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Abstract

ABSTRACT

Tumor cells develop numerous mechanisms to escape from the control exerted by the

immune system. One of these strategies is the accumulation of regulatory T cells (Treg)

within the tumor, which keep effector T cells (Teff) and dendritic cells (DC) in an inactive

state. An efficient approach to overcome the inhibitory potential of Treg focuses on

OX40, a costimulatory molecule constitutively expressed by Treg and induced in activated

Teff. The treatment of mouse transplantable tumor models with the mAb OX86, the

agonist of OX40, induces tumor rejection by acting on both these T cell subsets. In this

study we investigated the fine cellular mechanisms at the basis of this process, dissecting

the effects of OX86 on Treg and on CD4+Foxp3-CD44highCD62L)OWOX40+effector memory

T cells (Tern), which represent the most abundant Teff subset in the tumor. Upon OX40

stimulation, Treg are "contra-suppressed" and down-modulate the expression of the

transcription factor interferon regulatory factor 1 (IRFl), thus reducing the secretion of IL-

10. Conversely OX86 provides activating stimuli to Tern, which up-regulate CD40L and in

tum promote the maturation of DC. OX86 shifts the tumoral milieu from tolerogenic to

immunogenic, favoring the activation and migration of DC from the tumor to the draining

lymph node (dLN) and the subsequent new CTL induction.

The relevance of OX40 in Treg biology goes beyond the modulation of their suppressive

abilities. OX40 increases the sensitivity of Treg to IL-2, facilitating the phosphorylation of

STAT5 through high level of the mir155 and low level of SOCS!. The overexpression of

miR155 endowed Treg of higher suppressive functions, further enhancing tumor growth.

These data clearly remark the key roles exerted by OX40 in influencing Treg and Teff

behavior. Understanding how to manipulate OX40 signaling will provide great advantage

in the development of efficient therapy for both tumors and autoimmune diseases.
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Abbreviations

ABBREVIATIONS

Ad: adenovirus

Ag: antigen

AHR: airway hyper responsiveness

AICD: activation-induced cell death

APC: allophycocyanin

APC: antigen presenting cells

BM: bone marrow

BM-DC: bone marrow-derived dendritic cell

BS: binding site

cAMP: cyclic adenosine monophosphate

CD: cluster of differentiation

CTL: cytotoxic T lymphocytes

CTLA-4: cytotoxic T lymphocytes-associated antigen 4

CTX: cyclophosphamide

DAMPs: damage-associated molecular pattern

DC: dendritic cells

DN: double negative

DP: double positive

dLN: draining lymph node

ds: double-strand

EAE: experimental autoimmune encephalomyelitis

FACS: fluorescence-activated cell sorting

FBS: fetal bovine serum

FC: fold change
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Abbreviations

FITC: fluorescein isothiocyanate

Foxp3: factor forkhead box P3

GC: germinal center

GFP: green fluorescent protein

GITR: glucocorticoid-induced TNF receptor family-related gene

GM-CSF: granulocytes-macrophages colony stimulating factors

GVHO: graft versus host disease

GZ: granzyme

HCC: hepatocellular carcinoma

i.p: intraperitoneal

IPEX: immunedysregulation polyendocrinopathy enteropathy X-linked syndrome

i.t: intratumor

iTreg: induced regulatory T cells

IBO: inflammatory bowel disease

ICS: intra cellular staining

100: indoleamine 2,3-dioxygenase

IFN: interferon

IL-: interleukin

IONO: lonomycin Calcium Salt

Kb: kilobase

KO: knock-out

LAP: latency associated peptide

LPS: lipopolysaccharides

mAb: monoclonal antibody

MC: mast cell
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Abbreviations

MDSC: myeloid derived suppressor cells

MFI: mean fluorescent intensity

MHC: major histocompatibility complex

miRNA: microRNA

mm: millimeters

mRNA: messenger RNA

NF-kB: nuclear factor-kappaB

NK: natural killer cells

NKT: natural killer T cells

NOD: non-obese diabetic mouse

nt: nucleotide

nTreg: natural regulatory T cells

ORF: open reading frame

PBS: phosphate buffered saline

pDC: plasmacytoid dendritic cells

PE: R-Phycoerythrin

PMA: Phorbol Myristate Acetate

PBMC: peripheral blood mononuclear cell

RA: rheumatoid arthritis

RISC: RNA-induced silencing complex

Stat: signal transducer and activator of transcription

s.c: subcutaneous

SP: single positive

ss: single-strand

TID: type-I diabetes
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Abbreviations

Tact: T recently activated

TAM: tumor-associated macrophages

TB: tumor-bearing

Tcm: T central memory

TCR: T cell receptor

Teff: effector T cells

Tern: T effector memory

TF: transcriptor factor

TF: tumor free

Tfh: T-follicular helper

Tg: transgenic

TGFj3: transforming growth factor beta

Th: T helper

TIDC: tumor-infiltrating dendritic cells

TIL: tumor-infiltrating lymphocytes

Tn: T naive

TNF: tumor necrosis factor

TNFR: tumor necrosis factor receptor

TRAIL: tumor necrosis factor-related apoptosis inducing ligand

Treg: regulatory T cells

TSLP: thymic stromal lymphopoietin

UTR: untranslated region

VEGF: vascular endothelial growth factor

wt: wild type
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1 Introduction

1 INTRODUCTION

1.1 The cancer immunoediting theory

At the beginning of the zo- century Paul Ehrlich was the first to theorize that the cells of

the immune system could control and prevent the development of tumors (Ehrlich, 1909).

At that time however the poor knowledge of the immune system did not allow this theory

to be adequately investigated. Only 50 years later, when tumor-associated antigens were

discovered (Old and Boyse, 1964), the interaction between immune cells and transformed

cells, renamed "immunosurveillance", was reconsidered and subsequently validated

(Smyth and Trapani, 2001). The immunosurveillance theory took advantage from the

generation of genetically modified mice and the development of specific monoclonal

antibodies (mAbs) that block cytokines and molecules related to immune system functions.

New studies on the immune system put in evidence that the interactions between tumors

and immune cells were more complex than those supposed in the immunosurveillance

theory. In particular it was discovered that cells of both innate and adaptive immune

system not only prevent tumor onset, but also modify the immunogenicity of tumor cells

(Dunn et aI., 2002; Shankaran et aI., 2001). These observations rendered the

immunosurveillance concept insufficient to explain the relationship between tumor and

immune system and induced the use of the "cancer immunoediting" term to better define

the double effect of the immune system on tumor. The cancer immunoediting process

consists of three different phases: elimination, equilibrium, escape (Dunn et aI., 2004). The

elimination phase corresponds to the initial concept of immunosurveillance. In this stage

cells of both, innate (NK cells and macrophages) and adaptive (CD4+ and CD8+

lymphocytes) immune system are able to recognize and eliminate transformed cells. The

specific mechanisms that guide this process are not fully understood, however it seems that

type I interferons (IFNs,) damage-associated molecular pattern molecules (DAMPs) and
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1 Introduction

stress ligands could promote the activation of immune cells, which in tum work as an

extrinsic tumor suppressor mechanism. When neoplastic clones survive the check exerted

by the immune system, they enter in the equilibrium phase. In this phase, which is

considered the longest one of the all immunoediting process, immune system keeps latent

tumor cells under control, preventing the outgrowth of clinically evident tumors. Last is the

escape stage, when tumor cells get the ability to overcome the block exerted by immune

cells and initiate the evident pathology. The escape of tumor cells may be due to different

mechanisms, which include reduced immunogenicity (low expression level of MHC class I

and loss of antigen expression), acquired resistance to the cytotoxic functions of immune

cells and accumulation in the tumor microenvironment of immunosuppressive cells, like

regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) (Dunn et al., 2004;

Schreiber et al., 2011). Both Treg and MDSC act in order to inhibit effector cell functions,

thus preventing the development of an efficient immune response against tumor cells.

Many studies, both in mouse and in human, have reported an increased accumulation of

Treg both in tumor mass and peripheral blood in cancer patients; for instance, an

augmented proportion of Treg was found in the peripheral blood of patients with

pancreatic tumor (Liyanage et al., 2006), breast cancer (Liyanage et al., 2002), ovarian

cancer (Woo et al., 2001), colorectal cancer (Deng et al., 2010), lymphoma (Marshall et

al., 2004) and melanoma (Correll et al., 2010). The awareness that the immune system has

a double role in regulating tumor onset, acting both as an extrinsic tumor suppressor and as

a tumor sculpting player, has favoured the idea that modulating immune cell abilities in the

right manner will allow the development of efficient anti-tumor therapy. In this regard,

discovering how to inhibit suppressive cells (Treg) and stimulate effector cells (Teff) will

be very helpful for the establishment of powerful cancer immunotherapies.
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Figure 1.1: the cancer immunoediting process. The first phase of the immunoediting

process is the elimination. During this stage immune cells are able to recognize and

eliminate transformed cells. The subsequent step is the equilibrium phase, when immune

cells fail in eliminating all tumor clones, but just keep them under control preventing the

onset of clinically evident pathology. Finally tumor cells acquire the ability to escape from

the immunological pressure, thank to the development of a series of immunosuppressive

strategies like antigen loss, MHC down-regulation, accumulation of Treg and recruitment

of MDSC in tumor microenvironment.
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1.2 The biology of regulatory T cells

The first evidence about the existence of Treg were provided by Gershon and colleagues,

who called them suppressive T cells, at the beginning of 1970s (Gershon and Kondo, 1970;

Gershon and Kondo, 1971). Few years later, using mouse tumor models, it was also proven

that these suppressive lymphocytes promote tumor growth (Fujimoto et al., 1975; North

and Bursuker, 1984). Despite the immunological relevance of these studies, the field of

Treg was abandoned for decades, up to 1995, when Sakaguchi and collaborators

demonstrated that self-tolerance is regulated and maintained by suppressive T cells

expressing the alpha-chain of interleukin 2 (lL-2) receptor (CD25) (Sakaguchi et al.,

1995). They showed that the inoculation of CD4+CD25- non-suppressive lymphocytes in

BALB/c nu/nu mice induces the development of autoimmune pathologies, and that the

reconstitution of the suppressive CD4+CD25+ population prevents the development of

those diseases. Since this discovery, numerous scientists focused their attention on this

particular T cell subset, investigating their roles in both physiological and pathological

conditions.

IL-2Ra (CD25), with IL-2Rf3 (CDI22) and yc (CD132), constitute the IL-2 receptor (IL-

2R) (Malek and Castro, 2010). The assemblage of IL-2R is a cascade process: at the

beginning IL-2 binds to the CD25 subunit and this interaction causes a conformational

modification in IL-2 structure, which allows the binding of CD122 to IL-2. Finally the yc

subunit is included in the structure and renders it more stable (Malek and Castro, 2010).

IL-2 signaling is crucial for Treg development and consequently for peripheral

homeostasis; i~deed mice with impaired IL-2/IL2R axis are affected by lethal autoimmune

diseases mainly due to alteration in regulatory lymphocytes (Malek, 2003; Malek and

Castro, 2010; Malek et al., 2002). The intracellular signaling of IL-2 is primarily mediated

by signal transducer and activator of transcription 5 (Stat5) (Burchill et al., 2007).

18
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It was also demonstrated that Treg constitutively express basal level of CD40L, such to

stimulate DC, via CD40, to produce sufficient amount of IL-2 to assure their survival. The

relevance of CD40/CD40L axis in Treg biology was clearly observed in CD40 KO mice,

in which Treg have lower proliferative and survival potential (Guiducci et al., 2005a).

At the beginning of the 21sI century, the discovery that the transcription factor forkhead

box P3 (Foxp3), on X chromosome, was mutated both in scurfy mice and in human with

immunedysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX)

(Brunkow et al., 2001; Wildin et al., 2001) led to the idea that this transcriptor factor could

be involved in Treg development. In fact two years later Foxp3 was identified as the

master regulator for Treg differentiation and functions (Fontenot et al., 2003; Fontenot et

al., 2005b; Hori et al., 2003). It was demonstrated not only that in absence of Foxp3 the

development of Treg is impaired, but also that the ectopic expression of Foxp3 in

CD4+CD25- naive T cells endow them with suppressive functions (Fontenot et al., 2003;

Hori et al., 2003). Thanks to the generation of a knock-in Foxp3-GFP mice, in which the

complete eGFP sequence was inserted in the first exon of the Foxp3 gene (Fontenot et al.,

2005b), it was possible to specifically identify which cell subset expresses this

transcription factor. It was found that Foxp3 is mainly expressed (>99,8%) by TCRj3+T

cells, both in thymus and periphery, while macrophages, DC cells, NKT cells, NK cells, B

lymphocytes and non hematopoietic cells are deficient in Foxp3 (Fontenot et al., 2005b).

Foxp3 expression was confirmed in both CD25+ and CD25-CD4+ T cells, whose

suppressive abilities were confirmed with different functional assays. Thank to these

studies Foxp3 was considered the most specific Treg marker, since CD25, and other

surface molecules constitutively expressed by Treg, like glucocorticoid-induced TNF

receptor family-related gene (GITR), cytotoxic T lymphocytes-associated antigen 4
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(CTLA-4) and OX40, are up-regulated also by activated Teff (Fontenot et al., 2005b;

Shimizu et al., 2002; Takahashi et al., 2000; Takeda et al., 2004).

1.2.1 Regulatory T cell development

Treg could differentiate both in the thymus, from early common precursors, and in

periphery, from naive CD4+Foxp3- T cells in response to different immunosuppressive

stimuli (Feuerer et al., 2009; Mailloux and Young, 2010); the former are named natural

Treg (nTreg), the latter induced (or adaptive) Treg (iTreg). In the thymus, Foxp3

expression is predominantly found at the stage of CD4+ single positive (SP) cells, although

a low percentage of cells expressing Foxp3 is found in the CD8+ SP, C04+C08+ double

positive (DP) and C04-C08- double negative (ON) stages of thymic development

(Fontenot et al., 2005b). Although the precise signals that guide nTreg differentiation, and

therefore Foxp3 expression, are not still well understood, a crucial step in this process

seems to be the strong interaction between TCR and MHC/self-antigen presented by DC

(Cozzo Picca et al., 2011; Jordan et al., 2001; Mailloux and Young, 2010). Indeed, in mice

lacking both MHC class-I and MHC class-II, Foxp3 expression is lost (Fontenot et al.,

2005b). Also IL-2 is a critical player in nTreg differentiation process (Cheng et al., 2011;

Feuerer et al., 2009). It was demonstrated that mice with alteration in the IL-2/IL-2R

pathway (Fontenot et al., 2005a; Malek et al., 2002), or in IL-2 signals transducers, like

StatS and Jak3 (Sakaguchi et al., 2008), or treated with anti-IL-2 antibody (Bayer et al.,

2005), have few Treg, both in thymus and periphery, compared to wt mice. In addition

these Treg express Foxp3 at lower level than wt Treg, resembling immature and non-

suppressive regulatory T cells (Tran et al., 2007). In 2008 Hsieh and Ferrar, in two distinct

studies, described a two-step model to explain nTreg development in the thymus

depending on TCR and IL-2 signals (Burchill et al., 2008; Lio and Hsieh, 2008). They
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proposed that nTreg precursors (C04+CD25highFoxp3TCR+), after receiving strong

stimulation via TCR, further up-regulate C025, thus becoming more sensitive and

responsive to IL-2. This enhanced IL-2 responsiveness at last promotes Foxp3 expression

(Burchill et al., 2008; Lio and Hsieh, 2008).

In addition to the stimuli provided by TCR and IL-2, other molecules were indicated as

relevant in the nTreg differentiation process. Among these the costimulatory molecule

C028 (Salomon et al., 2000; Tai et al., 2005) and the transcription factor NF-kB (Guckel

et al., 2011; Medoff et al., 2009) were demonstrated to be necessary for nTreg

differentiation.

Unlikely nTreg, iTreg differentiate in periphery from naive T cells in response to different

stimuli. iTreg include different subsets of regulatory cells: Trl, Th3 and Treg

indistinguishable from nTreg (Wing et al., 2006). When naive T cells are in presence of

high amount of IL-IO they acquire a suppressive phenotype and are defined Trl cells.

These cells produce abundant IL-lO, but do not secrete TGF~ (Groux et al., 1997). On the

contrary Th3 cells are induced by and produce TGF~ (Chen et al., 1994). Both Tr1 and

Th3 cells, even if endowed of suppressive functions, do not express Foxp3. Narve

lymphocytes can also differentiate in iTreg indistinguishable from nTreg when are in

presence of TGF~ and insufficient antigen stimulation by immature/tolerogenic APC

(Wing et al., 2006)
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Figure 1.2: Treg development. Regulatory T cells differentiate from both common

thymic precursors and from narve CD4+T cells in periphery. Thymus-derived Treg (nTreg)

develop in response to strong TCR stimulation and IL-2 signal. iTreg differentiate in

periphery from CD4+Foxp3· lymphocytes in response to different stimuli (IL-lO, TGF~,

CD46 ligation). iTreg are classified in two main subsets: Trl which preferentially suppress

in an IL-lO fashion manner and Th3, which secrete high amount of TGF~. In addition to

iTreg, other Treg, indistinguible from nTreg, differentiate in periphery from naive T cells

(ThO), in response to low dose of TGF~ and inefficient Ag presentation. These Treg and

nTreg suppress target cells in a cell-cell contact manner.
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1 Introduction

1.2.2 Regulatory T cell suppressive mechanisms

Treg suppress target cells through a wide range of mechanisms, which include cell-cell

contact and secretion of soluble factors; moreover Treg could indirectly act on T effector

cells by controlling DC functions (Shevach, 2009). In general Treg can benefit from four

different mechanisms of suppression: 1) inhibitory cytokines, 2) cytolysis, 3) metabolic

disruption, 4) modulation of DC maturation (Vignali et al., 2008). Among the inhibitory

cytokines TGFj3 and IL-lO are the most studied, but recently particular attention was given

also to IL-35. IL-lO and TGFj3 play an important role in Treg biology, regulating their

differentiation and homeostasis, and providing Treg of immune-modulatory functions. It

was demonstrated that these cytokines are required to cure a wide range of diseases,

including inflammatory bowel disease (IBD), colitis, lung allergy and airway inflammation

(Chaudhry et al., 2011; D'Alessio et al., 2009; Whitehead et al., 2011). Treg could also

suppress target cells with a form of membrane-bound TGFj3 in a cell-cell contact manner

(Nakamura et al., 2001). IL-35 was recently described as a critical cytokine for the fully

suppressive function of Treg. IL-35 is a heterodimeric cytokine formed by Epstein-Barr-

virus-induced gene 3 (Ebi3) and IL-12a (p35), and is highly expressed by Treg but not by

resting effector T cells. It was shown that IL-35 is required to cure IBD (Collison et al.,

2007), prevent collagen-induced arthritis via IL-lO (Kochetkova et al., 2010), and block

IL-17-dependent airway hyperresponsiveness (AHR) (Whitehead et al., 2011).

The second mechanism of Treg suppression is cytolysis. Thank to experiments conducted

in granzyme B deficient mice (GZ-B-'-), it was demonstrated that this enzyme is critical for

Treg functions, (Gondek et al., 2005), and that Treg promote tumor growth by secreting

high level of granzyme Band perforin, thus reducing anti-tumor CTL response (Gondek et

al., 2005). Galectin-I (Garin et al., 2007) and TRAIL (tumor necrosis factor-related

apoptosis inducing ligand) (Ren et al., 2007) have been recently identified as important
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mediators of cell death. Galectin-1 is a (3-galactoside binding protein, which interacts with

CD45, CD43 and CD7. Upon TCR engagement Treg up-regulate its expression and reduce

proliferation, survival and cytokine secretion by effector T cells (Shevach, 2009). Ren and

collaborators in 2007 demonstrated that TRAIL, binding to DR5, induces CD4+Foxp3- T

cells apoptosis both in vitro and in vivo, and that the blockage of TRAIL/DR5 interaction

significantly reduces Treg cytotoxicity and the survival of mice after allogenic skin graft

(Ren et al., 2007).

Another Treg suppressive strategy consists in the deprivation of cytokines necessary for

effector T cells survival, like IL-2. It is well established that IL-2 is a crucial cytokine for

Treg development and survival and that Treg constitutively express CD25. However this

molecule is also important for effector T cell proliferation and survival upon activation.

During inflammation Treg compete for IL-2 with effector T cells, thus consuming it and

inducing effector T cells starvation and apoptosis (Pandiyan et al., 2007). Metabolic

disruption is also induced by the generation of pericellular adenosine by the two enzymes

CD39 and CD73, which are expressed on Treg surface (Deaglio et al., 2007). CD39 and

CD73 are involved in the modulation of immune responses in pathological conditions; for

instance CD73-'- mice develop a stronger anti-tumor immune response compared to CD73

sufficient mice (Stagg et al., 2011) and patients with multiple sclerosis have a reduced

number of CD4+Foxp3+CD39+regulatory cells than healthy control patients (Fletcher et al.,

2009). Another adenosine molecule, the intracellular cyclic adenosine monophosphate

(cAMP), endowed of strong immune-suppressive function, is transferred from Treg to

effector T cells though gap-junctions and blocks Teff proliferation and IL-2 synthesis

(Bopp et al., 2007).

Finally Treg can also affect Teff activation indirectly, by modulating DC activation. DC

have the crucial role of providing costimulatory signals to T cells allowing their fully
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activation (Matzinger, 2002). Therefore Treg, hampering DC maturation, also block Teff

activation. In this regard a strategy developed by Treg is their constitutive expression of

the cytotoxic T lymphocytes-associated antigen 4 (CTLA-4) (Read et al., 2000). CTLA-4

down-modulates CD80 and CD86 expression level on DC, thus impairing Teff activation

via CD28 (Wing et al., 2008). In addition, upon CTLA-4/CD80-CD86 interaction, DC are

induced to express the indoleamine 2,3-dioxygenase (IDO) enzyme, which promotes the

catabolism of tryptophan into the pro-apoptotic metabolite kynurenine (Fallarino et al.,

2003). DC maturation and function are also impaired by lymphocyte activation gene 3

(LAG-3 or CD223), a homolog of CD4, that binds to MHC class II, thus reducing the

ability of DC to present antigens to effector lymphocytes (Huang et al., 2004; Liang et al.,

2008). Recently it was demonstrated that the transmembrane protein neuropilin (nrp-l) is

required for long Treg-DC interaction and increases Treg suppressive functions (Sarris et

al., 2008; Sarris and Betz, 2011).

Treg are capable of numerous and dissimilar suppressive mechanisms; understanding

which one is preferentially used in different anatomical districts, both in physiological and

pathological conditions, will provide great advantage for the development of efficient

therapies against tumors and autoimmune diseases.
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Figure 1.3: Treg suppressive mechanisms. Regulatory T cells use different strategies to

inhibit target cells. a) Treg release inhibitory cytokines, like IL-lO, TGFf3 and IL-35, to

suppress responder cells. b) Treg promote apoptosis of target cells by secreting granzyme

A and Band perforin. c) Regulatory T cells also suppress Teff by limiting the availability

of cytokines, like IL-2, necessary for Teff functions. Moreover Treg could produce

adenosine and cAMP, endowed of strong immunosuppressive potential. d) Treg impair the

maturation and activation of antigen presenting cells, in particular of DC. Treg express

LAG3, an analog of CD4, which binds to MHC class II and blocks the interaction between

MHC class II and CD4, thus preventing Teff activation. Treg, through the surface

molecule CTLA4, reduce the expression of the costimulatory molecules CD80/86 on DC

surface and also induce DC to express IDO, which in tum promotes the generation of

soluble tryptophan-derived pro-apoptotic metabolites.
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123 Accumulation of Treg in tumor microenvironment

As previously described tumors develop numerous strategies to escape from the control

exerted by the immune system. One of these mechanisms is the accumulation of Treg at

tumor site.

In physiological conditions Treg represent about 5%-10% of circulating CD4+

lymphocytes, but in tumor they increase until 50% of the total CD4+ tumor infiltrating

lymphocytes (TIL) (Valzasina et al., 2006). Tumors favor Treg enrichment by promoting

Treg recruitment from periphery, Treg proliferation and conversion of non-regulatory T

cell into regulatory cells (Colombo and Piconese, 2007).

The migration of pre-existing Treg form periphery to tumor is mediated by different

chemokine axes. One of these is the CC-chemokine ligand 22 /CC-chemokine receptor

type 4 (CCL22/CCR4) pathways. Transformed cells or immune cells re-educated in tumor

microenvironment' secrete CCL22, thus enhancing CCR4+Treg recruitment from different

anatomical districts (Curiel et al., 2004; Gobert et al., 2009; Mailloux et al., 2010).

Recently, using a model of murine breast cancer, it was demonstrated that a CCR4

blocking antibody, in combination with vaccination, facilitates the development of specific

anti-tumor CTL response (Pere et al., 2011). Also the CCR6/CCL20 chemokine pathway is

important for the migration of circulating Treg to tumor. It was demonstrated that in

patients with hepatocellular carcinoma (HCC) Treg recruitment in tumor mass is tightly

dependent on the CCR6/CCL20 axis (Chen et al., 2011).

In tumor microenvironment the high amount of immunosuppressive cytokines (TGF~, IL-

10, VEGF) promotes the in situ proliferation of Treg and the conversion of naive/effector

cells into regulatory cells (Valzasina et al., 2006). For instance TGF~ secreted by tumor-

infiltrating DC is required for CCR6+ Treg proliferation (Xu et al., 2011). Tumor cells are

also able to convert DC into immature myeloid DC, which promote Treg proliferation via
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TGF(3 (Ghiringhelli et al., 2005). It was shown that tumor-derived TGF(3 also guides the

conversion of naive T cells into Treg (Chen et al., 2003), and this process was confirmed

both in murine and human tumors (Lu et al., 2011; Moo-Young et al., 2009). IL-IO is a

strong immunosuppressive cytokine and is produced in large amounts in tumors (Wilke et

al., 2011). IL-IO reduces MHC, C080 and CD86 expression on DC (Commeren et al.,

2003), thus hampering DC activation and indirectly promoting Treg differentiation.

Moreover IL-IO can directly inhibit Teff functions (Joss et al., 2000), thus in tum

enhancing Treg inhibitory mechanism. In such immunosuppressive cytokine milieu,

tumor-associated APC are kept in an immature state and their ability to present antigens to

lymphocytes is impaired. These defective APC promote the conversion of non-regulatory

cells into Treg (Kretschmer et al., 2005).

100, an enzyme involved in tryptophan catabolism, plays an important role in regulating

Treg stability (Sharma et al., 2009) and conversion of naive T cell in Treg (Fallarino et al.,

2006). In tumor-bearing mice, 100+ plasmacytoid DC (pDC) attribute to Treg strong

suppressive functions (Sharma et al., 2007). Neoplastic cells themselves can express IDO

and enhance the expansion of Treg subset by the conversion of non-regulatory T cells

(Curti et al., 2007). Moreover, increased expression of IDO in tumor correlates not only

with higher percentage of tumor-associated Treg, but also with augmented metastatization

(Yu et al., 2011).
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Figure 1.4: Treg accumulation at tumor site. Treg accumulation at tumor site is due to

different signals, which promote a) Treg recruitment from different anatomical districts

(thymus, bone marrow, blood and lymph node) in a chemokine dependent manner, b-e)

differentiation and proliferation of Treg induced by dysfunctional DC and d) conversion of

Teff into Treg caused by high concentration of suppressive cytokines, like TGF[3, in the

tumor microenvironment (Zou, 2006).
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1.3 The biology of non-regulatory CD4+T cells

CD4+T lymphocytes enclose not only Treg, but also T helper (Th) cells, which coordinate

adaptive immune response against pathogens (Reiner, 2007) and are additionally involved

in autoimmune diseases (Veldhoen, 2009) and anti-tumor responses (Schreiber et al., 2011;

Shankaran et al., 2001).

T lymphocytes differentiate in thymus from multipotent progenitors into CD4+ or CD8+

single positive (SP) mature T cells (Rothenberg et al., 2008). This process is very complex

and just few precursors (about the 2%) become CD4+ or CD8+ SP functional lymphocytes.

There are three main steps that drive the differentiation of thymic precursors into mature T

cells: death by neglect, positive selection and negative selection. The majority of

CD4+CD8+DP cells (98%) die because they do not bind the MHC-Ag complex and do not

receive any survival signal via TCR (death by neglect). During the positive selection,

which occurs at the DP stage, TCR binds to the MHC-Ag complex on thymic cortical

epithelial cells. When the TCRlMHC-Ag interaction correctly happens, T cells receive

survival signals; on the contrary those lymphocytes unable to bind MHC die for apoptosis.

The fate of DP lymphocytes to become CD4+ or CD8+ SP cells is also decided in the

course of the positive selection; indeed, if the TCR properly interacts with the MHC class

II, T cells maintain the expression of CD4 and lose CD8; on the contrary, if the correct

interaction happens between TCR and MHC class I, the DP cells become CD8+ SP

lymphocytes. Lymphocytes that have overcome the positive selection are subjected to the

negative selection. In this phase T cells bind to the MHC-Ag complex presented by APC,

and if the interaction is too strong T cells receive pro-apoptotic signals and die. The

negative selection is a crucial step for assuring immunological self-tolerance, but not all

auto-reactive clones are eliminated during thymic selection, for this reason Treg abilities

are required to control these cells in periphery. Once mature, CD4+ T cells, which are in
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the naive state (Tn), migrate from thymus to periphery. Tn cells become active upon TCR

engagement and adequate costimulatory signals provided by APC. According to the

different signals they receive from the microenvironment during activation, Tn cells may

differentiate into at least four classes of activated helper T cells: Th1, Th2, Th17 and Th9

lymphocytes (Zhu and Paul, 2010).

1.3.1 Th subsets

A network of cytokines and transcription factors (TF) regulates the differentiation of

circulating Tn cells in one of the four Th subsets, upon the encounter with the antigen and

the subsequent activation (Zhu and Paul, 2010). Each group is distinguishable from the

other ones based on the profile of the secreted cytokines and the expression of specific TF.

The first Th subsets identified were the Th1 and Th2 ones. Th1 cells are important for the

development of immune responses against intracellular pathogens, secrete high amount of

interferon-y (IFN-y) and specifically express the TF T-bet. T-bet not only is expressed by

already differentiated Th1 lymphocytes, but also, together with IL-12, is indispensable for

the conversion of Tn into Th1 (Zhu and Paul, 2010). Th2 are specialized in the production

of IL-4, IL-5, IL-9, IL-1O, IL-13 and IL-15 and their differentiation is driven by the TF

Gata3. Th2 lymphocytes fight against extracellular parasites. The TF RORyt is the master

regulator of Th 17 differentiation. These cells secrete IL-17 (A-F) and IL-22 and are

activated against fungi and extracellular bacteria. Th9 cells belong to the most recently

identified Th subset. These cells differentiate in the presence of IL-4 and TGFj3 and the

molecule PU.1 .seems to be the key TF for their development (Goswami et al., 2011;

Perumal and Kaplan, 2011).

Another recently described lineage of CD4+ lymphocytes is that of T-follicular helper cells

(Tfh). These cells are localized in the B-cell follicle and the interaction between Tfh and B
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cells is crucial for B cell activation, differentiation of plasma cells and memory B cell, and

germinal center (GC) formation. This cross-talk is also important for Tfh biology (Nutt and

Tarlinton, 2011). Tfh are characterized by the expression of the TF Bcl6, and also express

CCR7, C-X-C chemokine receptor type 5 (CXCR5), programmed death 1 (Pd-I), inducible

T-cell co-stimulator (ICOS) and secrete IL-21 (Crotty, 2011; Nutt and Tarlinton, 2011).

1.3.2 CD4+ T cell activation

CD4+T cells activation requires not only TCR engagement by Ag/MHC class II complex,

but also second activator signals provided by costimulatory molecules expressed by APC.

The relevance of these signals is proven by the fact that T cells stimulated via TCR, but

lacking costimulation, die (Matzinger, 2002). Costimulatory molecules can be classified

according to their molecular structure or their specific functions. In the first case these

molecules are divided in two families: the CD28/B7 family and the tumor necrosis factor

(TNF) receptor family; in the second case they are divided into positive and negative

costimulators belonging to the CD28/B7 family. The CD28/CD80-CD86 axis was the first

positive costimulatory pathway to be identified. CD4+T cells constitutively express CD28

and its binding to CD80 (B7-l) and CD86 (B7-2) on APC favours T cells activation,

cytokine secretion and survival (Carreno and Collins, 2002). Another member of the

CD28/B7 family, but with negative costimulatory functions, is the cytotoxic Tvlymphocyte

antigen 4 (CTLA-4 or CD152). CTLA-4 is expressed by activated T cells and binds to

CD80-CD86 with higher affinity than CD28. Upon CD80-CD86 engagement by CTLA-4,

on one-hand APC down-modulate costimulatory molecules on their surface, on the other

hand T cell functions and proliferative potential are blocked (Carreno and Collins, 2002).

Programmed death 1 (Pdl), another member of the CD28/B7 family expressed by

activated T cells, binds to PD-Ll and PD-L2 on APC and, as CTLA-4, has inhibitory
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consequences on both T cells and APC, reducing survival, proliferation and cytokine

secretion (Keir et al., 2008).

The TNFR family encompasses a lot of molecules crucial for the modulation of T cell and

APC functions. Among these CD40 is one of the most studied, as its interaction with the

corresponding ligand, CD40L, is indispensable for the full T cell activation and APC

maturation (Elgueta et al., 2009). CD40L, a type II transmembrane protein, is expressed by

T cells within 1-2 hours upon activation. On the contrary the subset of memory cells up-

regulate CD40L in a shorter time, in about 15 minutes, because these cells contain pre-

formed CD40L and do not need its de novo synthesis (Elgueta et al., 2009). CD40 is type I

transmembrane protein and is expressed by DC, B cells and monocytes (Elgueta et al.,

2009). The CD40LlCD40 axis has bidirectional effects, promoting maturation of both T

cells and APC. The main consequences of CD40 engagement in APC are: up-regulation of

pro-survival genes like Bel-XL, increased secretion of effector cytokines (IL-I, IL-I2, IL-

2, IL-6), up-regulation of costimulatory molecules (CD80 and CD86), more stable

MHC/Ag complex. Moreover CD40-stimulated APC show more efficient induction of

cytotoxic CD8+ T cell response, improved ability to stimulate immunoglobulin production

by plasma cells, GC formation and memory B cells differentiation (Casamayor-Palleja et

al., 1995; van Kooten and Banchereau, 2000). On the other hand, upon CD40LlCD40

interaction, T cells receive stronger positive costimulatory signals, acquire fully effector

functions and secrete high amount of cytokines (Casamayor-Palleja et al., 1995; van

Kooten and Banchereau, 2000). The relevance of this pathway in regulating immune

responses was highlighted by studies performed both in human and mouse on autoimmune

diseases (Peters et al., 2009) and tumors (Fransen et al., 2011; Higham et al., 2010;

Hussein et al., 2010).

33



1 Introduction

1.3.3 Differentiation of memory T cells

Upon activation, the majority of T cells die within 1-2 weeks, however some of these cells

differentiate into long-lived memory T cells, which ensure strong and rapid immune

responses in case of subsequent interactions with the same antigen. Memory T cells can be

distinguished in central memory (Tcm) and effector memory (Tern) cells, according to

anatomical localization, proliferation and cytokine secretion (Lanzavecchia and Sallusto,

2005; Sallusto et al., 1999). The existence of these two memory subsets was confirmed

both in humans (Sallusto et al., 1999) and in mice (Reinhardt et al., 2001; Roman et al.,

2002). Both Tern and Tcm are characterized by CD45RO and CD44 expression, markers

of memory phenotype (Swain, 1994); Tcm also express the chemokine receptor CCR7 and

L-selectin (CD62L), which let them localize into secondary lymphoid organs (Arbones et

al., 1994; Willimann et al., 1998). Conversely, Tern are CCR7 and CD62L negative and

mainly localize in non-lymphoid peripheral tissues, rapidly moving to inflamed sites

(Sallusto et al., 1999). Both memory subsets display a more rapid activation upon CD3

stimulation and a higher expression of CD40L in comparison to Tn. During immune

responses to previously encountered Ag, Tern respond more quickly than Tcm and produce

higher amount of effector cytokines, like IL-4, IL-5 and IFNy, but secrete less IL-2

(Sallusto et al., 1999). In a recent work it was also demonstrated that activated Tern enter

lymph nodes, constitutively express CD40L and activate DC, resident into chronic reactive

lymph nodes, in an antigen independent manner (Martin-Fontecha et al., 2008). In

summary, during second antigen challenge, Tcm remain distributed in peripheral lymphoid

tissues, effIcien~ly proliferate, maintain protection in the long term, secrete considerable

amount of IL-2 and low quantities of effector cytokines. On the contrary, Tern rapidly

move toward the tissue that is the site of inflammation, immediately secrete abundant

effector cytokines, but their proliferative capacity is limited (Pepper and Jenkins, 2011;
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Sallusto et al., 2004; Sallusto et al., 1999). In the mouse, memory cells need IL-7 and TCR

signals to survive (Seddon et al., 2003), while in humans CD4+ memory T cells survive in

response to IL-7 and IL-15 (Geginat et al., 2001).

Very interesting questions are: i) how CD4+memory T cells are generated after the peak of

an immune response, ii) which is the relationship between Tcm and Tern and iii) which are

the signals that drive their differentiation? Upon activation, Tn differentiate into one of the

Th subsets, depending on the stimuli they receive and the cytokine milieu in which they

are located (Zhu and Paul, 2010). Many pieces of evidence show that, when antigen

stimulation during the first immune response is strong enough to commit Tn toward Th 1 or

Th2lineage, Tern differentiate from both Th1 and Th2 cells. On the contrary Tcm develop

from activated but not committed precursors (Pepper and Jenkins, 2011). In regard to Th17

and Treg the question is not yet well understood. It seems that Th17 give rise to short-term

living memory cells, probably because Th17 cells, during the later phases of inflammation,

can differentiate into Thl cells (Pepper and Jenkins, 2011). Recently it was shown that, in

response to autoimmune attack, Treg develop a kind of "regulatory tissue memory", such

to resolve quickly and better subsequent immune responses against self-antigens

(Rosenblum et al., 2011). However it is not clear whether Treg differentiate or not into

memory cells, since several pieces of evidence show that Treg lose Foxp3 expression and

acquire a Thl or a Th2 memory phenotype upon activation (Hansmann et al., 2011; Zhou

et al., 2009c). Tfh develop during immune responses, form GC and survive until GC are

functional, thus hardly Tfh differentiate into memory cells. However very recent data in

humans show that circulating CD4+CXCRs+ T cells may represent the central memory

compartment of Tfh because of their ability to stimulate B cells to produce antibodies in an

IL-21 dependent manner (Morita et al., 2011). The development of Tcm from Tfh may be

dependent on signals provided by B cells via ICOS-ICOSL interaction (Rasheed et al.,
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2006), which seems to be involved also in Tcm differentiation from uncommitted Th

precursors (Pepper and Jenkins, 2011).

The more recent model proposed to explain the generation of Tcm and Tern generation is

based on the different strength and duration of TCRlMHC-Ag interaction. Upon strong

TCR signaling, Tn differentiate into a specific Th subset, and those cells, which survive to

the peak of inflammation, become Tern cells. Tn that receive a lower TCR stimulation and

interact with B cells without acquiring a specific Th commitment develop into Tcm

(Pepper and Jenkins, 2011).
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Figure 1.5: CD4+ memory T cell development. Generation of Tern and Tcm from CD4+

Tn depend on the strength and duration of TCR stimulation via MHC/Ag complex on

APC. When Tn differentiate into a specific Th subset (I) upon strong TCR stimulation,

they give rise to Tern. Treg, which lose Foxp3 expression upon activation, die (II) or

convert into ThllTh2 cells. Weakly activated T cells, which do not acquire a well defined

Th phenotype, and Tfh (III), upon interaction with B cells, become Tern lymphocytes.
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1.4 The relevance of the costimulatory molecule OX40 in regulating immune

responses

The growing awareness of the specific features of both regulatory and effector T cells

allows the development of increasingly efficient cancer immunotherapies. The ideal

treatment consists in the use of small molecules able to boost effector cell functions (CD4+

T cell, CTL, NKT cells) on one side, and to inhibit suppressive cells on the other side

(Treg, MOSC). To reach this goal several efforts focus on TNFR superfamily members

(Croft, 2009). Costimulatory molecules belonging to this family are OX40, 4-IBB, C027

and DR3, which respectively bind to OX40L, 4-1BBL, CD70 and TLIA (Croft, 2009).

Engagement of these molecules on immune cells favours their activation, survival,

proliferation, cytokine secretion and differentiation into memory cells. These properties

render these costimulatory molecules suitable targets for the treatment of both

autoimmune/inflammatory diseases and tumors. The inhibition of TNFffNFR interaction

dampens immune responses with beneficial consequences for the host in case of excessive

activation of the immune system. On the contrary, the improvement of these pathways

allows the mounting of anti-tumor responses bypassing the suppression exerted by

immune-regulatory and tumor cells (Croft, 2009).

In this regard OX40 (C0134) instigates particular interest. CD4+ and CD8+ T cells up-

regulate it only upon activation and the interaction with OX40L on APC provides activator

stimuli (Croft et al., 2009). On the contrary Treg constitutively express OX40, but its

engagement has detrimental consequences on Treg biology, "contra-suppressing" their

inhibitory functions (Valzasina et al., 2005). In this view it is reasonable to consider OX40

a key element for the development of a successful cancer immunotherapy, as a single

molecule is concurrently able to boost cells endowed with anti-tumoral functions, and to

block Treg, which promote tumor growth
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1.4.1 OX40 and OX40L expression

At the end of the eighties Williams and his group were the first to identify a mAb

recognizing OX40 (Paterson et al., 1987), and they also observed that stimulation via

OX40 promotes T cell proliferation. Few years later it was demonstrated that OX40 is a

member of the tumor necrosis factor receptor (TNFR) superfamily (Mallett et al., 1990).

During the same period the ligand of OX40 was also identified: OX40L (CD252) (Tanaka

et al., 1985), member of the TNF superfamily.

OX40 is expressed by activated CD4+ and CD8+ T cells, NK and NKT cells, neutrophils,

and it is constitutively expressed by Treg (Croft et al., 2009; Redmond et al., 2009).

Although OX40 is found on several cells, the majority of the studies were focused on the

effects of OX40 engagement on T cells. The up-regulation of OX40 on non-regulatory

lymphocytes occurs in the subsequent 24 hours upon TCR stimulation, persists for the next

4-5 days, and is down modulated on memory cells. The expression level of OX40 is

proportional to TCR signal: stronger is the stimulation via TCR, higher is the expression of

OX40 (Croft et al., 2009; Redmond et al., 2009). Although the activation via TCR is

indispensable for the initial OX40 expression, other signals modulate the level and the

duration of OX40 up-regulation, for instance the costimulatory axis CD28/CD80-CD86

(Walker et al., 1999), and cytokines like TNF (Hamano et al., 2011), IL-2 (Rogers et al.,

2001), IL-4 (Toennies et al., 2004) and IL-l (Nakae et al., 2001). The stimulatory signals

provided by OX40 are not required to initiate the immune response, but are relevant to

sustain and prolong the activation status of T cells (Song et al., 2005; Vasilevsky et al.,

2011).

B cells, DC, NK cells, CD4+CD3-accessory cells and macrophages express OX40L during

immune responses, but not in the resting state (Croft et al., 2009; Redmond et al., 2009).

CD40 engagement, LPS stimulation, TSLP and IL-18 are crucial signals in regulating the
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extent of OX40L expression (Murata et al., 2000; Ohshima et al., 1997). The kinetics of

OX40L is similar to that of OX40, as it is induced within 24 hours after APC activation. It

has been recently demonstrated that also mast cells (MC) express OX40L and are able to

tune T cell responses in an OX40/0X40L fashion manner (Nakae et al., 2006; Piconese et

al., 2009). Also T cells could express OX40L in the later phases of activation, further

boosting the activation status of inflammatory cells (Mendel and Shevach, 2006).

1.4.2 Modulation of Treg biology by OX40

Gene expression comparison between CD4+CD2s+ regulatory T cells and CD4+CD25- Teff

cells provided the first evidence that OX40 is constitutively expressed by Treg (Gavin et

al., 2002; McHugh and Shevach, 2002). Subsequent studies confirmed these data and also

demonstrated that upon TCR engagement OX40 expression level is further increased on

Treg (Valzasina et al., 2005). Functional experiments point out three different aspects of

OX40 in Treg biology: i) suppressive functions, ii) homeostasis and survival, iii) iTreg

differentiation.

1.4.2.1 OX40 inhibits Treg suppressive functions

The inhibitory effect of OX40 engagement on Treg functions was evaluated in both in

vitro and in vivo settings. The first issue under investigation is whether OX40 triggering

abrogates Treg suppressive functions or the addition of an OX40 agonist mAb (OX86) to a

co-culture of Treg and Teff renders Teff resistant to the control exerted by Treg. In 2004

Takeda et al. showed that in a co-culture system of wt Treg and OX40-'- Teff, in the

presence of OX86 Treg efficiently suppressed Teff proliferation, indicating that the main

target of OX86 were Teff and not Treg (Takeda et al., 2004). On the contrary, the

following year, Valzasina et al. (Valzasina et al., 2005) demonstrated that OX86 directly
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hampers Treg abilities by co-culturing rat CD4+ T cells (which do not bind OX86) and

mouse Treg. Another piece of evidence that OX40 triggering is crucial in regulating the

suppression exerted by Treg was provided by Vu et al. in 2007 (Vu et al., 2007), using

OX40Ltg APC to stimulate sorted CD4+GFP(Foxp3t or CD4+0X40-'-GFP(Foxp3t. These

experiments demonstrated that OX40 engagement impairs the suppressive functions of wt,

but not OX40-deficient, Treg against both OX40-sufficient and -deficient responder T cells

(Vu et al., 2007).

These observations were confirmed also in different mouse disease models. In a model of

graft versus host disease (GVHD), in which the pathogenic effect of CD4+CD25-Teff was

abrogated by the co-injection of wt Treg, the in vitro pre-incubation of Treg with OX86

was shown to completely abolish the protective effect of Treg (Valzasina et al., 2005).

Same results were obtained in experiments of skin transplantation (Vu et al., 2007). In this

model Rag-'- mice were reconstituted with sorted CD4+0X40-'-GFP(Foxp3r Teff cells

alone or co-injected with sorted CD4+GFP(Foxp3t. Thereafter mice were grafted with the

full-thickness tail skin of fully MHC-mismatched mice. Some of the transplanted mice

were treated with OX86 four times from the day of the graft. Rag" mice injected with Treg

did not reject the skin allograft, but the treatment with OX86 significantly impaired the

suppressive function of Treg and all the skin allografts were rejected (Vu et al., 2007).

1.4.2.2 OX40 in Treg homeostasis

Despite the negative signals provided by OX40 triggering to Treg suppression capabilities,

it has been recently demonstrated that OX40 is also implicated in Treg homeostasis and

survival. Studies done in OX40-'- or OX40L-'- mice displayed that the OX40/0X40L

interaction is dispensable for Treg development, as CD4+Foxp3+cells are still present in

these mice (even if young mice, but not old mice, have less Treg in both thymus and
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spleen, compared to aged-matched wt mice) (Takeda et al., 2004). Although OX40-'- Treg

do not display lower suppressive functions compared to OX40 sufficient Treg (Vu et al.,

2007), their proliferative potential in lymphopenic condition is impaired (Takeda et al.,

2004). On the contrary Treg transferred into OX40L transgenic mice efficiently expand

(Takeda et al., 2004). Very recent data demonstrate that OX40 expression is necessary for

both Treg competitive fitness in lymphopenic hosts and for Treg survival and proliferation

in an IL-2 dependent manner (Piconese et al., 2010; Xiao et al., 2012). Xiao and colleagues

showed that OX40 triggering in physiological conditions promotes the differentiation and

expansion of Treg, however these regulatory cells have an exhausted phenotype and

display weak inhibitory functions. This condition could be reverted by the double

stimulation via OX40 and the addition of exogenous IL-2. In fact, OX40 engagement alone

promotes Stat5 phosphorylation and sensitivity to IL-2, generating paucity of available IL-

2, which is necessary for Treg survival. Exogenous administration of IL-2, in

concomitance to OX40 triggering, assure for the development of fully differentiated and

functional Treg (Xiao et al., 2012).

CD4+Foxp3+ cells have a crucial role in keeping under control immune responses in

mucosal tissues, like gut and lung. In physiological conditions, OX40 expression is

required for the accumulation of Treg in the gut, and during inflammatory responses

provides survival signals and prevents Treg activation-induced cell death. In such a way,

assuring Treg persistence, OX40 avoids excessive immune activation (Griseri et al., 2010).

1.4.2.3 OX40 Triggering blocks iTreg differentiation

A different issue deals with the involvement of OX40 triggering in tuning the

differentiation of iTreg. As previously described, during immune responses, CD4+ non-

regulatory cells in the presence of high concentration of TGFp and low TCR stimulation
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could acquire Foxp3 expression and differentiate into iTreg, indistinguishable from nTreg

(Wing et al., 2006). This conversion is reinforced also by IL-2 and retinoic acid (Mucida et

al., 2009). Other subsets of iTreg include IL-IO-secreting Trl regulatory cells and TGFj3-

producing Th3 cells (Chen et al., 1994). Many studies demonstrated that OX40 triggering

on Teff down-regulates Foxp3 expression and dampens iTreg differentiation (So and Croft,

2007; Xiao et al., 2008). In vitro experiments of conversion of wt or OX40-'- CD4+CD25-

Teff cells into iTreg showed that OX40 antagonizes Foxp3 expression by blocking TGFj3

signals (So and Croft, 2007). This property of OX40 was confirmed also in an in vivo

model of airway tolerance. In this model the intranasal administration of the Ag allows the

development of tolerance and the differentiation of iTreg, with low concentration of IL-4

and IFNy. The co-administration of LPS with the Ag prevents the tolerization and leads to

the development of the disease. Upon LPS stimulation, DC and B cells express OX40L,

which, interacting with OX40 on T cells, impedes their differentiation into iTreg and

causes the accumulation of inflammatory cytokines in the lung microenvironment (Duan et

al.,2008). Another mechanism by which OX40 prevents the development of iTreg was

described by Xiao et colleagues (Xiao et al., 2008). In their study, OX40L tg mice-derived

T cells oppose stronger resistance to Foxp3 expression upon TGFj3 stimulation compared

to non regulatory T cells isolated from wt or OX40-'- mice. Analysis of T cell subsets

revealed that in OX40L tg mice the fraction of CD4+CD44highCD62Lloweffector memory

cells is significantly increased compared to wt mice. Intriguingly this memory population

blocks the conversion of naive T cells in iTreg in periphery by secreting large amount of

IFNy.

In the tumor microenvironment the conversion of non-regulatory CD4+T cells into Treg is

a frequent event. In this immune-depressed microenvironment OX40 stimulation prevents

the generation of iTreg, as demonstrated by Piconese et al. (Colombo and Piconese, 2007;
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Piconese et al., 2008), thus representing an interesting candidate for the development of

efficient cancer immunotherapy.

In addition OX40 ligation was also reported to impair both the de-novo differentiation of

Tr1 cells from naive and memory cells and the secretion of IL-IO by fully differentiated

Trl cells (Ito et al., 2006).

A more complex analysis about the roles of OX40 in the process of iTreg induction asserts

that the commitment of T cells toward a specific subset in response to OX40 engagement

depends on the local cytokine milieu (Ruby et al., 2009). This observation comes from the

context of the experimental autoimmune encephalomyelitis (EAE) model. OX40 triggering

during the priming phase of the disease favors the differentiation of Treg and prevents the

onset of the symptoms. On the contrary the administration of the OX40 agonist in the later

phase of EAE induces the development of inflammatory cells and the exacerbation of the

disease.

1.4.3 Modulation o/CD4+T cell/unctions by OX40

Unlike Treg, CD4+Poxp3- cells express OX40 only upon TCR engagement and the

expression level of OX40 is proportional to the strength of TCR signaling. Up-regulation

of OX40 occurs within the first 24 hours following activation and persists for the next 4-5

days, also according to the presence in the microenvironment of other factors, like TNF

(Hamano et al., 2011), IL-2 (Rogers et al., 2001), IL-4 (Toennies et al., 2004) and IL-1

(Nakae et al., 2001), which prolong OX40 expression. During immune responses OX40

plays a critical r~le in promoting clonal expansion of CD4+ T cells, but it is not required

during the initial phase of activation and proliferation. Upon activation OX40-'- T cells

display a normal proliferation rate and differentiate into memory cells, however in the later

phases of the immune response (day 12-13) their survival is critically compromised
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(Gramaglia et al., 2000; Song et al., 2005). OX40 stimulation is required for the expression

of genes that regulate cell proliferation and survival, like survivin (Song et al., 2005), Bc1-

xL and Bc1-2 (Colombo and Piconese, 2007; Piconese et al., 2008; Rogers et al., 2001;

Song et al., 2008). OX40 stimulation prevents and reverts T cell anergic state (Bansal-

Pakala et al., 2001).

The crystal structure of the human OX4010X40L complex has been described by Campaan

and colleagues (Compaan and Hymowitz, 2006; Song et al., 2005). OX40 organizes in a

trimeric complex, which binds to three copies of OX40L, forming a quaternary hexamer

complex. OX40 engagement induces the activation of both the canonical NF-KB 1 (Song et

al., 2008) and the PI3K/PKB (So et al., 2011a) pathways. Following the interaction with

OX40L, the intracellular domain of OX40 binds to TNFR-associated factor (TRAF) 2 and

TRAF5, which are indispensable mediators for the induction of the survival signals

provided by OX40 via NF-kBI activation (Kawamata et al., 1998; Prell et al., 2003).
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Figure 1.6: OX40/0X40L pathway. The intracellular domain of OX40 binds to TNFR-

associated factor (TRAF) 2, which forms a complex including IKKa, IKK~, PI3K and

PKB (Akt) and activates the nuclear factor kBl (NF-kBl). OX40 also promotes the

intracellular up-take of calcium upon TCR stimulation, favouring the nuclear localization

of nuclear factor of activated T cells (NFAT). These two pathways (NF-KBI and NFAT)

enhance the transcription of genes involved in regulating cell proliferation, survival,

cytokine secretion and cytokine receptor expression.
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1.4.4 Implications of OX40 triggering in T cell differentiation

Several studies have discussed the possibility that OX40 also modulates the commitment

of naive CD4+T cell toward a specific effector subset. First in vitro experiments showed

that naive CD4+T cells stimulated via OX40 display increased IL-4 secretion and reduced

IFNy production, thus fostering Th2 differentiation to the detriment of Thl cells (Flynn et

al., 1998). Subsequent in vivo studies based on the Leishmania major infection model

confirmed that OX40 engagement reinforces Th2 differentiation. The authors found that

the blockage of the OX40/0X40L axis, by using anti-OX40L mAb, keeps infection under

control (Akiba et al., 2000). In agreement with these data, it was also demonstrated that the

constitutive expression of OX40L on T cells, in OX40L tg mice, renders these mice

susceptible to L. major infection, while the C57BLl6 wt counterpart is normally resistant,

thus confirming that stimulation via OX40 promotes Th2 development (Ishii et al., 2003).

IL-4 is a typical Th2-associated cytokine and the signal of IL-4R induces accumulation of

the transcriptor factor GATA-3 in the nucleus of T cells, which acquire a Th2 phenotype.

So and colleagues showed that, in the absence of an external source of IL-4, OX40

provides the necessary stimuli to promote GATA-3 nuclear localization, which in tum

guides T cells along the Th2 differentiation process (So et al., 2006). In a study conducted

on human DC, it was demonstrated that TSLP-stimulated DC up-regulate OX40L but do

not secrete IL-12. Such DC promote the differentiation of Th2 cells able to secrete TNFu,

IL-4, IL-5 and IL-13, but not IL-lO. However the addition of exogenous IL-12 shifts T cell

differentiation toward a Thl phenotype (Ito et al., 2005). Other studies have highlighted

that in different c,ontexts OX40 could support the development of other Th subsets beside

Th2 (De Smedt et al., 2002; Rogers and Croft, 2000). Recently it has been also described

that mast cells (MC) constitutively express OX40L and are able to drive T differentiation

toward a Th17 phenotype (Piconese et al., 2009). In an in vitro system in which MC, Treg
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and Teff are co-cultured, Treg are able to suppress MC degranulation in an OX40/0X40L

dependent manner. Otherwise MC, through OX40 ligation, inhibit Treg suppressive

functions, and render Teff more resistant to Treg suppression. In this study the more

relevant aspect is that Treg, in presence of MC, lose their ability to suppress Teff, but

continue to block the secretion of Thl (IFNy) and Th2 (IL-4) cytokines. The reduced

suppression exerted by Treg is mediated by IL-6, released from both MC and Teff, and IL-

6 itself sustains OX40L expression on MC. In this environment, rich in IL-6 and poor in

IFNy and IL-4, MC, via OX40L, induce both Treg and Teff to acquire an inflammatory

Th 17 phenotype.

This evidence suggests that the OX40/0X40L does not drive T cell differentiation in only

one specific direction, but amplifies immune responses according to the particular cytokine

milieu.

1.4.5 Differentiation of memory T cells is influenced by OX40

NaIve T cells, upon Ag recognition, activate and differentiate into specific subsets of Th

cells. A small proportion of these lymphocytes give rise to the pool of memory cells, which

assure rapid and protective immune response during subsequent encountering with the

same Ag. As previously described, memory T cells can be classified in two groups

according to CD44 and CD62L expression. Tern, which are CD4+CD44highCD62Llow,are

mainly localized in non-lymphoid tissues, while CD4+CD44highCD62LhighTcm

preferentially accumulate in secondary lymphoid organs (Lanzavecchia and Sallusto, 2005;

Sallusto et al., 1~99). The signals that guide activated Teff to differentiate into Tern or

Tern cells rely on the strength and the length of TCRlMHC-Ag interaction. The

commitment toward a Tcm phenotype is induced upon weak and short TCRlMHC-Ag
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signals. Conversely, the differentiation of Tern cells requires strong and long-lasting

interaction between APC and T cells (Pepper and Jenkins, 2011).

The OX40/0X40L axis is relevant for the development of Tern, while being dispensable

for Tcm development. This discrepancy concerning the costimulation via OX40/0X40L is

in agreement with the time course of T cells-APC interaction for the specification of a Tcm

or a Tern phenotype. OX40L on APC is expressed only in the later phase of the immune

response (Croft et al., 2009; Redmond et al., 2009), thus Tcm, which shortly interact with

APC, do not receive signals via OX40. On the contrary Tern, which keep prolonged

interaction with APC for their fully differentiation, are in the optimal condition to receive

positive stimulation in a OX40/0X40L-dependent fashion.

First experiments performed in OX40L tg mice, which constitutively express OX40L on T

cells, showed that the OX40/0X40L interaction significantly increases the number of

splenic Tern compared to age-matched wt mice. Tern generated in OX40L tg mice are

efficiently activated in response to Ag also in absence of adjuvant, and the OX40 axis

protects Tern from activation-induced cell death (AICD) (Murata et al., 2002).

Complementary results were obtained in OX40 deficient mice (Soroosh et al., 2007).

Soroosh and colleagues found low numbers of Tern in lymph nodes, spleen, lung, liver,

lamina propria of the colon and in peritoneal cavity of OX40 deficient mice compared to

age-matched wt mice. On the contrary no difference was observed between the two mouse

strains for Tcm population. To better evaluate the relevance of OX40 in Tern/Tcm

differentiation they performed experiments of adoptive transfer using OTII cells isolated

from OX40 deficient or sufficient mice. OX40 signaling was indispensable for the long-

lasting survival of Tern, while being dispensable for Tcm differentiation and maintenance

over time (Soroosh et al., 2007). The OX40/0X40L axis promotes Tern generation also

inhibiting the development of Treg (Xiao et al., 2008). Indeed Tern isolated from OX40L
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tg mice do not convert into Foxp.l" regulatory T cells, although cultured in the presence of

adequate amounts of TGFj3. Tcm developed in OX40 tg mice are also able to block the

conversion of naive T cells into Treg by secreting high amount of IFNy (Xiao et al., 2008).

Collectively these data suggest that OX40 is not involved in the early phase of T cells

commitment toward TcmlTem phenotype, but is crucial in the subsequent step, providing

survival and proliferative signals to early differentiated Tem, thus warranting their long-

last survival.

OX40 is transiently expressed on effector/memory T cells, and is rapidly down modulated

at the end of the immune response. However the kinetics of OX40 expression on memory

cells is faster than on recently activated T cells (Gramaglia et al., 1998) and signals

provided via this pathway are necessary for memory T cells reactivation and acquisition of

effector functions. In a model of memory Th2-induced asthma (Salek-Ardakani et al.,

2003), OX40/0X40L axis was demonstrated to be required not only for the generation of

memory Th2 cells, but also for their reactivation upon second Ag exposure. Indeed,

blocking the OX40/0X40L interaction during Ag rechallenge prevents the accumulation of

inflammatory cells in lung tissue. Moreover, Ag-specific OX40-deficient Th2 cells fail to

induce inflammation because they do not receive appropriate survival stimuli (Salek-

Ardakani et al., 2003). Similar results were obtained in a model of skin allograft rejection,

where the blockage of C028, CD154 and OX40 pathways significantly prolonged skin

allograft acceptance (Vu et al., 2006).

Considering the several consequences of OX40/0X40L axis in regulating Treg and Teff

biology it is reasonable to consider these molecules interesting targets for the development

of therapies for autoimmune/inflammatory diseases and tumors, blocking or reinforcing its

signal according to the desired outcome.
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1.4.6 OX4010X40L in autoimmune diseases and inflammation

Autoimmune diseases are caused by an excessive and uncontrolled activation of the

immune system against self-antigens. The ideal therapy for these pathologies aims to block

only the cells responsible for the disease onset without modifying the functions of the non-

pathogenic immune cells. To this aim, OX40 appears to be the adequate candidate, since

only activated, and presumably pathogenic, T cells express it. Thus the blockage of the

OX40/0X40L axis would suppress only these cells, without inducing a general

immunosuppressive environment. The first evidence that OX40 is implicated in the onset

of autoimmune diseases was provided by Weinberg and collaborators in 1996 (Weinberg

et al., 1996a; Weinberg et al., 1996b) in EAE. They showed that auto-reactive T cells

express OX40 and their depletion, using an OX40-immunotoxin, ameliorates the course of

the pathology. The same study also showed that OX40 is expressed by auto-reactive T

cells in the peripheral blood of patients affected by GVHD or rheumatoid arthritis (RA).

Few years later the same group demonstrated that blocking in vivo the OX40/0X40L axis

using an OX-40R:Ig-Fc chimeric protein reduces the severity of EAE (Weinberg et al.,

1999). The relevance of this pathway in EAE outcome was also proved by using OX40L-

deficient or OX40L tg mice (Ndhlovu et al., 2001). In absence of OX40L mice develop

milder EAE compared to wt mice, while in OX40L tg mice the course of the disease is

more severe. Mirroring the use of the OX-40R:Ig-Fc chimeric protein, the administration

of a mAb antagonistic for OX40L (MRI34L) reduces the severity of EAE, actively or

passively (by adoptive transfer) induced (Nohara et al., 2001). The same mAb (MR134L)

was found efficient also in the cure of acute GVHD (Tsukada et al., 2000). On the

contrary, the use of an agonistic anti-OX40 Ab (M5) accelerates GVHD progression and

lethality (Blazar et al., 2003). These results could be extended to other disease models, like

skin allograft, where the MR134L mAb, in combination with anti-CDl54 (MRl) and anti-
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CTLA4Ig, prolongs skin graft acceptance (Demirci et al., 2004). In patients affected by

RA, OX40 is expressed by T cells in the synovial fluid, while OX40L is up-regulated by

cell localized in the synovial tissue. Treatment of mice affected by collagen-induced

arthritis (CIA) with anti-OX40L (RM134L) mAb ameliorates disease severity (Yoshioka et

al.,2000). In a mouse model of antigen-induced uveitis, treatment with a blocking anti-

OX4L Ab (18269) or OX86 ameliorates or worsens the severity of ocular inflammation,

respectively. In particular it was demonstrated that OX40 signals enhances the secretion of

the inflammatory Th 17-derived cytokines and also contributes to the stability of this T cell

subsets by promoting IL-21 production (Zhang et al., 2010). The OX40/0X40L axis is also

implicated in the development of autoimmune type-I diabetes (TID) (Bresson et al., 2011;

Martin-Orozco et al., 2003; Pakala et al., 2004). Interestingly, a very recent study has

showed that the administration of OX86 to non-obese diabetic (NOD) mice reduces the

incidence of TID, enhancing the development of both CD4+Foxp3+Treg and CD4+Foxp3-

LAP+ suppressive cells (LAP: latency associated peptide) (Bresson et al., 2011). In colitis,

the administration of OX40-Ig fusion protein or OX40L-Ig fusion protein has opposite

consequences on the progression of the disease, blocking or promoting inflammation,

respectively. These findings were also confirmed using anti-CD134 mAb and OX40L tg or

OX40 deficient T cells (Higgins et al., 1999; Malmstrom et al., 2001). Moreover, OX40

expression on Treg was demonstrated to be necessary for the resolution of colitis (Griseri

et al., 2010; Piconese et al., 2010). Indeed OX40-deficient Treg inefficiently accumulate in

the colon, are more susceptible to AICD (Griseri et al., 2010), and their impaired

proliferation renders them unable to control Teff activation (Piconese et al., 2010). The

crucial role exerted by OX40 in the onset of autoimmune disordes was recently

demonstrated using the scurfy mouse model. These mice lack Foxp3 and spontaneously

develop severe autoimmune pathologies within the first weeks of life. However scurfy
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mice backcrossed with OX40-'- mice show a significantly delay in the onset of autoimmune

syndromes (Gaspal et al., 2011). The phenotype further ameliorates in mice double KO for

both OX40 and CD30 (Gaspal et al., 2011).

1.4.7 OX40 triggering in cancer immunotherapies

Conversely to inflammatory/autoimmune diseases, in the immunosuppressive tumor

microenvironment immune cells need to be boosted such to eliminate transformed cells.

OX40 may represent the right molecule to achieve this goal, thanks to its ability to activate

effector T cells and inhibit Treg (Croft et al., 2009; Sugamura et al., 2004). Few years

after the first evidence of OX40 expression on CD4+T cells in tumor and dLN (Vetto et al.,

1997), OX40 was proposed as a prognostic marker in tumor (Sarff et al., 2008). The

beneficial effect of OX40 stimulation in tumor mass was demonstrated by Weinberg and

collaborators in 2000 (Weinberg et al., 2000). Mice bearing established tumors were

systemically treated with OX-40L:Ig fusion protein or anti-OX40 (OX86). These

treatments resulted in the eradication of the majority of tumors and increased the

percentage of tumor-free mice. The efficacy of OX-40L:Ig fusion protein and OX86 was

confirmed in four different mouse tumor models (B16/FIO, MCA303, SMI and CT26),

perhaps the more immunogenic being the most responsive to the therapy (Weinberg et al.,

2000). In this regard another study has better evaluated the environmental elements that

impact on the efficacy of OX86 treatment (Kjaergaard et al., 2000). Indeed, the

responsiveness to the therapy depends not only on tumor cell immunogenicity but also on

the anatomical localization of tumor nodules, the tumor burden and the amount of OX40-

expressing tumor-infiltrating CD4+ and CD8+ T cells (Kjaergaard et al., 2000). The

combination of adoptive immunotherapy with the administration of OX86 and/or IL-2

showed that anti-OX40 mAb enhances the efficacy of the therapy regardless the
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anatomical localization of the tumor, while IL-2 anti-tumoral function depends on the

anatomical district of tumor location (Kjaergaard et al., 2001). OX40-based therapy mainly

targets tumor-specific T cells and enhances the generation of tumor-antigen specific CD4+

memory cells (Weinberg et al., 2000). It has been recently described that in tumor

microenvironment also DC could express OX40 (Pardee et al., 2010). In MCA205 tumor-

bearing mice, inoculated i.p. with OX40L-Fc, CD80+CD86+CCR7+DC migrate from the

tumor nodule to the draining lymph node in a CD4~ cells-independent manner. In the

dLN T cells receive two activating signals: on one side OX40L-Fc induces the up-

regulation ofCXCR3, on the other side migrated DC promote T cell full activation. In such

a context, competent CXCR3+ T cell move toward the tumor microenvironment. Migration

of T cells toward the tumor is facilitated by a reorganized vascular system; indeed, upon

OX40L-Fc treatment, vascular endothelial cells up-regulate CXCL9, the ligand for

CXCR3, and VCAM-l, which mediates the adhesion of leukocytes to endothelium (Pardee

et al., 2010). To potentiate the anti-tumoral effect of the OX4010X40L axis, anti-OX40

mAb or OX40L-Fc could be provided in combination with other immune-stimulatory

molecules. Colon carcinoma C26 cells transduced with OX40L (C26/0X40L) display a

delayed growth rate in vivo compared to the parental C26 cells. C26 cells engineered to

express both OX40L and OM-CSF (C26/0M/OX40L) are rejected by the majority of mice

(85%) in a CD40-dependent mechanism (Gri et al., 2003). Interestingly, vaccination of

mice, bearing C26lung metastasis, with irradiated C26/0M/OX40L cells cures about 83%

of animals (Gri et al., 2003). Synergism between OX40 and OM-CSF in anti-tumor

immunity was observed also in transplantable colon (CT26) and mammary (4Tl)

carcinomas (Ali et al., 2004) and in a mouse model of spontaneous mammary

carcinogenesis (MMTV-neu) (Murata et al., 2006). Vaccination with OM-CSF secreting

tumor cells in combination with OX40 stimulation displays stronger results compared to
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the sole vaccination with GM-CSF. In the presence of an OX40 agonist mAb, CD8+T cells

efficiently expand, the pool of tumor-specific CD8+ T survives for a longer period and

importantly CD8+lymphocytes become independent from CD4+ T cell help (Murata et al.,

2006). The expression of OX40 also on CD8+T cells renders them direct targets of OX40-

based therapy. Coupled stimulation of OX40 and 4-IBB in established mouse sarcoma

leads to rejection of tumors in a CD8+ T cell-dependent manner (Lee et al., 2004).

Cooperation between CD4+ and CD8+ lymphocytes in tumor is favoured by OX40

engagement on CD4+T cells (Pan et al., 2002). Triple therapy of established tumors with

intra-tumoral administration of adenovirus-IL-12 (Ad-IL-12), agonist mAb for 4-IBB and

OX40 results in high survival rate of mice. OX40-stimulated CD4+ lymphocytes, in the

presence of IL-12, acquire a Thl phenotype and enhance the generation of CD4+-

dependent CTL and long-living memory cytotoxic cells, which assure protection against

rechallenge with parental tumor cells (Pan et al., 2002). OX40-stimulated CD4+T cells up-

regulate IL-12Rbeta2 and signals delivered via IL-12 favour cell survival in a Stat4-

dependent manner (Ruby et al., 2008). Croft's group demonstrated the existence of an

OX40-mediated cooperation between CD4+ and CD8+ T cells using the OVA-expressing

E.G7 tumor model (Song et al., 2007). Transfer of tumor-specific OT-I cells and OX86, in

tumor challenged mice, increases the survival rate of the animals. The beneficial

consequences of this treatment are abrogated when OX40-sufficient OT-I cells are

transferred into OX40-deficient hosts. These data suggest that OX86 mainly acts on CD4+

T cells, which in tum favour the proliferation of OT-I transferred cells and their ability to

secrete both of IL-~ and IFNy (Song et al., 2007). A direct effect of OX40 on CD8+T cells

was observed by the group of Weinberg (Redmond et al., 2007). In vivo stimulation ofOT-

I cells with OVA and anti-OX40 mAb leads to up-regulation of granzyme Band CD25.

The same experiment performed in CD4+ T cells depleted mice results in a lower
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expression of both granzyme Band CD25 by Ag-stimulated CD8+ T cells. Similar results

were obtained using OX40-deficient OT-I cells. These data suggest that for the optimal

activation of CD8+ T cells OX40 ligation is necessary on both CD4+ and CD8+

lymphocytes, but also indicate that OX40 directly enhances CD8+ T cells activation in a

CD4+T cell-independent manner (Redmond et al., 2007).

Another strategy to potentiate T cell activation is the delivery of OX40L through

adenoviral vectors, directly injected in tumor mass (Andarini et al., 2004) or transfected in

tumoral (Andarini et al., 2004) or APC cells (Dannull et al., 2005). The growth of B16

melanoma, Lewis lung carcinoma and C26 colon carcinoma injected with a recombinant

adenovirus vector expressing OX40L (AdOX40L) is significantly reduced as a

consequence of an increased specific anti-tumor cytotoxic activity along with

differentiation of CD4+ cell toward a Thl phenotype (Andarini et al., 2004). Same results

were obtained transfecting B16 cells with the AdOX40L (Andarini et al., 2004).

Costimulatory signals provided by mature APC are necessary for the full activation of T

cells, however in tumor microenvironment the high concentration of immunosuppressive

molecules retains APC in an inactive/tolerogenic state. The use of APC in vitro engineered

to constitutively express costimulatory molecules could provide great advantage for

successful immunotherapy. Bone marrow-derived dendritic cell (BM-DC) transfected with

OX40L mRNA impair the growth of melanoma tumors mainly promoting Ag-specific

CD4+ T cell activation (Dannull et al., 2005). Vaccination of BI6-FI0 tumors with

AdOX40L-transduced DC efficiently blocks tumor growth thanks to the double

engagement of OX40 on both T and NKT cells (Zaini et al., 2007).

As previously described, OX40 exerts another relevant function in T cell biology: indeed,

it is able to antagonize Treg suppressive functions, directly acting on CD4+Foxp3+ cells

and indirectly contrasting the conversion of CD4+Foxp3-lymphocytes into iTreg (Piconese
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et al., 2008). Since the discovery that Treg worsened immune response to tumors, several

attempts have been done to counteract their activity. In this regard the first experiments

have focused on depletion of Treg by targeting CD25 with the mAb PC61 (Onizuka et al.,

1999; Shimizu et al., 1999). Although this treatment has shown efficacy in some mouse

tumor models, it was ineffective for the cure of established tumors (Curtin et al., 2008).

The criticism of this treatment is that in naive mice, before tumor challenge, only Treg

express CD25 and are suitable target for PC61. In the presence of established tumors, also

Teff up-regulate CD25, so PC61 depletes not only Treg but also activated effector T cells

(Betts et al., 2007; Onizuka et al., 1999). In addition, in the tumor microenvironment, Teff

are converted into iTreg, replacing the pool of depleted Treg within few weeks after PC61

treatment (Valzasina et al., 2006). According to these results a better strategy seems to be

the functional inhibition of Treg rather than their depletion (Colombo and Piconese, 2007).

In this setting Treg are functionally inactive but are sensed by the homeostatic control

mechanisms, thus preventing the conversion of new iTreg. OX40, constitutively expressed

by Treg and even at higher level by tumor-associated Treg, may be the correct molecule to

reach this scope. As previously described OX40 engagement suppresses Treg both in vitro

and in vivo (Valzasina et al., 2005; Vu et al., 2007). Intra-tumoral administration of OX86

promotes tumor rejection in different mouse tumor models (colon carcinoma, fibrosarcoma

and mammary carcinoma and adenocarcinoma) (Piconese et al., 2008), by reducing the

control exerted by Treg on effector cells and favouring the migration of DC from tumor to

the dLN. The efficacy of OX86 treatment requires OX40 engagement also on Teff, and the

presence of CD8+ T cells (Piconese et al., 2008). Combined therapy with

cyclophosphamide (CTX) and OX86 reduces the growth of B16 melanoma tumors and

increases the rate of surviving tumor-bearing mice at day 50 after tumor challenge

(Hirschhom-Cymerman et al., 2009). Upon CTX treatment Treg further up-regulate OX40,
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thus becoming the preferential target of OX86. Injection of CTX+OX86 causes Treg

specific hyper-activation and subsequent death. The lower amount of tumor-associated

Treg favours the accumulation of CD8+ T cells and increases the TefflTreg ratio

(Hirschhom-Cymerman et al., 2009), generating a permissive environment for the

development of anti-tumor response. Triple treatment of A20 lymphoma with Cpfl+anti-

OX40+anti-CTLA4 impairs tumor growth by reducing tumor-infiltrating Treg and

promoting the activation of CD4+ and CD8+effector cells (Houot and Levy, 2009)
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Table 1.1: OX40 in autoimmune and inflammatory diseases

Model Mouse/treatment Ref
EAE OX40-immunotoxin Inhibition (Weinberg et

al., 1996a)
OX-40R:Ig-Fc Inhibition (Weinberg et

al.,1999)
Anti-OX40L (MRI34L) Inhibition (Nohara et

al.,2001)
OX40L-1- or OX40-1- mice Inhibition (Ndhlovu et

al., 2001)
OX40L tg mice Exacerbation (Ndhlovu et

al.,2001)

GVHD Anti-OX40L (MRI34L) Inhibition (Tsukada et
al.,2000)

OX40-1- mice Inhibition (Blazar et al.,
2003)

Anti-OX40 (MS) Exacerbation (Blazar et al.,
2003) \

Arthritis Anti-OX40L (MR134L) Inhibition (Yoshioka et
al.,2000) ,

Toxin-conjugated anti-CDl34 Inhibition (Boot et al., IIII

liposome 2005)
11,1

Colitis OX40-IgG fusion protein Inhibition (Higgins et II

al.,1999) II

Anti-OX40L (MR 134L) Inhibition (Malmstrom I:!

et al., 2001)

Diabetes OX40L-1-mice Inhibition (Martin-
Orozco et al.,
2003)

Antagonistic OX40L mAb Inhibition (Pakala et
al.,2004)

Asthma and allergic OX40L-1- or OX40-1- mice Inhibition (Jember et
inflammation Anti-OX40L (MR134L) Inhibition al.,2001)

(Arestides et
al.,2002;
Hoshino et
al.,2003)

Uveitis Anti-OX40L (18260) Inhibition (Zhang et al.,
2010)

Graft Anti-OX40L (MR134L) Inhibition (Demirci et
al.,2004)

Antagonistic OX40-lg fusion protein Inhibition (Curry et al.,
2004)
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Tablel.2: OX40 stimulation in tumor

Treatment Tumor Re
OX·40L:Ig fusion protein Melanoma, colon carcinoma, sarcoma,

breast cancer
(Weinberg et al.,
2000)

OX86 Brest adenocarcinoma, colon
carcinoma, fibrosarcoma

(Piconese et al.,
2008)

OX86+1L·2 Sarcoma (Kjaergaard et
al.,2001)

Tumor cells overexpressing
OX40L+GM·CSF

Colon carcinoma (Gri et al., 2003)

GM·CSF vaccination+OX86 Mammary tumor (Murata et al.,
2006)

OX40L:Fc+DISC·HSV /mGM·CSF Colon carcinoma, mammary tumors (Ali et al., 2004)

OX86+4·1BB Sarcoma (Lee et al.,
2004)

Lentivirus·IL·12+4·IBB+OX86 Colon carcinoma (Pan et al.,
2002)

Adenovirus·OX40L Melanoma, lung carcinoma, colon
carcinoma

(Andarini et al.,
2004)

DC·OX40LmRNA Melanoma (Dannull et al.,
2005)

DC·Adenovirus·OX40L Melanoma (Zaini et al.,
2007)

CTX+OX86 Melanoma (Hirschhorn-
Cymerman et
al.,2009)



1 Introduction

1.5 MicroRNA

MicroRNA (miRNA), described for the first time in 1993 in C. elengans by Ambros V.

and his team (Lee et al., 1993), are endogenous 22 nt-long non-coding single strand (ss)

RNA. miRNA playa critical role in the regulation of several biological processes, as they

control the expression of most mRNA. Each miRNA has numerous mRNA as target, thus

suggesting that a single miRNA may be involved in several different pathways, in addition

a single mRNA is target of different miRNA, implying that miRNA may interact each

other in order to control the gene expression (Garzon et al., 2010). Since their discovery

miRNA have instigated great interest and always more researchers have focused their

attention in order to understand how miRNA modulate cell differentiation, homeostasis

and function. In this view it is not surprising that miRNA are involved in the onset of

several pathologies, including dysfunctions of the immune system (Sonkoly et al., 2008),

and tumors, as both tumor-suppressor genes and oncogenes are under the control of

miRNA (Kong et al., 2012). For these reasons it is emerging the idea that specific miRNA

expression profile can be used markers for different diseases (Kong et al., 2012).

1.5.1 miRNA biogenesis

miRNA derive from DNA sequence localized in both intragenic and intergenic regions.

These sequences are transcribed into a primary transcript, named pri-miRNA, by RNA

polymerase II (Pol II). The pri-miRNA is usually long 1-3 kb and is cleaved into a 60-70 nt

stem loop intermediate (pre-miRNA) by the endonuclease Drosha, which is a RNAase III.

The pre-miRNA is transported from the nucleus to the cytoplasm via exportin 5 and here

Dicer, another RNAase III endonuclease, processes it into a double-strand (ds) RNA

duplex, which contains the mature miRNA. This ds-RNA finally interacts with the RNA-

induced silencing complex (RISe), where the Argonaute family proteins cleave the ds-
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RNA duplex into the mature ss-miRNA. The complex ss-miRNAIRISC binds to the target

mRNA by a partial sequence complementarity, between the nt 2-8 from the 5' UTR of the

miRNA and the 3' UTR of the mRNA. When the complementarity between the miRNA

and the mRNA is perfect, the mRNA is cleaved; on the contrary when the complementarity

is partial there is translational repression (Kai and Pasquinelli, 2010). In addition to this

canonical interaction, miRNA may also bind to the 5' UTR and to the ORF of target

mRNA. These non-conventional interactions may promote gene expression, rather than

block it (Garzon et al., 2010). Recently were described also miRNA able to directly bind

to the DNA sequence into the nucleus, regulating gene expression at the transcriptional

level (Khraiwesh et aI., 2010).
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Figure 1.7: miRNA genesis and function. Pri-miRNA, synthesized by RNA Pol II, are

cleaved by Drosha into pre-miRNA and transported to the cytoplasm via Exportin 5. In the

cytoplasm Dicer processes the pre-miRNA into a 22-nt long ds-RNA duplex, which

contains the mature miRNA. The ds-RNA duplex is delivered to the Drosha complex; the

selected mature ss-miRNA is separated form the antisense strand and associates with

Argonaute. miRNA guides Argonaute to the target mRNA, thus down-modulating proteins

synthesis.
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1.52 miRNA in the immune system

In 2004 Chen and colleagues (Chen et al., 2004) were the first to demonstrate the relevance

of miRNA for the development of immune cells. In particular they found that miRl81 is

crucial for Band T cell differentiation (Chen et al., 2004). Like miR181, other miRNA

were found to be necessary for an adequate differentiation of adaptive immune cells, for

instance miR150, miR155, miR142s and miR223 (Sonkoly et aI., 2008). In experiments

using conditional Dicer knockout mice, it was demonstrated that miRNA are necessary for

the normal development of B cells (Koralov et al., 2008), T cells (Cobb et al., 2005) and

NKT cells (Zhou et al., 2009a). Conditional Dicer deletion in correspondence to different

stages of cell maturation causes different outcomes. For instance, abrogation of Dicer

expression in immature thymocytes drastically reduces CD4+ and CD8+ single positive

populations in thymus and in periphery. On the contrary, when Dicer is eliminated at the

CD4+CD8+ double positive stage, the frequency of mature cells in periphery is only 2-fold

reduced. In this case Treg are the most affected T cell population, being 6-fold reduced

(Cobb et al., 2006). Similarly, Dicer elimination in the earlier B cell differentiation stage

almost completely blocks B cell differentiation (Koralov et al., 2008), while Dicer

abrogation in later phase of B cell maturation causes an imbalance between marginal zone

and follicular B cells (Belver et al., 2010). It is becoming clear that a tightly regulated

miRNA expression is necessary for proper T and B cells maturation and functions

(Sonkoly et al., 2008).
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Figure 1.8: miRNA expression during T and 8 cell development. Several miRNA

guide T and B cell differentiation, from the early lymphoid progenitor to terminally

differentiated and activated cells.
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15.3 miR155 in T eellfunction

Among the miRNA implicated in the development of the immune system, miR155 plays a

critical role (Rodriguez et al., 2007). miR155 derives from an exon of the non-protein-

coding RNA bic and its expression is up-regulated in activated B (Eis et al., 2005) and T

cells (Haasch et al., 2002). Bic-deficient mice spontaneously develop lung remodeling and

accumulation of leukocytes in the bronchoalveolar lavage fluid (Rodriguez et al., 2007).

Moreover these mice are not able to develop protective immunity against Salmonella

typhimurium upon immunization. The inability to mount an efficient immune response was

due to low antibody production, insufficient IL-2/IFNy secretion by T cells and inefficient

Ag-presentation and costimulation by DC (Rodriguez et al., 2007). Of note, in Treg

miR155 expression is regulated by Foxp3 (Zheng et al., 2007) and is necessary for

sustaining Treg-competitive fitness (Lu et al., 2009). miR155 deficient mice have a

consistent reduction of Treg, both in thymus and in periphery, due to an impaired

proliferative capacity of Treg (Kohlhaas et al., 2009; Lu et al., 2009). Indeed, in non-

lymphopenic conditions, miR155 deficient Treg display lower sensitivity to IL-2, caused

by high level of sacs 1 (target of miR155), and ineffective Stat5 activation (Lu et al.,

2009). On the contrary miR155 deficiency does not impact on Treg suppressive function,

as shown both in vitro (Stahl et al., 2009) and in vivo experiments (Kohlhaas et al., 2009).

In a model of T cell-induced colitis, the co-transfer of miR155 deficient Treg with

colitogenic CD4+CD45RBhi
g
h T cells efficiently protects the recipients from colitis

symptoms (Kohlhaas et al., 2009). On the contrary, modulation of miR155 in Teff strongly

impacts on their functions. In vitro the over-expression of miR155 renders Teff resistant to

the control exerted by Treg, while its down-modulation renders Teff more susceptible to

Treg suppression (Stahl et al., 2009). Two different studies have demonstrated the

involvement of miR155 in EAE onset (Murugaiyan et al., 2011; O'Connell et al., 2010).
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EAE is an autoimmune disease caused by Thl and Thl7 inflammatory cells, and miRl55

over-expression favours the differentiation of these T cell subsets, exacerbating EAE

outcome (O'Connell et al., 2010). On the contrary miRl55 deficient mice show delayed

and milder EAE symptoms (Murugaiyan et al., 2011). In lupus-prone mice (MRL-Fas'prl1pj,

Treg accumulate in lymphoid tissues, but display an altered phenotype (CD62L-CD69+)

and are endowed with low inhibitory functions. Intriguingly, Treg isolated from these mice

have low levels of Dicer, but express high amounts of miRl55. In addition, the exogenous

expression of miRl55 in wt Treg induces the down-modulation of CD62L, mirroring the

phenotype of MRL-Fas'prl1prTreg (Divekar et al., 2011). In aberrant anaplastic lymphoma

kinase (ALK)-negative anaplastic large-cell lymphoma (ALCL), miR155 expression is

higher than in ALK+ALCL (Merkel et al., 2010). Deregulation of miRl55 was observed

also in Human T-cell leukemia virus type-I (HTLV-I) and adult T-cell leukemia (ATL)

(Bellon et al., 2009).

All these data indicate that miR155 plays a critical role in regulating T cell homeostasis

and functions, and understanding how to modulate its expression will provide great

advantage for the development of new therapies for both autoimmune diseases and tumors.
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2Materials and Methods

2.1 Mice and treatments

BALB/c and C57BLl6 mice were purchased from Charles River Laboratory (Calco, Italy);

CD40-'- and OX40-'- mice were provided by L. Adorini (Intercept Pharma, Perugia, Italy)

and N. Killeen (UCSF), respectively. R. Furlan (San Raffaele Scientific Institute, Milan,

Italy) upon agreement with A. Rudensky (New York, USA) kindly provided Foxp3-GFP

mice. All these strains were backcrossed for ten generations to BALB/c. C57BLl6 CD45.1

and Ragl-I- mice were purchased from Jackson Laboratories. Lck_miRl55 (miRI55)

transgenic (tg) mice (Ranganathan et al., 2012) were kindly provided by C.M. Croce (Ohio

State University, Columbus, USA). miRI55 tg mice have been acquired on a mixed

C3HJxC57BLl6 background and were backcrossed to C57BLl6 backround. Mice were

maintained under pathogen-free conditions in our animal facility and used at 8 weeks of

age unless otherwise specified. Animal experiments were authorized by the Fondazione

IReCS Istituto Nazionale dei Tumori Ethical Committee for animal use and were

performed in accordance to the national law (DLI16/92).

CT26 is an undifferentiated colon carcinoma cell line derived from BALB/c mice; TSA is

a tumor cell line derived from a spontaneous breast carcinoma on BALB/c background;

MCA203 is a fibrosarcoma tumor cell line induced by 3-methylcholanthrene on C57BLl6

background, MCA38 is a colon adenocarcinoma on C57BLl6 background. BI6JF1O is a

melanoma tumor cell line on C57BLl6 background. Tumor cells were cultured in DMEM

(Invitrogen), supplemented with 10% FBS. 5 x 104 CT26 cells, 5 x 104 TSA cells, 5 x 105

MCA203,5 x 104 MCA38, or I x 105 BI6JFIO cells were inoculated s.c in the left flank of

mice and tumor growth was monitored twice a week. Tumor volume was evaluated as

longest diameter x (shortest diameter)! and expressed in cubic millimeters (mm'), Animals

were treated with intra-tumoral (i.t) injection of 50 Ilg of purified anti-OX40 mAb (clone
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OX86, European Collection of Cell Cultures) or isotype matched control Ab -rat IgG-

(mock) and were sacrificed after 24 hours for analysis. The hybridoma for anti-CD25 mAb

(PC61) was kindly provided by V. Bronte (Verona University Hospital, Italy). Mice

received I mg of PC61 once i.p.

2.2 Antibodies and flow cytometry analysis

FITC and PerCPCy5.5 anti-CD44 (IM7), FITC anti-GITR (DTAl), FITC anti-CD69

(H1.2F3), PE anti-OX40 (OX86), PE and PerCPCy5.5 anti-IL-1O (JES5-16E3), PE and

APe anti-Foxp3 (FJK-16S), PE-Cy7 anti-CD4 (L3T4), PE anti-K'' (SFl-l.l.l), PE anti-

CD25 (PC61.5), PE-Cy7 anti-CDllc (N4l8), APe anti-CD62L (Me114), PE anti-CD80

(16-IOAl), APe anti-CD86 (GLl), PE anti-CD8 (53-6.7), PE anti-B220 (RA3-6B2), PE

anti-CDIlb (MInO), FITC anti-F4/80 (BM8), APe anti-CD45.2 (104), PE anti-Pdl (143),

PE anti-IFN-y (XMGl.l, A-B), PE anti-TNF-a (MP6-XT22, C-D), PE anti-IL-6 (MP5-

20F3, E-F), PE anti-IL-17 (eBio17B7, G-H) and streptavidin-PE were from eBioscience.

Biotin anti-CD40L (MRl) was from BD Pharmingen. Antibodies were used at 5 ug/ml.

Surface staining was performed in IX PBS supplemented with 2% FBS for 30 minutes on

ice. Intracellular staining of Foxp3 and cytokines was performed according to

manufacturer's instruction (eBioscience). Before IFNy, TNFa, IL-6, IL-17 and IL-1O

intracellular staining, cells were in vitro re-stimulated for 4 hours at 37°C with Phorbol

Myristate Acetate (PMA) (50 ng/ml, SIGMA), Ionomycin Calcium Salt (Iono) (500 ng/ml,

SIGMA) and Monensin (eBioscience) or BrefeldinA (10 f.!g/mlSIGMA). Flow cytometry

data were acquired 'on a LSRFortessa (Becton Dickinson) and analyzed with FlowJo

software (version 8.8.6, Tree Star Inc.)
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2.3 pStatS staining

Purified wt and OX40-'- Treg were stimulated with increasing doses (0, 1, 10, 100, 100

IV/ml) of recombinant (r) IL-2 (Proleukin) for different time intervals (1,5, 10 minutes).

Treg were stained with AlexaFluor-488 anti-Stat5 pY694 (clone 47) according to the

manufacturer's instructions (BD Bioscience).

2.4 Annexin V and BrdU staining

5-weeks old wt and OX40-'- mice were thymectomized by the suction method. After 3

weeks lymph nodes were collected from each mouse. Before collection, BrdV was

administered according to the following schedule. On day 0 mice were i.p. injeceted once

with 1 mg of BrdV (Sigma-Aldrich). On days 1, 2 and 3 BrdV was provided in drinking

water at 0.8 mg/rnl. On day 4 lymph nodes were collected and stained with AnnexinV

Apoptosis Detection Kit according to manufacture's instruction (eBioscience). For BrdV

analysis cells were treated with Fix/Perm buffer (eBioscience) and then stained with the

BrdV Flow kit (BD Pharmingen). BrdV (BD Pharmingen) and Foxp3 (eBioscience)

antibodies were simultaneously added to permeabilized cells.

2.5 Bone marrow transplantation

Female (BALB/c x C57BLl6) Fl mice were irradiated at 600+600 Rad with an interval of

3 hours and received 107 bone marrow cells from lL-lO-GFP C57BLl6 female mice (bone

marrows kindly provided by Giorgio Trinchieri, NCI, Frederick). 8 weeks after

transplantation, correct reconstitution was checked by flow cytometry: peripheral blood

cells were stained with PE-conjugated anti-Kd
, PE-Cy7-conjugated anti-CD4 and APC-

conjugated anti-Foxp3. Optimally transplanted mice were subcutaneously inoculated with

CT26 cells and treated with OX86 or isotype matched control Ab. After 24 hours tumors
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were collected and GFP fluorescence was evaluated in CD4+CD25high cells without any

restimulation. In this experiment Treg could not be identified as CD4+Foxp3+cells because

the fixationJpermeabilization step, required for Foxp3 intracellular staining, induced the

loss of GFP expression.

2.6 Isolation of tumor-associated macrophages (TAM)

BALB/c mice were subcutaneously inoculated with CT26 tumor cells and subsequently

treated with OX86 or isotype matched control Ab. 24 hours upon treatment tumors were

collected and disaggregated by 0.125% (wt/vol) trypsin (Lonza) for 40 minutes at 37°C.

Disaggregated cells were then washed in medium and seeded in 140-mm Petri dishes for 2

hours at 37°C. Non-adherent cells were eliminated while adherent cells, which are mainly

macrophages, were harvested using EDTA 2 mM. To detect IL-IO secretion macrophages

were restimulated for 4 hours at 37°C with PMA 50 ng/m (SIGMA), Iono (500 ng/ml,

SIGMA) and BrefeldinA (SIGMA). Cells were subsequently stained for the surface

markers FITC anti-F4/80, PE anti-CDllb and APe anti-CD45.2 to specifically identify

macrophages. IL-IO was detected by intracellular staining according to manufacturer's

instruction (eBioscience) using PerCP-Cy5.5 anti-IL-IO (JES5-16E3).

2.7 Migration of dendritic cells from the tumor to the dLN

BALB/c and CD40-'- CT26 tumor-bearing mice were intratumorally injected with 50 ug of

OX86 or isotype matched control Ab, plus 4x107 FITC-conjugated latex micro-spheres of 1

urn in diameter (Polysciences), which could be uptaken by DC. After 24 hours, tumor dLN

were collected, mechanically and enzymatically disaggregated (by incubation for 30 min at

37°C with 400 V/ml of collagenase D). Migrated DC were identified as FITC+CDllc PE-
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Cy7+ cells by FACS analysis. Absolute number of migrated DC was evaluated for each

sample.

2.8 In vitro differentiation of bone marrow-derived dendritic cells (BM-DC)

BM-DC were differentiated from BM precursors isolated from femurs and tibias of

BALB/c and CD40-'- mice. Cells were cultured for 10 days in IMDM with 10% FBS

supplemented with conditioned medium from a murine fibroblast cell line engineered to

express mGM-CSF (corresponding to 20 ng/ml of rGM-CSF). The differentiation state of

DC was checked according to COlIc expression, evaluated by flow cytometry analysis.

2.9 Induction of Tern via BM-DC immunization

BM-DC differentiated from wt BM precursors were in vitro activated o.n. with LPS (100

ng/ml). BALB/c mice were treated with 2 consecutive injections of 106 activated BM-DC.

After 4 weeks, Tern were sorted from total splenocytes as CD4+CD44highCD62Llowcells.

OX40 expression on Tern, evaluated by FACS, was analyzed at different time points upon

in vitro activation with 1 ug/ml of aCD3 (145-2c11, eBioscience) and 0.5 ug/rnl of

aCD28 (37.51, BD Pharmingen).

2.10 Co-culture of BM-DC and Tern

Tumor-infiltrating lymphocytes were enriched by ficoll gradient from single-cell

suspensions of mechanically disaggregated tumors 24 hours after OX86 or isotype

matched Ab treatment. CD4+CD44highCD62LlowTern were sorted using a FACSaria

(Becton Dickinson) from TIL pooled from different mice which have received the same

treatment. OX86 treated or control Tern were co-cultured with wt or CD40-'-BM-DC for 24
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hours at 1:1 ratio. BM-DC activation was analyzed by flow cytometry according to CDllc,

CD80 and CD86 expression level, compared to BM-DC cultured alone.

2.11 Treg sorting and gene expression profiling

Treg were sorted from the spleen of Foxp3-GFP mice as CD4+GFP+CD8-B220-CDllb-

cells (FACSAria, Becton Dickinson). Purity after sorting assessed around 98%. Pooled

Treg were activated overnight with coated anti-CD3 (1 ug/ml) plus OX86 or isotype

control matched Ab -rat IgG- (10 ug/ml), RNA was purified using mirVana Kit (Ambion),

and checked for integrity and purity by Agilent Bioanalyzer. Each sample was analyzed in

duplicate.

RNA (0.2 J...Lg) was reverse transcribed, labeled with biotin and amplified using the Illumina

RNA TotalPrep amplification kit (Ambion). Biotinylated sample (1 ug) was hybridized at

58°C overnight to an expression Bead Chip MouseRef_8_ v2.0 array (Illumina). Array

chips were washed, stained with 1 ug/ml Cy3-streptavidin (GE Healthcare Europe GmbH)

and scanned with an Illumina BeadArray Reader (Illumina). Data were analyzed using the

BeadStudio Gene Expression Module v3 (Illumina). Intensity values were quality checked,

and the data set was normalized using a cubic spline algorithm. A detection p value <0.05

was set as a cut-off to filter reliable genes. All array data have been deposited in NCBl's

Gene Expression Omnibus (GEO) and are accessible through GEO Series accession

number GSE32373.

Class comparison analysis to identify differentially expressed genes between Treg

activated with OX86 or isotype control was performed using the GenePattern Software

(Broad Institute-MIT).
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2.12 IRF1 Real Time RT_PCR

Foxp3-GFP mice were subcutaneously inoculated with CT26 and intratumorally injected

with OX86 or rat IgG. After 24 hours, Treg were sorted from TIL according to GFP

expression. Control Treg were sorted from spleens of Foxp3-GFP tumor-free mice. RNA

was extracted according to the manufacturer's instructions (RNeasy MICROKIT, Qiagen)

and reverse transcribed using High-Capacity® cDNA Reverse Transcription Kits (Applied

Biosystem). Real time RT_PCR was performed on 7900 HT (Applied Biosystem), using

TaqMan® Fast Universal PCR masterMix (Applied Biosystem). Assays (Applied

Biosystem) and samples were normalized over HPRTI expression. Data were analyzed

using the comparative Ct method (Schmittgen and Livak, 2008). Amplicon length for IRFI

is 66 nuc1eotides, while for HPRTI is 81 nuc1eotides.

2.13 miR155 Real Time RT_PCR

Purified wt and OX40-1- Treg were lysed and RNA was extracted using mirVana miRNA

isolation kit according to the manufacturer's instructions (Ambion). 50 nanograms of RNA

were reverse transcribed using TaqMan MicroRNA Reverse Transcription Kit (Applied

Biosystem). Real time RT_PCR was performed on 7900 HT (Applied Biosystem), using

TaqMan® Fast Universal PCR masterMix (Applied Biosystem), according to TaqMan

MicroRNA Assays protocol (Applied Biosystem). Normalization was done according to

RNU6 expression. Data were analysed using the comparative Ct method (Schmittgen and

Livak,2008).

2.14 Treg isolation and transfer into Rag1>'>mice

Total splenocytes from CD45.l, wt CD45.2 and OX40-'- CD45.2 mice were enriched of

CD4+ T cells by passing on a nylon wool column (Kisker). Using aCD8 and aB220
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magnetic microbeads CD8+T cells and B cells were eliminated by passing into a magnetic

separator (Miltenyi Biotec). CD4+CD25+regulatory T cells were purified using the CD2s+

T-cell isolation kit (Miltenyi Biotec) according to the manufacturer's protocol. Rag 1-1-mice

were i.v injected with 4 x 105CD45.1 Treg, mixed 1:1 with wt or OX40-'- CD45.2 Treg.

2.15 Induction and analysis of colitis

CD4+ T cells were purified form the spleen of CD45.1 mice by negative magnetic

separation according to manufacturer's instructions (Miltenyi Biotec). CD4+ T cells were

stained with FITC-anti CD45RB and CD45RBhigh naive T cells were purified on a

FACSAria (Beckton Dickinson). Ragl-I- mice were i.p injected with a total of 5 x 105

sorted cells. Colitis onset was evaluated as weight loss and diarrhea. At day 13, at the onset

of the symptoms, mice were left untreated (control mice) or received lA x 106 purified wt

or OX40-'- CD45.2 Treg. Mice weight was monitored every 2 days. Serum, for TNF-a

evaluation, was collected on day 37 after colitis induction and its concentration was

evaluated by ELISA, according to manufacturer's instruction (eBioscience). For

histological analysis hematoxylin-eosin (H&E) staining was done on paraffine-embebbed

colon sections. Severity of the disease was evaluated according to a four-grade semi-

quantitative scoring system.

2.16 SOCS1 western blot

Treg were purified from the spleen of wt and OX40-'- mice using magnetic microbeads

(Miltenyi Biotec) as previously described. As control cells naive and activated Teff

purified form both wt and OX40-'- were used. Activated Teff were obtained by stimulating

in vitro naive Teff for 3 days with coated aCD3 (1 ug/ml, 145-2cll, eBioscience).
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Cells were lysed using a chilled lysis buffer (50nM Hepes, pH7.0, 0.1% NP-40, 250 nM

NaCl, IX protease inhibitor cocktail). Proteins were separated from cell debris by

centrifugation at 14000 rpm for 20 minutes at 4°C. Solubilized proteins were separated by

SOS-PAGE and transferred to a PVD membrane. SOCSI antibody (4HI) was from

Invitrogen, ~-actin (A2066) from Sigma. Densitometric analysis was done using the

software NIH Image J.

2.17 In vitro suppression assay

CD4+C02s+ Treg and C04+CD25- Teff were purified from the spleen of miRI55 tg mice

and wt littermates using magnetic beads (Miltenyi Biotec). Teff were labelled with 5pM 5-

(and-6)-Carboxyfluorescein Diacetated Succinimidyl Ester (CFSE) (Invitrogen) in PBS

plus 5% FBS for 15 minutes at 37°C and then washed twice in PBS. In a 96-well round

bottom plate Teff were seeded I x 105/well with 7,5 x 104 accessory cells (AC, consisting

of irradiated splenocytes). For stimulation I ug/rnl uCD3 (145-2cll, eBioscience) was

added. Teff and Treg were co-cultured in a Teff:Treg increasing ratio (1: I, I :2, I :4, 1:8,

1:16, 1:32, 1:64). Teff proliferation was evaluated 72 hours after co-culture as CFSE

dilution by flow cytometry.

2.18 Statistical analysis

Statistical analysis was performed using Prism software (GraphPad Software, Inc). Results

are expressed as means ± SEM or mean ± SD. Two-tailed student's t-test was used to

analyse the data. Differences were considered significant at p<0.05 (*p<0.05, **p<O.OI,

***p<0.005 by two-tailed Student's t test).
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3 Scope of the study

The awareness that the immune system plays a key role in regulating tumor onset has

addressed the research toward the development of new anti-tumor therapies based on the

modulation of immune cells. The costimulatory molecule OX40 seems to be a suitable tool

to achieve this aim, thanks to its double ability of suppressing Treg and boosting Teff,

which are pro-tumoral and anti-tumoral immune cells, respectively. OX86, an OX40

agonist mAb, gave satisfactory results, inducing the rejection of different mouse tumor

models. The scope of this study is to describe how the modulation of OX40 affects Treg

and Teff functions, and which are the molecular mechanisms at the base of these

processes. The discovery that the constitutive expression of OX40 by Treg is necessary for

assuring their adequate sensitivity to IL-2 leads to the identification of miR155 as a key

player for the regulation of Treg functions. Thank to a transgenic mouse model, in which

miR155 is specifically over-expressed in T cells, the role of miR155 in Treg biology is

deeply investigated in this study.
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4.1 Tumor-associated Treg highly express OX40

Treg accumulate in the tumor nodules after being recruited from periphery in a chemokine

dependent manner (CCL22-CCR4) (Curiel et al., 2004; Gobert et al., 2009; Mailloux et al.,

2010). In addition CD4+Foxp3- cells locally convert into regulatory cells as a consequence

of the strong immunosuppressive stimuli concentrated in the tumor mass. Treg inhibit

target cells using several strategies, which include cell-cell contact mechanisms (for

instance CTLA4, LAG3), and the release of soluble immune-inhibitory mediators (for

instance IL-IO, IL-35, TGF~) (Vignali et al., 2008). It was demonstrated that the intra-

tumoral injection of OX86, an agonist of OX40, lowers the suppression exerted by Treg

and also prevents the generation of new Treg from non-regulatory CD4+ TIL (Piconese et

al., 2008). Treg constitutively express OX40, but its expression level may change when

Treg are challenged by different external stimuli, thus determining the strength of the

response to OX86. For this reason OX40 expression was evaluated on Treg isolated from

spleen, draining lymph node (dLN) and tumor nodules. BALB/c mice were subcutaneously

inoculated with the transplantable CT26 colon carcinoma cell line. When tumors were

about 8x8 mm in size, mice were sacrificed and tumor, dLN and spleen of each mouse

were collected. Treg were identified as CD4+Foxp3+cells, OX40 expression was evaluated

by flow cytometry as mean fluorescent intensity (MFI). Tumor-infiltrating Treg express

OX40 at higher level compared to Treg localized in the dLN and spleen (Fig 4.1). The

control for OX40 staining was done on Treg isolated from tumor, dLN and spleen

collected from CT26'bearing OX40-'- mice. These data confirmed that OX40 expression is

modulated on Treg according to the microenvironmental features, and also that the intra-

tumoral OX86 injection directly impacts on Treg biology.
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Figure 4.1: OX40 expression on Treg in spleen, draining lymph node and tumor.

BALB/c and OX40-'- mice were subcutaneously injected with CT26 tumor cells. 8x8 mm

tumors, dLN and spleens were collected from each mouse. MFI of OX40 was evaluated on

wt (open histogram) and OX40-'- (grey histogram) Treg isolated from each anatomical

district. Tumor-associated Treg expressed OX40 at higher level than Treg isolated from

dLN and spleen. MFI: mean fluorescent intensity; dLN: draining lymph node.
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4.2 Intra-tumoral OX40 triggering significantly reduces IL-I0 secretion by Treg

Treg are able to suppress target cells by means of different strategies. One of these is the

secretion of the inhibitory cytokine IL-IO. IL-1O is a homodimeric cytokine secreted by

several cells of the immune system, like macrophages, DC, neutrophils, Th1, Th2, Th17,

Th9, Tr1, nTreg and iTreg (Saraiva and O'Garra, 2010). A large amount of evidence

demonstrates the relevance of IL-1O in assuring gut homeostasis (Chaudhry et al., 2011;

Huber et al., 2011; Liu et al., 2011), but in tumor IL-1O has a detrimental effect for the

host, keeping immune cells in an inactive/immature state and favouring tumor growth

(Dercamp et al., 2005). In this regard it was checked whether OX86 affects IL-1O

production by Treg. CT26 tumor-bearing mice were treated with OX86 or the isotype

matched control Ab (rat IgG mock) and 24 hours later IL-IO secretion by Treg infiltrating

the tumor or the dLN was evaluated ex vivo by cytokine intracellular staining (lCS). Before

the staining Treg were restimulated with PMA, IONO and BFA. In the presence of OX86

or the control Ab, low levels of IL-1O were produced by Treg in the dLN (Fig 4.2 A-B).

Conversely, in tumor microenvironment, about 40% of Treg spontaneously produced IL-

10 (Fig 4.2 C-D, mock), but OX40 engagement significantly decreased their ability to

secrete this inhibitory cytokine (Fig 4.2 C-D, OX86). Similar results were obtained also in

mice bearing TSA mammary carcinoma (Fig 4.2 E-H) or MCA203 fibrosarcoma (data not

shown). These data confirmed that OX86 could antagonize the inhibitory functions of Treg

directly in vivo. Moreover these results suggest that Treg can be oriented to use specific

suppressive mechanisms according to the peculiar characteristic of the microenvironment,

since only tumor-infiltrating Treg, but not dLN-Treg, secrete IL-IO.
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Figure 4.2: OX86 reduces IL-IO secretion by tumor infiltrating Treg. (A)

Representative plots and (B) frequency of IL-IO-producing Treg cells in the CT26-dLN 24

hours after intra-tumoral injection of OX86 or isotype matched control Ab (mock). (C)

Representative plots and (D) frequency of IL-IO-producing Treg cells in CT26 tumors 24

hours after OX86 or isotype matched control Ab (mock) treatment. (E) Representative

plots and (F) frequency of IL-IO-producing Treg in TSA-dLN in the presence or absence

(mock) of OX86. (G) Representative plots and (H) frequency of IL-IO-producing Treg in

TSA tumor nodules upon OX86 or mock treatment. Data are presented as means ± SEM of

n=5 mice per group and are representative of two different experiments. **p<O.OI,

***p<O.005, two-tailed Student's Hest.
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4.3 Generation ofIL-lO-GFP bone marrow chimeras

The reduction of IL-IO secretion by Treg upon OX40 triggering was conftrmed also with

the generation of IL-IO-GFP bone marrow (BM) chimeras. Because IL-IO-GFP reporter

mice have been generated on C57BLl6 background, and to be able to use the BALB/c

CT26 tumor that best marks IL-1O production by tumor-associated Treg, C57BLl6 x

BALB/c Fl mice were generated by mating parental lines. These animals were irradiated

(600+600 Rad) and i.v injected with 106 IL-IO-GFP BM cells. 8 weeks after

transplantation, chimeric mice were subcutaneously injected with the CT26 tumor cells

and then treated with OX86 or the isotype matched control Ab. The frequency of tumor-

associated IL-IO-secreting Treg was evaluated 24 hours after the treatment by flow

cytometry, without any in vitro restimulation. Also in this experimental setting OX86 was

found to antagonize IL-1O secretion by tumor-inftltrating Treg, while very low IL-1O

production was detected in the dLN of both treated or control mice (Fig 4.3).
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Figure 4.3: reduction of IL-IO-GFP secreting Treg in tumor-bearing BM chimeras

upon OX86 treatment. IL-lO-GFP bone marrow chimeras were subcutaneously

inoculated with CT26 tumor cells. When tumor nodule where about 3x3 mm in size were

treated with OX86 or isotype matched control Ab (mock). Secretion of IL-lO-GFP by

CD4+CD25high Treg was evaluated 24 hours after treatment. (A) Representative plots and

(B) frequency of IL-IO-GFP-positive Treg cells in the CT26 nodules 24 hours after intra-

tumoral injection of OX86 or isotype matched control Ab (mock). Data are presented as

means ± SEM of n=5 mice per group and are representative of two independent

experiments. ***p<O.005, two-tailed Student's t-test.
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In this experimental setting Treg were identified as CD4+CD25highcells and not as

CD4+Foxp3+ cells for a problem of staining incompatibility between Foxp3 and IL-lO-

GFP. The staining of Foxp3, which is a nuclear protein, requires a

fixation/permeabilization step, which causes the loss of GFP detection (Fig 4.4 A). This

phenomenon may be due to GFP leaching from the cells when ethanol-containing fixatives

are used (Kalejta et al., 1997). To be sure that CD4+CD25highIL-1O-GFP+cells were Treg,

Foxp3 expression was evaluated in CD4+ T lymphocytes expressing CD25 at different

levels (low, medium, high). While CD4+ gated on CD2510w and CD25mediumT cells were

mainly Foxp3 negative, the majority of CD4+CD25highcells were Foxp.i" (Fig 4.4 B). These

data further supported previous results and confirmed that Treg are impaired in their ability

to secrete IL-10 upon OX40 engagement.
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Figure 4.4: Fixation/permabilization leads to the loss of GFP detection. A) TIL were

enriched from CT26 tumors grown in IL-IO-GFP >C57BLl6 x BALB/c BM chimeras and

surface staining for CD4 and CD25 was performed. Then, cells were fixed with Foxp3

Fixation! Permeabilization buffer. GFP signal was analysed by flow cytometry in gated

CD4+TIL before and after fixation. Representative dot plots are shown. B) TIL from CT26

tumors were stained for CD4, CD25 and Foxp3. CD4+ gated T cells were divided in three

subsets according to CD25 expression (CD251ow
, CD25mediumand CD25high).The majority of

CD25highCD4+ T cells in the tumor were composed of Foxp3-positive T cells. TIL: tumor

infiltrating lymphocytes, BM: bone marrow.
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4.4 OX40 triggering on Treg leads to IRFI down-regulation

To better understand how OX40 triggering modifies Treg biology an analysis of the

trascriptome of naive Treg was performed. Treg were sorted from the spleens of Foxp3-

GFP tumor free (TF) mice as CD4+GFP+CD8-B220-CDllb- cells and stimulated in vitro

over night (o.n.) with anti-CD3 coated-wells plus OX86 or isotype matched control Ab (rat

IgG). The gene expression analysis showed that 9 genes were up-regulated and 12 down-

regulated more than 1.3-fold by OX40 stimulation (Table 4.1). Among the down-

modulated targets, there were two probes belonging to the interferon regulatory factor 1

(IRFl) mRNA, a transcription factor known to promote IL-IO expression in human cells

(Ziegler-Heitbrock et al., 2003) (Fig 4.5 A). To validate this data also in tumor-associated

Treg, Foxp3-GFP mice were subcutaneously inoculated with CT26 cells and then tumor

nodules were treated with OX86 or isotype matched control Ab (mock). Treg were sorted

from pooled tumors 24 hours after treatment, according to GFP expression. Sorted cells

were lysed and IRFI expression was evaluated by quantitative real time RT_PCR. Control

Treg were sorted from spleens of TF Foxp3-GFP mice. IRFI transcription in tumor-

infiltrating Treg was about 4-fold higher than in splenic Treg from tumor-free mice.

Intratumoral OX86 treatment produced a 40% reduction in IRFI expression by tumor-

infiltrating Treg (Fig 4.5 B). The expression of IRFI in the different samples mirrored the

different amount of Treg-derived IL-IO as evaluated by FACS analysis (Fig 4.2). These

data, together with gene expression data, indicate that the effect of OX40 triggering on

IRFI expression is Treg-intrinsic and that OX40 stimulation modulates IRFI expression in

vivo in tumor-infiltrating Treg.

The binding of IRFI to IL-IO promoter was previously demonstrated only in human cells;

to confirm this interaction in the mouse system, we performed a computational analysis of

the mouse IL-IO promoter with the web tool TESS. A putative IRFI binding site (BS) of 6
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nucleotides (AAGTGA) was found between -1470/-1476 nt in the IL-lO promoter region.

To reinforce this data, we investigated if the same IRFI BS was present also in the

promoter sequence of two other genes known to be regulated by IRFl: VCAM-l and

Viperin (Stirnweiss et al., 2010; Warfel and D'Agnillo, 2008). The presence of this IRFI

BS was confirmed also in the promoter of these two additional target genes by TESS

analysis (Fig 4.5 C). Although other experiments are required to demonstrate that IRFI

directly binds to IL-lO promoter, these data display that Treg reduce IL-lO secretion upon

OX86 treatment as a consequence of IRFI down-modulation.
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Figure 4.5: OX86 modulates IRFI expression in Treg. A) Mean expression plot

representing genes differentially expressed by Treg activated with OX86 versus isotype

matched control Ab (rat IgG). External blue lines in the graph represent a FC of 1.3.

Probes for genes of interest are shown. B) Foxp3-GFP Treg were sorted from tumors

according to GFP expression, 24 hours after OX86 or isotype matched control Ab (mock)

injection. Control Treg were sorted from spleens of tumor-free Foxp3-GFP mice. IRFI

expression was evaluated by quantitative real-time PCR. Data are shown as mean of n=3-5

pooled spleens or n=5-6 pooled tumors per group and are representative of two

independent experiments. C) IRFI BS in IL-lO, VCAM-l and Viperin promoter

sequences. Analysis was performed using the web tool TESS. FC: fold change, BS:

binding site.
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4 Results

4.5 OX86 does not affect IL-IO secretion by tumor-associated macropbages

In CT26 nodules tumor-associated macrophages (TAM) represent the most abundant

immune population and these cells are known to secrete large amounts of IL-lO. Although

OX40 expression was not observed on TAM, OX86 may decrease their frequency (Gough

et al., 2008) or indirectly affects their ability to release IL-lO. To explore this hypothesis,

TAM isolated from the tumor mass upon OX86 injection were restimulated in vitro with

PMA, IONO and BFA or with BFA alone, for 4 hours at 37°C. IL-lO production was

evaluated by ICS. As shown in the graph (Fig 4.6 A-B), there was no modulation in IL-lO

production in the presence or absence of OX86, confirming that OX86 does not modify

TAM functions either directly or indirectly.
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Figure 4.6: OX86 does not alter IL·I0 secretion by tumor-associated macrophages.

CT26 tumor cells were subcutaneously injected into BALB/c mice. When tumor size was

3x3 mm, OX86 or isotype matched control Ab (mock) was given intratumorally. After 24 ,

hours, tumors were collected, TAM isolated by adhesion to cell culture dishes and

restimulated with PMA, IONO and BFA or with BFA alone. After surface staining for

CD45, CD 11band F4/80, ICS for IL-lO was performed. Percentages of IL-lO+ cells (A)

and representative flow cytometry plots (B) in gated CD45+CDllb+F4/S0+ cells are shown.

Bars represent means ± SEM. Data are representative of two independent experiments with

3 mice pour group. TAM: tumor-associated macrophages, ICS: intra-cellular staining.
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4.6 OX40 expressing Tem accumulate in tumor microenvironment

As previously demonstrated, for OX86-induced tumor rejection, OX40 stimulation is

necessary also on CD4+Foxp3- effector T cells (Piconese et al., 2008). Teff express OX40

only upon activation and its triggering enhances their proliferation, survival, effector

functions and the acquisition of a memory phenotype. To identify the Teff subpopulation

relevant for OX86 anti-tumor effect, CT26 tumor-infiltrating CD4+Foxp3- lymphocytes

were classified into four main subsets according to their expression of CD44 and CD62L.

CD44 is a marker of memory phenotype, while CD62L expression is required for

lymphoid tissue localization. In three different mouse transplantable tumor models (CT26,

TSA and MCA203) it was found that in tumor nodules the prevalent TIL subset was

composed of CD4+Foxp3-CD44highCD62L'oWT effector memory cells (Tern), while they

were poorly represented in dLN, where the majority of Teff were CD4+Foxp3-

CD44'owCD62Lhi
g
h naive T cells (Tnaive) (Fig 4.7 A-B). The feature of a cell population

that is relevant for OX86 therapy is the expression on OX40, so OX40 expression was

checked on tumor-infiltrating Tern. Notably it was found that Tern brightly expressed

OX40, although at lower levels than tumor-associated Treg. This evidence suggested that

the intratumoral OX86 injection could directly target Tern and exerts its anti-tumoral effect

through this T cell population (Fig 4.7 C).
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Figure 4~7: OX40-expressing Tern accumulate at tumor site. BALB/C mice were

subcutaneously inoculated with CT26, TSA and MCA203 tumor cells. Tumor nodules and :

dLN were collected from each mouse and infiltrating lymphocytes were classified

according to CD44 and CD62L expression. A) Frequency of T cell subsets in tumor and

dLN collected from mice bearing CT26, TSA and MCA203 tumors. (B) Representative

plots of Tern, Tcm, Tact and Tnaive in CT26 tumor and dLN. C) MFI of OX40 on CT26

tumor-infiltrating Tern and Treg cells. Filled grey histogram, isotype control. Tern: T

effector memory T cells; Tcm: central memory T cells; Tact: recently activated T cells;

MFI: mean fluorescent intensity. Data are presented as mean ± SEM of n=5-6 mice per

group and are representative of three independent experiments.
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4.7 Tern induced by BM-DC immunization do not express OX40

It was described that the immunization of BALB/c mice with two consecutive injections of

bone marrow-derived dendritic cells (BM-DC), activated in vitro with LPS, induces the

differentiation of Tern in lymphoid organs (Martin-Fontecha et al., 2008). To test whether

those induced Tern display the same properties of tumor-associated Tern, BALB/c mice

were immunized with LPS-activated BM-DC and one month later Tern were sorted from

the total splenocyte population according to CD4, CD44 and CD62L expression. As

freshly sorted Tern did not express OX40, they were in vitro activated with aCD3 and

aCD28 and OX40 expression was evaluated at different time points. Interestingly OX40

was not expressed, or was expressed at low level, by BM-DC-induced Tern (Fig 4.8), thus

suggesting that in the tumor microenvironment Tern may reach a higher and chronic

activation status, although not sufficient to block tumor growth.
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Figure 4.8: BM-De-induced Tern do not up-regulate OX40. BALB/C rruce were

immunized with two consecutive injection of 106 BM-DC, pre-activated in vitro with 100

ng/ml LPS. One month later Tern were sorted form total splenocytes as

CD4+CD44highCD62Llowcells. OX40 expression on Tern was evaluated on sorted

unstimulated cells or at different time points upon activation with aCD3 and aCD28. Tern

modestly up-regulated OX40 (open histogram) 24 hours upon activation, while no

expression was detected at earlier time points. Filled grey histogram: isotype control. MF!:

mean fluorescence intensity.
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4.8 CD40/CD40L axis is required for OX86-induced tumor

It was previously proved that Tern constitutively express CD40L at sufficient levels to

induce DC activation in an antigen-independent manner (Martin-Fontecha et al., 2008).

The CD40/CD40L interaction is crucial for DC activation, survival and proliferation.

Many data suggest that this axis is involved in inducing protective anti-tumor immune

response thus representing a valid strategy for tumor treatment (Chiodoni et al., 1999;

Hanig and Lutz, 2008; Mackey et al., 1998; Murugaiyan et al., 2007). To investigate

whether OX86-induced tumor rejection was dependent on the CD40/CD40L axis, wt and

CD40-'- mice were subcutaneously inoculated with CT26 cells and treated intratumorally

with a single injection of OX86 or isotype matched control Ab. While OX86 treatment

induced tumor rejection or impaired tumor growth in CD40-sufficient mice, in CD40-

deficient mice it was completely ineffective, (Fig 4.9 A). These data clearly demonstrate

that OX40 triggering may act by reinforcing the CD40/CD40L pathway, which in tum may

foster anti-tumor immunity.

The CD40/CD40L axis has a bidirectional effect: indeed, on one side CD40 provides

signals required for DC licensing, on the other side CD40L improves T cell activation.

Therefore, in CD40-'- mice, Tern receiving no stimulation via CD40/CD40L may express

lower levels of OX40 (whose expression level closely correlates with T cell activation

status), compromising their responsiveness to OX86 treatment. To exclude this hypothesis,

OX40 expression was evaluated on Tern isolated from CT26 tumors growth in both wt and

CD40-'- mice. However no difference in OX40 expression level was found between the two

subsets of Tern (Fig 4.9 B, C). These data further demonstrate that the failure of OX86

treatment in the absence of CD40 was not due to a defective activation of Tern, but to an

inadequate DC stimulation. In particular CD40 deficient DC could be impaired in two

different phases of tumor rejection: i) in tumor microenvironment CD40-'- DC may not be
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adequately licensed thus not being able to migrate from the tumor to the dLN, ii) CD40-'-

DC could be able to migrate to the dLN but impaired in their ability to induce new T cell

priming, because licensed but not fully competent for optimal T cell costimulation.

To discriminate which of these two mechanisms was defective in CD40-'-mice, an in vivo

DC migration assay was performed. Tumors growing in wt and CD40-'- mice were treated

with OX86 or the control Ab co-injected with green fluorescent microbeads, which could

be up-taken by DC. After 24 hours, DC migration from tumor to dLN was checked. In this

experimental setting, only DC that have up-taken the beads at the tumor site could be

detected as fluorescent in the dLN. Although OX86 rescued DC migration from tumor to

dLN in wt mice, the same treatment was ineffective in CD40-'- mice (Fig 4.9 D), a finding

implying that in absence of the CD40/CD40L axis tumor-associated DC cannot be

activated.
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Figure 4.9: CD40/CD40L axis is required for OX86-induced tumor rejection. A)

BALB/c or CD40-'- mice were inoculated with CT26 cells and treated intratumorally with

OX86 or isotype matched control Ab (mock) when tumors were 3x3 mm in size. The

frequency of mice rejecting the tumor is indicated in each plot. B) MFI of OX40 on Tern

isolated from tumor grown in wt or CD40-'-mice. C) Representative histogram of OX40 on

wt and CD40-'- tumor-associated Tern. White: isotype control; grey: Tern from wt mice;

black: Tern from CD40-'- mice. D) Tumor-bearing BALB/c and CD40-'- mice were treated

with OX86 or isotype matched control Ab (mock) combined with green fluorescent

microbeads (FITC). After 24 hours, the absolute number of DC (FITC+CDllc+) migrated

from the tumor to the dLN was evaluated by flow cytometric analysis. Results are

representative of 3 independent experiments, each including 6 mice per group. Bars

represent means ± SEM. R: rejecting.
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4.9 OX86 increases CD40L expression on Tem in tumor

We hypothesized that, in the immunosuppressive tumor microenvironment, Tern were

inhibited in their ability to license DC via CD40L, and that OX40 triggering might provide

the right signal for Tern to supply an effective CD40/CD40L mediated co-stimulation.

We found that the percentage of CT26 tumor-infiltrating Tern did not change 24 hours

after the intratumoral injection of OX86 (Fig 4.10 A), so we checked whether the

expression of the CD40L was modulated on Tern upon OX40 engagement. The detection

of CD40L expression ex vivo may represent a crucial issue, as it is reported that CD40L

rapidly disappears from cell surface, also following CD40 exposure (Castle et al., 1993;

Lesley et al., 2006; Yellin et al., 1994). CD40L staining was done using two different

methods: directly ex vivo or after TIL in vitro culture (Jaiswal and Croft, 1997; Jaiswal et

al., 1996). In the first case TIL were incubated with CD40L mAb 1 hour on ice. In the

second case TIL were incubated for 4 hours at 37°C with 4 yg/ml of anti-CD40L mAb.

However no significant differences were found between the two methods in term of

CD40L MFI (data not shown). All the data shown about CD40L expression were done

directly ex vivo. We found that OX86 intratumoral injection induced a significant up-

regulation of CD40L on the surface of Tern (Fig 4.10 B). Such CD40L up-modulation was

specific for Tern, as no other T cell subsets, and especially CD44lowCD46L'owrecently

activated T cells (Tact), responded similarly (Fig 4.10 C).

In the immunosuppressive tumor microenvironment T cells may become anergic and

express the co-inhibitory molecule Pdl. Many data demonstrate that the blockade of this

molecule reverts the inactive state of effector T cells and facilitates the development of an

efficient anti-tumor immune response (Keir et al., 2008; Sakuishi et al., 2010; Woo et al.,

2012). In this regard Pdl expression was evaluated on T cells infiltrating CT26 tumor and

dLN 24 hours after OX86 treatment. We found that OX40 triggering did not revert the
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exhaustion status of TIL, as no difference in Pd l expression was observed between OX86-

treated and control TIL (Fig 4.10 D, E).

These data suggest that the lack of tumor rejection and DC migration upon OX86

treatment in CD40-'- is a consequence of insufficient DC reactivation in the tumor

microenvironment, since OX86 does not recover T cells from their exhausted phenotype,

but reinforces the CD40/CD40L axis.
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Figure 4.10: OX86 up-regulates CD40L specifically on tumor infiltrating Tern. A)

BALB/c mice were inoculated with CT26 cells and treated intratumorally with OX86 or

isotype matched control Ab (mock). 24 hours later the percentage of tumor infiltrating

Tern was evaluated on the total CD4+ T lymphocytes population enriched by ficoll

gradient. B) Plot and representative histograms of CD40L MFI on tumor-infiltrating Tern

24 hours after OX86 or isotype matched Ab (mock) injection. Filled grey line: isotype

control; dotted line: mock-treated Tern; black line: OX86-treated Tern. C) MFI of CD40L

on tumor-infiltrating Tact 24 hours after OX86 or isotype matched Ab (mock) injection. D)

Plot and E) representative histogram of MFI of Pd l on Tern isolated from CT26 tumor

mass and dLN treated with OX86 or isotype matched control Ab (mock). Filled grey line:

isotype control; dotted line: Tern from mock-treated mice; black line: Tern from OX86-

treated mice. Data are representative of three independent experiments each with 6 mice.

Bars represent means ± SEM. *p<0.05, two-tailed Student's Hest. MFI= mean

fluorescence intensity, dLN: draining lymph node.
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4.10 Tern directly activate DC through CD40 engagement

To demonstrate that OX40 stimulation promotes in vivo the direct adjuvanticity of Tern

toward DC via CD40/CD40L, Tern were sorted from tumors 24 hours after treatment with

OX86 or isotype matched control Ab and were co-cultured with wt or CD40-'- BM-DC.

After 24 hours, BM-DC maturation was estimated in terms of CD80 and CD86 expression

(Fig 4.11 A). Wt BM-DC received a stronger stimulation by Tern pre-treated in vivo with

OX86, than with isotype matched control Ab. However, CD40-deficient BM-DC could not

increase the expression of these maturation markers after co-culture with Tern obtained

from either OX86 or mock-treated tumors (Fig 4.11 B). These data demonstrate that

tumor-infiltrating Tern, stimulated in vivo with OX86, directly provided the adequate

stimuli for BM-DC ex vivo reactivation in a CD40/CD40L dependent manner.

104



4 Results

BM-DC
~ ~O~ _

B
.BM-DCw!
DBM-DC CD40-l·

A

A...CT26 A... OX861
. ~ .• ratIgG~~~-.Nt If

wt 24 h

Tem+OX86 Tern mock

~ '0- I 0", )~~------I~-----
CD40'"

Tem-BM-DC 24 h
co-culture

BM-DC CD40-1-
"'[d;'" "'gJ'" '.'gJ"

~O.8 67.7 51.4

10· 10· 10·_

103 103 10]

10l 102 ,02
0Q o09~....--. 0°Q.. _,_,.C!

010210] 104 lOS 010210310. 105 010210] 104 lOSanalysis ofBM-DC
maturation '-----CD86

Figure 4.11: Tern activate BM·DC more efficiently after OX40 triggering in a

CD40/CD40L dependent manner. A) Experimental scheme. BALB/c mice were

inoculated with CT26 cells, treated with OX86 or isotype matched control Ab (mock).

After 24 hours, Tern were sorted from TIL and co-cultured for 24 hours with wt or CD40-l-

BM-DC at 1:1 ratio and BM-DC maturation was assessed in terms of CD80 and CD86 up-

regulation. B) BM-DC activation status after co-culture with in vivo-treated tumor-

infiltrating Tern. BM-DC maturation was evaluated as the percentage of the relative

increase (compared to the corresponding not stimulated BM-DC) of the percentage of

CDllc+CD80+ and CDllc+CD86+ cells. C) Representative plots of CD86 expression by wt

or CD40'/- BM-DC in each culture condition. Results are from one of three independent

experiments, each including 7 mice per group. BM-DC: bone marrow derived dendritic

cells. Bars represent means ± SEM. *p<O.OS **p<O.OI by two-tailed Student's t test.
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4.11 OX86 treatment does not modulate TIL-derived cytokines

The CD40/CD40L axis is relevant not only for DC activation, but also for sustaining T cell

functions. In this regard it cannot be excluded a reverse CD40/CD40L-mediated interplay

between Tern and DC in tumor microenvironment, thus explaining the superior capacity of

OX40-triggered Tern to costimulate wt, but not CD40-'-, DC. Indeed, OX40-stimulated

Tern, expressing higher levels of CD40L, could be more receptive to CD40-mediated

signals provided by wt but not by CD40-'- DCs, thus in tum boosting wt DC via signals

other than the CD40/CD40L axis, for instance through enhanced cytokine secretion. To

exclude this possibility, cytokine secretion by TIL 24 hours after OX86 treatment was

evaluated by ICS upon in vitro restimulation with PMA, IONO and Monensin. No increase

in the production of IFNy, TNFa, IL-17 or IL-6 by TIL ex vivo was found upon in vivo

OX86 injection (Fig 4.12 A-H). These data demonstrate that the increased capacity of

OX86-stimulated Tern to activate DC is tightly dependent on their up-regulation of CD40L

and does not require other activator stimuli provided by DC via CD40 or higher

concentration of inflammatory cytokines.
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Figure 4.12: OX86 does not modulate cytokine secretion by TIL. BALB/c mice were

subcutaneously inoculated with CT26 tumor cells and subsequently treated with OX86 or

isotype matched control Ab (mock). TIL were purified from tumor mass by ficoll gradient

and restimulated in vitro with PMA, IONO and Monensin. Representative plots and

percentage of TIL secreting IFNy (A-B), TNFa (C-D), IL-6 (E-F) and IL-17 (O-H) show

that OX86 does not modulate the cytokine production by TIL upon OX40 triggering. Data

are representative of two independent experiments, which include 5 mice pour group. Bars

represent means ± SEM. TIL: tumor-infiltrating lymphocytes.

107



4 Results

4.12 Model of OX86-induced tumor rejection

In the immune-suppressive tumor microenvironment both effector T cells and DC require

additional stimulatory signals to reactivate and become able to contrast tumor growth.

OX86 is able to provide the adequate re-stimulation to both these cell subsets, breaking

their tolerogenic state and rendering the tumor microenvironment permissive for the

development of a specific cytotoxic response. This environmental modification is obtained

thank to the double action of OX86. On one side OX40 triggering obstructs the IL-IO-

secretory ability of Treg through the down-modulation of IRFI. On the other side Tern,

sensing OX40 engagement, further increase CD40L on their surface, thus providing strong

costimulation to DC. In this new setting tumor infiltrating DC are released from the

suppression exerted by IL-IO and receive activatory signals in a CD40/CD40L-dependent

manner. These fully competent DC get able to migrate to the dLN, where efficiently

activate new specific anti-tumor CTL response (Fig. 4.13).

108



4 Results

OX86

,,,,,,
'- CTl response
I
I

Tumor

II.I
I,,,,',,---------------~

DC migration

Figure 4.13: OX86-induced tumor rejection. OX86 intra-tumoral injection impairs IL-

to-production by Treg through the down-modulation of IRFl. On the other side OX40

triggering further increases CD40L expression on Tern. In this favorable environment

tumor infiltrating DC receive low inhibition via IL-tO and higher stimulation via

CD40/CD40L, thus becoming able to migrate from the tumor to the dLN and activate new

specific anti-tumor CTL response.
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4.13 OX40 expression is necessary for Treg in vivo fitness

Despite the inhibitory effects of OX86 stimulation on Treg suppressive function, the

physiological expression of OX40 seems to impact on Treg proliferation and survival.

Experiments of Treg transfer into Rag2-'- mice expressing or not OX40L showed that, in

absence of stimulation via OX40, Treg homeostatic proliferation is impaired. Conversely,

the constitutive expression of OX40L favours Treg expansion (Takeda et al., 2004). To

deeply investigate the mechanisms at the basis of this process, Rag1-'- mice were

inoculated with a mix of wt CD45.1 Treg and wt or OX40-'- CD45.2 Treg at 1:1 ratio.

Analysis of peripheral blood cells from day 6 to day 20 after the reconstitution revealed

that, in the absence of OX40, Treg had a disadvantage in proliferation compared to wt

Treg. On the contrary the homeostatic proliferation ofwt and OX40-'-CD45.2+CD4+Foxp3-

effector cells, expanded in vivo from the respective CD45.2+CD4+Foxp3+cell counterpart

after adoptive transfer into Rag1-'- mice, did not display any difference. These data suggest

that OX40 deficiency specifically impairs Treg proliferation, without affecting the

proliferative potential of effector cells (Fig. 4.14).
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Figure 4.14: OX40-expressing Treg have higher fitness compared to OX40-'- Treg in

Iymphopenic condition. A) Experimental scheme. Ragl-'· mice were i.v injected with a

1:1 mix of wt CD45.1 Treg and wt or OX40-'- CD45.2 Treg. Treg expansion was evaluated

by FACS analysis of peripheral blood at the indicated time points (day 6, 13 and 21 after

transfer). B) Representative histograms of CD45.1 and wt or OX40·'- CD45.2 Treg

frequency before and 20 days after the transfer into recipient mice. C) Representative plots.

of circulating CD45.1 +Foxp.i" and wt or OX40-1- CD45.2+ Foxp'I" cells 6, 13 and 21 days

after transfer into Ragl-'· mice. Data are from one of two independent experiments, each

including four mice per group. d: day.
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4.14 OX40 deficient Treg do not suppress lymphopenia-driven colitis

The injection of naive CD4+CD45RBhi
g
h T cells into lymphopenic host causes

inflammation of the intestine in a Th l-dependent manner. This pathology, which is similar

to inflammatory bowel disease, can be cured by the injection of Treg at the onset of the

first symptoms (lzcue et al., 2009; Mottet et al., 2003). This model appeared to be a

suitable setting to check whether the defective proliferation of OX40-'- Treg affects also

their ability to resolve inflammation. RagI-'- mice, bearing clear symptoms of colitis

(evaluated as body weight loss and diarrhea) after naive CD4+CD45RBhi
g
h T cell injection,

received wt or OX40-'- CD45.2 Treg, while control mice were left untreated. While wt Treg

controlled inflammation and allowed mice to recover from the disease, OX40-'- Treg failed

to cure mice, which did not recover the initial weight (Fig 4.15 A, B). In agreement with

these data, TNFa concentration in the serum of control mice, on day 37 after the onset of

the disease, was significantly higher compared to that of mice treated with wt, but not

OX40-'-, Treg (Fig 4.15 C). Histological scoring on the distal portion of the colon on day

42 mirrored TNFa concentration among the three groups of mice. Untreated mice

displayed complete disruption of glands, intense inflammatory infiltration and significant

reduction in the number of goblet cells. Mice cured with wt Treg had limited leukocyte

infiltration, moderate crypt hyperplasia and almost normal number of goblet cells. Mice

treated with OX40-'- Treg still had consistent leukocytes infiltration, mainly in the lamina

propria, moderate hyperplasia of the crypts and reduced number of goblet cells (Fig 4.15

D,E).

This experiment confirms that OX40 deficiency impairs Treg ability to cure inflammation,

possibly as a consequence of their reduced proliferative potential.
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Figure 4.15: OX40-1- Treg show impaired ability to cure colitis. Ragl-/- mice were i.p

injected with sorted CD4S.l +CD4SRBhi
g
h lymphocytes at day 0_ At the onset of the first

symptoms (day 13, arrow) mice were left untreated (nt) or received wt or OX40-/- CD4S.2

Treg. A) Percentage of body weight change in the three groups of mice along all the time

of disease progression (mean ± SD). B) Percentage of body weight change in three time

intervals, each symbol corresponds to one mouse. C) Serum concentration ofTNFa on day

37 of colitis (mean ± SD). D) Histological grading of colitis on day 42 and E) H&E

staining on distal portion of colon. Scale bars (white): SOmm. Original magnification:

upper panels 100X, lower panels 200X, inset 400X. Data are representative of two

independent experiments with 4-S mice per group. * p<O.OS, ** p<O.OOI, *** p<O.OOS,

two-tailed Student's t test. nt: not treated
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4.15 OX40 deficiency impairs Treg proliferation also in physiological condition

To evaluate whether OX40 is crucial for Treg proliferation also under non-lymphopenic

condition, the percentage of Treg was evaluated in thymus, LN and spleen of age-matched

wt and OX40-1- mice. Although no differences were found nor in spleen neither in LN, in

the CD4+SP thymic population the percentage of Foxpd" cells was significantly lower in

OX40-1- than in control mice (Fig 4.16 A). Despite this reduction, no differences were

found in the expression level of CD25 or Foxp3 between the two Treg subsets (data not

showed). These results suggest that OX40 may be crucial for Treg thymic expansion,

rather than for the commitment of the regulatory population in the thymus. In this view

OX40 could regulate the survival of Treg under external pressures. To test this hypothesis

wt and OX40-1- mice were treated with anti-CD25 mAb (PC61). In PC61-treated wt mice,

depletion-survived Treg expressed OX40 at higher level than control Treg (Fig 4.16 B, C).

In agreement with the idea that OX40 may protect Treg from elimination/cell death, OX40-

1- Treg were more susceptible to PC61-driven depletion than wt Treg (Fig 4.16 D, E). The

inefficient proliferation of OX40-1- Treg was checked also in thymectomized mice. Three

weeks following the surgical thymectomy, the frequency of Treg was significantly higher

in wt mice compared to OX40-1- mice (Fig 4.16 F), since in absence of OX40 Treg showed

reduced proliferation rate as measured by BrdU incorporation (Fig 4.16 G) and higher

apoptosis (Fig 4.16 H). All together these data suggest that OX40 plays a fundamental role

in regulating Treg fitness, in both lymphopenic and non-lymphopenic hosts, maybe by

modulating the sensitivity to survival signals, for instance to IL-2, which is the most

relevant cytokine for Treg survival.
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4 Results

Figure 4.16: OX40 supports Treg resistance to PC61 depletion and turnover after

thymectomy. A) Percentage of C04+Foxp3+ Treg in thymus and lymph node of wt (black

circles) and OX40-1- (white circles) mice at different weeks of age. In thymus Treg

accumulation was evaluated both at the CD4+CD8+ double positive (OP) stage and C04+

single positive (SP) stage of differentiation. Bars represent mean ± SO of four mice per

group. B) Representative histogram and C) plot ofOX40 MFI on Treg isolated from LN of

wt mice treated or not with PC61. Control staining was done on OX40-1- Treg. 0)

Representative histogram and E) graph of Treg frequency in LN of wt and OX40-1- mice

treated or not with PC61. Bars represent mean ± SD. Date are from 2 different experiments

each including 5 mice per group. 5-weeks old wt (black) and OX40-1- (white) mice were

thymectomized and 3 weeks later the percentage of F) Treg, G) proliferating n-atr Treg

and H) apoptotic Annexin V+Treg was evaluated in LN of each mice. Each dot represents

a LN. Four LN per mouse were collected, each group included 3 mice. Bars represent

mean ± SD. * p<O.05, ** p<O.OOI,*** p<O.005, two-tailed Student's t test..
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4.16 OX40 regulates Treg sensitivity to IL-2

To check the possibility that OX40 mediates Treg-sensitivity to IL-2, wt and OX40-'- Treg

were in vitro stimulated with increasing doses of recombinant (r) IL-2. Responsiveness to

IL-2 was evaluated in term of Stat5 phosphorylation (pStat5), estimated by flow cytometric

analysis, at different time points (1,5,10 minutes) upon stimulation with r-IL-2. Absence

of OX40 significantly impairs the ability of Treg to sense IL-2, mainly in the later phases

of the response, as the defect was more evident at 5-10 minutes than after 1 minute of

stimulation (Fig 4.17 A, B). It has been demonstrated that SOCSI inhibits Stat5

phosphorylation (Sporri et al., 2001), and that the microRNAI55 (miRI55), induced by

Foxp3, has SOCSI as target (So et al., 2011a). Thus, the reduced fitness of OX40-1- Treg

could be due to a deregulation of this mechanism. To verify this hypothesis, SOCS! and

miR!55 expression were evaluated by western blot and qRT_PCR, respectively, in wt and

OX40-1- Treg (Fig 4.17 C, D). In OX40-'- Treg higher levels of SOCS! and lower

expression of miR!55 were found. These data confirm that the absence of OX40 has a

negative impact on Treg, which display an imbalance between SOCS! and miR!55 and

become less sensitive to IL-2 signal, as demonstrated by the reduction in Stat5

phosphory lation.

117



4 Results
A

100
X
Cl!
2 80

'0
o 60~

Bwt MFI= 93.7

BOX40·1• MFI= 61.1

not stirn MFI= 6.67

10' 102 10' 10'

pStat5

B ...... wt
-0- OX40·1.

160 160 160

I.() 120
§
Cl)
a. 80
LL
~

10 min

0 0 0
10 100 1000 10 100 1000 10 100 1000

IL-21IU/ml)

c naive act
Treg ~~

D 1.5

SOCS1 ~o.......~~~
~-actin _UfIiiij_ijiiIiij_!!IIII1Il

socs tzs-acun 0.09 0.731.08 0.89 0.10 0.06

to 1.
::J
in
I.()

Fold induction 8.24 0.83 0.61

Figure 4.17: OX40 deficiency attenuates Treg responsiveness to IL-2. A)

Representative histogram and B) plot of pStat5 MFI in wt and aX40-1- purified Treg

untreated or stimulated with scaled doses ofr-IL-2 at different time points. C) Western blot

for sacs 1 in Treg, naive and activated effector T cells (Teft) purified from wt or aX40-1-

mice. Normalized SaCSl expression and fold induction are reported for each sample. D)

miRl55 expression in wt and aX40-1- Treg was evaluated by quantitative real-time PCR

and normalized to U6. Data are representative of two different experiments each including

5-10 mice per group. **p<O.Ol, two-tailed Student's t test.
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4.17 miR155 overexpression in CD4+ T cells

To better investigate how miR155 impacts on Treg biology, lck-miR155 tg mice were

used. In these mice miR155 expression is under the control of the lymphocyte-specific

protein tyrosine kinase (lck) promoter and therefore is over-expressed in all T cell subsets.

Overexpression of this miRNA leads to a higher absolute number of total cells in both

spleens and LN. In line with the total cell count, also the absolute number of Teff and Treg

is increased in spleen (Fig 4.18 A, C) and lymph nodes (Fig 4.18 B, D) of miR155 tg mice

compared to age-matched wt mice. Expression of GITR, OX40, CD103 and CD69 was

evaluated by FACS analysis on splenic Treg and Teff. The overexpression miR155

induced higher MFI of all these molecules in both Treg and Teff from transgenic mice

compared to the wt counterpart (Fig 4.18 E, F). Same results were obtained for both Treg

and Teff isolated from lymph nodes. On the contrary CD62L was significantly down

modulated in the presence of high amount of miR155 in both Treg and Teff (Fig 4.18 E,

F). These data suggests that the over-expression of miR155 promotes the acquisition of an

activated phenotype by both Treg and Teff in peripheral lymphoid organs.
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Figure 4.18: miR155 over-expression leads to accumulation of highly activated Treg

and Teff in peripheral lymphoid tissues. Total absolute cell number in spleen (A) and

LN (B) of age-matched miR155 tg and wt mice. Absolute number of CD4+, Teff and Treg

in spleen (C) and LN (D) of age-matched miR155 tg and wt mice. E-F) MFI of GITR,

OX40, CDI03, CD69, CD62L on splenic Treg (E) and Teff (F) from miR155 tg (black)

and wt (grey) mice. Bars represent means ± SD, data are representative of 3 independent

experiments, each including 3 mice per group. **p<O.O1, ***p<0.005 two-tailed Student's

t test.
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4.18 miR155 Treg have enhanced suppressive function in vitro

To evaluate whether the more active phenotype, provided by mir155 over-expression to

both Treg and Teff, alters their suppressive/proliferative abilities, a typical in vitro

suppression assay was set out. To this aim Teff and Treg were purified from the spleen of

miR155 tg and wt mice and then co-cultured for 72 hours at different ratios. Before

seeding, Teff were labeled with CFSE in order to evaluate their proliferation by flow

cytometry in terms of CFSE dilution. First we noticed that, without Treg, miR 155 Teff

displayed a higher proliferation compared to wt Teff. With regard to Treg suppression,

miR155 Treg showed a higher suppressive ability than wt Treg, especially toward Teff wt.

However miR155 Teff cells were more resistant to the control applied by Treg, in

particular they showed the highest resistance toward wt Treg (Fig 4.19 A-D). These data

suggest that in rniR155 mice some compensatory effects may exist toward an equilibrium

in which more suppressive Treg are paralleled by Teff that are more proliferative and also

more resistant to Treg suppression.
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Figure 4.19: miR1SS Treg displayed higher suppression, compensated by highly

resistant Teff. Treg and Teff were purified from the spleen of miR155 tg or wt mice. Teff

were labeled with CFSE and seeded with Treg at different ratios (Treg:Teff 0: 1, 1:64, 1:32,

1:16, 1:8, 1:4, 1:2, 1:1) for 72 hours in the presence of accessory cells (AC, irradiated

splenocytes) and soluble uCD3. Teff proliferation was evaluated as CFSE dilution by flow

cytometry. A) Percentage of proliferating wt Teff co-cultured with miR155 or wt Treg. B)

Percentage of proliferating miR155 Teff co-cultured with miR155 or wt Treg. C)

Percentage of inhibition exerted by wt Treg toward miR155 or wt Teff. D) Percentage of

inhibition exerted by miR155 Treg toward miR155 or wt Teff. Data are representative of 3

different experiments. Bars represent mean ± SD. *p<0.05, **p<O.OI, two-tailed Student's

t test.
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4.19 Tumor growth in miR155 tg mice

To evaluate which of the above-described mechanisms prevails in vivo, i.e. the increased

suppressive ability of Treg or the stronger resistance to suppression of Teff, miR155 tg and

wt mice were subcutaneously inoculated with MCA38 or Bl61F1O tumor cells. Although

in miR155 mice the rate of tumor growth was not significantly higher compared to that of

control mice, there was a faster progression, suggesting that in vivo the inhibitory function

of miR155 Treg exceeded the ability of Teff to resist to the suppression. Analysis of TIL

did not show any relevant differences in term of TeffITreg ratio between miR 155 tg and wt

mice. Although additional experiments are required to better understand how miRl55

influences Treg and Teff behavior, these data suggest that the over-expression of miRl55

mainly modulates T cell functions, for instance in terms of cytokine secretion, rather that

their proliferation/survival.
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Figure 4.20: tumor growth in mir155 tg mice. miR155 tg and wt mice were

subcutaneously inoculated with A) MCA38 colon cancer or B) Bl6IFIO melanoma tumor

cells. Tumor growth was monitored every two days. C) Frequency of Treg (CD4+Foxp3+)

and D) Teff (CD4+Foxp3-) in tumor, dLN and spleen of MCA38-bearing mice. Bars

represent mean ± SD. Data are representative of 2 different experiments each including 6

mice per group.
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5 Discussion

The crucial role of Treg in tumor development is well established. Many data support the

evidence that Treg blockade, concomitant to the activation of Teff functions, favours

tumor rejection. The TNFR super family member OX40 appeared to be the adequate

molecule to achieve this double effect, as OX40 triggering on Treg suppresses their

inhibitory functions, while on Teff it stimulates their activities, proliferation and survival.

In this study the effects of OX40 triggering on Treg and Teff were separately investigated

in order to evaluate the specific contribution of each cell subset in tumor rejection.

Several recent data showed that Treg are endowed with a certain functional plasticity,

which allow them to use different suppressive strategies according to the specific

characteristics of the microenvironment in which they are located and the stimuli they

receive. A well-described mechanism of Treg-mediated inhibition is the secretion of IL-IO,

one of the best-known cytokines endowed with immune-suppressive functions and

critically involved in the maintenance of an immunosuppressive microenvironment and

tumor progression (Saraiva and O'Garra, 2010). Very recent interesting data demonstrate

that Treg are plastic cells able to skew from immune-depressive to immune-stimulatory,

loosing the ability to secrete IL-IO and acquiring the capacity to produce inflammatory

cytokines like IL-17. For instance, in colon polyposis, under chronic inflammatory stimuli;

Treg become pro-inflammatory and pro-tumorigenic, becoming able to produce IL-17

(Gounaris et al., 2009). Focusing on immune-suppressive molecules, in mouse

transplantable tumor models it has been proven that IL-1O has a pro-tumoral role,

preventing DC to become fully competent for orchestrating T cell responses (Dercamp et

al., 2005). Although IlJO gene was described as characteristic of Treg gene signature

(Fontenot et al., 2005b), IL-1O secretion was well assessed only in intestine and lung of

naive mice (Maynard et al., 2007; Rubtsov et al., 2008; Uhlig et al., 2006). The present

study demonstrates, for the first time, that Treg spontaneously secrete high amounts of IL-
125



5 Discussion
10 in the tumor microenvironment. Notably Treg isolated from tumor-draining LN or

spleen of tumor-bearing mice do not display such property, suggesting that Treg are able to

produce IL-IO transiently only upon adequate stimuli provided in peculiar milieus, like the

tumor microenvironment.

In a murine tumor model, it has been showed that CD4+CD25+ Treg and IL-1O have

distinct, and partially overlapping, roles in keeping CD8+ T cells unable to kill tumor cells

and in blocking DC maturation (Dercamp et al., 2005). Although Treg depletion by means

of Foxp3-targeting, rather than the CD25-directed Treg depletion, could provide more

precise results on the specific contribution of Treg and IL-1O in tumor immunity, this result

indicates that Treg are not the only source of IL-1O in tumor (Dercamp et al., 2005). For

instance TAM produce high amounts of IL-I0, thus participating in keeping the tumor site

in an immune-depressed status (Mosser and Zhang, 2008). Anti-tumoral function of DC

could be rescued by blocking IL-1O signaling and providing co-activatory signals, like

TLR agonists (Guiducci et al., 2005b; Vicari et al., 2002). Anti-tumor immune strategies

based on the sole blockade of ILIO pathway do not mimic the potent anti-tumor immune-

responses elicited by combined therapies (Guiducci et al., 2005b; Vicari et al., 2002),

OX40 triggering (Piconese et al., 2008), or Foxp3-targeted Treg depletion combined to

vaccination (Klages et al., 2010) or even as single treatment (Teng et al., 2010). Treg

ability to secrete IL-1O was observed also in studies performed in humans, showing that

Treg, recruited in the tumor mass, secrete abundant IL-IO, which may represent the

principal mediator of Treg pro-tumoral effect (Strauss et al., 2007). A link between OX40

engagement and IL-I0 production by regulatory Tr 1 cells has been detected in human cells

again. This study has demonstrated that both naive and memory cells, stimulated via

OX40, become unable to differentiate into IL-IO-secreting Trl cells under the pressure of

different stimuli. Moreover, fully differentiated Trl cells, upon OX40 engagement, loss

their capacity to secrete IL-1O (Ito et al., 2006). Different mechanisms may regulate the
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OX40/1L-1O axis in in vitro derived human Trl cells, which lack Foxp3, compared to

murine nTreg-iTreg, which express Foxp3 (Vieira et al., 2004), although OX40 signal may

influence conserved pathways regulating IL-1O secretion in divergent lineages. Indeed

OX40 triggering reduces IL-1O secretion along Th2 differentiation (Ito et al., 2005) and

during anti-viral responses (Humphreys et al., 2007). In this study the transcriptor factor

IRFI was found down-regulated in tumor-associated Treg 24 hours after OX86 treatment,

but IRFI expression was not found in Treg from other anatomical sites, like dLN and

spleen. These data exactly mirrored the amount of IL-IO-derived Treg in these three

distinct districts. Thank to the use of web tools, we could observe that IL-1O promoter

sequence contains a BS for IRFI. However other experiments are required to confirm the

direct IL-1O induction by IRFI in murine Treg as occurs in human cells (Ziegler-Heitbrock

et al., 2003).

Intriguingly, IRFI expression marks the signature of Treg infiltrating the lamina propria of

the intestine (Feuerer et al., 2010), which are known to produce abundant amounts of IL-

10. Treg of other districts do not display a similar signature, suggesting that tumor

infiltrating Treg and lamina propria Treg may represent closely similar Treg subsets.

It was reported that Foxp3 promoter sequence contains IRF1-responsive elements, which

negatively regulate Foxp3 expression (Lal et al., 2011). However no difference in Foxp3

expression was found between Treg isolated from OX86- or mock-treated CT26 tumor-

bearing mice.

IRFI promotes Thl commitment by inducing IL-12Rj31 in CD4+ T cells (Kano et al.,

2008). Notably, IL-l,2Rj31 is also expressed by lamina propria Treg (Feuerer et al., 2010).

The emerging evidence is that different Treg subsets, expressing distinct Th-associated

factors, selectively suppress the corresponding Th classes of effector T cells. In this view,

CD4+Foxp3+ T cells expressing T-bet, RORyt and GATA3 inhibit Thl, Th17 and Th2

lymphocytes, respectively (Barnes and Powrie, 2009). It was demonstrated that T-bet-
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expressing (Koch et al., 2009) or miR146-expressing (Lu et al., 2010) cells are specifically

efficient in suppressing Thl lymphocytes. In this context it is reasonable to hypothesize

that Treg expressing the Thl transcriptor factor IRFI are functionally oriented toward the

suppression of Th1 cells, for instance by the secretion of IL-IO. OX40 triggering, down-

modulating IRF1 expression, may release Treg from this specification, thus favouring the

development of an efficient Th1 anti-tumor response. Considering the tissue-specificity of

IRFI expression, probably OX40 triggering causes different effects on Treg localized in

distinct anatomical district, thus explaining the higher anti-tumor efficacy of the intra-

tumor compared to the systemic treatment with OX86.

It is now emerging that Treg are endowed of functional plasticity and are able to respond

to different stimuli in different ways, according to the cytokine milieu. Treg could acquire

the ability to secrete inflammatory cytokines, like IFNy or IL-17 (Hori, 2010; Zhou et al.,

2009b), and activate anti-tumor CD8+ T cells (Sharma et al., 2010) when they receive the

adequate stimuli. Also OX40 triggering may causes different outcomes, when combined

with different microenvironmental cues. Indeed OX86 reverses Treg suppression in GVHD

(Valzasina et al., 2005) and in tumor (Piconese et al., 2008) models, while in naive mice

OX86 administration promotes Treg expansion and their suppression functions (Ruby et

al.,2009).

The transcriptome analysis of sorted Treg showed few, and of limited extent, modifications

between Treg stimulated or not with OX86. However, according to the above

consideration, OX40 triggering could induce stronger modifications in Treg behaviour

when induced in c~mbination with other signals. From the transcriptome analysis, two

other genes, downstream the IFNy signal, were found down-modulated by OX86

treatment: Igtp and Iigp2 (also called Irgm2), which belong to p47-GTPase family

(MacMicking, 2004). Like Irfl, also Igtp and Irgm2 are highly expressed by lamina

propria Treg (Feuerer et al., 2010). In addition OX40 triggering modulates the expression
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level of genes involved in the regulation of Treg homing and Treg ability to recruit other

cells: Ccr8 and Itgae (encoding for C0103) were increased, while Ccl4 and Xcli were

decreased. It was reported that the integrin CD103 guides the gut homing of Treg, and that

OX40 is required for Treg accumulation in the colon (Griseri et al., 2010).

OX86 intratumoral injection modifies not only Treg, but also Teff properties, in particular

those of OX40-expressing Tern, which represent the most abundant TIL subset. Although

it was demonstrated that Tern constitutively express CD40L (Martin-Fontecha et al.,

2008), this ability is ineffective to induce an efficient anti-tumor immune response. An

explanation could be that, in the tumor mass, the high concentration of immune-

suppressive elements renders the basal CD40L expression by Tern insufficient for optimal

DC stimulation. In this context, OX40 triggering supply to Tern the adequate boost to

further up-regulate CD40L thus licensing DC for migration to the dLN. Additional

experiments are necessary to determine whether the C040L up-regulation on Tern is a

direct or indirect consequence of OX40 triggering. It is known that CD40L expression on

naive cells is induced by TCR engagement and C028 costimulation (Elgueta et al., 2009),

but the molecular mechanisms that allow the constitutive CD40L expression on Tern need

additional investigation. Intriguingly OX40 engagement on memory T cells induces the

assembly of a TCR-related signalosome also in the absence of an antigen, providing a

sustained level of NF-kB activity necessary for effector memory responses (So et al.,

2011b). OX40 triggering could sustain CD40L expression indirectly by increasing the

responsiveness of Tern to activatory stimuli or promoting the expression of cytokines,

which in tum foster ,C040L expression. However no differences in IFNy, TNFn, IL-17 or

IL-6 secretion were detected between TIL isolated from OX86- or mock- treated tumors.

Obviously other signals may mediate the interplay between the OX40 and CD40L

pathways.
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In an experimental model of immune activation, Tern accumulated into reactive lymph

nodes and licensed DC in vivo in a CD40L-dependent manner in absence of any

immunization adjuvant (Martin-Fontecha et aI., 2008). On the contrary, in our setting, Tern

were abundant at tumor site, but failed to activate DC, unless stimulated via OX40.

Moreover, Tern adjuvanticity likely occurred at the tumor site, rather than at the dLN,

since OX86 administration increased first of all DC migration from the tumor to the dLN

in a CD40-dependent fashion. In the immune tolerant tumor microenvironment Tern may

acquire an exhausted phenotype as a consequence of chronic immune stimulation, as

demonstrated by their expression of Pdl (Sakuishi et aI., 2010). Although OX86 did not

revert Tern exhausted phenotype in terms of Pdl expression, their CD40L-dependent

adjuvanticity was clearly restored. This may suggest that Pdl blockade might work

additively to OX40 triggering toward a full reactivation of tumor-associated Tern. Of note,

tumor-infiltrating, but not immunization-elicited, Tern expressed OX40, possibly as a

consequence of chronic stimulation.

Many data support the evidence that the CD40/CD40L axis is crucial for DC reactivation

in tumor mass. It was demonstrated that DC-restricted CD40 proficiency is necessary and

sufficient to induce protective Thl immunity, through IL-12 production, in a tumor

vaccination setting (Mackey et aI., 1998). The relevance of in vivo CD40 stimulation to

overcome tumor tolerance was demonstrated in three seminal papers (Diehl et aI., 1999;

French et aI., 1999; Sotomayor et aI., 1999). In our laboratory it was showed that

vaccination with tumor cells cotrasduced with GM-CSF and CD40L increases immunity

against tumor antigens cross-presented by host DC (Chiodoni et aI., 1999). In another

vaccination model using tumor cells transduced with GM-CSF and OX40L, the relevance

of the CD40/CD40L axis for new CTL induction against the tumor was highlighted (Gri et

aI., 2003). T cells expressing high levels, but not low or null levels, of CD40L can

adoptively transfer an efficient anti-tumor immunity (Murugaiyan et aI., 2007).

130



5 Discussion
The present study demonstrates that OX40 triggering indirectly reinforce the stimulation of

tumor-infiltrating DC stimulation via CD40 by increasing CD40L expression on tumor-

infiltrating Tem, otherwise kept in a quiescent state.

An interesting issue emerging from these data is the functional plasticity of T cells

according to their anatomical localization and the combination of stimuli they receive.

Indeed tumor-infiltrating Treg and Teff express peculiar molecular programs and display

specific abilities compared to their counterparts located in other tissues (spleen, dLN).

Thus it is not surprising that OX40, which is constitutively expressed by Treg and induced

on Teff upon activation, elicits tissue-specific modification in T cell behaviour.

Accordingly, recent data demonstrate that OX40 regulates a complex functional network in

Treg, whose outcome is also affected by the combination with other signals, provided for

instance by cytokines, like IL-2 (Ruby et al., 2009; Xiao et al., 2012). Our study has

demonstrated that OX40 plays a critical role in regulating Treg proliferation in both

lymphopenic and lymphoreplete environments by regulating their sensitivity to IL-2, via

the mirI55-S0CSI-pStat5 pathway. Xiao and colleagues (Xiao et al., 2012) demonstrated

that OX40 stimulation in naive mice promotes Treg expansion, but these Treg are endowed

with inefficient suppressive properties, display an exhausted phenotype and low level of

Foxp3. This impaired Treg expansion could be reverted by exogenous administration of

IL-2, which leads to the development of strong suppressive Treg able to assure long-term

allograft survival (Xiao et al., 2012). In a lymphopenia-driven colitis model, we have

observed that OX40-'- Treg are inefficient in curing the symptoms of the disease, because

unable to outnumber inflammatory T cells. Huge amount of evidence demonstrate that the

OX40/0X40L axis is involved in the onset of inflammatory pathologies, including colitis.

DC in the mesenteric lymph node of colitic mice brightly express OX40L (Malmstrom et

al., 2001) and the blockage of the OX40/0X40L interaction drastically ameliorates colitis

symptoms (Higgins et al., 1999; Malmstrom et al., 2001). OX40-deficient, but not wt,
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effector cells fail in inducing colitis into wt immune-compromised mice, while OX40L-

deficent Rag2-1- host are resistant T cell-mediated colitis (Takeda et al., 2004)_ Conversely,

immunodeficient OX40L-transgenic mice co-injected with wt Teff and Treg develop

colitis because Treg, upon constitutive stimulation via OX40, lose their capacity to

suppress colitogenic Teff (Takeda et al., 2004). These data suggest that OX40 triggering

and OX40 deficiency regulate different aspects of Treg biology. Indeed, on one hand

OX40 engagement inhibits Treg functions, on the other hand the lack of OX40 impairs

Treg proliferation and fitness.

OX40 involvement in Treg development has been also checked spanning beyond the

lymphopenic setting. In a previous study no differences in Treg percentage were found

between lymphoid tissues of wt and OX40-1- mice (Vu et al., 2007). However OX40 is

expressed on immature thymocytes, mainly by Treg precursors at the single positive stage

(SP) (Klinger et al., 2009). Accordingly, in our analysis a low percentage of Treg was

found in the CD4+ SP thymic subset of OX40-1- mice compared to age-matched wt mice.

Intriguingly, miRl55 is highly expressed in CD4+Foxp3+ SP thymocytes, compared to

CD4+CD8+Foxp3+DPTreg precursors (Lu et al., 2009).

After the use of lympho-depleting agents, like cyclophosphamide, the fraction of survived

Treg express higher level of OX40, compared to the not-treated counterpart (Hirschhom-

Cymerman et al., 2009). Same results were obtained in our study, treating mice with PC61,

an anti-CD25 Ab. Treg escaped from the depletion displayed higher level of OX40, while

OX40-1- Treg were more susceptible to PC61-mediated depletion. In thymectomized mice

OX40-1- Treg were more prone to apoptosis and had reduced proliferation potential. These

data suggest that OX40 is an important mediator, even though not unique, in Treg survival

and expansion especially under defective IL-2 sensitiveness. According to this observation,

our in vitro experiments have demonstrated that OX40 affects Treg response to IL-2 by

sustaining miR155 expression and restraining SOCSI availability. Notably mir155
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expression is under the control of Foxp3 (Zheng et al., 2007) and it was demonstrated that

miR155, by targeting sacs I ,assures Treg-competitive fitness in vivo (Lu et al., 2009).

These data highlight the multiple consequences of OX40 expression on Treg under

different stimuli. In settings where IL-2 is not a limiting factor, OX40 promotes Treg

sensitivity to IL-2 and favours their proliferation. On the contrary, in the presence of

inflammatory signals, OX40 may suppress Treg function as a consequence of peculiar

microenvironmental cues. Here we showed that intratumoral injection of OX86 inhibits

Treg suppressive functions, mainly in term of IL-1O secretion. In another study the

treatment of tumor bearing mice with cyclophosphamide leads to an up-regulation of

OX40 on surviving Treg, but the subsequent OX86 treatment causes Treg hyper-activation

and death (Hirschhom-Cymerman et al., 2009). Thus, OX40 could regulate several Treg

activities, which span from proliferation/fitness to contrasuppression/death.

Considering that OX40 also regulates miR155 expression in Treg, to deeply understand the

implication of OX40/miR 155 axis in Treg biology, we investigated the role of this

microRNA in T cells using a miR155 transgenic mouse model (miR155 mice). In these

animals the expression of miR155 is under the control of the lck promoter, thus being

expressed in all T cell subsets. The over-expression of miR155 leads to an accumulation of

mature Treg and Teff in peripheral lymphoid organs, indicating that miR155 may favour

the survival/proliferation of both T cell subsets. In agreement with our data, miR155

deficient mice have a consistent reduction of Treg, both in thymus and in periphery, due to

an impaired proliferative capacity (Kohlhaas et al., 2009; Lu et al., 2009). In the presence

of high amounts of ?IiR155, Treg show a more activated phenotype compared to wt Treg,

as demonstrated by the higher expression of GITR, OX40, C0103 and CD69 and lower

expression of C062L. These data suggested that in vivo these Treg could exert higher

suppressive functions, although previous in vitro (Stahl et al., 2009) and in vivo (Kohlhaas

et al., 2009) studies indicated that miR155 -does not impact on Treg inhibitory functions,

133



5 Discussion
but mainly modulates Teff capacity to oppose to the control exerted by Treg (Stahl et al.,

2009) and to produce inflammatory cytokines (Murugaiyan et al., 2011; O'Connell et al.,

2010). In accordance to these data, miR155 Teff display a more activated phenotype. It

seems that a sort of balance exists in miR155 mice between Treg and Teff, thus more

suppressive Treg are counterbalanced by more activated Teff. Indeed, in an in vitro

suppression assay, miR155 Treg more efficiently suppress wt Teff compared to miR155

Teff, and conversely miR155 Teff are more resistant to the suppression exerted by wt Treg

rather than miR155Treg. In vivo, however, both Treg and Teff functions are finely tuned

by a plethora of stimuli, which could amplify the differences induced by the over-

expression of miR155. For instance, tumor nodules grow faster in miR155 mice compared

to wt counterparts, indicating that in this setting Treg suppressive functions overcome Teff

functions. No differences were found in term of Treg/Teff ratio, suggesting that miR155

impacts mainly on T cell functions, rather than on their survival or accumulation in tumor

mass.

Additional experiments are required to better define the role of miR155 in regulating Treg

and Teff biology, and the link between OX40 and miR155. Intriguingly miR155 may

regulate T cell plasticity, promoting the development of specific Th subsets, and OX40

could act in synergism or in opposition with miR155, according to the peculiar

environmental features.

Understanding how to manipulate these mechanisms in order to potentiate or dampen

immune responses will provide great advantage in the development of effective therapies

for the treatment of tumors and inflammatory/autoimmune diseases.
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6 Summary and future plans

This study emphasizes the multiplicity of roles exerted by OX40 in Treg and Teff biology

in different experimental settings.

In tumor microenvironment OX40 triggering promotes tumor rejection favoring the

migration of tumor-infiltrating dendritic cells (TIDe) toward the dLN and the activation of

new eTL response. This result is obtained by the double action of OX86 on Treg and Tern.

Upon OX40 ligation, on the one side Treg down-modulate IRFI expression and IL-IO

production; on the other side, Tern further up-regulate eD40L expression and provide

stronger activatory signal to TIDe. From this study an intriguingly question concerns the

IRFI. Indeed even if its role in the differentiation of Thl effector cells is well established,

its involvement in Treg biology is not well investigated. IRFI expression was found also in

Treg infiltrating the lamina propria of the intestine, known to secrete high amounts IL-IO,

while Treg from other anatomical districts express neither IRFI nor IL-IO. Two important

issues have recently arisen: i) Treg, to suppress target cells, should express molecules

related to the suppressed cell subset and ii) Treg localized in different tissues are defined

by a specific transcriptome. These pieces of evidence suggest that IRFI may be required

for the peculiar ability of Treg to suppress Thl responses, but also may allow Treg to

acquire a Th l-like phenotype. Moreover, considering the confined expression of IRF I in

only tumor and lamina propria infiltrating Treg, it is possible that this TF belongs to a

group of genes that define specific Treg subsets. To evaluate how IRFI modulates Treg

suppressive functions and polarization, IRFI-'- Treg will be analysed in both in vitro and in

vivo experiments. I~FT/- Treg inhibitory functions will be tested with classical in vitro

suppression assay and in vivo in a model of immune-mediated colitis. IRFI-'- Treg

polarization will be evaluated in vivo both in basal conditions and during Th I-type

inflammation. Considering the circuitry among OX40, IRFI and IL-lO, to verify whether

IRFI deficiency mimics OX40 triggering; also tumor growth will be checked in the
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presence of IRFl-'- Treg. Finally, to verify whether tumor associated Treg and lamina

propria Treg share common gene signature characterized also by IRFI and IL-IO

expression, the trascriptomes of wt Treg, isolated from tumor and lamina propria, will be

compared.

Considering instead the basal level ofaX40 expression on Treg, it was demonstrated that

its expression is required for Treg accumulation during thymic development, resistance to

antibody-mediated depletion and competitive fitness in response to IL-2. These

mechanisms rely on the capacity ofaX40 to lower the Treg threshold for IL-2

sensitiveness. OX40-'- Treg have lower amount of miR155, which in tum causes

accumulation of SaCSl and impaired Stat5 phosphorylation in response to IL-2. miR155,

whose expression is regulated by Foxp3 in Treg, and is up-regulated by activated Teff,

may represent a new key regulator in T cell biology. miR155 may modulate lymphocyte

development, proliferation and survival. To investigate these issues, Teff and Treg features

will be analyzed in age-matched naive miR155 tg and wt mice from the stage of early

thymic precursors to mature CD4+T cell localized in different anatomical districts.

Moreover, miR155, affecting intracellular cytokine signaling, could also be involved in

regulating T cell plasticity in response to microenvironment stimuli, under physiological

but also pathological conditions. This question will be investigated in vitro by stimulating

naive CD4+ T cell, isolated from the spleen of miR155 tg or wt mice, with specific

cytokine cocktails. The impact of miR155 on T cell differentiation will be tested also with

adequate in vivo models.
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7.1 Publications on the thesis project
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