a], there is a strong positive relationship 

between urbanisation and increased incomes, and water intensive food (particularly meat) consumption . 

2.2.1.5 The Future 

In light of the expected population increase and trend towards more water intensive foodstuffs , due to 

increased urbanisation and available income, it is not clear what corresponding agricultural land will be 

required (or be available) to support it. 

The July 2011 edition of the UNEP Global Environmental Alert Service (GEAS) [UNEP, 2011] gives an 

indication of: 

• The current activities currently being undertaken to ensure adequate land is available (mainly 

richer countries buying land with established water supplies in poorer countries), and 

• Some of the potential risks associated with these activities, including : 

• Negative impacts on local environments, forests , pastures and woodland , and 

32 Unit for the burger is 'Quarter Pounder'. As such , it is apparent (if the figures from the different sources are correct) that 
processed foods use a greater amount of water than non-processed foods , i.e. 1 kg of meat requires 15 cubic metres of water 
in comparison to a quarter pounder (approximately 1/8'h of a kg) which requires 11 cubic metres . 
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• Marginalisation of communities due to disparity of compensation within potentially un-

transparent planning consents . 

2.2.2 Water for industry 

Industry is particularly intensive in its water use, and it is likely that developing countries (already 

experiencing limited water supply issues) will experience the greatest increase in water demand as they 

industrialise to give their populations a better standard of living. 

Global annual water use by industry is expected to rise from an estimated 725 km3 in 1995 to about 

1,170 km3 by 2025, by which time industrial water usage will represent 24 percent of all water use. Much 

of this increase will be in developing countries now experiencing rapid industrial development. Figure 3 

below [UNIDO, 2008] shows industrial water usage per region, compared with other main uses. It 

indicates quite clearly that the trend is for industrial use of water to increase with a nation's income, going 

from 10 percent for low- and middle-income countries, to 59 percent for high-income countries. 

Competing water use (World) 

Domestic 

Competing water use (High Income Countries) 

Domestic 
Agricultural 

rial 

Competing water use (Low and Middle Income 
Countries) 

Domestic Industrial 

Figure 3: Competing water uses for main income groups of countries. 

44 



Figure 4 below shows the typical proportions of personal water use in an office and it is noteworthy that 

almost two-thirds of the water is used in toilets. 

Cleaning 
1% 

Canteen Use 
9% 

Figure 4: Domestic water use in a typical office 

So, as the developing nations industrialise they will most likely use more water, not only for industrial 

process, but also for personal use. 

2.2.3 Domestic freshwater use 

Globally, domestic freshwater use accounts for around 8 per cent of withdrawals, or 120-200 litres per 

person/day. In many large cities in developed countries, municipal freshwater withdrawals providing for 

the immediate needs of local small businesses and households alone, amount to 300-600 litres per 

person per day. Meanwhile, the equivalent figure for Asia, Africa and Latin America approximates to only 

50-100 litres per person per day. 

2.2.3.1 Minimum water required 

The minimum amount of water required to meet basic needs varies depending upon what is included as 

"basic needs". The figures vary from 2033 [WHO/UNICEF, 2000] to 50 litres per person per day [Abrams, 

2001], and attempts to standardise the minimum level to be provided have not always been successful34
. 

Figure 5 below, based on [WHO/UNICEF], shows the distribution of the world population not served by 

water supply infrastructure. Although Asia shows the highest number of people not served , it is important 

to note that proportionally (in percentage of population terms) , this group is larger in Africa due to the 

difference in population size between the two continents35
. 

33 The WHO/ UNICEF defines reasonable access to water as at least 20 litres per person per day, from an improved source 
within 1 km of a user's dwelling. 

34 An example where attempting to set strict standards was shown to be counter-productive was in South Africa where 
insistence on both affordability and a predetermined standard of 25 litres per person per day were mutually exclusive , 
resulting in some poorer communities not being serviced - The policy has subsequently been changed . 

35 1.01 billion not served with clean water: 
65% in Asia. 0.715 Billion (20% of Asia's population on 1996 population figures), and 

• 27% in Africa. 0.297 billion (40% of Africa's population on 1995 population figures ). 
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Latin Europe 
America and 2% 

Figure 5: Water supply distribution of populations not served by water supply infrastructure. 

Currently, 1.1 billion people lack access to an improved (or local , clean) water supply and 2.4 billion to 

improved sanitation , and are invariably the poorest in society. According to the World Health 

Organisation [WHO/UNICEF, 2002], relatively minor effort could drastically improve the situation36
. If 

improved water supply and basic sanitation were extended to those currently not served, it is estimated 

that the burden of infectious diarrhoeas would be reduced by some 17 percent annually; if universal 

piped , well-regulated water supply and fu ll sanitation were achieved, this would reduce the burden by 

some 70 percent annually. 

2.2.3.2 Expected increase in domestic water use in developing countries 

A typical breakdown of the domestic, drinking and cooking use of water in the home in the developed 

world is illustrated below in Figure 6, based on [Thornton, 2005] . 

Shower 
5% 

Kitchen Sink Outside Use Washbasin 
15% 8% 

Dishwasher 
4% 

Toilet 
35% 

Figure 6: Domestic water use in a typical house. 

It is noteworthy that , in comparison to developing countries: 

• Toilets account for more than one th ird of water use, and with increased sanitation in the 

developing world , this wil l result in greater demand for water resources 

• Baths and showers account for around one fifth of the water used, and 

36 Relatively minor improvements would also lead to reductions in other water, sanitation and hygiene related diseases , such 
as schistosomiasis, trachoma and infectious hepatitis. 
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• An improved economic situation will result in more baths and showers in the developing world, 

and an equivalent rise in water use. 

Washing machines and dishwashers account for around one-sixth of water use, and an improved 

economic situation wi ll result in more washing machines and dishwashers in the developing world, and 

an equivalent rise in water use. 

Developing nations with reduced sanitation and installed washing facil ities only use perhaps 1/3,d of the 

water supply used by developed nations, but as they achieve developed world incomes, they will aspire 

to water use to match their quality of life, i.e. increasing water use by at least three times per typical 

household. 

2.2.4 Conclusion 

European freshwater consumption for an individual is shown below in Figure 7 for annual water 

withdrawal37 [SwissRe, 2010] . 

• Physica l withdrawal: 
Domestic freshwater 
consumption: 57m3 

• Physica l Withdrawal: 
Water fo r serv ices and 
industry : 175m3 

• Virtual water 
withdrawal: Water for 
food production (20% 
meat): 1350m3 

Figure 7: Total annual water withdrawal per person: 1500-1800m3 

It can be seen from Figure 7 above that 85% of the water consumed by the average European (the levels 

that the developing world will aspire to) as food . In reaching this aspirationallevel , the developing world 

is likely to industrialise (as shown in Figure 3 above) . This combination of increased consumption of 

water intensive foodstuffs and industrial expansion , will place an increasing burden on water supplies for 

direct human consumption . 

Also, having improved their standard of living by industrial isation , developing countries will aspire to 

sanitation levels and labour-saving conveniences in line with developed countries, which will cause 

further demand on their limited water supplies , which as stated previously, are disproportionately 

susceptible to the impacts of climate change. 

37 This estimate takes into account the additional element of 'virtual water'. This is the theoretical equivalent of freshwater 
used for food production to meet the nutritional requirements of a European adult (average net income), 20 per cent of 
whose diet consists of meat. Total : approx. 1,600 m3

. 
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2.2.5 Water Supply and Renewable Energy. 

There are five key areas where changes could make a difference to the water supply: 

• Increasing the amount of renewable water available 

• Mitigating the Impact of Global Warming 

• Managing food production 

• Managing direct human use of water, and 

• Wastewater treatment to enable water reuse. 

2.2.5.1 Increasing the amount of renewable water available 

This option would entail the use of renewable energy to desalinate seawater to potable water quality. 

2.2.5.2 Mitigating the Impact of Global Warming 

The mitigation of the expected Impacts of Global Warming by using renewable energy to operate a 

desalination plant would address a fundamental human need, but would not on Its own reverse the 

current greenhouse gas loading In the atmosphere, since It Is only one area of energy use. Nevertheless 

it Is an Important area, as has been indicated, for a range of social reasons as well as being one way in 

which some Green House Gas production can be avoided. 

Renewable energy supplies may gradually become more widely available via power grids, and could in 

time displace the majority, If not all, of the emissions from conventional fuels, as discussed In section 1.3, 

In which case some of it could be used for desalination. In the meantime, it Is concluded that, In light of 

the aim of this work, which is primarily to support a growing water requirement without a proportionate 

Increase In CO2, that a free standing, renewable energy driven, desalination plant could make a 

contribution to managing climate change. 

2.2.5.3 Managing food production 

Initiatives are In place for more water-efficient, genetically-modified crops, and there Is no obvious 

avenue to employ renewable energy beyond the logistic aspects. 

2.2.5.4 Managing direct human use of water 

It Is apparently Inevitable that as the global population Increases In size, and become, more affluent, that 

water use will Increase. Once again, there Is no obvious avenue to employ renewable energy directly. 
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2.2.5.5 Wastewater treatment to enable water reuse 

Renewable energy could be used to power wastewater treatment processes, to produce water that can 

be reused . 

The debate whether to treat waste-water for reuse or desalinate, has been presented to the International 

Water Association [Hind , 2007], but it is only considered viable for developed nations with extensive 

waste-water management infrastructure. 

The reuse by industry is the preferred route at locations with sophisticated waste-water treatment 

infrastructure, as there is an economic driver for industry to use the recovered water, which has a higher 

value than potable water. 

This is due to the low salinity levels of the recovered secondary effluent product. These would be lower 

than that in potable water. Potable water would require further ion exchange treatment to achieve a 

similar quality. The example quoted by Martin Hind is where a water recovery plant was installed at Flag 

Fen Sewage Treatment Works to supply low salinity water to the local power station, resulting in reduced 

ion exchange treatment costs for the boiler feed water at the power station [Alpheus] . 

This said, the aim of this research was to assess the viability of providing water for direct human 

consumption , as this was identified as the most fundamental need, with the highest priority. 

2.2.6 Decision 

This research thus focussed on the use of renewable energy for the desalination of seawater to produce 

potable water for domestic use. 

As shown in Figure 8 below, this would: 

• Reduce the risk of disruption due to Global Warming 

• Maintain food production, and 

• Deliver a dedicated water supply directly to the user. 

Restrictions on Available Water Further reductions before direct human 

Water on 
and 

around 
Earth 

97% is salt water 

_!.r '2o/~ 'i~t~~~;;d' i~'i~ '[ 
: : caps and glaCIers. : : L. ___________ __ _____________ i 

i :----Remai'iiliigTOlo 'is'--: 
:,~ available and ~ --, -

l ______ !!:~,~~~-' __ , __ " j 

coneumptlon 

I -, I 
I Expected ': 

reductions due to f"; 
L.~~~~~_~~rmi~~J • • 

Uses before direct 
human consumption. 

Irrigation 
Industry. 

Figure 8: Revised water supply system 
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It Is also noteworthy that desalination has the additional benefit of not having a time dependent 

power demand if batch production and storage of fresh water on site Is used. The ability, to 

effectively store power produced in excess of Immediate requirements as water, should tend to 

reduce the impact of the Intermittency of the renewable energy supplies being employed. 

2.3 Where should desalination be employed and what type of desalination should be 

used? 

It Is apparent that certain regions are more in need of water than others by Desalination due to the 

following: 

• Limited Initial supply - Desalination would bypass (or significantly reduce the vulnerability to) the 

Issue of limited conventional water supplies for the user group 

• Global warming - Desalination would ensure a dedicated supply to the user, with less risk of 

being compromised by local extreme weather events 

• Water demand for food production - Desalination would provide a dedicated supply for direct 

human use, without impacting on the water supply used for food production 

• Increased domestic water use - Desalination would reduce the risk associated with expected 

higher water use from existing resources as the economies of the developing world grow 

• Demand from industry - Desalination would supplement conventional supplies for industry. 

Table 7 below: 

• Consolidates the Issues that additional water supplies using desalination would address, and 

• Indicates the locations that would benefit most. 
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Table 7' Consolidation of locations for desalination 
... ue Location R .. lOn 

Limited Asia 36% of water, with 60% of population 
initial Available 

Africa 11 % of water, with 13% of population 
water global water 
supply vs. Europe 8% of water, with 13% of population 

proportion There are local renewable water availability Issues In south east England, which has 
of limited rainfall combined with legal abstraction limitations. 
population 
Water Asia Mongolia and Chinahave51 % 75% water supply coverage. India and 
supply Iran have 76 - 90% coverage. 1.01 billion people without water supply 
coverage coverage - 65% of the global population. 

Has 65% of the global population not served by water supply (0.715 
Billion). Equates to 20% of Asia's population, based on 1996 population 
figures. 

Africa Somalia and Ethiopia have virtually no water supply coverage. Only 
southern Africa (South Africa, Zimbabwe and Angola) has better than 
75% coverage, with the rest of the continent being below 75%, and a 
third below 50%. 
Has 27% of the global population without water supply coverage (0.297 
Billion). 
Equates to 40% of Africa's population based on 1995 population 
figures. 

Global Vulnerability Asia Affected by 35% of Together suffer 97% of fatalities due to 
warming to water water related natural disasters 
Impacts related disasters. 

disasters Africa Affected by 29% of 
water related 
disasters. 

Water Asia Will most likely suffer the brunt of water scarcity due to climate change. 
scarcity Africa 

Food Need for Asia South Asia will have reached 40% usage of available water supplies. 
production Irrigation In j~11I ~Ire 2.34 times as much fooQL 

2030 Africa Near East! North Africa will have reached around 58% usage of 
(I ncrease in available water supplies. 
food (Will require 5.14 times as much food) 
demand by 
20501 

Domestic Expected Asia Municipal fresh water withdrawals amount to 50 100 litres! personl 
use Increase In day. This figure will tend towards the 120 - 200 lipid global average, 

domestic Africa and probably further to the 300 - 600 lipid of the developed WOrld. 
use latin 

America 
Industrial Expected Asia To achieve the industrial growth to sustain the projected Increases In 
use increase In Africa their populations, the developing world will need to Industrlalise. It is 

Industrial 
Latin 

highly likely that manual manufacturing (more water intensive) 
use processes will migrate to the developing WOrld, causing an increase in 

America industrial water demand. 

2.4 Conclusion 

The areas in the greatest need for such a facility, are Asia and Africa from the evidence presented in 

Table 8 above. 

For the purposes of this thesis, the research will focus on Africa based on the: 

• Estimated increase in food demand, and 

• Its limited water supplies. 

Millions of people have died in the 20th century due to severe drought and famines. One of the worst hit 

areas has been the Sahel region of Africa, which covers parts of Eritrea, Ethiopia and the Sudan, and at 

the time of writing, another drought has recently affected the eastern Horn of Africa, as reported within 

the UNICEF progress report 'Response to the Horn of Africa Emergency. A continuing crisis threatens 

hard-won gains' [UNICEF, 2012]. 

This thesis will Investigate water production for Eritrea. This nation has been selected due to its 

susceptibility to droughts, and consequential loss of life. Eritrea has a substantial coastline, and the sea 

level rise expected due to climate change will most probably exacerbate the intrusion of saline water into 
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the fresh groundwater aquifers in the coastal zone. The focus of this research will be Massawa, which is 

in a particularly dry part of Eritrea. 

Water supply using desalination at Newhaven in South East England will also be investigated, as this is a 

particularly dry part of the United Kingdom. 

2.4.1 Comparison of sites 

The comparison of these two sites for desalination gives an extreme contrast as Massawa has limited 

water and power infrastructure to call upon, whereas Newhaven Is supported by an extensive national 

water supply and power distribution network. 

2.5 Eritrea 

Eritrea (map shown below in Figure 9) lies in the Sahelian belt, which Is characterised by frequent and 

prolonged droughts. The country suffered the latest drought In 1993. It Is observed that the drought has 

been repeating Itself every 5-7 years, although Interestingly Eritrea did not declare a drought during 

2011, which was a source of heated debate itself [Howden, 2011]. 

It has been observed that weather patterns in Eritrea started changing greatly in the 1960s, and as a 

result of these changes, arid and semi-arid regions of the world, Including countries like Eritrea, are 

projected to be more vulnerable to the adverse effects of climate change than others. Farmers have 

observed that the duration of the rainy season has been reducing for the last two or three decades, and 

this Is resulting In changes In the spatial and temporal availability of water resources throughout the 

country. These observations however need to be substantiated by detailed studies. The observations are 

In agreement with the widely-held belief that climate change Is affecting the global hydrologic cycle In 

general, and precipitation and runoff In particular. 

In Eritrea, rainfall Is erratic and torrential, and quickly forms heavy floods, with little chance of penetrating 

Into the ground, although efforts to harvest rain-water are being undertaken [Self Help Africa]. Perennial 

streams hardly exist with the River Setit being the only perennial river, and there are no lakes. The 

potential of underground water resources Is stili not clearly studied and documented. Moreover, 

meteorological and hydrological Information, which is critical for any water resource development activity, 

Is at Its early stages of development. Meteorological data collection started during the Italian colonial 

period (1890- 1941), and before the 1930's more than 20 meteorological stations were in operation 

throughout the country. At the time of Independence (1991), however, only two stations were operational. 

The lack of time series of hydrological and weather data gaps have therefore made water studies difficult. 

Currently there are around 160 weather stations distributed throughout the country. 
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Figure 9: Map of Eritrea in relation to Ethiopia and Sudan 

As can be seen from Figure 10 below, Eritrea is split into distinct regions, based on rainfall , and it can be 

seen that the Red Sea region where Massawa (also known as Mits'iwa) is situated (highlighted in 

yellow) , has the lowest rainfall . 

Extreme altitude variations, ranging from sea level to around 3000m above sea level, continental 

pressure changes, and other factors , determine the climate of Eritrea. 

Most parts of Eritrea receive uni-modal rainfall, and the rainy season extends from June to September, 

although there are less heavy rains that start in April/May. Rainfall increases from north to the south of 

the country, varying from around 200mm in the North Western Low Lands, to around 650mm in the 

southern part of the Central Highlands. 

ERfTREA: RAINFAU MAP 

Figure 10: Expected rainfall in Eritrea 
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Massawa Is the second largest town, and the main port, In Eritrea, situated on a small sterile coral Island 

In the Red Sea, around 200 m from the mainland with a population of 43,600 [Tekle and Ogbal, 2008]. It 

lies 65 km (40 miles) northeast of the largest town of Eritrea (Asmara) at 15 36N, 39 28E and there Is an 

established rail link between the two towns. 

It was selected as the site for renewable energy-powered desalination as it Is compact, and in an area of 

low rainfall. The town has good port facilities, and therefore good potential for further Industrial and 

economic urbanisation. 

Activities In Massawa include salt production, fishing, fish and meat processing, and cement 

manufacture. Exports Include 011 seed, coffee, and cattle. 

2.5.1 Variations In mean annual rainfall of Eritrea 

Water was formerly scarce, In Massawa, with the mean annual rainfall less than 200mm, as shown 

above In Figure 10, but according to 'The State of Eritrea' [UNFCCC, 2001] In 1872 an ancient aqueduct 

from Mokullu (8km westward) was restored and the town is connected to the mainland by an 

embankment containing the water conduit from Mokullu. 

2.5.2 Scenario to be modelled at Massawa 

The aqueduct Is considered to be at risk due to climate change I.e. weather, sallnification, etc, and a new 

source of water Is required for Massawa to allow continued habitation with confidence. 

The requirement Is for 7,OOOm3/day of municipal water for 50,000 people. This equates to 

140llpersonlday, which compares favourably to the UK average water usage of 1501/personlday [Sims, 

2006]. A desalination plant could satisfy that need. 

2.6 South East England 

According to the Dally Telegraph [Harrison, 2004] the UK on average, has only marginally more water 

available than that In Spain. However, 25% of the population of the UK resides In the South East of 

England where: 

• The water availability falls dramatically to around 1/101h of the UK average, but 

• The consumption In South East England Is 151/personl day more than the UK average 

[Environment Agency, 2010]. 

For comparison, the water availability In Jordan In 1990 was around 20% greater than that In the south 

east of England. 
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The water scarcity problems have been exacerbated by population increases in the South East. Metering 

and reduced usage have been proposed. This will help stabilise demand but it is doubtful whether th is 

will be sufficient, and as a partial solution, Thames Water has installed a 150,000m3/day desal ination 

plant in the Thames estuary [Thames Water, 2010] . 

New reservoirs have also been proposed. However, this pre-supposes that there is sufficient rainfall to fill 

them. An example where there was not and piped distribution was required to increase the reservoir's 

catchment area is Bewl [Bewlwater] . Local water grids could help distribute the resources more evenly, 

but as shown in Figure 11 , there is no area in the South East of England with abundant water suppl ies. 

Figure 11: Levels of water stress in south east England 

So, the benefit assessment of providing desal inated water in South East England using renewable power 

was also analysed as part of this research. 

2.6.1 Scenario to be modelled in Newhaven 

The scenario for South East England was to base a desalination plant in Newhaven to treat seawater, 

and act as the sole water source for 50,000 local users . It is noted that it would probably not be 

financially attractive to use an RO plant in southeast England in this wal8
. 

38 According to Mr James Grinnell, formerly of Southern Water, the economics of running an RO plant on an 'as-needed' 
basis to supplement other supplies , as opposed to acting as the sole provider, significantly reduces the high operating costs 
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2.7 Type of Desalination to employ 

The following desalination options were considered: 

• Multi-Stage Flash (MSF) Distillation 

• Multi-Effect Distillation (MED) 

• Vapour Compression Distillation 

• Reverse Osmosis Desal ination. 

2.7.1 Multi-Stage Flash (MSF) Distillation 

Figure 12 below shows the Multi-Stage Flash (MSF) Distillation process based on the SIDEM web 

page39
. 

Heating steam 
Air extraction 

Seawater 

L:-"~--"" Brine 

Condensate return Distillate 

Figure 12: Multi Stage Flash (MSF) Distillation Process 

An MSF system consists of several consecutive stages (evaporating chambers), maintained at 

decreasing pressures from the first stage (hot) to the last stage (cold) . Sea-water flows through the tubes 

of the heat exchangers , where it is warmed by the condensation of the vapour produced in each stage. 

The sea-water then flows through the brine heater where it rece ives the heat from steam for the process. 

At the outlet of the brine heater, when entering the fi rst cell , the sea-water is overheated , compared to 

the temperature and pressure of stage 1. It immediately boils to steam/ vapour, to reach equilibrium with 

stage conditions. The produced vapour is condensed into fresh-water on the cooler tubular heat 

exchanger at the top of the stage, and collected in a temporary holding tank. The process takes place 

again when the water is introduced into the fo llowing stage, and so on , until the last and coldest stage. 

that are incurred from the RO process. The capital cost of RO desalination for providing the extra capacity compared to a 
reservoir that can yield 20mVd are approximately 30% i.e. a reservoir yielding 20Mlld and costing £50m , compared to a RO 
~ Iant providing 20MVd costing £15m. 
9 The Multi-Stage Flash (MSF) Distillation process description is available at http://www.sidem

desalination .com/en/process/MSFI [Last viewed on 7 August 2011]. 
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The cumulated fresh water builds up the distillate production , which is extracted from all the previous 

temporary holding tanks at the coldest stage on the right. 

2.7.2 Multi-Effect Distillation (MED) 

Figure 13 below shows the Multi-Effect Distillation (MED) process based on the SIDEM web page40
. 

Seawat~r 
d ischarge 

---...... ---T"""- ~ Air extraction 

T=60 ( =50 ( -;--,- Seawater 
Steam from 

boiler or lurbine- ...... ~:!P 

Brine 

"--.r-..~- DIstillate 

Figure 13: Multi Effect Distillation (MED) Process 

The MED evaporator consists of several consecutive cells maintained at a decreasing level of pressure 

(and temperature) from the first (hottest at around 60C) to the last (coolest at around 40QC). Each cell 

(also known as an 'effect') contains a horizontal tube bundle. The top of the bundle is sprayed with sea-

water make-up that flows down from tube to tube by gravity. Heating steam is introduced inside the 

tubes. Since the tubes are cooled externally by make-up flow, steam from the previous stage condenses 

into distillate (fresh-water) inside the tubes . The heat released by the condensation (latent heat) warms 

up the sea-water outside the tubes, and partly evaporates it. Due to evaporation , the sea-water salt 

content concentrates slightly when flowing down the bundle, and gives brine at the bottom of the cell . 

The vapour raised by sea-water evaporation is at a lower temperature than heating steam. However, it 

can still be used as a heating medium for the next effect, where the process repeats. In the last cell, the 

produced steam condenses in a conventional shell-and-tube heat exchanger. This exchanger, called 

"distillate condenser" or "final condenser", is cooled by sea-water. At the outlet of the final condenser, 

part of the warmed sea-water is used as make-up of the unit. The other part is rejected to the sea. 

Brine and distillate are collected from cell to cell till the last one, where they are extracted by centrifugal 

pumps. 

40 The Multi-EHect Distillation (MED) process description is available at http ://www.sidem-desalination .com/en/process/MED/ 
[Last viewed on 7 August 2011] . 
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2.7.3 Vapour Compression Distillation 

Figure 14 below shows the Vapour Compression Distillation Process . 

Vapour 

Pr~heated 

Seawater 

FreshWater 

Incoming 
Seawater 

Figure 14: Vapour Compression Distillation Process 

Vapour compression uses power a compression turbine , which draws vapour from the distillation vessel 

and compresses it. 

This : 

• Generates a vacuum within the distillation vessel , and 

• Raises the temperature of the exhaust vapour. 

The heated vapour is then used to heat the seawater (introduced by seawater sprayers) in the distillation 

vessel , which boils off to a vapour at low temperature, due to the vacuum within the distillation vessel. 

It is then passed through the seawater pre-heater, where it returns to the liquid state as fresh-water. 

The heat removed during condensation is returned to the incoming seawater to pre-heat and assist in the 

production of further vapour. 
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2.7.4 Reverse Osmosis (RO) Desalination 

Figure 15 below shows the Reverse Osmosis Desalination Process, which is explained in the following 

text, and in greater detail later at section 4.1 . 

--..-c PrMrutment 

Figure 15: Reverse Osmosis Desalination Process 

Reverse osmosis is a type of water desalination in which pressurised sait-water is passed through 

membranes which separate the salt from the water. 

Reverse osmosis has four distinct steps: 

1. Pre-treatment - in which solid impurities are removed from the sait-water, and chemicals 

inhibitors are added to adjust its pH level, and limit calcium sulphate scaling on the membranes 

2. Pressurisation - in which the pre-treated water is pressurised 

3. Membrane separation - in which semi-permeable membranes are used to separate salts from 

the pressurised sea-water, and 

4. Stabilisation - in which the treated water is prepared for consumption. 

Table 9 below shows the specific energy consumption to produce one cubic metre of water, by the 

various processes discussed. It can be seen that RO is currently the most energy efficient technology for 

seawater desalination. There are other considerations of course, particularly the capital and maintenance 

costs41 . 

Nonetheless, the attraction of RO for renewable-energy powered desalination is already apparent, and 

the process is conditionally supported for renewable energy applications by the European Commission 

[Gerling, 2001], which concluded that RO was suitable for renewable applications, but was made 

41 AO is a relative newcomer and is considered by some to be less reliable, particularly with regard to fouling caused by 
difficult feed waters. 
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inefficient due to the requirement for energy storage to manage intermittency when employing 

autonomous renewable sources. 

The data presented in Table 8 below is typical for installed plants with capacities of 1 00m3/day and 

above42
• State-of-the-art RO plants can now routinely produce water at 2kWh/m3 [Geisler et ai, 2001], 

[MacHarg,a], [Andrews et ai, 2001] and [Schneider, 2005], and are claimed to be able to produce water 

at 1.7kWh/m3 [Articleclick]. 

2.7.5 Decision 

MSF 
MED 
Mechanical Vapour 
Com ression 
Reverse Osmosis 

8 - 14 

4 - 7 

For the purpose of this research, the desalination plant was selected based on what would be employed 

if conventional electrical power were employed to operate it, which in this case is reverse osmosis due to 

having the lowest specific power consumption. There are though more extensive criteria that would 

normally be considered for a decision of this type if the decision to use electrical power had not already 

been taken, see Appendix B Section 1. 'Desalination Plant Selection' for further detail. 

Examples of the relevant criteria include: 

• RO plant size 

• Feed-water salinity 

• Remoteness 

• Availability of grid electricity 

• Technical infrastructure, and 

• The type and potential of the local renewable energy resources available locally 

It Is far easler, from an engineering perspective, to store surplus heat rather than surplus electricity if 

Intermittent renewable energy supplies are being employed and heat based systems may have been 

preferable in Massawa once the range of relevant criteria was taken into account. This said, there are 

Issues relating to: 

• How water pumping requirements will be met without electrical supplies, and 

• The engineering challenges relating to increasing the efficiency of solar energy storage. 

42 It is noteworthy that older and smaller RO systems particularly those that do not employ energy recovery, can easily 
consume up to 15 kWh/m3

• 
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3 Types of Renewable Energy to employ 

Having decided that renewable energy was to be employed In place of conventional energy to power a 

reverse osmosis plant, this research Investigated the use of renewable energy sources, and whether they 

could be Justified for use without reliance on conventional energy sources, and stand alone as an 

independent and viable power source in their own right. 

The suitability of renewable energy as a viable alternative to conventional energy, for meeting a 

significant power demand that Is fundamental to human need, I.e. the needs of 50,000 people for water 

at Massawa and Newhaven, was investigated through modelling. 

3.1 Overview 

All renewable energy sources available to us comes from the sun, apart from geothermal power and tidal 

energy, which taps Into the energy stored as gravitational potential, and kinetic energy, In the Earth! 

Moon system. 

The following four main types of renewable energy were considered In this research: 

• Solar 

• Wind 

• Tidal current, and 

• Wave. 

There were other options that could have been employed within this modelling (such as hydro, 

geothermal, biomass, solar thermal, etc) but they were not Investigated further due to time limitations. 

3.2 Solar Power 

When solar radiation enters the Earth's atmosphere, part of the energy Is dispersed by scattering or 

absorption by air molecules, clouds and particulate matter, usually referred to as aerosols. 

Solar radiation can reach the Earth In one or more of three ways to make up the total (global) radiation: 

1. The radiation that is not reflected or scattered by aerosol Impacts can reach the surface of the 

Earth directly from the solar source, and Is called direct or beam radiation. 

2. The radiation that Is scattered due to aerosol Impacts before It reaches the ground, Is called 

diffuse radiation. 

3. Radiation may also reach a receiver after reflection from the ground, and Is called the albedo. 
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3.2.1 Solar radiation that reaches the Earth's surface 

The amount of rad iation that reaches the ground is extremely variable. In addition to the regular daily and 

yearly variation due to the motion of the Sun, irregular variations are caused by cl imatic conditions (cloud 

cover, etc), as well as by the general composition of the atmosphere. As such , the amount of radiation 

will vary greatly from one location to another, but on average is taken as 5.74kWh [Markvart, 2002]. 

Figure 16 below shows the daily solar rad iation on a horizontal plane for several locations, rang ing from 

tropical forests to northern Europe. The solar radiation is highest in the continental desert areas around 

latitude 25 ° North and 25 ° South , and falls off towards the Equator due to clouds , and towards the Poles 

due to low solar elevation . Equatorial regions experience little seasonal variation , in contrast with higher 

latitudes where the summer/winter ratios of change are large. 

Figure 16 below shows the primary energy from sunlight reaching the Earth's surface and it is estimated 

that each of the disc locations indicated could meet the global power demand [Loster, 2010t3
. 

o SO 100 150 200 250 300 3 50 W/ m' 
r. = 18 TWe 

Figure 16: Comparison of locations for solar radiation throughout the year. 

3.2.2 Significant quantity of power from solar PV energy. 

Solar PV, (which is explained in greater detail at Appendix B), currently generates electricity in well over 

100 countries, on an appreciable scale and (according to the Renewables 2010 Global Status Report) 

43 Solar cells, with a conversion efficiency of only 8%, would produce, on average, 18 TW electrical if installed in the desert 
areas marked by the six discs in the map. Left to Right: USA (Great Basin), South America (Atacama), Africa (Sahara), 
Middle East (Arabian) and China (Takla Makan). Each of these sites could generate 3TW on average (26,OOOTWh/y) which 
equates to around 1/S'h of global energy consumption of 1S0,OOOTWh/y. 
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[REN21 , 2010] maintains its position as the fastest-growing power-generation technology in the world44 

There are many solar power installations of significant size (over 600 with installed capacity in excess of 

2.5MW) and the largest PV plants are in Asia (Charanka in India and Golmud in China generating more 

than 200MW each. The current installed global solar PV capacity is around 40GW [REN21 , 2011] . 

3.3 Wind 

One to two percent of the energy radiated by the sun is converted into wind energy, giving a range of 

global wind power available from 1750 to 3500TW (15000000 to 31 OOOOOOTWh/y), which is orders of 

magnitude more than the current global energy consumption of 150000TWh/y. 

The regions around the Equator, at 0° latitude, are heated more by the sun than the rest of the globe, as 

indicated below in Figure 17 in the warm colours, red, orange and yellow45
. 

Hot air rises into the sky until it reaches approximately 10 km (6 miles) altitude, and spreads to the North 

and the South . If the globe did not rotate, the air would simply arrive at the North Pole and the South 

Pole, sink down, and return to the Equator. 

Since the globe is rotating, any movement on the Northern hemisphere is diverted by a phenomenon 

known as the Coriolis Effect, which is simply explained in 'Atmosphere, Weather, Climate' [Barry, 2003]. 

Weekly Average SST 2011 /01 /30 - 2011 /02105 

o 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W o 
NOAAlESRUPSD o 2 .. &. 8 10 12 14 16 l ' 20 22 2& 2G 2.S 29 30 "C 

Figure 17: Sea surface temperatures during February 2005 during EI Nina 

44 Between 2004 and 2009, grid-connected PV capacity increased at an annual average rate of 60 percent. An estimated 7 
GW of grid-tied capacity was added in 2009, increasing the existing total by 53 percent, to some 21 GW (off-grid PV 
accounts for an additional 3-4GW). This was the largest volume of solar PV ever added in one year, and came despite a 
precipitous decline in the Spanish market relative to 2008. Solar PV accounted for about 16 percent of all new electric power 
capacity additions in Europe in 2009. 

45 Taken from Tropical Weather: Weather Underground on 16 October 2010, available at 
http ://www.wunderground .comltropical/ [Last viewed on 7 August 2011) . 
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3.3.1 Significant quantity of power from wind energy. 

New wind power Installations In 2009 reached 38 GW, which represents a 41 percent Increase over 

2008, and brought the global total to 159 GW. China was the largest installer In 2009, representing more 

than one-third of the world marker'8. 

There are a significant number of wind farms with In excess of 100MW Installed capacity, with the 

Jalsalmer wind farm In India (rated at 1 GW) being the world's largest. Wlndfarm details for Individual 

countries are available at 'The Wind Power wind turbines and wind farm data base' [The Wind Power]. 

It is also noteworthy that the UK Walney wind farm In Kent is currently the largest offshore facility in the 

world rated at 367MW and there Is currently almost 240GW of wind power Installed around the world 

[HIII,2011]. 

3.4 Marine current 

There are two main types of marine current: 

• Non-tidal currents, and 

• Tidal currents 

3.4.1 Non-Tidal Currents 

The fastest oceanic non-tidal currents are derived by a complex process Involving the adsorption of solar 

radiation In the ocean and atmosphere, followed by a transformation and redistribution from the Equator 

towards the Poles by moving currents of air and water, and finally, a focusing of the oceanic currents on 

the western edges of ocean basins (or the eastern coasts of continents) by the Earth's rotation. 

The Gulf Stream In the Atlantic, the Kuroshio off Japan, and the Agulhas-Somali system on the East 

African coast, form the main current systems. 

3.4,2 Tidal Currents 

Tidal currents are the consequent flow of ocean water due the rise and fall of tides. Other factors, such 

as salinity and local temperature differences, also make a contribution to the movement of ocean water. 

This can be magnified by underwater topography, particularly In the vicinity of land, or In straits between 

Islands and mainlands. 

41 As an Indication of the speed 01 development In the last six years, China accounted lor only about 2 percent of the global 
market In 2004, and wind power capacity surpassed the country's Installed nuclear capacity In 2009, with lust over 13.8 OW 
added to reach a total 01 25.8 OW. China doubled Its existing wind power capacity lor the fifth year running, In 2009. 
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The tides are generated by the rotation of the Earth within the gravitational fields of the moon and sun. 

The relative motions of these bodies cause the surface of the oceans to be raised and lowered 

periodically, according to a number of interacting cycles: 

A half-clay (eeml-dlumal) cycle, results in a period of 12 hours 25 minutes between successive 

high waters. 

Dally (dlumal) tlde8 occur in some regions, such as the Gulf of Mexico. These have only one 

high tide and one low tide in a 24-hour period. 

A 14-day cycle, resulting from the superposition of the gravitational fields of the moon and sun. 

At new moon and full moon, the sun's gravitational field reinforces that of the moon, resulting in 

maximum tides or spring tides. At quarter phases of the moon, there is no reinforcement, 

resulting in minimum or neap tides. The range of height of a spring tide Is typically about twice 

that of a neap tide. 

The tides create movements of water into and out of bays and estuaries. These movements can 

create currents, significant tidal ranges, or both. 

The processes by which these currents are formed, depend on the local topography and vary 

widely. The currents created by the movements are known as tldalatreama or marine 

currents. 

3.4.3 Power of ocean currents available 

The total global power of ocean currents Is estimated to be about 5TW [Issacs and Seymor, 1973] 

(44000TWhIy). which is of the same order as current global electricity consumption at 150000TWhly, but 

this ocean current estimate Is debated by [Fr6berg. 2008). However, energy extraction is practical only in 

a few areas where the currents are concentrated near the periphery of the oceans, or through straits and 

narrow passages between islands and other landforms. 

The power of a current is proportional to the cube of the current velocity [Cornett, 2009]. For tidal 

currents close to the shoreline in estuaries. and in channels between mainland and islands, the velocity 

varies sinusoidally with time, with a period relating to the different tidal components. 

3.4.4 Quantity of power from tidal current energy. 

The first significant tidal current installation was the 240MW La Rance tidal barrage in France. which 

began generating power in 1966. Today, there are a few modem commercial projects generating power. 

and numerous other projects are in development or under contract [Brito-Melo and Huckerby, 2008]. An 

estimated 6MW system Is operational or being tested In European waters (off the coasts of Denmark, 
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Italy, the Netherlands, Norway, Spain, and the United Kingdom), with additional projects off the shores of 

Canada, India, Japan, South Korea, the United States and elsewhere. At least 25 countries are involved 

in ocean energy development activities. 

During 2009, South Korea completed a 1 MW tidal-current plant and began construction of a 260 MW 

tidal plant. Further, the Jindo Uldolmok Tidal Power Plant is planned to be expanded progressively to 90 

MW of capacity by 2013. The Jlangxia Tidal Power Station near the mouth of the Yalu River In China is 

operational, with current installed capacity of 3.2MW. 

The first tidal power site In North America was the Annapolis Royal Generating Station opened in 1984, 

on an Inlet of the Bay of Fundy. It has 18MW installed capacity, and the first in-stream tidal current 

generator in North America was installed at Race Rocks on southern Vancouver Island in September 

2006. 

A small project was built by the Soviet Union at Klslaya Guba on the Barents Sea with 0.4 MW installed 

capacity. 

Europe has added at least 0.4 MW of ocean power capacity. The United Kingdom Is currently at the 

forefront, with 1.5 MW of tidal stream capacity, and a 1.2 MW tidal current plant-the world's first 

commercial-scale tidal turbine to generate electricity for the grid, prodUCing enough to power about 1,000 

homes. 

3.5 Wave energy 

Wave energy can be considered a concentrated form of solar energy. Winds are generated by the 

differential heating of the Earth, and as they blow over large areas of water, part of their energy Is 

converted to waves. The amount of energy transferred, and the size of the resulting waves, depends on: 

• The wind speed 

• The length of time for which the wind blows, and 

• The distance over which it blows (the 'fetch'). 

Solar power levels of typically 100 W/m2
, can be converted to waves with power levels of 10-50 kW/m of 

wave crest length, (the standard form of measurement). Within or close-to the generation area, storm 

waves known as the 'wind sea', exhibit a very Irregular pattern, and continue to travel in the direction of 

their formation, even after the wind turns or dies down. In deep water, waves can travel out of the storm 

areas with a minimal loss of energy, and progressively become regular, smooth waves or a 'swell', which 

can persist for great distances (i.e. tens of thousands of kilometres) from the origin. 
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Consequently, coasts with exposure to the prevailing wind direction and long fetches, tend to have the 

most energetic wave climates-e.g . the western coasts of the Americas, Europe and Australia/New 

Zealand , as shown in Figure 18 below with approximate lines of latitude included [OTI , 2003] . 

Figure 18: Global distribution of offshore annual wave power level in kW/m wave crest 

3.5.1 The global wave potential 

According to [Renewable UK] , the global wave power potential has been estimated to be 8700-

87000TWh/y (1-10 TW). which is (as with tidal current) of the same order of magnitude as world electrical 

energy consumption at 150000TWh/y. Figure 18 above shows that the best wave cl imates, with annual 

average power levels between 20-70 kW/m or higher, are found in the temperate zones (between 30 and 

60 degrees latitude) where strong storms occur. However, attractive wave cl imates are still found with in 

±30 degrees latitude where regular trade winds blow; the lower power levels being compensated for by 

the reduced wave power variability. 

3.5.2 The power available from waves 

The power available is proportional to the square of the wave height, and to the wave period . 

There are great variations in power levels with the passage of each wave, from day to day, and from 

month to month. However, the seasonal variation is generally favourable in temperate zones, since wave 

energy is at its greatest in the winter months, coinciding with the greatest energy demand [Cru , 2008] . 

3.5.2.1 Offshore wave resource 

As waves approach shorel ines, they can be modified in several ways, leading to changes in direction 

(due to refraction) and power (due to losses arising from seabed friction and wave breaking). 

Refraction may cause re-focusing and wave energy concentration ('hot spots ') over a convex seabed, 

and this behaviour is relatively common in the vicinity of headlands. The opposite effect (defocusing and 

energy refraction over a concave bottom) may occur in bay areas. The energy losses depend on the 
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width of the continental shelf and the steepness and roughness of the seabed, and can reach values of 

about half the offshore wave power level. 

3.5.2.2 Shoreline wave resource 

The shoreline wave energy resource is even lower than the near-shore resource, because of further 

energy dissipation mechanisms. For a variety of reasons, including unsuitable geomorphologic conditions 

at the shoreline, excessive tidal range and environmental impacts, not all shoreline sites are suitable for 

deployment of wave energy devices. 

3.5.3 Quantity of power from wave energy. 

A 2.SMW commercial wave plant was Installed in Portuguese waters in 2008, as stated in the [Pelamis 

Wave Power] but was shut down soon after installation. The details of the technical and financial troubles 

associated with this shutdown are Included at the latter part of 'Pelamls Wave Power Jettisons Its CEO, 

Rough Waters Ahead?' [Kanellos, 2009]. 

3.6 Conclusion 

The types of renewable energy (solar PV, tidal current, wind and wave) considered within this research 

all have the potential to produce enough power to meet a significant proportion of current power 

demands, If not all of it. This potential for power production has been realised on the MW scale In all 

cases except for wave power, which Is still at a relatively early stage of development. 

There is however little evidence to indicate that any of these renewable energy sources are currently 

employed to address a fundamental human need on a significant scale, I.e. to provide a resource that Is 

essential for continued human habitation of that area. 

3.7 Reverse osmosis Installations using renewable energy. 

There are a number of reverse osmosis Installations around the world using renewable energy to 

produce water. 

The following sections provide detail of renewable energy-powered RO plants 

These are considered in terms of their: 

• Degree of reliance on renewable power, and 

• Use to meet the fundamental need for drinking water. 

The renewable energy employed Is predominantly wind or solar power, and a precis of the Installations 

around the world Is presented below In Table 9 and Table 10 respectively [PRO DES , 2010]. 
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Note: The data is incomplete and for ease of presentation, the Tables are simplified versions of the 

original data. 

Table 9' Global Wind Powered Reverse Osmosis Plants 

LocatIon ClpeeityCm'ldIiy) WInd power InRaIIed. V .. r 
CommlHlonecl 

Canada 10 1974 

Island of Suderoog at the 6-9 6kW 1980 
German Coast of the North Sea 
lie du Planler (near Marseilles). 12 
France 

4kW 1982 

MarsaMatrouh, Eavpt 25 1987 
Island of St.Nlcolas, West 10kW Wind Energy Converter, 

1988 
France Diesel Generator 

Western Australia ~ 0.2 Wind Energy Converter, 42kW PV, 
1988 Diesel Generator 

Island of Drenec France 10kW 1990 
Perth Australia 0.15-0.3 1990 
Pozolzqulerdo, Gran Canaria 96 6.6kW 1996 
island Soaln 
Therasla Island, Greece 4.8 ISkW 1997 

Maagan Michael , South of 
0.6kW Wind Energy Converter, 3.5kW 

9.6 Photovoltalc Generator, 3kW Diesel 1997 
Haifa, Israel Generator 
Pozo lzquierdo, Gran Canarla 15 Vergnet, 15kW 1999 
Island 

Gran Can aria , Spain 2712- 4000 Wind energy 2001 

Lavrlo Attikl Greece 3.6 3.96 PV 1 kW Wind Enerav Converter 2001 
Agricultural Univ. of Athens 
(AUAl. Greece 

1.5-3 850W PV, 1 kW Wind Energy Converter 2001 

U.K. 10 2kW 2002 
Perth Australia 144000 82MW 2006 
Heraklla Island, Greece 80 30kW offshore wind, battery bank, 2007 

Delft University, The 5-10 Commercial wind mill 2007/8 Netherlands 

10 ISkW Wind Generator, mechanical 
Gran Can aria couollno to RO 

15 15kW Wind Generator, hydraulic 
Gran Can aria couollno to RO 

Table 10' Global Solar Powered Reverse Osmosis Plants 

LocatIon = 80IIr po.., 1natIIIId. YHr eommlaalonecl 

Conception del Ore, Mexico 0.71 2.SkW 1978 

La Luz Mexico 15 SkW 1979 

Giza, Egypt 5-7 7kW 1980 

Jeddah Saudi Arabia near the Red Sea 3.25 8kW 1980 

Cltuls West Java, Indonesia 36 25kW 1982 

Perth, Australia 2.4 1.2kW 1982 
Oklkawa Jaoan 15 1982 
Las Barrancas Mexico 24 1982 
Qatar 24 1982 
Wanoo Roadhouse Australia 6kW 1982-83 
Vancouver, Canada 0.5-1 4.BkW Around 1983-84 
Doha, Qatar 5.7 11.2kW Possibly around 1984 
Del Ore Mexico 2 1984 
Sant Nicola Italv 12 1984 
Canada 2 1984 
Canada 3 1984 

Tanote In Thar Desert , Rajasthan state, 0.45kW Photovoltalc 

India 
1-2 Generator, 1986 

Diesel Generator 
Ohslma Island, Funke City, Nagasaki 10 25kW 1986 
Hiroshima Jaoan 20 1987 

Brountsville, Texas, USA 36 Solar energy, Fresnel 
1987 lenses 

Hassl-Khebl Aloerla 22.8 2.59kW 1988 
University of Almeria Soaln 2.5 23.5kW 1988 
Yanbu Saudi Arabia 20 1988 
Sulalblya Kuwait 45 1988 
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Loc8tIon == 80IIr poww In"'"ee1. V .. r eommleeloned 

Western Australia - 0.2 
Wind Energy 

Converter, 42kW PV, 
Diesel Generator 

1988 

Marett Island Italy 5 1989 
Lipari Island Italy 48 63kW 1991 

9.8kW Photovoltalc 
Punta Llbecclo, Marettlmo Island, (north Generator, 

1993 west of Sicily), Italy 30kW Diesel 
Generator 

Sadous Riyadh Region, Saudi Arabia 14.4 10.89kW 1994 
2.7kW Photovoltalc 

Florida SI. Lucie Inlet State Park, U.S.A. 0.6 (2 ' 0.3) Generator, 1995 
Diesel Generator 

Colorado USA 2.8 2.3kW 1995 
Gillen Bore Australia 1.2 4.16kW 1996 

0.6kW Wind Energy 
Converter, 

Maagan Michael, South of Haifa, Israel 0.4 3.5kW Photovoltaic 1997 
Generator, 

3 kW Diesel Generator 
PozolzQulerdo Gran Can aria Island 30 6.6kW 1998 

Germany 0.2-20 Solar collectors, PV for 
1999 pumping needs 

Colte-Pedrelras, Brazil 6 1 .1 kW Photovoltalcs, 
2000 Diesel Generator 

INETI Portugal 12 50-1QOW 2000 
Sadous Village Saudi Arabia 14.4 10.08kW 2001 

Lavrio, Attlkl, Greece 3.6 3.96kW PV, lkW Wind 
2001 Enerav Converter 

Agricultural Unlv. of Athens (AUA), Greece 1.5-3 850W PV, lkW Wind 
2001 Energy Converter 

U.K. 3 2.4kW 2001-2002 
Bahrain 1.5 1.32kW 2002 

White Cliffs, New South Wales, Australia 0.5 150W 2003 

MesQuite, Nevada 3.26 - 400W 2003 
KsarGhllilne (Tunisia) 50.4 10.5kW 2006 
AItBenhssalne village, rural commune 
Tamaguerte In the Alhaouz Province, 24 4.8kW 2008 
Morocco 
Msalm Village, Had Ora Commune, In the 24 3.9kW 2008 Essaoulra province, Morocco 
Municipality of Amellou, Province of Tlznlt, 24 4kW 2008 Morocco 

Municipality of Tangarfa, Province of Tlznlt, 12 2.5kW 2008 Morocco 

MuniCipality of Tangarfa, Province of Tlznlt, 24 4kW 2008 Morocco 

Municipality of Sidl Ahmed Esayeh, Province 
of Essaoulra, Morocco 24 4kW 2008 

PozolzQulerdo, Gran Canarla Island, Spain 96 6.6kW 
2008 

Primary School, Oludenlz District In the 
6.9 2.88kW 2008 Fethlye Region, Turkey 

Hotel In the Fethlve Region Turkey 2 2.68kW 2009 
Hartha Village Jordan 2.4 0.43kW 2008 
HamamLif Tunisia 0.05 590W 

The accumulation of wind and solar powered reverse osmosis plant capacity is shown below, on a year-

by-year basis, in Figure 19 and Figure 20 respectively. 
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Figure 19: Cumulative global wind powered reverse osmosis capacity (m3/day) 
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Figure 20: Cumulative global solar powered reverse osmosis capacity (m3/day) 

As can be seen from Figure 19 and Figure 20 above, although there are more solar powered reverse 

osmosis installations than wind powered (as shown in Table 9 and Table 10), there is significantly more 

wind powered reverse osmosis capacity than solar. 

This is due to two major installations: 

• The Seawater Reverse Osmosis (SWRO) plant in Gran Canaria (built in 2001 ). and 

• The Perth SWRO Plant (built in 2006) . 

The following sections provide detail of these two renewable powered SWRO plants and specifically 

their : 

• Degree of reliance on renewable power, and/ or 

• Use to meet the fundamental need for drinking water. 
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3.7.1 The Seawater Reverse Osmosis (SWRO) plant in Gran Canaria Canary 

Islands. 

This reverse osmosis plant achieves a specific energy consumption of less than 2.9 kWh/m3 of produced 

water, over the whole process47
, and has a water production capacity of just over 4000m3/day. 

The main source of energy powering this RO plant is a farm of 4 wind generators, while the main use for 

the water produced, is irrigation of tomato and vegetable fields with an area of 2,300 hectares. 

Rainfall is very low in the Canary Islands, typically less than 250 mm as an annual average. The sources 

of fresh-water are therefore very limited and SWRO desalination was considered the only option in order 

to meet the growing demand for water. Local water demand is currently increasing at around 6% per 

year. 

Shown below in Table 11 is the operational performance of the wind generators (4x Gamesa G47-

660kW Turbines) supplying power to the SWRO plant in Gran Canaria which clearly shows that the total 

power required by the Seawater Reverse Osmosis plant (shown in 'bold') is less than 50% of the 

installed wind farm capacity. When the output from the wind generators is not sufficient, the SWRO is 

powered by energy from the network [Vodmar et ai, 2005). 

Table 11: Wind Generator performance at the Seawater Reverse Osmosis (SWRO) Plant In Gran Canarla 
Operdonl' Vel, 2003 2004 
Power produced by Wind Turbines (kWhx10D) 10.21 9.64 
SWAO Power Consumption from Wind Turbines (kWhx10D) 1.55 2.40 
SWRO Power Consumption from Grid (kWhx10D) 0.68 1.80 
Power sold to the Grid (kWh X10D) 7.24 
Total SWRO Power consumption (kWh x10") 2.23 4.20 
Total Annual Permeate Production (m· X10D) 0.76 1.47 

3.7.2 The Perth Seawater Reverse Osmosis (SWRO) Plant at Kwinana 

Electricity for the Perth SWRO plant is purchased from the 80MW Emu Downs Wind Farm, which offsets 

its use of conventional power. The RO plant has an overall 24MW power requirement, and a production 

demand of 4.0kWh/m3 to 6.0kWhl m3
, achieved using pressure exchanger technology. The pressure 

exchanger methodology is explained In greater detail at Appendix B. 

The farm itself consists of 48 Vestas wind turbines (each with 1.65 MW generating capacity) located 

30km east of Cervantes, some 200miles outside Perth. It contributes 270 GWh/year into the general 

power grid, offsetting the 180 GWh/year requirement from the desalination plant. 

The SWRO plant is explained in detail in Australia's first big plant thinks "green" [Crisp, 2006), but 

concisely has an Initial dally capacity of 140,000m3, with designed expansion up to 250,000m3/day. The 

plant Is the largest single contributor to the area's integrated water supply scheme, and it is estimated 

, 7 The innovative design employs energy recovery using pressure exchangers, as well as motors with frequency control. 
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that this will meet around 17% of the water needs for Perth. The Perth SWRO plant Is also the largest of 

Its kind in the southern hemisphere and the biggest In the world to be powered using renewable energy. 

3.8 Conclusion 

It Is noteworthy that both of these RO plants, which are the only two In existence that produce a 

significant amount of water based on renewable energy: 

• Rely on the electricity grid to operate, and use renewable energy to offset, and 

• Produce water that Is not the sole supply to the local users. 

The literature reveals that while there are several reverse osmosis desalination plants that use renewable 

energy, there are none that totally rely upon It as their single source of potable water. As such, the 

research and findings described In this thesis, for the production of a single source of water using only 

renewable energy, for a population of 50,000 are considered novel. 
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4 Modelling 

The objective of the modelling exercise was to calculate the amount of water delivered by renewable 

energy powered RO plant scenarios in comparison with the same RO plant operated continuously using 

conventional, non-intermittent power sources. 

The rest of this Chapter will: 

• Provide an overview of how an RO plant works 

• Describe the stages of modelling data derivation employed In this research, and 

• Describe the modelling exercise Itself. 

Greater detail of the modelling undertaken for this research Is available in Appendix B. 

4.1 How an RO plant works 

Reverse osmosis is a form of filtration, In which the filter Is a semi-permeable membrane that allows 

water to pass through, but not salt. When a membrane of this type has saltwater on one side and 

freshwater on the other, and no other forces are acting, water will flow through the membrane towards 

the saltwater side, reducing the difference in salt concentration. This Is the natural process of osmosis, 

which Is widely employed In the cells of all living species. In reverse osmosis desalination, the aim Is to 

Increase the quantity of freshwater, and so a pump Is employed to make the flow reverse, hence the 

name: reverse osmosis. 

The osmotic pressure of typical seawater Is around 26bar, and this Is the pressure that the pump must 

overcome In order to reverse the natural osmotic flow. Twenty-six bar also equates to the theoretical 

minimum energy consumption of 0.7kWh/m3 [Lachlsh, 2003], but In practice, a significantly higher 

pressure Is used In order to achieve a generous flow of freshwater, known as the 'permeate'. 

As freshwater passes through the membrane, the remaining saltwater becomes more concentrated and, 

for the process to continue, this concentrate, known as brine, must be continuously replaced by new feed 

water. To achieve this, the feed water Is pumped across the membrane as well as through It; hence, RO 

Is a cross-flow filtration process as depicted In Figure 21 below. 
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As can be seen from Figure 21, a proportion of the pressurised feedwater comes out of the reverse 

osmosis module as waste or concentrate/ brine. This concentrate or brine is at a pressure only slightly 

below that of the feedwater, meaning that it contains a significant amount of the hydraulic power 

orig inally suppl ied by the pump. 

This energy can be partially recovered , dramatically improving the overall system efficiency. This is 

known as brine-stream recovery (BSR) and is described in more detail at section 4.3 .2.1 and section 

4.3 .2.2 for Pelton Wheel and Pressure Exchanger variants, respectively. 

4_2 The stages of modelling 

The six main modell ing data derivation stages were: 

1. No BSR Plant Design 

2. Model of primary renewable energy source, and Stage 1, its application to No BSR RO Plant. 

3. Design of BSR RO plants 

4. Stage 2, the appl ication of primary renewable energy source to BSR RO plants 

5. Design of supplementary renewable energy sources and, Stage 3, application to BSR and No 

BSR RO Plants, and 

6. Design of model for hydrogen storage and re-use, Stage 4. 

The derivation of the data used in the modelling for th is research is presented as Appendix B, which also 

provides background detail to the modell ing exercise section below. 

Figure 22 and Figure 23 below show: 

• The modelling data derivation stages for the No BSR and BSR RO plants, respectively, and 

• The modell ing exercise stages that were applied to each, which are explained in more detail in 

'The Modelling Exercise' at section 4.3 below. 
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Figure 23: BSR RO Plant modelling process 

4.3 The modelling exercise 

The model ling exercise was conducted in four main stages using a range of scenarios to simulate 

varying amounts and types of renewable power being applied to various RO plants as shown below in 

Figure 24. 
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The four stages of model development are explained in the following text. 

4.3.1 Stage 1 
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with solari tidal energy. 

Use 
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Hydrogen Fuel 
Use hydrogen fuel to reuse 

power captured in scenarios 
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Stage 1 employed the most reliable renewable resource at each of the sites in question (Solar at 

Massawa, and Tidal Current at Newhaven) as shown below in Figure 25 with the No Brine Stream 

Recovery (BSR) RO plant only. 
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Figure 25: Single source of renewable energy to power RO plant at both sites. 

The No BSR RO plant employed within this research is shown below in Figure 26. 
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FIgure 26: No BSR Plant type used wIthIn modelling. 

Sufficient power was installed at each site so that the maximum power output during the year from the 

renewable power source would achieve the maximum flowrate of the RO plant. Additional power was 

then added In discrete levels, up to (and including) five times the power needed to achieve the maximum 

flowrate of the RO plant. The additional power capacity would extend the period for which the RO plant 

could be operated at or near peak output. 

4.3.1.1 Levels of Solar power modelled. 

HOMER (energy modelling software for renewable energy systems)48 was employed to derive the solar 

irradiance on an hour-by-hour basis at Massawa based on the monthly averages shown below in Table 

12. 

48 The HOMER energy modelling software is used for designing and analysing hybrid power systems, and is available at 
http://homerenergy.com/ [Last viewed on 7 August 2011] . 
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Tallie 12:: Average irJadiwK:e 
~.......,-.. c-•• ~~ ~ ...... .... ",. ' ........ .." .._- ...... ..,HOIER 

Jan 303 7112 Q.895 

Feb 357 8..568 0..954 

!Mar 366 8..784 0.884 

Ap- 376 9.00. 0.855 

!May n1 8..088 0..75oJ 

..aun 306 7..344 0.686 

~ 300 72 0-614 

Aug 301 7..22( 0.684 

Sep 330 7~ 0.784 

Ott 319 7..&56 0..830 

N!w 308 7.:Jg2 0.891 

(l"ec 295 7..D8 0..905 

Table 13 above shows the onglnal data for Massawa [Thomson, 2003a] , which was converted into a 

format suitable for HOMER, which when inputted into HOMER generated the: 

• Appropriate 'clearness index' to be applied, and 

• An hour-by-hour irradiance profile in terms of W/m2, which is shown below51 in Figure 27. 

Figwe 21: HowIy irradiaIK:e illlIassMr.I OIlS one ,... 

4151 The original rncntjy average imdanoe, which was presented in wlrrflday, was oorM!f1ed 10 kWhI'm~ as these were 
the units required to input the data to HOMER. 

50 The 'clearness index' is a dimensionless number between 0 and 1 indicating the fraction of the solar radiation at the top of 
the atmosphere that is able to pass through the atmosphere to the Earth's surface. Greater detail of its derivation within 
HOMER is available within the 'Help' pages of HOMER. 

51 This was based on setting for East Africa (GMT +3hr) 15° 36' 33"N. 39° 26' 43"E. 
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As can be seen from Figure 27 above, the maximum irradiance during the year was 4.9403W/m2 at 

57.62 days52. 

4.3.1.1.1 Rated Installed capacity 

The installed solar power required was based on the Sharp 235W Solar Panel, Monocrystalline, Clear, 

NU-U235F1, which is rated at 235W, measured at Standard Test Conditions53
, from a panel of 994mm x 

1640mm. This panel is quoted as 14.4% efficient, but for this model is only credited with 10% efficiency 

to account for synchronisation and ambient temperature losses [Sharp, 2009]. 

The power required at each solar power capacity modelled for the No BSR RO plant, and the 

corresponding area of solar PV panels that were required to achieve it, are shown below in Table 

13. 

T ..... 13:1nCI1 1Is00 ........ .adll •• dI 

"NsF -- ........... ...... ....., 
01 1* • I ....... 7 • II 

F~ • • 7 • II 
_I •• "-" ......... 7 I" .... ........ --7-4'" ..... . ..., 1 ..... 

-w ..... .., 
1 2A 4.86 7 
2 4.8 9715900 9.72 14 
3 72 14573850 1457 21 
4 9.6 19431800 19.43 28 
5 12.0 24289750 2429 35 

The power settings were modeled and 1he results are at section 5.1_ 

4..3.1..2 Mode ... of TIdal CUrrent Power 

• was dacidad that 1he tidal current device that would be modelled would be as technically proven as 

possiJIe and avaiabIe to be i1staIed now, so from 1he multitude of tidal device options available, the 

SeaGen Turbiness device was seIacIed for use in this research and is shown below in Figure 28_ 

52 On closer later Inspection, two higher values, of 4.962W/m2 at 57.625 days and 4.979W/m2 at 84.625 days, were Identified. 
These higher values were not used to recalculate the results as the potential Impact was considered negligible. 

53 Standard Test Conditions: Temperature 25"C, 1 kW/m2 1nsoiatlon, Air Mass Coefficient (AM) 1.5. 

501 Maximum flow rate power equates to maximum solar power achieved during year - 4.940356W/m2
, so divide by 1000m to 

convert figure to kW j!lves 4.94x1 0~kW/m2. 2,400kW/4.94x1 0~kW/m2_ 485795m2
• But this assumes 1000/0 efficiency, so 

4857950m2 (4.86km ) required to achieve power levels quoted at 10% conversion efficiency. 

66 By using twin rotors, Marine Current Turbines estimate that the SeaGen can achieve double the power, for only 60% extra 
cost over a single turbine. Blades would only travel at a maximum of 12-15 mIs, which is taken to be slow enough so as not 
pose a danger to marine life. 
A working example of a 1.2MW SeaGen tidal energy system was Installed by Marine Current Turbines Ltd (MCT) in 
Strangford Lough In April 2008. 
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Figure 28: Marine Current Turbines Limited SeaGen Turbine 

4.3.1.2.1 Model of SeaGen Operation 

The SeaGen Turbine's power output in relation to the prevailing tidal current speed was approximated 

using a fifth order polynomial which is shown on the graph in Figure 29 below. 
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Figure 29: Power output of single SeaGen Turbine 
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It is noteworthy (as can be seen from Figure 29 above) that due to the limited tidal current speeds at 

Newhaven, the SeaGen Turbine is (at best) not expected to achieve more than 1/3,d of its rated capacity 

during the year. This polynomial was applied to the tidal current speeds derived for Newhaven resulting 

in the power output from a single 1, 113kW over the course of one year, shown below as Figure 30. 
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Figure 30: Power output from single SeaGen Turbine at Newhaven over 1 year (kW) 

350365 

There are many new tidal devices which claim to be able to work better at lower water speeds , such as 

'Deep Green' [Minesto , 2012], but they are currently not as developed as SeaGen and were not 

considered viable for implementation now. 

The power required at each tidal current power capacity modelled for the No BSR RO plant and the 

corresponding number of SeaGen Turbine units that are required to achieve it are tabulated below in 

Table 14. 

Table 14' Increments of Tidal Current Power modelled at Newhaven 
lIulBpIe No .... ln ... mlll8nt Humber of T1dII current 
otmax Power AequIr8cI SeaGen Units capacity ...... Ied 
tIowrate (1M) required (iIw) 
1 3.4 10 11 .1 
2 6.8 20 22.3 
3 10.2 30 33.4 
4 13.6 40 44.5 
5 17.0 50 55.7 

The power settings were modelled and the results are presented at section 5.1 . 

4.3 .2 Stage 2 

Stage 2 employed the same methodology as Stage 1 (application of the most reliable power source at 

each site), but for the BSR RO plants (Pelton Wheel and Pressure Exchanger) . 

4.3.2.1 Pelton Wheel 

The Pelton Wheel RO plant system modelled is shown below in Figure 31 . 
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Figure 31: Simple plant using Pelton wheel for BSR design. 

As shown in Figure 31 above, the Pelton Wheel BSR RO plant design utilises the brine/ concentrate 

stream to power a Pelton Wheel turbine, which is mechanically linked to a high pressure pump (HP pIp) 

arrangement. The power produced from the Pelton Wheel is used to partially pressurise the incoming 

feedwater, which reduces the external power required to raise the feedwater to an adequate pressure for 

desalination via the RO plant membranes. Due to the extraction of energy from the brine stream, the 

brine must be pumped away for disposal. 

4.3.2.2 Pressure exchanger 

The Pressure Exchanger RO plant system modelled is shown below in Figure 32 . 
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Figure 32: RO plant using Pressure Exchanger for BSR design 
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As shown in Figure 32 above, the Pressure Exchanger BSR RO plant uses the brine/ concentrate stream 

to pressurise a hydraulic chamber. This hydraulic chamber acts on a piston arrangement, which in turn is 

used to partially pressurise the incoming feedwater. A booster pump then raises the now partially-

pressurised feedwater to the correct pressure to combine with the feedwater pressurised by the high 

pressure pump, for desalination by the RO plant membranes. 

After pressurising the incoming feedwater, the brine stream (which is still partially pressurised) is 

discharged using valve arrangements, as a low-pressure brine stream. 

The Solar and Tidal Current power plants were sized as the equivalent of the conventional power plant 

that would need to be installed to achieve and maintain maximum flowrate for the BSR RO plants. 

As was the case in Stage 1, additional power was added in discrete levels up to (and including) the 

power required to achieve five times maximum flowrate of each of the RO plants . 

4.3.2.3 Solar power 

The power requ ired at each solar power capacity for the BSR RO plants, and the corresponding area of 

solar panels that are requ ired to achieve it, are tabulated below in Table 15 and Table 16 for the Pelton 

Wheel and Pressure Exchanger types , respectively. 
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Table 15: Increments of so sr power mo e e or e on ee an at as d II d f P It Wh I RO PI t M sawa 

:--- In'::""'t ANeoflOllr ArMin Rated ...... -;......, Inetalltd 
maximum Power InataIItd QIpICIty, 
flow ..... RequIred (buedon 

__ on 

(IIW) 10% 1.44W 

~ m~~UnIta 
1 1 2024150 2.02 2.9 
2 2 4048300 4.04 5.8 
3 3 6072450 6.07 8.7 
4 4 8096600 8.1 11.7 
5 5 10120750 10.1 14.6 

Table 16 : Increments of solar power modelled for Pressure Exchanl er RO Plant at Massawa 

:u-- Non- ANeotlOlar Anlaln Rated 
IntInnItlllnt ....... -::::; .....11td 

maximum Power InItaIIecI capICI1y. 
tIowrID RequIred (bald on 

__ on 

(IIW) 10% 1.44W 

~ maxim' 
UnIte lkWl 

1 0.8 1619320 1.6 2.3 
2 1.6 3238640 3.2 4.7 
3 2.4 4857960 4.9 7.0 
4 3.2 6477280 6.5 9.3 
5 4.0 8096600 8.1 11 .7 

These installed capacities were based on the Sharp 235W Solar Panel which Is discussed in section 

4.3.1.1.1. 

The power settings were modelled and the results are presented at Section 5.2. 

4.3.2.4 Tidal current power 

The tidal current power plant was increased in size, in stages up to five times the conventional power 

plant capacity. The tidal current power required for the BSR RO plants, and the corresponding number of 

SeaGen Units needed to achieve it, are tabulated for the Pelton Wheel and Pressure Exchanger variants 

in Table 17 and Table 18, respectively. 

Table 17: Increments of Tidal Current Power modelled at Newhaven for the Pelton Wheel RO plant 
lIulllpie of Non-Intannltl8nt Num~_of TkIIII current 
mu Power Required IMGlnUnita capacity 
fIownde (IIW) requlNCI InetaIItd 

(IIW) 
1 1.4 4 4.5 
2 2.8 8 8.9 
3 4.2 12 13.4 
4 5.6 16 17.8 
5 7.0 20 22.3 

Table 18: Increments of Tidal Current Power modelled at Newhaven for the Pressure Exchanger RO Plant 
1I~~_ot Non-Intennm.nt . NIl.!" ... ! of l1c1al ourrent 
muaow ..... Power Required BIIGIn UftIta oapaoIty 

(IIW) requiNCI 1n:,1td 

1 1.1 3 3.3 
2 2.2 6 6.7 
3 3.3 9 10.0 
4 4.4 12 13.4 
5 5.5 15 16.7 

The power settings were modelled and the results are presented at section 5.2. 
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4.3.3 Stage 3 

There were two aspects to stage 3 as the model attempted to make the scenarios competent. The 

following were considered: 

• Addition of wind power 

• Addition of wave power. 

The hybridised power (primary power source supplemented with wind or wave energy) is shown below in 

Figure 33 and Figure 34 for Massawa and Newhaven, respectively. 
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Figure 33: Hybridised Plant at Massawa 
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Figure 34: Hybridised Plant at Newhaven 
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4.3.3.1 Addition of wind power 

4.3.3.1.1 Newhaven 

The wind resource available at Newhaven was ascertained from the UK wind speed database NOABL56
, 

and is shown below in Table 19. 

Table 19: Average wind speed at Newhaven 

Height of reading (m) Average wind speed (mls) 
10 6 
25 6.7 

4.3.3.1.2 Massawa 

The monthly average data at Massawa was taken from local weather reports57
, and is presented below in 

Table 20. 

T bl a e 20: AveraQe wind sDeed at Massawa 
Data Wind speed at 10m 

helaht (m/s) 
Jan 3.576 
Feb 3.576 
Mar 5.812 
Apr 5.812 
May 5.812 
Jun 5.812 
Jul 4.917 
Aug 5.364 
Sep 4.917 
Oct 5.364 
Nov 5.364 
Dec 5.364 
Annual Average 5.141 

This data was then applied to HOMER to denve the wind speed for each hour of the year which is shown 

below in Figure 35. 
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Figure 35: Wind speeds at Massawa and Newhaven over 1 year 

56 The data in this database is the result of an air flow model that estimates the effect of topography on wind speed. 
http://www.rensmart .comlWeather/BERR Newhaven data based on the following coordinates 50 .78076029964647 Lat : 
0.0473785400390625 long. [Last viewed on 7 August 2011] . 

57 Average monthly data taken from http://www.weatherreports .com/EritrealMassawalaverages.html and is based on the 
average of data over 4 years. Coordinates for Massawa 1536' 35" La!: 39 27' 00· Long [Last viewed on 7 August 2011 ]. 
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Wind power was added to the single renewable power source scenarios for No BSR and BSR RO Plants, 

at varying levels, In an attempt to allow the RO plant to operate at a high level of water production 

continuously. This hybridised power source was based on the use of 2,OOOkW turbines based on a 

scaled-up Fuhrlander 250 operating profile obtained from the HOMER library. 

The wind farm installed power was modelled at stages, which increased in size as shown below In Table 

21 - Table 26 Inclusive. 

Table 21: Wind Power at Newhaven - No BSR 
Multiple Non-lntermlttent Humber of WInd turbine 
ofmu Power Required Wind oapICIty 
now'" (IIW) Turblnee In_lied (IIW) 

reaulred 
1 3.4 2 4.0 
2 6.8 4 8.0 
3 10.2 6 12.0 
4 13.6 8 16.0 

Table 22' Wind Power at Massawa • No BSR 
Multiple Non-lntermlttent Humber of Wind turbine 
ofmu Power Required Wind oap8CIty 
ftowl'llte (MW) Turblnee 1nst.1Ied (IIW) 

reaulred 
1 2.4 2 4.0 
2 4.8 3 6.0 
3 7.2 4 8.0 
4 9.6 6 12.0 

Table 23: Wind Power at Newhaven - Pelton Wheel 
Multlp" .... 1tt8nt Humber of Wind turbine 
ofmu Power Required Wind oapRIty 
now ..... (MW) Turblnee IMlaIled (kW) 

Nqulred 
1 1.4 1 2.0 
2 2.8 2 4.0 
3 4.2 3 6.0 
4 5.6 4 8.0 

Table 24' Wind Power at Massawa - Pelton Wheel 
Multiple ;:;:-'i;d Hum_of Wind turbine 
ofmu Wind capacity 
now,.. (MW) Turblnee 1nst.1Ied (IIW) 

reaulred 
1 1.0 1 2.0 
2 2.0 2 4.0 
3 3.0 3 6.0 
4 4.0 4 8.0 

Table 25: Wind Power at Newhaven - Preslure Exchanger 
Multiple 

p;.;.:~j;d 
Hum_of Wind turbine 

ofmu Wind 08peol., 1 .... 1ed 
flow .... (MW) Turbl .. (IIW) 

Nqulred 
1 1.1 1 2.0 
2 2.2 2 4.0 
3 3.3 3 6.0 
4 4.4 4 8.0 

Table 26: Wind Power at Maslawa - Pressure Exchanger 
Multiple :,n;n:: Hum .... ot Wind turbine 
of mi. Wind oapICIty 
flow'" (IIW) Turblnee 1nst.1Ied (IIW) 

reaulred 
1 0.8 1 2.0 
2 1.6 2 4.0 
3 2.4 3 6.0 
4 3.2 4 8.0 

The results at these power settings are presented at sectton 5.3.1. 
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4.3.3.2 Addition of wave power 

The Wave Dragon was selected to convert wave motion to power, at each site. It is an 'overtopping' 

wave energy converter and floats slack-moored to allow it to move in the direction of the prevailing 

waves. 

The principle of operation of the Wave Dragon device is illustrated below, based on [GENI , 2009] in 

Figure 36. 

overtopping 
reservoir 

1. ± 

turbine outlet 

Figure 36: The principle of the Wave Dragon technology 

The Wave Dragon works by facing its outstretched collector arms towards the oncoming waves and 

concentrating the wave front towards the ramp at the front of the structure . As shown in Figure 36 above, 

energy is captured by waves runn ing up the ramp and overtopping the crest into a reservoir. This water, 

stored in the reservoir, at a higher level than the sea, is returned through low-head turbines powering 

electrical generators producing power. 

The power production profiles for Massawa and Newhaven are shown below in Figure 37 and Figure 38, 

respectively, with the maximum values achieved during the year at each site. 
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Figure 37: Power produced by 1 m of Wave Dragon at Massawa during one year. 
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Figure 38: Power produced by 1 m of Wave Dragon at Newhaven during one year. 

Wave power was added to the single renewable power source scenarios for No BSR and BSR RO 

Plants, at varying levels in an attempt to allow the RO plants to operate at a high level of water 

production continuously. This hybridised power source was based on the use of 1.1 3MW Wave Dragon 

devices which were applied to the modelled scenarios. 

Table 27 -Table 32 inclusive shows the stages of wave power modelled for each scenario. 

Table 27' Wave Power at Newhaven • No BSR 
Multiple Non- Wave No.of95kW Wave Dragon 
of Intermittent Dragon Wave power capacity 
mulmum Power wavefront Dragon Installed (MW) 
flowrate Required required devices 

.~W) (km) required 
1 3.4 2,03 38 3.61 
2 6.8 4.07 76 7.22 
3 10.2 6.10 114 10.83 
4 13.6 8.14 152 14.44 

Table 28' Wave Power at Massawa • No BSR 
Multiple of Non- Wave No. of Wave Dragon 
maximum Intermittent Dragon wave 95kWWav8 power capacity 
flowrate Power front Dragon Installed (MW) 

Required required devices 
tkw> Oun) . l1ICIulred 

1 2.4 4.05 75 7.13 
2 4.8 8.10 150 14.25 
3 7.2 12.15 225 21 .38 
4 9.6 16.20 300 28.50 

Table 29' Wave Power at Newhaven - Pelton Wheel 
Multiple Of Non- Wave No.of95kW Wave Dragon 
maximum Intermittent Dragon Wave power capacity 
fIowrat8 Power wavefront Dragon Installed (MW) 

Required required devices 
(kW) (km) required 

1 1.4 0.8 16 1.52 
2 2.8 1.68 32 3.04 
3 4.2 2.51 48 4.56 
4 5.6 3.35 64 6.08 

Table 30' Wave Power at Massawa - Pelton Wheel 
Multiple Non- Wave No. of Wave Dragon 
of Inw.rmltlent Dragon 95kW power capacity 
mulmum Power wavefront Wave Installed (IIW) 
fIownde Required (leW) required Dragon 

(km) devices 
. required 

1 1.0 1.69 32 3.04 
2 2.0 3.38 64 6.08 
3 3.0 5.06 96 9.12 
4 4.0 6.75 128 12.16 
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T bl 3 W P a e 1: ave ower at N h ew aven- P ressure E xchanger 
Multiple Non- Wave No.of95kW Wave Dragon 
of Intermittent Dragon Wave pow .. capacity 
maximum Power wave front Dragon Installed (IIW) 
ftowrate Required required devices 

(kw) (ian) required 
1 1.1 0.66 13 1.24 
2 2.2 1.32 26 2.47 
3 3.3 1.97 39 3.71 
4 4.4 2.63 52 4.94 

T bl 32 W P a e : ave ower at M assawa- P ressure E h xc anger 
Multiple Non- Wave No. of95kW Wave Dragon 
of Intennlttent Dragon Wave power capacity 
maximum Power wave Dragon Installed (IIW) 
ftowrate Required front devices 

(leW) required 
(ian) 

required 

1 0.8 1.35 25 2.38 
2 1.6 2.70 50 4.75 
3 2.4 4.05 75 7.13 
4 3.2 5.40 100 9.50 

The results at these power settings are presented at section 5.3.2. 

4.3.4 Stage 4 

Stage 4 was the use of hydrogen (generated through the utilisation of captured energy), with primary 

energy and hybridised (primary with wind or wave) power scenarios, for No BSR and BSR RO Plants. 

This allowed the power captured during normal RO plant operation, to be reappl ied at times when 

insufficient power was being produced to maintain maximum RO plant water production . 

The method used to reapply captured power was the hydrogen Polymer Electrolyte Membrane (PEM) 

Fuel cell. The operation of the PEM Fuel cell is shown below in Figure 39. 

Electrolyte 

Figure 39: PEM Fuel Cell Operation 

The PEM fuel cell uses a solid polymer membrane as the electrolyte. This polymer is permeable to 

protons when it is saturated with water, but it does not conduct electrons. 
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The fuel for the PEM fuel cell is hydrogen, and the charge carrier is the hydrogen ion (proton) . At the 

anode, the hydrogen molecule is split into hydrogen ions (protons) and electrons. The hydrogen ions 

permeate across the electrolyte to the cathode while the electrons flow through an external circuit and 

produce electric power. Oxygen, in the form of air, is suppl ied to the cathode, and combines with the 

electrons and the hydrogen ions to produce water. The reactions at the electrodes are shown below in 

Table 33. 

Table 33' PEM Fuel Cell electrode reactions 
Reactions Chemical formulae 
Anode Reactions 2H2 => 4H+ + 4._ 
Cathode Reactions O2 + 4W + 4._ => 2 H2O 
Overall Cell Reactions 2H2 + O2 => 2 H2O 

PEM fuel cells work as separate cells , and are combined , into stacks to deliver the required power levels. 

The scenarios that employed the reappl ication hydrogen fuel are illustrated below, for Primary Power 

Scenarios (Figure 40 for Massawa, and Figure 41 for Newhaven) and Hybridised Power Scenarios 

(Figure 42 for Massawa, and Figure 43 for Newhaven) . 
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Figure 40: Massawa solar scenario for utilisation of hydrogen. 

92 



TIdal 
Current 
Power 

,....- ........ "I11III ... ,.,. 

,at F ........ "I11III ... ,.,. 

,; ........ .,.; ... ,.,. 
Power to synchronising unit 

Tidal Current - AC 

Synchronise, 

AC supply to RO Plant 
3 Phase 
60 Hz , 

Reverse Osmosis 
Plant 

Compression! Liq supply 
AC 

Electrolyser 
Supply 

DC 

Water for 

Hydrogen 
production 
Electrolysis 

75% Efficient 

Hydrogen 
storage 

Compressio 
n to gas 

Effi 'ant 

H2 at 
300 Sar 

Permeate --Electrolysis (taken as negl igible) 

Water Users 
Consume 5,950 -

7,000m'/day 

Water from eledrolyser returned to reservoir 
or disposed of depending upon quahty 

Water exhaust from fuel cell returned to rese", 
or disposed of depending upon quality 

Figure 41: Newhaven Tidal Current scenario for ut ilisation of hydrogen_ 

Power to d~chroniser ____________ -j 

Energy Conversion 

Ej 
Solar Power 

I 
Wind! I Wave 
Power 

, 
P~wer to synchronising unit1 Synchronl •• , H 

Solar - DC 
Wind! Wave - AC 

L----------rl --------~ 

Compression! Liq supply 
AC 

AC supply to RO Plant 
3 Phase 
60 Hz , 

Reverse 
Feed ;~t~~~~iut to ---+ Osmosis Plant 

Permeate 

Electrolyser 
Supply 

DC 

Hydrogen 
production 
Electrolysis 

75% Efficient 

Water for J 
ElectrolYSIS (taken as negligible) 

Hydrogen 
atorage 

Compressio 
n to gas . 
Effi 'ent 

H2 at 
300 Sar 

'-___ Water from electrolyser retumed to reservOIr, Water exhaust from fuel 
I~ or disposed of depending upon Quality cell returned to reservoir, L_--.-__ J-->-------'--------"-----'----<>Ol' disposed of depending upon quality 

Water us.rs 
Consume 5,950 -

7,OOOm' /day 

Figure 42: Massawa solar with wind! wave scenarios for utilisation of hydrogen_ 

93 



Energy Conversion 

8:::::: [Endl ~ Wave 
~::':nt Power 

Power to synchtoniser ________ -I 
I DC 

PEM Fuel Cell L 
(40% efficient) I~ 

I 

H,at 
300 Bar 

Power ~-,---------, 

Comp .... sion! Liq supply 
AC 

Power to synchronising unit1 Synchron lser ~ 
Tidal Current - AC 
\Mndl Wave -AC 

'-------
AC supply to RO Plant 

3 Phase 
60 Hz , 

Reverse Osmosis Plant 

Permeate 

Electrolyser 
Supply 

DC 

Hydrogen 
production 
Electrolysis 

75% Efficient 

Waterror 
ElectrolySIS (taken as negligible) 

ater from electrolyser retumed to reservOIr, Water elthaus! from fue l cell returned to reseN 
or dIsposed of depending upon quality or disposed of depending upon quality 

Figure 43: Newhaven Tidal Current with wind/ wave scenarios for utilisation of hydrogen. 

The water used and lost due to the electrolysis process as part of the hydrogen fuel cycle is discussed at 

Appendix C and considered to be negl igible. 

The efficiency of hydrogen use was taken as 22%. The results are shown at section 5.4, and a 

discussion of the effectiveness of hydrogen is presented at section 6.2.1 .3. 

4.4 Scenario calculations and technical competence of modelled scenarios 

There were 270 scenarios modelled , and each scenario was managed on its own spreadsheet, which 

contained the following details for each hour of the year: 

• The input renewable power 

• The corresponding feedwater temperature 

• The power that could be used by the RO plant i.e. power above minimum and below maximum 

flowrate thresholds 

• The power wasted , i.e. power produced minus power outside RO plant operating thresholds 

• The water produced during that hour, which was calculated in Matlab using the RO plant 

operating profi les as discussed at Appendix B. 

• The water deficiency/ remaining considering the demands of the local users. 

The measure of technical competence of the scenarios was the percentage of the water demand over 

the course of the year, which the RO plant managed to satisfy. 
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5 Results 

5.1 Stage 1 

The results of stage 1 of the modelled scenarios (where varying amounts of renewable power were 

applied to the No BSR RO plant) are shown below in Figure 44 and Figure 45 for Massawa and 

Newhaven, respectively. The data is represented in terms of the multiples of non-varying power that 

would be requ ired to achieve the maximum flowrate from the No BSR RO plant when the greatest 

renewable power is available . The equivalent solari tidal power installed to achieve the maximum 

flowrate is shown at Table 13 and Table 14 for Massawa and Newhaven, respectively. 
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Figure 44: Percentage of water produced at Massawa using solar power 

max 
flowrate 

power 

max 
flowrate 

power 

4x 
max 
flowrate 

power 

3.5 

X 10
4 

X~~ 
Y. 33!51 

5xmax 
flowrate 

power 

OLL ________ L-~ ____ ~L-~ ____ ~ ____ L_ __ ~ ____ ~ __ ~ 

1 2 3 4 
Installed tidal current power (kW) 

5 6 
4 

x10 

Figure 45: Percentage of water produced at Newhaven using tidal current power 
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It is evident that the stage 1 modelled scenarios are not able to meet the demands of the local users as 

at best they only achieve 45% of the users demands. 

5.1.1 Explanation of solar power at Massawa 

Figure 46 below shows the variation of solar power output across a typical solar day, and the effect of 

increasing the size of the PV array. The curve shown in black is based on the minimum solar power 

installation that is able, at peak solar irrad iation to achieve maximum permeate flow. The dashed red 

curve shows the limited gain in water output that results from doubling the size of the PV array. 
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Figure 46: Varying installed solar power. 

The sun shines at Massawa for around 12 - 13 hours per day. So , as the RO plant is able to operate for 

around 50% of the 24-hour day, it is reasonable to expect a maximum of 50% of the requ ired water to be 

produced from this power source, as increases in installed power would only tend to extend RO plant 

running time up to the maximum duration of the available sunlight. Th is is shown by the trend in Figure 

44. 
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It can also be seen that increases in installed solar power tend to also result in a significant amount of 

wasted power above that required for the maximum permeate production. The wasted power could of 

course be used for other purposes. 

5.1.2 Explanation of tidal current power at Newhaven 

In light of the inefficiency at low tidal speeds the SeaGen has been modelled as an academic exercise 

and it was expected that it would not perform particularly well in Newhaven with its slow tidal speeds. 

This is confirmed by the fact that, when around 1 x the generating capacity that would be required by a 

conventional power source to meet the user needs (3,400kW) is installed as tidal current power by 

SeaGen devices, they only produce around 6% of the water required . 

As the installed tidal current power increases to, in excess of, 5x the non-varying power required to 

deliver maximum water production (around 17,000kW), the SeaGen devices only manage to achieve 

around 35% of the water required. 

With its double peak in a 24-hour period it seems logical that the tidal cycle should be capable of 

producing appreciable power (and therefore water) for around 80% of the time with 20 hours per 24-hour 

day of tidal current movement as shown in Figure 47 below. 
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Figure 47: Varying installed tidal current power. 
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Shown below in Figure 48 is the power output for a single 1, 113kW SeaGen device over the course of 

one year. 
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Figure 48: Single SeaGen device power produced at Newhaven compared to the minimum RO plant power 
requirement. 

Although it varies over the course of the year, the minimum power required by the RO plant to operate 

and produce water is around 845kW, and the maximum modelled power output of 320kW is only slightly 

over one third of the power requ ired to start to generate water. So although each SeaGen device is rated 

at 1, 11 3kW, it is evident that the tidal current arrangement modelled does not even start to generate 

water until multiples of the SeaGen units are installed, and with the extreme undulations of the tidal 

current profile will , even then, only produce water intermittently. 

5.2 Stage 2. 

The results for modelled scenarios for Stage 2 (where the Pelton Wheel and Pressure Exchanger BSR 

RO plants were modelled) at each site achieved the results shown below in Figure 49 and Figure 50 for 

Massawa and Newhaven, respectively. Each node represents the multiples of conventional power (as 

per Figure 44 and Figure 45 above) that would be required to achieve maximum flowrate from the 

particular RO plant in question. The equivalent solari tidal power installed is shown above at: 

• Table 15 for Massawa Pelton Wheel RO plant 

• Table 16 for Massawa Pressure Exchanger RO plant 

• Table 17 for Newhaven Pelton Wheel RO plant, and 

• Table 18 for Newhaven Pressure Exchanger RO plant. 
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Figure 49: Percentage of water produced at Massawa, using solar power for BSR and No BSR RO plants 
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Figure 50: Percentage of water produced at Newhaven, using tidal current power for BSR and No BSR RO plants 

As can be seen from the Figures above, within the range modelled, the RO plants with Brine Stream 

Recovery (BSR) generated approximately the same amount of water as the No BSR RO plant, but 

employed considerably less energy to do so. This said , the amount of water produced by the BSR 

variants (being similar to the No BSR RO plant) was not adequate to meet the demands of the local 

users. 

5.3 Stage 3 

Stage 3 involved the addition of Wind Power and Wave Power. The figures used to represent the 

scenarios where wind/ wave power was used show: 

• Five single lines of constant primary power set at the levels for the Stage 1 and Stage 2 

modelling for No BSR and BSR RO plants, respectively, with 

• Additional wind/ wave power added at the levels described in section 4.3.3. 
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5.3.1 Addition of Wind 

The resu lts for modelled scenarios for Stage 3, when wind power was used in addition to the primary 

renewable energy source, are shown below in Figure 51 and Figure 52, for Massawa and Newhaven, 

respectively. 
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Figure 51: Comparison of the percentage of water produced at Massawa, using solar power supplemented by wind 
Power 
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Figure 52: Comparison of the percentage of water produced at Newhaven, using tidal current power supplemented 
by wind power 

The addition of wind power to both sites gives a significant improvement to the water production levels, 

achieving at best just over 70% of the water required. None of the scenarios modelled, though , was able 

to produce 100% of the water required. 

5.3.2 Addition of Wave power 

The results for modelled scenarios for Stage 3, when wave power was used in addition to the primary 

renewable energy source are shown below in Figure 53 and Figure 54, for Massawa and Newhaven, 

respectively. 
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Figure 53: Comparison of the percentage of water produced at Massawa, using solar power supplemented by wave 
power 
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Figure 54: Comparison of the percentage of water produced at Newhaven, using tidal current power supplemented 
by wave power 

As can be seen from Figure 53 and Figure 54 above, the addition of wave power made a substantial 

improvement to the water production levels at both Massawa and Newhaven, with maximum outputs in 

excess of 80% of that demanded by the local population . The addition of wave power was more 

favourable than adding wind power. Once again, none of the scenarios modelled was able to produce 

100% of the water requ ired. 

5.4 Stage 4 

5.4.1 Stage 1 and 2 scenarios with Hydrogen Fuel 

The resu lts for using Hydrogen after the Stage 1 and 2 scenarios, are shown below in Figure 55 and 

Figure 56, for Massawa and Newhaven, respectively. 
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Figure 55: Comparison of the percentage of water produced at Massawa, using solar power with and without 
hydrogen fuel 
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Figure 56: Comparison of the percentage of water produced at Newhaven, using tidal current power with and 
without hydrogen fuel 

As can be seen from Figure 55 and Figure 56 above, the use of hydrogen fuel resulted in a large 

increase in the amount of water produced, particularly at Massawa, where maximum water production 

increased by more than 25%. 

The increases in water production at Newhaven due to application of hydrogen fuel were more modest, 

with increases of maximum water production of around 7 to 8%. 

As previously, none of the scenarios model led was able to produce 100% of the water demanded by the 

local population . 
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5.4.2 Massawa 

The results for scenarios for Stage 4, when hydrogen fuel was used at Massawa with Stage 3 (wind or 

wave power) scenarios, are shown below in Figure 57 and Figure 58, respectively. 
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Figure 57: Comparison of the percentage of water produced at Massawa, using solar power supplemented with 
wind power and hydrogen fuel 
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Figure 58: Comparison of the percentage of water produced at Massawa, using solar power supplemented with 
wave power and hydrogen fuel 

5.4.3 Newhaven 

The resu lts for scenarios for Stage 4, when hydrogen fuel was used at Newhaven with Stage 3 (wind or 

wave power) scenarios , are shown below at Figure 59 and Figure 60, respectively. 
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Figure 59: Comparison of the percentage of water produced at Newhaven, using tidal current power supplemented 
with wind power and hydrogen fuel 
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Figure 60: Comparison of the percentage of water produced at Newhaven, using tidal current power supplemented 
with wave power and hydrogen fuel 

As can be seen from the Figures above, the addition of hydrogen fuel at Massawa and Newhaven, 

enabled the modelled scenarios to achieve maximum outputs, just below 100% of the water requ ired by 

the local population . 
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6 Discussion 

6.1 Overview 

An overview of the discussion section of this research is shown below, in Figure 61. 
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Figure 61: Overview of discussion section 

6.1 .1 Competence of modelled scenarios 

The modelled scenarios were: 

• RO plants (BSR and No BSR) designed to produce 7,OOOm3/day of water, when operated 

continuously at the maximum flowrate for 24 hours, and 

• RO plants with varying levels and combinations of renewable energy, and identification of how 

much water these could produce. 

• Section 6.2.1 presents the scenarios that were modelled to achieve 90% or more of the water 

required by the local population over the course of the year. 

• Section 6.2 .1.3 presents the scenarios with hydrogen fuel and analyses how effective it was at 

increasing water production. 

6.1 .2 Financial viability 

The financial viability of the modelled scenarios is developed in section 6.3 as follows: 

• Cost estimates were made for the renewable energy systems and reservoirs, and 

• The RO plant costs were developed for the three variants: 

o No BSR 

o Pelton Wheel BSR, and 

o Pressure Exchanger BSR. 

• Each modelled scenario was then made technically competent by scaling-up the installed 

renewable energy plant, reservoir and RO plant sizes, to produce 100% of the water required . 
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For example, a scenario that managed to produce 50% of the water required by the local population 

would have the renewable energy power source(s), reservoir, and RO plant, doubled In size to achieve 

100% of the water required. 

The scaling factor was then applied to the cost of eaoh scenario, to Identify the final cost. 

6.1.3 Comparison with conventional scenarios 

The costs of the scenarios with RO plants at each site powered by conventional power sources, was 

estimated and compared with eaoh applicable renewable powered scenario over the 25-year fife cycle of 

the Installation. 

The oosts of the RO plants at each site using oonventional power, inoludlng the externalities associated 

with that power source, were then estimated, and oompared with eaoh applicable scenario to Identify any 

scenarios that became finanolally viable. 

6.1.4 Application of NPV 

The results of this comparison were then assessed using the Net Present Value (NPV) methodology. 

6.1.5 Scrutiny 

The modelling and results were then further scrutinised to: 

• Estimate the impact of approximations on the results, due to the use of polynomials in the 

modelling exerolse 

• Account for potential variations In: 

o Diesel fuel cost 

o Solar power production 

o Wind speed 

o Wave height 

o Feed water temperature, and 

o The Impaot of Intermittent operation on the RO plant. 

• Identify variations on scenarios that could have an Impact on the results. 

6.2 Competence of modelled scenarios and effectiveness of energy storage 

The objective of the researoh was to assess the viability of renewable energy sources to meet a 

fundamental and significant need, un-assisted by conventional power, In this case, to provide 7,OOOm3 of 
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water per day by desalinating seawater at Massawa and Newhaven. The RO plants were sized to 

produce this amount of water, if run continuously at maximum output, 24 hours per day. 

The section below presents the conclusions from the modelled scenarios that were able to provide 90% 

or more of the water required and section 6.2.1.3 provides details of the effectiveness of energy storage 

and reuse. 

6.2.1 Modelled scenarios that produced over 90% of water demand. 

The following section presents the scenarios that were able to provide 90% of the water required , using 

renewable power and hydrogen fuel for energy storage and reuse. Ninety percent was selected as the 

'cut-off' point for the assessment of competence, as it provides enough water over the course of a year to 

sustain the population with minimal discomfort. 

There were 85 scenarios out of 270 (31 %) that were able to achieve over 90% of the required output. 

The results indicate that only the scenarios that employed hydrogen fuel , were able to achieve 90% or 

more of the water required . 

Two criteria are used to ascertain the best technical option at each site : 

• Production of over 90% of the water requ ired with the least installed power, and 

• Production of the most water. 

The resulting water produced vs. installed power vs. percentage of primary power installed relationships , 

are shown below in Figure 62 and Figure 63 for Massawa and Newhaven, respectively . 

These Figures also show the best option at each site based on the least power used and maximum water 

produced. 
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Figure 62: Massawa - Over 90% water produced vs. Power installed 
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6.2.1.1 Over 90% produced with the least installed power 
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The following section identifies the scenarios that produced over 90% of the water required , with the 

minimum installed power. 

6.2.1.1.1 Massawa 

The Pressure Exchanger BSR RO plant produced 98.4% of the water required , using the least amount of 

installed power at Massawa. It employed a combination of 8,331 .8kW of installed solar and wind power 

(made up of 28% Solar and 72% Wind power) with a specific installed power-to-water production ratio of 

0.0033 installed kW/m3. 

6.2.1.1.2 Newhaven 

The Pressure Exchanger BSR RO plant produced 90.3% of the water required , using the least installed 

power at Newhaven. It employed a combination of 8,279kW of installed tidal current and wave power, 

(made up of 40% Tidal Current and 60% Wave power) with a specific installed power-to-water production 

ratio of 0.0036 installed kW/m3 . 

6.2.1.1.3 Conclusion 

Supplementary power makes up the dominant part (over 70% and 60% of the input power at Massawa 

and Newhaven, respectively) of these most efficient scenarios. As expected, due to the higher feedwater 

temperature, the Massawa plant requires slightly less power/m3 of water produced than the plant at 

Newhaven. 

6.2.1.2 Modelled scenarios that produce the most water 

The following section identifies the scenarios that produce the most water for the local population. 
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6.2.1.2.1 MIIssawa 

The Pressure Exchanger BSR RO plant produced the most water at Massawa (99.5% of the water 

required by the local population) using a combination of 19,659.1 kW of installed solar and wind power 

(made up of 59% Solar and 41 % Wind power) with a specific installed power-to-water production ratio of 

0.0077kW/m3• This is more than double the 0.0033 Installed kW/m3 of the most efficient option when 

producing at least 90% of the water demanded. 

6.2.1.2.2 Newhsven 

The Pelton Wheel BSR RO plant produced the most water at Newhaven (98.79% of the water required 

by the local population) using a combination of 28340kW of installed tidal current and wave power (made 

up of 79% Tidal Current and 21 % Wave power) with a specific installed power to water production ratio of 

0.0112kW/m3• This is more than three times the 0.0036 installed kW/m3 of the most efficient option when 

producing at least 90% of the water demanded. 

6.2.1.2.3 Conclusion 

The above scenarios, for the maximum water produced, required much more installed power, (some 20 -

25 times the power required to maintain full flow if a non-varying power source was uSed58
), and in both 

cases the primary (solar and tidal current) power was the dominant part of the combination. This is in 

contrast to the least power installed scenarios, where the secondary power source (wind! wave energy) 

was dominant. The water production profiles are (although tending towards Increased water production 

for increasing Installed power) quite erratic. This is due to the weighting of primary and secondary power 

for each scenario, which Is shown to great effect at Massawa In Figure 64 below, where the installed 

power was more than doubled, (mainly due to the addition of primary power, which Increased from 28% 

of the total power to almost 60%) to achieve a 1.1 % increase In water production. 

88 Based on the non-Intermittent power required for BSR RO plants detailed at Section 4.3.3. 
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Figure 64: Massawa - Comparison of water produced vs. percentage of solar power installed 

It is therefore concluded that the weighting of the primary and secondary energy sources is vitally 

important if water is to be produced with the best efficiency. 

6.2.1.3 Effectiveness of captured energy re-use 

The ratio employed to indicate the effectiveness of hydrogen fuel , is a ratio termed the Coefficient of 

Performance (CoP). 

The CoP is derived for each scenario as follows: 

CoP = Adwat/Enwas 

where: 

Adwat = Percentage of additional water produced by using hydrogen fue l 

Enwas = Percentage of energy that was wasted. 

This produced a unit that provides an indication of the effectiveness of using hydrogen fuel. 

The larger the CoP for a scenario, the more effective that scenario is in the use of hydrogen fuel to 

desalinate water. 

The CoPs for each scenario that employed hydrogen fuel were collated, and the results are presented 

below for each site and RO plant type modelled. 

6.2.1.3.1 Massawa 

No BSR 

The best return from stored hydrogen power for the No BSR system was when wind energy was used, at 

a CoP of just under 0.79. The modelled scenario was made up of 34,975kW of installed solar power and 
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16,OOOkW of Installed wind power which was the largest scenario modelled. This is compared to the CoP 

of 0.715, with 34,975kW of Installed solar power and 7,125kW of installed wave power. 

Pelton Wheel BSR 

The best return from stored hydrogen power for the Pelton Wheel BSR system was a CoP of just over 

0.8 when 2,915kW of solar power was installed. 

Pressure Exchanger BSR 

The best return from stored hydrogen power for the Pressure Exchanger BSR system was a CoP of just 

under 0.794. The modelled scenario was made up of 11,659kW of Installed solar power and 2,OOOkW of 

Installed wind power, which was the largest scenario modelled on the basis of Installed power. This Is 

compared to the CoP of just under 0.78 with 11,659kW of Installed solar power and 2,375kW of installed 

wave power. 

Overall 

The best return from stored power was achieved by the Pelton Wheel BSR system, when solar powered 

only. 

6.2.1.3.2 Newhaven 

NoBSR 

The best return from stored hydrogen power for the No BSR system was a CoP of 0.765, for 11,130kW 

of tidal current power Installed. 

Pelton Wheel BSR 

The best return from stored hydrogen power for the Pelton Wheel BSR system was a CoP of 0.725, for 

4,452kW of tidal current power Installed. 

Pressure Exchanger BSR 

The best return from stored hydrogen power was a CoP of just under 1.4, for 3,339kW of tidal current 

power Installed. 
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Overall 

The best return from stored power was achieved by the Pressure Exchanger BSR RO system, which was 

powered by tidal current only. 

In this case, 72% of the power produced by the tidal current devices was wasted as it was generally 

below the level required for the RO plant to operate, and only produced just over 3% of the water 

required by the local users. This was the lowest of the outputs from the scenarios. The use of hydrogen 

fuel raised the amount of water produced to around 6.3% of the water required. Although more than 

double the original volume of water, this was the lowest output any of the modelled scenarios using 

hydrogen fuel. 

6.3 Financial Viability 

The cost associated with the use of renewable energy and energy storage is a large factor in their 

viability. So, the next stage was to assess the financial viability of the modelled scenarios 

6.3.1 Exchange rates 

The estimated costs for the financial modelling exercise were taken from a variety of international 

sources, and the exchange rates employed to align with pounds sterling (£) are shown below in Table 34 

taken from www.x-rates.com on Tuesday 14 December 2010. 

Table 34: Exchange rates used for financial modellina 
IUS $GBP ICdn lEUR 

* S 1 1.57238 0.993117 1.3669 

£ IBP 0.635976 1 0.631599 0.843749 

S ~n 1.00693 1.58328 1 1.33589 

f UR 0.75375 1.18518 0.748562 1 

6.3.2 Renewable energy costs 

The following section provides indicative costs for the renewable energy assets. 

6.3.2.1 Solar power 

There is some variance within the cost estimates of Photovoltaic (PV) cells. 

There is an estimation of 5500 €JkW in 'Totally Renewable Energy Supply' [Keramane, 2008a] 

(£4,641/kW) for general PV and the Grantham Institute for Climate Change [Ekins-Daukes, 2009] 

estimates 1,400$/kW (£890/kW). 

A Price Waterhouse study [PwC, 2010] concludes that the costs will be In the range 2500 - 5100 €JkW 

(2,109 - 4,303£1kW) with operation and maintenance (0 & M) costs of 15 - 26€JkW /annum (12.66 -

21 .94£/kW/annum). 
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On the basis of the estimates above, the costs for solar power at Massawa were modelled as follows: 

• Installation costs - £3,OooIkW 

• O&M costs - £151kW/annum. 

6.3.2.2 Tidal Current 

The 'System Level Design, Performance, Cost and Economic Assessment - San Francisco Tidal In

Stream Power Plant' [Previsic, 2006] estimated the following costs: 

• Installation costs59 
- 2,026$1 kW (£1 ,2881kW) 

• O&M costs80 
- 80$IkW/annum (£51IkW/annum). 

These estimates were employed for the modelling. 

6.3.2.3 Wind 

The wind power employed for this exercise was onshore wind power. 

Three examples of wind costs were considered: 

• The UK Department of Trade and Industry [DTI], which gave a cost of £8191kW (and was very 

close to the estimate of £8441kW in 'Totally Renewable Energy Supply' [Keramane, 2008b] 

installed with £44.4IkW for O&M81 

• The Royal Academy [PB, 2004a] which gave capital costs of £7401kW, and annual operation 

and maintenance costs of £241k~. 

• The update of powering the nation - 'Powering the Future' [PB, 2009] gave capital costs of 

£12001kW, and annual operation and maintenance costs of £37.6kW/annum. 

Of the above options, 'The update of powering the nation - Powering the Future' gave the most recent 

figures and so, the costs for Wind Power at Newhaven and Massawa were modelled as follows. 

• Installation costs - £1 ,2oo1kW 

• O&M costs - £37IkW/annum. 

118 Based on a 40 BeaGen turbine site. 

eo It Is noteworthy that this figure Includes $30 (£19) for Insurance. 

81 This was based on an 80MW Park, and quotes 2008 prices. 

ea These costs were based on a wlndpark of 24MW. 

113 



6.3.2.4 Wave 

The costs associated with the Wave Dragon are not well established as it Is still at the prototype stage, 

but Indicative figures were £4,000IkW (Wilson, 2011] or 4,00O€/kW [Soerenson, 2006] for installation and 

O&M costs of £57IkW/annum, based on offshore wind estimates [PB, 2004b], or £27lkW/annum (Wilson, 

2011]. 

The purposes of this research, the latest estimates were adopted which were: 

• Installation costs - £4,000IkW 

• O&M costs - £27IkW/annum. 

6.3.2.5 Synchronisation systems 

It Is assumed that: 

• All synchronisation activities can be conducted with simple: 

o Rectifiers for AC - DC conversions 

o Inverters for DC - AC conversions. 

• Wind power conversion for use by the RO plant Is conducted using transformers. 

• The power from all combined renewable energy (hybrid) scenarios are converted within the 

synchronisation unit(s) to an acceptable DC form before conversion to AC and application to the 

RO plant pumping system. 

• The costs for synchronisation (power conversion) are Included within the Installation and O&M 

costs for the Individual renewable power source costs. 

6.3.2.6 Captured energy storage and reuse 

6.3.2.6.1 Convel'8/on to hydrogtln 

'The Feasibility, Costs and Markets for Hydrogen Production' [AEA, 2002] quotes costs of £1701kW when 

hydrogen Is generated by electrolysis at MW scales, as would be the case In the RO plant scenarios 

proposed. 

This figure (although not stated) appears to refer to alkaline electrolysers, and Includes the costs 

associated with the power to operate the electrolyser. 

In the case of the scenarios being modelled, the captured power to operate the electrolyser is taken as a 

free resource, as It would have otherwise been wasted. So only the capital cost of the electrolyser, and 

Its O&M costs were modelled. 
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'Hydrogen-based autonomous power systems: techno-economic analysis of the integration of Hydrogen 

in Autonomous Power Systems' [Zoulias, 2008] quotes full PEM electrolyser system costse3 of: 

• 1565 €/kW Ih and 

• 3130 €IkWH2• 

A standing cost of 2% of the electrolyser cost per year is taken to cover all aspects of O&M. 

Hydrogen Conversion Costs 

On the basis of the information above, the costs for electrolysis at Newhaven and Massawa were 

modelled as follows: 

• Installation costs - £1 ,3201kW'4 

• O&M costs - £261kW lannum. 

6.3.2.6.2 Hydrogen 8tomg. 

The costs quoted in 'The Handbook of Hydrogen Storage' [Hirsher, 2010], range from 4O€IkWh for tanks 

capable of storing hydrogen up to 350bar, to 150€1kWh for tanks capable of storing up to 700bar. 

Lower cost tanks were used in the modelling for this research, as the pressure of the gas is not expected 

to exceed 300bar, and a standing cost of 2% of the cost of the tank per year was applied to include all 

aspects of O&M. 

Hydrogen Storage Cost 

The modelling of the hydrogen storage in this research is based on each component in the hydrogen fuel 

system operating at the efficiencies shown In Figure 65 below, which shows how one kWh of power 

captured reduces as it goes through the hydrogen conversion and reuse process. 

13 Taken to Include all required hydrogen compression requirements up to 300bar. 

14 The electrolyser for a given scenario will be sized and coated based on the greatest conversion required during one hour 
to generate hydrogen using captured energy. 
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On the basis of the infum1aIion above, the costs for compressed hydrogen storage at Newhaven and 

Massawa were modelled as follows: 

• InsIaDaIion costs - £3O.151kWh storage capaciIy 

• O&M costs - £2..43IkWh storage capacity/annumti5
• 

This is sIiI relatively ~ when compared to the 'high' case of a 350bar system of $17.1 (£1 O.88)IkWh 

presented in 'TectncaI Assessment of ~ Hydrogen Storage Tank Systems for Automotive 

Applications' [L.asher". 2009] but was adopted as it is assumed that a hydrogen storage faciity of the size 

envisaged would be a bespoke insIaIIa1ion.. 

6.3.2.6.3 Reuse of capfuted energy - Fuel Cells 

is slated in 'Hydrogen and Fuel cells' [Hordeski. 2009] 1haI: 

' ... fuel eels can cost $4OOOIIcWand that the fnvesIment cost today (based on 2008) is approximately 

5,500$lkW. .. . '. 

The maintenance costs for PEM fuel cells have been estimated by [Shipley and Elliot, 2004] as $71lkW. 

On the basis of the information above, the costs for the PEM fuel cell at Newhaven and Massawa were 

modelled as follows: 

• Installation costs· £3,500/kW66 

65 The hydrogen storage required for a given scenario will be sized and costed based on 63.75% of the greatest power 
captured within one hour during the year. This equates to an installation cost of £19.221kWh of captured power and 
O.384/kWh storage capacity/annum. 

66 The PEM fuel cells required for a given scenario will be sized and casted based on the greatest hydrogen to electrical 
power conversion required during 1 hour. 

116 



• O&M costs - £45/kW/annum. 

6.3.2.7 Cost of Reservoirs 

The cost of reservoirs is shown below in Figure 66 and is based on a presentation to the 2008 British 

Columbia Water and Waste Association Conference [Boyle, 2008] . 

Figure 66: Expected cost of reservoirs 

The line of best fit was given by the expression: 

Cost of reservoir (£)= volume of reservoir (m3
) x 213.6 + 253,000 (£) . 

This relationship was used as the basis for the costs associated with reservoirs. The reservoir for each 

scenario was sized based on the maximum water storage requ ired during the year, when the local 

population demands 85% of the maximum output (5950m3/day)67. 

6.3.3 Reverse Osmosis Plant Costs 

Cost estimates were published in the 'Newhaven Desalination Appraisal' [Nardin, 2003a], for a proposed 

seawater reverse osmosis plant at Newhaven, in 2003. The proposal was rejected on the basis that it 

was not the most cost-effective option, as reported in The Times [Brown, 2007]. The costs of the two No 

BSR RO plants of interest to this research, were estimated , with production capacities of 4,000m3/day 

and 8,000m3/day. 

The capital costs of the RO process plants were £2.1 M and £2.8M for the 4,000m3/day and 8,000m3/day 

plants, respectively, and the other auxiliary installations and works brought the total capital costs up to 

£5.94M and £6.78M, respectively. 

These costs are shown in concise format below in Table 35. 

67 85% of the required output represents the lowest acceptable level of consumption which would result in the largest 
reservoir capacity requirement for the RO plant in normal use. 
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Table 35: Edited costs from Newhaven Desalination Appraisal. 
Capital costs 4OOOm"/day (£) aooom"/day (£) 
Reverse Osmosis process plant 2.10x10° 2.80 x1 00 

Seawater intake system including low lift pumps. 400,000 431 ,000 
Effluent outfall system 2.17 x10b 2.17 x10b 

Electricity supplies 140,000 160,000 
High lift pump_s 20,000 40,000 
Re-hardeninQ plant 135,000 135,000 
Civil works 310,000 380,000 
Other miscellaneous equipment, engineering , studies, licences, 664,000 664,000 
etc. 
Total 5.94 x10° 6.78 x10° 

It is noteworthy that the reverse osmosis process plant itself only makes up around 35% - 40% of the 

total costs for the installation, and approximately the same amount is spent on the effluent outfall system. 

The total figures from Table 36 above were then plotted on a graph as shown below in Figure 67. 
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Figure 67: Cost of No BSR RO process plant 

A straight-line graph was applied and the cost associated with a 7,000m3/day plant was interpolated. 

This gave a capital cost for the No BSR plant of £6,570,500. 

6.3.3.1 BSR Plants 

For the purposes of this research , the capital costs associated with the BSR RO plants in comparison to 

the equivalent output No BSR RO plant were ascertained based on discussions with Daniel Shackleton68
, 

of Salt Separation Limited . He explained that the BSR options were not normally significantly more 

expensive than the No BSR RO plants, as the additional cost of the BSR equipment could be offset, to 

some degree, by the reduction in pumping capacity delivered by the increased efficiency of the system. 

The ratios of the costs was taken from the estimate for a 450m3/day plant which would cost 

68 Director of Salt Separation Limited , on 9 November 2009. See website at http://www.saltsep.co .ukl for greater details of 
Salt Separation Limited. [Last viewed on 7 August 2011]. 
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£250,OOO,with an additional £30,000 (12%) and £50,000 (20%) for the Pelton Wheel and Pressure 

Exchanger BSR variants, respectively. 

The estimated costs, if these smaller RO plants were simply scaled-up to produce 7,OOOm3 per day, is 

shown below in Table 37. 

Table 36: Cost of BSR and 0 ' plants N BSR RO I ase on sea e -~ m day b d I d 450 3, plant. 
Revelle oamo ... plant type EatlmalM RO pIIInt co .. (£X1!! 

baed on ecaJed.up 450m' /day 
plant 

No BSR 3.89 
Pelton Wheel 4.36 
Pressure Exchanaer 4.67 

The No BSR costs show a rise of around 36% against the cost of the 8,OOOm3/day plant, which costs 

£2.8 million, as shown at Table 36 above. 

Daniel Shackleton also explained that Pelton Wheels are sometimes used in RO plants deSigned to allow 

the Pelton Wheel system to be bypassed and run as a non BSR plant the event of failure. In this case of 

course, the BSR arrangements will be a full additional cost to the No BSR plant, as no offset due to 

reduced pumping capacity can be attributed. 

The costs for the 7,OOOm3/day reverse osmosis plants with and without BSR based on the Newhaven 

2003 estimate are shown below in Table 37. 

Table 37: Cost of B an 0 , pants ased on 2003 estimate SR d N BSR RO I b s 
Reve .... oamoal.~ caPRaI Coat (£X11T) 
No BSR 6.57 
Pelton Wheel 7.36 
Pressure Exchanger 7.88 

6.3.3.1.1 Pressure Exchanger BSR RO plant cost 

The data for a 50 Million gallons/day (189270m3/day) Pressure Exchanger RO plant was obtained from 

Affordable Desalination - ADC69
, for the following recovery ratios: 

• 35 

• 42.5, and 

• 50. 

The costs associated with these recovery ratios were plotted graphically as shown below in Figure 68. 

69 The data for the Net Present Value costs were taken from hllp:llwww.affordabledesal.com/home/testdata.htmlon 14 
January 2011 for an RO plant using the Filmtec SW30HR·380 membrane. [Last viewed on 7 August 2011] . 
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Figure 68: Cost of Pressure Exchanger BSR RO process plant, at various recovery ratios 

The polynomial of the curve was extrapolated for a recovery ratio of 24% (which was the ratio associated 

with the maximum flowrate of the RO plants being modelled) , and this gave a cost of over £204.5M. 

When this figure was interpolated for a 7,000m3/day plant, it gave a cost of £7.57 million , which was 

relatively close to the 2003 cost for the Pressure Exchanger RO plant (£7.88 million) shown in Table 37 

above. 

6.3.3.2 Scrutiny of RO plant costs 

The costs from Newhaven are estimates from 2003 and the ADC plant is very large and probably 

incorporates economies of scale. Therefore the costs estimated above are probably low. 

A selection of RO plant costs in Florida based on 2006 figures is presented in 'Desalination in Florida', 

'Estimated Costs to Bui ld and Operate RO Desalination Facilities at Port Everglades, Lauderdale, and 

Fort Myers Power Plant Sites' [Division of Water Resource Management, 2010] . The document gives 

details of a Port Everglades Planeo, which when scaled down from the presented scenario of 35million 

gallons/day (132489m3/day), to 7,000 m3/day gave a cost of £9.27M [Division of Water Resource 

Management, 2010]. This equates to an increase of just over 40% in 3 years, on the Newhaven 2003 

estimated cost. This rise in costs is in keeping with the scaled-up RO plant costs at Table 37, and was 

discussed with Will iam J . Conlon7
\ and was considered reasonable to apply for 2010 costs. 

70 The Port Everglade's RD plant appears to be the best equivalent to base costs upon as it has water quality of 33,000mg/l 
of Total Dissolved Solids (TDS) in comparison to the modelled plants which have 27147.44mg/l, and the other plants where 
costs were available (Lauderdale and Fort Myers) have TDS levels of 15,000mg/l). 

71 William J . Conlon , P.E., BCEE, F.ASCE Technical Manager, Principal Professional Associate. Water Technical Excellence 
Center, Parsons Brinkerhoff Americas, Inc. 

120 



For the purposes of this research, the estimated costs shown below in Table 38 were employed, based 

on the expected rise in costs. 

Ran 08 S d N SR R o plants Table 38: Capital cost of 8 

Reverse oanI08Iai:llant tvDe C.DHiI Coat (2x10' 
NoBSA 9.27 

Pelton Wheel 10.38 
Pressure Exchanaer 11,12 

6.3.3.3 Operation and maintenance costs 

The operation and maintenance costs were split into four main items: 

• Membrane replacement 

• Maintenance and Spares 

• Labour, and 

• Chemicals. 

Of the four items above, chemical costs were the most difficult to assess. Table 39 below shows the 

chemicals expected to be employed, with approximate dosage rates and prices. 

Table 3 901 : R I PI ant chem cal costs 
DoRge CoIIII 

II/1II") , .... , (1/1) (I/tDIIIII) 

CIIInIIaIIa RIMOn'or ... 
SulphuriC acid 

oH adlustment 
20 0.2 156 

980/. 
14% Sodium Dlslnlection 01 1.6 5.5 700 
hVDOchlorite drlnklna waler 

Used as flocculent 
to remove 25 68.5 
suspended 

Ferric chlorida materials 
Added to the 
Incomtng 
leedwater to 5 5 2270 

(Accepta 2651) Inhibit lcallng on 
Antl-Icatant membranal 

Accepta20% Ueed .. 10 0.75 750 
Sodium Metl- membrane 
btautphlte cleantna laent 

Sodium 
oH adlustment 

20 197 
hvdroxlda 

pH Idlultment 
Klllen -5.5% Ind Icld 8 
do .. nautrall.IUon 

To Increase 
hardness 01 130 102.3 

Carbon Dioxide cermeate 

Calcium For Calcium 185 70 
chloride, 35% h~~ldness In water 
solution adustment 
SodIum 
hydrogon Pre-treatment. 40 

~::~eate\ ~~I:t:~~ 
199 

The data in bold was obtained from Philip Boswell of Accepta73
, and all other data was taken from the 

Newhaven Desalination Appraisal [Nardin, 2003bj. 

72 Kalic liquid lime Is a calcium hydroxide suspension. 

73 E-mail from Philip Bosw,ell (International Technical Consultant) Accepta. See website at http://www .accepta.com/for 
details of Accepta. [Last Viewed on 7 August 2011]. 
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The quantity and type of chemicals that need to be used will vary due to a variety of factors, Including: 

• Volume of feedwater due to varying recovery ratio 

• Scaling on membranes 

• pH of permeate 

As such It Is particularly difficult to attribute an accurate cost to a particular scenario. 

This being the case, the RO plant chemical usage was approximated based on an average recovery ratio 

of 20%, giving 5 times the permeate volume as feedwater and 4 times the permeate volume as 

wastewater. 

This gave an overall annual cost to produce 2,555,000m3 over the course of one year (7,000m3/day) as 

£306,240. 
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6.3.3.3.1 Onsite spares 

The annual costs associated with onsite spares was taken as 10% of capital costs, based on discussions 

with Daniel Shackleton, who estimated that 5 - 10% should be allocated. 

6.3.3.3.2 Brine stream removal 

The costs associated with brine stream removal was taken as included within the capital cost of the No 

BSR and Pressure Exchanger BSR variants, but as an additional 10% of capital cost for the Pelton 

Wheel BSR RO plant. 

6.3.3.3.3 Annual operating costs of the BSR and No BSR RO plants 

The Annual operating costs for the BSR and no BSR RO plants are shown below in Table 40. 

Table 40: Annual operating costs for the B S Ran d No B SR 0 R plants 

Annual operating C08ta No ISR(£) Pelton W .... BSR P .... ure Exchang., 
(£) ISR(£) 

Membrane replacement" 34.200 34.200 34.200 

Chemicals 306.240 306.240 306.240 

Labour" 182,500 182.500 182.500 

Maintenance and spares· 131 410 147180 157692 

On site spares 927.066 1.038.314 1112,479 

Brine stream removal 0 1.038314 0 

Total (£x10·) 1.581 2.747 1.793 
Operating cost (£1m·) 0.62 1.08 0.70 

0 , 
• The estimated costs for maintenance and spares was taken as 2 Yo of capital cost per year based on The 
feasibility analysis of RO systems' [Atikol, 2005]. 

6.3.3.4 Life time costs of RO plants 

Based on the assumption that the RO plants will have a 25-year life, the RO plant costs shown in Table 

41 were employed for the modelling exercise. 

Table 41: Life time costs or e an 0 plants f th BSR d N BSR RO I 
No ISR(£) Pelton W .... BSR Preuure 

(£) Exoh-::~ ISR 

48,806.060 79,051.840 55,952,572 

7"The membranes employed for this exercise were Filmtec SW30HR-320 membranes, but these are no longer available so 
the costs for the RO plants are based on the Filmtec SW30HR-380. The Filmtec SW30HR-380 varies from the Filmtec ' 
SW30HR-320 in that the product water flowrate for the HR-380 is 9501/hr and for the HR-320 is 7901/h. This is based on 
Table 1 of 'Mature and novel desalination experiences with the FILMTEC SW30HR-380 and SW30HR-320 elements 
Technical-economical review' by J.A. Re~ondo and A. Casana~. which was published in Desalination 125 (1999), Article 1 of 
8, available at http;f/www.desllne.com/artlcoIV3738.pdf. [Last viewed on 7 August 2011]. The cost of the SW30HR-380 is 
quot~d as £600 each by Nicola Ramsden of Desai Supplies Ltd. The modelled facility has 284 membranes (142 pairs) so, on 
a roiling 5-year replacement cycle. 1/5th of the membranes (57 membranes) would be changed each year. which would cost 
£34.200Iyear. 

75 For the purposes of this model. it is assumed that all the plant types (BSR and No BSR options) would require full -time 
support. if short-notice switching was required due to frequent stopping and starting of the plant due to the variable power 
inputs from the renewable energy sources. This is estimated at a flat rate of £5001 day (for two trained technicians to provide 
24-hour cover) for all plant types. 
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6.3.4 Scaling-up scenarios to make them competent 

There was limited success In Identifying technically-competent scenarios that were able to meet the 

water demands of the local population due to the impact of Intermittency, but It was clear that If the 

scenarios were scaled-up (extrapolated), competent scenarios could be Identified where the full demand 

of the local water users could be met. 

Note: It Is assumed that the reservoir starts empty at the start of the modelled year, and the 

conventionally-powered RO plant Is capable of meeting the user demand if the model Is started at 

midnight. 

6.3.4.1 Extrapolations considered 

Three extrapolations of the modelling were considered to identify competent scenarios: 

1. Increasing the size of the RO plant, and therefore output of the RO plant, to enable the excess 

power (normally wasted when the RO plant is of normal size) to be used. 

2. IncreaSing the size of power Installation to allow the RO plant to run continuously. 

3. Increasing the RO plant and Power plant by the ratio of water shortfall, i.e. if a given RO plant 

and Power plant scenario makes 50% of required water, both RO plant and Installed power are 

doubled In size. 

6.3.4.2 Extrapolation employed 

The method adopted was to increase the size of both the RO and installed power plant, in equal 

proportion. 

Individual plant scaling (of RO plant and Power plant) methodologies were considered but were not 

pursued, due to time constraints. It Is considered that there is merit In refining the scale-up methodology 

as a part of any further work. 

6.3.4.2.1 Simple scale-up methodology 

This scale-up methodology (although the most simple to employ) does not take account of the constant 

water abstraction rate of the local users. As such, the scale-up: 

• May produce 100% of the water demanded over the course of the year, but 

• May not produce It at the times during the year when the local population are demanding It. 

Also, the scale-up Includes the scale-up of the reservoir by the same ratio. As can be seen in Figure 69 

below, which shows how the reservoir size Increases In relation to water production. The scenarios that 

did not produce significant amounts of water had very small reservoirs, and once scaled-up stili had 
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relatively small reservoirs, i.e. scaling up a scenario that originally produced 50% of the water by two 

times, would not give the correct size of reservoir for the scenario that now produces 100% of the water 

required. 

Reservoir 
VoIlD11e 

(mi 

0% 
No water 
produced 

Maximum Reservoir volume 
15% of annual water production (383.250m~ 

Water Produced (m1 

Figure 69: Illustration of reservoir size to water production: Not to Scale. 

To manage this discrepancy, each scaled-up scenario had the reservoir priced as holding 15% of the 

annual production of a plant that produces 100% of the annual water required (2,555,000m3
) . 15% is 

taken as 383,250m3 at the end of the year. This equates to a reservoir costing £82,115,200. 

6.3.5 Conventional power costs 

To obtain an absolute measure of the financial viability of renewable power, a cost comparison must be 

made against the most reasonable alternative that it will displace. Therefore, the section below presents 

the estimated costs of the most probable conventional power sources at Newhaven and Massawa that 

the renewable power scenarios must be competitive with, to be considered financially viable. 

6.3.5.1 Newhaven 

Following the UK Budget of 22 April 2009, the UK Government announced the following measures to 

encourage Carbon Capture and Storage (CCS) development within the UK: 

"No new coal-fired plant without CCS demonstration from day one .• 

"Full scale retrofit of CCS within five years of the technology being independently judged as technically and 

commercially proven . • 

Therefore it was considered probable that CCS would be employed in the UK, and that coal would be a 

major source of energy (within the grid mix of energy sources) to power the proposed RO plant. 
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For the purpose of this research, it was assumed that the power to operate the RO plant at Newhaven 

would be provided by a large coal-fired plant, and that costs for CCS would be based on the portion of 

the plant's output consumed to operate the RO plant (i.e. that the RO plant would not have a dedicated 

coal fired CCS power station). 

CASES [Blesi, 2008] makes estimates of three variants of energy generation with coal incorporating 

CCS: 

• Coal Integrated Gasification Combined Cycle (IGCC) 

• Lignite IGCC, and 

• Combined Cycle Gas Turbine 

Of these options, CoallGCC76 with CCS was considered the most likely option, as the UK has potential 

hard coal reserves of 187,000Mt [Cramer and Andruleit, 2009] (but only limited reserves of lignite and 

gas). So, coal was adopted as the conventional power source at Newhaven for the renewable models to 

be compared with. 

6.3.5.1.1 Estimated costs of CCS. 

There are a variety of reports that give estimated costs for CCS and these provide a significant range of 

results. The lowest estimated costs [Bauer, 2008] are given in Table 42 below. 

Table 42: Lowest estimated costs associated with CCS 

The 'Power Engineering Magazine' article 'IGCC cost wrap' [Power Engineering. 2010] 77. quotes: 

' IGCC power plant project costs top $5,5001kW', 

and another planned IGeC plant, with CCS, in North America costing around $5,800/kW (around 

£3,700/kW). 

6.3.5.1.2 CCS cost estimate used. 

For the purposes of this research, a coal-fired power station with CCS was modelled with costs as shown 

in Table 43 below. 

78 The Integrated gasification combined cycle (IGCC) Is a technology that turns coal Into synthesis gas (syngas). It then 
removes Impurities from the gas before it Is com busted and attempts to tum any pollutants Into re-usable by products. This 
results In lower emissions of sulphur dioxide, particulates and mercury. Excess heat from the primary combustion and 
generation Is then passed to a steam cycle, where a second stage of generation occurs which Improves efficiency, compared 
to conventional pulverized coal. Further details of the cycle are available at the IGCC International Energy Association (lEA) 
web page at http:Jtwww.lea-coal .ora.uklsltelieacoal old/clean-CQal-technologies-pageslclean-coal-technologies-integrated
gaslfication-comblned-cycle-igcc? [Last viewed on 7 August 2011]. 

n It is noteworthy that the plants discussed are very large (582MW and 602MW) and are designed to bum lignite. 
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Table 43: CCS cost estimates emploYI n t ad I hi s research. 

Investment Investment FlxedO&U Variable Ol .. 
cost ($fkW) cost (£/kW) eoata71 Coata71 

£/kW/A (£lMWh) 

3384 2152 41.42 83.95 

These values were based on 'The Strategic AnalYSIS of the Global Status of Carbon Capture and Storage 

Report 2' [Worley Parsons, 2009], which provided a very comprehensive overview of the costs 

associated with CCS. The values lie in between the two extremes presented earlier. 

6.3.5.2 Massawa 

Eritreans are reported to have one of the world's lowest energy consumption rates in the world with its 

electricity consumption ranked 179 out of 215 globally [CIA, 2012]. 

Eritrea itself has approximately 60 MW of diesel-fired generating capacity, but due to economic 

reasons80 , does not have any of its own fossil fuel resources, making it totally dependant on imports of 

fossil fuels. There is a history of hydrocarbon exploration in the area, but it has not been particularly 

successful81
. 

It was intended that additional electrical generating capacity be Installed near Massawa, but work is still 

ongoing to fully integrate the facility with the rest of Eritrea. 

There is power available at Massawa from the existing power supplies at Hirgig082
, but for the purposes 

of this research it was assumed that dedicated diesel generators were employed to provide the power to 

operate the RD plants. 

78 Derived from cost of $45,203 per annum for an IGCC plant with CCS with 694MW generating capacity, giving a specific 
value of $65.134/MW. 

79 This total is made up of: 
Generation and Capture of C02 - $121/MWh 

• Transportation of C02' $4/MWh 
Storage of C02 - $61MWh 

• 
80 Until it closed in August 1997, the Assab refinery supplied refined product for consumption In Eritrea and neighbouring 
Ethiopia (which part-owned the refinery, via the Ethiopian Petroleum Corporation). Due to high operating costs, the refinery 
was closed in 1997, with both countries agreeing to import petroleum products for at least 10 years. 

81 Hydrocarbon exploration. primarily offshore in the Red Sea. began in the 1960s when Eritrea was stili federated with 
Ethiopia. In 1995. Eritrea signed a production sharing contract (PSC) with U.S.-based Anadarko Petroleum for the offshore 
Zula Block. Anadarko signed a second PSC for the offshore Edd Block, located south of the Zula Block, In September 1997. 
Anadarko announced. in December 1997, that it had reached an agreement with ENI/Agip to swap interests in exploration 
acreage. Anadarko received a 25% Interest In a Tunisian block operated by Agip, and Agip received a 30% share in the 6.7-
million acre Zula Block and 30% interest in the Edd Block. Burlington Resources, a U.S.-based independent, later joined the 
consortium by acquiring a 20% interest in both acreages. Anadarko's first two exploration wells. both drilled on the Zula 
Block, were unsuccessful. In January 1999, a third dry well, Edd-1 on the Edd Block, was drilled. Citing the disappointing 
exploration results, Anadarko and Its partners ceased exploration activities and relinquished their rights to the offshore 
blocks. 

82 In 1997, South Korean firms Daewoo and Hanjung signed an agreement to build a heavy oil-fired plant in at Hlrgigo, 
(around 9 km from Massawa) but this work has not been completed. The plant, when nearly completed, was damaged in a 
bombing raid by Ethiopia in 2000. In 2001, Eritrea signed loan agreements with the United Arab Emirates and Saudi Arabia 
for the facility's repair. 
The 88 MW facility (more than twice the existing capacity In Eritrea) came online in March 2003. but many industry experts 
fear that the new capacity could overload Eritrea's dated grid system. Both the European Development Fund and the World 
Bank have considered projects to update the transmission lines. but firm contracts have not been negotiated. 
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6.3.5.2.1 Costs associated with diesel power generation 

Cost details to be employed at Massawa were kindly provided by Mike Gabriel of Power Electrics 

(Bristol}83 and are shown below in Table 44. 

Table 44: c osts associated w th power generation by diesel generator 
ROPlent POWr(k~UIF*l DIeNI genemor rw-r eo.t ford ..... ~ Ind ... Imennee 

rItIna (kVA)· IUlIDllrIII ·tEx1 
NoBSR 2400 3000 3.80 1,SOO.00 

Pelton Wheel BSR 
1000 1250 1.S0 1,100.00 

Pressure Exchanger 
800 1000 1.25 BSR 900.00 

6.3.5.3 Cost of running RO plants at Massawa and Newhaven. 

6.3.5.3.1 Massawa 

(£) 

The diesel generator fuel consumption was derived based on the fuel required to maintain the average 

power use over the course of the year for the RO Plant scenarios. 

The following are details for each scenario, with the data shown below In Table 45: 

• The greatest power demanded during the year 

• The power installed (it is assumed that only 80% of the power generated is usable due to the 

power factor of 0.8) 

• The average power consumption by the RO plant to ensure the correct volume of water is 

produced over the course of one year 

• The average power generation required (taking the 0.8 power factor into account). 

able 45: Average power generation r8(lulred at Massawa for each RO plant modell T ed. 
~ofRO GrIIIMt D ..... Ayerage level Aynge 11".1 
pllnt powlr genel'ltOr ofpowlr of power 

demlndby power coMumed by geMf'lted by 
ROp"nt In .... 1ed ROpllnt d ..... 

du~:,rr (MW) during v-er glnll'ltOr 
(MWl (IIW) 

No BSR 2.33 3.00 2008 2.51 
Pelton Wheel 0.99 1.25 869 1.09 
Pressure 0.77 1.00 657 0.82 
Exchanger 

83 See htto:/lwww.power-eleclrlcs.co.ukl [Last viewed on 7 August 2011) for greater detail of power electrics organisation. 

801 Diesel generators modelled have a power factor of O.B lagging which Is the standard power factor. The power factor is the 
ratio of watts (true power) to VA (volt-amperes, also called apparent power) generated. Where the load is reactive (capacitive 
or Inductive), It stores energy, releasing it during a different part of the cycle, which moves the current cycle waveform so that 
It Is offset, or out of phase with the voltage cycle waveform. In practical terms, a power factor of 0.8 lagging means that only 
80% of the power produced by the diesel generator is available for the RO plant to use, so the installed power and power 
produced by the diesel generator must be 25% greater to compensate for this. 

86 Prices Include a container to limit external noise to BOdBa at 1 metre, and a 72-hour capacity bulk fuel tank. 

88 Maintenance costs were taken to Involve 2 visits per year for an A and a B service. It was taken that the service provider 
would be located locally and thus travelling expenses not incurred. 
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The volume of diesel fuel required to maintain this level of power over the course of one year was 

derived using an 'Approximate Diesel Fuel Consumption Chart' [Diesel Service and Supply, 2011] . The 

data on this chart gave full load consumption for generators of various sizes, based on kWel output. The 

fuel consumption for each generator size was quoted in US gallons/ hour, which was then converted to 

litres/ year by multiplying by 3320087
• 

When the cost of the diesel fuel in Eritrea from GIZ in 2011 [Wagner, 2011] ($1 .07/ £0.68 per litre) and 

was incorporated, it gave the relationship shown below in Figure 70 between fuel cost and generator 

size. It is also noteworthy that at the time of drafting Eritrea had the most expensive petrol in the world at 

£1.615 per litre. 

1 00.00 ,-,~--,--.--~~~~--r-

90.D0 H--l-+-+--I4-l---I-t-+--4l=:q=-hr--i--t---I-H-++-_ H--I 

70.00 +--1r--+-+-+--f-4-+-+-.J--1--+--+-+-- --l---+--4 4 -+_+-== =1 Diesel fuel cost to 
achieve rated 

60 .00 output over 25 
g years(£) 
t: 50.00 t-f--'---___.j--'--"-..-+--+-__ 
o 

U 

--'---'--l-.-+~===1 Linear (Diesel fuel 
cost to achieve 

-+--~---1 rated output over 
25 years (£)) 

0.00 W"'=-----~---;-------+---_+---___.j 
o 0.5 1.5 

Gener~tor size (MW) 

2 2.5 

Figure 70: Fuel cost at Massawa during one year for varying generator sizes. 

The fuel costs to maintain the average power generated for each RO plant scenario (shown above in 

Table 46) was derived using this relationship. 

This resulted in the diesel generator costs shown below in Table 46 for the 25-year life of the installation. 

Table 4 6: Average power Qeneration reauired at Massawa for each RO plant mo deUed. 
Type of RO plant Installed Fixed Fuel cost for 25 

power costs O&M years of water 
(£) costs (£) produ~~on 

(£X10 
No BSR 380000 40000 100.2 
Pelton Wheel BSR 160000 27500 43.4 
Pressure 125000 22500 32.8 Exchanger BSR 

The estimated costs associated with water production at Massawa using diesel generators is shown 

below in Table 47. 

87 1 us gallon = 3.79 lit res , so 3.79 x 8760 (the number of hours in one year) = 33200 converts US gallons/ hour to litres/ 
year. 
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Table 47: Full scenario costs for water production using diesel enerators at Mas s.wa 
RO PI.nt Total costa Total cost of Co.t of Total cost of 

for In.talled RO pl.nt over ruervolr Scen.rlo over 
power over 25 yea ... 

(£xl0') 
(£Xl 0') 25 ye .... (£Xl0,) 

25 yea ... 
(£xl0,) 

No BSR 100.6 48.81 82.2 232 
Pelton Wheel 43.6 79.05 82.2 205 BSR 
Pressure 33.0 55.95 82.2 171 Exchanger BSR 

It is noteworthy that the No BSR scenario is around 1.1 and 1.4 times as expensive as the Pelton Wheel 

and Pressure Exchanger scenarios, respectively. This is mainly due to the cost of the diesel fuel , which 

makes up just over 43% of the total lifetime costs for the No BSR scenario, in comparison to around 20% 

for the BSR scenarios. 

6.3.5.3.2 Newhaven 

The cost of the coal-fired plant with CCS, were derived based on the power used over the course of the 

year, for the RO Plant scenarios. 

The following details for each scenario are shown below in Table 48: 

• The greatest power demanded during the year 

• The power installed (taking into account the additional 30% power required for on site capture 

and compression of CO2) 

• The power consumption by the RO plant to ensure the correct volume of water is produced over 

the course of one year 

• The average power generation required (taking into account the additional 30% power required 

for on si te capture and compression of CO2) . 

A Report on 'The energy penalty of post-combustion CO2 capture & storage and its implications for 

retrofitting the U.S. Installed base' [House et ai , 2009] states that there is an absolute lower bound for the 

energy penalty [additional energy required for on-site CO2 capture and storage] of 11 % of the power 

produced, and that an energy penalty of 40% can easily be reached. An energy penalty of 29% 

represents a decent target value. Based on these findings , an energy penalty of 30% was adopted for 

this research, although It is noteworthy that this energy penalty is expected to reduce to below 10% for 

plants commissioned after 2020 [Florin and Fennel, 2010]. 

T.ble 48: Power gener.tlon required .t Newheven for e.ch RO plant modelled. 
Type of RO pI.nt Oreat.st Power Power Power 

power Installed con.umed generated by 
demand by with Coal· by RO plant Coal·tlred 
ROplant fired plant during plant with 

during year with CCS yHrio') CCS 
(MW) (MW) (MWhxl ~MWhx~ 

NoBSR 3.33 4.4 31 .7 41 .3 
Pelton Wheel BSR 1.31 1.8 12.9 16.8 
Pressure Exchanger BSR 1.06 1.4 10.2 13.3 
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This resulted in the operating costs of the coal-fired plant with CCS shown below in Table 49. 

TIIIIIIe 41: Paller -. costs. He ....... for-.:ll RO ...... 1IIa II • II 
TJpe 01 RO pIIIII II I 7 II RladOlll v ........ 0lIl ... ..... ..... "'25,... ... 

;:::, (biG') 
~~ 

NoBSR 9.5 4.6 66.7 
Pelon Wheel 3.9 1.9 27.0 
Pmssmt 3..1 1.5 21.4 

The estimated costs associated with power proWction at Newhaven using coaI-fired plant with CCS are 

shown below in Table 50 for the 25-year life of the instaIaIion. 

TIllllleSD: A.-_.tIt cast ... .... 
T ......... ... 
II .... 11 

NoBSR 80.7 48..81 82..21 211 .7 

Pelon Wheel BSR 79.05 82..21 194.08 

26..0 55.95 8221 164.15 

63 5 33 TIle teIIJIifIe costs 

As can be seen from Table 47 and Table 50 ~, the initial installation costs of the Newhaven coal

fired plant willi CCS, were reIaJivoeIy expensive, at around 24 times that of the diesel gel aeralOi sys1em at 

~ Then, Ihroughout the life of the plant. the variable costs associated with the opemtion of the 

Newhaven CCS plant come to less than 40% of 1he diesel fuel costs at Massawa for al1he RO plant 

scenarios. As a result, with aI other costs being unchanged (reservoir, RO plant, etc), 1he cieseI 

generalor scaaio at Massawa finishes around 8.5% and around 5% more expensive than the 

Newhaven coaI-fired plant. for the No BSR and BSR RO plant scenarios, respectively at the end of the 

25-year life of 1he insIaIation. 

6.4 Comparison of technlcally-competent renewable energy-powered scenarios with 

The foIowing sedion presenIs the costs of the ~ (technicaIy-<:OqJetent) retl9W3ble enetgy 

scenarios in ~ 10 cost of conventionaIy-powered scenarios, at each sile, for each of 1he RO 

plant types modeIod. 

In the foIowing Figlns. the cost ~ with the conventionaIy-powemd scenario is the y-axis. and 

'1' on the y-axis is the estimated cost for the conventionaIIy-ed scenario. Tho estimated cost althe 

renewable enetgy powered scenario naJSt be squalID, or less than 1, to be financialy viable. 
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The most financially-attractive scenarios for each stage and/ or RO plant type, are identified by data tabs 

as appropriate. These data tabs are read as follows: 

X: indicates the primary power installed for the scenario 

Y: indicates the ratio against the conventionally powered scenario 

Z: indicates the secondary power installed for the scenario, as appropriate. 

6.4.1 Stage 1 - RO plant with No Brine Stream Recovery. 

6.4.1.1 Massawa 

As can be seen from Figure 71 below, the cheapest option when using only solar power to operate the 

No BSR RO plant at Massawa is just under 1.5x the estimated cost associated with using a diesel. The 

solar-based system is estimated to require 3721 OkW of solar power for an RO plant with 18619m3/day 

capacity. 

------ -.... [- NOBSR[ 

-----------------------------------------------
Diesel generator scenario 
cost 
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Solar power installed (kW) 

Figwe 71: Cost ratio or ___ ~ against diesel geld .... pc.elect sysItent. for var1fiing solar pcMN!f" "lStalled,. lor 
No BSR plant at Massawa. 

The most financially-attractive scenario for Massawa is not intuitive, in that it does not use the smallest 

amount of installed power. This is due to the scale-up methodology employed (as explained at section 

6.3.4), which uses a scale-up factor, which varies according to the amount of water produced from the 

original modelled scenario. 

As can be seen in Figure 72 below, the originally modelled scenario water production increased most 

rapidly between 1 x and 2x installed power, which increased the water produced by over 11 % . 

The next 3 increases in installed power only increased the water produced by a further 7.5%. 
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This reduced effectiveness of installed power to make water is due to the fact that most of the additional 

power provided is beyond the maximum that the RO plant can utilise as explained at section 5.1.1. The 

limited increase in water production at higher installed power is achieved mainly by extending the 

duration of production, at the cost of increasing the proportion of power wasted . 

When a scenario is scaled up, there is a cost impact due to the increase in installed power and RO plant 

size, as the Reservoir costs remain constant. The components (installed power, RO plant and reservoir) 

that make up Figure 71 are shown below in Figure 73. 
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Figure 73: Solar scenario cost components 

As can be seen in Figure 74 below, the cheapest option when using tidal current power to operate the No 

BSR RO plant at Newhaven, is just under 3x the estimated cost associated with using a coal-fired plant 
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with CCS to provide the power. The tidal current-based system is estimated to require 135300kW of tidal 

current power to be installed for an RO plant with 28367m3/day capacity. 
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Figure 74: Cost ratio of tidal current power against coal-fired plant with CCS, for No BSR Plant at Newhaven. 

As with Massawa, the most financially attractive scenario for Newhaven is not intuitive, in that it does not 

use the lowest amount of installed power. This is due to the scale-up methodology employed (as 

explained at section 6.3.4), which uses a scale-up factor, which varies according to the amount of water 

produced from the original modelled scenario. 

As can be seen in Figure 75 below, the scale-up factors (shown in red) vary considerably as the 

scenarios produced increasing amounts of water . 
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Figure 75: Water produced and associated scale-up factor, using tidal current power only 

The application of these scale-up factors resu lted in increases of installed power as shown in Figure 76 

below. 
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When each scenario is scaled up, there is a cost impact due to the increase in installed power capacity 

and RO plant size (as the Reservoir costs remain constant- see section 5.1.1 for explanation). The 

components (installed power, RO plant and reservoir) that make up Figure 74 are shown below in Figure 

77. 
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None of the scenarios modelled that employed only solar power at Massawa or tidal current power at 

Newhaven, were financially viable on a cost basis with conventionally-powered scenarios. 
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6.4.2 Stage 2 - RO plants with Brine Stream Recovery. 

6.4.2.1 Massawa 

As can be seen in Figure 78 below, the cheapest BSR option when using solar power at Massawa, is just 

under 1.65x the estimated cost associated with using a diesel generator to provide the power. The solar-

based system is estimated to requ ire 17440kW of solar power, for a Pressure Exchanger BSR RO plant 

with 17451 m3/day capacity. 

None of the BSR RO plants modelled were financially viable when operated with only solar power. 
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Figure 78: Cost ratio of solar powered system against diesel generator powered system, for BSR and No BSR RO 
Plants at Massawa. 

6.4.2.2 Newhaven 

As can be seen from Figure 79 below, the cheapest option when using tidal current power to operate RO 

plants at Newhaven, is just under 2.47x the estimated cost associated with using a coal-fired plant with 

CCS. The tidal power-based system is estimated to require 54380kW of tidal current power for a 

Pressure Exchanger BSR RO plant with 22801 m3/day capacity. 
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Figure 79: Cost ratio of tidal current power against coal-fired plant with CCS, for BSR and No BSR RO Plants 

6.4.2.3 Comparison of the two sites 

Presented in Figure 80 below are Figure 78 and Figure 79 on the same axis for direct comparison. 

As can be seen in Figure 80 below, the Massawa scenarios are significantly more financially attractive 

than any of those at Newhaven, with all plant types being cheaper at Massawa than the cheapest at 

Newhaven. 
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Figure 80: Cost ratio of Renewable Energy-powered systems against conventional, for BSR and No BSR RO Plants 
at Massawa and Newhaven 

6.4.2.4 Conclusion 

None of the BSR scenarios were financially viable on a cost basis with conventional powered scenarios. 

6.4.3 Stage 3 - The addition of wind or wave power. 

The comparisons for stage 3 are presented in terms of the addition of wind or wave at each site. 
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The example of solar and wind powered scenarios at Massawa using the full set of cost comparison 

results is shown below in Figure 81 . This provides an indication of the expected spread of scenario costs 

in comparison to the diesel scenario between the most and least expensive scenarios. 
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Figure 81: Cost ratio of scenarios using solar power supplemented with wind power, against diesel powered 
system, for BSR and No BSR RO Plants at Massawa 

Although it can be seen that there is an appreciable spread of costs for the different scenarios using a 

combination of solar and wind power, the objective of the presentation of these results is to identify the 

most financially-attractive scenarios. So for clarity, only the most financially-attractive sets of scenarios 

are shown in the diagrams in the following section. In Figure 81 above, the most financially-attractive 

options are shown by the black arrows. 

6.4.3.1.1 Massawa 

The most financially-attractive cost comparisons for the addition of wind/ wave power are presented 

below for Massawa, in Figure 82 and Figure 83 for the addition of wind and wave power, respectively. 
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Figure 82: Cost ratio of most financially attractive of scenarios using solar power supplemented with wind power, 
against diesel powered system, for BSR and No BSR RO Plants at Massawa 
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Figure 83: Cost ratio of most financially attractive scenarios using solar power supplemented with wave power, 
against diesel powered system, for BSR and No BSR RO Plants at Massawa. 

As can be seen from Figure 82 and Figure 83 above, none of the options modelled were found to be 

financially viable. The addition of wind power to the No BSR scenarios was slightly more effective on a 

cost basis, than the addition of wave power, but the addition of wave power resulted in the most 

favourable scenarios for the BSR RO plants. The most financially-attractive scenario for the addition of 

wind/ wave was the No BSR RO plant powered by solar and wind energy, with a ratio of just under 1.3x 

the estimated cost associated with using a diesel generator to provide the power. 

This system was estimated to require 17380kW of solar power and 9931 kW of wind power (27311 kW in 

total) for a No BSR RO plant with 17380m3/day capacity. 
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6.4.3.1.2 Newhaven 

The most financially-attractive cost comparisons for the addition of wind/ wave power is presented for 

Newhaven below in Figure 84 and Figure 85, for the addition of wind and wave power, respectively. 
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Figure 84: Cost ratio of most financially attractive scenarios using tidal current power supplemented with wind 
power, against a coal-fired plant with CCS, for BSR and No BSR RO Plants at Newhaven. 

As can be seen from Figure 84 above, the most favourable option when using tidal current power 

supplemented by wind power at Newhaven, is just over 1.35x the estimated cost associated with using a 

coal-fired plant with CCS. The tidal currenV wind power based system is estimated to require 4276kW of 

tidal current power and 13720kW of wind power (1 7996kW in total) for a Pressure Exchanger BSR RO 

plant with just over 12000m3/day capacity. 
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Figure 85: Cost ratio of most financially attractive scenarios using tidal current power supplemented with wave 
power, against coal-fired plant with CCS, for BSR and No BSR RO Plants at Newhaven. 

As can be seen from Figure 85 above, the most favourable option when using tidal current power 

supplemented by wave power at Newhaven is just under 1.19x the estimated cost associated with using 

a coal-fired plant with CCS. The tidal current! wave power based system is estimated to require 4276kW 

of tidal current power and 6237kW of wave power (1 0513kW in total) to be installed with a Pressure 

Exchanger BSR RO plant, with just under 9000m3/day capacity. 

6.4.4 Stage 4 - Addition of Hydrogen Fuel 

6.4.4.1 Stage 1 and 2 scenarios with Hydrogen fuel at Massawa 

As can be seen from Figure 86 below, the most favourable option when using solar power with hydrogen 

fuel at Massawa, is just over 1.4x the estimated cost associated with using a diesel generator. The 

Pressure Exchanger BSR RO plant solar-based system is estimated to require 17390kW of solar power 

to be installed for an RO plant with 1 0442m3/day capacity. 
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Figure 86: Cost ratio of scenarios using solar power supplemented with hydrogen storage use, against diesel 
generator powered system, for BSR and No BSR RO Plants 

As can be seen from the red and green arrows in Figure 86 above, the addition of hydrogen storage 

improved the financial attractiveness of the BSR RO plant scenarios, reducing the ratio of financial 

viability from over 60% from financial viabili ty to within 45%. The financial viability of the No BSR 

scenarios was generally improved except for the most financially attractive scenario (as shown by the 

blue arrow). which became less financially viable in comparison to the equivalent scenario without 

hydrogen fuel. 

The reason for this is explained by a ratio termed the Coefficient of Financial Performance (CoFP). 

The CoFP is derived as follows: 

CoFP = CostsavlCosthf 

where: 

Costsav = The reduction in cost of scaled-up RO plant and power installed due to use of hydrogen fuel. (£) 

Costhf = The cost of hydrogen conversion and storage equipment. and fuel cells. (£) 

This produced a unit that provides an indication of the cost effectiveness of using hydrogen fuel. 

A CoFP greater than 1 indicates that it is not cost effective to employ hydrogen fuel for a scenario . The 

CoFPs for the No BSR scenarios shown in Figure 86 above are illustrated in Figure 87 below. 
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Figure 87: CoFPs of scenarios using solar power for the No BSR RO Plant at Massawa 

As can be seen from Figure 87 above, the second scenario, (which is shown in Figure 86, by the blue 

arrow, to be less financially attractive when hydrogen fuel is used) , had a CoFP of more than one. This 

means that the cost reduction, due to a smaller RO plant and less solar power being installed, is 

outweighed by the cost of the hydrogen fuel infrastructure required to achieve that cost reduction . 

6.4.4.2 Stage 1 and 2 scenarios with Hydrogen fuel at Newhaven 

Figure 88 below presents the comparison of estimated costs for tidal current with hydrogen fuel, for BSR 

and No BSR RO plants at Newhaven, against a coal-fired plant with CCS. The tidal current scenarios 

without hydrogen fuel use are also included for comparison. 
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Figure 88: Cost ratio of scenarios using tidal current power with hydrogen storage use, against a coal·fired plant 
with CCS, for BSR and No BSR RO Plants, at Newhaven. 
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As can be seen from Figure 88 above, the cheapest option when using tidal current power with hydrogen 

at Newhaven, is just under 2.37x the estimated cost associated with using a coal-fired plant with CCS. 

The tidal current based system is estimated to requ ire 45370kW of tidal current power, for a Pressure 

Exchanger BSR RO plant with 19025m3/day capacity. 

6.4.4.3 Massawa - solar plus wave power with Hydrogen fuel. 

As with Stage 3, for the purpose of clarity only the most financially-attractive scenarios are shown for 

Stage 4 resu lts using wind and wave power. 

It can be seen from Figure 89 below, that the most favourable option when using solar power 

supplemented by wave power and hydrogen at Massawa is just over 1.21 x the estimated cost associated 

with using a diesel generator. The solari wave-based system is estimated to requ ire 2665kW of solar 

power and 8144kW of wave power (10809kW in total) for a Pressure Exchanger BSR RO plant with 

8000m3/day capacity. 
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Figure 89: Cost ratio of most financially attractive scenarios using solar powered system against diesel powered 
system for BSR and No BSR RO Plants, using varying amounts of solar power supplemented by wave power plus 

hydrogen fuel , at Massawa. 

6.4.4.4 Massawa - solar plus wind power with Hydrogen fuel. 

As can be seen from Figure 90 below, the most financially-attractive option when using solar power 

supplemented by wave power with hydrogen fuel at Massawa is just under 1 .19x the estimated cost 

associated with using diesel. The solari wave-based system is estimated to require 3560kW of solar 

power and 9775kW of wind power (13335kW in total) for a Pelton Wheel BSR RO plant with 8660m3/day 

capacity. 
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Figure 90: Cost ratio of most financially aHractive scenarios using solar powered system against diesel powered 
system, for BSR and No BSR RO Plants using varying amounts of solar power supplemented by wind power plus 

hydrogen fuel, at Massawa. 

6.4.4.5 Newhaven - Tidal current plus wave power with Hydrogen fuel 

As can be seen from Figure 91 below, the most financially attractive option when using tidal current 

power supplemented by wave power with hydrogen fuel at Newhaven, is just over 1.2x the estimated 

cost associated with using a coal f ired plant with CCS. The tidal current! wave-based system is estimated 

to requ ire 4283kW of tidal current power and 4753kW of wave power (9036kW in total) for a Pressure 

Exchanger BSR RO plant with 8980m3/day capacity. 
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Figure 91: Cost ratio of most financially attractive scenarios using tidal powered system against coal-fired plant 
with CCS, for BSR and No BSR RO Plants, using varying amounts of solar power supplemented by wave power plus 

hydrogen fuel, at Newhaven 

6.4.4.6 Newhaven - Tidal current plus wind power with Hydrogen fuel 

As can be seen from Figure 92 below, there are no financially viable options when using tidal current 

power supplemented by wind power and hydrogen fuel at Newhaven. The most financially-attractive 

option when using tidal current power supplemented by wind power with hydrogen fuel to operate an RO 

plants at Newhaven is just under 1.2x the estimated cost associated with using a coal fired plant with 

CCS. This tidal current! wind-based system is estimated to require 3475KW of tidal current power and 

8326kW of wind power (11801 kW in total) , for a Pressure Exchanger BSR RO plant with 8520m3/day 

capacity. 
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Figure 92: Cost ratio of most financially attractive scenarios using tidal powered system against coal fired plant 
with CCS, for BSR and No BSR RO Plants, using varying amounts of solar power supplemented by wind power plus 

hydrogen fuel, at Newhaven. 

6.5 The consolidated results 

Table 51 and 52 below show the consolidated resu lts in terms of the most financially-attractive scenarios 

identified for Massawa and Newhaven, respectively for each stage. It is presented in order of modelling 

stages, with: 

• The primary and secondary power installed, with the percentages of the fu ll scenario power for 

primary and secondary power 

• The scaled-up RO plant capacity for each of the most attractive scenarios. 

The right hand column shows the multiples of renewable power installed in relation to the equivalent 

conventionally-powered scenario 
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Table 51: Technical! ---- _ . _--. ---- ------ ------------d fl lall M -_._------ ---------- -- -----------
Stage Type of RO Solar Powe, (UW) Secondary Secondary Hydrogen Total Installed RO plant capacity Ratio of renewable Ratio of 

plant Percentage of power Installed Power Power(MW) fuel uaed? power(MW) (xl0'm'/day) scenario cost against Renewable power 
("0) Percentage conventional energy Installed to 

01 power cost conventional 
installed (0 .. ) energy required 

1 NoBSR 37.2 
None 0 No 37.2 18.6 1.46 12.4 

i 10Ql (0) 
2 Pelton Wheel 21.8 None 0 No 21.8 17.0 1.694 17.0 

(100) (0) 
Pressure 17.4 None 0 No 17.4 17.5 1.643 17.4 Exchanger (100) (O) 

3 NoBSR 17.37 wind 9.93 No 27.3 17.4 1.227 9.1 (63 .6) (36.4) 
Pelton Wheel 3.69 wind 14.68 

No 18.37 12.8 1.353 14.7 (20 .1) (79.9) 
Pressure 2.98 wind 12.41 No 15.39 11.3 1.423 15.4 

Exchanger (19.4) (80.6) 
No BSR 15.82 22.14 

No 37.96 10.9 1.289 12.7 
J41.~ 

wave (58.3) 
Pelton Wheel 4 12.53 No 16.53 9.6 1.286 13.2 

i24 .:?L 
wave 

(75.8L 
Pressure 2.98 12.15 No 15.13 11.3 1.273 15.1 

Exchanger (20 .01 
wave 

(80.01 
4 NoBSR 33.16 None 0 Ves 33.16 16.6 1.47 11.1 

(100) (0) 
Pelton Wheel 21 .82 

None 
0 

Ves 21.82 10.5 1.434 17.5 (100) [QL 
Pressure 17.39 

None 0 Ves 17.39 10.4 1.402 17.4 
Exchanger _O OQl (0) 

NoBSR 9.69 19.73 Ves 29.42 9.7 1.298 9.8 (32.9) wave (67.1) 
Pelton Wheel 3.41 10.68 Ves 14.09 8.2 1.23 11.3 

(24 .2) wave (75.8) 
Pressure 2.67 8.14 Ves 10.81 8.0 1.212 10.8 

Exchanger (24 .7) wave (75.3) 
NoBSR 10.33 

wind 
23.63 Ves 33.96 13.5 1.261 11.3 

(30.4 ) (69.6) 
Pelton Wheel 3.56 wind 

9.775 Yes 13.34 8.7 1.189 10.7 
(26.7) (73.3) 

Pressure 4.945 
wind 

4.242 
Ves 9.187 11.2 1.226 9.2 

ExchanQer (53.8) (46.2) 
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Tabl Technical! d iall If-anractlve scenarios at Newnaven. 
Stage Type of RO Tldel Current Power (MW) Secondery Secondery Hydrogen Total RO plent capecHy Retlo of renewable Retlo of Reneweble 

plent Percentage of power Installed Power Power(MW) fuel Inltalled (X10'm'/dey) IC8nerlo COlt egelnlt power Inltelled to 
(%) Percentage power (MW) convenUonel energy conventlonel 

of power COlt energy required. 
installed (%) 

1 NoSSR 135.3 None 0 No 135.3 28.4 2.969 30.6 (100) (0) 
2 Pelion Wheel 66.5 None 0 No 66.5 20.9 2.525 36.5 (100) (0) 

Pressure 54.38 None 0 No 54.38 22.8 2.469 38.0 Exchanger (100) (0) 
3 NaSSR 20.5 

wind 
29.48 

No 49.98 12.9 1.527 11 .3 (41.0) (59.0) 
Pelion Wheel 5.59 wind 14.12 No 19.71 12.4 1.38 10.8 (28.4) (71 .6) 

Pressure 4.28 wind 13.72 No 18 12.0 1.358 12.6 
ExchanQer (23.8) (76 .2) 

NaSSR 20.50 19.62 No 40.12 9.5 1.443 9.1 (51.1) 
wave (48.9) 

Pelton Wheel 5.59 7.63 
No 13.22 8.8 1.196 7.3 (42.3) wave (57.7) 

Pressure 4.28 6.33 No 10.61 9.0 1.188 7.4 
ExchanQer (40.3) wave (59 .7) 

4 NaSSR 122.5 None 0 Yes 122.5 25.7 3.118 27.7 
(100) (0) 

Pelion Wheel 54.38 None 0 Yes 54.38 18.1 2.474 29.9 
(100) {OJ 

Pressure 45.37 
None 

0 
Yes 45.37 19.0 2.371 31.7 

Exchanger (100) {OJ 
NaSSR 13.72 17.81 Yes 31.53 8.6 1.57 7.1 

(43 .5) 
wave 

(56.5) 
Pelton Wheel 

4.88 6.67 
(42 .3) 

wave 
(57.7) 

Yes 11.55 7.7 1.209 6.3 

Pressure 3.7 5.47 Yes 9.17 7.8 1.204 6.4 
Exchanger (40 .3) 

wave (59.7) 
NaSSR 14.67 wind 21 .09 Yes 35.76 9.2 1.504 8.1 

(41.0) (59 .0) 
Pelton Wheel 9.82 wind 8.825 Yes 18.645 7.7 1.265 10.2 

(52.7) (47.3) 
Pressure 3.475 wind 8.326 Yes 11 .801 7.3 1.198 8.3 

Exchanger (29.4) 
-

(70.6) 
- -
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6.5.1 Discussion of the results 

When scaled-up, all the modelled renewable-powered scenarios were able to achieve the water 

production required to meet the local users' demands. This though required a significant amount of 

installed power, in comparison to the conventionally-powered scenarios. At Newhaven, this meant that, in 

the worst case, almost 40 times the conventionally-powered scenario power capacity needed to be 

installed, to produce the required amount of water for certain scenarios. This said, the lowest installed 

power ratio was also at Newhaven, with the Pelton Wheel with wave and hydrogen fuel scenario, which 

only required 6.3 times the conventional scenario's power capacity. The installed power ratios were more 

consistent at Massawa, failing in the range of 9 -18 times the conventional scenario's power capacity. 

It is also apparent that there is a wide range of cost differences for the scenarios at Newhaven, ranging 

between 1.2 and 3 times the cost of the coal-fired plant with CCS scenarios, but once again the 

Massawa scenario show more consistency failing in the lower range of 1.2 -1.7 times the cost of the 

diesel powered scenarios. So it can be seen that the correct combination of RO plant size and quantity of 

installed power, is vitally important so as to achieve the most financially-attractive result. 

6.5.1.1 Stage 1 and 2 

At Massawa, the most financially-attractive solar-powered options required between 12 and 17 times the 

installed power to match the diesel power required. At Newhaven, with the tidal current power devices, 

this ratio more than doubled to between 30 and 38 times the power that would be required with a coal

fired plant with CCS. 

The tidal current speeds at Newhaven are relatively low at 1.Sm/s maximum, and in light of the 

Inefficiency at low tidal speeds the SeaGen was effectively selected as an academic exercise as It was 

the most developed device available. It is considered that other, less developed devices, that are able to 

generate power at lower tidal current speeds are more realistic options and worthy of further 

consideration for locations such as Newhaven. 

There are also areas on the south coast of England, such as the waters south of the Isle of Wight, with 

estimated tidal current speeds of 2.Sm/s [SEEDA, 2007], which would make a significant difference to the 

volume of installed tidal current power required, and the financial attractiveness of all the tidal current 

scenarios. 

It is noteworthy that: 

• There is a significant shortfall to make up with the tidal current scenarios being 2.5 - 3 times as 

expensive as the coal-fired plant with CCS 
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• That the use of less developed devices with better low speed generation capabilities would 

improve performance at Newhaven, but are less technically developed and costs are less well 

understood, and 

• Remote power generation would require the power to be transmitted to its point of use at 

Newhaven, and this may incur losses. 

There are a variety of options to enhance the viability of the scenarios at Massawa,by making greater 

use of the sun, by tracking on one or two axis, and use of Concentrated Solar Power [Philibert, 2010]. 

The costs due to installed solar power as a percentage of the fu ll scenario costs at Massawa are shown 

below in Figure 93. 
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Figure 93: Percentage of scenario cost due to solar power Installed. 

As can be seen from Figure 93 above, the BSR RO plants (Pelton Wheel and Pressure Exchanger) 

use relatively small amounts of power. Hence, the proportion of the overall scenario costs due to installed 

solar power is relatively low (between 8 and 30%) . As such it is unl ikely that the increase in efficiency 

due to CSP alone could make these scenarios financially viable, as the shortfall is around 70% and 65%, 

for the Pelton Wheel and Pressure Exchanger, respectively. 

The No BSR scenarios though , use more solar power, (between 25% and 57%), and have a shortfall of 

only 46% to financial viability. Therefore, it is expected that the use of more sophisticated solar power 

conversion would have the greatest impact on the No BSR scenarios to improve their prospects for 

financial viability. 

CSP requires a cooling water cycle to achieve the best efficiency. If the CSP cooling water cycle could 

be used to pre-heat the feedwater for the RO plant, it would increase the output of permeate for the same 

power input, and improve the prospects for financial viability. 
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There are, however,concerns about the water consumed by the steam cycle, of the closed-loop system 

employed by CSP plants,which could be as much as 3.5m3/MWh [Glennon and Reeves, 2010]. This 

water consumption rate would mean that 3.8%, 2% and 1.7% of the annual water production would be 

consumend within the steam cycle for the most financially-attractive No BSR, Pelton Wheel BSR and 

Pressure Exchanger BSR RO plants modelled, respectively. So, the efficiency of the closed-loop CSP 

plant versus the reduction In efficiency associated with the air-cooled esp, (which has significantly 

reduced water consumption), will need to be considered in light of the potential steam cycle water 

demand if the CSP option Is to be progressed further. 

6.5.1.2 Stage 3 - Addition of wind and wave power 

6.5.1.2.1 Addition of wind 

At Massawa, the No BSR option with wind requires the smallest Installed power ratio of all the Massawa 

scenarios (at 8 times the diesel scenario), but the BSR RO plants using the same type of power source 

require significantly greater ratios (around 15 times the conventional scenarios installed capacity). 

Interestingly, the third most financially attractive option at Massawa (highlighted In italics In Table 51 

above) uses around 64% solar and 36% wind power, but the other less financially attractive BSR RO 

plant options are made up of around 80% wind power and 20% solar power. 

Massawa has almost the worst wind profile in Eritrea [Habtetsion et ai, 2002], and it is reasonable to 

assume that If the wind turbines were sited at a location such as Dekemhara, Gizgiza, Assab or Gahro 

with significantly Increased and relatively predictable wind speeds, the power needed could be achieved 

with significantly less Installed wind power capaCity, which would further Improve the prospects for 

financial viability. 

The same principle applies at Newhaven, with Its wind-based scenarios being made up of between 50% 

and 60% Installed wind power. As can be seen from WEBvlslon - Renewables (Wind) [ABPMER, 

2011 a], If the turbines were sited offshore they would benefit from significantly Increased wind speeds. 

The further offshore they are sited, the greater the Improvement In wind speed and potential to make up 

the 35 - 50% shortfall, and become financially viable. It Is though noteworthy, that locating turbines 

offshore does Increase the complexity of maintenance, and operation of the turbines, which could 

adversely Impact the viability of the scenario. 

6.5.1.2.2 Addition of wave 

With regard to wave power, the scenarios are around 28% and 19% - 44% short of financial viability at 

Massawa and Newhaven, respectively. Newhaven has wave plus tidal as Its most finanCially-attractive 
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scenario modelled as highlighted in bold in Table 52 above. Although there is little information available 

regarding the wave potential at Massawa, the UK has a significant wave resource [ABPMER, 2011 b], 

with examples in the South West of England having more than double the wave power density found at 

Newhaven. 

It is reasonable to assume that if wave power and tidal current devices were sited at an energy farm in 

the south west of England (or even south of the Isle of Wight), the minimal shortfall to financial viability 

could be made up, if the power could be transmitted to Newhaven efficiently enough. 

6.5.1.3 Stage 4 - Addition of hydrogen fuel 

Table 53 provides details of the impact of the addition of hydrogen fuel in terms of the reduction in 

plant size and cost using the comparison of the most viable scenarios at each stage. 

Table 53: Impact of the addition of hydrogen Fuel at Massawa and Newhaven 

TypeofRO Massawa Newhaven 
plant 

Power Source Reduction In ImPlcton Power Source Reduction In ImPlcton 
plant Ilze (%) coat (+1- %) plant Ilze (%) coat (+1- %) 

NoBSR Solar 
10.75 ·0.68 Tidal Current 9.51 ·5.02 

Pelton Wheel Solar 
38.24 15.35 

Tidal Current 13.40 2.02 

Prelsure Solar 
40.57 14.67 Tidal Current 16.67 3.97 

Exch.naer 
NoBSR Solar + Wind 

22.41 -2.n Tidal Current + 33.33 -2.82 
Wind 

Pelton Wheel Solar + Wind 
32.03 12.12 Tidal Current + 37.90 12.39 

Wind 
Pressure Solar + Wind 

0.88 13.84 Tidal Current + 35.00 11 .34 
Exch.naer Wind 

NoBSR Solar + Wave 
11 .01 -0.70 Tidal Current + 3.16 -4.23 

Wave 
Pelton Wheel Solar + Wave 

14.58 4.35 Tidal Cu rrent + 12.50 -s.n 
Wave 

Pressure Solar + Wave 
29.20 4.79 Tidal Current + 18.89 -0.84 

Exchanger Wave 

As can be seen from Table 53 above, although the addition of hydrogen fuel allows less power capacity 

to be installed, its impact on financial viability varies for the different RD plant types at Massawa and 

Newhaven. 

The No BSR RD plant scenario's financial viability ratios increased, (got worse as indicated by the -ve 

Impact on cost in Table 53 above), with the addition of hydrogen fuel, whereas the BSR scenario 

financial viability generally improved slightly when hydrogen fuel was employed. 

At Massawa, the No BSR scenario's financial attractiveness was slightly reduced, by 3% maximum, in 

comparison to the non-hydrogen scenario, and the BSR RO plant type's financial attractiveness 

Increased by around 15%, 13% and 4.5% for the Solar, Solar + Wind and Solar + Wave scenarios, 

respectively. 
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At Newhaven the use of hydrogen fuel gave a slight Improvement to financial attractiveness to a minority 

of the scenarios analysed only, and at best only achieved a financial benefit of around 12% against the 

scenario without hydrogen fuel. Although the reductions in installed power due to hydrogen storage at 

both sites for the most financially-attractive options were in the order of 40% maximum, with a reuse 

efficiency of only 22%, the costs were only reduced by 15% at best. This wouid indicate that the costs 

associated with the infrastructure for hydrogen production, storage and fuel cells for re-use, outweighed 

the benefit of reduced Installed power and RO plant size. Taking the case of the scenario with the best 

CoP Identified at section 6.2.1.3, (Tidal current powered Pressure Exchanger BSR RO Plant), the use of 

hydrogen fuel resulted in a cost reduction of over 45% over the non-hydrogen fuelled example, and the 

hydrogen infrastructure made up only 3.6% of the cost of the scenario. 

In this case though, the original non-hydrogen fuelled scenario had the worst water production capability 

of all, at just over 3%, and had to be scaled-up by around 30 times to meet the needs of the local users. 

The reduction of scale-up (to just under 16 times) due to the use of hydrogen fuel, meant that the 

scenario would cost around 7 times that of the conventionally powered equivalent. 

Overall, it is evident that the advantage that desalination offers when water storage is available, the 

ability to batch produce and store energy as water produced rather than operate continuously, varies 

according to RO plant type and input power source. In simpie terms, It was only cheaper to oversize the 

RO plant and its power supply for the No BSR RO plants at Massawa, but at Newhaven it was cheaper 

for the No BSR scenarios as well as the tidal current with wave powered scenarios. The scenarios 

employed hydrogen at 2~k round trip efficiency, but If a technology such a Redox cells could be 

employed with Its reuse efficiency of around 80% [Thwaites, 2007], it is possibie that it could make up the 

45% shortfall of the Massawa BSR RO plants (see Table 51), and become financially viabie when 

compared to conventional equivalents, if It is not too expensive to implement and operate such a system. 

It Is also noteworthy, that the energy re-use was applied to maintain the maximum flowrate. There is the 

option to oversize the RO plant, such that the stored energy can be applied to maintain the RO plant at it 

optimum efficiency, and meet the needs of the users. The optimum flow is typically 70 - 87% of that at full 

flOwS', and could improve the financial attractiveness of energy storage scenarios, if the efficiency 

benefits are not outweighed by the cost of the RO Plant enlargement. 

This methodology could also be extended to oversize the Installed power Infrastructure to provide surpius 

power to meet the energy needs of the local community, as shown below in Figure 94. 

88 There was an outlier at 9GC for the Pelton Wheel BSR RO plant where the optimum specific power consumption was 
96.8% of that required at full flow. This was disregarded. 
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Figure 94: Re-use of wasted energy to RO plant and external users 

Figure 94 above shows a model that could be adopted for an oversized power plant, producing excess 

electricity for storage and re-use when the needs of the RO plant are seNiced, and includes the use of 

Redox electrolyte and fuel cells. The sale of the surplus hydrogen/ electrical power could then be used to 

offset the additional cost associated with the enlarged power plant. 

6.5.1.3.1 Addition of wind/ wave 

At Massawa, for both wave and wind, the No BSR RO plant scenario's financial attractiveness worsened 

with the addition of hydrogen fuel , whereas the BSR scenario's financial attractiveness improved when 

hydrogen fuel was employed. The Pelton wheel BSR with wind, (which was the most financially attractive 

scenario as highlighted in bold in Table 52 above) , improved to the extent that it was less than 19% short 

of financial viability . 

Of the two options (wind or wave) for Massawa to pursue further, it was considered that the greatest 

understood potential to improve was based on wind, through the installation of wind turbines in areas of 

Eritrea with better winds, to further improve the prospects for financial viability. 

At Newhaven, the situation was reversed , with all wave scenarios becoming more expensive (less 

financially attractive) with the addition of hydrogen fuel , but wind-based scenarios reduced in cost for all 

the RO plants modelled. All the options modelled were within 60% of financial viability, and the Pressure 

Exchanger with wind and hydrogen fuel was only 20% short of financial viability. If the examples of 
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improvements stated above were applied, it was considered that the prospects for financial viability 

would be significantly improved for all varieties of Stage 4 scenarios. 

Overall, it is concluded that the benefit associated with the reduction of installed RO and renewable 

power assets requ ired for the scenario to meet the required water production often results in a cost 

reduction over the equivalent scenario without hydrogen fuel , but not always. The limited round trip 

efficiency and the high cost of the hydrogen associated assets means that the use of hydrogen does not 

necessarily guarantee a more financially viable scenario. The benefit that desal ination has, to be able to 

effectively store energy as water, is inherent whether or not hydrogen storage is employed. So the 

benefit of energy storage in these scenarios was simply to reduce the energy wasted due to providing 

power above/ below the range that the RO plant could use. As such the benefit of being able to 'load 

fo llow' that energy storage has the potential to provide, was not available in these desalination scenarios 

and the impact of the limited importance of 'dispatchability' has shown in the results that the energy 

storage scenarios modelled did not always produce the most financially viable option. 

6.5.2 Complexity of the scenario 

The complexity of the equ ipment is a potential aspect of the viabi lity of any scenario, and Table 54 and 

Table 55 below present the scenarios with the cost ratio against the equivalent conventionally powered 

scenarios at Massawa and Newhaven, respectively. 

The scenarios were categorised using a traffic light system, for their complexity in operation and 

maintenance with : 

Green being the easiest to operate and maintain 

Am being more difficult to operate and maintain, and 

Red being the most difficult to operate and maintain . 

The scenarios that are the most fi nancially-attractive in each category, are highlighted in 'bold '. 

Tab e 54: M assawa R atios, wit h com plexity of operation an d ma ntenance 
Solar Solar+ Solar+ Solar+ Solar+ Solar+ 
Power Wind Wave H2 Wind+ Wave 

H2 +H2 
No BSR 

1.46 1.23 1.47 1.26 1.30 

Pelton Wheel 
1.43 1.19 1.23 BSR 

Pressure 
1.64 1.42 1.27 1.40 123 1.21 ExchanQer BSR 
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T bl 55 N h a e : ew aven R . 'h atlos, Wit I . complexity 0 operation an d maintenance 
TIdal TC+ TC+ TC TC TC+ 
Current Wind Wave +H2 +Wind Wave 
(TC) +H2 +H2 
Power 

No BSR 2.97 1.53 3 11 1.50 1.57 
Pelton Wheel 

2.47 1.27 1.21 BSR 
Pressure 2.47 1.36 1.19 2.37 1.20 1.20 
ExchanQer BSR 

As can be seen from the Tables above, at Newhaven the more financially-attractive scenarios are quite 

complex, with the renewable powered Pelton Wheel and Pressure Exchanger BSR RO plants achieving 

the most financially-attractive results. They were more than 30% closer to financially viable than the 

easiest option to implement (no BSR with tidal current and wind power). This is also true at Massawa, 

where the most financially attractive options all use hybridised power and hydrogen fuel. 

Interestingly, the option at Massawa that is third most attractive, (four percent short of the most 

favourable with a cost ratio of 1.23) , uses one of the least complex combinations modelled, solar and 

wind power applied to a No BSR RO plant. 

Of the simplest options (highlighted in 'green'): 

Primary power with wind is the most attractive at both sites . Interestingly, the avenue for the two sites to 

employ to improve their financial viability differs in terms of the difficulty of implementation. At both sites, 

there are surrounding areas with well -understood wind resources , but the difference is that in Eritrea they 

are on-shore, and in Newhaven they are mainly offshore. 

In the case of onshore windfarms, they are well established, whereas offshore wind presents a variety of 

engineering, operational and maintenance difficulties. Thus, it is considered that the Massawa option to use 

solar in combination with onshore wind, remote from the point of use, is the most practical and financially-

attractive option to pursue. 

Of the more difficult options (highlighted in' m '): 

At both Massawa and Newhaven, the option closest to financial viability is the use of primary power 

supplemented by wave power with the No BSR and Pelton Wheel RO plants at Massawa and Newhaven, 

respectively. The most logical option to pursue at Massawa to improve the prospects of this scenario is to 

make more efficient use of the solar power available due to the limited understanding of the wave resources 

available in the Red Sea. 

At Newhaven, the most favourable avenue to pursue is to site the wave power devices at a location with 

better wave resources. 

With regard to the Pelton Wheel RO plant itself, the use of brine stream recovery adds complexity, and as it 

is sized (and costed) for the fact that the Pelton Wheel will provide a portion of the process power required, 

in the event of failure, the RO plant wil l not be able to achieve its performance targets. 
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Of the most difficult options (highlighted In 'red'): 

At Massawa, the most financially-attractive but difficult to operate option, is the No BSA AO plant with solar 

and wind power with hydrogen fuel. 

At Newhaven, the most financially attractive option is the Pressure Exchanger BSA AO plant with tidal 

current and wave power. 

The level of complexity of this scenario for Massawa (considering that it is modelled to operate continuously 

for 25 years) cannot be justified in comparison to the almost as financially-attractive, and significantly less 

complex, solar and wind scenario. It is though, considered that the most financially-attractive option at 

Newhaven, 'tIdal current with wave power' (which is less complex than that at Massawa) is reasonable to 

pursue if the power sources are sited at locations with better wave and tidal current resources. This should 

not be a problem, with the established national grid in the UK. 

6.6 Externalities of energy production and use 

The objective of this research was to determine whether renewable energy sources are viable. The 

example used to Investigate the viability was desalination, and in RO plants currently operated with 

conventional fuels, the hidden costs, (the externalities)89, borne by society are not reflected. 

This section will investigate the externalities of conventional energy use, and attempt to ascertain the 

credit (the 'X' Factor) to be applied to renewable energy sources to reflect any societal savings that their 

use (by displacing conventional fuels) may have. 

The best available studies of externalities of power generation, are the European Union's (EU) 'ExternE 

Project' [ExternE, 2003], and Its successor, 'New Energy Externalities Development for Sustainabillty 

(NEEDS),. Drawing upon a huge body of research and analysis, ExternE has produced estimates of 

monetary costs of greenhouse, health, and other environmental Impacts of power station emissions, 

based on full life-cycle assessments. 

Figure 95 below shows the pollutants and the potential effects considered by ExternE . 

.. An external cost (also known as an extemality) arises when the social or economic activities of one group have an Impact 
on another group, which ia not fully accounted or compenaated for, by the first group, (e.g. a power atation that generates 
emissions of sOa, causing damage to building materials or human health, Imposea an extemal cost). This is because the 
Impact on the owners of the buildinga or on thoae who suffer damage to their health is not taken Into account by the 
generator of the electricity, when deciding on the design of the power station. In this example, the environmental costs are 
"external" because, although they are real costs to these members of society. The owner of the power station is not taking 
them into account when making decisions. 
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figme 95: ExIemaI energy costs cOllsideied by &IernE 

The ExlemE report clearly states that there is an unquantifiable Ievei of error in their estimated cosIs 

when applied without taking the specifics of individual locations into account, so the estimates are only 

indicative of the costs due to the externalities associated with conventional electrical power generation. 

6.6.1 Externalities associated with coal-fired plant with CCS technology, to be 

employed in Newhaven 

'Cradle to Grave: the Environmental Impacts from Coal' [Clean Air Task Force, 2001], gives a concise 

overview of the impacts of coal throughout its life-cycle, when used to produce electricity. 
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It splits coal's lifecycle for electricity production into the following main stages where external impacts 

occur: 

• Coal mining 

• Coal cleaning 

• Health impacts on miners 

• Coal transportation 

• Emissions from coal fired power plant, and 

• Waste disposal. 

The reported health Impacts for miners are significant [Natural Capitalism Solutions, 2010], due largely to 

the severe diseases, such as Black Lung Disease90
, that affect many of them in their later years. 

'Mortality In Appalachian Coal Mining Regions: The Value of Statistical Life Lost' [Hendrix and Ahern, 

2009] examined the elevated mortality rates in Appalachian coal mining areas between 1979 and 2005, 

and found that the age-adjusted deaths in these areas, ranged from 3,975 to 10,92391
• Even after 

adjustment for covariates, It was noteworthy that when the value of statistical life lost (VSL) was applied, 

the cost due to the premature fatalities outweighed the financial benefit of mining. 

6.6.1.1 Waate dlapoaal 

When hard coal Is burned, it produces ash as a residual substance making up around 15% by mass92
• 

This ash typically contains concentrated levels of numerous contaminants, particularly: 

• Metals such as: 

o Arsenic 

o Mercury 

o Lead 

o Chromium 

10 Coal miners are exposed to high levels of coal dust, which Is damaging to the respiratory system. Some coal dust contains 
particles of quartz, the agent responsible for causing Coal Miner's Pneumoconiosis, or Black Lung. Miners who are stricken 
with Black Lung, experience shortness of breath, obstruction of airways, severe cough, and death. In the United States, 
4.5% of coal miners (4,717 miners) were affected by Black Lung. Over 10,000 miners have died from Black Lung In the past 
ten years. About 0.2% of coal miners ere diagnosed with Progressive Massive Fibrosis, an advanced form of 
Pneumoconiosis, where lesions are formed In the lungs causing shortness of breath and extreme pain. Between 1968 and 
1992, more than 59,000 deaths - all male - were attributed to Black Lung. 

t1 Of these deaths, approximately 2,300 were related to environmental factors, such as pollution of water and air made worse 
by mining. The extraction and production of coal emits pollutants such as mercury, sulphates (So.), nitrates (NOs), carbon 
monoxide (CO), fine particulate matter (PMu) and large particulate matter (PM,o). 

82 Approximately 80-85% of the ash exiting the furnace Is extracted by mechanical and electrostatic precipitators. These are 
connected In series to remove the finer and lighter materials. The remaining 15-20% condenses on the boiler tubes, and 
subsequently falls to the bottom of the fumace, where It slnters to form furnace bottom ash. 
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o Cadmium, and 

• Radioactive elements93 [Hvistendhal, 2007]. 

Within the UK, the ash is removed from the furnace to storage pits, prior to shipment. Its primary reuse is 

for the manufacture of concrete building blocks. 

This, though, is not the case in many nations where the ash (now containing scrubbing chemicals) is 

stored locally and disposed of to landfill. There are several issues relating to this method of coal ash 

disposal (especially in the North America), which incur an external cost, due to the potential for increased 

incidence of cancer, and ash forming dust, which contaminates ground and surface waters, and food. 

It is noteworthy that fly ash (comprising finely-divided particles of ash that are carried as flue gases after 

combustion of a fuel) has the potential to act as a significant revenue stream if managed correctly, as 

described within 'Ash utilisation from Coal-Based Power Plants' [Barnes and Sear, 2004]. 

6.6.1.1.1 ExternE assessment of externalities due to coslln UK 

ExternE presents external costs for the use of coal & lignite in the UK of 4 - 7€ centlkWh. For the 

purposes of this research, the external cost associated with electricity generation via coal at Newhaven 

was taken as the lower end of the range94
, 3.4pIkWh. 

The conventional power plant used at Newhaven is modelled as having Carbon Capture and Storage 

(CCS), which is taken as being 90% efficient at removing carbon dioxide. 

The final ExternE report provides a breakdown of the externalities of electricity production using coal in 

Germany, which is attributed with external costs for the use of coal & lignite of 3 - 6€ centlkWh. For the 

purposes of this research, the breakdown of externalities presented for Germany was taken as 

reasonable to apply to the UK. Although Germany is generally accepted as having more efficient coal 

fired power stations95
, it is assumed that the plant in the UK will have at least the equivalent efficiency of 

a plant in Germany based on the 'Cleaner Coal Postnote' [POST, 2005]. 

13 The Scientific American article states that: 
'coal ash carries Into the surrounding environment 100 times more radiation than a nuclear power plant producing 
the same amount of energy'. 

This quote though Is put Into perspective by the statement that: 
~s a general clarification, ounce for ounca, coal ash released from a power plant delivers more radiation than 

nuclear waste shielded via water or dry cask storage. ' 
and: 

7he chances of experiencing adverse health effects from radiation are slim for both nuclear and coal·fired power 
plants-they're Just somewhat higher for the coal ones. "You're talking about one chance In a billion for nuclear 
power plants, " Christensen says. "And it's one In 10 million, to one In a hundred million, for coal plants. " 

84 The coal·fired power station with CCS at Newhaven was given credit for being at the low end of the range of external 
costs, as it modelled as using integrated gasification combined cycle (IGCC), which is a new coal technology that ExternE 
identifies as having lower air pollution impacts. 

85 According to the 'Cleaner Coal Postnote, 
'All UK coal-fired power stations use .••. combustion processes with efficiencies of N36-39'" in comparison to the 
fad that 'Supercritical plants operating In Denmarlc and Germany reach efficiencies of 47% '. 
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Of the external costs in Germany, those attributed to the avoidance of C02emissions98
, are 63% of the 

total external costs for producing electricity using coal. So, to take account of the coal-fired plant with 

CCS available to Newhaven, the external cost Is reduced to take account of the CCS's efficiency (taken 

as 90%) at capturing CO2, So, the cost due to externalities to power the RO plants at Newhaven was 

taken to be 1.47p/kWh97
• 

6.6.2 Externalities associated with diesel generation to be employed In Massawa 

ExternE presents external costs for the use of 011 in the UK of 3 - 5€ centlkWh. For the purposes of this 

research, the external cost associated with electricity generation via diesel to power the RO plants at 

Massawa was taken as the lower end of the range, at 2.5p/kWh. 

6.6.2.1 Energy security 

The International Center for Technology Assessment [CTA, 2005] presents a case for military and local 

storage costs In the US. 

It makes the point that an indeterminate portion of the US, and other countries, defence budgets, are 

concerned with protecting oil supplies by maintaining regional stability in the countries that produce 011, 

including military support to maintain the stability of regimes, and military intervention to remove them. 

The estimated external costs associated with US military expenditure to protect the world's petroleum 

supplies, range from $47.6 billion· $113.1 billion (£30.27 billion and £707,905 billlon)9s. 

For the purposes of this research, the cost of security for the fuel used to run the diesel generator in 

Massawa is at the lower end of the range, and taken to be 2.4pllitre99
• 

So, the total externalities due to use of diesel-powered generation at Massawa, Is 2.5p/kWh of energy 

produced, and 2.4pllltre of diesel fuel used . 

.. This is based on an avoidance cost of 19f1ton of C02. 

87 This figure Is based upon: 
• 3.4p (total cost of coal externalitiasHbeneflt of CO2 capture). 
• The benefit of CO2 capture .0.63 (portion of externalities associated with carbon dioxide production) x 0.9 

(efficiency of CCS at removing carbon dioxide from exhaust) x 3.4 (total cost of coal externalities» • 1.928 
p/kWh benefit due to CCS CO! capture. 

Therefore, 3.4 - 1.928. 1.47p/kWh. . 
.. There are other externalities associated with US petroleum use, including the Coast Guard and other municipal services, 
which bring the range of external costs associated with energy security paid by (predominantly American) taxpayers, up to 
$78.215 billion - $158.39 billion, or in specific terms between, $0.214 and $0.3211 US gallon. 

"This is based on proportions presented In 'Gasoline Cost Externalities: Security and Protection services. An update to 
CTA's Real Price of Gasoline Report' that, $78.215 billion to $158.39 billion. equatas to between $0.214 and $0.3211 US 
gallon. 
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6.6.2.1.1 Volume of diesel fuel used. 

The volume of diesel fuel used over the 25-year life of the scenario was calculated based on the 

generator size to maintain the average power output for a year, plus an additional 25% to account for the 

0.8 power factor (where only 80% of the power produced by the generator is useable) . 

The relationship between diesel fuel used and generator size, is shown below in Figure 96. 
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Figure 96: Diesel fuel used over 25 years, for varying generators sizes. 

6.6.3 Costs associated with conventional power scenarios 

2.5 

Based on the information above, the following sections provide detail of the costs used to model 

conventional power scenarios with external ities. It is noteworthy that the external costs used are the most 

conservative costs available from the information available. 

6.6.3.1 Massawa 

The costs associated with the externalities of power production at Massawa using diesel generators over 

the 25-year life of the installation, are shown below in Table 56 for each of the RO plants being modelled. 

Ta ble 56: External costs associated with Dower production using diesel generators, at Massa wa 
Total coat Additional coat due to externalities at Total coat with 

without £O.025/kWh of energy produced + externalities 

externa~~es £0.0241 litre of dleael fuel rmed (£X10,) 
«£X10 over 25 vaars (£X10 

No BSR 231 .7 102.4 334 

Pelton Wheel 204.8 44.4 249 

Pressure 
171 .1 33.6 205 Exchanger 
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6.6.3.2 Newhaven 

The costs associated with the externalities of power production at Newhaven using coal-fired plant with 

CCS over the 25-year life of the installation, are shown below in Table 57 for each of the RO plants 

modelled. 

Tab Ie 57: External costs associate d Ih od w t power pr uctlon using CCS at Newha ven 
Total coat Additional co.t due to Total co.t with 

without extemalltle. at extamalltle. 
extamalltles EO.0147/kWh over 25 (£X10') 

(£X10,) years (Ex10') 

No BSR 211 .7 8.98 221 

Pelton Wheel 194.0 3.64 198 

Pressure 164.1 2.89 167 
ExchanQer 

6.6.4 Differences due to externalities at each site 

The difference in externality cost between the Massawa (diesel powered) and Newhaven (coal-fired plant 

with CCS powered) scenarios, can be seen above in Table 56 and Table 57. The externalities at 

Newhaven only increase the life cycle costs by four percent at most, but the Massawa scenario costs 

increase significantly, by almost 50% and 25%, for the No BSR and BSR scenarios, respectively. 

6.6.4.1 Amount of power required at each site 

The feedwater at Newhaven is cooler than at Massawa, which (as explained at Appendix B) means that 

more energy is required to make an equivalent amount of water as shown below in Table 58. 

a e : T bl 58 P ower us ad d to pro uce water at M assawa an dN h ew aven 
Annual power ueed at Annual power ueed at Percentage Incree .. In 

Manawa (kWh) Newhaven (kWh) power use at Newhaven 
(%) 

NoBSR 1.8 x10 2.5 x10 40 
Pelton Wheel BSR 7.6 x10· 10 x10· 31 
Pressure Exchanger BSR 5.8x106 7.9 x106 38 

When the increase in power required to produce water at Newhaven (between 31 % and 40%) is taken 

Into account, It is apparent that using a coal-fired plant with CCS, would be cheaper if applied at 

Massawa. 

6.7 Results for comparison of technically-competent renewable energy scenarios, 

with conventional energy sources with externalities 

Shown below In Table 59 and Table 60 are the results for the scenarios when externalities are applied 

at Massawa and Newhaven, respectively. 

Scenarios that have become financially viable, (Le. cheaper than the conventionally-powered equivalent) 

due to the application of externalities, are highlighted in yellow. 
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Table 59: Technically-competent and most financially-attractive scenarios at Massawa, when externalities are 
applied 

~ 
Type of Primary Type of Secondary Hydrogen Ratio of Ratio against Percentage 

5 RO plant Power Secondary Power (MW) fuel renewable conventional difference 
(MW) Power used? scenario cost with (%) 

to externalities 
conventional 

1 No BSR 37.2 None 0 No 1.46 1.01 30.8 
2 Pelton 

21.8 None 0 No 1.694 1.392 17.8 Wheel 
Pressure 

17.4 None 0 No 1.643 1.373 16.4 Exchanger 
3 No BSR 17.37 wind 9.93 No 1.227 0.85 30.7 

Pelton 
3.69 wind 14.68 No 1.353 1.112 17.8 Wheel 

Pressure 
2.98 wind 12.41 No 1.423 1.19 16.4 Exchanger 

No BSR 15.82 wave 22.14 No 1.289 0.894 30.6 
Pelton 

4 12.53 No 1.286 1.057 17.8 
Wheel 

wave 

Pressure 
2.98 Exchanger wave 12.15 No 1.273 1.064 16.4 

No BSR 33.16 None 0 Yes 1.47 1.02 30.6 
4 Pelton 

21.82 None 0 Yes 1.434 1.178 17.9 
Wheel 
Pressure 17.39 None 0 Yes 1.402 1.172 16.4 Exchanger 
No BSR 9.69 wave 19.73 Yes 1.298 0.9 30.7 
Pelton 

6.30 wave 9.85 Yes 1.23 1.012 17.7 Wheel 
Pressure 

2.67 
Exchanger 

wave 8.14 Yes 1.212 1.013 16.4 

No BSR 13.45 wind 15.38 Yes 1.261 0.8746 30.6 
Pelton 7.22 wind 7.43 Yes 1.189 0.9773 17.8 Wheel 
Pressure 

2.736 wind 4.69 Yes 1.226 1.024 16.5 Exchanger 
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Table 60: Technically-competent and most financially-attractive scenarios at Newhaven, when externalities are 
apl311ed 

j 
TypeofRO Primary Type of Secondary Hydrogen Ratio of Ratio against Percentage 
plant Power Secondary Power(MW) fuel renewable conventional difference 

(MW) Power used? scenario cost with (%) 
to externalities 

conventional 

1 NoBSR 135.3 None 0 No 2.969 2.848 4.1 
2 Pelton 66.5 None 0 No 2.525 2.479 1.8 Wheel 

Pressure 54.38 None 0 No 2.469 2.426 1.7 Exchanger 
3 NoBSR 20.5 wind 29.48 No 1.527 1.465 4.1 

Pelton 5.59 wind 14.12 No 1.38 1.355 1.8 Wheel 
Pressure 4.28 wind 13.72 No 1.358 1.334 1.8 Exchanger 
No BSR 20.5 wave 19.62 No 1.443 1.384 4.1 
Pelton 5.59 wave 7.63 No 1.196 1.174 1.8 
Wheel 
Pressure 4.28 wave 6.33 No 1.188 1.168 1.7 Exchanger 

4 No BSR 122.5 None 0 Yes 3.118 2.986 4.1 
Pelton 54.38 None 0 Yes 2.474 2.425 1.9 
Wheel 
Pressure 45.37 None 0 Yes 2.371 2.327 1.7 
Exchanger 
NoBSR 13.72 wave 17.81 Yes 1.57 1.507 4.0 
Pelton 4.88 wave 6.67 Yes 1.209 1.187 1.8 Wheel 
Pressure 3.7 wave 5.47 Yes 1.204 1.184 1.7 
Exchanger 
No BSR 14.67 wind 21 .09 Yes 1.504 1.443 4.1 
Pelton 9.82 wind 8.825 Yes 1.265 1.242 1.8 Wheel 
Presaure 3.475 wind 8.326 Yes 1.198 un 1.8 
Exchanger 

6.7.1 Conclusion 

6.7.1.1 At Massawa 

As can be seen from Table 59 above, four of the six No BSR scenarios and one Pelton Wheel BSR 

scenarios have become financially viable due to the application of externalities. All of the scenarios are 

now within 40% of financial viability, and if the 'Stage 2' scenarios (Solar powered BSR RO plants) are 

discounted. the remaining scenarios are all within 20% of financial viability. The addition of externalities 

meant that the Pelton Wheel BSR, with wind power using hydrogen fuel (highlighted in 'italics'). was 

displaced as the most financially attractive scenario, and replaced by the significantly less complex No 

BSR RO plant powered by solar and wind energy (highlighted in 'bold'). 

6.7.1.2 At Newhaven 

As can be seen from Table 60 above, the addition of externalities has not made any of the scenarios at 

Newhaven financially viable, due to the limited external costs associated with CCS. but it has given a 

slight improvement to their prospects, with the most financially-attractive scenario (Pressure Exchanger 
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eSR RO plant using tidal current combined with wave power, highlighted in bold text) now being less 

than 17% from financial viability. 

6.7.1.3 Realisation of external costs 

In reality, these external costs, especially those concerned with the potential impacts of climate change, 

cannot easily be applied to the cost of the conventional fuels, but there are initiatives, such as the 'clean 

development mechanism' (COM) 100 available. 

A specific requirement of the Kyoto Protocol101 is that countries limit or reduce their greenhouse gas 

emissions. To help countries meet their emission targets, and to encourage the private sector and 

developing countries to contribute to emission reduction efforts, the Protocol included three market

based mechanisms, one of which was COM. 

COM: 

• Acknowledges the external costs of conventional fuels, and in particular those related to climate 

change impacts, and 

• Allows developed countries to host carbon reduction Projects in developing countries, and use 

the carbon reduction from the project to meet their own carbon reduction targets. 

That said, the administration of COM is itself a cause for concern in many areas, including: 

1. That the criteria for 'additionality' (demonstrating that the project would not have been viable 

without the additional support of the COM), which is a cornerstone of the COM is not always 

applied. So, other more obvious emission reduction projects, such as industrial gas and hydro 

projects, that are financially viable in their own right, or legacy projects that applied for the COM 

retrospectively (i.e. COM was not part of the decision making whether to progress with the 

project), may mean that although this type of project is ideal, it would not obviously be selected 

as it would appear to offer relatively low value. 

2. That the administration and risk associated with COM applications means that there is significant 

expense in lawyers, accountants, financiers, consultants, etc that would make a project of this 

type more (and potentially prohibitively) expensive to pursue. The proportion of the non-project 

related costs associated with a COM project, which in some cases are more than 30%, are 

100 See bttp;{(cdm.unfccc.jntlindex.htmi for further details of the Clean Development Mechanism (COM). [Last viewed on 7 
August 2011]. 

101 The Kyoto Protocol is an international agreement that sets binding targets for 37 industrialised countries and the 
European community for reducing greenhouse gas emissions until 2012. Greater detail of the Kyoto Protocol is available at 
btlP;(/unfccc.intlkyoto protocoVltemsl2830.pbp [Last viewed on 7 August 2011]. 
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highlighted within 'The Cost Efficiency of Offsetting through the COM' [Carbon Retirement 

Limited, 2009]. 

3. That the Kyoto Protocol upon which COM was based was only agreed until 2012 and at the time 

of drafting this thesis, the lack of agreement regarding the extension of the Kyoto Protocol 

beyond 2012 bought the legal premise of COM beyond 2012 into doubt. The situation is 

described in more detail at the Carbon Solution Credit website [Carbon Solution Credit, 2012]. 

Many of these Issues are explained in greater detail in 'Is the COM fulfilling Its environmental and 

sustainable development objectives? An evaluation of the COM and options for improvement' [Schneider, 

2007] and 'Effects of the COM on Poverty Eradication and Global Climate Protection' [Rubbelke and 

Rive, 2008]. 

These Issues though are primarily focussed on the administration of a global incentive that has 

traditionally suffered from the required lack of the global census, and due to Its novelty and the nature of 

the incentive that It tries to offer will always present a lucrative income stream for some. One would hope 

that in the future, the appropriate long-term consensus and appropriate standards of administration and 

compliance are achieved to allow the COM to meet the aims and objectives that it was designed for more 

effectively. 

On the national level, the UK has Introduced fiscal Incentives such as the Renewable Obligation 

Certificates (ROCs) and the Feed-in Tariff (FIT), which was Introduced In 2010, and provides: 

• Payment for all the electricity generated from small scale low carbon sources 

• Additional payment for generated electricity that Is exported to the grid, and 

• Savings on energy bills due to using energy that has been generated locally reducing the 

amount of energy Imported from the grid. 

Shortly after Its Introduction, and having achieved Its aim of encouraging uptake of solar PV power, the 

UK government announced that the tariff would be cut almost Immediately to reflect the lower cost of 

solar power Installation that mass production and take-up (encouraged by the introduction of FITS) have 

caused in the UK. This proposed tariff reduction has been challenged in the courts by the solar power 

companies, who experienced almost 90% reduced installations (including many cancellations of existing 

orders), and the government lost the ruling and at the time of drafting are facing demands for £2.2 million 

In compensation for having: 

·caused major financial losses and materially harmed the confidence of both consumers and the Industry· 

[Vaughan, 2012]. 

Once again, it is noteworthy that a well intentioned fiscal policy needs to be Introduced and administered 

very carefully If It to avoid failing foul of the market forces that It Is attempting to Incentivise. 
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6.7.1.4 Social Entropy and Dissipative Structures 

In general, as an interpretation of social entropy and dissipative structures 102, energy and order are 

drawn towards wealth and urban concentrations, and the corresponding waste and disorder are exported 

to those with the least political power In the social-geographical peripheries. 

This is apparently the case in most of the developing world, including Eritrea, which has had its destiny 

dictated by external factors and internal disorder. It is these points (highlighted by lack of infrastructure, 

susceptibility to the impacts of climate change, etc) that provide the compelling need for a dedicated and 

local secure clean water supply to enhance the local order. 

It is the relatively disordered local conditions (lack of power infrastructure and relatively high Imported 

diesel prices, etc) that mean that there is the potential for a variety of renewable powered scenarios, but 

in particular solar and wind-based scenarios, to compete very favourably with the diesel generator

powered equivalent situation over the 25-year lifecycle, once the externalities of using diesel fuel are 

acknowledged. 

It is in spite of the logiC of the dissipative structure, the solution (moving away from the normal relatively

disordered state of equilibrium, using renewables to power reverse osmosis plant) can be achieved 

without exporting disorder (depriving! undermining others) by using the least complex scenarios, which 

are relatively easy to operate and maintain. 

That said, the combination of an RO plant with hybridised combination of solar and wind power is, 

although one of the least complex scenarios, still relatively complex. As such, this scenario will require a 

through understanding of operability and maintenance, if it is to be effective. 

6.7.2 Ability of scenarios to meet water demand profile 

To allow a measure of the effectiveness of the RO plant, a simple relationship of the Impacts due to 

reduced flowrates was developed and is shown below in Figure 97. 

102 Social entropy 
Another aspect of providing for human need is that the management of the needs of one group, has the potential to 
undermine that of another group to maintain order in their society. 
Dissipative structures are systems, which stay far from equilibrium by continually drawing in exergy (negative entropy) from 
the outside world, and exporting the entropy, or disorder they produce in the process. Erwin SchrOdinger, on page 79 of 
'What is Ufe?' (Cambridge University Press, 1967), suggests that the device by which an organism maintains Itself stationary 
at a fairly high level of orderliness (. fairly low level of entropy) really consists of continually sucking orderliness from its 
environment. "This interpretation can be extended from biological to social systems. Societies also maintain their internal 
structure by drawing order from their environments. For hunter-gatherers, this is generally a matter of exploiting other 
species in a fairly local, ecological context. For cities or world system centres, however, the maintenance of structure relies 
on exchange with other, peripheral social sectors, more directly involved in the extraction of exergy from nature. 
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Hardship 

Death due to thirst and lack of sanitation with in days 

General ill health due to lack of sanitation within days 
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Figure 97: Impact on human health of varying degrees of water shortage 

Figure 97 above indicates the impact on human health, expected hardship, and required external 

intervention points at reduced levels of water production from the RO plant in terms of the proportion of 

maximum design delivery. Based on th is model , no action would be taken until water production fell 

below 85% of the fu ll flowrate . 

If a methodology of th is type were to be implemented, the identification and reaction to flowrates below 

85% would need to be developed using the drought plan methodology as explained at the Environment 

Agency website 103
. 

6.7.2.1 Model of water use to be adopted 

The daily water use was derived based on assumptions about daily activities 104 , and used to define the 

daily water requirement from the RO plant. For simplicity no seasonal variations were included in the 

daily water usage cycle, which is shown below in Figure 98 . 

103 Environment Agency website at http://www.environment-agency.gov.uklhomeandleisure/droughtJ31771 .aspx [Last viewed 
on 7 August 2011]. 

104 The water uasage profile can be explained as follows: 

Low water use from midnight until 05:30 when people start to get up in the morning, make tea or coffee, run a bath 
or have a shower. 
Water use activity carries on through the day with washing machines being used, dishes being washed , lunches 
prepared, but most water is used in the morning. 

• In the aftemoon there is a slight reduction in water consumption as people go out, but from 16:00 onwards, 
consumption increases as supper is prepared, gardens are watered , and children are bathed. The water 
consumption then reduces in the late evenig, as people go to bed. 
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Figure 98: Daily water usage cycle 

This profile consumes 5950m3 of water over a 24hour period, which equates to 85% of the required daily 

consumption. This is the minimum water consumption before intervention to manage the lack of water, is 

implemented. 

The water produced by the RO plant is demanded by local users according to a specific usage profile, 

shown above in Figure 98. Although in reality, the implementation of a Project of this type would requ ire a 

transition from the old water source to the new, which would mean that the reservoir would be adequately 

stocked, the assumption was made for this research that water would be delivered and extracted from an 

empty reservoir, which would accumulate water as supply exceeded the user's demands, as the year 

progressed. 

The most financially-attractive scenarios at each site were : 

Massawa - No BSR RO plant, powered by solar and wind power 

Newhaven - Pressure exchanger BSR RO plant, powered by tidal current and wave power. 

The water produced by the RO plant in these scenarios was modelled against the daily use profile, 

shown above in Figure 97, and the resulting cumulative shortfall is shown below in Figure 99 . 
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Figure 99: Shortfall in water supply to users for most financially viable scenarios at Massawa and Newhaven 

As can be seen from Figure 99, there is a shortfall at both sites for a period of time at the start of 

operations, but once this shortfall period is passed, and the reservoir is partially filled, (when the plot 

levels off), there are no shortfalls to local user's water demands. At Massawa the shortfall is estimated as 

89890m3
, which is around 3.5% of annual water demand. The period of disruption, where the water 

required by the local users is not available at the time of demand, is expected to occur between the start 

and almost 2 months into operation . At Newhaven, this shortfall was significantly less at 17870m3
, 

(around 0.7% of annual water demand), and the disruption lasted less than one week from the start of 

operation . 

If the RO plant is started on 1 January as modelled , this shortfall equates to an additional requirement 

for: 

• Almost 13 days of water production at Massawa, and 

• Around 2.5 days of water production at Newhaven. 

There is however, the option to start the facility at different times of the year to make better use of the 

prevailing energy production conditions. Figure 100 and Figure 101 below show the changes in shortfall 

due to starting the operation at the start of each consecutive month for Massawa and Newhaven 

respectively. 
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Figure 100: Shortfall to users at Massawa, due to starting operations at different times 
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Figure 101: Shortfall to users at Newhaven, due to starting operations at different times 

As can be seen from Figure 100 and Figure 101 above, starting the RO plant at different times of the 

year has a considerable effect on the ability of RO plant to produce the water demanded by the local 

users at the time it is required. At Massawa, the deficit reduces from almost 90,000m3 and 60 days of 

disrupted supplies if started in January, to just over 1 000m3 with half a day's disrupted supply if started in 

April. At Newhaven, if the RO plant is started at the beginning of March, May, June, August or December, 

there will be no shortfall or periods of disrupted supply. 

Therefore, it was considered that the most financially-attractive scenarios at each site could meet the 

water requirements of the local users demand profile, but to achieve this, the most appropriate start time 

will need be identified, if the reservoir is empty at the start of operation . 

This said, it is also apparent that the seasonal fluctuations in water production due to the power available 

to operate the RO plant, and the changing demand for water, could have an impact on the scenario's 

ability to meet the user's demands for water. As such it is considered that mitigation of seasonal water 
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production and use impact risks would need to be investigated further if these scenarios are to be 

Implemented. 

This mitigation may involve ensuring that additional water is available in the reservoir to compensate for 

seasonal fluctuations. 
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7 NPV 

The net present value (NPV) or net present worth (NPW) of a time-based series of cash flows, both 

incoming and outgoing, is defined as the sum of the present values (PVs) of the individual cash flows. In 

the case when all future cash flows are incoming, and the only outflow of cash is the purchase price, the 

NPV is simply the PV of future cash flows minus the purchase price. NPV is a central tool in Discounted 

Cash Flow (DCF) analysis, and is a standard method for using the time value of money to appraise long

term Projects. As such it was applied within this research, as it would be an integral part of the decision 

whether a particular option was: 

• Viable, and! or 

• More or less viable than another option. 

Each cash inflow/ outflow is discounted back to its present value (PV). Then these are added together. 

So, NPV is the sum of ail the terms: 

where: 

Rt/(1+i)t 

t- The time of the cash flow. 

1_ The discount rate (the return that could be earned on an investment in the financial markets with similar 

risk.); the opportunity cost of capital. 

Rt - The net cash flow (the amount of cash, inflow (value of water sold) minus outflow (the cost to maintain 

the power source and RO plant) at time t.'08 

The following sections will derive the Price of water and Discount Rate to allow the NPV to be calculated. 

7.1 Price of water 

The price of water was assessed on the basis that it would be the income stream that would offset the 

cost of the RO plant, power instailation and reservoir. 

The cost of water at Newhaven is reiativeiy well understood, at £1.04/m3 (southernwater.co.uk) 2012 '06, 

but the cost of water at Massawa is less ciear. 

loe Any cash flow within 12 months was not discounted for NPV calculations. 

loe Taken from the Southern Water website available at 
http://www.southernwater.co.uklDomesticCustomerstaboytYourBIIVdefaun.asp [Last viewed on 7 August 20111 and based on 
a metered supply. 

175 



'Designing Cost-Effective Sea Water Reverse Osmosis System under Optimal Energy Options for 

Developing Countries' [Gllau and Small, 2006], states that Eritrea water production and tariff costs are 

about $0.30/m3 and $0.43/m3 (£0.1908 and £0.2735) respectively, giving a total cost of around £0.46/m3
• 

This is compared with 'Identification and evaluation of reuse-oriented sanitation concepts in African 

Urban Areas Case study: Massawa, Eritrea' [de la Pena, 2006], also from 2006, which presents a 

maximum water tariff cost of 8 Nakfalm3 for large industrial installations, which equates to £0.33/m3
• 

The RO plant at Massawa is designed to produce water fit for direct human consumption, and the water 

costs quoted above are for normal municipal supplies, which according to Worldwide Movers' are not fit 

for direct human consumption [Worldwide Movers, 2011]. 

As part of an informal telephone conversation, Michael Tesfai107
, from the Eritrean Embassy, stated that 

municipal water in Eritrea costs less than 5pl litre (£50/m3
), and bottled drinking water costs less than 

10pllitre. 

The Asmirano Report, 'Eritrea's 20th Anniversary Comprehensive Report Card' [Hagos, 2011] states 

that: 

' .•. most urban areas [in Eritrea] do not have municipal water piped directly to their homes and are at the 

mercy of the owner of water tankers that visit areas at their whim at unscheduled times ... .' 

The Munich Re Foundation website [Munich Re Foundation] also states that: 

'Water from tank trucks costs 15 Nakfa or about€O.90 per 20-litre canister'. 

This equates to 3.8pllitre or £38/m3, which is In keeping with Michael Tesfai's estimate of less than 5p per 

litre or £50/m3
• The Munich Re Foundation article talks specifically about water delivery to an outlying 

region and states that: 

'[a 20 litre canister costs] nearly a half a day's wages ... • ' 

For the purposes of this research, the cost of water to the end user at Massawa was taken as £38/m3
, 

based on the estimate from the Munich Re Foundation, as the first two estimates were at least 5 years 

old at the time of drafting. 

This estimate is taken to Include water collection, storage and transportation, and water truck 

maintenance costs. 

The RO plant will, in effect, only be a different water supply point for the tankers to collect water from, so 

cannot be given credit for the full £38/m3 that the end user pays. 

107 Michael Tesfai is a member of staff at the Eritrean Embassy in London. The telephone conversation took place on the 
morning of 15 September 2011. 
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It is noteworthy that this cost is beyond the reach of most Eritreans and according to 'Asmara, Africa's 

Secret Modernist City' [Gebermedhin, 2007], discussing the water limitations on Asmara (the Eritrean 

capital city): 

'Households at the lower level of income consume, on average, only 15-18 litres per capita per day. This 

amount is close to the WHO minimum requirement below which it would be difficult to maintain adequate 

sanitation. ' 

It is not clear to the external observer how much water costs in Massawa, but it is clear that the costs 

associated with the logistics of water delivery, (and perhaps the desire to make a healthy profit) , makes 

water so expensive that its availability is limited to the extent that, for some, their health could be 

affected. 

The overall cost for the most financially-attractive scenario at Massawa is around £280Million over 25 

years, and to break-even each cubic metre of water delivered by the RO plant would need to be priced at 

£4.43, which is still more than four times the cost of water at Newhaven. 

For the purposes of this research, the cost of the water delivered at Massawa was taken to be £4.43. 

The indicative costs of water supplied at Massawa and Newhaven are shown below in Table 61 . 

Table 61- Cost of water In Massawa and Newhaven 
M .... wa Newhaven 

Cost of water (£1m') 4.43 1.040 
Total (£x10'/year),"" 11 .32 2.66 
Cost per person per year based on 226.37 53.14 
user croup of 50,000 people. (£l 

7.2 Discount rate 

For economists, calculation of future costs and benefits routinely involves a discount rate. 

The logic of discounting starts from the fact that money today is worth more than the same amount of 

money in the future. 

To express current and future costs and benefits on a comparable basis, economists discount future 

amounts, converting them to the equivalent present value. 

The implication of the discount rate, in this case, is that it Is the minimum return that would be economical 

considering how the finance for the Project Is being provided. If the capital for the Project is personal 

savings, one might be satisfied with the interest that could be earned from those savings over the next 25 

years, say 5o/olyear. If the finance is held by a company that is evaluating their capital budget, the 

discount rate would reflect the highest return from the money if it were invested, including the cost of 

108 Based on 2555000m3 of water produced per year (7 ,000m3/day x 365days) . 
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money or the Interest rate required to borrow money, which might be 4 - 4.5% according to Santander 

estimates109. Then there would be a further addition to represent the company's expectation for inflation. 

It might be decided that a company or organisation would not accept any project that does not give a 

positive net present value with a 10% discount rate to account for all the uncertainty associated with the 

25-year term of a Project of this type. 

It is assumed that this type of Project would need to be financed as a public amenity by a large corporate 

entity, or govemment. The normal method for calculating the discount rate for UK govemment financed 

infrastructure Projects Is 3.5%110 above the Inflation rate (which in this case is taken, conservatively, as 

3.5%111) [Bank of England, 2012] as described in the UK Treasury's 'Green Book' [HM Treasury, 2011]. 

For the purposes of this research, the discount rate was taken as 7%. 

7.3 NPV Results 

Shown below In Figure 102 and Figure 103, are the NPV results for Massawa and Newhaven, 

respectively. 

101 This Is based on the fixed rate mortgage rate from Santander for loans up to £1,000,000 available at 
httos://www.santander.cg.uk/csgs/CgntentServer?appIO .. abbey.lnternet.Abbeycom&c-page&canal-CABBEYCOM&cid-123 
7SS4262478&empr .. Abbeycgm&leng .. en GB&pagename.Abbevcom%2fPage%2EWC ACOM TemplateG [Last viewed on 
7 August 2011]. 

110 The 3.5% Is made up principally of two elements - the social time preference for having benefits sooner rather than later, 
which Is put at 1.5%, added to the rate of per capita growth In the economy. This growth rate Is put at 2%, based on a past 
real growth rate of 2.1% per annum in the period 1950 to 1998. 

III The Bank of England stated that the Consumer Price Index (CPI) rate of Inflation was 3.5% in March 2012 although It had 
reduced considerably from a peak of 5.2% in September 2011. 3.5% is considered to be a conservative estimate. 
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Figure 102: Comparison of the value of conventionally powered scenarios at Massawa with and without NPV at 7% 
discount rate. 

Break even 
X 10

7 

o ---------------------------~~~~uuuu~~~~as .. ~~~~ --No BSR Value 
,,' . '" No BSR NPV 

--Pelton Wheel BSR Value 
" . .. Pelton Wheel BSR NPV 

--Pressure Exchanger BSR Value 

. • Pressure Exchanger BSR NPV 

, .. 
V. -G7'02e..o1 

F~~~~ .. "" . "" . "" .. " -.. " .... ~~ ~~:: 
"" .. ItI' . "I1 , . .... . . u. :r ~ 

- 1.21k.Ge . 
'''' Y - 1 .~..oe 

-150~----------5=-----------1~0~----------1~5~--------~2~0~---------2~5 

Time (Years) 

Figure 103: Comparison of value of conventionally powered scenarios at Newhaven with and without NPV at 7% 
discount rate. 

It is noteworthy that: 

1. All of the conventionally-powered scenarios at Massawa are financially viable when the water 

cost of £4.43/m3 is employed: 

• Breaking even between 11 and 16 years, and 
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• Delivering between £50 million and almost £113 million profit at the end of the 25-year life 

cycle. 

2. The only conventionally powered scenario that is financially viable when the NPV methodology 

is applied is the Pressure Exchanger BSR, and profits in the order of £113 million are reduced to 

less than £3 million. 

3. NPV methodology reduces the value of future money (including losses) , and 

4. As can be seen by Figure 102 above, the scenarios that were making an annual profit have had 

this profit reduced to the extent that, they do not, or barely break even, over the 25-year life of 

the installation. 

As shown in Table 62 below, this discounting to indicate NPV, as opposed to PV, equates to differences 

of tens of mill ions of pounds over the lifetime of the scenarios. 

Table 62: Difference between Cash flow Values and Discounted NPV after 25 years, for conventionally powered 
scenarios 

No BSR (£x10j Pelton Wheel BSR Pressure 
(£X10,) EXChang~ BSR 

-.l£X10 
Massawa 76 91 110 
Newhaven 24 17 1.6 

7.3.1 Break-even point for most financially attractive scenario 

Shown below in Figure 104 is the cumulative value for the most financially attractive renewable powered 

scenario at Massawa (Solar plus Wind power)112, and the equivalent No BSR RO plant Diesel Generator-

powered scenario. 
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Figure 104: Comparison of value of most financially-attractive renewable and conventionally-powered scenarios. 

112 This scenario was selected for further investigation as it is the most financially-attractive of all the scenarios modelled. It is 
made up of 17.34MW of solar power plus 9.93MW of Wind Power, giving a total installed power of around 27.3MW. 
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Having set the price of the water at the cost for break-even of the renewable-powered scenario, it is 

shown to break-even at the 25-year point, and the diesel generator powered scenario makes a profit of 

over £50 million over the life of the installation. 

When the externalities associated with diesel generator use are applied (amounting to just over £102 

million over the 25 years of the installation) the profitability of the solar plus wind scenario changes such 

that it is viable as shown below in Figure 105. 

8 

1.5 x 10 ,---------------------------, 
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···No BSR Solar Wind value 
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Time (Years) 

Figure 105: Comparison of value of the solar and wind scenario with diesel generator with externalities of diesel use 
applied. 

As can be seen from Figure 105 above, with the application of the externalities associated with diesel 

generator use, the solar plus wind scenario : 

• Breaks into profit at around 16 years, which is almost exactly the same time as the diesel 

generator scenario, and 

• Ends the 25-year life of the installation with over £102 million in profit, which is the value of the 

externalities applied. 

This situation changes significantly when the NPV methodology is applied, as shown below in Figure 

106. 
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Figure 106: Comparison of the NPV of the solar and wind scenario with d iesel generator with externalit ies of diesel 
use applied. 

As can be seen from Figure 106 above, the application of the NPV methodology alters every aspect of 

the financial viability of the renewable powered scenario, in that: 

• It no longer breaks into profitability 

• It no longer breaks-even with the diesel generator scenario 

• The end-of-life profit of around £102 million has now turned into a loss of more than £90 million, 

and 

• The profit difference between the solar plus wind, and diesel-powered scenarios has reduced 

from £50 million to a loss of around £65 million. 

7.3.2 Discount rate revisited 

In selecting the appropriate discount rate for long-term public policy decisions, economic theory tends to 

distinguish between two components: 

• The rate of pure time preference, and 

• The wealth-based component of the discount rate. 

The rate of pure time preference is the discount rate that would apply if all present and future generations 

had equal resources and opportunities. 

In addition, there is a wealth-based component of the discount rate, reflecting the assumption that if 

future generations will be richer than we are, then there is less need for us to invest today in order to help 

them protect themselves. 
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In the notation of the Stern Review [Stem, 2007], the discount rate, 'r', is the sum of these two parts: 

r-O+l'lg 

where: 

o (deHa) is the rate of pure time preference 

9 is the growth rate of per capita consumption. If per capita consumption is constant, implying that 9 - 0, 

then the discount rate r .. O. 

1'1 (eta), determines how strongly economic growth affects the discount rate. A larger value of 1'1 implies a 

larger discount rate, and hence less need to provide today tor future generations (as long as per capita 

consumption is growing). 

Stem takes the position that all future generations should be treated equally, except that there is a small 

probability that future generations will not exist - for example, if a natural or anthropological disaster 

destroys most, or the entire human race. The probability of destruction of humanity is taken by Stem as 

0.1 % per year; pure time preference (6) is therefore set equal to 0.1 %. That is, Stem suggests that, we 

are only 99.9% sure that humanity will still be here next year, so we should consider the well-being of 

people living next year to be, on average, 99.90/0 as important as that of people living today. Stated 

simply, the only reason that the current generation should not consider the needs of those in the future is 

due to the small possibility that the future generation will not exist, not because the future generation will 

be rich enough to manage the previous generations' impact on the environment. 

To calculate the discount rate, Stem estimates that the growth of per capita income will average 1.3% 

per year, and sets 1"1 = 1. Therefore, the Stem Report discount rate is: 

r - 6 + 1"19 - 0.1% + (1x1.3%) .. 1.4% 

This is obviously significantly lower than the 7% employed based on the notion of the installation being 

financed as a capital investment Project, and makes a marked difference to the viability of the scenario, 

as shown in Figure 107 below. 
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As can be seen from Figure 107 above, the reduction of the discount rate means that the solar plus wind 

scenario breaks even in less than 18 years, and makes a profit of over £58.5 million over the 25-year life 

of the installation. 

Although the application of such a reduced discount rate is not justifiable for a commercial concern, as it 

reflects savings to future generations, (which they cannot physically pay in advance), it is clear that: 

• The discount rate has such a large impact on the financial viability of the scenario, and 

• It is worth considering the application of the Clean Development Mechanism (COM) or local 

incentive initiative to properly acknowledge the hidden benefits of: 

o Not delaying implementation of Projects of this type, and 

o Reducing the burden of climate change on future generations. 
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8 Scrutiny 

This section: 

• Assesses the impact of the modelling on the accuracy of the results 

• Assesses the variables that are most likely to impact on the viability of scenarios , and 

• Identifies changes to the scenarios modelled that could impact on their viabil ity . 

8.1 Impact of modelling on accuracy of results 

8.1 .1 Assessment of accuracy of RO plant profiles 

This section provides an indication of how accurate the modelled RO plant operating profiles are, when 

compared to actual 'real world' RO plants. The detail of how the modelled RO plant profiles were derived 

is available in Appendix B. 

The specific power consumption profiles are shown below for the modelled No BSR, Pelton Wheel BSR 

and Pressure Exchanger BSR RO plants, in Figure 108, Figure 109, and Figure 110, respectively, with 

their optimum water production profiles . 
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Figure 110: Pressure Exchanger BSR RO plant power consumption profile 

These figures indicate, unsurprisingly, that the most efficient water production occurs at higher 

X· 8.Jl3 
Y: 3 

Z'" 
::i 

temperatures. Also shown above in Figure 108, Figure 109 and Figure 110 are the best specific power 

consumption rates modelled at each site, based on the highest feedwater temperatures (33QC and 18QC, 

for Massawa and Newhaven, respectively) . 

These are consolidated in Table 63 below. 
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Table 6 3: Comparison of modelled RO plant and real world ROplant power consu mptlon 
Type of Real world data Modelling data 
RO Plant Normal Moat Moat Moat 

expected efficient efficient at efficient at 
range (kWhlm') M .... wa Newhaven 

(kWhlm')·" 338C 18IC 
(kWhlm') (kWhlm') 

No BSR 4-7 5.0 6.4 
Pelton 3.1-5.9 2.7* 2.2 2.7 Wheel 
Pressure 2.2 -3.1 1.7** 1.6 2.0 Exchanger 

• Taken from 'Energy Recovery in Caribbean Seawater Reverse Osmosis [Stover and Cameron, 2007] 

··Taken from 'Energy recovery devices help lower cost of RO Desalination [Stover, 2007] . 

••• Taken from 'SWRO Energy Recovery Technology Shatters DeSign Barriers' [MacHarg, b]. 

8.1.1.1 No BSR 

All specific power consumption figures for the No BSR model, are within the range expected for this type 

of RO plant, so for the purpose of this research, are taken as correct. 

8.1.1.2 Pelton Wheel BSR RO plant 

The model is optimistic for the Pelton Wheel BSR RO plant, but it would seem reasonable that the warm 

waters of Massawa would deliver some benefit above the normally expected range. So, for the purposes 

of this research, an error of + 10% was applied to the modelled data, at both Massawa and Newhaven to 

account for the over estimation of efficiency. 

8.1.1.3 Pressure Exchanger 

The model is also slightly optimistiC for the Pressure Exchanger BSR RO plant, and (as for the Pelton 

Wheel) it would seem reasonable that the warm waters of Massawa would deliver some benefit above 

the normally expected range. The increase in efficiency for the Pressure Exchanger BSR RO plant is less 

than that of the Pelton Wheel, with: 

• The best efficiency at Massawa being just below the most efficient case, and 

• The most efficient at Newhaven being above the most efficient. 

So, for the purposes of this research, an error of +5% was applied to the modelled data at Massawa to 

account for the over estimation of efficiency, and the profile for Newhaven was taken as correct. 

8.1.2 Impact of the use of polynomials on the accuracy of the results 

The fitting of polynomials to data values and modelled results was extensive within this research, and so 

it is likely that there is a potential error between the 'real' data and the results obtained. It is noteworthy 
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that there is also a degree of error associated with explicit and implicit working assumptions used within 

this research. The impact of these working assumptions on the results has not been calculated, due to 

time constraints. 

The main areas where polynomials were employed were: 

• Feedwater temperature 

• Power used (particularly for the variability of pumping efficiency at varying loads) 

• RO plant operating profiles, and 

• Renewable power Inputs. 

~ (or the coefficient of determination) is used within this section, which ranges in value from 0 to 1. It Is 

the square of R (the correlation coefficient), which ranges in value from -1 to 1 where: 

A value of 1 Implies that the modelled data represents the actual data exactly, and could be described by a 

straight line graph with all data pOints lying on that line for which Y increases as X increases. 

A value of -1 implies that the modelled data represents the actual data exactly, and could be described by a 

straight line graph with a/l data points lying on that line for which Y decreases as X increases. 

A value of 0 implies that there is no linear correlation between the modelled and actual data. 

The error value returned by the Excel spreadsheets Is R2, and for the purposes of this research, the 

square root of this value was calculated to provide a value of R. This 'R' value was taken to represent the 

percentage error between the modelled and actual data. 

8.1.2.1 Feedwater temperatures 

Appendix B gives details of the methodology used to model the water temperature for Massawa, for 

which accurate raw data was available. 

The polynomial approximation used for seawater temperature at Newhaven, Is shown below In Figure 

111 with its R2 value. 
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Figure 111: Average feedwater temperature at Newhaven 

As can be seen from Figure 111 above, the use of the polynomial with an R2 value of 0.995 indicates an 

error 'R' value against the original data of 0.9975,or an error of ±0.25%. 

8.1.2.2 Pumping efficiency at varying flowrates 

It is clear that to achieve the various flow rates (feedwater delivery, membrane pressurisation, etc) , there 

is a need to vary fiowrate. The working assumption for the initial assessment was that the pump and 

motor system were acting at 80% efficiency, across the full working range. 

This constant efficiency was considered unreasonable due to friction , windage losses, design for 

maximum efficiency at a specific load, etc. The 'DOE Tip sheet 2' [US DoE, 2007], allowed the 

relationship, shown below in Figure 112, to be derived, between: 

• The proportion of maximum flowrate, and 

• The corresponding efficiency made up from expected motor Adjustable Speed Drive (ASD l 13
) 

and pump efficiencies at the reduced flowrate. 

11 3 ASDs save energy by varying the pump's rotational speed to vary the fiowrate to achieve optimum power consumption . In 
centrifugal pumping applications , with no static lift, power requirements vary, as the cube of the pump speed and small 
decreases in speed or flow rate can significantly reduce energy use. For example, reducing the speed (flow rate) by 20% can 
lower input power requirements by approximately 50%. 
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Figure 112: Expected efficiency of pump and motor at various proportions of flowrate 
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The polynomial equation that corresponds to the curve is included in Figure 112 above. This polynomial 

was then applied to : 

• The No BSR RO plant for the Feedwater and high-pressure pumping power requ ired, and 

• The power consumed by each of the BSR plants for: 

o Power to pressurise feed , and 

o Power to move feed/ process water as requ ired. 

The use of the polynomial with an R2 value of 0.9996 shown above in Figure 112 indicates an error 'R' 

value against the original data of 0.9998, or an error of ±0.02%. 

8.1.2.3 RO plant operating profiles 

The RO plant operating profiles were derived in two stages of polynomial application : 

• Application of the polynomials to the original 14 feedwater temperatures (see example at 

Appendix B) 

• Then using these polynomials to approximate the orig inal 14 feedwater temperatures x14 water 

production levels x14 power consumed dataset, to provide 3900 discrete polynomials (one for 

each 0.1 degree rise in feedwater temperature, with in the operating range). 
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The No BSR RO plant orig inal data is shown below in Figure 113 with the polynomial-derived operating 

profile. 
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Figure 113: Comparison of No BSR RO plant operating profile derived from original data and the approximated 
using polynomials 

The profiles appear reasonably simi lar, but it is apparent that there a number of differences, as shown by 

the double-headed arrows, and that the two profiles cross over. From visual inspection it is taken that 

there is a maximum error of 5% between the original data and the approximated polynomial surface for 

any given input values of feedwater temperature and power. 
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8.1.2.3.2 Pelton Wheel BSR RO Plant 

The Pelton Wheel BSR RO Plant operating profile derived from both the original data and the 

polynomials is shown below in Figure 114. 

300 -

~ 250 -
~ e 
0; 
E 
.!! 200 -.g t u . 
'0 ., 
~ 150 -
e 
a. 
~ ., 

Original Data ~ 
1;; 
~ 100 -

Power- kW 

Figure 114: Comparison of Pelton Wheel BSR RO plant operating profile derived from original data and the 
approximated using polynomials 

As can be seen from the double-headed arrows, there is a discernable difference between the two 

surfaces from around 600kW upwards. Again, based on visual inspection, it is estimated that there is an 

underestimate of 5% maximum, between the orig inal and polynomial -derived data, for any given input 

values of feedwater temperature, and power. 

8.1.2.3.3 Pressure Exchanger BSR RO Plant 

The Pressure Exchanger BSR RO Plant operating profile derived from both the original data and the 

polynomials is shown below in Figure 115. 
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Figure 115: Comparison of Pressure Exchanger BSR RO plant operating profile derived from original data and the 
approximated using polynomials 

The Pressure Exchanger BSR RO plant operating profile was manipulated (to remove the curve at the 

bottom of the profile, which produced two water production results for a given input power) , as explained 

at Appendix B. Due to this, and the difference between the original data and the polynomial-derived 

profile, (shown above in Figure 115 which indicates that the two profiles cross-over), it is estimated, by 

visual inspection, that there is an error of around 10% in the water produced, for any given input values 

of feedwater temperature and power. 
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8.1.2.4 Impact of approximations for primary and secondary power 

The following section identifies the level of error associated with the use of polynomial approximation for 

the primary and secondary renewable power sources employed. 

For the purposes of this research, it is assumed that the derivation and calculation of hydrogen fuel 

production, and the estimation of its benefit, are accurate. 

8.1.2.4.1 Solar power 

The solar power data was developed using HOMER. No data was found on the accuracy of HOMER, but 

as the derivations were arrived at using average values , it is assumed to be acceptable . 

8.1.2.4.2 Tidal current power 

The use of polynomials for tidal current power was to derive the power output from SeaGen turbines from 

the prevailing tidal current stream speed. 

Shown below in Figure 116 is the polynomial applied to the tidal current speed at Newhaven, with the 

associated R2 value. 
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Figure 116: SeaGen Turbine power output at varying tidal current speeds at Newhaven approximated using 
polynomials 

As can be seen from Figure 116 above, the use of the polynomial with an R2 value of 0.999 indicates an 

error against the original data of 0.9995, or an error of ±O.05% associated with the derivation of tidal 

current power from the SeaGen turbine. 
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8.1.2.4.3 Wind power 

Polynomials were employed to derive the wind power production profile (Figure 117) of the scaled-up 

Fuhrlander 250 wind turbine, at varying wind speeds, with the associated R2 value. 
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Figure 117: Scaled-up Fuhrlander 250 power output at varying wind speeds, approximated using polynomials 

As can be seen from Figure 117above, the use of the polynomial with an R2 value of 0.996 indicates an 

error 'R' value against the orig inal data of 0.998, or an error of ±0.2% associated with the derivation of 

wind power from the scaled-up Fuhrlander wind turbine . 

8.1.2.4.4 Wave power 

Polynomials were employed to derive the wave power production profile (Figure 118) of the Wave 

Dragon device at varying wave heights, with the associated R2 value. 
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Figure 118: Wave Dragon power output at wave period of 7 seconds with varying wind speeds approximated using 
polynomials 

As can be seen from Figure 118 above, the use of the polynomial with an R2 value of 0.999 indicates an 

error 'R' value against the original data of 0.9995, or an error of ±0.05% associated with the derivation of 

wave power from the Wave Dragon device. 

8.1.2.4.5 Use of hydrogen fuel 

The use of hydrogen fuel was modelled without the use of polynomials and is taken to be accurate at a 

constant 22% round-trip efficiency at all loads. 

8.1.2.5 Conclusion 

Of the errors identified above, there were two that had a large impact on the results : 

• Accuracy of RO plant profiles, and 

• Fitting of polynomials to RO plant profiles . 

The other errors identified above are shown below in Table 64, and are considered to be relatively small . 

Table 64: Minor errors associated with polynomial approximations 
Variable Massawa (t%) Newhaven (t%) 
Feedwater temperature 0 0.25 
PumpinQ efficiency 0.02 0.02 
Tidal current power - 0.05 
Wind power 0.2 0.2 
Wave power 0.05 0.05 

As such , it is considered that the errors due to modell ing approximations are general ly small , but two 

errors associated the approximation of RO plant profiles, shown below in Table 65, are more significant. 
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Table 65: More si nificant errors associated with modellina approximations 
RO plant E_I _rid FlO DiaN _ ERO Dionl DC wall"" ..... ' Ile 

Massawa (Ok) Newhaven Minimum Maximum 
(Ok) (Ok) (Ok) 

No BSR 0 0 -5 +5 
Pelton Wheel -10 -10 +5 +5 
BSR 
Pressure 
Exchanger -5 +1 0 -1 0 +10 
BSR 

As shown below in Table 66, th is range of errors has the potential to affect five of the results which are 

closest to financial viabi lity when externalities are applied at Massawa, but has no effect on the resu lts at 

Newhaven, as shown in Table 67 below as they are too far from financial viability. 

Table 66: Estimated im act of Dolmomial approximations at Massawa 

~ 
Type 01 RO Type 01 Hydrogen Coat ratio Coal rallo estimated 
plant SeconcWy Fuel egaJnat egaJnat effect 01 

Power used? conventional conwntlonal polynomial 
energy with ..,proxlmallons 

extemaII1Iea onllnanclal 
viability. 

1 NoSSR May make 

None No 1.46 1.01 scenano with 
externalities 
v,able. 

2 Pelton Wheel 
None No 1.694 1.392 

None 

Pressure None 
Exchanger None No 1.643 1.373 

3 No SSR 
wind No 1.227 0.85 

None 

Pelton Wheel wind No 1.353 1.112 None 

Pressure None 
Exchanger wind No 1.423 1.19 

No SSR 
wave No 1.289 0.894 

None 

Pelton Wheel None 
wave No 1.286 1.057 

Pressure None 
Exchanger wave No 1.273 1.064 

4 No SSR May make 

None Yes 1.47 1.02 scenario with 
externalibes 
viable. 

Pelton Wheel None Yes 1.434 1.178 None 

Pressure None 
Exchanger None Yes 1.402 1.172 

NoSSR 
wind Yes 1.298 0.9 

None 

Pelton Wheel wind Yes 1.23 1.012 None 
Pressure May make 
Exchanger 

wind Yes 1.212 1.013 scenano With 
externalities 
Viable. 

No SSR None wave Yes 1.261 0.8746 

Pelton Wheel May make 

wave Yes 1.189 0.9773 scenano With 
externalities 
unviablo. 

Pressure May make 
Exchanger 

wave Yes 1.226 1.024 scenano With 
externalities 
viable. 
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T bl 6 E I a e 7: st mate dl I I mpact 0 ' pOlynom a approx mat ons at N h ew aven 

I T~OfRO .=,.:, ~ c;:o c;.':' ==' pIIIIt 
Poww --, ~ --.tIoI.r por,namlel ....., ..... .....iiidi ........ 

extImeIItIeI onll.-llil 
vt.bIIIIY. 

1 No BSA 
None No 2.969 2.848 None 

2 Pelton 
Wheel None No 2.525 2.479 None 

Pressure 
Exchanger None No 2.469 2.426 None 

3 NoSSA 
wind No 1.527 1.465 None 

Pelton 
Wheel wind No 1.38 1.355 None 

Pressure 
Exchanger wind No 1.358 1.334 None 

No SSA 
No 1.443 1.384 None wave 

Pelton 
Wheel wave No 1.196 1.174 None 

Pressure 
Exchanger wave No 1.188 1.168 None 

4 No SSA 
None Yes 3.113 2.986 None 

Pelton 
Wheel None Yes 2.471 2.425 None 

Pressure 
None Yes 2.368 2.327 None Exchanger 

NoSSA 
Yes 1.57 1.507 None wave 

Pelton 
Wheel wave Yes 1.209 1.187 None 

Pressure 
Exchanger wave Yes 1.204 1.184 None 

NoSSA 
wind Yes 1.504 1.443 None 

Pelton 
Wheel wind Yes 1.265 1.242 None 

Pressure 
Exchanger wind Yes 1.198 1.177 None 

It is concluded overall, that the more significant modelling errors, which have been approximately 

assessed as part of this research are likely to have some impact on the results, but they would need to 

be assessed more accurately to properly quantify the impact on the results. 

8.2 Variables that are most likely to impact on viability of scenarios 

It is considered that six variables have potential for significant impact on the viability of the scenarios 

modelled. These are: 

• Diesel Fuel costs 

• Solar power 

• Wind Speed 

• Wave Height 

• Feedwater temperature, and 

• The impact of intermittent operation on the RO plant. 
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These variables have a strong influence on the financial viability findings of this research . 

8.2.1 Diesel Generator costs 

As can be seen from the results thus far, the financial viability of the Massawa scenarios is heavily reliant 

on the comparison with the life cycle costs of the use of diesel generators, and in particular, the costs of 

the diesel fuel itself. 

The diesel fuel cost over the past 20 years in Eritrea have been particularly erratic [Ebert et ai , 2009], as 

shown below in Figure 119. 
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Figure 119: Historic diesel fuel price in Eritrea from 1993 - 2008 

As can be seen from Figure 119 above, from 1993 - 2008, the cost difference of diesel represents an 

annual increase of 25.2% per year. If the sample period is then taken as 2002 - 2008, the cost difference 

almost triples, to an increase of 70.8% per year. 

For the purposes of this research, it was considered more reasonable to apply a straight line graph to 

interpolate the diesel fuel cost over the life of the installation, as shown below in Figure 120 as the 'Trend 

Line'--- . 
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Figure 120: Diesel fuel price in Eritrea over life of RO plant installation 
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This trend resulting in fuel price rises as shown in Table 68 below. based on the assumption that the RO 

plant installation is constructed in 2012. This equates to an annual rise of just below 5%. and in 2036 is 

still below the diesel fuel price in the UK [AA. 2011]. 

T able 68: Diesel fuel costs over life of RO Dlant Installatlo n. 
Year eost of diesel fuel (£/Litre) 

2012 0.6248 

2013 0.6557 

2014 0.6866 

2015 0.7175 

2016 0.7484 

2017 0.7793 

2018 0.8102 

2019 0.8411 

2020 0.872 

2021 0.9029 

2022 0.9338 

2023 0.9647 

2024 0.9956 

2025 1.0265 

2026 1.0574 

2027 1.0883 

2028 1.1192 

2029 1.1501 

2030 1.181 

2031 1.2119 

2032 1.2428 

2033 1.2737 

2034 1.3046 

2035 1.3355 

2036 1.3664 

These diesel fuel prices result in the generator size to diesel fuel costs shown below in Figure 121 . 
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Figure 121 : Varying diesel fuel price over life of RO plant installation 

The diesel fuel costs are shown below in Figure 122 for their particular reverse osmosis plant scenarios, 

taking the increase in diesel price into account. 
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Figure 122: The cost of diesel fuel for different RO Plant scenarios, over 25 years 

As can be seen from the double-headed arrows in Figure 122 above, the greatest difference in cost 

occurs with the No BSR scenario, due to the higher diesel fuel consumption for this scenario. 
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The results of increasing the diesel fuel costs for each of the conventionally-powered scenarios, is shown 

below in Table 69. 

Table 69: P h ercen age c ange n overa " cos 0 plan t fRO I scenarios d t ' ue 0 increasing d' lese I fuel costs. 
Cons1anl Prevloua Updeled Updated with Percentage Percentage 

fuel without with without extemalltlee 1_lncosl Inc_In 
ell\em8llllea extemalltlea e~11tIee (Ex10') without cost with 

(£x101) (Ex101) (Ex101) externalllles extemalltlee 
due 10 due 10 

Inc-'ng Increasing 
d ..... cost. (%) d ..... cost. 

('%0) 

NoSSR 
23.16 33.40 27.83 38.06 20.1 14.0 

Pelton Wheel 
20.48 24.92 22.52 26.96 9.9 8.17 SSR 

Pressure 
17.11 20.47 18.66 22.02 9.0 7.6 Exchanger BSR 

Table 70 below shows the estimated impact of increasing diesel fuel costs on the financial viability of the 

scenarios. 

Table 70: Estimated impact of increaSing di esel fuel costs at M assawa 

f Type of Type of Hydrogen c:o.tmlo eo.lmIo EaIIm8Ied effect of 
ROp"", Secondery Fuel UMd? eplnet epInet IncreuIng d ..... 

"- collftllllonel co_lonel fueI_ 
energy with 

extemall1lea 
1 Would make scenario 

No SSR None No 1.46 1.01 with elcternalities 
financially viable. 

2 Pelton None 
Wheel None No 1.694 1.392 

None 
Pressure None No 1.643 1.373 Exchanger 

3 Would be within 2.5% 
NoSSR wind No 1.227 0.85 ollinancial viability 

without elcternalities. 
Pelton wmd No 1.353 1.112 

None 
Wheel 

Pressure 
None 

Exchanger wmd No 1.423 1.19 

Would be within 9% of 
No SSR wave No 1.289 0.894 financial viability 

without elcternalities. 

Pelton 
Would make scenario 

wave No 1.286 1.057 WIth externalities 
Wheel financially viable. 

Pressure 
Would make scenano 

wave No f .273 1.064 with elcternalities 
Exchanger financially viable. 

Would make scenario 
NoSSR None Yes 1.47 1.02 with elcternalities 

financially viable. 
Pelton None Yes 1.434 1.178 None 
Wheel 

Pressure None 

Exchanger None Yes 1.402 1.172 

4 
Yes 1.298 0.9 

None 
NoSSR wave 

Pelton Would make scenario 
wave Yes 1.23 1.012 with externalities Wheel 

finanClal.ly.viabie. 

Pressure 
Would make scenano 

wave Yes 1.212 1.013 with externalities 
Exchanger financially viable. 

No SSR wind Yes 1.261 0.8746 
None 

Pelton wind Yes 1.189 0.9773 None 
Wheel 

Pressure Would make scenario 
wmd Yes 1.226 1.024 WIth elcternalities 

Exchanger financially viable. 

As can be seen from Table 70 above, a very conservative increase in the diesel fuel price results in: 

• A large proportion of scenarios (7 out of 15 that were not already financially viable with 

externalities appl ied) becoming financially viable, and 
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• The No BSR scenarios, with wind and wave, closing to 2.5% and 9% of financial viability without 

externalities, respectively. 

The financial viability results presented in this thesis for Massawa are highly susceptible to prevailing 

diesel fuel costs. It is considered highly likely that increases in diesel fuel costs, associated with reduced 

supplies over the next 25 years, will result in diesel fuel costs increasing significantly more than 

modelled. This will Improve the prospects for financial viability of the Massawa RO plant scenarios. 

8.2.2 Reliance on Solar power for viability 

As can be seen from the results thus far, the solar-powered scenarios have been quite successful 

financially, when compared to the conventional scenarios. This is not particularly surprising considering 

the quantity of sunlight in Eritrea, and the externalities associated with the use of diesel fuel, but the solar 

array considered for this research assumes that 10% of the available radiation at any time when the sun 

is shining is captured and converted to usable electrical power. Although 10% is the lowest efficiency 

associated with mono-crystalline silicon, (see Appendix B), the model may have given the solar power 

delivered at Massawa more credit that it is due, because there are other factors that affect the 

performance of PV panels that have not been considered. 

In reality, the output of a solar cell depends upon several factors beyond those modelled: 

• The properties of the semi-conductor material 

• The intensity of solar Irradiance 

• The cell temperature, and 

• The nature of the external loads the cell supplies. 

The combination of these factors gives rise to the characteristic operating curves, of generated current 

against the output voltage for the solar cell (known as I-V curves). The I-V curve for the Sharp 235 watt 

mUlti-purpose module used as the basis for the modelling, Is shown below114 in Figure 123. 

114 Available at http;//www.solareleclfiGSuDPly.com/Solar Paoels/SharpllmageS/IY-Curves-235.gjf [Last viewed on 7 August 
2011). 
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Figure 123: The characteristic I-V operating curve for the Sharp NU-23SF1 solar module 

The Power vs. Voltage curve (the thin-lined curves) in Figure 123 above, indicates the approximate 

maximum power delivered at each corresponding level of irradiance. 

8.2.2.1 Impact of ambient temperature 

There is also the impact of ambient temperature on the efficiency of the power output from the panel, 

which in general means that a crystalline silicon PV module's efficiency will be reduced by about 0.5 

percent for every degree C increase in temperature. PV modules are usually rated at module 

temperatures of 25"C (7JOF). In addition , they normally operate at about 20"C above the ambient air 

temperature, which further reduces the PV module's efficiency. For Massawa, with its typically high 

ambient air temperature of 45"C but which can reach 50"C, this would mean a 22.5% reduction ll5 in 

power output (Butay and Miller). 

115 Panel temperature would be 45"C above normal test rated temperature of 25"C giving a reduction in power output of 
22.5%, due to the combination of: 

Ambient air temperature being 25"C above normal test rated temperature of 25"C, giving a (25 x 0.5 =) 12.5% 
reduction in power output and 

• Panel working temperature being a further 20"C above ambient temperature giving an additional (20 x 0.5) = 10% 
reduction in power output. 
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The effect of the solar power available for the panel , and the impact of 50'C ambient temperature, is 

shown below in Figure 124 in relation to the modelled power output. 
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Figure 124: Comparison of modelled solar power output against rated data, with and without ambient temperature 
effect. 

As can be seen from Figure 124 above, the maximum possible power output is around 60% greater than 

the value modelled, but once the effects of high ambient temperature are appl ied , this margin reduces to 

around 26%. This, though, is without taking into account other potential variables, which cou ld reduce the 

power output such as: 

• The 'clearness factor' applied within the renewable energy modelling software (HOMER) 

• Potential for overcast days 

• Cleanliness of the panel surface 

• Ability of the RO plant to operate at the maximum power output level for the prevail ing 

irradiance. 

So, it is considered that in practice, the modelled solar power scenarios, with their relatively simplistic 

10% rating , are probably close to correct, and the financial viability results are not significantly affected, 

but the following will need to be investigated further if the modelled results are to be accurate: 

• The local 'clearness factor' and potential for overcast days at Massawa, and 

• The practicalities of operating and maintaining the solar scenarios. 

205 



8.2.3 Reliance on wind power for viability 

Wind power (as an established, and relatively cheap source of power) has been identified within the 

financially-viable scenarios at Massawa based on the wind speed profile obtained from the renewable 

energy modelling software (HOMER). 

8.2.3.1 Scrutiny of the wind profiles for each site 

The Weilbull distribution was employed within HOMER, to derive wind speeds for each hour of the year, 

based on monthly averages. The 'Shape Factor' is a feature of the Weilbull distribution which 

approximates the level of erraticness of the wind speed, over a given time period, and for the purposes of 

this research was taken as '2'. In reality , according to the 'wind evaluation ' website [Wind Site 

Evaluation), it ranges in value from about 1.5 to 3.0, and hence the viability results are susceptible to 

variation , based on this range of the erraticness parameter. 

To investigate the potential impact of different levels of wind speed 'erraticness' for Newhaven and 

Massawa, the following 'k' value parameters were remodelled within HOMER. 

• 1.5 

• 2 

• 2.5, and 

• 3. 

Shown below in Table 71 , are the percentages of annual wind speed distribution that are below the 'cut 

in' speed of 3m/s, which will not generate power for each of the 'k' values. 

Table 71 : Prop I ort on 0 annua w n spee s I I d d bel ow cut In' speed at each s te at dlff ent 'k' values. er 
'k'Value Portion of annual wind Difference from k=2 (%) 

.peed below 'cut In' 
sl)8td (%) 

Ma.sawa Newhaven Massawa Newhaven 
1.5 33.3 26.7 9.7 8.8 
2.0 23.6 17.9 0 0 
2.5 17.5 12.2 -6.1 -4.3 
3.0 12.7 8.5 -10.9 -9.4 

As can be seen from Table 71 above, the portion of the year that contains wind speeds below the 

threshold to generate power, varies between around 10 and 9% from the k=2 value, for Massawa and 

Newhaven, respectively. It is evident that any changes to the 'k' value within the scenarios, would have 

an appreciable impact on the results. 

Figure 125 and Figure 126 below, show the power produced over one year, based on the various k 

values, from the scaled-up Fuhrlander 250 wind turbine at Massawa and Newhaven, respectively. 
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Figure 125: Comparison of power produced by scaled up Fuhrlander 250, for various k values, at Massawa 
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Figure 126: Comparison of power produced by scaled up Fuhrlander 250, for various k values, at Newhaven 

Table 72 below gives a comparison of the power produced over the course of the year, for various k 

values . The values for k = 2 (used in this research) can be seen in context. 
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Table 72: Comparison of wind power produced in relation to k=2 
WelibulJ Newhaven Massawa 
(k) value 

Power Percentage Power Percentage 
produced Increasel produced Increasel decrease 

during year decrease on k = 2 during year on k =2 power 
(kWh) power production (kWh) production 

1.5 3.6x106 5.9 2.7 x1 06 12.5 

2 3.4 x106 0 2.4 x106 0 

2.5 3.2 x106 -5.9 2.2 x1 06 -10.7 

3 3. 1 x106 -11.8 2.0 x1 06 -15.4 

8.2.3.2 Conclusion 

Table 73 and Table 74 below summarise the conclusions from the scrutiny of wind power k-value 

variability for Massawa and Newhaven, respectively. The conclusions are based on : 

• The maximum potential change in energy produced 

• The extent of financial viability/ shortfall to achieve financial viabil ity , and 

• The proportion of wind power within the scenario. 

Table 73: Conclu sions for Impact of a k value change (from '2' used in the modelling) for Massa wa wind scenarios 
RO Plant Hydrogen Cost I'8l1o Cost,.Uo Impact 01 k VIIlues 
Type fuel UMd? egelnst egelnst 

conventlonel conventlonel 
power powerwtth __ mles 

It is unlikely that the use of a different k value 
would make this scenario viable without 
externalities being applied, or be made unviable 
with externalities applied as: 

NoBSR No 1.227 0.85 · The amount of wind power available 
could only increase around 12.5% 

· This scenario only uses 36% wind 
power giving a maximum change of 
around 4.5%. 

It is unlikely that a change of k value resulting in 
12.5% more power being produced would make 
this scenario financially viable with externalities 

Pelton 
applied as: 

Wheel 
No 1.353 1.112 · It is more than 11% away from 

financial viability, and 

· The scenario is made up of around 
80% wind power giving a 9.6% 
maximum change. 

It is unlikely that a change of k value resulting in 
12.5% more power being produced would make 
this scenario financially viable, even with 

Pressure externalities applied as: 

Exchanger 
No 1.423 1.19 · It is 19% away from financial 

viability, and; 

· The scenario is made up of around 
80% wind power giving a maximum 
of less than 10% change. 

it is unlikely that a different k value would make 
this scenario unviable when externalities are 
applied, as: 

· The maximum reasonable decrease 

NoBSR Yes 1.261 0.8746 
in power is around 15% 

· It is over 12.5% within financial 
viability, and; 

· This scenario uses around 70% 
wind power giving a maximum 
chanQe of 10.5%. 

It is likely that the use of different k value 
decreasing the power available by 15% would 
make this scenario unviable with externalities 

Pelton 
applied, as: 

Wheel 
Yes 1.189 0.9773 · It IS less than 2.3% within financial 

viability, and 

· The scenario is heavily reliant on 
wind which makes up over 70% 
giVing a maximum chanQe of 10.5%. 

It IS poSSIble that a different k value increasing the 
power available by 15% would make this scenario 
viable with externalities applied. as: 

Pressure 
Yes 1.226 1.024 · ~ is less than 2.5% away from 

Exchanger financial Viability, but 

· The scenario is heavily reliant on 
wind which makes up around 70% 
aivina a maximum chanae of 10.5%. 
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NDBSR No 1..52'7 1.A15 

1.3& 1.355 

1..31511 

NDBSR Ya UBI 1.AC3 

- 1.2115 

Ya U77 

Overall. it is expected that varying 'k' vakIes wit have a rll'f1ited iIq)act on the financial viability of the 

scenarios at Massawa, (particljarty in making scenarios financiaIy viable when extemaities are appIied). 

and no in.,act at aD at Newhavef'I. This said, 1here is the potelilial for increases and decreases in wind 

power. to have a cisplDpOftionale effect on the water p«dJced, and 1herefore viabiily, by either: 

• Providing cditionaI power at a time when the primary source does not ftn:tion. or 

• Providing acHtionaI power at a time when the primary source is akeady pnMcing the maximum 

amount of water. 

As such, it is COItsidered that a project cllhis type would benefit from having on-site wind speed daIa. 

There is also a potential COIIC9f11 that 50,000 people may rely on potenIiaIIy-«ralic wind supplies for their 

cilillking water, and it may be that in practice: 
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• There is a ceiling (say 20% - 40%) placed on the percentage of installed power that is wind-

based, or 

• The installed solar power (and hydrogen fuel) must be such as to deliver a set amount of water 

(say 70%) unassisted by wind. 

What design methodology is best, and what limits to apply, are also considered to be worthy of further 

investigation, to ensure that in practice the water supply is not unduly threatened by the erraticness of the 

prevailing wind. 

8.2.4 Reliance on wave power for viability 

A simple scale-up model was generated where wave power as an effective source of power was 

identified as financially viable for a number of scenarios, based on the profile obtained from ARGOSS, 

(detailed in Appendix 8 ). The most frequently-occurring wave height for each month was applied. 

In reality, the wave spectrum is a complex fluid landscape, made up of waves on top of waves. 

The wave height value that is normally employed to rationalise this complexity is the significant wave 

height. Significant wave height (Hs) 116 is defined as the average height of the highest one-third waves in 

a wave spectrum and, is shown below in Figure 127 in relation to the probability of waves of all heights. 

This relates to the fact that the wave height estimated by a trained observer will only be a fraction of the 

wave heights occurring at a particular time. 

8.2.4.1 Scrutiny of the wave profiles for each site 
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The significant wave height is depicted in Figure 127. It can be seen (since the x-axis shows increasing 

wave height) that the most probable wave height offers a lower value than the significant wave height. 

Shown below in Figure 128 and Figure 129 are the monthly wave height distribution curves for Massawa 

and Newhaven, respectively, indicating approximate wave height ranges associated with 'most probable' 

and 'significant wave heights' . 
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Figure 128: Wave height distribution at Massawa. 

Figure 129: Wave height distribution at Newhaven. 

As can be seen from Figure 128 and Figure 129 above, using the most probable wave height gives a 

much lower monthly wave height than if the significant wave height were used. 
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It would appear that the modell ing has underestimated the wave height, and the impact of this 

underestimation is shown below in Figure 130, which illustrates the difference in power expected using 

approximate averages at each site. 

6000 
Difference in power produced by Wave 
Dragon at 11m1s and 2 5mls at Newhaven 

0.5 

Difference in power produced by 
Wave Dragon at 0 7m1s and 1 2m1s at 

Massawa 

1.5 2 2.5 
Wave HeIght (m) 

I- Power delivered by Wave Dragon I 

3 3.5 4 4.5 5 

Figure 130: Difference in average power produced between 'most probable' and 'significant wave heights', at 
Massawa and Newhaven. 

It can be seen that the effect on power production at Massawa is relatively limited with around an 

additional 50% wave power due to the use of significant wave height. but the improvement at Newhaven 

is more significant , almost doubling due to the use of significant wave height. 

As such, it is considered that the use of significant wave heights would have the impacts described in 

Table 75 and Table 76 for Massawa and Newhaven, respectively. The scenario 's highlighted in yellow 

are likely to be impacted by the use of significant wave height. 
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a e : mpact 0 uSing sigm Icant wave T bl 75 I T h . h elgl tat M assawa 
Type of Solari Hydrogen Ratio of Ratio against Impact of using significant wave 
RO plant Wave Fuel used? renewable conventional height 

Power scenario cost with 
(MW) against externalities 

conventional 
Potential to become financially 
viable without externalities, as: 
· 50% more wave power could be 

No BSR 
15.821 

No 1.289 0.894 
available 

22.14 • This scenario uses more than 
60% wave power, and 

• Has less than 30% shortfall to 
viability. 

Very likely to become financially 
viable without externalities as : 
• 50% more wave power could be 

available 
• This scenario uses around 80% 

Pelton 41 
No 1.286 1.057 

wave power, and 
Wheel 12.53 • Has less than 30% shortfall to 

viability. 
• This scenario will almost certainly 

become viable once externalities 
are applied , due to shortfall of 
only 6%. 

Very likely to become financially 
viable without externalities , as: 
. 50% more wave power could be 

available 
• This scenario uses around 80% 

Pressure 2.981 
No 1.273 1.064 

wave power, and 
Exchanger 12.15 • Has less than 30% shortfall to 

viability. 
• This scenario will almost certainly 

become viable once externalities 
are applied , due to shortfall of 
only 6%. 

Potential to become financially 
viable without externalities, as : 
. 50% more wave power could be 

No BSR 9.691 
Yes 1.298 0.9 

available 
19.73 • This scenario uses more than 

65%% wave power, and 
• Has just over 30% shortfall to 

viability. 
Very likely to become financially 
viable without externalities, as : 
· 50% more wave power could be 

available 

Pelton 3.41 1 • This scenario uses around 75% 

Wheel 10.68 Yes 1.23 1.012 wave power, and 
• Has a 23% shortfall to viabil ity. 
• This scenario will almost certainly 

become viable once externalities 
are applied due to shortfall of 
around 1%. 

Very likely to become financially 
viable without externalities, as : 
· 50% more wave power could be 

available 
• This scenario uses around 75% 

Pressure 2.671 
Yes 1.212 1.013 wave power, and 

Exchanger 8.14 • Has less than 22% shortfall to 
viability. 

• This scenario will almost certainly 
become viable once externalities 
are applied , due to shortfall of 
around 1%. 
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Table 76: Impact of using significant wave height at Newhaven 
Type of RO Tidal Hydrogen Ratio of Ratio against Impact of using 

plant current 1 Fuel used? renewable conventional significant wave height 
Wave scenario cost with 

Power(MW) against externalities 
conventional 

Potential to become 
financially viable when 
externalities are applied , 
as: 
-Twice as much wave 
power could be available 

-This scenario uses 
No BSR 20.5/ 19.62 No 1.443 1.384 around 50% wave power 

-The shortfall is just under 
45%. 

This scenario will almost 
certainly become viable 
once externalities are 
applied due to shortfall of 
around 38%. 
Likely to become 
financially viable without 
externalities , as : 
-Twice as much wave 

Pelton Wheel 5.59/7. 63 No 1.196 1.174 
power could be available 

-This scenario uses 
almost 60% wave power, 
and 

-The shortfall is less than 
20%. 

Likely to become 
financially viable without 
externalities, as: 
-Twice as much wave 

Pressure 
4.28/ 6.33 No 1.188 1.168 

power could be available 
Exchanger -This scenario uses 

almost 60% wave power, 
and 

-The shortfall is less than 
20%. 

Potential to become 
financially viable with 
externalities , as : 
-Twice as much wave 

No BSR 15.84/1 5.41 Yes 1.57 1.507 
power could be available 

-This scenario uses more 
than 55% wave power, 
and 

-The shortfall is just over 
50%. 

Likely to become 
financially viable without 
externalities , as: 
-Twice as much wave 

Pelton Wheel 4.8816.67 Yes 1.209 1.187 
power could be available 

-This scenario uses 
almost 60% wave power, 
and 

-The shortfall is less than 
21 %. 

Potential to become 
financially viable without 
externalities, as: 
-Twice as much wave 

Pressure 
4.28/ 4.75 Yes 1.204 1.1 84 

power could be available 
Exchanger -This scenario uses 

around 50% wave power, 
and 

-The shortfall is around 
20%. 
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Overall, it is considered that the use of significant wave heights would have a wide ranging impact on the 

financial viability of the scenarios, at both locations. Many of the scenarios have the potential to become 

financially viable, without the application of externalities. 

That said, there are complex scenarios, where changes (e.g. in wave height) could act in such a way that 

they cause a disproportionate amount of water to be produced, or conversely fail to produce enough 

water. 

As such, it is considered that, although at a simplistic level, the impact of wave height changes on the 

financial viability of scenarios have been presented above, the impact of wave height changes on 

modelled scenarios is worthy of further investigation, due to the complex nature of the impact that they 

could have on water production. 

8.2.5 Feedwater temperature. 

The feedwater temperature used in this model, was based on the monthly average temperature (detailed 

in Appendix 8). It is, however, unlikely that the feedwater temperature will align itself exactly with this 

average, and so the maximum and minimum feedwater temperature profiles for Massawa l1 7 [Thomson , 

2003b] and Eastbournel18 were developed, and are shown below in Figure 131 and Figure 132, 

respectively. 
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Figure 131: Maximum and minimum feedwater temperature profiles, for Massawa 

Maximum temperature = 30+ 8 sin (2 TT (day of year-118)/ 365)) 

117 5 degrees Celsius was estimated as the difference between Maximum and Average and Average and minimum , which 
allowed the equations for Maximum and Minimum temperatures as shown to be derived . 

118 The Eastbourne Maximum and Minimum temperatures were taken from the standard deviation seawater temperature 
range, available at ht1p://www.cefas.defra.gov.uk/our-science/observing-and-modeIling/monitoring-programmes/sea
temperature-and-salinity-trends/presentation-of-results/station-20-eastbourne.aspx?RedirectMessage true [Last viewed on 7 
August 2011] 
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Minimum temperature = 20+ 8 sin (2 TT (day of year-118)/ 365)) 
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Figure 132: Maximum and minimum feedwater temperature profiles, for Newhavenl Eastbourne. 

As the feed water temperature increases, the permeate flow increases, but at the same time the salt 

passage will also increase, and vice versa119. 

Considering that the size of the RO plants and power sources (conventional and renewable) have been 

determined based on the average temperature, it can be seen that changes in the feedwater temperature 

could impact on the scenarios in the following ways: 

1. For a lower-than-modelled feedwater temperature 

a. The scenarios ability to make enough water will require more energy per unit volume of 

water produced. 

b. There will be an impact on the cost of scenarios, as they will need to be scaled-up in size to 

meet user demands, when the water is at minimum temperature . 

2. For a higher-than-modelled feedwater temperature 

a. An increase in reservoir volume will be required, due to a higher-than-anticipated volume of 

water produced. 

b. Less energy will be required per unit volume of water produced. 

119 Typically, when flow is increased by increased feed pressure, the permeate quality will improve due to a better salt-to
water passage ratio. This is because sait passage is not changed by feed pressure . But in the case of temperature, the salt 
passage is increased at a rate of approximately double the increase of permeate flow. This means that the permeate quality 
will get worse, even though the permeate rate is increasing. The only other issue of concern when operating at elevated 
temperatures, is membrane scaling. Many sparingly-soluble saits will come out of solution sooner at elevated temperatures , 
which in turn could lead to scaling on the membrane surface, which would then lead to lower flow and poorer rejection . In the 
majority of cases , the benefits of raising the temperature will outweigh the negatives. But in some cases, raising the 
temperature will lead to unacceptable permeate quality, or shorter membrane life. 
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c. The cost of conventional energy scenarios may reduce to such a level that renewable 

energy scenarios become less financially-attractive . 

Since the scenarios could be significantly affected by changes in feed water temperature, it is advised 

that the following are given consideration for further investigation: 

The minimum size of no I"le:t'It dlletl"Chel SObIM 10 OOlllill60 to II lOOt tbllaiid 1111611 tim 

feedwater temperature is low, and; 

The minimum size of resel coil to 1"1 co iete aeteqaato o lei ago if tim fsedlbatCI 161461 stOlS is Idyll 

and the RO plant produces more water than expected. 

8.2.6 Impact of intermittent operation on RO plant costs. 

Intermittent operation of desalination plants is possible and has already been realised in smaller systems 

[Louw, 2001]. However, for large-scale seawater desalination plants, intermittent operation would lead to 

a reduction in economic performance as the investment of the desalination plant would not be amortized 

properly as shown below in Table 77 by the most financially attractive scenarios which require the RO 

plant to be more than four (4) times the size that would be required if they were operated continuously. 

Table 77: Scenarios requiring large RO plants to overcome intermittencv 
TypeofRO Massawa Newhaven 

plant 
Power Source RatIo of Scenario Ratio Power Source RatIo of Ratio against 

ROpiant against ScenarioRO conventional with 
capacltyVs conventional plant capacity externalities 

conventionally with v. 
powered externalities conventionally 
scenario. powered 

scenario. 
NoBSR Solar 2.7 1.01 Tidal Current 4.1 2.84 

Pelton Wheel Solar 2.4 1.39 Tidal Current 3.0 2.48 
Pressure 

Solar 1.37 Tidal Current 2.43 
Exchanaer 2.5 3.3 

No BSR 
Solar + Wind 0.85 Tidal Current + 1.47 

2.5 Wind 1.8 
Pelton Wheel 

Solar + Wind 1.11 
Tidal Current + 1.36 

1.8 Wind 1.8 
Pressure 

Solar + Wind 1.19 Tidal Current + 1.33 Exchanger 1.6 Wind 1.7 
No BSR 

Solar + Wave 0.89 
Tidal Current + 1.38 

1.6 Wave 1.4 
Pelton Wheel 

Solar + Wave 1.06 Tidal Current + 1.17 
1.4 Wave 1.3 

Pressure 
Solar + Wave 1.06 

Tidal Current + 1.17 ExchanQer 1.6 Wave 1.3 
NoBSR 

Solar + Hz 1.02 Tidal Current+ 
2.4 H2 3.7 2.99 

Pelton Wheel 
Solar+ Hz 1.18 Tidal Current+ 

1.5 H2 2.6 
2.43 

Pressure 
Solar+ Hz 1.17 Tidal Current+ 

Exchanger 1.5 H2 2.7 2.33 

No BSR Solar + Wind+ 
0.87 Tidal Current + 

Hz 1.9 Wind+ H2 1.2 1.44 

Pelton Wheel Solar + Wind+ 
0.98 Tidal Current + 

Hz 1.2 Wind+ H2 1.1 
1.24 

Pressure Solar + Wind+ 
1.02 

Tidal Current + 
Exchanaer Hz 1.6 Wind+ H2 1.1 1.18 

NoBSR Solar + Wave+ 
0.90 

Tidal Current + 
Hz 1.39 Wave+ H2 1.3 

1.51 

Pelton Wheel Solar + Wave+ 
1.01 Tidal Current + 1.19 

Hz 1.2 Wave+ H2 1.1 
Pressure Solar + Wave+ 1.01 Tidal Current + 

1.1 8 Exchanger Hz 1.1 Wave+ H2 1.0 
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The plant's lifetime could also be reduced by Increased scaling, fouling and corrosion [Rhelnlander, 

2007]. In reality, the overall energy consumption would increase, as temperature- and pressure would 

continuously change which would lead to efficiency losses within all components of the plants. Therefore, 

it is clear that there is some financial benefit to continuous operation of the RO plant beyond the reduced 

level of scaling up required to deliver the correct amount of water. 

All RO plant scenarios modelled have been assumed to require membrane change every five years, but 

for a highly intermittent plant experiencing excessive fouling this could be as frequently as annually or bl 

annually (as experienced by CREST and the pilot RO plant in Riyadh, respectively), which Is potentially a 

tenfold increase in the expenditure associated with membrane replacement. The impact on RO plant 

operation and costs will vary based on the power supply intermittency of each scenario, the degree of 

this impact is not well understood and Is worthy of further Investigation. 

The methodology used to achieve constant operation in this research is hydrogen storage, and In some 

scenarios Is competitive with the non-hydrogen storage equivalent (see section 6.4.4.1 'Stage 1 and 2 

scenarios with hydrogen fuel at Massawa' for more detail of the CoFP methodology employed). The 

simplicity of the cost modelling, that uses the same O&M costs for non-hydrogen scenarios, which will 

experience many more interruptions to their operation, is, in light of the impact of intermittency on large

scale RO plants, probably unreasonable. There are several scenarios using hydrogen fuel, particularly 

those at Massawa with brine stream recovery and using primary and secondary power sources, as 

shown above at Table" with yellow highlights, where the RO plant is, in most cases, less than 1.6 times 

the size of a conventionally powered plant. These scenarios operate almost continuously and it Is 

therefore reasonable to apply the non-intermittent operation RO plant maintenance costs. 

The non-hydrogen fuel scenarios costs are probably slightly under estimated, due to the lack of 

intermittent operation maintenance contingency. The extent of the contingency required Is not well 

understood and is recommended for further Investigation to assess its potential impact on the two 

Massawa No BSR scenarios (highlighted in bold in Table "), which were estimated to be financially 

viable when externalities were applied. 

8.3 Potential Improvements to the scenarios 

The renewable energy scenarios were generally basic and simplistiC, and it was evident that there were 

Improvements that could be made to the scenarios, by making them more sophisticated, efficient and 

location-specific. 

These potential improvements could have an impact on the results, as mentioned at section 1.1.1. 
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Some of these potential improvements are included below in Table 78 with their potential impacts. 
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9 Conclusion 

The objective of this research was to assess the viability of renewable energy to completely displace a 

conventional power source, and provide a fundamental and significant human need. 

To make this assessment, this research modelled various scenarios at Massawa in Eritrea and 

Newhaven in South East England, with a view to addressing the water needs of 50,000 people using 

various RO plant types, such as: 

• A simple plant with No Brine Stream Recovery (BSR) 

• A BSR Plant with a Pelton Wheel, to re-use energy captured from the brine stream 

• A BSR Plant with Pressure Exchanger mechanism to re-use energy captured from the brine 

stream. 

The renewable energy sources, and combinations of these were investigated, as indicated below: 

• At Massawa 

o Solar Energy. 

o Solar and Wind Energy. 

o Solar and Wave Energy. 

• At Newhaven 

o Tidal Current Energy. 

o Tidal Current and Wind Energy. 

o Tidal Current and Wave Energy. 

• Hydrogen Fuel, considered at both Massawa and Newhaven. 

The research has demonstrated that a significant and fundamental human need can be addressed by 

using renewable energy. 

All the combinations of renewable energy sources modelled were able to meet the water requirements of 

50,000 people, although there was a significant difference in the efficiency of water production in 

scenarios, due to the quantity, and mix of energy sources used. 

With respect to the cost associated with meeting such a need, the most financially-attractive scenario 

was at Massawa, using solar power and a simple No BSR RO plant. 

A plant such as this: 

• Minimises the difficulties associated with the operation of very complex machinery (required to 

implement many of the other modelled scenarios), and 

• Improves the prospects for Massawa to have security over its water supply. 
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A simple precis of the most financially-attractive scenarios, is presented below for Massawa and 

Newhaven, in Table 79 and Table 80 respectively showing: 

• The type of RO plant 

• The renewable power source employed by the scenario 

• The total renewable power capacity installed for the scenario 

• The 'Ratio' of cost of the renewable-powered scenario to the conventionally-powered equivalent, 

over 25 years. (Less than '1' is taken as financially viable), and 

• The 'Ratio' of cost of the renewable powered scenario, to the conventionally powered equivalent 

over 25 years, when the externalities associated with conventional energy was taken into 

account. Once again, less than '1' is taken as being financially viable. 

I II f bl Table 79: Most flnanc a IY avoura e opt on at Massawa 
Type of Renewable Total power Ratio of coat of Ratio of coat of 
RO plant Power Installed (kW) renewable to renewable to 

Sources conventional conventional energy 
energy IC8n8r1o scenario taking 

externalities Into 
account. 

No BSR Solar and 27,301 1.227 0.85 
Wind 

Table 80: Most financially favourable option at Newhaven 
Type of Renewable Total Ratio of coat of Ratio of coat of 
ROplant Power power renewable to renewable to 

Sources Installed conventional conventional 
(kW) energy energy IC8n8r1o 

acenarlo taking externalltl .. 
Into account. 

Pressure Tidal Current 
Exchanger and Wave 

10603 1.19 1.17 

It was noteworthy that: 

• There is a significant difference in the cost of scenarios, due to the quantity, and combination of 

energy sources used 

• At Massawa, the following scenarios become financially viable, when the externalities 

associated with the use of diesel fuel were applied: 

o Four of the six No BSR RO plant options, and 

o The Pelton Wheel BSR RO plant with wind power and hydrogen fuel. 

To be financially viable in the 'real world', (to realise the cost benefit of these externalities) , would require 

the support of a scheme such as the 'Clean Development Mechanism', which acknowledges the cost 

associated with the externalities of conventional power use. 

None of the renewable energy scenarios modelled at Newhaven, when compared to the modelled coal

fired plant with carbon capture and storage (CCS) plant, were financially viable over the life of the facility. 
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The most financially-attractive scenario at Newhaven (shown above in Table 79) was 19% and 17% too 

expensive, without and with externalities, respectively. 

9.1 Application of NPV 

The Net Present Value (NPV) methodology, (which is the generally-accepted way of making 

infrastructure investment decisions), considers money in the future to be cheaper than today, so any 

option with a large initial outlay but reduced on-going costs will appear inferior to options with a small 

initial outlay and significant on-going costs. 

The use of the NPV methodology was applied to assess the viability of the most financially-attractive 

scenario (a No BSR RO plant at Massawa with solar and wind energy). 

The application of NPV (with a 7% discount rate) changed the 'break even' point of the above of about 20 

years, and almost £102 million in profit over the 25-year life of the installation, into a loss in excess of £90 

million. 

As stated previously, the Stern Report is clear that the option to delay the implementation of renewable 

energy projects is no longer reasonable, but the standard NPV evaluation methodology, with its relatively 

high discount rate, does not acknowledge this. In fact, it actively encourages the evaluator to delay 

spending for as long as possible. 

It is considered that the NPV as a method of evaluating the long-term costs of renewable scenarios, 

would benefit from further consideration of the discount rate employed in line with the Stern Report's 

contention that future generations should not be relied upon to manage the climate change impacts of 

previous generations' decisions, and application of the Clean Development Mechanism (COM) to fully 

acknowledge the: 

• Impact of delay, in light of the potential prospects of climate change and 

• The full externalities associated with 'business as usual'. 

9.2 Scrutiny of findings 

The potential to fall to meet the water demand profile of local users was investigated in terms of the 

shortfall against their demands if the reservoir were empty at the start of operation. For the most 

finanCially-attractive scenarios at each site, the shortfall was around 3.5% and 0.7% for Massawa and 

Newhaven, respectively. 

As such, it is considered that: 

• The planning of the start-time of the facility would need to be organised to align with the best 

power production conditions at each site, and! or 
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• The transition to using the RO plant should be organised such that, the reservoir has enough 

water to satisfy the users' initial demand for water before the water produced by the RO plant is 

relied upon. 

The impact of polynomial approximations on the results was assessed and was shown to have a limited 

effect on the results at Massawa, (by altering the majority of the results with externalities applied), and no 

effect at all on the Newhaven scenarios. 

There were also six main variables that were investigated further within this research, in terms of 

scenario design, and their potential to vary from the modelled profile: 

• The cost of diesel fuel 

• Solar power 

• Wind speed 

• Wave height 

• Feedwater temperature, and 

• Impact of intermittent operation on RO plant costs. 

The results were found to be highly susceptible to a relatively modest increase in diesel fuel prices over 

the life of the installation at Massawa. 

Although the 5% annual increase in diesel fuel costs modelled only made scenarios financially viable 

when externalities were applied, it is considered likely that the diesel fuel cost increase expected over the 

next 25 years will: 

• Be much higher than the 5% annual increase modelled, and 

• Significantly improve the prospects of financial viability for scenarios at Massawa. 

The impacts of variations in solar power, wind speed and wave height have been considered and it has 

been concluded that their potential to vary would have a significant impact on the modelled scenarios 

that are considered financially viable. 

The impact of feedwater temperature changes have not been fully assessed, and a greater 

understanding of the practicalities of implementing large-scale solar power installations, and wind speed 

and wave height changes, is needed to assess the impact on the power produced. 

The intermittency of operation due to varying power input has the potential to increase the maintenance 

costs. As such the financial viability of the scenarios not using hydrogen fuel to minimise intermittent RO 

plant operation has probably been overestimated and has the potential to negatively affect the financial 

viability of two of the Massawa scenarios that did not use hydrogen fuel that were estimated to be 

financially viable when externalities were applied. 
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It is considered that these variables, and their Impacts on the modelled scenarios' financial viability, are 

worthy of further Investigation. 

9.3 Potential scanarlo Improvements 

There are also several options available to enhance the renewable energy scenarios, by: 

• Making them more efficient, and 

• Making the best use of local resources. 

This also potentially increases the complexity of the scenarios, making them more difficult to implement 

and operate effectively. This is worthy of further investigation. 

The overall conclusions are that: 

• It is possible to desalinate water for human consumption at Massawa, in Eritrea and Newhaven, 

using renewable energy 

• This Is financially viable at Massawa, when the externalities of diesel fuel are considered 

• The costs of using renewable energy at Newhaven are (at best) 17% greater than when using 

conventional energy 

• There Is significant scope to improve the scenarios, to make many of them more financlally

attractive than Identified within this research. 
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10Recommendations for further work 

It is suggested that: 

• The operability and maintainability of the more financially-attractive scenarios at Massawa be 

investigated further, to better understand the complexities of implementation, including: 

o The transition to starting-up the facility 

o Operating methodology, and 

o Possible failure modes. 

• The impact of the practical use of solar power, the variability of wind speed, and the variability of 

wave height, are investigated further, to see how they affect the viability of scenarios 

• More sophisticated scenarios (as described at Table 77) are investigated for viability 

• The installed power limitations for scenarios that employ less-predictable power sources, such 

as wind, are investigated further to allow the design to accommodate any reasonably-expected 

fluctuations 

• The synchronisation of power supplies in the combinations modelled, is investigated for practical 

application 

• A method of evaluating the financial viability of renewable-powered infrastructure projects, which 

acknowledges that delaying implementation (as the NPV methodology encourages) is 

unreasonable, Is considered 

• The impact of feedwater temperature on renewable-powered scenarios is investigated further 

• The application of a Project of this type (municipal renewable-powered reverse osmosis) Is 

considered for application to the Clean Development Mechanism where the impact of 

externalities would be acknowledged. 

• The application of other financial incentives, such as FiT (Feed In Tariff) and ROCs (Renewable 

Obligation Certificates) are also considered to acknowledge the saving in externalities by 

employing renewable energy to replace conventional energy. 

• Combined scale-up factors for RO plant and power plant are studied, in comparison to scaling

up of the RO plant and power plant individually, to deliver the correct volume of water. 

• The proper matching of desalination systems with their local renewable energy power sources, 

including direct solar desalination with heat powered pumping, and heat! energy storage is 

investigated further. 
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• The impact of the use of disaggregation of energy sources are studied further to assess their 

ability to maintain constant power supply. 

• The O&M costs for the RO plant associated with intermittent operations are studied further to 

ensure that the credit for non-variable power supply scenarios fully reflect the benefits to RO 

plant life. 

• That the comparison between large municipal RO plants and combinations of smaller (less 

Intermittency susceptible) RO plants switching on and off as available power allows is 

Investigated further. 
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Appendix A 

This Appendix discusses the following with respect to their potential impact on the already limited 

reusable water supplies: 

• Environmental Legislation 

• Global Disparity of water supplies 

• The potential impacts of global warming, and 

• The future requirements for water. 

1 Environmental Legislation 

Various European environmental directives place a limitation on the water that can be legally abstracted. 

These include the Habitats Directive [European Economic Commission, 1992], the Water Framework 

Directive 1 [European Economic Commission, 1992], and in the UK there are programmes to maintain 

Sites of Special Scientific Interest (SSSls), Sites of Nature Conservation Importance (SNCls), and 

Biodiversity Action Plans (BAP). 

Many of these programmes put pressure on UK Water companies to reduce existing abstraction 

regimes. 

2 Global Disparity 

Figure 1 below, which was taken from 'Water for People, Water for Life' [UNESCO, 2003a p9] presents 

the global overview of water availability versus the population which identifies the continental disparities, 

and in particular the pressure put on the Asian continent, which supports more than half the world's 

population with only 36 percent of the world's fresh water resources available to it. 

1 The Water Framework Directive establishes a framework for Community Action in the field of water policy and has 
a number of objectives, such as preventing and reducing pollution, promoting sustainable water usage, 
environmental protection, Improving aquatic ecosystems, and mitigating the effects of floods and droughts. 
Its ultimate objective is to achieve ·good ecological and chemical status· for all Community waters by 2015. 
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Figure 1: Water availability versus population 

Figure 2 below, which was based on 'Global water supply and sanitation assessment 2000' [WHO/ 

UNICEF, 2000) indicates (with its red highlights) that the infrastructure to supply the available water 

directly to the user is a limitation in itself, and is currently most acute in East Africa and the countries 

bordering the Caspian Sea2
. 

-' 

Figure 2: Water supply coverage In 2000 (percentage of inhabitants served by adequate water supply) 

The disparity between supplies of renewable water supply is in some cases particularly localised , as 

shown by the example of the South East of England receiving less rainfall per person than in the Sudan 

[Harrison, 2004). 

2 These countries include Iran, Kazakhstan , Turkmenistan, Uzbekistan and Afghan istan. 
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Figure 3 below shows the disparity of South East England in comparison to the rest of the British Isles, 

in January 2006. 
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Figure 3: Comparison of England and Wales 

3 Impacts of Global Warming 

A further limitation is placed on available water resources by the direct and indirect impacts of Global 

Warming and Climate Change. 

3.1 Direct impacts 

The precise impact of climate change on water resources is uncertain, with precipitation and river flows 

increasing overall, but with some areas experiencing a decrease and others an increase. The 

precipitation will probably increase from latitudes 300 N and 300 S, but many tropical and sub-tropical 

regions will probably receive lower and more erratic rainfall . 

Stream flows at low-flow periods may well decrease, and water quality will undoubtedly worsen , because 

of increased pollution loads and concentrations, and higher water temperatures . 

By the middle of this century, it is estimated by UNESCO [UNESCO, 2003b p1 0] that climate change 

will account for about 20 percent of the increase in global water scarcity3 , within the following bounds: 

• At best 2 billion people in forty-eight countries, and 

3 According to UNEP's definition, when an area's annual water supply drops below 1,000 m3 per person, the 
population faces water scarcity. 
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• At worst 7 billion people in sixty countries will be water-scarce. 

3.2 Indirect impacts 

A significant aspect of global warming and climate change with an indirect impact on water availabil ity, is 

the incidence of natural disasters. 

Between 1991 and 2000 [UNESCO, 2003c, p23], the number of people affected by natural disasters 

rose from 147 million per year to 211 million per year (an increase of nearly 45%), and the observational 

evidence of two studies published in 2005, [Emmanual, 2005] and [Webster et ai, 2005] shows that the 

intensity of tropical storms has increased over the past 30 years. In particular, the strongest categories 

of hurricane4 (four and five), have doubled in frequency, while the number of weaker hurricanes has 

decreased. Between 1991 and 2000, more than 665,000 people died in 2,557 natural disasters, of which 

almost 90 percent (around 2200) were water-related. 

Oceania 
3% 

Figure 4: Distribution of water-related natural disasters (1990 - 2001) 

The continents most affected by these disasters were Asia and Africa, as illustrated in Figure 4 above. It 

is also noteworthy that according to 'The Quality and Accuracy of Disaster Data: A comparative analysis 

of three global data sets' [Guha-Sapir and Below, 2002], the accuracy of disaster data would benefit 

from standardisation. 

Figure 5 below presents the water-related disasters between 1990 and 2001 , based on the categorised 

by type. 

4 Based on the Saffir-Simpson Hurricane Scale 
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Figure 5: Types of water-related natural disasters, 1990-2001. 

According to the 'Water for People, Water for Life' [UNESCO, 2003d, p23], of these water-related 

disasters: 

• Floods represented about 50 percent, and caused 15% of all deaths in natural disasters 

• Water-borne and vector-borne diseases accounted for about 28 percent of deaths, and 

• Droughts 11 percent, but accounted for 42% of all deaths in natural disasters. 

Floods and droughts due to extreme weather will almost undoubtedly undermine the available water 

supply, especially where the supply infrastructure is not robust, making their occurrence in the 

developing world disproportionately lethal. 

It is particularly noteworthy that some 97 percent of all natural disaster deaths occurred in developing 

countries. 

4 The future for global water usage 

The future outlook for global water usage, according to 'Science on Sustainability - 2006' [RSBS, 2006] 

is shown below in Figure 6, based on trillions of cubic metres of water used. 
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Figure 6: Future outlook for global water usage 

The greatest concern for the future is not so much that there will be a sudden large-scale water 

shortage , but that the demand for fresh water will continue to grow, causing an increase in the number 

of countries and regions facing water stress and constant water scarcity. 

Almost 800 mi llion people in developing countries are currently undernourished and the International 

Development target of halving this figure [European Council, 2002) by 2015 will not be met before at 

least 2030 [FAO, 2003). 

According to the World Water Council [World Water Council], the global population has tripled in the 

20th century, but water usage increased by a factor of six. There is growing concern that four bill ion 

people (or as much as 50% of world population in 2025) globally may face water stress. Under particular 

stress are key regions in Africa, China, India, the Middle East, Europe, Australia, and North America, 

including the western part of the United States, as illustrated below in Figure 7. 
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Figure 7: 2025 World 'water stress' status quo scenario 

It can therefore be seen how intimately the growth of future food production is tied to a stable water 

supply. 
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Introduction 

This Appendix describes how the data for the six-stage modelling exercise (Figure 1) for this research, 

was derived. 
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The modeling stages were: 

1. No BSR RO Plant Design 

2.. Model of primary renewable energy source, and its application to No BSR RO ptam 

3. Design of BSR AD plans 

4. The appication of primary renewable energy sowce to BSR RO plans 

5. Design of Sl4JPIemenIaIY renewable energy sources and appfication to BSR and No BSR AD 

6_ Design of model for hymJgen storage and nHJSe_ 

These s1ages are shown below in f9Jre 2 in relation to the modeling for the No AD plant. 
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Figme 2: No BSII RO PWII modelling 

1. Desalination Plant Selection 

For the purpose of this research, the desalination plant selected was reverse osmosis due to having the 

lowest specific power consumption_ In reality, as detailed in 'Renewable Energy Opportunities in Water 

Desalination' [AI-Karaghouli and Kasmerski], the selection of the appropriate renewable energy 

desalination technology depends on a number of factors , including plant size, feed-water salinity, 

remoteness, availability of grid electricity, technical infrastructure, and the type and potential of the local 

renewable energy resources available locally_ Proper matching of standalone power-supply desalination 

systems has been recognised as being crucial if the system is to provide a satisfactory supply of power 

and water at a reasonable cost If this decision making process were employed it is possible that other 

methods of desalination, especially when coupled to the most prevalent local energy sources, would 

have been selected_ 

• Massawa - Heat based mechanically driven RO [Manolakos et ai , 2007] or flash evaporation 

desalination with direct use of renewable generated heat (solar thermal , geothermal , 

concentrated solar power with molten salt for heat storage, etc)) 

85 



• Newhaven - perhaps would have retained RO, but used direct mechanical pressurisation such 

as the SeaDog wave pump [laMonica, 2010] or the oyster [Folley, 2007]1. 

It is noteworthy that the heat quality required for the heat based desalination systems could be further 

improved by Increasing the vacuum to allow the water to evaporate into vapour laden hot air. This would 

also tend to improve the conversion systems' susceptibility to power outages. 

Although, in the absence of a dedicated electrical power supply to operate water and vacuum pumps, 

steam pumps would probably be required for heat based desalination systems, and their ability to deal 

with Intermittent powerl heating input would need to be investigated further if the project is to be 

progressed. According to EU SETIS [SETIS] solar power plants are now being designed with 6 to 7.5 

hours of full-load storage, which would be enough to allow almost continuous operation of a RO plant. 

The energy storage though was at a cost of $5oolkW installed and the methodologies proposed to 

Increase the efficiency require that operating temperatures are raised, from today's sub 600llC to in 

excess of 12oollC, to allow materials with greater heat capacity to be used [Trabish, 2012]. This would 

require that the system is able to operate effectively at 12oollC, which would probably require significant 

engineering. 

1.1 The No BSR RO Plant 

Reverse osmosis (RO) is a form of filtration, in which the filter is a semi-permeable membrane that 

allows water to pass through, but not salt. When a membrane of this type has saltwater on one side and 

freshwater on the other, and no other forces are acting, water will flow through the membrane towards 

the saltwater side, reducing the difference in salt concentration. This is the natural process of osmosis, 

which is widely employed in the cells of all living species. In reverse osmosis desalination, the aim is to 

increase the quantity of freshwater, and so a pump is employed to make the flow reverse, hence the 

name: reverse osmosis. 

The osmotic pressure of typical seawater Is around 26 bar, and this is the pressure that must be 

overcome In order to reverse the natural osmotic flow. Twenty-six bar also equates to the ambitious 

theoretical minimum energy consumption of 0.7 kWhlm3
, but In practice, a significantly higher pressure 

Is used in order to achieve a generous flow of freshwater [Lachish, 2003], known as the 'permeate'. 

As freshwater passes through the membrane, the remaining saltwater becomes more concentrated and, 

for the process to continue, this concentrate, known as the brine, must be continuously replaced by new 

I The wave resource at Newhaven is relatively low, as explained In section 5.4.3.1 Wave heighf on page 849, which would 
tend to limit the viability of any wave powered device at that location. 
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feed water. To achieve this, the feed water is pumped across the membrane as well as through it; 

hence, RO is a cross-flow filtration process as depicted in Figure 3 below. 

ResIIIi1r:IDo 
to......-..ca.n ____ ..lIi_____ =: 
~ 

As can be seen from Figure 3 above, a proportion of the pressurised feedwater comes out of the reverse 

osmosis module ac; waste or COIa:etlbate_ This COIlCellbate is at a pressure oriy ~ below that of the 

feedwater, meaning that it contains a significant amount of the hymaulic power originaIy supplied by the 

pump-

In larger RO systems. this enetgy can be partiaJy recovered, «bmaIicaIIy in.,roving the overaD system 

efficiency_ This is known ac; brine-slream recovery (BSR) and is descmed in more deIaj in section 32 

and section 3.3 for the Pelton Wheel and Pressure Exchanger varianIs. respectiveI{. 

To model the No BSR RO plant, it was necessary to deme the foIowing: 

• Operational charaderistics of the RO plant 

• Feedwater temperatures 

• Warer- reqiWed from the RO pIanL 

1.2 Operational characteristics of the RO plant 

The commertiaIIy-available options (from Dow Industries) investigated for the mermrane to employ for 

ttis I"esearch. which woukt deme the operating characteristics of the RO plant. wet'e ac; follows: 

• SW30XlE-4OOi 

• SW3OHR-380. and 

• SW3OHR-33t 

Z In smaIer FlO sysIEms. bme-sIream energy reoovety is olen omiJed. which reduces capiaI costs IU adds COIlSidelatJIy 
110 n.wmg costs ( .. parIiajar'. ener-gy use). 
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Figure 4 below indicates the suitability of the various membranes to different levels of feedwater quality, 

(where 'beachwell or siting offshore' represents a cleaner feedwater source than the 'open intake'), for 

various RO plant configurations. 

Types of Membranes and method of Types of RO plant 
operation .. 

i'; 
,~..;, ~ p' 

sw.mxt..E-4OOi -..... .... .... 1IJ • 
"~-.' J ij 

SW3OHR..:320 

~ 
.'\",:,.;C _ 

~··-r ~ 
, .. 

I"'- pI;imt I!t;! J "'1". ........ , - .'. --anddesign 

NaSSR ~ ~, 

II ! 
cf [~l 

quo ~ 

PeIb1 Wheel i J Feed ... NocmaI 
ReaM!ry Soun:e -

Opentnlake RaIio .~ 

Press..e 
edl3llg1e 

Figure 4: Types of aEi,G.es..t - modes or opaaliuiL 

The SW3OHR-32O was seJected from the options avaiahIe as (aJthot9l not the best option in Ierms of 

water prodIlCtion efficierq). it was the most versatie and robust in operation. .... that it could be used 

boIh .. jJea!ed and pre-trealed feedwater at a range of recovery J3Iios3 wiSh allhe types of RO 

pieri expected to be modeled within this thesis_ 

~ The ratio dOle d' 5 ta:d wafer" ~ 10 1he seawaller ~ used 10 proWce I is referred to as 1he 
recovery ratio. 
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1.3 Minimum number of membranes 

The No BSR RO plant configuration employed for the modelling within this research is shown below in 

Figure 5. 

Pre-filtration 
(Screening, settJJng. 

Coagulation, Cartndge 
FiltratIOn, Chemlcal 
mndtnomnm R:) - ;""-_mID"""","'" 

1IL31!aJr. 

-----------r,<:--..-:::>;: 
<:::::. t _ I 
~-:-

Ilbrellcle, , ~ ,-

L I'II:mp 1 -I> -----

-Ilmr.eJiunies 
I.ll!!!lilets_,", 

'I .....,rn:lI 1I.AI Elan. 

lHIiP-"'ttiP) 
II'I.ImlPSamdi 

~ar.r~ents.. - .. ---

figure 5: No BSR PIanIIype used within modelling. 

The methodology used to identify the minimum number of elements and pressure vessels that would be 

required to meet the operational objective is shown below in Figure 6. 

RO Plant IIodeI 
No> BSlR IRQ P\lamjj miing 
~iAEit"aJiS • 

otJiective 
Use RO&I lID iIbIIify 
miiniimoum rur.iber" d f--IIe,balii!S tlDoper.JIIe RO 

pIanl toa:tiieoe ~ 
(291a:rltll) 

Opetaling Parameters 

I Medwiic:allimilalians d I ~IIElr"a .. es. .. 

I UaIimum ........ saIrily I dprodud .... lodeme 
opI!!IC!IiIIg IiIriIaIoans. 

I 0eriic:aI :E'd~ I . =~Io: . 
Ratgedexpeded~ 

~at: . IIIaI!;.....a . NeooI_ 
Todetimlanged~ 

RestJfts 
........ lIIIJIdlerd .. JeI ......... 

reqtJtRdlo ad1ieie ~ 
pI!IIIIl!IOE IWraDebReaNery 

RaIio~ 

:.:.: Ihallite ...... all!S I: 
can"*-*.. 

Figm'e 6: IlletlIOduIogy to identify minimum number of Denbranes 1hat 1he .., BSR AD pfant recp,res. 

To ensure that the cost of the RO plant was kept as low as possiJIe. ROSA 62 (Dow) was used to 

identify the miIWnum nurmer of menbanes that woukI meet: the operational objectives. which was 10 

generate 7,fXX)m31day (291.67m31hou"). This was based on a ~ plant without BSR (as shown above 

in FIQUIe 5) operating continuously 24 hotr.; per day, as it would if powered by conventional (~ 

·ntemiHent) power suppfies. 

There were there IIIiD1 seIs of parcunetefs that required definition for ROSA 62 to identify the nmm..m 

nuJri)er 01 membranes thai: woukf be required, and these are highlighted in yellow in Figure 6 above: 
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• The maximum allowable salinity of product water 

• The chemical composition of the feedwater, and 

• The expected feedwater temperature. 

1.2.2 Water salinity 

There was a need to ensure that the salinity concentration of the product water did not exceed the 

acceptable limit. 

The allowable salt content was investigated based on the WHO guidance [WHO, 2011] on sodium and 

chloride. Chloride concentrations in excess of 250 rng/Iitre are likely to be detected by taste. No health

based guideline value is proposed for chloride in drinking water". 

At room temperature, the average taste threshold for sodium is about 200 rng/Iitre. Again, no health

based guideline value has been derived5
• 

As can be seen from the text above, there is no health-related threshold for salt in drinking water, and 

the only threshold advised is based on taste. 

It was concluded that a threshold of 200 mg/litre of salt (chloride and sodium combined) would be 

employed as the salinity limitation for the output from the RO plants for this research. 

1.2.3 Feedwater chemical composition 

The seawater chemical composition used within ROSA was based on both the Newhaven and Massawa 

feedwater having undergone pre-treatment, as described in the chemical analysis section of 'Report on 

batteryless reverse osmosis desalination' [Thomson et ai, 2001], and the modelling within ROSA was 

conducted with a 'membrane fouling factor" of 85%. 

4 The 1958 WHO International Standards for Drlnking-water suggested that concentrations of chloride greater than 600 
mgllitre would markedly impair the potability of the water. The 1963 and 1971 International Standards retained this value as 
a maximum aHowabie or permissible concentration. In the first edition of the Guidelines for Drlnking-water Quailty, published 
in 1984, a guldellna value of 250 mg/lltre was established for chloride, based on taste considerations. 
Source: WHO (2003) Chloride In drlnking-water. Background document for preparation of WHO Guidelines for drlnking
water quality. Geneva, World Health Organization (WHOISDElWSH/03.04I3). 

• The 1958, 1963 and 1971 WHO Intematlonal Standards for Drinking-water did not refer to sodium. In the first edition of the 
Guidelines for Drinking-water Quailty, published In 1984, It was concluded that there was insufficient evidence to Justify a 
guideline value for sodium In water based on health risk considerations, but It was noted that Intake of sodium from drinking
water may be of greater significance In persons who require a sodium-restricted diet and bottle-fed Irlants. 
Source: WHO (2003) SodIum In drinking-water. Background document for preparation of WHO GuldaHnes for drinking-water 
quailty. Geneva, World Health Organization (WHOISDElWSl-V03.04I15). 

• 'Membrane fouling factor' is a projection of how a membrane may foul over time, and a factor 0.85 reflects a properly
designed systems with good pre-treatment. ROSA projects the membrane performance after 3 years of operation. 
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1.2.4 Seawater temperatures 

As the RO plant feed water temperature increases, the permeate flow will increase for a given power 

level, but at the same time the salt passage will also increase. 

The ambient seawater temperature varies at both sites, which will have an impact on the operating 

characteristics of the derived designs, in terms of power consumption and quality of permeate. The 

operation of the RO plants was modelled at the temperatures shown below in Table 1. 

Table 1: Temperatures adopted for the Massawa and Newhaven 

77 , ......... 
37JJ 16.5 

10JJ 
12.8 5.0 

These parameters were q,uHed to ROSA, and for defined levels of product water ouIput (within the 

required sainity &nils). the rrininalm nurdJer of menDanes and minimum fIowrate at which the 

melilbrane would procb:e water. were derived. within the litlilatioos of the SW3OHR-32OrnefNJrane 

opewalill9 paranaers. which were stored within ROSA. 

The sin1Jified typical no rnenDane opewaling parameters are shawn below in F9Jre 7. which irdc ales 

the IirnitiI1g ftowtales and pressure levels.. If opewated outside of these, 1he menDane wiI: 

• Suffer mechalical damage <lie to excessive pressureI brine flow rate (a and b) 

• Not produce water due to inadeqlwate brine flow (e), or 

• Produce waIer with an l.RlCOeptabIe salt COIUlIlbalion (d). 

7 These figures were based on a visual assessment of the Red Sea water temperatures shown in Figure 14. 

8 These figures were based on range of expected seawater temperatures In the UK from 
hltp:llwww.chm.Qrg .ukllibrary/ukprofllee.htm which states that: 

'Surface seawater temperatures range, in summer, from 12.SPC around Orkney and Shetland to 16PC In the English 
Channel, and, in winter, from SPC, off East Angl/a and north· west England to gPC, in the extreme south-west of England.' 
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1..2..6 Identification of the minimum nlmber of membranes required 

An iterative process (Figure 8) was ~ 10 identify the minDaJm nurmer of membranes required.. -.. -
-....--, --.... -_ ... -

..------__ - __ .. __ ...... ~5~~5~~=~ 

---...... 0 ..... '" 

__ 1IID6A 

__ il_ 

.....-.... ...-...... --. 
I~ .. -

~SIIioII!f 

~ ..... --...... --_ ... -
.......... lmIf:Iafll --

__ .. __ ..... s _ ----...... 

Figure 8: IdelIIifying the .. runber of membranes. 

TJjs exercise was mdertaken tf1rot9l the membrane"s range of recovery ratios (from 5% to maximum 

limit. in 1% stages). The mirWnum r1l.IriJer of membranes was idenIiied for each recovery ratio by 

eiIher: 

• Rec:b:8lg the r1UI1'mets of membranes in steps lDlIiI the plant <:onf9Jratioo failed a mechanical 

illiitatioo. and then ooting the ramtJer of rnemIxanes set in the ROSA run immediately before 

the failure , or 

• Increasing the number of membranes in steps until the plant configuration did not fail any of its 

mechanical limitations. 

1.2.7 Results 

The minimum number of membranes for each site was limited by the need to operate within their 

mechanical design limitations (see section on membrane limitations above) . 
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The initial results from this exercise (shown below in Figure 9 below) gave the minimum number of 

membranes required to produce 7,000m3/day, if the plant were run for 24 hours continuously at each 

recovery ratio. 

'50 

400 

)50 

:m 
:'50 

XIl 

150 

'00 

50 

o 

• r. sawa • Newtlavef1 

Figure 9 above shows that the rrinimum number of merrbanes required to produce the required amount. 

of water, within the mechanical limitations of the membrane, varies with the recovery ratio. The ideal was 

to have a plant with a set number of membranes, which was also close to the optimum number of 

membranes. So it was decided that the RO plant would operate where the minimum number of 

membranes required was relatively consistent between 15% and 25% recovery ratios, as shown above 

in Figure 9. 

1.2.8 RO plant design adopted. 

The plant design adopted for this research was slightly simplified, and employed a set number of 

membranes (142 pairs), based on the output from ROSA. It operates between recovery ratios of: 

• 15%, below which the minimum number of membranes required increased dramatically, and 

24% and 25%, at Massawa and Newhaven, respectively, where the brine flowrate reduced to 

the minimum acceptable level. 

The RO plant operating profile is shown below in Figure 10, in relation to the water output at varying 

recovery ratios. This design was used as the generic model for both the Newhaven and Massawa sites. 
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Figure 10: Optimum No BSR plant opetaling profile.. 
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The op&num cperaIing profile across the range of recovery ratios modeUed (shown above in red, in 

FigLwe 10) is in keeping with the proposed optimum operating profile within the normal rnerOOrane 

operalioImJ willdDw, shown below in f9Jre 11. 
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Figw'e 11: Optimum opetalilog profile fur RO plant hal mir*num to muimum flow 
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1.4 Movement of feedwater 

In addition to pressurisation power requirements, there is a need to move feedwater from the intake, in 

preparation for pressurisation. 

Table 2 below shows the values used to model the feedwater delivery process, for the No BSR plant. 

Table 2: Power used by the No BSR RO plant to move feedwater 

Ttpe 01....., and Vobne pumped 
PoIftor 

deIIiIs" COIISImaed PoM!I" cansumed peI".~ 
(nI~JIII) (~/sec) 

(IlW) ;,::: 
SeaAJI.ei BcxeI10Ie Pumps 
- T aile waIer from SIalic 10 110 

0.03056 79.4 2599 
around 0.3 bat as suction 
forHP~ 

• Details of feedwater movement power consumption taken from 'Design of a 10,000 cu-mJd Seawater 

Reverse Osmosis Plant on Providence Island' [Andrews et all. 

To achieve these various flow rates of feedwater delivery and membrane pressurisation due to expected 

variations in available power, there is a need to vary flowrate . The working assumption was that that the 

pump and motor system act at 80% efficiency across their full working range. 

This constant efficiency is probably unreasonable due to friction , windage losses, design for maximum 

efficiency at a specific load, etc. The only RO plant power being modelled is due to pumping, therefore 

the impact on the operating profile due to pump efficiency is likely to be significant. An example of 

expected pump efficiency was found in the US Department of Energy Tip sheet 2 [DOE, 2007] , which 

allowed the relationship between pumping efficiency and the proportion of maximum load to be defined, 

which is shown below in Figure 12. 
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Figure 12: ElIpected efficiency 01 pump and molar ~ vcmous proportions 01 no ... de 

9 Pre·filtration is assumed to reduce feedwater pressure from 1.4 bar to 0.3 bar at the inlet to the high pressure pump. 
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The polynomial equation that corresponds to the curve is included in Figure 12 above. These figures 

were applied to the range of temperatures for the No BSR RO plant. The resulting No BSR RO plant 

operating profile (including this refinement) is shown below in Figure 13 . 
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1.5 Use of AC power 

In this case, it is assumed that AC poweI' will be employed for the RO plant As stated in 'SoIar

mven desalination . reverse osmosis: the state of the arf [Ghermanci and UasseIam, 2009J 

DesaIRItion plants that use AC irdJCtion motors for the hql pressure pumps require inverters to 

lraIasform the DC wrrent geslelated in the PV rrKXUes or stored in the batteries.. The use of DC 

motors eliminates the need for inverters and therefore do not experience the energetic losses 

inherent in , and failures associated with, inverters, so RO desalination plants with DC motors are 

expected to function at higher energy efficiencies. 

In spite of this, a study conducted on a 6 m3/d brackish water PV-RO desalination system 

experienced steadier operation and significantly lower energy consumption (3 kWh/m3 vs. 4.7 

kWh/m3) after replacing a DC motor with an AC induction motor [Marques de Carvalho et ai, 2009]. 

This is borne out, according to De-central Water and Power Supply Integrating Renewable Energy 

- Technical and Economic Performance Prediction [Rheinlander, 2007], when a 0.25m3/hr plant 

816 



was run in two different configurations with: 

1. A DC motor 

2. An AC induction motor 

It was found that the DC motor was not as suitable as the AC induction motor, which required less 

maintenance and reduced the specific energy consumption. 

Considering the information available, it is concluded that although AC induction motors have been 

adopted for this research as the easier to operate and more efficient option, that DC motor 

configurations are available and have many technical benefits over AC, but do not appear to be 

achieving their potential in practice. It is considered that they are worthy of further investigation. 

It is recommended that the potential benefits associated with the use of variable DC motors for 

reverse osmosis desalination is investigated further. 

1.6 Defining feedwater temperatures for each site for each hour of the year. 

To refine the model, the average feedwater temperature was calculated for each hour of the day for one 

year at each site. 

For Massawa, the temperature profile for the Red Sea was taken directly from the thesis by A Murray 

Thomson [fhomson, 2003a]. The six years of data were superimposed, and a sine curve was fitted, as 

shown in Figure 14 below. 
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The equation associated with the curve shown in Figure 14 above is: 

Massawa seawater temperature = 25+ 8 sin (2 TT (day of year-118)/ 365)) 

The data for Newhaven was taken from Eastbourne [CEFAS, 2011], which is 10 miles (16km) away from 

Newhaven, and the data was approximated to a polynomial curve, shown below in Figure15. 
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The relationship between seawater temperature (1) and day (x) of the year is given by: 

T = 0 .0000000OO034*~ - 0.000000015*X4 - o.ooooo24il + 0.0014*,f - 0.06*x + 6.2 

For the purposes of this research, the plant at both sites provides water for domestic and light industrial 

(including offices) use. At both locations it was modeled as running continuously for 12 months of the 

year, to meet all the domestic and light industrial needs of the town'o. 

1.7 Amount of water required 

To allow a measure of the effectiveness of the RD plant, a simple relationship of the impacts due to 

reduced flowrates was developed, and is shown below in Figure 16. 

'0 Duty of the plant in South East England. 

In reality, the envisaged operation of desalination in the South East of England is purely to manage peak demands during 
years when there is high demand, or when there has been a dry winter when groundwater has not been sufficiently 
recharged. As such, it is expected that an RO plant at this location would run for around 8 months at a time, once every 5 to 
10 years. 
It would be used to supplement existing established water supplies, and will run continuously for eight months of the year, 
nominally March to November inclusive. 
(Taken from e-mail from James Grinnell , then Water Resources Manager, South East Water. 17 October 2005). 
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Figure 16 above illdicales the ~ on human heafth. expected hardship. and required external 

inIervention points at reduced levels d water prodoction from the RO plant. in terms of the proportion d 

maximum design water delivery. Based on this model, no action would be taken until water production 

fell below 85% of the full flowrate . The identification and reaction to flowrates below 85% would need to 

be developed along the lines of the drought plan methodology explained at the Environment Agency 

website11
. 

The profiles for water use were based on the usage chart in Figure 17 below. This shows the rolling 

hourly water consumption 12 for an individual property in the UK, and distinguishes between water used 

inside and outside of the house on a summer peak water use weekday [Oefra, 2008]. 

11 The identification and reaction to fiowrates below 85% would need to be developed using the drought plan methodology, 
as explained by the Environment Agency website at http://www.environment
agency.gov.uklhomeandleisure/droughv31771 .aspx [Last viewed on 7 August 2011). 

12 The unit of volume consumed is based on rolling hours, i.e. if the rate of water consumption in any given 1S-minute period 
was sustained for 24 hours, the total volume consumed would be as per the height of the bar. 
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Figure 17: Water consumption for an area of Eastbourne over 2 days. 

The daily water use profile shown above was used as the basis for the daily water use profile employed 

within this thesis13
. The daily water use was proportioned for the total water requirement from the RO 

plant, and for simplicity, no seasonal variations were included. This much-simplified daily water usage 

cycle is shown below in Figure 18. 

13 The water uasage profile can be explained as follows : 

Low water use from midnight until 05:30 when people start to get up in the morning, make tea or coffee, 
run a bath, or have a shower. 
Water use activity carries on through the day with washing machines being used, dishes being washed, 
lunches being prepared but most water is used in the morning. 

• In the afternoon, there is a slight reduction in water consumption as people go out, but from 16:00 
onwards consumption increases as supper is prepared, gardens are watered, and children are bathed. 
It then reduces in the late evening as people go to bed. 
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f9we 18: Daily water usage cyde 

This profile consumes 595Om3 of water over a 24-hour period. which ~ to 85% of the 7000m3 

required daily water production for 50.000 peopIe.This is the minimum water COflSlBI1llion before 

intenIention to manage the lack of water is implemented, and wiI resuft in the ~ reservoir size that 

can reasoraably be expected (and should be des9led for). 

1.8 ModeIrlllg water production from No BSR RO plant 

A 3-dimensionaI surface of the No BSR RO plant profile was developed in Matlab14
• as shown below in 

Figure 19. This correlates the: 

• Feedwater temperature 

• The water produced, and 

• The energy consumed for the corresponding water produced, at the specific feedwater 

temperatu re . 

14 Matlab is a high·levellanguage and interactive environment that allowed the vast amounts of data re<J.Iired to model the 
RO plant operating profiles, to be manipulated more easily than Microsoft Office Excel spreadsheets. Greater detail of the 
Matlab software is available at http://www.mathworks.eo.ukl [Last viewed on 7 August 2011). 
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The above profile was then manipulated using polynomial approximations (as explained in the following 

section), so that it could be interrogated for any combination of feedwater temperature and power 

available, to calculate the amount of water delivered 15
• 

The methodology employed to calculate the amount of water produced involved taking the data for 

'power available' vs. feedwater temperature for each individual water delivery setting from minimum 

(75m3lhr) to maximum (291 m3/hr), and deriving the corresponding polynomial equations for each of the 

14 discrete water delivery curves, as shown as red lines connecting the blue sampling points below in 

Figure 20. 

40lI0-

3000 -

Temperature - degrees C Water temperature range 3 
- 42 degrees C 

Figure 20: Approximating curves for various levels of water production from the No BSR RO plant 

15 A significant amount of time was spent previously in pursuit of the single unifying equation that wo~d allow any input 
value of power and feedwater temperature to calculate the corresponding water delivery for the surface. 
This was eventually abandoned, and it was decided to pursue a less accurate method but which was easier to implement. 
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From this set of polynomials, the feedwater temperatures were split further from 3QC intervals to 0.012C 

intervals. This ultimately resulted in 3901 sets of quadratic polynomials, each relating to a 0.01 QC step 

in feedwater temperature, representing the amount of water produced from the power delivered, at that 

feedwater temperature. 

The method used to calculate the amount of water generated, was a 'for' loop in Matlab, as shown 

below: 

where: 

for i=1 :rwr 

newwater1 (i) =polyval(ppolycoef(index(i) ,:),Pg1 (i ,:)) ; 

end 

Pg 1 = the power available to operate the RO plant at each hour during the year. 

index(i) identifies the location of the prevailing seawater temperature for each hour of the year. 

ppolycoeffis a file that contains all the polynomial equations relating to each 0.01 °C step from 3 - 42 °C. 

i= 1 :rwr defines the number of times that the calculation should be conducted before stopping. 

i=the number of the calculation being conducted, in this case, conducted in sequence from 1 - (rwr) the 

max number which is 8760 (the number of hours in a year). 

Polyval is the matlab function that then evaluates the polynomial equation identified by (index(i» making 

the corresponding Pg at (i) the subject. 

1.9 Model of non-varying power source 

The power demand for the No BSR RO plant (as would be supplied by a non-varying power source) is 

shown below in Figure 21 . 
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As shown in Figure 21 above. Newhaven requires its maximum input of 3327.74kW at 23 days and 1 hr. 

For the purposes of this research. the plant size that the renewable energy system was compared to, 

was a conventional plant of 3.400kW. 

Also shown at Figure 21 above. Massawa requires its maximum input of 2379kW at 24 days and 12 hrs. 

For the purposes of this research. the plant size that the renewable energy system was compared to. 

was a conventionally plant delivering 2.400kW. 
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2 Most reliable Renewable Energy Sources 

It was decided that each site should employ the most reliable renewable energy resource available to 

them. This resulted in the application of renewable energy as follows : 

• Massawa - Solar Energy 

• Newhaven - Tidal Current Energy 

The scenario illustrated in Figure 22 was modelled for both sites to represent the single source 

renewable energy. 

~.·"",,~lOIIlImt1 
_-DC 

TIdIIII rmnt-Ii.C-

Figure 22: Single SCJd1:e 01 renewable energy to power no plant at both sHes.. 

2.1 llassawa - Solar Power 

Massawa is reportedy one of the hoHest inhabited places in the WOJId16. with the ~e reaching 

46«; in May. Also, We to geogrnpbcaI reasons that predJde the use of tidal CUJrent power17. solar 

power was adopIed as the most reliable renewable energy source. 

'''' FaIIex encydopaedia avaJaIJIe aI htlp:/IencyclooodiaJarlex.com/Massawa [l.ast viewed on 7 Al9JSt 2011). 

U The Red Sea is an emrnwe; basm locked in the north by the SUez Canal and in the souIh by the Sbait of Dab aI 
Mandeb, just 300 feet deep, thereby clearly cut off from the currents of the Indian Ocean and Mediterranean Sea, resulting 
in the elimination of a tidal system. Therefore, tidal current power is not available. 
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HOMER (energy modelling software for renewable energy systems) 18 was employed to derive the solar 

irradiance on an hour-by-hour basis at Massawa, based on the monthly averages [Thomson, 2003b], as 

shown below in Table 3. 

Table 3: Average monthly irradiance 

~"""yavaage Cali_sian ID CleGllI1Iess inIIeC' 
IIonIII ._";'7iu.y ~ing 1bIIIl~ IlWIbr applied by HOlIER 

Jan 303 7272 0..895 

Feb 3S1 8.568 0.954 

Mar 366 8.784 0..884 

ApI" 376 9.024 0..855 

May 337 8..088 0..754 

.b1 306 7..344 0.686 

.JuI 300 72 0.674 

.Aug 301 7.224 0.684 

Sep 330 7!i'J2. 0.784 

Oct 319 7.656 0.830 

Nov 308 7..392 0.891 

Dec 295 7.08 0.905 

The orignaI daIa was converted no a format suitable for HOMER. which when ir1>uIIed to HOMER 

gene.ated the: 

• Appropiale "dearness index" to be applied. and 

• An how-by-hour irnKiance profile in terms of wJrrf. which is shown below in Figure z.fO. 

5 ,.. 

~ .... .. -

f9Ire 23: tto.ty a.dalCe at" S I .a over one,... 

As can be seen from Figure 23 above, the maximum irradiance during the year was 4.979 W/m2
• 

18 The HOMER energy modelling software is used for designing and analysing hybrid power systems, and is available at 
http -'fhomerenergy.coml [Last viewed on 7 August 2011]. 

19 The 'clearness index' is a dimensionless number between 0 and 1 indicating the fraction of the solar radiation at the top of 
the atmosphere that is able to pass through the atmosphere to the Earth's surface. Greater detail of its derivation within 
HOMER is available within the 'Help' pages of HOMER 

20 This was based on the setting for East Africa (GMT +3hr) at 152 36' 33n N. 392 26' 43n E 
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2.1.1 Semi-Conductor Solar Cell Operation 

The operation of a semi-conductor solar cell is illustrated by the example of a p-n junction, shown below, 

in Figure 24. This depicts the electric field , which tends to drive free electrons to the n-type material and 

into the electrical circuit. 

Conductor 

lille,,,ted ele(lIom 

2.1.2 Typical Silicon solar cell 

blel/wl (IItllll (10dd) 

Sudgltt 

PVlOillerJ.llrs madl> 013 P'lype/,,'typ" 
semI( <!6WI( !oclII<tf4tth. lhis ue-a!es df) 

I'k>clll( field !hilt dll'ies kef' t'~(lrons to 
!he "-type material.lOd IRIO Ihe 
exlerfl<li (MUlIl 

The stn.dure of a typical siicon solar cell is iIusIJated in fi!p"e 25 below. The electrical current 

generated in the seri-conductOf" is extracted by conIacts to the front and rear of the cell. The top conIact 

structure, (which must allow light to pass through) , is made in the form of widely-spaced thin metal strips 

(usually called fingers) , that supply current to a larger bus bar. The cell is covered with a thin layer of 

dielectric material that acts as an anti-reflection coating (ARC) to minimise light reflection from the top 

surface. 
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Figure 25: The structure of a typical crystalline silicon solar cell. 

2.1.3 Losses in a solar cell 

Reflective and other losses (e.g. shading and incomplete absorption of light) reduce the typical efficiency 

of commercial devices to roughly 50% of the achievable maximum21
. 

2.1.4 Measures taken to reduce these losses 

Measures taken to reduce these losses include the use of: 

• Multi-layer anti-reflection coatings 

• Surface texturing to form small pyramids, and 

21 A loss mechanism present in all practical devices is non-radiative recombination of the photo generated electron-hole 
pairs. Such recombination is most common at impurities and defects of the crystal structure, or at the surface of the semi
conductor where energy levels may be introduced inside the energy gap. These levels act as stepping stones for the 
electrons to fall back into the valence band and recombine with holes. 
The losses due to bandgap energy can be reduced, bli only by utilising more complex structures based on : 

• Several semiconductors with different bandgaps, and! or; 
• Concentrating the solar irradiance. 

Collection efficiency 
The losses to current by recombination are usually grouped under the term of collection efficiency, which is the ratio 
between the number of carriers generated by light and the number that reaches the junction. In crystaline materials, the 
transport properties are usually good, and carrier transport by simple diffusion is sufficiently effective. In amorphous and 
polycrystalline thin films, however, electric fields are needed to pull the carriers. The junction region is then made wider to 
absorb the main part of the photon flux. 
Other losses to the current produced by the cell arise from : 

• Light reflection from the top surface; 
• Shading of the cell by the top contacts, and; 

Incomplete absorption of light. 
The last feature can be particularly significant for crystalline silicon cells since silicon (being an indirect-gap semiconductor) 
has poor light absorption properties. 
Another common loss in commercial cells involves otmic losses in the transmission of electric current produced by the solar 
cell , usually grouped together as a series resistance, which reduce the fill factor of the cell. 
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• Making the back contact optically reflecting, which when combined with a textured top surface, 

results in effective light trapping, which provides a good countermeasure for the low absorptivity 

of silicon. 

Top-contact shading is reduced in some cells by forming these contacts in narrow laser grooves, or all 

the contacts can be moved to the rear of the cell. 

The principal characteristics of different types of cell in or near commercial production, are summarised 

in Table 4 below. 

Table 4 : Solar cell efficiencies achieved by the principal semiconductor technologies 

--.. EaI'lPcy ('I.) 
T ........ ' 

On c"', .... ...., ~ ..... 
• 7' • (Gnat ..... 

~ 
Mano-Of~!&:on 10-18 2S kJgDtI wafer 

sIicon 5-8 10 Thilfilm 
QJpper inIIum oaIUn SeIeride· 8 16 ThilIh 
CadmiiIm 1eIuride- 10.6 165 Thil1iIm 

.. Also see article from SWiss Metal Assets [Swiss Metal AsseIs,. 2010). which ildcales some of the advances 

being made willi dE temnok)gy_ This article indicaaes 1hal1he tin lim copper indium gallium seIenide (GIGS) 

teclwlOlogy which is particularly ftexi)Ie in use. is rapicIy advancing on the efticiency of the more elIp8IlSive 

~ siicon phom voftaic eels.. 

•• Taken fnIm 'QdnUn TeIUide - The Good and 'lie Bad' [Solar Fads and Advice, 2010}. 

2.15 Device employed wHhin model 

The device en1JIoyed wiIhin the research was rnono-aysIaIline siicon. modeled as being 10% efticienl 

This was the worst case for its efficiency. shown above in Table 4. 

The solar array for INs process assumes that 10% of the avaIabIe ndaIion. at any time when the sun is 

shiling, is capbnd and c:onverted to usable eIecIricaI power. 

2.1.6 Conversion of Solar DC Power 

h was modeled that the PV eels would supply DC power. This DC supply would be convet1ed by an 

irMwIer 10 AG. suitable for use by the RO plant. The efficiency of INs power conversion was taken as 

between 90 and 95%.. 

2.2 Newhaven - Tidal Power 

The maximum tidal a.urent speed on the south east coast of ErVand (about 1.75 metres per second) is 

at Dover, owing 10 the restriction of the English ChameI around Ihat area.. The tidal speed around 
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Newhaven is quoted [MTMC, 2007] as being up to 1.5 rn/sec22
, and for the purposes of this research, it 

was assumed to be 1.49 rn/s. 

One year's data (for 2004) for Newhaven was taken from the National Tidal & Sea Level facility (National 

Oceanographic Centre, 2011] in the form of tidal range information, which was converted to water 

speed23
. The resulting tidal speed profile for each hour over the course of one year, is shown on the 

graph below in Figure 26. 

2 r 

50 

• 
• ... 

100 150 200 
Trne (o;rys) 

250 300 

Figure 26: Tidal speeds in Newhaven for 2004 (in m/s) at hourly intervals. 

350365 

As can be seen from above, the maximum tide speed during the year at Newhaven was 1.487m/s. 

2.2.1 Tidal Current Devices 

There are a variety of devices available to collect and convert tidal power to electricity, which are 

explained in great detail at 'The Analysis of TIdal Stream Power' [Hardisity, 2009]. It was decided that 

the device that would be modelled would be as technically proven as possible and available to be 

installed now, but unlike solar and wind there is no standardised design and the available tidal current 

devices are at varying stages of development, and few are at the commercial implementation stage. 

So, from the mUltitude of tidal device options available, the SeaGen Turbine device was selected for use 

in this research24
, and is shown below in Figure 27. 

22 The spring tide mean peak flow is Quoted as 1.25 - 1.5m/s off shore between Portsmouth and Eastbourne. It is 
noteworthy that this is some distance offshore. Locating the devices closer to shore results in a significant reduction in tidal 
current speed. 

23 The tide height was converted to water speed by: 
Calculating the tide heights at each hour during the year, to give the rate of change of tide height for each hour 
Dimensioning the rate of change of tide heights, to fit the 1.5m/s max flowrate adopted at mid-spring tide, and 
Om/s at high and low tide 

• Assigning speed in proportion to the rate of change of height for the rest of the year 

• Root mean square average taken for the data over the course of the year, to provide an average daily cycle to 
regularise, so that all the values were positive, based on the assumption that power can be generated as the tide 
flows in both directions. 

24 See 'Sea Generation Limited' Webpage at http .. ,www.Seageneration .co.ukl for further details. [Last viewed on 7 August 
2011]. By using twin rotors, Marine Current Turbines estimate that they can achieve double the power for only 60% extra 
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Figure 'Z1: Marine CWrenI T..tJines LimiIed SeaGen Tw1Iine 

The reason for selecting the SeaGen was its relatively advanced status of development as shown at 

'Marine and Hydrokinetic Technology Listings', a comprehensive database of current projects and their 

status compiled by the US Department of Energy [USDoE, 2012]. At the time of drafting it was the most 

advanced tidal current device, although quite closely followed by the Atlantis AR-1 000, which is currently 

at the demonstration stage. Both the SeaGen and the Atlantis AR-100025 are MW scale horizontal axis 

devices. 

2.2.2 Model of SeaGen Operation 

The SeaGen Turbine's power output in relation to the prevailing tidal current speed was approximated 

using a fifth order polynomial, shown on the graph in Figure 28 below. 

cost over a single turbine. Blades would only travel at a maximum of 12-15 mis, which is taken to be slow enough so as not 
pose a danger to marine life. 
A working example of a 1.2 MW Seagen tidal energy system was installed by Marine Current Turbines Ltd (MCT) in 
Strangford Lough in April 2008. 
25 Greater detail of the Atlantis AR-1000 and the and its manufacturer, Atlantis Resources Organisation, is available 
at their website http://www.atlantisresourcescorporation.com/ [Last viewed 1 September 2012] . 
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Figure 28: PowieI' ouIput of single SeaGen Turbine 

It is noteworthy that due to the limited tidal current speeds at Newhaven, the SeaGen Turbine is (at best) 

not expected to achieve more than 1/3,d of its rated capacity during the year. This polynomial was 

applied to the tidal current speeds derived for Newhaven, resulting in the following power output (Figure 

29) from a 1, 113kW device. 

Figure 29: Pu.!r ouIpul (kW) from single SeaGeR Turbine at Newhaiten over 1 year (kW) 

It is apparent: 1hal, aJIhol9t the main tfwusl of tidal wnent technology developUlent is around the MN 

scale hoIizoe daI axis devices. they do not present a reaIsIic option for the relatively low tidal speed 

environment at Newhaven. This said the SeaGen was modelled, as the most developed device, as an 

academic exercise, although it is appreciated that a more technically viable option would need to 

produce power at lower tidal current speeds. 

2.2.3 Conversion of Tidal Current Power 

The Tidal Current Turbine(s) was modelled to supply Alternating Current (AC) power. This AC would be 

converted to an AC waveform suitable for use by the RO plant using a transformer. The efficiency of this 

power conversion was taken as between 90 and 95%. 
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3 BSR Plants 

The data definition stages are shown below in Figure 30 in relation to the modelling for the BSR RO 

plants. 
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figwe 30: BSR flO Plant modelling pacess 

The No BSA RO plant was modfied to represent the opern.ting profiles of the same capacity RO plant. 

but 1919 the following BSR~: 

• Pelion Wheel, and 

3.1 Power" demand 

The powe£ consumed by each of the BSR plants was modelled as: 

• Power to pressurise feed. and 

• Power to move feedf process water as required. 

3.1.1 Power to pressurise feed 

AI data for pressmisaIion power was derived from ROSA 62, and pressurisaIion power from ROSA was 

also appfied to the booster puI11) on the ~ Exchanger BSR reverse osmosis plant.. 
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3.1.2 Movement of feed! process water 

In addition to pressurisation power requirements, for the Pelton Wheel BSR plants there is a need to 

move water away from site, having had all its energy extracted, and reapplied to the RO plant by the 

Pelton Wheel . 

Table 5 below illustrates the values used to model all other process water power requirements for the 

BSR RO plants. 

Table 5: Power requirements beyond pressurisation of feedwater at membranes 

T,..e at pIIIIIIp'" VabIIe PcMer consaaed ...... ......, 
detIiIs- 'r (kW) FGreab..-

ftJr- at..-r 
.,.3/sec .;e: 

Seawater Borehole Pm., 110m""n. 79.4 2599 SM1JIe and Bme SIn!am 
- 1akes water from sialic m Recovery options as 
around 0...3 ~ as o..mo56 borehole feedIVaIeI ~, 
su::Iioo b HP Pt...,.. m"'iSec and PelIon Wheel BSR plant 

brine removal.. 
* Details of power consumption taken from 'DeSign of a 10,000 cu·m/d Seawater Reverse OsmosIs Plant on 

Providence Island' [Andrews et al] 

As previously, these results were applied and then modified in accordance with 'Pumping efficiency at 

Varying Flowrates' [DOE, 2007]. 

3.2 Pelton Wheel 

The Pelton Wheel RO plant system modelled is shown below in Figure 31 . 
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Rgure 31: Simple plant using Pelton Wheel for BSR design 
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As shown in Figure 31 above, the Pelton Wheel BSR RO plant design utilises the brine stream to power 

a Pelton Wheel turbine, which is mechanically linked to a high pressure pump (HP pip) arrangement. 

The power produced from the Pelton Wheel is used to partially pressurise the incoming feedwater, which 

reduces the external power required to raise the feedwater to an adequate pressure for desalination via 

the RO plant membranes. Due to the extraction of energy from the brine stream, the brine must be 

pumped away for disposal using a brine disposal pump. 

There are a variety of options available for brine stream removal and disposal, which are detailed at 'Salt 

production for zero discharge system.' [Alberti et ai, 2008] 

3.2.1 Calculation 

The general equation employed was: 

Pelton Wheel BSR RO plant energy = energy to power simple (no-BSR) plant - energy recovered by 

Pelton Wheel + energy to remove brine from site. 

The energy recovery from the Pelton Wheel is given by: 

(Vc x Pc x flturb )/36 

where: 

Vc = volume of concentrate (m3
) 

P c= concentrate pressure (bar) 

'hurb = efficiency of Pelton wheel turbine taken here as constant 88%. [Olga and Sallangos, 2004) 

3.3 Pressure Exchanger 

The Pressure Exchanger RO plant system modelled is shown below in Figure 32. 

.... -
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, 

Figure 32: flO plant using Pressure Exr:haJ1geI tor BSR design 
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As shown in Figure 32 above, the Pressure Exchanger BSR RO plant uses the brine stream to 

pressurise a hydraulic chamber (the pressure exchanger station). This hydraulic chamber acts on a 

piston arrangement which, in turn, is used to partially pressurise the incoming feedwater. A booster 

pump then raises the now partially-pressurised feedwater to the correct pressure, to combine with the 

feedwater pressurised by the high pressure pump for desalination by the RO plant membranes. 

After pressurising the incoming feedwater, the brine stream (which is still partially pressurised) is 

discharged using valve arrangements as a low pressure brine stream. 

3.3.1 Calculation 

The general equation employed was: 

Pressure exchanger BSR RO Plant energy = Energy to produce permeate for No BSR plant - energy 

recovered by pressure exchanger + energy required to boost pressure of concentrate for re-application to 

membranes. 

3.3.1.1 Booster pump power demand 

The booster pump power demand was taken as: 

The appropriate proportion of the energy required to boost diverted feedwater to achieve full feed pressure, 

and the volume of water this boosting acts upon. 

This was modelled using the following equation : 

Booster pump power = Non-BSR pressurisation power for that scenario x ((booster pressure required! 

membrane feed pressure) x (volume of feedwater to be boosted! volume of feed)). 

3.4 RO Plant profiles at varying temperatures 

Shown below in Figure 33 and Figure 34 are the resulting operating profiles for the Pelton Wheel and 

Pressure Exchanger RO plants, respectively . 
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3.4.1 Revision to Pressure Exchanger' BSR profile 

it is noteworthy that the initial calculation of the Pressure Exchanger profile at FIgUre 34 above had a 

cwve at the bottom" which meant that at a given power-Ievel. there were two opIions for the volume of 

water that would be produce(t The data for the model was f1'ICXified to ensure that the lower vofume 

walBr production option for each teqlerab.Jre was not avaiIabIe_ This resulted in the Pressure 

Exchanger BSR RO plant operating profile shown below in Figure 35. 

Only power settings above that required to achieve the minimum flowrate, of 92m3/hr, were used . 

lOO-
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3.5 Evaluation of water produced 

Following the same methodology used for the No BSR RO plant, data for each hour of the year for 

power available to be used by the BSR plants (and the power wasted) with corresponding feedwater 

temperature for each site was used to calculate the water produced. 

The method used to calculate the amount of water generated was a 'for' loop in Matlab as shown below: 

for i-1:rwr 

where: 

newwater1 (i) .polyval(ppolycoef(index(i),:),Pg1 (i,:»; 

end 

Pg 1 - the power available to operate the BSR RO plant at each hour during the year. 

Index identifies the location of the prevailing seawater temperature for each hour of the year within the 

table of all available options. 

ppolycoeffthe a file that contains all the polynomiai equations relating to each 0.01°C feedwater 

temperature step, from 3 - 42°C. 

1-1 :rwr defines the number of times that the calculation should be conducted before stopping - in this case, 

8760 times - once for each hour of the year. 

i-the number of the calculation being conducted: in this case, conducted in sequence from 1 - (rwr) the 

max number which is 8760 (the number of hours in a year). 

Po/yval is the Matlab function that then evaluates the polynomial equation Identified by (Index (I», making 

the corresponding Pg at (i) the subject. 
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4 Model of most reliable power source 

The most reliable (non-varying) power source was taken to be conventional energy that the renewable 

energy sources will be compared to for technical competence. 

The power demand for the BSR RO plants is shown below in Figure 36. 
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Figure 36: BSR no plant power profIes ower 1 JIB" to mainlailll iiiIIlIimum ftowrate;d " ;aM and 

4.1 IIassawa 

As shown in FIgUre J6 above, Massawa requires its maximum q,ut of 993kW and 773f.W at 24 days for 

the Pelion Wheel and Pressure Exchanger RO pIanIs, respectiveIy_ For the purposes of this research, 

the plant sizes that the renewable energy was COfI1l3IOO to were conventional plants of: 

• Pefton Wheel - 1,OOOkW 

• Pressure Exchanger - 800kW_ 

4.2 Newhaven 

Also shown in F9Jre J6 above, Newhaven requires its maximum i~ of 1,31 C1t<.W and 1,062J<W at 21 

and 22 days for the Pelion Wheel and Pressure Exchanger RO plants. respectiveIy_ For the purposes of 

this resean:h. the plant sizes that the renewable energy was COf"I1)ared to were conventional plants of: 

• Pelion Wheel - 1.4OOkW 

• Pressure Exchanger -1 .100kW_ 
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5 Supplementing power sources 

The next stage in the modelling process was to hybridise the energy plant, by supplementing the 

primary power source with wind or wave power. This was in an attempt to maintain 24 hour RO plant 

daily running, as shown below in Figure 37 and Figure 38 for Massawa and Newhaven, respectively. 

Ej --
Power to synchronising unit 

Solar - DC 
IMndi Wove • AC 

S,,1CII!ac1is e, 

#C ....... b lID ..... 
3_ 
10 Ii!< , 

Reservoir 

figme XI: tfybridsed PIanl at Mas 5 aa 

5.1 Synchronisation of Solar and Windt Wave Power 

Modeling was carried out such that the PV eels woukI supply DC power. and the supplementing windt 

wave poweI" would proOOce AC power-. as shown in FIQWe 37 above. The AC from the windf wave 

devices WQIjd be converted to DC using rectiieJs. and added to the DC power from the PV eels. This 

WJ.tilled DC power would then be converted (using an ir1vefe) to AC suitable for use by the RO plant. 

The efficieIrcy of these power- conversions was taken as between 90 and 95%.. 

5.2 Synchronisation of Tidal CWTent and Windf Wa1fe Power 

Modeling was carried oot such that the SeaGen Tidal Ctnent Turt:Jines and the supplementing wind{ 

wave power devices would produce AC power as shown in Figure 38 below. The AC from the tidal 

ca.mlflI: tmbines and windf wave devices would be converted to DC using rectiiers. and contirled to a 

~ DC power sout:e. This combined DC power source would then be converted to AC (using an 
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inverter) suitable for use by the RO plant. The efficiency of these power conversions was taken as 

between 90% and 95%. 

5~ Wind Power 

P0'N8r to synchronising unit 
Tidal Current - AC 
Wr:1d1 wave - AC 

/IiC""fPIlr" AD'-3_ 
1iDn. 

• 
Pes? voir 

FigI.we 38: Hybridis e d Plant at Ne ..... wen 

1~- 1 

The OleUkIdoIogy for oonvefting wind into power is quite firmly established through wind turbines. A wind 

Ubine will deHect the wind before the wind reaches the rotor" plane. This means that it is iqlossille to 

capture aI of the energy in the wind using a wind bJrbine. 

1he more kinetic energy a wind turbine extrads from the wind, the more the wind wi! be slowed down as 

it passes through the blades. It foIows that i an the avaiabIe energy were extracted from the wind by 

the turbine., the em- would move away with zero speed. i.e. the air ooukl not physically leave the turbine. 

In that case., no energy woukl be extJacted at ai, since aB of the folowing air would also be prevened 

from entemg the rotor of the turbine. 

Taking the o:Iher extreme case, the wind could pass through the bJrbine without being €isturbed. and the 

bBbine wodd not extract any energy from the wind. 8etz's Law provides the most efficient level for 

converting the energy in the wind to useful mec:haDcaI energy between these two extremes. 
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5.3.1 8etz's Law 

Betz's law (or the Lanchester-Betz-Joukowsky limit) [Gijs, 2007]27 states that a maximum of 16/27 (or 

59%) of the kinetic energy in the wind can be converted to mechanical energy using a wind turbine. 

5.3.2 Wind turbines to be employed 

The following wind turbines were selected from the HOMER library and assessed: 

• The WES 30, and 

• The Fuhrlander 250. 

These turbines are rated at 260 and 300 watt respectively. 

For efficiency, the current crop of machines are rated at 2,000kW and above, so the operating profiles of 

the WES 30 and Fuhrlander 250 were scaled-up to reflect this trend, as shown below in Figure 39. 

2500 T---------------------------------------------------------------~ 

WES = -0.0007>< + 0058S1I - t .6698 ' .. 20.275 .. ' - 87.636)(1 • 126 SoClI- 22857 
Ft' =0.90022 

2~ t-----------------------7/~==~~~~~~~--------~ 

500 +-----------------------~~~~------------------~ 

+--------------------J.iiC----------------i- WES .M> Sea/ell ~ ~~~ 
prodlJC.~1I 

500 +-------------~~----------------------------------------------~ 
- 9 3330. .. t4.473 

o ~~ __ ~~~--------r---------~--------~------~ __ ------~ 
5 15 20 25 30 

·500 

Figure 39: SaIled up WES 30 and FuhitaKleil 250 opentting pro&!s 

The next sIep was to assess which of the options shol*I be used as part of the modelling for the present 

resean:h_ 

27 The British scientist Lanchester derived the same maximum in 1915, some five years before Betz who is credited with its 
discovery in 1920. A study of early Russian publications on rotor aerodynamics now shows that the Russian aerodynamic 
school also produced the same result; its leader Joukowsky derived the maximum efficiency for an ideal wind turbine in the 
same year as Betz. Consequently, in order to honour all , this ideal efficiency should be named the 'Lanchester-Betz
Joukowsky limit' in scientific writing. The well-established and convenient name Betz limit is generally accepted as an 
abbreviation of this full name. 
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5.3.3 Wind Resource available at each site 

5.3.3.1 Newhaven 

The wind resource available at Newhaven was taken from the UK wind speed database NOABL
28

, and 

is shown below in Table 6. 

Table 6: Average wind speed at Newhaven 

10 6 
25 6.7 

5.3.3.2 Massawa 

The monthly average wind speed data at Massawa was taken from local weather reports29
, and is 

presented below in Table 7. 

Table 7: Average wind speed at Massawa 

DIll! _ ............. 
1 .... .......-c-sl 

Jan 3.576 
Feb 3.576 
Mar 5.812 
AJx 5.812 
Mav 5.812 
Jura 5.812 
JUI 4.917 
Ala 5.364 
Sep 4.917 
Oct 5..364 
fbr 5..364 
Dec 5..364 
ArnJaI Average 5.1 .... 1 

This daIa was then applied to HOMER 10 derive Ihe wind speed tor each hour of Ihe year. shown below 

in Figure 40. 

~aken from http://www.rensmart.comlWeather/BERR [Last viewed on 7 August 2011]. The data in this database is the 
result of an air flow model that estimates the effect of topography on wind speed. Newhaven data was based on the 
following coordinates 50.78076029964647 Lat: 0.0473785400390625 long. 

29 Average monthly data is based on the average of data over 4 years. Coordinates for Massawa are 1536' 35" Lat: 39 27' 
00" Long taken from http://www.weatherreports.com/EritreatMassawalaverages.html [Last viewed on 7 August 2011). 
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40 !- MassawaWIndSpeed i' 
- Newhaven Wind Speed . 

Time (Days) 

FiguIe 40: Wind speeds at Mas .... a and Nealwtla1 over 1 year 

Based on the opeiating proIies of the two scaIed-tJp wind turbines, it was decided that the scaIed-up 

FtftIandet- 250 operamg proIie should be employed for this modeling exercise, as it was more 

eftedive at delivering power from the prevailing wnt speeds at each site. 

lRs is ~ in Figure 41 and Figure 42 for Newhaven and Massawa, respectively. 

~ 
~15~ 
"U 

i + • ~ 0.5 ," 

0.. ~ 

1'- Scaled up Fuhdandef" 250! 
,- Scaled up WES 30 . . .., 

't'r ...... m 

O~=---~------~-------L-------L------~------~------~ 
o 50 100 150 200 250 300 350365 

TII11e (Days) 

Figure 41 : Single scaIed-tJp wind turbine performance at Newhaven over 1 year 
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f9Ire 42: Single sc:aIed-up ·net turbine pertonnance atllassawa over 1 year 

It is noIeworthy that aIIJ1ot9l the scaJed-up WES 30 generates more power for more of the time than the 

scaIed-up FthIander, as shown in Figure 39 above, the scaJed-up FutvIander gelle,afes more power at 

wind speeds of between 3 and 6mfs. For the wind profile using a WeilbuB distrbJtion (k) value = 2, more 
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than one third of the total wind speeds for the year occur between 3 and 8m/s, which results in the 

scaled-up Fuhrlander out-performing the apparently more effective scaled-up WES 30, over the course 

of the year. 

5.4 Wave Power 

5.4.1 Wave power delivery devices 

Three wave power devices were considered, which each represent a version of the main wave device 

options: 

• Pelamis - Attenuators30 

• Wave Dragon - Terminators31 

• Archimedes Wave Swing - Point absorbers32. 

The operating profiles for each of these wave devices are shown below in Figure 43 - Figure 45 inclusive 

based on the 'Variability of UK marine resources - An assessment of the variability characteristics of the 

UK's wave and tidal current power resources and their implications for large scale development 

scenarios' [Environmental Change Institute, 2OOSf3. 

30 An Attenuator is a floating device which works parallel to the wave direction, and effectively rides the waves. Movements 
along its length can be selectively constrained to produce energy. It has a lower area parallel to the waves in comparison to 
a Terminator (described below), so the device experiences lower forces. 

31 A Terminator device extends perpendicular to the direction of wave travel, and captures or reflects 1he power of the wave. 

32 A Point Absorber is a floating structure which absorbs energy In all directions through Its movements atlnear the water 
surface. 

33 The 'transform matrices' at pages 32 and 33 were used to provide 1he link between the ambient wave conditions and the 
anticipated output of the wave power device, with the estimated power output determined from the average wave period and 
height over a one-hour period. 
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5.4.1.1 Pelamis 

5 

- ...... -

.. 
• _-_PIi 

FigIa'e 43: PeJamis potM!I' balisfonnalion mab'iJ[ (generic pelfolllua .. ce) 

SA 1.2 Wave Dragon 

......... -_N 

-.... ...-

-........ -........... 

figure 44: w.ne dragon poIII!I' b_asfoIDIiIIiun maIrix (optilillised tor high avenge wave concHolls). 
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5.4.1.3 Archimedes wave swing 

--~ ----
-~---

figure 45: An::himedes wave swing power baoslwmation IIIiIIIrix ( ... esbided) 

5.4.2 Wave period to be modelled 

5.4.2.1 He.haven 

Based on the ~ "Prediction of nearshoI"e wave energy «istribution by analysis of numerical wave 

model output. East Sussex ooasIIine, UK" from the Geological Society [Mitchell and Pope, 20041. it was 

concluded that the waves at Newhaven act with a wave period of 7 seconds, which allowed the 

~ shown below in Figure 46 to be made. 

5A.2..2 IIassawa 

The wave period of 7 seconds was also applicable at Massawa. based on a mean significant wave 

period of 6.7 sec caJcuIaIed in "SIaIisticaI Wave Parameters Offshore Jeddah Coasf (Abdelrahman. 

1995). 

7000 

6000 

5000 
~ Pe-lamis 7 sc< 

41000 

3000 
_ ave- Dragon 7 sc<s 

2000 

1000 
sc<s 

() 

-1000 0 2. 6 

f9Jre 46: Power delivery from each device at varying wave heights. at cOlilstant wave period of 7secs 
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From this, it is evident that the wave dragon is by far the most effective device for power production on a 

power conversion per meterage of wave basis, and this was thus adopted as the device for modelling in 

this research. 

5.4.3 The Wave Dragon 

The Wave Dragon (illustrated below in Figure 47) is an 'overtopping' wave energy converter, and is 

floated slack-moored, to allow it to move in the direction of the prevailing waves. 

The principle ~ opeIaIion ~ the wave dragon device is iIusIraIed ~ in Figure 48_ 

overtoppi ng 
reservoir 

1.. 

turbine outlet 

Rgure 48: The plinciple at the Wave Dragon ledlidogy 

The Wave Dragon works by facing iIs outsbetdled coIedor anns IDwalds the oncoming waves and 

cOlicelllbating the wave front towards the raJI1) at the fnri of the strudure35
• As shown by FIQUre 48 

above. energy is capUed by waves running up the fdJJ1) and overtopping the crest into a reseMJfl". 

This waJer. stomd in the reservoir. at a hi{tIet" level than the sea.. is returned ttvough low- head twbines 

powemg eIedricaJ gereators proclDlg AC poweI". 

» Soun:e olciagr.lm: http://www.brighthub.com/engineering/marine/articles/55295/image/58398/ [last viewed 00 7 August 
2011). 

35 This focusing increases the wave height at the ramp, which in turn acts like a beach and causes the waves to overtop the 
device without breaking (and therefore without losing their potential energy) into the reservoir behind it. 
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The first Wave Dragon prototype connected to the grid is currently deployed in Denmark36
. 

The power production profile for the Wave Dragon was taken as shown below in Figure 49 and a 

polynomial curve fitted to it, where: 

x = wave height. 

PtMer = - 22"x5 .. 23e+02"X4 - 7.7et-CJ2"'x3 .. 8.6e+OTx2 + 

7.5e+02"'x .. 47 

~-~ delivered by Wave Dragon I 
- - - 5th degree 

O~~ __ ~ ____ ~ ____ -L ____ ~ ______ L-____ ~ ____ -L ____ -L ____ ~ ____ ~ 

o 0.5 1 1.5 2 25 3 3.5 4 4.5 
Wave Height em) 

Figure 49: Power ou1put from wave Dragon at 7-second signific:anI WiI'IIe period.. 

5A.3..1 Wave height 

The average monIhIy wave he9Jt: data for Massawa and Newhaven from AR~ was ef11lIoyed. 

and these are shown below in Tables 8 and 9, respectively. 

36 The 20kW prototype is located at Nissum Bredning In Denmark. Detail of this prototype and the wave dragon device in 
general are available at http://www.wavedragon.netl [Last viewed on 7 August 2011). 

5 

37 Tables were kindly provided by Feddo Vollema of ARGOSS. See the website at http://www.argoss.nV for greater detail of 
the organisation's activities. [Last viewed on 7 August 2011) . 
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The average values, highlighted in red, were employed as the wave height. 

Shown below in Figure 50 are the power output values for Massawa and Newhaven for their average 

wave heights. 
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at Massawa and Newhaven. 

As can be seen from Figure 50 above, the average wave heights employed mean that the Wave Dragon 

device is only delivering (at best) around 1/6th of its potential power output. 

5.4.3.2 Power produced by Wave Dragon device 

Based on the polynomial and wave heights provided, the power produced by the Wave Dragon from 1 m 

of wave front, was derived. The profiles for Massawa and Newhaven are shown below in Figure 51 and 

Figure 52, respectively, with the maximum values achieved during the year at each site. 

o 100 

''''' 
,_ .. 

150 200 
Tme(days) 

250 300 

Figure 51: Power produced by 1 m of Wave Dragon at Massawa during 1 year. 
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Figure 52: PcNer produced by 1m of Wave DAgon;d Ne .. aawen cbing 1 JIB". 

5.4.3.3 Modelling of wave power. 

5.4.3.3.1 Assumptions 

For the purposes of this research, it was assumed that: 

• The Wave Dragon device employed is a 95kW device with a wave front capture length of 57m38
, 

based on analysis of the Wave Dragon Devices available39
• 

• The 'slack mooring' employed by the Wave Dragon allows it to capture the energy from the 

prevailing wave front from any direction, and 

• The wave dragon devices can operate effectively in the water depths available at Massawa40 

and Newhaven41 
- maximum working depth in excess of 6.0m42. 

The maximum power delivered at each site during the course of the year (as shown in Figure 51 and 

Figure 52) is as follows : 

• Massawa O.5925kW/m 

• Newhaven 1.671 kW 1m. 

38 When the figures were interpolated for 95kW, it was concluded that with maximum output at 5m wave heights, the wave 
length captured by each wave dragon device was 57m, if the device were to achieve the rated output .. Feedback on this 
assumption was requested from the author of the text used to derive the figures , but was not received. 

39 Wave Dragon web page showing devices available 
http} /Www.wavedragon .neUindex.php ?option=com content&task=view&id= 7 & Itemid= 7 [Last viewed on 7 August 2011). 

~ 'Red Sea overview page', at http}/www.emecs.or.jp/guidebook/eng/pdf/ 16redsea.pdf [Last viewed on 7 August 2011) . 

41 Admiralty Survey. 2009. http://www.ukho.gov.uk/AboutUs/Documents/2009/DWRT%20Deep%20Water%20Route.pdf 
[Last viewed on 7 August 2011). 

42 The Straits of Dover in English Channel (near Newhaven) have a water depth in excess of 30m. 
There is a deep trench that stretches from north to south for almost the entire area of the Red Sea. The deepest region lies 
between 14 Nand 28 N, with a maximum depth of 2,920 m. The minimum depth is between 55 - 73m and the average 
depth is over 500m. Source: 
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The power required, and the numbers of Wave Dragon devices used at each site for each of the RO 

plant types under consideration, is shown below in Table 10. 

Table 10: Power delivered at each site and scaling employed. 

No. GlIISkW 
.... DnIgDn ..... AI:UI ............. lID ....... DnIgDn .... .... .......... ..... > ... LdlD DnIgDn 

~ ... ..... .... ............. ........... ean.. ..... ...... 
lJpeGiRO := "':..~ CIII*n ...... ..,. .... e ' Sm ...... .., . ....... ..... Gl57a ao-. l'Q (1M) 

New ~ BSR 3.4 2.03 35 38 93.9 3.61 

Mass ~ BSR 2.4 4.05 71.1 75 94.8 7.13 

New PW 1.4 0.84 14.7 16 91.9 1..52 

New PX 1.1 0.66 115 13 88.8 124 

Mass PW 1.0 1.69 29.6 32 925 3JM 

Mass PX 0.8 1..35 23..7 25 94.7 2..38 
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6 Energy Storage 

It soon became clear from the energy use profile of the RO plants being modelled, that each type of 

renewable energy plant (hybridised and non-hybridised) had varying amounts of energy that was 

wasted. 

This came in two distinct categories, as described in the following text, and shown graphically (using a 

simple solar day profile) in Figure 53 and Figure 54 below: 

• Energy wasted during start-up and after shut-down, and; 

• Excess energy above that required to achieve maximum flow, as well as that below the power 

level to achieve minimum RO plant flow rate. 

RO plant nniing lime 

... _uday 

FiguIe 53: Energy wasIed at sIart and end of oper.Jtion 

Figure 54: &IeIgy wasIed at start. end, and cbing RO plant opetation 
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The following text describes how the wasted energy was captured, and reapplied to be used by the RO 

plant to maintain the maximum flowrate . 

6.1 No energy wasted during RO plant running 

Energy was wasted during start-up and after shut-down. The energy available during start-up can be 

captured and used to extend the RO plant running time at maximum flow rate, as illustrated below in 

Figure 55. 

at start of day 
Used to extend run time at start and end 

Of day 

Figure 55: Application of captured energy to increase the running time at maintain maximum flow rate (not 

to scale) 

6.2 Energy wasted before, during and after RO plant running 

Alternatively, the energy wasted at the beginning and during RO plant running can be used to extend the 

RO plant running time at a reduced maximum flow rate, as illustrated below in Figure 56. 
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ROPIanI: 

Flow 
raIe 

Used 

FiguIe 56: An6;a6on 01 capIurIed energy 10 increase the running time of !he RO plant (not 10 scale) 

6.3 Types of energy storage systems available 

"Projections of Ievefised cost benefit of grid-scaJe energy sIorage options' [Doty et ai, 2010] identifies 

several options thai: do not use conventional power. that are available for storage of the captured energy 

on a "grid scaIe'. These include: 

• ~ hydro S1orage; 

• ~ Purqled Hydro Storage (UPHS); 

• Hydrogen Fuel Cells; 

• 8aIteries; 

• Mvanced cdabaIic ~ air energy storage (M-CAES); 

• Flywheels; 

• UIIra capacitors. and; 

• Supermndt.K:tin magnetic energy storage (SMES). 

The following text presenIs a brief overview of each of these technoIogjes. A room detaied descr1ltioo 

of each of them. and other energy storage meIhodoIogies. is avaiable at "Prospects for" Large-Scale 

Energy SInrage in Decarbonised Power Grids' [OECMEA, 2009]. 
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6.3.1 Pumped hydro storage 

Pumped hydro storage requires two reservoirs at different altitudes. When the water is released from the 

upper reservoir, energy is generated by the downflow which is directed through high-pressure shafts, 

linked to turbines. In turn, the turbines power generators to create electricity. 

Water is pumped back to the upper reservoir by linking a pump shaft to the turbine shaft, using a motor 

to drive the pump, as shown below in Figure 57. 

The power for the motor is normally provided during periods of excess power production. 

Figure '!iT: Pumped hydro sIorage system 

6.3.2 UndergroImd Pumped Hydro Storage (UPHS) 

The need for a significant height difference between the two reservoirs. and extensive excavation for the 

water~ galleries for pumped hydro storage, limiIs the appflCaOOn of this technology. 

To overcome 1hese imitations, the concept of UndetglOmd Puqled Hydro Storage (UPHS) was 

proposed by Pierre Couture. who also invented the modem wheel moIDr [Green Transport and Energy. 

2009t This avoids the large excavation for the gaIeries associated with puI"I1)ed hydro storage_ Pierre 

Couture recomnteIlIded ~ng a well around two metres in diameter and three kiometres deep, as 

shown below in f9Jre 58. 
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FigI8'e 58: UlideigJiound pumped hY*o storage system 

T whines that can be reversed and atso act as ~. are placed at kiometre inIervaIs, with a buffer 

cave behind each !P'OlIP of turhine-generaf assembly. 

The system then opernleS as a normal pu...,oo hydro storage system in that 

• The twbines power the generators to create electricity when water flows dawn to the storage 

caves. 

• Water is ~ back to the ~ reservoir, using the reversille turbines acting as PUrJ1lS. 

using power provided during periods of excess production. 

6.3..3 Hydrogen Fuel Cells 

A hydogen fuel cell is a device that converts the chemical energy from hydrogen into eIecIricity throtqJ 

a d1eillical readioR Hymlgen fuel eels differ from baIleries in that they mcpre a ronsIanI source of 

fuel (oxygen and hyO'ogen) to operate, but wit produce eIecIricity continuously as long as the fuel is 

SI~. 
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6.3.4 Batteries 

A battery is a device that converts stored chemical energy directly into electrical energy. A battery 

consists of a number of voltaic cells, and each voltaic cell is made up of two half cells. One half-cell 

includes electrolyte and the electrode to which anions (negatively- charged ions) migrate, i.e. the anode, 

or negative electrode; the other half-cell includes electrolyte and the electrode to which cations 

(positively-charged ions) migrate, i.e. the cathode, or positive electrode. 

The type considered by 'Projections of levelised cost benefit of grid-scale energy storage options' to 

have the greatest potential at the MW scale is the carbon lead acid battery. The negative electrode is 

made from carbon instead of lead, and according to the Economist article 'Lead-acid batteries. 

Recharged . A 150-year-old technology looks to the future' [The Economist, 2009], the carbon lead acid 

battery performed three times better than standard lead-acid batteries. 

6.3.5 Advanced adiabatic compressed air energy storage (AA-CAES) 

In the Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) system, surplus energy is used 

to compress air into a large underground storage space, as shown below diagrammatically in Figure 59. 

A , Inj1tc,k)n 

• 

Compressed Air 

\11 , \~\I:. coo I\,On.. 
O'r7'.t!Jr." I 'r'81I .. ,'11"'&-'\' .}I 

}"'f),,'\' IK, <UIJ J'OM r IN 

Agure 59: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) system 

When the energy is needed, the compressed air is expanded, and used to run power generation air 

turbines to generate electricity. 
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6.3.6 Flywheels 

A flywheel is a rotating mechanical device that is used to store rotational energy. Flywheels have a 

significant moment of inertia, and so, resist changes in rotational speed. The amount of energy stored in 

a flywheel is proportional to the square of its rotational speed. Energy is transferred to a flywheel by 

applying torque to it using surplus power, thereby causing its rotational speed, and hence its stored 

energy, to increase. Conversely, a flywheel releases stored energy when required by applying torque to 

a mechanical load demand, which results in decreased rotational speed. 

6.3.7 Ultra capacitors 

An ultracapacitor, also known as an Electric Double Layer Capacitor (EDLC) or pseudocapacitor, is a 

high-energy version of a conventional electrolytic capacitor, but able to hold hundreds of times more 

energy, per unit volume or mass, than a conventional capacitor. 

Although the ultracapacitor is an electrochemical device, there are no chemical reactions involved in its 

energy storage mechanism. Since the rate of charge and discharge is determined sorely by its physical 

properties, the ultracapacitor can release energy much faster, i.e. with more power, compared to a 

battery that relies on slower chemical reactions. 

6.3.8 Superconductlng MagnetiC Energy Storage (SMES) 

Superconducting magnetic energy storage systems (SMES) operate at very low temperatures, (around 

41<), and store energy at times of surplus energy availability, in the field of a large magnetiC coil with 

direct current (DC) flowing. This stored power Is then converted back to AC electric current, when 

demanded. Low temperature SMES cooled by liquid helium, are commercially-available. High 

temperature SMES cooled by liquid nitrogen, is still in the development stage and may become a viable 

commercial energy storage source in the future. 

SMES systems are large, and generally used for short duration applicatiOns, such as utility switching 

events, and are claimed to have efficiencies in excess of 95%. 

6.4 Energy storage system selected 

Of the options available, 'Projections of levelised cost benefit of grid-scale energy storage options' 

concluded that hydrogen fuel cells were the most viable option. This was based on projected 

incremental energy delivery costs at 70/0 discount rate for 2015 technology, which in tum was based on 

the expected improvements in efficiency as hydrogen-based technology strives for competitiveness in 
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the transportation fuel markef'3. Based on these findings, it was decided that the captured energy in the 

RO plants would be best stored through the production of hydrogen. 

It is noteworthy that the most viable option identified by 'Projections of levelised cost benefit of grid-scale 

energy storage options' was, what it referred to as, 'wind fuels', which involves using off-peak renewable 

energy to produce carbon neutral transport fuels [Doty and Shevgoor, 2009), by synthesis (or reaction) 

of: 

• CO2 produced by fossil fuel emissions, and 

• Hydrogen produced by water electrolysis. 

The objective of this research is to provide a stand-alone renewable energy installation that does not 

rely on conventional power, and so, this option, although judged to be the most attractive financially, was 

discounted. 

6.5 Hydrogen production 

All hydrogen production processes are based on the separation of hydrogen from hydrogen-containing 

feedstock. The separation method is dictated by the feedstock. The mainstream methods for production 

of hydrogen are shown below in Table 11, which was derived from the Hydrogen Production Overview 

Factsheet44
• 

The reason for the use of hydrogen fuel cells within this research was to utilise captured energy. The 

systems that are available for the production of hydrogen using the energy produced by the renewable 

energy systems that is not used to produce desalinated water, are considered in terms of: 

• Their feedstock 

• Availability at each site, and 

• Whether it involves the use of fossil fuels, as this research is focussed on not using fossil fuels 

• The efficiency of using the captured energy to generate hydrogen. 

Greater detail of these hydrogen production methods is available at 'Hydrogen production and storage 

R&D - Priorities and Gaps' [OECD/IEA, 2006). 

43 The fuel cells within this study were assumed to have an efficiency of 70% for the conversion of hydrogen fuel to 
electricity. 

44 Fuel Cell and Hydrogen Energy Association Factsheet: Hydrogen production overview. Avail~ at 
http://www.fchea.org!corelimoorVPDFslfactsheets/Hvdrogen%20Productjoo%2QOverview NEW,pdf [Last viewed 00 7 
August 2011]. 
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Table 11: Methods of hydrogen production 

......., PI .... FiMdII '* &a., AI I I res Il0l .. ......,, ....... ........ 
ThennaI SIeam RefuoIl&e6wl Namalgas High laiiptli..m.e Uses fossi fuel. and recJ*es 

sEam the aJIM!ISion 01 capwed 
enI!fJW 10 heat. 

1hennIH:tIenW:a ...... Waler High tempenIIU'e ReqIjres lie aJIM!ISion 01 
~ heal flam advallced CCII*-ed enetgy 10 heat. 

gas-cooIed nuclear 
reacIDis.. 

Ga •• _. Coal, SIeam and oxygen AacPres lie aJIM!ISion 01 
Biomass ..... Hiiptlialu'e CCII*-ed enetgy 10 heal, and 

and pressue. pn!SSlJrized sEam and 
oxygen.. 

PynIIysis Biomass lIodeialely ... ReqI*es lie aJIM!ISion 01 
steam I enetgy 10 heal. 

EJt:DoduiliI:aI 
. 

Waller None 
PI**» ..e'a.:lnKheliical Waler DiIect~ Does mt use CCII*-ed 

enenIV. 
Bi ......... Phabf .... ,jc .... Walerand Direct~ Does not use capand 

algaesIraR eneq)f. 

AniIenJbic ......... ' .In Biomass High teInperc*Iie AacPres Ihe aJIM!ISion 01 
heat , enetgy 10 heat. 

Falleltali:.e Biomass High temperaue ReqI*es lie aJIM!ISion 01 . . 
heat ....... ~ eneI1IVlo heal. 

Based on the infomlalion above in Table 11, the only option that appears suitable for furIher 

COIISiduiaiion is the eleclrDlysis 01 water using eleclricity, as allhe oIher options: 

• Use fossil fuels as the feedsIodt 

• Require the inefticient conversion 01 the capbed energy to heat! pressure, or 

• 00 not use capb.wed energy. 

6.5..1 Electrolysis options 

There are Ihree main technologies avaiabIe for eIecIroIysis: 

• Solid Oxide eIecIroIysis 

• Maline eleclrolysis, and 

• ProIon Exchange Menlbrane (PEM) electlolysis. 

6.5.1.1 Sold ODele elecbolysis 

The operation 01 a soIid-oxide etedmIyser depends on a solid oer.unic eIedroIyte (zirconal ceria), which 

at lehlperabJres 0I800-100CfC transfers oxygen ions (~. The soid oxide eIecIroIyser requires a 

somce 01 ~ heal By operatirlg at eIevaIed 1iE!qJerabJres, the heat qJUt meets some 01 

the eragetic recpremeN for eIedroIysis and so, less eIectricily is mquimd per rrf' of Hz gelletaled, 

COI..,ared with the oIher eIectrotJSef lechnologies. However, to dale, proIIltype soIid-oxide etedmIyser 

triIs have not actTiell'8d useful operatiolaallives, and sdJsIaniaI er IQineeriIIg problems exist with respect 
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to thermal cycling and gas sealing. As such, it is premature to make comparisons of these with alkaline 

and PEM electrolysers. 

6.5.1 .2 Alkaline electrolysis 

An overview of the alkaline electrolysis process is shown below, based on the RoadstoHyCom 

webs ite45 
, in Figure 60. 

An alkaline electrolyser uses circulating electrolyte solution (usually potassium hydroxide, KOH) and, 

has conversion efficiencies in the range of 60-90%. 

A modern alkaline electrolyser will achieve an efficiency of around 90% (consuming about 4kWh of 

electricity per m3 of H2), and deliver H2 gas at up to 30bar, without auxiliary compression. 

The key factors favouring the alkaline electrolyser are that: 

• It does not need expensive platinum-based catalysts 

• It is well-proven at large scale, and 

• It is usually of lower unit cost than a PEM electrolyser. 

6.5.1.3 Proton Exchange Membrane (PEM) electrolysis 

An overview of the PEM electrolysis process is shown below46 in Figure 61 . 

45 Figure taken from 'RoadstoHyCom' onsite electrolysis webpage, available at hnp:llwww.ika.rwth· 
aachen.de/r2hlindex.php/On-site Electrolysis [Last viewed on 7 August 2011). 

46 Figure taken from article entitled 'Hydrogen refuelling stations are increasing as the number of hydrogen cars increase', 
available at hnp:llwww.onlinetes.CQm/tes-071 O-electriccry-produces-hydrogen-oxygen.aspx [Last viewed on 7 August 2011). 
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Figure 61: PEII electJcfysis pnx:ess 

PEM eIectroIysers use precious metal catalysts (PIaIirun. PlatinumlRuthenm) and a solid polymeric 

eIecIroIyIe for Iransfening protons. 

They have achieved more than 100.000 hours continuous operation without faiure in critical 

environments47
• They can operate at much higher current densities than alkaline electrolysers, and have 

conversion efficiencies ranging from 50-90%, but cannot yet achieve high efficiencies at high current 

densities. 

Operation at high pressure (including high differential pressure between the hydrogen and oxygen side 

at up to 200bar) is proven, and the need for auxiliary gas compression is then considerably less than for 

an alkaline electrolyser. 

The key factors favouring the PEM electrolyser are that: 

• It avoids the requirement to circulate a liquid electrolyte 

• It operates at a high current density (offering a small footprint), and 

• It has the intrinsic ability to cope with transient variations in electrical power input (hence it has 

outstanding applications flexibility with respect to capturing intermittent renewable electricity 

supplies) . 

6.5.2 Conclusion 

Based on the information available, the PEM electrolyser was selected for use in this research. 

47 An example being the provision of oxygen on nuclear submarines. 
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6.6 Storage of converted hydrogen 

There are two basic mainstream hydrogen storage methodologies: 

• Storage as a compressed gas, and 

• Storage as a liquid 

6.6.1 Storage as a compressed gas 

The storage of gases in pressure vessels is a proven and tested technology, and many of the pumping 

systems employed for gas compression could be easily converted for hydrogen compression. The 

current norm is for hydrogen to be compressed to between 200 and 350bar, but storage pressures up to 

700bar have been trialled [Hirscher, 2010]. 

6.6.2 Storage as a liquid 

The storage of liquefied hydrogen is once again a tried and tested technologfS. In comparison to 

compressed hydrogen, the density of the liquefied hydrogen is considerably higher, which is a distinct 

advantage in terms of space requirement, but the liquefied hydrogen requires complex and sophisticated 

storage devices with vacuum insulation and pressure regulation. 

6.6.3 Conclusion 

Due to the complexities associated with the management of liquefied hydrogen, compressed hydrogen 

gas at 300bar was considered for this research. 

6.7 Power dispatch. 

The device to be employed for power dispatch is the fuel cell. There are a variety of fuel cells available, 

with different advantages and disadvantages. These are concisely explained at the Fuel Cell Test and 

Evaluation Centre (FCTec) webpage49
• For the purposes of this modelling exercise, the fuel cell needs 

to be able to: 

• Start up quickly to dispatch power to keep the RO plant running, and 

• Change power output rapidly, based on the varying demands of the RO plant. 

48 Hydrogen was first liquefied by J. Dewar In 1898. 

48 See http://www.fctec.comlfctec types.asp [last viewed on 7 August 2011]. 
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On the basis of these criteria, the Proton Exchange Membrane (PEM) fuel cell was selected50 to be 

modelled. 

6.7.1 The PEM Fuel Cell 

The method of operation of the PEM fuel cell is illustrated below in Figure 62, and briefly explained in 

the following text. 

o 
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figme 62: PHI Fuel CeI Opaalion 

The PEN fuel eel uses a said polymer menDane as the eIecIroIyte. This polymer is permeable to 

pulorlS when it is saIuraIed with water. but it does not conduct eIedroIlS. 

The fuel for the PEM fuel cell is hydrogen, and the charge carrier is the hydrogen ion (proton). At the 

anode, the hydrogen molecule is split into hydrogen ions (protons) and electrons. The hydrogen ions 

permeate across the electrolyte to the cathode while the electrons flow through an external circuit and 

produce electric power. Oxygen, in the form of air, is supplied to the cathode, and combines with the 

electrons and the hydrogen ions to produce water. The reactions at the electrodes are shown below in 

Table 12. 

Table 12: PEM Fuel Cell electrode reactions 

n lions 
Anode ReadiMs 
CaIhode Reiw:tioIs 
0waaI CeI AeacIioIs 

51 • is .lIEwadlY that 3iWIoIVI-.e PEN fl.B cell is Ihe best 1ecJ_1IicaIy suEd to Ihe demands of Ihe so:.et ... ius beW1g 
modelled, the electrolyte is required to be saturated with water to operate optimally. Careful control of the moisture of the 
anode and cathode streams is important to avoid eilher flooding or drying out. Both of these events can be destructive for 
the PEM fuel cell stack. 
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PEM fuel cells work as separate cells, and are combined, into stacks to deliver the required power 

levels. 

6.8 Efficiency of process 

Table 13 below shows the efficiency of the different stages of selected process. 

Table 13: Efficiency of energy storage and re-use 

I~ I 75 I ~-: I 
6A 1 Overall efficiency of energy storage and reuse process 

The normal case (using conversion and storage as a gas) gives a 22.95% efficiency. 

For the purpose of tIjs research, a figwe of 22% was adopted, which included a further reduction of 

0.95% to lake account of any oIher losses, such as evaporation. 

6.8.2 ~ storage and re-use methodology 

The logic iIusIraled below in FllQUfe 63 was elJ1lloyed to model the energy being captured and 

reappfied" to enhance the proWctivily of the RO plant 

..... c _____ 1Ir1E 

fIIa ..... -~ -_ ... _--...-..-....... .... RD ..... 

U = ___ .. RD ......... __ 

](..---.. -... ~ ~ _= _____ .. RD ..... .. -=_-=-.. __ AOPIoot : 
• __ DeAD ...... _-.&W""*'" --.......... _-
azzl5~a.r.-.:_~ ...... tw ........ 

X = az2'aC+ 
~ 

U=. 

s> Personal e-mail aJINTUlicaIion from Andy Bar1on. Technician mar.1Q syncborWsalion at West Beacon Farm. Details 
of West Beacon Farm are available at http://www.beaconenergy.co.ukl lLast viewed on 7 August 2011~ 
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6.8.3 Scenarios where the logic was applied 

The scenarios that employed the reapplication of stored energy are illustrated below in Figure 64 and 

Figure 66 for Massawa, and Figure 65 and Figure 67 for Newhaven, respectively. 
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Appendix C 
This Appendix discusses the water required for the hydrogen fuel cycle modelled as part of this research. 

1. Electrolysis water consumption 
The 'Summary of Electrolytic Hydrogen Production Milestone Completion Report' [Ivy, 2004) presents a 

summary of analysiS of various electrolysers that are currently available. The electrolysis process outputs for 

each of the options considered are shown below in Table 1. 

Table 1: Water inputs and hydrogen and water outputs from various electrolysers 

Water Input Hydrogen Oxygen Water removal Hydrogen per Water 
(kglhr) output output (kglhr) Input water (% reclaimed 

(kglhr) (kg/hr) mau) (%mass) 

Option 1 60 5.4 43 11 .8 9 20 
Option 2 42 3.77 30.01 8.21 9 20 
Option 3 8.4 0.9 7.1 0.4 11 5 
Option 4 485 43.59 346.51 94.82 9 20 
Option 5 4.5 0.45 3.57 0.48 10 11 

For the purposes of thiS research, based on Table 1 above, the: 

• Hydrogen produced from 1 kg of water was taken as 0.1 kg (10%) , and 

• The water reclaimed from the electrolyser from 1 kg of water was 0.2kg (20%) . 

2. Fuel cell exhaust 
Fuel cells operate based on the chemical reaction: 2H2 + O2 = 2H20. The stoichiometry of this chemical 

reaction indicates that for every mole of hydrogen (2.1 g) consumed by the fuel cell, one mole of water is 

expelled (18.2g) . 

Therefore, in theory, (by mass), approximately 8.66 times the mass of water is available to be reclaimed for 

each unit of hydrogen consumed by the fuel cell. 

According to 'Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stacks and Single Cells ' 

[Chu and Jiang, 2000), around 66% of this expelled water can be collected, and this recovery rate could be 

improved by using a condenser at the cathode exhaust, to minimise the evaporation losses [Dhanasekaran, 

2007]. 
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For the purposes of this research, the water recovered from each kg of hydrogen consumed by the fuel cell 

will be 5.7 litre (based on the density of water being 1 kg/l itre, and a collection efficiency of 66%). 

The water consumption and its return for the hydrogen fuel system modelled, are shown below in 

Figure 1. 

Wydrogen fuel system 
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Figure 1: Hydrogen fuel cycle 

3. Hydrogen consumed by fuel cell 
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For the purposes of this research , hydrogen consumed by the fuel cell is simply a function of the power 

demanded by the RD plant, to maintain full flow. 

The energy available in 1 kg of compressed hydrogen is taken as 143 MJ. The efficiency of use of th is 

hydrogen, is taken as : 

where : 

H2~ - the efficiency of hydrogen use 

C~- the efficiency of hydrogen compression to a gas - taken as 85% 

FC~ - the efficiency of hydrogen conversion to DC electricity within the fuel cell- taken as 40% 

Sy~ - the efficiency of electric power conversion from DC to AC, for use by RO plant- taken as 90% 

Therefore, 30.6% (43.8 MJ) of the power available in each kg of hydrogen, is available for use by the RD 

plant, wh ich equates to approximately 12 kWhlkg of hydrogen. 
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Taking the most successful scenarios that employed hydrogen fuel at Massawa and Newhaven, it can be 

seen from Table 2 below, that the water lost due to the hydrogen fuel cycle, is relatively insignificant over the 

course of the year, at 0.002% and 0.0015% for Massawa and Newhaven, respectively. 

Table 2: Water lost due to hydrogen fuel cycle 

Power ..... of Volume of water Volume of water Percentage of 
dlapatched hydrogen fuel Input r~ulred lost durl!'G year annual water 

(kWx10,) used (kg) (m,) (m~ production lost due 
to hydrogen fuel 

cycle-(%) 
Massawa 0.68 56636 226.5 52.10 0.0020 
Newhaven 0.49 41044 164.2 37.76 0.00147 
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