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Abstract 

Conge~tioll on roads is a crucial problem which affects our lives in many ways. As 

a consequence, there is a strong effort to improve road networks in order to keep 

the traffic flowing. Flow forecasting models based on the large amount of traffic 

data, which are now available, can be a very useful tool to support decisions and 

actions when managing traffic net.works. Although many forecasting models have 

been developed to this end, very few of them capture important features of high

dimensional traffic data and, moreover, operating most of these models is a hard 

task when considering on-line traffic management environments. 

Dynamic graphical models can be a suitable choice to address the challenge of fore

casting high-dimensional traffic flows in real-time. These models represent network 

flows by a graph, which not only is a useful pictorial representation of multivariate 

t.ime series of traffic flow data, but it also rnsures t.hat model computation is always 

~imple, even for very complex road networks. One example of such a model is the 

multiregre~::;ion dynamic model (MD~l). 

This thesis focuses on the development of two classes of dynamic graphical models 

to foreca:st traffic flows. Firstly, the linear mult.iregression dynamic model (LMD~l), 

which is an l\IDM particular case, is ext.ended to allow important traffic characteris

tics in its structure, such as the heterocedasticity of daily traffic flows, measurement 

errors due to malfunctions in data collection devices, and the use of extra traffic 

variables as predictors to forecast flows. Due to its graphical structure, the MDM 

assumes independence of flows at the entrances of a road network. This thesis 

therefore introduces a new cla.')s of dynamic graphical models where the correlation 

across road network entrances is accommodated, resulting in better forecasts when 

compared to the LMDM. 

All the methodology proposed in this thesis is illustrated using data collected at the 

intersection of three busy motorways near l\lanchester, UK. 
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"There will come a time in your life 

when YO7/, will ask yourself a scries of questions 

am I happy with who I am? 

am I happy with the people around me? 

am I happy w'ith what I'm doing'? 

am I happy -with the way my life 'is gO'ing'? 

do I have a life or am I ju::;t living'? 

do not let these questions restrain or trouble you 

just point yo'urself in the direction of your d7'eams 

find your strength in the sound 

and make your transif'ion" 

(Underground Resistance) 



Chapter 1 

Introduction 

This thesis focuses on the problem of developing statistical models for roaJ tmffic 

flow forecasting. Congestion on roads has become a crucial problem of vital impor

tance during the last decades, since its consequences can affect not ouly daily users 

of motorways or urban arterials, but also the environment, public health and the 

economy, for example. As a result, a strong effort has been made by government 

agencies to maximize ef£ciellcy of road networks to prevent congestion. These de

velopments can be put into practise by defining decision rules or a set of actions to 

be taken given traffic conditions, and they fonn what is usually called active tmffic 

management systems. 

One important step for the de\'clopment of these systems in England was the im

plementation of induction loops ill some motorways to collect traffic information, 

resulting in a huge amount of data which can be updated on a minutc-by-minute 

bac;is. The analysis of such data is crucial input to improve active traffic manage

ment syst.ems, because it can give insights about current traffic conditions, therefore 

improving decisions and actions to improve road efficiency. 

1 
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Since traffic information is generat.rd over time, these data form a time series with 

possibly very high dimension. Therefore, short-term forecasting models can be useful 

to describe future traffic conditions. Additionally, since updated traffic conditions 

a.re obtained as data arrive, an on-line traffic management environment is required. 

In this context, traffic forecasting models must be also able to provide r-eal-time 

forecasts. 

This t.hesis will use what are known as dynamic graphical models to forecast traffic 

flows. ThC'se models represent the flows in the network by a graph. This graph is 

not only a useful pictorial representation of the network, but it also ensures that 

model computation is a.lways simple, even for very complex road networks. Although 

a dynamic graphical model has already heen shown to be extremely promising for 

short-term foreca.sting in a UK network, t here is still work to be done in order to 

improve its forecast accuracy when considering real-time traffic data. 

1.1 Research question 

Traffic data have some characteristics that can be quite challenging to deal with 

from a statistical modelling perspective. To have a broad view of the traffic network 

under analysis, data have to be collected from a series of sites, which can generate 

a high-dimensional time series. 

It is also important that a model captures some complex features of road networks. 

Given a net.work t.opology, traffic flows have a dynamic pattern based on possible 

driver routes, which defines a dependence structure between the time series: this 

can heavily affect data analysis and foreca.'lt.s. In addition, events such as adverse 

traffic conditions or road accidents can cause sudden changes in traffic flows. There 

may abo be changes in a network due to the development of new motorways or 

some temporary or permanent road blockages. At the same time, as decisions have 
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to be taken in real time, especially during busy periods, active traffic management 

systems require forecasts in an on-line environment. 

In view of this, one question that arises is: can a statistical model be capable 

of generating accurate forecasts given the complexitics from this field, and at the 

same time be simple enough in ordcr to meet t.he requirements of an active traffic 

management system? Although it is well known that the model-building process is 

much more difficult for multivariate time series than univariat.e t.ime series (Chatfield, 

2003, \Vest and Harrison, 1997), there are some alternative modelling approaches 

based on graphical representations of the time series that can address this question. 

1.2 Thesis outline 

This thesis begins \\'ith a description of an active traHic management system which 

has been implemented in England, as well as a description of the data used for the 

development of the proposed models here. These are followed by an analysis of these 

data, which come from a road intersection in Manchester, UK. 

A critical review of the models that have been used so far to forecast. traffic flows 

is presented in Chapter 3. This chapter also introduces the dynamic linear model, 

which has a crucial role in the models to be subsequently developed. As will be 

also discussed in Chapter 3, very few flow forecasting models take into account the 

multivariate nature of the data. In this context, the multiregression dynamic model 

(MD11), which uses a graph to represent multivariate time series, is presented in 

Chapter 4. A particular class of 11D1-Is, namely the linear multiregrcssion dynamic 

model (LMDl\l), has been applied to forecast multivariate flow time series. The 

U\lDM is also presented in that chapter, followed by a procedure to elicit a graph 

for the traffic network from which the data are collected. 
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Both Chapters 5 and 6 show LMDl\l extensions considering traffic dat.a features not 

previously considered in t.his model, and also taking into account the requirements of 

active traffic management systems. As will be seen in Chapter 2, it is not reasonable 

to assume that flow variability is constant over time, as has been assumeu so far when 

using LMDMs to forecast traffic flows. Chapter 5 therefore shows how to deal with 

flow heterocedasticity in the U\lDl\1. This chapter also desCTibcs how mea .. <-;urement. 

errors, due to malfunctions in data collection devices, can be incorporated into this 

model. 

Data currently being collected in English roads are not only flows, but also other 

traffic variables. There are currently few models which consider t.hese extra traffic 

variables as predictors in forecasting flow models. Chapter 6 shows hO\v these pre

rlictor variables can be ea.<;ily included into the structure of t.he Ll\lDl\I, resulting 

in more accurate flow forecasts. Since time series of flows can be built considering 

different time intervals for uata aggregation, Chapter 6 discusses how different data 

aggregations show different traffic features. Aduitionally, Chapter 6 shows how the 

LMDM can accommodate traffic flows aggregated into t.ime intervals suitable for 

real-time traffic forecasting. 

\Vhen using LMDMs to forecast traffic flows, marginal independence is assumed 

among any time series that represent the entrances of t.he road network under study. 

However, this assumption may not be reasonable for traffic data. For example, all 

flows will increase during the build up of traffic in the morning rush hours, and, as 

another example, auverse weather conditions can affect the road network entrances 

equally. Motivated by the need of relaxing this restriction, Chapter 7 introduces a 

new class of dynamic graphical models where the data dependence structure among 

road network entrances is accommodated, thus resulting in better forecasts when 

compared to the LMD}'1. 
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Finally, possible future directions to be followed from the proposed statistical devel

opments in this thesis are presented in Chapter 8. 



Chapter 2 

The Manchester network 

2 .1 Introduction 

The traffic data which will be used to develop t.he models described in this thesis 

are introduced in this chapter, as well as the road intersection where they are col

lected. Time serirs of these traffic dat.a and the relationships between flow and other 

available traffic variahles are also analysed. We firstly hegin with a description of 

all active traffic management system currently operating in England. 

2.2 The Managed Motorways project 

As described in Chapter 1, an active t.raffic management system comprises a set of 

dech;ion rules or actions to be taken in order to keep the traffic flowing and, especially, 

to avoid congestion. An example of such system is the Managed Motorways project 

devc10ped by the Highways Agency, which is responsible for managing and improving 

road networks in England. An overview of this project can be found in Highways 

Agency (2012b). 

6 
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l\lanaged Motorways aims to improve road capacity by controlling the flow using 

hard shoulders as additional lanes during congestion periods. The usc of hard shoul

ders to reduce levels of congestion hru; been shown to be an useful action in SOllle 

countries where it was adopted (Sultan ct al., 2008). It is also a cheaper and quicker 

alternative when compared to widening roads for example. Other actions considered 

in the l\lanaged Motorways project to improve road efficiency relate to operating 

mandatory speed limits to controlling flow while traffic is in the network. 

These actions depend on alerts \vhich are triggered when certain values of traffic 

variables are l'xceeded. Particularly, mandatory spct'd limits are triggered when flow 

readlC's specified (high) values. The data being used in this project are collected 

by induction loops which were im;talled in some roads in Engla.nd as part of the 

Afofo1"way Incident Detection and Automatic Signalling (:MIDAS) system (Gibbens 

and \Verft, 2005). These inuuction loops are installed at ('ach lalle of a road site, 

and they collect the following variables on a minutc-by-minute basis: 

• Flow: the number of vehicles pa.<,sing over the induction loop per minute; 

• Occupancy: the percentage of time per minute that vehides arc 'occupying' 

the inductive loop; 

• Headway: the average time (per minute) between vehicles passing over the 

inc! uetion loop (in sec); 

• (Time mean) speed: the average ratio of the distance between two (conscCll

tive) induction loops in a road segment and the time taken by each vehicle to 

pru;s over these loops (in kph). 

Although these variables are available on a minutc-by-minute basis, data aggregation 

considering other time intervals may be more suitable, since different traffic features 

can be observed depending on the aggregation level considered. For the development 
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of flow forecasting models in this thesis) traffic variables will be averaged into 5-

minute and 15-minute intervals. Traffic data aggregation will be furthcr discussed 

in Chapter 6. 

The ~Ianaged Motorways project began operating on the M42 motorway in Birm

ingham in 2006, and it is also being implemented in other motorways. See Highways 

Agency (2012a) for an implementation plan of this project in English road networks. 

2.3 The Manchester network 

Traffic data collected by inunction loops arc available for the MGO/~IG2/~IG02 in

tersection in Manchester, hereafter called tho Manchester netwoTk) where flow) oc

cupancy, speed and headway information arc collected at 32 sites. Figure 2.1 shows 

an aerial photograph of the network, and a schematic diagram of the ~Ianchestcr 

network reflecting the layout of the data sites is given in Figure 2.2. In this diagram, 

the alTo\vs show the direction of travel, and the data sites are labelled and indicated 

by yellow circles. This is one of the networks where Managed Motorways b being 

implemented (Highways Agency, 2012a). 

Given the locations of the data collection sites, it i::; possible to have a description of 

how traffic flows through the network. One crucial characteristic to be considered 

when analysing data from this road inter::;ection is that it takes only a few minutes 

to traverse the Manchester network. This means that vehicles can be counted at 

a number of different sites during the same time period, depending on the time 

interval m;ed to aggregate the traffic variables. Information from different parts of 

the network can therefore be used as potential predictors when developing traffic 

models for a specific site. 
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FIGURE 2.1: Aerial photograph of the Manchester network (©2012 DigitalGlobe, 
GeoEye, Infoterra Ltd & Bluesky, The Geolnformation Group, Map data ©2012 

Google) 

9 

2.4 Visualising the Manchester network time se-

. rles 

To visualise some traffic patterns which can be observe,d at the Manchester network, 

Figures 2.3 and 2.4 show time series plots of flow, occupancy, speed and headway at 

site 9200B collected between 1Iay 10th and May 16th , 2010. Data were aggregated 

into 5-min intervals to plot these series. 

Figure 2.3( a) shows a time series plot of 9200B flows. It is clearly seen in this 

plot that flow patterns during the weekdays are different from flow patterns during 

weekends: while there are morning and afternoon peak periods around 07:00-08:00 

and 16:00-17:00, respectively, on weekdays, a single peak period around 12:00 was 

observed on both Saturday and Sunday. Some flow outliers, probably caused by 
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conge tion can be noted between aprox imately 0 :30-09:30 on May 11th, 2010 and 

between 0 :00-09:00 on tvlay 14th, 2010, for example. 

A imilar pattern to that observed for flows is also seen when looking at occupancies 

from the arne period presented in Figure 2.3(b) , where occupancy peaks are al 0 

around 07:00-0 :00 and 16:00-17:00 on weekday and weekend occupancy peaks are 

around 12:00. In particular, the 5-min intervals where the highest occupancy peaks 

were ob erved during thi week (09:20-09:24 On f\ Iay 11th 2010 and 0 :55-0 :59 on 

la ' 14th 2010) are the same periods where some of the highe t flow peak were 

ob erv d in Figure 2.3(a). 

Figure 2.4(a) how 5-min peed at site 9200B collected between lay 10th and May 

16th 2010. There are apparently two speed regime ob erved during weekday, in 
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the sense that speeds approximately between 07:00 and 18:00 are lower than speeds 

observed at other periods during the day. As wit.h flow and occupancy, the most 

extreme measurements that week were observed at 09:20-09:24 on t-.lay 11th, 2010 

and at 08:55-08:59 on t-.Iay 14th, 2010. 

The headway plot for this week at site 9200B is given in Figure 2.4(b). Note the 

high level and also a high headway variability approximatciy between 20:00 and 

07:00, which indicates a higher average time between vehicles during this period 

when compared to headways observed during the daytime period. Since headway 

is ba<;ed on average times between vehicles per minute, care must be taken ,,,hen 

analysing this traffic variable during periods where usually low flows are observed: 

as is quite likely to take more than one minute to observe two vehicles in sequence 

during low flow periods. Indeed, the ma.ximum headway value that can be measured 

by loop detectors is 25.4 seconds. 

An analysis of the relationship between flow and occnpancy, speed and headway will 

be presented in Section 2.5. 

2.4.1 Flow variability in the Manchester network 

Figure 2.5 shows hourly box-plots of 15-min flows for each weekday from 07:00 to 

18:59 at site 6013B of the t-.Ianchester network, using data observed from t-.larch 

to Kovember 2010. These clearly show daily differences in level and \'ariahilitv of v. • 

flo,,·s. There is a particularly high flow level observed between 12:00 and 14:59 

during Fridays when compared to the same period during other weekdays. On the 

other hand, there is a lower flow level between 17:00 and 18:59 on Fridays in contrast 

to the same period during the other weekdays at site 6013ll. It can be an indication 

that people usually leave work earlier on Fridays. 
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Differences in flow variability between weekdays during the same time period are 

also observed when looking at these boxplot.s. As an example. t.he flow variability 

observed on Fridays is lower than the flow variaLility oll1Iondays during 18:00-18:59 

at site 6013B. Additionally, flow can also vary depcnding on the time of the day, 

as flow variability observed during 07:00-08:59 is higher than the flow variability 

observed between 09:00-13:59, for instance. 

In Chapter 5, the variability of flows within days will be accommodated in a multi

variate flow forecasting model. 

2.5 Relationships between flows and other traffic 

variables 

As will be discllssed in Chapter 6, there is currently few flO\\' forecasting models 

which consider extra traffic information in the form of predictor variables. Hence, it 

is important to analyse the relationship between flows amI extra available variables 

to have some insights into how to include them as predictors when modelling flows. 

The first row of Figure 2.6 shows scatterplots of flow at time t versus occupancy 

at previous time t - 1 at site 9188A for February, June and October 2010. The 

plots indicate an increasing relationship between flow and occupancy until the latter 

reaches some value around 20, which is usually defined by traffic managers as the 

road capacity and varies from sitc to site. For occupancy values higher than this road 

capacity, the relationship then turns to be decreasing, which can lead to congestion. 

This relationship is similar to what is called the fundamental diagram of traffic 

(Ashton, 1966, Kiihne, 2008), which will be discussed ill Subsection 3.2.2 of Chapter 

3. 
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Scat.terplots of flow at time t versus headway at previous time t - 1 at the same site 

for the same three months are shown in the second row of Figure 2.6. These plots 

confirm an intuitive relationship in the sense that the flow decreases as the average 

time between cars increases. 

The last. row of Figure 2.6 shows scatterplots of flow at. time t versus speed at pre

vious time t - 1, again at site !H88A for the same three months. l\lost flow values 

are concentrated at speed values between 80 kph and 100 kph, with an apparently 

decreasing relationship in this region. There also seems to be an increasing rela

tionship between flo\\! at t and speed at t - 1 for low speed values, although with 

a slight ly higher level of variability: it is likely that many of these points are from 

situations where congestion occurred. 

Plots of flow at. t versus the other traffic v~U'iahles at t -1 look broadly comparable at 

the other sites. Based in t.hese observed relat.ionships, it. will be described in Chapter 

6 how these extra traffic variables ran be included as predict.ors in a multivariate 

flow forecasting model. 
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Chapter 3 

Literature review: previous and 

current approaches to traffic 

modelling 

3.1 Introduction 

Traffic modelling has attracted the attention of many researchers since the second 

half of the twentieth century, where there has been a great development of highway 

networks and an increa::ie in the number of vehicles in most countries. This attention 

resulted in an extensive literature with several traffic modelling approaches. The 

variety of backgrounds of researchers who have been working in this field is also 

quite noticeable, a.', \Yell a.s the wide variety of journals where their papers have been 

published. This makes an exhaustive study of all the possible approaches to traffic 

modelling a very difficult task. 

Deterministic views of traffic dynamics use mathematical modelling, and such de

velopments have provided important concepts about traffic behaviour. The first 

18 
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statistical applications in the field were based on ARIl\fA models, which are es

tablished forecasting tools for time series. Multivariate ARIl\lA versions, namely 

VARl\lA models~ have been recently considered for traffic forecasting. Due to their 

flexibility and the variety of commercial software available, neural network models 

have also been extensively applied in traffic modelling. Additionally~ applications of 

state space models have been considered in this field, since their structure permits 

a sequential estimation of parameters for forecasting traffic flows. These are the 

approaches to be discussed in the next sections. 

Some reviews covering the broad extent of mathematical traffic flow models can 

be found in Bellomo et al. (2002), Hoogendoorn and Bovy (2001) and Gartuer et 

al. (2001). Van Arel1l et aZ. (1997), Vlahogianni et al. (200-1) and Karlaftis and 

Vlahogiallni (2011) review neural network techniques, statistical approaches and also 

some hybrid alternatives for short-term traffic forecasting. 

3.2 Mathematical modelling of traffic flows 

The initial approaclws to model traffic had a mathematical basis, where determin

istic relationships between traffic parameters in space and time were considered. 

l\lathematical traffic flm\" models can be classified according to the level of detail 

defined to describe traffic behaviour. They are then basically divided into micro

scopic and macroscopic models. There is also a third type of models where analogies 

between flow of vehicles in a road and the flow of molecules in a gas are considered 

(Ashton, 1966). 
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3.2.1 Microscopic models 

1\Iicroscopic models are used to have a description of the dynamics of individual 

drivers, taking into account the influence of surrounding vehicles (Bellomo et al., 

2002). Their main idea is to establish a mechanism describing a.<;pects of the inter

action between vchicles through mathematical formulations. 

1\10st early attempts to develop microscopic models form what are called car-following 

models, which arc ba.<;ed on descriptions of how one vehicle fo11O\vs another (Chandler 

et oL, 1958). Given a sequence of vehicles following each other, the basic principle 

uscd in these models considers the response, which is the act of accelerating or brak

ing related to the following vehicle, as a product of what are known as scnsitivity 

and stimulus. Stimulus is defined as the spel'd difference between the leader and 

the follower in the sequence. Sensitivity can be viewed as a measure of interaction 

between vehicles, usually defined to be inversely proportional to the' space between 

them (Edie, 1961, Herman and Potts, 1961). l\1athematical expressions of these 

quantities can be found in Chandler et al. (1958) and Gazis et al. (1961). Some 

alternative principles and approaches to define interaction betwecn individual vehi

cles and other types of microscopic models can be found in Hoogendoorn and Bovy 

(2001). 

Car-following principles have been heavily applied in the development of simulation 

tools to have a computer-based view of traffic behaviour, resulting in seyeral micro

scopic simulation models. Ba'>ed on some initial conditions about driver behaviour 

and vehicle characteristics, simulation methods are used to determine how the traffic 

system evolves over time, given possible decisions each driver can make. A review of 

microscopic simulation models was made in the S1\IARTEST project (Algers et 0,1., 

1997), where the main objective was to develop this class of models to solve specific 

traffic management problems. 
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Although these models can be quite useful to understand traffic behaviour, they 

demand a high level of detail about traffic data. Alternatively, traffic information 

on an aggregated level can be u::ied to generate microscopic data (Hoogencloorn 

and Bovy, 2001), and some effort has been made to build suitable datascts for 

the development of such models (\Vilson, 2010). However, given the structure of 

microscopic models, it can be quite difficult to update them in an on-line traffic 

environment, since the generation of real-time forecasts as new data arrive possibly 

requires a high number of simulations. 

3.2.2 Macroscopic models 

. Different from car-following approaches, macroscopic models can be used to give a 

description of traffic on an aggregated level, not taking into account explicit rela

tionships between different vehicles. Their basic principle is that driver behaviour 

depends on traffic characteristics that can be defined in terms of aggregated variables 

mca .. 'mrcd at a road of interest. 

The first study concerning traffic flow behaviour adopted a macroscopic approach 

and was made by Grecnshields (1935). In this work, the focus was on determining 

the road conditions in which congestion or slow traffic are likely to occur. Traffic 

measurements and relationships developed by Greenshields had a significant impact 

in the field during the following decades. 

The model developed in this first study focused on the relationship between three 

traffic variables: 

• flow (q): number of vehicles per unit time; 

• density or concentration (k): number of vehicles per unit distance; 

• mean speed (u): distance per unit of time. 
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The relation 

q = u x k. (3.1) 

can be defined among these variables. Greenshields used a 16 mm camera to measure 

these quantities in a road by taking pictures at regular time intervals (sec Green

shields, 1934, for details). l\Iotivated by his measurements, he realized that a linear 

relationship of the form 

u = a - 13k, (3.2) 

for some a and (3, could be a..<;sumcd between speed and concentration. 

Taking into account that concentration reflects the level of interaction between ve

hicles in a road, it can be noted that, a..<; this variable (k) tends to zero, the speed 

(u) tends to reach its maximum. In equation (3.2), a is usually called the free 

speed, which is considered as the maximum speed a driver can reach if there are 110 

interactions between vehicles in a road. On the other hand, the ratio a/ (3 can be 

considered as the maximum concentration as speed tends to zero. Replacing (3.2) 

in (3.1) we have, 

(3.3) 

which represents a quadratic relationship between flow and concentration (as shown 

in Figure 3.1) and, as mentioned in Section 2.5 of Chapter 2, i::; called the funda

mental diagram of traffic. 

\Vith this simple model and its empirical validation (Greenshields, 1935), it is pos

sible to describe some intuitive traffic flow characteristics. For example, it is rea

sonable to assume that flow must be zero when concent.ration is zero, and also 

concentration reaches its ma..ximum when traffic jams occur. It can be also thought 

that flow increa.<;es up to a given value and, after reaching it, interactions between 

"ehicles are so high that flow tends to decrease, leading to a traffic jam. This value 
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FIGURE 3.1: Fundamental diagram of traffic. 
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is called the road capacity and it is of great interest for traffic engineers in order to 

design new roads or to monitor traffic. 

Alt.hough the equation proposed by Greenshiclds was widely accepted as the proper 

shape of the flow-concentrat.ion curve, some aut.hors pointed out limitations of this 

model (see, for example, Ashton, 1966). Gartner et al. (2001) also noted that 

Greenshielcls' measurements were made during a holiday in a single lane road, where 

the lcvel of interaction betwcen vehicles is lower than levels observed in multi-lane 

freeways. There are indeed studies which propose different relationship descriptions 

of flow-concentration, speed-concrntration and flow-speed. There has also been some 

effort to describe these three variables simultaneollsly (Gilchrist, 1988, Gilchrist and 

Hall, 1989). Equations describing these relationships are usually called traffic stream 

models. Additionally, there are some models (Edie, 1961, Greenberg, 1959) which 

consider discontinuites in t.he flow-concentration relationship, with different regimes 

during non congestion times (t.raffic flow values smaller than road capacity) and 

congestion times (t.raffic flows bigger than road capacity). It can reflect a limitation 

found in Ashton (1966) regarding Greenshields' model, where it was observed that 

the flow-concentration relationship canllot be considered to be the same for all values 

of k, since a driver probably only takes account of the vehicle ahead when driving 

in low concentrations, and several factors begin to influence him as concentration 
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increa..<;es. 

3.2.2.1 Hydrodynamic approaches to traffic modelling 

l\lacroscopic traffic models can be also developed by considering analogies between 

vehicular and fluid flows. These analogies motivate the formulation of partial dif-

fcrential equations which, together with their solutions, can dcscribe the dynamics 

of macroscopic traffic characteristics (such as flow, concentration and speed) thus 

giving a picture of how traffic behaves over time. These models are usually called 

continuum flow models (Gartner et al., 2001). 

The key idea behind continuum flow models is what is called the principle of flow 

conseT1lation, which can be stated as follows. Suppose a road section with two data 

collection sites, namely 5(1) and 5(2), such that they are separated by a very small 

distance bo.r, therc arc not any intersections or junctions betwcen them and the 

direction of traffic is from 5(1) to 5(2). The principle of flow conservation st.ates 

that the increase in the flow at the downstream site 5(2) during a very small time 

bot must be equal to the decrease of vehicles (concentration) in the section of the 

road between sites S(l) and 5(2). This principle can be mathematically described 

(3.4) 

where Dq/D.r represents the increase in flow at 5(2) and -ok/at represents the 

decrease of vehicles in the section of the road between sites S(l) and 5(2) (for 

details, sec Ashton, 1966). If entrances or exits in a road section arc considered, 

equation (3.4) can be written as (Gartner et al., 2001), 

Dq Dk 
ax + Dt = g(:r, t). (3.5) 
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where 9(:r, t) is the generation (or dissipation rate) of vehicles per time per unit 

length. Equation (3.5) is usually called the conservation equation. 

Different solutions exist to the conservation equation, either by usmg aJditional 

equations or by considering the description of other macroscopic variables. Particu

larly, Payne (1971) considered a partial differential equat.ion descri bing the dynamic 

behaviour of speed, and this idea was also used in Helbing (1996). 

Lighthill and \Vhit.ham (19.55) were the first to propose a solution to (3.5), con

sidering a system with the conservation equation, the relationship given in (3.1) 

and assuming speed a.s a function of concentration (such as (3.2)). A similar solu

tion was derived by Richards (1956), with thi::; approach being usually called L\VR 

(Light hill, \Vhitham and Richard::;) models. A::; this class of models docs not have 

a unique solution, some generalized solutions were proposed by Lcut:lbach (1988), 

and a description of numerical alternativcs can be found in Gartner ct ai. (2001). 

Stephanopoulos and 1Iichalopoulos (1979, 1981) describe some implementations of 

L\VR models. 

Since loop detectors in road networks collect traffic macroscopic data (as seen in 

Chaptcr 2), continuum flow models are presumably suitable for traffic foreca.sting. 

However, these data are used in continuum flow models to estimate additional equa

tions to solve the conservation equation (3.5). As the resulting system of equations 

may not have closed-form solutions, it can then be infeasible to use them on a 

real-time basis. Some other limitations of macroscopic models can be found in Pa

pageorgioll (1998). 
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3.3 ARIMA models in traffic forecasting 

After the seminal work of Yule (1927), which introduced the notion of defining a 

time series as a realization of a stochastic process, there were several developments to 

describe dynamic systems using time series models with a random component, rather 

than considering strictly deterministic mathematical models only. In this context, 

given a sequence of random variables {xtl t~l, which represents a time series of 

interest, a general class of models consists of describing the random variable at time 

t a'l a sum of a linear combination representing a function of previous values of the 

sequence, together with a linear combination of random variables with zero mean 

and constant variance, snch that 

p q 

X t = L Q.jXt - i + L (3j Zt-j (3.6) 
i=l )=0 

where Zt-j, j = 0, ... ,q, are random variables with null mean and constant variance, 

and /30 = 1. 

The first sum in (3.6) represents the systematic term of what is called a autoregress'ive 

process of order p, denoted by AR(p). The idea is that the observed value of the 

random variable at time t depends on previous observed values of the sequence, and 

it has the same structure of the systematic term of the classic linear model, despite 

the fact that the systematic term in a autoregressive process contains realizations of 

the same random variable defined as the response (hence the name autoregressive). 

The second sum represents a moving average process of order q, denoted by ~1A(q), 

and it can be interpreted as being composed of the error term of the model at 

time t, represcnted by Zt, as wc also have in the classical linear model, plus the 

error terms related to differences between predicted and observed values at previous 

times, represented by Zt-j, i = 0, ... , q. 
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The parameters to be estimated in this model from an observed time series are Qi 

and Pj' i = 1, ... , p, j = 1, ... , q. Using this terminology, the model described in 

(3.6) is usually called an autoregress'ive mov'ing average process of order (p, q), or 

simply ARI\lA(p, q). 

The key assumption in the estimation of ARMA models is that some statistical 

properties of the sequence of random variables, which represents the time series 

under study, must remain the same over time. Particularly, this means that {Xth~l 

must satisfy two conditions: 

i. E[Xtl and Var[Xtl are constant for every t 2: o. 

ii. Cov[Xt, Xt-sl depends only on the difference t-8, that is, the covariance between 

two clements of the sequence of random variables depends only on the lag 

between them, and not on time t. 

A time series which satisfies conditions (i) and (ii) above is said to be weakly sta-

tionary or just stationary. 

Transformations are usually applied to make a sequence of observed time series sta-

tioIlary, with the differencing technique being the most common one. A differenced 

time series is defined as the sequence {vdXth~d+ll ,,,here each VdXt corresponds to 

the difference X t - X t - d , with t 2: d + 1. \Vhen (3.6) is applied to a differenced time 

series, we can write 

p q 

V
d 
X t = l'Vt = L Qi n't-i + L Pj Zt-j (3.7) 

i=l j=O 

and then we have what is called the autoregressive integrated moving average process 

of order (p, d, q) or simply ARIMA(p, d, q), where d is related to the lag applied in 

differencing the original time series. The term integrated refers to the fact that 

forecasts based on the transformed series must be summed (or "integrated") to 
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produce forecasts for the original time series (Chatfield, 2003). \VitIlin this approach, 

the main tasks when fit.ting ARI1IA models for foreca.c;ting are determining the terms 

p, d and q and parameter estimation. 

A very influential contribution in this field was made by Box and Jenkins (1970), 

which defined a set of strategies to determine how to produce foreca.<;ts using ARIl\lA 

models. A rough summary of these strategies can he ha.c;ically divided into steps 

which involve the determination of the differencing order d to make a time series 

stationary, the identification of the order of the autoregressive and moving average 

terms of the model (based on graphical techniques and statistical tests), parameter 

estimation through the llse of non-linear least squares or maximum likelihood and, 

finally, model adequacy. The application of ARI11A models together with these 

strategies are usually called Box-Jenkins methodology. 

The first models based on I3ox-Jenkins methodology for traffic foreca.<;t.ing can be 

found in Ahmed and Cook (1979) and Levin and Tsao (1980). 110re recently, Hamed 

et al. (1995) developed univariat.e models to predict five series of I-min flows col

lected at the city of Amman (Jordan), and concluded that an ARI11A(0, 1,1) was 
the best model for all series. Given their model structure, they also mentioned that 

such a model could be easily implemented, as it has a simple formula and, to es

timate the traffic flow at time t + 1, only the forecast residual and flow observed 

at time t would he required. Additionally, \Villiams and Hod (2003) applied a sea

sonal version of an ARUvlA(1, 0, 1) (Chatfield, 2003) using weekly differencing for 

15-min flows, and found that this model provided better forecasts when compared 

to random walks and historical average models. 
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3.4 VARMA models in traffic forecasting 

l\lultivariate versions of ARMA model., can be defined by extending the equation 

(3.6) to the case where interest is on a time series vector X t. The::ie multivariate 

models, namely vector autoregressive moving average (VARMA) models (Chatfield 

2003 and Prado and \Vest, 2010) have been recently applied to traffic forecast

ing. Chandra and AI-Deck (2009) llsed VAR models (which are particular cases of 

VARMA models without the moving average term) to forecast. flows from three data 

collection sites from a motorway in Florida (US), and they give better results when 

compared to ARIl\IA models independently fitted for each of the sites. However, 

they point out the issue of having a large number of parameters to be estimated in 

VAR models, and this problem can be v,orse in VARl\IA models or when forecasting 

flows from a high number of data collection sites. Moreover, a constant variance was 

assumed in their models to forecast flows from the whole day, which can be a very 

restrictive a.''>smnption (as sho\\'n in Subsection 2.4.1 of Chapter 2). 

Both ARIl\IA and VARl\lA models can be estimated through least squares or ma."X

imum likelihood, which can be heavily affected by outliers. Furthermore, these 

estimation procedures cannot be feasible when applying VARl\lA models to fore

cast flows in large networks. The fact that there are equations like (3.6) for each 

of the components of a time series vector when using a VARMA model results in 

a large number of parameters to be estimated. As an alternative, l\lin and \Vynter 

(2011) developed a VARl\IA model which considers the network structure and av

erage speeds between data collection sites to dCCI'case the number of parameters to 

be estimated. 

Prado and \Vest (2010) describe some Bayesian approaches to parametcr estimation 

in VARMA models, pointing out some advantages of considering this alternative, 

especially because of the largc number of parameters involved. l\fai et al. (2011) 
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adopted a Bayesian approach via l\lC1VIC to develop VARl\IA models to forecast 15-

min flows from three sites of a busy signalized intersection in Dublin, Ireland. Similar 

to tvIill and vVynter (2011), they also considered the structure of the intersection to 

minimize the number of parameters to be estimated. Oue of their multivariate 

models gave a slighty better performance than its related univariate version. The 

authors point out that the reason for such a result is that their VAR~IA models take 

into account the spatial correlation among the data collection sites, which may not 

have a high influence on forecasts when using 15-min data, since vehicles can travel 

a considerable distance during 15 minutes. They also expect that their multivariate 

model would give better results if smaller time intervals for data aggregation were 

considered. However, the fact that the model uses l\ICl\IC simulation for parameter 

estimation can be a drawback when forecasting flows in real-time. 

3.5 Neural networks in traffic modelling 

Neural networks are mathematical models which try to replicate the human brain 

process of recognizing patterns and decision making that constantly appear in our 

daily lives. These models aim to automate these replications to perform specific 

tasks, which are usually divided in two types: unsupervised pattern recognition prob

lems, 'v here the main objective is to identify groups of similar observations in a data 

set (like cluster analysis, for example), and supervised pattern recognition problems, 

where the goal is to produce an output of interest given a data set. The latter aims 

to solve the same type of problems in which regression and time series analysis can 

be applied. 

The idea \"hich forms the basis to develop a neural network (NN) for a supervised 

pattern recognition task consists of creating a system in which a set of unit inputs 

(explanatory variables), usually defined as the input layer, is connected with the 
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out pu t (dependent variable), defined as the output layer. These layers are connected 

by a set of nodes (also called processing nnits or neurons), where the mechanism 

for combining the inputs to produce an output is defined. Usually the nodes are 

organized in one layer, called the hidden layer, but more than one layer is possible. 

Consider the following example to understancl how a neural network can be used in 

traffic modelling. Suppose that the flow forecast at time t at a road site of interest, 

represented by Xt, must be made given flows at times t - 1, t - 2 and t - 3, namely 

Xt-l, Xt-2 and X't-3' A typical KN structure to tackle this type of problem is shown 

in Figure 3.2 (adapted from Chatfield, 2001). In this KN, the lagged flow values :rt-l, 

.Tt-2 and Xt-3 form the input layer, the hidden layer comprises two nodes (although 

it can have several nodes) and each input node is conuected with the hidden layer 

nodes. Given this structure, the forecast is made by measuring the "strength" of each 

connection based on data and thCH calculating combinations of these connections. 

\Vithin this framework, the forecasting proccdure based on a neural network can be 

input layer hidden layer output (forecast) 

FIGURE 3.2: Neural network example for traffic forecasting 

roughly summarized by the following steps. First, an average 'Vh for each node in the 

hidden layer is calculated based on a linear combination of the input variables and 

weights (with these weights being "strength" measures of each connection) which, 
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again, are defined ba~ed on data. That is, Vh = 2:t=:l WihXt-i is calculated for each 

node h, h = 1,2, in the hidden layer. Still in the hidden layer, functions arc also 

chosen to be applied to each 'lilt, usually called activation functions and denoted by 

g(Vh), II, = 1,2 in Figure 3.2, with the choice of these functions depending on the 

output domain. Finally, the flow forecast ... Yt is calculated as a function of a linear 

combination of the results of these activation functions and weights, a", associated 

with the hidden layer nodes, that is, ..,Yt = f(~~=:l ahg( v,,)) in our example. 

The NN architecture comprises the number of input variables, nodes, hidden layers 

and a.lso the activation functions. Furthermore, different NN methodologies can vary 

according to the way the layers are conBected. The NN structure described in the 

example above is usually called a multilayer perceptmn or feed-forward network. In 

this widely used structure, the units and nodes have only one-way connections in 

the direction froIll the input layer to the output layer, and these connections are 

always from one layer to a later layer (Ripley, 1996). 

Training an NN is a crucial step, where the weights of all the connections from 

the network are estimated based on a dataset. This step involves a trial-and-error 

procedure in which a non-linear optimization algorithm is applied to minimize some 

measure offorecasting error, using training and test samples (Chatfield, 2001). Once 

the network is trained, forecasts are made as new data arrive. 

Due to its flexible structure, neural networks can be a suitable choice to develop 

traffic forecasting problems addressing important requirements from this area, such 

as the need to consider highly non-linear relationships in a multivariate context (as 

will be shown in Chapter 6), and also the need to have a tool to provide multiple 

step ahead forecasts in a simple manner. Indeed, several studies can be found in the 

literature showing the implementation of NNs in traffic modelling problems. For a 

list of papers using NN in traffic forecasting, see Vlahogianni et al. (2004) and Jiang 

and Adeli (2005). 
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Despite these advantages, the downside of the NN flexibility is the difficulty to find an 

optimal structure given the available data and the traffic forecast.ing problem under 

study. Current practise shows that rules of thumb and trial-and-error procedures 

are adopted based 011 a set of possible competing structures, although alternatives 

to efficiently optimize the NN architecture have been proposed (Vlahogianni et al., 

2005). 

There are also some other potential problems when using NNs for traffic forecasting. 

Since each input is connected to each node with a weight being assigned to each 

connection, it can be easily verified that, even for a small number of input variables, 

a considerable number of parameters need to be estimated from data, which can 

lead to overfitting problems. 110reover, t.he large number of parameters involved 

in the non-linear optimization required in NN training requires a lot of data and, 

additionally, problems such as local minima and instability of the results given the 

initial parameter values can arise. 

FurthemlOre, although an NN can be suitable for active traffic management sys

tems operating in on-line environments, there are crucial issues that still need to be 

addressed in its development. First, while the main objective of traffic modelling 

is to describe the evolution of the traffic in a way that forecasting algorithms are 

consistent with the dynamically evolving nature of this system, the usual neural 

network procedure is static, in the sense that the weights of the network connections 

are estimated given a dataset and its estimates are constant unless the network is 

retrained. An alternative method of NN training based on the Kalman filter tech

nique is proposed in Chen and Grant-Muller (2001), which results ill better forecasts 

when compared to standard NN training approaches. Also, ,,,hile sudden changes 

in the traffic flow can be aconuTIodated in the NN estimation due to its flexibility, 

changes in the network structure require new training of the model. :tvloreover, sub

jective information concerning things such as road blockages or weather conditions 
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are very difficult to include in NNs. Indeed, some sources of uncertainty cannot be 

accommodated into a NN forecasting model because the model would need to learn 

about it first. 

3.6 State space models 

State space models have been successfully applied in the field of time series analy

sis. This is possibly due to their flexibility and generality, \vhich make these models 

a suitable choice for a variety of problems that have become of great interest to 

statisticians over the years. Comprehensive st.udies of time series using state space 

modelling approaches can be found in Durbin and Koopman (2001), \Vest and Har

rison (1997) and Harvey (1989). 

Given a time series {Y;h~1' the main principle underlying state space models is 

that there exists an unobservaLle state pmcess {Odt~o which generates the observed 

values of the t.ime series. The specification of a state space model (S8M) then 

consists of defining a relationship between the observable process {Yih>ll and the 

unobservable process {Odt~o, together with how the state process {Oth~o evolves 

in time. 

Figure 3.3 gives a pictorial representation of a 8811. In this graph, the arrows from 

Ok to 0"+1, k = 0, ... , t + 1, represent the evolution of the state process {0t}t>o 

in time. In a state space model, a Markovian property is defined for the dynamic 

stochastic evolution of the state process, that is, Ot depends only on Ot-1 and a ran

dom error (not considered in the graph for simplicity). Also, given that Ot generates 

yt (represented in the graph by the arrows from Oi to Yj, i = 1, ... , t + 1), a de

scription of the observable time series can be formulated, also considering a random 

error. Some properties of Figure 3.3 are further discussed in Chapter 4. 
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FIGURE 3.3: Graphical representation of a state space model (Petris et al., 2(09). 
(Jo represents the initial information about the state process {(Jdt~o 

3.6.1 Dynamic linear models 

35 

Dynamic linear models form an important class of 881\ls, and their formulation relies 

on the assumption of a linear relationship betwcen observable and state proccsscs 

and also on the linearity assumption between consective values of the state process. 

In addition, normal distributions for the model error components are assumed. The 

development of the dynamic linear model (DL1\I) is extensively dcscribed in \Vest 

and Harrison (1997). Additiollally, Prado and 'Vest (2010) show recent developments 

regarding these models. 

A univariate DLM for a time series {}~h~l is defined by the following observation 

and system equations, and initial information. 

observation equation: 

(3.8) 

system equation: 

(3.9) 

initial information: 

(3.10) 

In this (kfinition, the p-dimensional regression vector F t and the p x p evolution 

matri.'{ G t are assumed known, Ot is the p-dimcnsional state vector, the scalar Vt 

and the p x p matrix lVt are, respectively, the observation and evolution variances 
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and the sequences {Vdt~l and {Wdt~l are independent normally distributed errors 

which are independent of each other. In (3.10), the 1Hlimensional mean vector rno 

and the p x p covariance matrix Co are assumed known, and Do represents all the 

available information at time O. 

A univariate time series model can be specifieo. by defining each component of the 

set {Ft. G h ~~, lrVtl in a DL1L This specification allows the inclusion of separate 

components representing different characteristics of the time series under study, such 

as trend and sea..<;onality terms. It makes the DL11 a structural model (Harvey, 1989) 

and a very flexible approach to represent non-stationary time series. 

Given the system equation (3.9), the DL~I can be viewed a.<; a dynamic extension of 

the normal linear regression model, whose form can be represented by the observation 

equation (3.8). 

3.6.1.1 DLlV1 estimation and time series forecasting 

Estimation of the state process {Otlt~l and forecasts for Yt givcn Ot are the main 

tasks when developing a DLM {Ft, Gil Vt, Wd. The Bayesian solution for this 

problem when Vt and lrV t are assumed known and constant is equivalent to the 

Kalman filter recursive equations (Kalman, 1960). However, Vi and lrVt are unknown 

in most applications. 

Considcr a DL~I with a constant but unknown observational variance V. Recall the 

(static) linear regression model of the form Yi = XT f3 + fi, where X is a vector of 

covariates and fi has a normal distribution with null Illean and unknown constant 

variance a2
• A Bayesian conjugate analysis in this static model can be developed by 

a..<;smuing that ({3, 1/ ( 2
) has a multivariate normal/gamma distribution (for details, 

see Gelman et al., 1995). This distribution can also be used in a dynamic modelling 

context for a conjugate analysis of (Ot, ¢) in a DLl\l {Ft, G t , V, VWtl where ¢ is 
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the observational precision I/V. Notice that the evolution variance W t is scaled by 

the observation variance V in this DL~I, that is, lVt in equation (3.9) is now VlV t 

instead. 

For practical purposes, interest relics on the marginal posterior distribution (OtIDt), 

where D t represents all the available information at time t. Similar to the (static) 

linear regression model, when assuming a multivariate normal/gamma distribution 

for (Ot, q~IDt), the marginal (0t!Dt ) follows a multivariate T distribution. 

The DLM sequential estimation procedure to obtain the posterior distribution (Ot, ¢) 

in time can be found in "Vest and Harrison (1997). Let (Ot-1, </> )IDt - 1 be the posterior 

distribution at t -1 for a DLM {F" G t , V, VWd, where Ft, G t and W t are known. 

Given (Ot-1,¢)IDt- b the marginal distribution 8 t- 1ID t - 1 and system equation (3.9) 

can be used to obtain the prior distribution OtIDt-I. \Vith this prior, the one-step 

ahead forecast distribution of Yt can be calculated via the observation equation {3.8}. 

The posterior of the parameters is then updated when Vt is observed via a conjugate 

analysis, resulting in the posterior distribution (Oil ¢)IDt . 

These steps can be repeated as time evolves and as new data are observed. The 

key idea is that forecast distributions for Yt are obtained given the prior for Ot, and 

the posterior distribution of (Ot, ¢) is updated a..'l new data arrive. This procedure 

is usually called the Bayesian forecasting system (\Vest and Harrison, 1997). 

Let {Fe, Gt, V, VlrV t } be a DL11 for a time series {Yih2:1. The distributions and 

updating equations for this DLi\1 are described as follows (for details and proofs, see 

\Vest and Harrison, 1997). 

At time t - 1, all beliefs about the parameters (Ot-I, </», where 4> = V-I, are repre

sented by, respectivciy, the posterior distributions 
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which are respectively a multivariate T distribution with degress of freedom 11t-1, 

mean vector mt-l and covariance matrix C t - l , and a gamma distribution with 

parameters nt_1/2 and 7It-1St-I!2. The e::;timate of the observational variance V at 

time t - 1 is St-l' 

Given the system equation (3.9), the posterior distribution of (Jt-l at time t - 1 

dynamically evolves into the prior distribution 

(3.11) 

with parameters 

at = Gtmt-l (3.12) 

and 

(3.13) 

Given the distribution of (JtIDt-l, which represents the prior Lelids about the state 

vector (J at time t, forecasts for Yt are obtained through the ob::;ervation equation 

(3.8). The one-step ahead forecast distriLution for Yt is then 

which is a univariate T distribution with parameters nt-I, it and Qt, where 

and 

Finally, after Yt is observed, the beliefs about ((Jt-l, ¢) are updated, resulting in the 

posterior distributions 

and 

where 
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and 

Tl.t = 71t-1 + 1 , and St-1 [ez ] St = St-1 + - -Q - 1 . 
Tl.t t 

The repetition of these steps over time leads to a sequential estimation of ( { f} t} t~ 1 , ¢ ) 

and {Yth~1 foreca..c;ting. 

\Vhen W t is unknown, the sequential estimation for a DLM can be adapted as 

follows. Suppose the state process {f}tlt~1 is constant in time. In this case, no 

error is considered in the dynamic evolution of this process, and the variance W t 

of the evolution error Wt in the system equation (3.9) is a matrix containing only 

null values. Also, from equation (3.13), when lVt = 0, the variance of the prior 

distribution for (f}tIDt-d at time t is 

(3.14) 

Now, suppose W t is positive definite, resulting in a stochastic evolution of the state 

process {f}th~1' The evolution error Wt in system equation (3.9) represents in this 

ca..c;e a loss of information when moving from f}t-l to f}t in the state process. The 

effect of this loss of information is controlled by the magnitude of W t relative to P t 

in equation (3.14). For 5 E (0,1]' we can then write 

lV = (1- 5) P 
t 5 t (3.15) 

and, with this, we have a relationship between "",Vt and P t through a discount factor 

5. The effect of the Wt on the dynamic evolution of {etl t>1 can be controlled by 8: 

when 5 = 1, a constaut state process is assumed for a DLM, wherea.'> the smaller 

the 5, the bigger the variability induced by Wt in the evolution of {f}tlt~l' \Vriting 
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W t as a function of P t in the variance of the prior distribution OtlDt-l in equation 

(3.13)' we now have 

(3.16) 

In practise, the value of the discount factor is chosen by comparing the forec&<;t 

accuracy of fitted DUvls based on different 8 values, usually between 0.9 and 0.99. 

3.6.2 Matrix normal dynamic linear models 

Let {Yth~l be a multivariate time series vector, where Y t = [yt(l), ... , Yi(n)]T. 

Quintana and West (1987) developed an extension of the univariate DLM described 

in Subsection 3.6.1 by assuming that each component }'t(i) follows a DLM 

{Fli) , Gt(i), V(i), V(i)W(i)} such that Ft{i) = F" Gt(i) = G t and Wt{i) 

Wt. for i = 1, ... , n. From this idea, if each yt(i) is modelled with a DL:t-.I 

{Ft, G t , \/(i), \/(i)W t }, a closed-form Bayesian inference for univariate DLMs can 

be extended to multivariate time series. The series {Yt lt?:1 then follows a matrix 

nor-mal DLAI (UNDLl'd) ''lith state matrix ell where each column of St corresponds 

to the state vector of each component of Y t . This model setup has also been called 

the multivariate DLM (Prado and "Vest, 2010). 

The MNDL~l for a time series {Ytlt?:l = {yt(i), ... , yt(n) h~1 is defined by the 

following observation and system equations. 

Obser-vation equ.ation: 

(3.17) 

system equation: 

(3.18) 
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The ~INDL~I a..'>sumes that Y t is a function of the state evolution matrix 8 t with 

the addition of a vector of observational errors Vt = [Vt(1), ... ,Vt(n)] following a 

multivariate normal distribution with a cross-sectional covariance matrix :E. This 

matrix represents the covariance structure among the componcnts of Y t at each time 

t. In audition, the dynamic stocha<;tic: evolution of the state evolution matrix 8 11 

reprcscntcd by equation (3.18), is a function of thc state matrix at time t - 1 with 

thc addition of a matrix of evolution errors Ot = [Wt(I), . .. , Wt{n)]. This matrix of 

evolution errors follows a matri.x variant of thc normal distribution. This variant, 

namely the rnatr'ix-variate (or just matrLx) normal distribution. has a null vector .. ' 

mean, left variance matrix W t and right variance matrix :E (\Vest and Hanison, 

1997), denoted N(O, Wt,~) in (3.18). Full details of the matrix normal distribution 

from a Bayesian perspective can be found in Dawid (1981). Also, Wt(i) and Vt(i) 

arc indcpendent scquences such that each of them contains independent normally 

distributed errors, i = 1, ... ,no 

Under the MNDL~l, the methodology for a dosed-form conjugate analysis of (8t,~) 

is a. direct multivariate extension of the normal-gamma conjugate inference for (Ot, ¢) 

in the univariate DL~L In the multivariate ca..<;c, (8t,~) follows a matrix normal/in

verse \Vishart distribution (Dawid, 1981). The following theorem summarizcs thc 

Bayesia.n sequential estimation and one-step ahead forecasting for the :rvlNDLM. 

Theorem 3.1. {adapted from West and HaTT'ison: 1997} Let {Yth~l be governed by 

a AfNDLM with equations {3.17} and {3.18}. Suppose the initial prior for (80 ,:E) 

folloUJs a matrix normal/inverse Wishart distribution with no degrees of freedom, 

mean vector mOl left variance matri.7: Co and right variance matrix So: 

The posterior distributions of (8(,~) and one-step ahead forecasts, at each time t, 

m'e as follows. 
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(i) Posteriors at t - 1: 

(ii) Priors at t: 

where 

(iii) One-step ahead forecast: 

with ma1yinal 

where 

(ill) Posteriors at t: 

with 

mt = at + Atei and C t = R t - AtAi Qtl 

l1t = nt-l + 1 and 8 t = n;-':1 [l1t-1 8 t-l + €t€i Q;I] , 
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where 

and 

P7'Oof. See Quintana (1985, 1987). o 

As Ft. G t and lV, are common to each Y,(i) ill the i\lNDLi\I, so arc the variances 

ell R t and Qt. Hence, the use of discount factors for the evolution variance matrix 

W t is straightforward and the same as for a univariate DLI\l (\Vest and Harrison, 

1997). 

The i\INDLi\l can be appropriate when analysing time flcries that are supposed to 

follow the same structure, since very similar DLI\Is must be defined for each t.ime 

series component under this multivariate model. As an example, Prado and \Vest 

(2010) applied the MNDLM to a 12-dimensional multivariate time series of exchange 

rates from different countries over a 10 year period. Their interest ill particular was 

to analyse the covariance structure of the multivariate time series, so they applied 

principal components analysis in the estimate of the observational covariance matrix 

E to understand which components and exchange rates could better explain the 

variability in the series. 

3.6.3 State space models in traffic modelling 

Okutani and Stephanedes (1984) developed Olle of the first Kalman filter based 

traffic flow models, where their goal was to foreca.'it. flows at four sites from a simple 

Japanese urban network. Although they did not mention in the paper that the 

proposed model had a state space formulation, the Kalman filter was used to estimate 

what they called the state vector component. The model also considered lagged 

information from upstream sites as covariates to forecast downstream sites. They 



Chapter 3. Literature review 44 

showed that their model outperformed alternative solutions based on diHcrential 

equations which took into account only past measurements of the site under study. 

A state-space approach was also adopted by \Vhittaker et al. (1997), considering a 

motorway network with 500 data collecting sites in Holland. The variables collected 

in each site were flow, occupancy and speed. The approach considered a I3ayesian 

multivariat.e time series model describing flO\v for each site as a fUllction of lagged 

flow in upstream sites and also lagged occupancies, through the fundamental diagram 

of traffic (illustrated in Figure 3.1 of Section 3.2). 

As pointed out by \Vhittakcr et al. (1997), due to computational difficulties involving 

Kalman filter estimates due to model complexity, the resulting approach could not 

be implemented in real-time, and just some preliminary results considering a small 

subset of the network were prescnted in their paper. Also, it was assumed a time 

invariant network, t.hat is, changes in the network could not be accommodated by 

the model. 

Compared to this approach, Stathopoulos and Karlaftis (2003) developed a simpler 

state space model for traffic flows taking into account lagged values of upstream 

sites. The model proposed was applied to a network with five data colledion sites. 

and had a better performance when compared t.o ARUvlA models. 

Tcbaldi et al. (2002) used a dynamic linear model to forecast t.raffic flows in a 

motorway located in Seattle (US), with five loop detectors inst.alled. Data available 

were from nine days of t.raffic counts during the morning period, collected on a 

minute-by-minute basis. Their model also considered lagged data from upstream 

sites as being informative about downstream sites, together with the inclusion of 

a component representing the smoothed trend of the traffic volume over time in 

the regression vector F t via splines. The days with available data were considered 

as a sample of a population of days in which traffic flows could be generated. In 
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this scnse, a hierarchical approach was considered in the development of the model, 

following the idea.':; presented in Lindley and Smith (1972). For the same data, a 

hierarchical static regres::;ion model was abo developed, excluding the time-varying 

property of the parameters allowed in a D LM formulation. 

Univariate static and dynamic linear models were fitted for each of the five data 

collection sites separately in Tebaldi et al. (2002). The results showed that the 

dynamic linear model provided better forecasts than the static model. The main 

reHSon for this difference was due to the DLM's ability to capture the dynamics of 

the traffic during the day. \Vhile the parameters of a DLM could change at each 

minut.e, t.hus having a bigger impact on traffic foreca.st.s through the application of 

the I3ayesian forecasting system, forccasts using the static modd were calculated 

using the same parameter estimates, regardless of the time of the da.y. 

Still in Tebaldi et a.t. (2002), lagged information about downstream sites "vas in

cluded in the developed models. The objective wa.'> to verify their effect on forecast

ing upstream sites. The inclusion of this type of data improved the forecasts just for 

one specific day, in which unexpected low traffic Hows were observed. This can be 

an indication that dowllstream sites can be useful when forecasts a.re needed during 

congestion periods. 

Con::;idering the developments described in this subsection, state space models have 

been shown to be useful when applied to traffic forecasting. However, the state space 

models described here were only fitted to simple networks. Except for \Vhittaker et 

a.l. (1997), the multivariate nature of the models was in the number of covariatcs 

used to forecast the time series of interest, and not in forecasting the multivariate 

time series of traffic flows. 

\Vhcn models are required to forecast simnltaneonsly a multivariate time series of 
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flows in a network, the resulting SSrvl formulation can be quite complex and unfeasi

ble to be implemented in real time, as pointed out by \Vhittaker et al. (1997). From 

this perspective, the 11NDLl\I could be an appropriate choice due to its closed form 

Bayesian sequential updating equations. However, in the MNDLl\I, the components 

of a multivariate time series of flows must have the same DL11 structure. This is not 

necessarily reasonable when modelling flows from the same network. As a simple 

example, suppose an l\INDLl\lmust be developed to forecast flows for three consec

utive sites S(1), S(2) and S(3) in a road section, where traffic flows from S(1) to 

S(2) to S(3). Assume further that, as in Tebaldi et al. (2002), lagged flows from up

stream sites are informative about downstream sites. In this case, lagged flows from 

site S(2) should be included in the regression vC'ctor F, (3) when modelling flows at 

S(3), whereas the regression vector for a flow model to S(2) would require lagged 

flows observed at site S(1). Such model structure is not allowed in an MNDLl\l, 

which requires the same Ft(i) when modelling a time series Y t = [Yt(1), ... , }t(n)]T, 

i = 1, ... , n (as shown in Subsection 3.6.2). 

3.7 Summary 

Despite the variety of approaches to develop short-term forecasting models, there are 

traffic modelling aspects that still must be addressed. As an example, it can be very 

difficult to build these models in a way t.hat accurately captures t.he dynamically 

evolving nature of t.raffic data, since mathematical approaches are based on static 

deterministic relationships and both ARIl\lA and VARMA models are ba.<.;ed on the 

assumption of stationarity of the time series. In addition, while neural networks can 

have the flexibility to adapt to sudden changes in traffic patterns, it can be quite 

difficult to determine the optimal configuration of the model and, as mentioned 

earlier, the model has t.o learn about new traffic patterns first. Moreover, it could 
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not be found in the lit.erature how to ea.'3ily calculate forecast limits in traffic flow 

models, as wen as evidences of their calibration, as will be discllssed in Section 5.3 

of Chapter 5. 

On the other hand, state space models can be a suitable alternative for traffic mod

elling. IndCC'ci, these models are flexible to fit non-stationary time series, real-time 

forecasting can be done via a Bayesian sequential parameter estimation, and there is 

also the possibility of including external information through the use of intervention 

techniques. However, this model can become quite complex when applied to large 

networks, as shown in \Vhittaker et al. (1997). 



Chapter 4 

The multiregression dynamic 

model 

4.1 Introduction 

The multiregression dynamic model (}.lDJ\I) is introduced in this chapter. Since 

the ~IDM uses a graph to represent multivariate time series, some important graph 

theory definitions and graphical modelling concepts are firstly presented. 

This chapter also introduces the linear regression dynamic model (LMDM), which 

is a particular ca:.,e of the MDM for which computations are particularly straight

forward. An application of the LMDM using the Manchester network data is also 

presented. This example includes the elicitation of a graph representing the time 

series of Hows observed at all Manchester network data collection sites. 

48 
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4.2 Graphical models 

Understanding the dependence structure among sets of random variables is a crucial 

problem in statistics. This problem is becoming even more important and challeng

ing with the increasing availability of large-scale data sets in several fields. 

Graphical models have been shown to be a powerful approach to represcnt complex 

dependence structures across variables, and their use has been widespread in many 

areas. For an overview of the sucessful use of graphical models in a variety of 

statistical applications, see Lauritzen (2003) and Jordan (2004). 

4.2.1 Some definitions 

Some of the definitions that \,·ill be llsed throughout the thesis are prc'st~ntecl ill this 

section. A comprehensive discussion of fundamental graph-theoretic definitions for 

graphical models can be found in \Vhittaker (1990) and Lauritzen (1996). 

A graph 9 is defined as a pair (V, E), where V is a finite set of nodes (or 11f1ticcs) and 

E is a subset of the Cartesian product V x V that contains ordered pairs of nodes, 

called edges of g. A pictorial representation of a graph uses circles or ovals to describe 

nodes. Figure 4.1 shows a graph with nodes Xl, X 2 , X3 and X.1 . Fl:om a statistical 

perspective, the nodes in a graph represent random variables or parameters. On the 

other hand, the edges connecting pairs of nodes in the graph define a relationship 

between nodes. 

FIGURE 4.1: A graph. 
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An edge (X, Y) E E is called directed if and only if (Y, X) tJ. E, otherwise (X, Y) is 

an 1mdirected edge. A directed edge is represented by an arrow (or arc) in a graph. 

In Figure 4.1, there is an arc from Xl to X3 and from X2 to X 1. Arcs in a graph 

describes a d'irect influence of a node X on Y. This influence can describe a causal 

relationship between X and Y. 

When there is an arc fro111 X to Y in a graph, X is called a parent of Y. Following 

the kinship analogy, Y is called a child of X. The sets of parents and children of a 

node X are denoted as pa(X) and ch(X) respectively. In the graph of 4.1, Xl is a 

parent of X3 and X4 is a child of X 2 , for example. A root node is any node without 

parents in the graph, that is, X is a root node if pa(X) = 0. The root nodes in the 

graph of Figure 4.1 are Xl and X 2 . 

U ndirectecl edges are represented by lines in a graph. These edges represent depen

dence between nodes without specifying the direction of the influence. For example, 

there is an undirected edge between Xl and X2 in the graph of Figure 4.1. In 

a graph, X and Yare also defined to be neighbours if they are connected by an 

undirected edge. An undirected graph is any graph that contains only undirected 

edges. 

4.2.1.1 Directed acyclic graphs 

Let 9 = (V, E) be a graph. A path of length n from 0: to f3 is any sequence (fro = 

0', ... ,O:n = l1) of distinct nodes such that (O:i-l,O:i) E E for all i = 1, ... , n. A 

directed path is any path (0'0, ... , O'n) that ha..<; at least one directed edge. Given two 

nodes 0: and l':J, if there is a directed path from 0: to ,8, 0' is called an ancestor of (3. 

Similarly, (3 is called a descendant of 0'. The set of descendants of 0: is denoted as 
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de(O'), whereas the set of non-descendants of 0' is denoted by nd(a), snch that 

nd(O') = V\(de(a) U 0'), 

where "\" means "excludes". 

A cycle is any directed path that starts and ends at the same node. A graph which 

contains only directed edges and docs not have any cycles, is called a directed acyclic 

graph (DAG). Figure 4.2 shows a DAG example. DAGs are commonly used when 

interest relies on the causal t;t7'llcture among variables. Section 4.8 shows how to 

elicit DAGs for time series of flows in road traffic networks. 

F 

FIGt:RE 4.2: A directed acyclic graph (DAG). 

Let X = [Xl,.'" Xn]T be a vector of random variables and let Q be a DAG for X. 

A complete oTdering of the elements of X, such that there is an arrow from Xi to Xj 

in Q only when i < j, is the condition that ensures that Q does not have any paths 

with cycles (\Vhittaker, 1990). It means that. a DAG can only be elicit.ed when there 

is a complete ordering across the components of X. 

DAGs form the basis of the multiregr'ession dynam'ic model which will be described 

in Section 4.4. 
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4.2.1.2 Chain graphs 

In contrast to DAGs, chain graphs can be used when there are only partial orderings 

among the components of X. A chain graph (CG) can be viewed as a mixture of 

undirected graphs and DAGs. In a CG, the components of X are divided into blocks, 

and each block corresponds to a group of variables where no direction of dependence 

(such as a causal structure) are specified. Then, an ordering is defined among these 

blocks of variables. The arcs in the CG follow this block ordering, cOllnecting nodes 

from a lower-numbered block to a higher-numbered block. 

To understand how chain graphs can be elicited, consider the following example, 

adapted from \Vermuth and Lauritzen (1990). Suppose of interest is the relationship 

between anxiety and smoking habits of individuals, as well as their relationship with 

other variables which may influence th('se characteristics. Suppose also that a cross

sectional observational study was conducted, where the following variables were 

measured on a group of survey respondents: 

Xl gender, respondent; 

X 2 socioeconomic status, respondent; 

X3 - country of study; 

X 4 Age when entering college, respondent; 

Xs smoking habits, respondent's parents; 

X6 an.. .. dety measure, respondent; 

X 7 smoking habits, respondent. 

Figure 4.3 shows a chain graph for X = [Xl, ... , X 7lT , motivated by subject matter 

knowledge from psychology theories (for details, see Wermuth and Lauritzen, 1990). 
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In this example, anxiety (X6 ) and smoking habits (X7 ) are defined as responses. 

The CG of Figure 4.3 is described below. 

Suppose t.hat there is no psychological evidence of a potential influence of anxiety on 

smoking habits, as well as no evidence that the anxiety of an individual is influenced 

by its smoking habits. Based on this idea, a symmet,ic association (vVermuth and 

Lauritzen, 1990) is assumed to occur between these variables, such that they are 

considered to be on an equal footing in the analysis. In this ::;ense, X6 and X 7 

form a block of variables in the CG in Figure 4.3, and this symmetric association is 

represented by an undirected edge between these variables. 

1 ____ _ 

FIGURE 4.3: A chain graph example (adapted from Wermuth and Lauritzen, 
1990). 

The variables {X}, ... , X 5 } are considered as potential influences on {X6, X 7}, and 

these infl uences may be represented by directed edges from {X I, ... , X 5} to {X 6, X 7 }. 

Furthermore, still based on subject matter knowledge, the subset of potential influ

encing variables {Xl,"" X 5 } can be divided into a set of background variable::; 

formed by gender of respondent (Xl)' socioeconomic status of the respondent (X2) 

and country of study (X3). An association structure assumption between these vari-

abIes is also considered, represented by undirected edges between them. Finally, 

these background variables {Xl, X 2 , X 3 } are assumed to be possible potential influ

ences on the remaining block {X4' X5}. These influences may be also represented 

by directed edge::; from {Xl, X 2 , X 3 } to {X4! X5}. 
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With all these a.<;smnptions, the CG in Figure 4.3 is formed by the ordered blocks 

B l , B2 , and B3 , where Bl = {X1,X2 ,X3 }, 8 2 = {X4 ,X5 } and 8 3 = {X6 ,X7 }. 

The directed influences from a lower ordered block to a higher ordered block are 

represented by directed edges in t he graph. 

The boundary of a node 0' in a CG 9 = (V, E) is the set formed by parents and 

neighbours of Q E E. This sct is denoted as bd(n). For example, in Figure 4.3, 

bd(X6) = {X4,X7 }. Also, a subset of nodes II E V is called an ance~tml set if 

bd(8) E H for all j3 E H. In the CG of Figure 4.3, 1I = {Xl, X 2 , X 3 , X 4 } is an 

ancestral set, because 

and bd(Xi ) E II, i = 1,2,3,4. 

The chain components of a CG 9 = (V, E) are the connccteu sets of nodes when 

removing all directed edges in g. The chain components of the chain graph in Figure 

4.3 are {Xl ,X2,X3}, {Xd, {X5} and {X6 ,X7 }. 

Chain graphs are fundamental to the development of the multivariate time series 

model to be presented in Chapter 7. 

4.2.2 Conditional independence and global Markov proper

ties 

A graphical model enables a high-dimensional statistical problem to be split up into 

small and manageable pieces. Representing a set of random variables by a graph 

not only provides a pictorial representation of the variables under study, but it also 

introduces modularity into the problem. This modularity means that simple local 

computations can be achieved, instead of a single (and possibly complex) one. 



Chapter 4. The m'ultiregression dynamic model 55 

Conditional independence is the main concept underlying this modularity. Given a 

vector of random variables, a graph can be used to encode statements associated with 

irrelevance of one variable X when knowing about another variable Y, given the value 

of a variable Z. The association between such conditional independence relations and 

the graph plays a key role in the development of graphical modelling techniques in 

statistics. And there are a series of properties, namely global Al arko7J properties, that 

translate the structure of graphs into conditional independence statements. 

Let X = [Xl, ... ,Xn]T be an ordered vector of random variables. Suppose that 

a DAG g can be elicited for X, where Xl is a root node. Using global l\Iarkov 

properties which will be described in the next subsection, the n - 1 conditional 

independence statements 

( 4.1) 

can be derived from g, where i = 2, ... ,n. The conditional independence statements 

in (4.1), together with g are usually defined as a Bayesian network (Cowell et al., 

1999, Smith, 2010). 

As an example, consider the vector of random variables X 

joint density distribution of X can be writen as 

(4.2) 

for any convenient order of X clements. Now, suppose the DAG g in Figure 4.4 can 

be used to represent the conditional independence structure among the components 

of X. In this DAG, Xl and X 2 are root nodes (that is, pa(Xi) = 0, i = 1,2) whereas 

pa(X3) = {XI ,X2 } and pa(X4 ) = X3 . Hence, using (4.1) to rewrite equation (4.2), 

we have that 
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Rewriting the density function of X conditioning on 9 simplifies some factors of the 

original density function (4.2). For example, while X.t is conditioned on {Xl,X2,X3} 

in (4.2), the conditional independence structure of 9 impliet-; that the conditional 

density of X4 can be represented in (4.2) based on its parent X3 only. 

A statistical model for X is defined as a family of density functions 

M = {f(xIO) : 0 E e}, 

where 8 is the parameter space (Cox, 2006). A graphical model characterizes a 

statistical model in the sense that M can be redefined in order to ensure that all 

the conditional independence relations translated from a graph hold for all densities 

in the statistical model. For example, given g, a statistical model for X can be 

Mg = {!(xIO, g) : fJ E 8 g}, 

such that 

n 

!(x\fJ, Q) = II !(Xi\fJ, pa(:ri)). 
i=l 

Given a chain graph C = (V, E) and its ordered blocks HI, ... , B k , the joint proba

bility distribution of a vector X = {Xl, ... , Xn} factorizes through the distribution 

of Bl together with the distribution of each block Bi conditioned on the union of 

previous blocks B l , ... , B i - l , i = 2, ... , k (Edwards, 2000). Hence, we have, 
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Again, using global Markov properties which will be described in the next subsection, 

the n - 1 conditional independence statements 

(4.4) 

can be deduced from a chain graph (Lauritzen, 1996). Since 

[Xl, ... , Xi-I] E nd(XJ, i = 1, ... , n, 

it is also true that 

(4.5) 

and these statements can be used to decompose each conditional distribution in 

(4.3). For example, recall the (chain) graph in Figure 4.1 of Subsection 4.2.1 for 

X = {XI,X2,X3,X4 }, and suppose that Bl = {XI,Xd, B2 = X3 and B3 = X 4 • 

From equation (4.3)' the joint distribution of X is 

f(x) - f(Bl)f(B2IBd!(B3IBI U B2) 

f(XI, x2)f(X3Ix l, :r2)!(:r41:rl, X2, X3) 

and, following (4.G), we have the conditional independence statements 

Hence, 
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4.2.2.1 Global Markov properties for DAGs and eGs 

The development of global 1Iarkov properties to associate the structure of b'Taphs 

with conditional independence Dtatements has been the focus of extensive research in 

the graphical modelling fielu. Lauritzen (1006) details a variety of 11arkov properties 

of different graphical structures. This section focuses on global 1.1arkov propertiC's 

of DAGs and CGs. 

Pearl (1988) introduced the d-st'paration criterion, from which conditional indepen

dence statements can be translated from a DAG. An equivalent criterion, namely 

the moralization criterion, was defined in Lauritzcn et al. (1000). The moralization 

criterion can be better understood by defining an algorithm to verify whether, given 

a DAG 9 = (V, E), an arbitrary conditional indepcndcnce statement, say XllYIZ, 

for sets of variables {X, Y, Z} E V, is true. This algorithm, described by Dawid 

(2002) in its present form, is defined by the following steps: 

Step 1: (ancestral graph): remove from the DAG any node which b neither in 

XU Y U Z nor an anceDt.or of a node in this set, together with any edges in 

or out of such node:l. 

Step 2: (moralization): add an undirected edge between any two remaining 

nodes which have a common child, but arc not already connected by an arrow. 

Then replace all arcs in the moralized graph by undirected cdges. 

Step 3: (separation): the statement X lLYIZ is true if, in the resulting undi

rected graph based on steps 1 and 2 above, all the paths which join a node in 

X to one in Yare intersected by Z. In this ca..c;e, Z is said to separate X and 

Y. 

To illustrate how this algorithm can be used, consider the DAG in Figure 4.2, 

taken from Cowell et al. (1909). Suppose that of intere:::;t is verifying whether 
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AlLBJ{X, Y}. The ancestral graph induced by Au B u Xu Y is given in Figure 

4.5(a) (step 1 of the the moralization criterion algorithm). The only nodes which 

have a common child in this graph are D and E. The::;e nodes must be connected by 

an undirected edge to moralize the graph (step 2). Figure 4.5(b) shows the ancestral 

moralized graph for Au B u X U Y replacing all ares by undirected edges (step 2). 

The possible paths from A to B in the graph of Figure 4.5(b) are A C D EY-B 

and ACDXE-YB. Since these paths are intertiected by {X, Y}, the statement 

AlLBJ{X, Y} can be deduced from the DAG in Figure 4.2. 

(a) (b) 

B B 

FIGt:RE 4.5: Ancestral graph (a) and moralized ancestral graph (b) to verify 
whether AllB!X, Y given the DAG in Figure 4.2 (Cowell et al., 1999). 

The global :Markov property for CGs (Frydenberg, 1990) can be de::;cribed by an 

algorithm very similar to the OIle defined above for DAGs. In the criterion for 

CGs, the main difference compared to the moralization criterion for DAGs is in the 

moralization step: a CG is moralized by adding undirected edges between nodes 

that have children in a common chain component, and then replacing the arcs of the 

resulting graphs by undirected edges (Cowell et at., 1999). 

Now, let 9 = (V, E) be a CG. Suppose that of interest is whether X lLYJZ, for sets 

of variables {X, Y, Z} E V. An algorithm to verify such a statement is given by 

the following steps: 

Step 1 (ancestral set): define a subgraph containing the smallest ancestral set 

of {X, Y,Z}. 



Chapter 4. The muitiregression dynamic model 60 

Step 2 (moralization): add an undirected edge between any two remaining 

nodes which have children in a common chain component of g, but are not 

already connected by an arrow. Then replace any a rcs in the moralized graph 

by undirected edges . 

Step 3 (separation): the statement X llY IZ is true if, in the resulting undi

rected ubgraph based on steps 1 and 2 above, Z separates X and Y . 

As an example, suppose we want to verify whether F llDIE in t he graph 9 of Figure 

4.6(a) provided by Edwards (2000) . Figure 4.6(b) shows the smallest ancestral 

graph of {F,D,E}. The chain components of this graph are {A,B,C},{D,E} and 

{F, G}. Figure 4.6(c) hows the the moralized version of this ancestral graph, where 

the orange line are undirected edges due to moralization. Since this moralized graph 

in Figure 4.6(c) contains a path, D-G-F, which does not pass through E, the nodes 

F and D are not eparated by E. Hence, th statement F llDIE is not true given 

the graph 9 of Figure 4.6(a). 

(b) (c) 

FIG RE 4.6: A chain graph example (a), together with ancestral graph (b) and 
moralized ance tral graph (c) to verify whether F Jl.D IE (Edwards, 2000). 
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4.3 Graphical models for time series 

4.3.1 Introduction 

Some of the first idea.') to combine graphical models wit.h multivariate time series can 

be found in Queen and Smith (1993), which developed the multiregression dynamic 

model to be described in Section 4.4. Brillinger (1996) also proposed the usc of 

graphs to represent time series, providing some examples where structural time 

series models (which has the dynamic linear model presented in Subsection 3.6.1 of 

Chapter 3 as an example) ,,,ere defined from graphical representations of multivariate 

processes. Brillinger also stressed the importance of applying the work developed 

on causality by Pearl (199S) in the context of econometrics, since "economy can be 

viewed as a vast system or network of interconnected processes" (Brillinger, 1996). 

Along these lines, Dahlhaus (2000) applied concepts from frequency domain analysis 

of time series (Chatfield, 2003) to elicit undirected graphs known a.') partial correla

tion graphs, where the dependence structure of stationary multivariate time series 

can be characterized. 

In contra.<;t to partial correlation graphs, Eichler (2000) explored the concept of 

Granger causality to elicit a class of directed graphs, namely causality graphs. Un

like partial correlation graphs, causality graphs allow more than Olle edge between 

two nodes. Dahlhaus and Eichler (2003) give an overview of causality and partial 

correlation gTaphs as well as examples of their application. 

The crucial issue when applying graphical models for time series is the tempoml 

dependence among the components of a time series vector. The DAG of the ~tate 

space model given in Figure 3.3 of Chapter 3 is an example of this application. At 

each time t, the DAG represents the direct influence of the state vector Bt on the 

observed value ¥t, represented by an arc from Bt to ¥t. This dependence is replicated 
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at each time frame. The temporal dependence between {Ot-I, Yt-tl and {Ot, Yi} is 

characterized by the arcs between Ot-l and 8t and arc omissions between Yt-l and 

l't. This DAG then encodes the conditional independence statements (Smith, 2010) 

and 

8t Jl{Yi, ... , Yt-d, {80 , ••• , Ot-2} 18t - 1 i = 2, ... ,n. 

The idea of replicating a graph at each time t taking into account the temporal 

dependence structure among the components of time series models forms the basis 

of what is usually called the dynamic graphical model (DGl\I). A particular ca..<;e of a 

DCl\l is when the dynamic graphical representation of a multivariate time series is 

defined hy a DAG, resulting then in a dynamic Bayesian network (DEN). See Korb 

and Nicholson (2010) for an introduction to DENs and Xiang et al. (2011) for an 

example of this class of model. 

4.3.2 Dynamic graphical models 

Apart from the multiregrcssion dynamic model which will be described in Section 

4.4, two cla.sses of models named dynamic graphical modeL" can be found in the 

literature, both based on state space modelling approaches. The first one, developed 

by Queen and Smith (1992), will be presented in Chapter 7. In this subsection, the 

focus is on the class of DGl\Js developed by Carvalho and \Vest (2007). 

The key idea of Carvalho and \Vest \Va.." to include an undirected graph in the struc

ture of the matrix normal DLl\1 (l\INDLM) described in Chapter 3. To understand 

the concept of this DGl\I, recall the definition of the l\INDLl\1 for a time series vector 

Y t = [}~(1), ... , }~(n)F, given as follows. 
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Observation equation: 

(4.6) 

System equation: 

(4.7) 

Initial information: 

8olDo'" N(po, W o, ~o), 

As previously described, a closed-form conjugate analysis for (8 t , ~t) can be ob

tained via a matrLx normal/inverse \\'ishart distribution. 

Consider the covariance matrix ~t in observation equation (4.6). Given the precision 

matrix \]It = ~;-1, possible indepmdencies acrm;s the components of Y t can be 

accommodated by defining zero off-diagonal elements in \]It, allowing a spar·S'ity 

structure in the model. This spaniity structure can be further repret;ented by an 

undirected graph 9 = (F, E) such that F = {Yi, ... , Yn } and with undirected edges 

between Yi and }j, i =1= j, if and only if 'ljJ(i,j) = 0, where ~)(.,.) are elements of \]It. 

Using the factorization of f(Ytl~;-l, 9) (Lauritzen, 1996), Carvalho and \rest (2007) 

developed a closed-form conjugate analysis for (8 t , ~t) based 011 the matrix normal/hyper

inverse \Vishart distribution. The hyper-inverse \Vishart distribution is the exten-

sion ofthe \\'ishart one for graphical models (Dawid and Lauritzen, 1993, Roverato, 

2002). 

An attractive feature of this class of DG~1 is the possibility to accommodate uncer

tainty with respect to the undirected graph for \]It. A stochastic graphical search 

procedure developed in Jones et a1. (2005) is then applied to calculate posterior 

probabilities for possible graph configurations sequentially over time. 
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\-Vithin this framework, the DGM of Carvalho and \-Yest (2007) extends the l\INDLl\1 

to accommodate sparsity structures in the cross-sectional covariance matrix E t in 

equations (4.6) and (4.7). Although this extension simplifies modelling of high

dimensional of time series, this model still requires that the regression vector F t in 

equation (4.6) must be common for the components of the time series of interest. 

This makes this DGM not suitable for multivariate flow forecasting, as discussed in 

Section 3.6.3 of Chaptcr 3. 

Applications of this DGM can be found in Carvalho and \-Vest (2007), Prado and 

\Vest (2010) and \Vang et al. (2011). \Yang and \Yest (2009) developed an extension 

of this model to matrix-valued timc series. 

4.4 The multiregression dynamic model (MDM) 

l\lultiregression dynamic models (Queen and Smith, 1993) are a class of DGMs 

which also combine graphs with state space models. \-Vhereas Carvalho and \Vest 

(2007) use an undirected graph to represent conditional independence relationships 

thus allowing sparsity in the covariance structure of a multivariate time series, a 

causal driving mechanism between the elements of a timc series vector Y t is the 

main a.,')sumption underlying the l\lDl\1. 

\Vith this assumption, a DAG can be used to represent any conditional independence 

relationships related to causality across timc series components at each time frame. 

Thus, the l\ID~1 can introduce modularity in a high-dimensional time series problem 

by breaking a multivariate model into simpler univariate components. 
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4.4.1 Model definition 

Let Y t = [yt(l), ... , yt(n)JT be an n-dimensional time series vector, where Yt(i) 

is the observed value of yt(i) and yt'(i) = [UI (i), ... ,Yt(i)]T is the observed process 

associated with yt( i), i = L ... ,n. Let OJ = [Ot(l) T, ... ,Ot(n) T] be the state vectors 

of Yt. where dim(Ot(i)) = Si, i = 1, ... , n. For notational convenience, define 

Xt(i) = [}~(1)"" I }~(i - l)r, i = 2, ... ,11 

and 

Z t ( i) = [r'i (i + 1), ... , r~ (n )] T , i = r + 1, ... , n - 1, 

with observed processes 

and 

respectively. Suppose further a conditional independence structure related to causal

ity such that the variables are ordered and indexed. Then, a DAG can be elicited 

for the time series so that, at each time tEN, fori = 2, ... ,11, 

Yt(i)Jl{[yt(l), ... , }'t(i - l)]\pa(Yt(i))}lpa(Yt(i)) 

and 

Yi(i)JL{[yt(l), ... , yt(i - l)]\pa(yt(i))}I{pa(Y\i)), yt-I(i)} 

The l\'lDl\l is then defined by the following observation and system equations and 

initial information. 
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Observation equations: 

Yi(i) = FtCi) T BtU) + l't(i), Vt(i) ro..; (0, Vt(i)), i = 1, ... , n. (4.8) 

System equation: 

(4.9) 

Initial information: 

(4.10) 

In the 11Dl\1, the 8i-dimensional vector Ft(i) is a function of xtc;) and yt-1(i), but 

not zt(i). Also, Vt(i) arc observational variances, i = 1, ... ,n, and the s x S matrices 

G t , lVt and Co are defined as, 

G t = blockdiag(Gt (1), ... , G,(n)), 

W t = blockdiag(lVt(I), ... , lVt(n)) 

and 

Co = blockdiag(Co(l), ... , Co(n)), 

such that 8 = L~l Sj and the Si x Si matrices Gt(i) and Wt(i) may be func-

. f t-1(') 1 t-1(') b t t t-1(')' 1 I dl·t· T tlOl1S 0 XI, aile y 1" 'lJ, no, z I" 7, = , ... ,n. n a (1 ,lOn, W t = 

sequences of independent errors. 

Similar to the DLl\l estimation and forecasting approach described in Subsection 

3.6.1 of Chapter 3, the prior distribution for Bt1Dt- 1 is obtained from the posterior 

distribution Bt-1IDt - 1 and system equation (4.9) for any time t. Forecast distribu

tions for each Yt (i) conditional OIl pa(Yt (i)) are then found separately via (4.8). 
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Within this framework, the :t-.lD:rvl allows the following n conditional distributions, 

(4.11) 

Note that distributional assumptions for both observation and evolution errors are 

not required in equations (4.8) and (4.9). This results in very flexible conditional 

distributions for Y;(i)I{Dt- b Ft(i), Bt(i)}, i = 1, ... , n. 

Since Ft(i) may be a function of xt(i), and both Yt(i) and xt(i) are simultaneously 

observed at a given time t, marginal distributions for each Yt(i) are required. The 

moments of these marginal distributions can be analytically calculated when as

suming normal observation and evolution error distributions and also by imposing 

linearity with respect with t.he parameters in both observation and syst.em equa

tions (4.8) and (4.9). A detailed example of a particular :t-.lDM considering these 

assumptions is presented in Section 4.7. 

The independence across the state vectors Bt(i), i = 1, ... , n, is an important rcsult 

which allows independent forecasts for each Y;(i) using the conditional distributions 

in (4.11), and also allows each Bt(i) to be updated separately in Y;(i)'s univariate 

conditional model. This result is formalized by the following theorem. 

Theorem 4.1. Let {Yth~l be governed by an MDM. If lL7=lBo(i), then 

and 

Proof. See Qucen and Smith (1993). o 
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This theorem enables independent sequential Bayesian inference for each Ot(i), i = 

1, ... , n, under the l\IDl\I, after Yt is observed at each time frame. That is, given that 

lL7=1 Oo(i) , which is a consequence of setting Co to oe block diagonal in equation 

(4.10) of the l\lDM, the state vectors Ot(i), i = 1, ... , n, remain independent after 

samphng (as termed by Smith, 2010). Therefore, the MDM tackles the problem 

of modelling multivariate time series by considering separate univariate models for 

each Yt(i)I{Ot(i),pa(Yt(i))}, i = 1, ... ,n, allowing local computations in possible 

high-dimensional set tillgS. 

4.5 The linear multiregression dynamic model 

(LMDM) 

The linear" m'llltiregression dynamic model (Ll\lDl\I) is a particular ca.':;e of the l\lDl\I 

when assuming linear relationships with respect with the parameters and normal 

distributions for the random errors in equations (4.8) and (4.9). In the Ll\lDM, a 

normal distribution is also considered for the initial information about 00 in (4.10). 

'With this approach, t.he L:r..IDM uses the DAG to model the multivariate time series 

by n univariate separate regression DL:r..ls: one each for }'t(I) and Yt(i)lpa(}t(-i)), 

i = 2, ... , n. Each time series has its parents as linear regressors, while root nodes 

are modelled by any suitable DLl\ls. As such, the LMDM is computationally simple 

and DLl\1 techniques can be readily applied. 

Formally, the Ll\IDl\l is defined as follows. 

ObseTvation equations: 

Yi (i) ( 4.12) 
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System equation: 

(4.13) 

Initial 'information: 

OolDo r-v N(mo, Co). 

Similar to the I\IDI\I definition, the si-dimensional vector Ft(i) contains an ar

bitrary, but known, fUllction of the parents pa{Y((i)) and possibly other known 

exogenous variables; Oli) is the si-dimensional parameter vector for )~(i), and 

OJ = (Ot(l)T ... Ot(n)T); l~(l), ... , Vt(n) are the scalar observation variances; 

mo and Co are the moments for OolDo; the s x s matrices Gt, Wt, and Co arc 

block diagonal, where s = L:~l Si; w; = (Wt{l)T ... Wt(n)T), and vt(l), ... , Vt(n) 

and Wt(1), ... , Wt(n), are independent sequences of independent errors. 

Even though the LMDI\1 conditional distributions are assumed as being normal, the 

joint forecast distribution of Y t can yield highly non-Gaussian patterns, as well as 

their marginal distributions (Queen and Smith, 1993). Also, analytical expressions 

for the marginal forecatlt dbtributions of Yt(i) cannot generally be obtained. How

ever, marginal forecast moments for Yt(i) are readily available using the standard 

probability identities 

E[Y((i)IDt - 1] = E{E[Yt(i)IDt _ 1 , pa(yt(i})]}, (4.14) 

V[Yt(i)ID t- 1] = E{V[Yt(i)IDt- 1 , pa(rt(i))]IDt - 1}+ V {E[rt(i)IDt-t, pa(rt(i))]IDt-d, 

(4.15) 
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and, given two variables Zt(l) and Zt(2), 

(4.16) 

Section 4.7 shows an example of the LI\IDI\l including the calculation of these 

marginal moments. 

4.6 Assessing MDM performance 

Different. measures are considered to verify the accuracy of the models t.o he devel

oped ill t.his t.hcsis, due to the nature of traffic data and the characteristics of interest 

in the models. The forcca.<;t accuracy mcasurcs to be adopted are the median sqnare 

er"'ror, the log-predictive likelihood and the mean interval score, uefined as follows. 

Let {ytl he a time series observed at times t = 1, ... , T anel {It} be a sequence of 

foreca.<,ts for {ud. The median squared error (I\lcelianSE) is 

11edianSE = median {lUi - fi]2} i=l ..... T. 

The smaller the I\ledianSE, the more support there is for the corresponding model. 

The McdianSE is preferred to the mean squared error in the evaluation of flow 

foreca.'3ting models due to the large number of possible outliers in traffic data (Queen 

et al., 2(07). 

\Vhen evaluating model forecast performance in this thesis, it is important to con

sider not only the performance of point forecasts but also the quality of its precision. 

Thus, a measure which assesses the accuracy of the multivariate forecast distribu

tion as a whole, rather than just the point forecasts, is preferred. Such a measure 

is the joint log-predictive likelihood (LPL). After observing the time series up to 
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time T, the LPL evaluates the log of the density of the joint one-step ahead foreca..<;t 

distribution at time t at the observed value Yt = {Yt(1), ... , Yt{n))T, and aggregates 

these over all values t = 1, ... , T. In the Ll\IOl\I, because of the conditional indc-

pcndence structure across }~(1), ... , Yt(n), the density of the joint one-step ahead 

forecast distribution at time t evaluated at the observed value Yt is given by 

n 

f(YtIDt-d = IT f(Yt(i)lpa(Yt(i)), Dt- 1), 

i=l 

where !(Yt(i)!pa(Yt(i)), Dt-d is the one-step forecast density for Yt(i) conditional on 

its parents evaluated at Yt. Thus, the LPL for the LMOl\1 is calculated as 

The larger the value of the LPL, the more support there is for the corresponding 

model. 

Because the forecast variance directly affects the forecast limits, an alternative, 

decision theoretically principled way of comparing forecast performance, is through 

the mean interval score (Gnciting and Raftery, 2007). Denote the lower and upper 

100(1 - a)% forecast limits for Y~(i) by ltCi) and Ut(i), respectively. Then, for each 

t, the interval score for (itO), Ut(i)) for each observation Yt(i) is 

where I is an indicator function. This measure is ba..,>ed OIl the range of the forecast 

limits (It (i), Ut (i)) and also considers a penalty in the situation that these limits do 

not cover the observation Yt(i). This results in a negatively oriented score, that is, 

the smaller the measure, the better the model from which the forecast limits were 
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calculated. The mean interval score is then calculated over all observations in a 

time series. This idea can be extended to the multivariate 1\IDl\1 setting by simply 

calculating the mean interval score over all observations for each time series. 

4.7 An LMDM example 

To illustrate the definition of an LMD1\1 and the derivation of marginal moments 

of forecast distributions for time series vector components, a DAG from Queen et. 

al (2007) and Queen and Albers (2009) will be used. This DAG represents a traffic 

network, hereafter called the London network, formed by an intersection of the 1\125 

orbitalmotorway with the motorways A2 and A282 in the east of London, UK. An 

aerial view of the London network is given in Figure 4.7(a). 

Data from this network are available for 21 weeks in the form of hourly vehicle 

counts in 17 sites of the network. The schematic diagram in Figure 4.7(0) shows the 

distribution of these data collection sites over the intersection. 

The sites 167, 168, 170A and 170B of the London network will be used in this 

example (see Figure 4.7(b)). Thus, we have the vector, 

Y t = [Yt(167), Yt(168), Yt(170A), Yt(170B)]T, 

which represents hourly vehicle flows in these four sites. 

The DAG for this subnetwork, described in Queen et ai. (2007) is given in Figure 

4.8. From the data collecting sites diagram of this network. it is known that vehicles 

on site 167 can leave the A282 motorway and go to site 168, or they can continue 

on the road, and go to sites 170A or 170B. Hence, we have that Yt (167) is a parent 

of Yt(170) = Yt(170A) + Yt(170B) and Yt(168), for example. Also, following Queen 
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FIGURE 4.7: The London network. (a) Aerial photograph (©2012 DigitalGlobe, 
GeoEye, Infoterra Ltd & Bluesky, The Geolnformation Group, Map data ©2012 
Google) and (b) schematic diagram: the grey diamonds are the data collection 
sites, each of which is numbered. The arrows indicate the direction of traffic flow 

on each part of the network. 

73 

et al. (2007), both yt(168) and yt(170A) are logical functions of their parents, and 

are known since their parents are known. Using the terminology of the \VinBUGS 

software (Lunn et az', 2000), they are called logical variables and are represented by 

a double oval in the DAG. 

Yt(170B) 

FIGURE 4.8: DAG for a subset of the London network based on sites 167, 168, 
170A and 170B. 
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Let 

}~(167) = Yt(l), Yt(170) = Yt(170A) + Yt(170B) = Yt(2), Yt(170B) = Yt(3), 

Yt(168) = Yt{ 4) and Yt{170A) = Yt(5). 

Given the DAG in Figure 4.8, the LMDM for this subnetwork is defined as follows. 

Observation equations: 

where, 

Yt{I) = F t{l) T Ot(1) + vt(l), 

Yt(2) = F t(2) T Ot(2) + 1)t(2), 

}~(3) = F t (3)T Ot(3) + 1't(1), 

Vt(1) '"-J N{O, Vt(I)) 

1)t(2) '"-J N{O, Vt(2)) 

1't(3) '"-J N{O, Vt(3)) 

F I (1) T = [1 0 ... 0] , Ot(1? = [81(1) ... 821 (1)] 

F t(2)T = [Yt(l) 0 ... 0], Ot(2)T = [0 1(2) ... 02.1(2)] 

Ft(3)T = [Yt(2) 0 ... 0], Ot(3)T = [81(3) .. .£h.t(3)] 

Logical variables: 

}~(4) = Yt(I) - }~(2) 

}~(5) = }~(2) - Yt(3) 

In this L~fD~l, the regression vectors F t (2) and F t (3) contain the observed values 

of the parents of the time series }~(2) and Yt(3), respectively. Since Yt(I) docs 

not have parents, F t (l) contains the scalar 1 followed by a vector of zeros. To 

accommodate the different flow patterns within the day (as shown in Chapter 2), 

a seasonal DL~1 model (\\'est and Harrison, 1997) will be used for each time series 

(apart from the logical variables). Hence, the vectors Ot (1), Ot (2) and Ot (3) will 
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contain one parameter for each hour of the day. Thus we have, 

for i = 1,2, 3. 

System eqll.o,lion: 

where, 

()t-1 = [192.1(1) ... 191 (1) 1921 (2) ... 191(2) 192.1(3) .. . D1 (3)]T, 

G = blockdiag{G(l), G(2), G(3)}, 

where the 24 x 24 square matrix G(i), i = 1,2,3, is 

G(i) = 

a I-a 0 0 

o 0 

1 o 

1 o 

1 

o 
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The structure of the matrices G(l), G(2) and G(3) is such that the hour parameters 

arc "rot.at.ed" at each time as required. Also, t.he scalar a in G(i), i = 1,2,3 is 

included to allow a small effect of the parameter for the corresponding hour from 

the previous day, which was found to improve forecru;ts (Queen et al., 2007). 

Initial information: 
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where, 

Co = blockdiag{ C o(l), C o(2), C o(3)}, 

with Co(i) being a 24 x 24 square matrL,{ and assumed known, i = 1,2,3. 

Hence, from (4.11), we have the following conditional one-step ahead forecast dis

tributions, 

and 

Yi(l)IDt - 1 "'" N{Ft {l)TBt {l), \'t(1)), 

Y~(2)IDt_},Yt(1) rv N{Ft(2)TBt (2), \~(2)), 

Note that these are conditional forecast distributions. After observing y" the 

distribution for each Bt(i) can be updated separately (in dosed form) within the 

(conditional) DL~l for Yi(i)lpa(Y,{i)), because of the initial independence of Bo(i), 

i = 1,2,3, through the block diagonal form for Co and the block diagonal forms of 

lVt and G t in the LMD~1. 

The derivations of first and second moments of both conditional and marginal one

step ahead forecast distributions for this LMDM are in Appendix A. 

4.8 Building an LMDM for the Manchester net

work 

This section describes the elicitation of a DAG and the associated L~lDM for the 

l\lanchester network presented in Chapter 2. The elicitation process defined here 
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generalizes the one developed in Queen et al. (2007) by (\ssuming that all types 

of road layouts can be split up into combinations of two t.ypes of junction: joins 

and forks. :r..loreover, a causal driving mechanism motivates this elicitation, in the 

sense that traffic flows at upstream site· can be informative about traffic flows at 

dowllstream ·ite . 

4 .8.1 Forks and joins 

Traffic networks are ba ically a. series of junctions of two types: fork and joins .. 

fork , in which vehicles from a single site S(1) move to two sites S(2) and S(3), is 

illustrated in Figure 4.9(a). A join ) in which traffic from two .. ites, S(4) and S(5). 

merge to a single site S(6), is illustrateu in Figure 4.9(b). Elicitation of a DAG and 

Lr.,lDM for each fork and join in a network are the building blocks for eliciting a 

DAG and L:r..lDI\I for an entire network. 

FIGURE 4.9: (a) a fork and (b) a join. In each diagram the arrows denote the 
dir ction of travel and the circles arc the sites. 

Let Yt(i) be the number of vehicles passing site S(i) during time t. Following Queen 

et al. (2007) and u ing upstream flows to model downstream flows , the ob ervatioll 

equations f an L ID 1 for Yt(1), Yt(2) , Yt(3) and Yi(4), Yt(5) , Yt(6) can be defin d 

as 

( 4.17) 

Yt(6) = Yt(4) + Yt(5). 
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In (4.17), the JLt (-) parameters are level parameters, while parameter Ot represents 

the proportion of traffic flowing from 5(1) to 5(2), and Vt(-) are normal error terms. 

In Queen et al. (2007) the normality of the errors VI (.) is justified by appealing 

to the Poisson approximation to normality for large means. The Hows from the 

l\Ianchester network cannot be considered either Poisson or normal, as will be seen 

in Chapter 5. However, the How variance does increase as a function of the flow 

mean. \Vest and Harrison (1997) propose using a variance Imv within a normal 

DLI\l to model such non-normal data. Thus, in order to take advantage of the 

computational simplicity of the LMDI\l and the case with which established DLI\I 

techniques can be incorporated into the model, normal errors will be used for Vt (.) 

and, in Chapter 5, the LI\IDl\I will be extended to incorporate a variance law to 

accommodate the non-normality of the data. 

The series Yt(3) and Yt(6) are modelled as logical variables. This is becanse all traffic 

from 5(1) must flow to 5(2) and 5(3), while all traffic from 5(4) and 5(5) flows 

to 5(6). Of course, these logical relationships are not exactly true because some 

vehicles will be between sites at the start and end of the period. Thi!:l error should, 

however, be small enough to make this model appropriate. 

DAGs representing the fork and join are given in Figure 4.10. B('callse the model 

for Yi(2) depends on Yt(1), Yi(l) is a parent of Yt(2), and hence there is an arc froIll 

Yt(l) to Yt(2) in the DAG, and so on. Logical variables are denoted by double ovals 

in the DAG. Joining together the DAGs of individual forks and joins provides a 

general method for eliciting a DAG and associated LI\lD11 for an entire nchmrk. 

Figure 4.11 sho\\"s the full DAG for the Manchester network. 
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(a) (b) 

FIGURE 4.10: DAGs representing (a) a fork and (b) a join. The double ovals 
represent logical variables. 

4.8.2 Model parameters 

79 

Although each of the observation equations for Yt(l), Yt(4) and yt(5) in (4.17) are 

algebraically the same for each time t, the actual parameters, /It(l), I1t(4) and 11·t(5), 

will exhibit a diurnal cycle, as clearly shown ill Figure 2.3(a) of the Chapter 2. This 

diurnal cycle can be modelled by a seasonal factor DL11 as considered in Section 4.7, 

thus having a mean flow level parameter for each time period in the day. A Fourier 

form DL11 (\Vest and Harrison, 1997, Section 8.6) or using splines to represent the 

smooth flow trend over the day (as in Tebaldi et al., 2002) could be considered. 

The advantage of a scasonal factor model is its interpretability, which, as demoll-

strated in Queen and Albers (2009), is especially helpful at times of modelling change 

via intervcntion (the tcchnique of intervention allows information regarding a change 

in the time series to be fed into the model to maintain forecast performance -- see 

\Vest and Harrison, 1997, Section 11.2). \Vhen flow data are aggregated to small 

time intervals such as 5 minutes, a seasonal factor model can cause numerical insta-

bility problems \vith the Kalman filter computations because of the large number of 

parameters on possibly different scales. In this case, either a Fourier or a smooth 

trend model would be preferable for parsimony. However, for 15-min data, a seasonal 

factor model does not have such problems and computation is fast and efficient. In 

Chapter 5, 15-min data are modelled and a seasonal factor model is used to model 
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seasonality, whereas Chapter 6 models 5-min data and splines will be used instead 

there. 

The parameter at in (4.17) represents the proportion of traffic flowing from parent to 

child which, as illustrated in Figure 4.12, can vary systematically at different times 

of the day. The diurnal pattern exhibited by the parameter at can also be modelled 

by a sca.<;onal factor model as described in Queen and Albers (2009). Again, there 

are computational problems in doing this for 5-min data. Thus, for the 15-min data 

in Chapter 5, a seasonal factor is used for Qt, while for the 5-min data in Chapter 6 

splines are used to model the seasonality. 

4.8.3 Linear relationship between parent and child 

The L!\lD~1 equation for Yi(2) in (4.17) assumes a linear relationship between parent 

and child. Figure 4.13, showing typical plots of 15-min flows for parent versus child 

at different times of the day, illustrates why this is a realistic a.,<;sumption. A linear 

relationship would explain most of the variation between parent and child in each 

plot, although the relationship is not the same throughout the day. This is simply 

a consequence of the diurnal cycle of the proportion parameter at, a.') demonstrated 

in Figure 4.12. Notice that there seems to be two separate regimes in the plot for 

17:15-17:29. This is the result of some unusual flows requiring intervention at the 

parent site. 

4.8.4 Contemporaneous flows as regressors 

As mentioned in Chapter 2, the distances between data collection sites in the Manch

ester network are such that vehicles are usually counted at several data sites in the 

same 5-min interval. As a result, the flows at sites upstream to a site S(i) at time 
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t are helpful in forecasting the flows at S(i) at the same time t. Since the L1\IOl\1 

can accommodate contemporaneous flows (which are not known at time t) as linear 

regressors, this model is suitable for forecasting flows in networks where vehicles 

are simultaneously observed at different data collection sites, as is the case in the 

l\ianche::-;ter network. 

On the other hand, Tcbaldi et al. (2002) considered lagged upstream flows for fore-

casting at time t. As these lagged flows are known at time t, this model can be a 

simpler approach when compared to the Ll\10l\1 to forecast flows in an on-line envi-

ronment. The comparison of the Ll\IDl\I with univariate DLl\Is with laggt'd flows as 

regressors (as, for example, in Tebaldi et at., 2002) is therefore an important isslie 

to support the use of the Ll\IOM for real-time traffic flow forecasting. 

To make this comparison, both models were fitted using 15-min and 5-min flows 

between 07:00-20:59 (ignoring the quiet night-time period) during May 2010 at sites 

9206B and 9200B of the l\lanchester network. To evaluate the quality of one-step 

ahead forecasts, both MedianSE and LPL were calculated for each model. Table 

4.1 shows l\IedianSE and LPL for both models for both 15-min and 5-mill flows. 

The Ll\IDl\1 did indeed perform better than univariate DLl\Is with lagged flows as 

regressors. 

TABLE 4.1: Median SE and LPL for Ll\IDl\ls and univariate DLMs using IS-min 
and 5-min flows of the Manchester network 

Model for }~(9206B), Yt(9200B) 

Univariate DLl\ls with lagged flows 
Ll\IO~l with contemporanpous flows 

15-min data 
l\IedianSE LPL 

2876 -7198 
1154 -1288 

5-min data 
MedianSE LPL 

914 -3834 
232 -3404 
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F IGURE 4.12: Proportion of traffic flowing from (a) parent 1431A to child 1437A 
and (b) parent 6013B to child 6007L during four Wednesdays in Jay 2010. 
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Chapter 5 

Accommodating flow 

heteroscedasticity and 

measurement errors in the LMDM 

5 .1 Introduction 

!\lotivated by the analysis of the traffic data from the Manchester network described 

in Chapter 4, an extension of the LMDM to accommodate different levels of traffic 

variability over the day is presented in this chapter. An analysis of the forecast 

limits provided by this extended LMDM is done by comparing its approximate and 

simulation-based forecast limits, and also by verifying the coverage of the approxi

mate ones. Following these developments, this chapter also shows how measurement 

errors due to malfunctions in traffic data collection devices can be better accommcr 

dated within the L!\ID~1. 

85 
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5.2 Modelling flow heteroscedasticity 

Consider an Ll\ID~I for an n-dimensional time series vector Y t = [Yt(l), ... , Yt{n)JT, 

\'lith observation and system equations 

and 

(5.2) 

respectively, as defined in Section 4.5 of Chapter 4. In all previous Ll\IDM appli

cations in traffic forecasting, the observation variance \It{i) was assumed unknown 

and, following \Yest and Harrison (1997), a conjugate analysis was done following a 

multivariate normal/gamma distribution for (Ot(i), ¢t(i)), where ¢t(i) is the observa

tional precision l/Vi(i), ·i = 1, . .. , n. This conjugate analysis considers ~t(i) = V(i) 

in (~.1), that is, t.he observation variance \It (i) is assumed constant over time for 

each time series Yt (i), i = 1, ... , TI. 

However, the a.<'>smnption of a constant observational variance \It is unrealistic when 

looking at traffic flow data. An example of flow heterocedastirity was shown in 

Section 2.4 of Chapter 2, where boxplots of flows from the l\.lanchester network were 

shown. 

Some approaches to deal with time-varying variance flows can be found in Kamari

anakis et al. (2005) and Tsekeris and Stathopoulos (200G), in v.·hich traffic forecasts 

with a measure of their uncertainty arc obtained through the combination of ARIl\.IA 

models (desc-rioed in Section 3.3 of Chapter 3) with a variance model called (gener

alized) autoregressive conditional heteroscedasticity models ((G)ARCH, Chatfield, 

2003). However, as shown in Section 3.7 of Chapter 3, ARIMA models might not 
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be a reasonable choice for real-time multivariate flow forecasting, given the require

ments of an on-line traffic management environment. 

In order to accommodate the assumption of non-com;tant observation variances in 

the L\lD)'1 while being able to use the simple structure of the standard DLI\1 for 

conditional univariate distributions, some model extensions described by \Vest and 

Harrison (1997) can be applied in the context of the Ll\IDl\1. This section shows a 

description of these extensions as well as their applications in traffic mouclling. 

5.2.1 Variance laws for \'t 

It was suggested in Section 4.8.1 of Chapter 4 to extend the Ll\IDl\l to accommodate 

non-normal data by using a variance law, such that the mean is related to the 

variance. This variance law would also accommodate a non-constant "i(i). Since the 

LI\IDl\lllses simple normal DLMs for each Yt(i)lpa(Yt(i)), it can easily incorporate 

a variance law into each of its conditional separate DLMs using extensions described 

in \Vest and Harrison (1997), thus producing a novel approach for accommodating 

non-normal data and non-constant "~(i) in multivariate state space models. 

Suppose an LI\IDI\l for a time series Y t is given by observation and system equations 

(5.1) and (5.2), respectively. In a variance law model, the observation variance Vt (i) 

in the observation equation (5.1) is (\Vest and Harrison, 1997) 

Vt(i) = k(llt(i))V(i), i = 1, ... , n, (5.3) 

where f.1t(i) and V(i) are the underlying level and observation variance, respectivciy, 

of the series }~(i), i = 1, ... , n. The function k(pt(i)) represents the change in 

observation variance associated with 11t(i), which depends on the context and nature 
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of the data. Some context-specific variance law examples can be found in Stevens 

(1974), Boylan and Johnston (1996) and Kobre et al. (2001). 

Figure 5.1 shows scatterplots of log mean versus log variance of flows at site 9206B 

from the l\lanchester network for two period~: 19:00-06::>9 and 07:00-18::>9. Both 

plots show (different) roughly linear relationships between log mean and log variance 

at this site. Similar relationships can also be observed at other sites. These empirical 

relationships suggest a traffic variance law model of the form 

log(Var(}~ (i))) = fJ( i) log(/lt (i)), (5.4) 

where p(i) is a parameter represmting the slope of the relationship between log 

mean and log variance of flows at a given site i. 

Rather than determining precise values for kUlt(i)), more important is that k(pt(i)) 

"changes markedly as the level of the series changes markedly" (\Vest and Harrison, 

1997). The empirical flow mean-variance relationship shown in Figure 5.1 therefore 

suggests modelling the change in observation variance a..')sociated with the level Jlt(i) 

by 

k{pt{i)) = exp(p(i) 10g{l1,t(i))), 

with different f3(i) values for the two periods 19:00-06:59 and 07:00-18:59. An 

alternative would be to have an intercept parameter in (5.4). However, ba..sed on 

the application to be described in Section 5.2.3, this was not found to improve flow 

forecasts. 

The parameter J.1t(i) in equation (:>.3) is the unknown mean of Yt(i), i = 1, ... , n. 

\Vhen considering a similar variance modelling issue in DLl\1s in the related applica

tion of road safety research, Bijlevcld et al. (2010) use the observations themselves 

as proxies for the unknown mean. Since the focus here is on traffic flow forecasting, 

Jlt(i) is estimated by its forecast, denoted !t(i), which can be obtained from the 
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FIGURE 5.1: Flow lllean versus flow variance (log scale. calculated using all 
Wednesdays in 2010) at site 9206B: (a) the 48 15-minute periods during 19:00-
06:59 and (b) the 48 15-minute periods during 07:00-18:59 (plots on different 

scales). 

DL~I sequential estimation and forecasting procedure: described in Subsection 3.6.1 

of Chapter 3. This motivates a variance law in which lIt(i) in (5.1) is replaced by 

lIt(-i) = exp(p(-i) log(Jt(i)))V(i). (5.5) 
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The underlying observation variance V(i) can be estimated on-line dynamically as 

data are observed using usual variance learning techniques, as described in Subsec

tion 3.6.1 of Chapter 3. In addition, the parameter f3U) can be estimated from flow 

means and variances using historical data, with different f3(i) values for the two 

periods 19:00-06:59 and 07:00-18:59. 

5.2.2 Discount factors for the observational variance Vi 

The L11D~1 can accommodate non-constant observational variances not only through 

variance laws, but also by considering discount factors, in an approach similar to 

one usually adopted to model evolution variances in a DL11, described in Subsec

tion 3.6.1 of Chapter 3. The use of discount factors for Vt was firstly proposed ill 

Ameen and Harrison (1985), and since then it has been extensively applied in both 

univariate and multivariate DL11s as shown in \Vest and Harrbon (1997) amI Prado 

and \Vest (2010). 

Consider again an Ll\lDM for a time series Yt. where a DLM {Ft(i), Gt(i), \'t(i), wtCi)} 

is assumed for each Yt(i)lpa(Yt(i», as defined in Section 3.6.1 of Chapter 3. In this 

model, inference is done through a conjugate analysis for (Ot(i), ¢(i)), based on a 

multivariate normal/gamma distribution with ¢(i) = V-I (i) (a..<; shown in Subsection 

3.6.1 of Chapter 3). Now, assume the precision ¢(i) in the DL11 for Yt(i)lpa(Yt(i)) 

can change over time so that given the posterior 

(5.6) 

the prior for ¢t(i) is 

(5.7) 
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for some <5 E (O,l]. \Vith this a'isumption, while the prior mean for <Pt(i) is the 

same as the posterior mean for <Pt-l (i), the prior variance for ¢t(i) is larger than the 

posterior variance for ¢t-l(i). This represents an increase in uncertainty about <pt(i), 

when compared to ¢t-l(i), after observing Yt-l(i). Smaller values of <5 increa<;e this 

uncertaint.y more t.han larger values do. Hence, different uncertaint.y levels about 

¢t(i) can be a..;;sumed by considering different <5 values, similar to the ca.<;e when 

discount factors are used t.o model unknown evolution variances W t (i) (again, as 

described in Subsect.ion 3.6.1 of Chapter 3). That is, smaller values of 8 are suitable 

when the observation variance is unstable over time, whereas larger <5 values are 

suitable when the observation variance is more static. 

Following these idea.';" the updating equations presented in Section 3.6.1 of Chapter 

3 are easily adapted. Hence, given an DL1-1 {FtCi),Gt(i), vt(i), Wt(i)} , after Yt(i) 

is observed, the beliefs about (Ot-l(i),¢t(i» are updated such that the parameters 

l1t(i) and St(i) are now 

and S (:) = 8S (') + St-l(i) [e t (i)2 -1] 
t 1 t-l l l1t(i) qt(i) , 

where <5 is the discount factor for the time-varying observational variance vt(i). This 

idea can also be combined with the variance law so that, in (5.5), V(i) can also evolve 

dynamically. 

A discount factor can also be used in matrix normal DLl\ls to assume a time-varying 

observation covariance matrix Lt. As described in Section 3.6.2 of Chapter 3, in a 

matrix norIllal DL!'.I for a multivariate time series vector Yt, conjugate analysis for 

(8 t , L) is done through a matrix normal/inverse vVishart distribution. By using 

a similar argument considered for the univariate case, a time-varying Lt can be 

a'isnmed by using a discount factor <5 E (0,1]. In this multivariate case, the updating 

equations for estimation and forecasting in a matrix normal DLM (presented in 3.6.2 
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of Chapter 3) can be also easily adapted. Further details appear in Quintana (1985, 

1987) a') well a') in \Vest and Harrison (1997). 

5.2.3 Example 

To verify the effect of considering time-varying observational variances when fore

casting traffic flO\vs, Ll\ID~Is were fitted using 15-min flows from a subset of data 

collection sites of the l\lanchester network. Given the DAG for this network, pre

sented in Subsection 4.8.1 of Chapter 4, let Y t be a multivariate time series formed 

by all the four root nodes Yt(920GB), ~(G013B), ~(9188A) and ~(1431A), as well 

as one of each of their respective children, Yt(9200B), Yi(6007L), Yt(9193J) and 

Yt{1437 A). For notat.ional convenience, redefine 

}~(9206B) = Yt(I), Yt{GOI3B) = }~(2), }~(9188A) = Yt(3), Yt(1431A) = Yt(4), 

Yt(9200B) = Yi(5), Yi(6007 L) = Yt(G), Yt(9193J) = Yt(7), Yt{1437 A) = Yt(8), 

and set Y t = [Yt{l), ... , Yt(8)]T. 

Still based on the DAG for the l\lanchester network, Y t can be modelled through 

an Ll\IDl\I with observation and system equations 

Yt(i) (5.8) 

and 

(5.9) 

where Ot = [Ot(1)T ... Ot(8)T]. In this Ll\IDl\l, the daily cycle obsen'ed in flows is 

modelled using a seClliollal factor representation Clli considered in Sections 4.7 and 4.8 

of Chapter 4. Hence, for root nodes, each Oli) in (5.8) and (5.9) is a 9G-dimensional 
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vector of mean flmv level parameters when using I5-min traffic data (one mean 

flow level parameter for each I5-minute period in the day) with corresponding 96-

dimensional vector 

The child series ¥t(i), i = 5,6,7,8, have their parents a<; linear regressors, where 

the regression coefficients represent the proportions of vehicles flowing from parent 

to child. As shown in Subsection 4.8.2 of Chapter 4, these proportions also exhibit 

a daily pattern, being then also modelled by a sea.'sona! factor representation as 

considered in Sections 4.7 and 4.S of Chapter 4. Therefore, for children ofroot nodes, 

each Bt(i) in (5.S) and (5.9) is a 96-dimensional vector of proportion parameters with 

corresponding 9G-dimcnsional vector 

Ft(i) T = (pa(Yt(i)) 0 ... 0), i = 5, G, 7, 8. 

Additiollally~ in equation (5.9), we have that 

G t = blockdiag{G(I), ... , G(S)), 

with 96 x 96 evolution matrices 

GU) = 

a I-a 0 0 

o o 

1 o 

1 o 

1 

o 

The matrix G t in (5.9) then 'cycles' through the mean level parameters to ensure 

that the correct IS-min mean flow level parameter is used at time t. Similar to what 

was considered in the example described in Section 4.7 of Chapter 4, the scalar a 
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in G(i), i = 1, ... ,8, is included to allow a small effect of the parameter for the 

corresponding 15-min interval from the previous day. The optimal value of a in this 

example was found to Le 0.01. 

\Vith this L1ID~I, each root node 

}~(9206B), Y'i(6013B), Yt(9188A) and }~(1431A) 

follows a univariate DUd, and univariate DL1Is are also used to model 

Yi(9200B) IYt(920GB), Yt(G004L) IYt(G013B), 

Yt(9193J)IYt(9188A) and }~(1437 A)I}~(1431A). 

Four L!\ID1Is based on equations (5.8) and (5.9) were used for forecast Y t . These 

four models are described as follows. 

• 1Ioclcl A a',SlImes a constant \/ (i) and uses variance learning techniques (de

scribed in Subsection 3.6.1 of Chapter 3) to estimate V(i) oll-line dynamically 

as data are observed. This was the modelling approach used so far to foreca..qt 

flows using the L1ID11 (as in Queen et al., 2007, and Queen and AlLers, 2009); 

• 1Iodel 13 assumes a time-varying Vi (i) using the variance law (5.5) with a 

dynamically evolving underlying variance V(i) as in (5.6) and (5.7); 

• 1Iodel C assumes a time-varying ~t(i) using the variance law (5.5) with a 

dynamically evolving underlying variance V(i) as in (5.6) and (5.7) for period 

19:00-06:59, while using a dynamically evolving underlying variance V(i) as 

in (5.6) and (5.7) but no variance law for period 07:00-18:59 (because of the 

weaker mean-variance relationship in this period, as shown in Figure 5.1); 

• 1Iodcl D assumes a time-varying Vt(i) using the variance law (5.5) only. 
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Historical data from February to April 2010 were used to estimate the two values 

of j3 in (5.5) for the two periods 19:00-06:59 and 07:00-18:59, and were also used, in 

the absence of expert information, to elicit priors. On-line one-step ahead forecasts 

were then obtained for \Vednesday flows in !\Iay and June 2010. 

For models Band C, a value for c5 to assume a time-varying l~(i) is needed for each 

series. Following \Vest and Harrison (1997), the LPL (described in Section 4.6 of 

Chapter 4) could be used as an informal guide to choosing the c5 which gives the 

best forecast performance for these data. However, since it was found that the LPL 

can be sensitive to outliers, c5 was cllOsen to minimise the mean interval score (MIS, 

also described in Section 4.6 of Chapter 4). Furthermore, Models A-D all have the 

same forecast means and so only an assessment of the forecast limits is required. 

As illustration of the parent and child forecast performance using Models AD, 

Table 5.1 shows the values of LPL and !\IIS when forecasting the 4 parent root 

nodes together with their associated (non logical variable) children. The LPL and 

!\IIS quoted in Table 5.1 for each series for !\Iodcls Band C, are those obtained when 

using the c5 which minimised the MIS for that series and model. 

Although !\Iodel A performs the best in terms of LPL for the first pair of series in 

Table 5.1, 110del B performs the best in terms of !\IIS for these series. and in all 

other cases, the best performing model is 1Iodel B, which uses the variance law and 

also allows the underlying variance V(i) to evolve dynamically. 

TABLE 5.1: LPL and MIS for forecasting using 1Iod.els A-D. 

LPL 11IS 
Series A B C D A B C 

(Yt(9206B), Yt(9200B)) -10,001 -10,040 -10,230 -10,266 691 498 541 
(Yt(9188A), yt(9193J)) -8,010 -7,710 -7,852 -8,394 407 294 336 
(Yt(1431A), yt(1437A)) -9,615 -9,077 -9,140 -9,158 595 414 453 
(li(6013B), yt(6007L)) -9,137 -8,466 -8,724 -9,157 441 272 347 

D 
635 
396 
487 
385 
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As another illustration of the forecast performance, Figure 5.2 shows the observed 

fio\vs on a specific day for root node 1431A and its child 1437 A, together with their 

one-step ahead forecast meallS ft{i) and one-step ahead forec&st limits defined as 

It (i) ± 2 JVar(lt (i) IDt - 1). The forecasts were calculated considering l\Iodels A and 

n, since l\Iodel B performs t.he best amongst the time-varying models. The effect of 

the variance law and dynamically evolving underlying variance is clearly visible at 

both sites: the range of the forecast limits given by l\lodel B is more variable than 

the range given by l\lodel A. 

Note that there are SOIlle fiows observed during the morning and afternoon peak 

periods that lie outside the foreca..<;t limits based on l\,{odcl A but lie inside the 

foreca..<;t limits provided by l\lodcl B. As time t increases, in a variance law model, 

the observation variance estimate, ~(i), has the form of an exponentially weighted 

moving average of the forecast error (\Vest and Harrison, 1997, p. 363), so that the 

most recent forecast error has a larger weight than the forecast errors observed in the 

past. This results in scaling the variance of the forecast distributions from Model B 

by V,(i). Model B therefore adapts more quickly to correct for large forecast errors 

than Model A does. This means that a variance law model automatically increases 

uncertainty in the forecasts, which can be useful when intervention may be required 

but expert information is not available. 

5.3 Forecast limits in the LMDM 

5.3.1 Approximate and simulation-based LMDM forecast 

limits 

\Vhen considering plots of forecasts together with the observed values, it is common 

to include an indication of the uncertainty associated with the forecasts. This wa..'> 
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done in the example described in Subsection 5.2.3 by considering t.he forecast limits 

a.'> the marginal forecast mean ±(2 x marginal forecast standard deviation). The 

uncertainty of the forecasts are often represented by forecast limits calculated in 

this way. 

For normally distributed forecast distributions, roughly 95% of observations should 

lie within these foreca.<;t limits and the forecast limits are approximately 95% (equal

tailed) prediction intervals. However, the marginal forecast distributions in the 

L~ID~l are not normal and, furthermore, they cannot usually be calculated analyt

ically. 

Even though recent advances in l\ICMC and sequential Monte Carlo techniques 

can simulate estimates of the true forecast limits ill real-time, the approximation 

based on marginal forecast moments illustrated in Section 4.7 of Chapter 4 and 

used in Subsection 5.2.3 is far simpler and faster. However, if the forecast limits arc 

calculated using the marginal forecast moments in the Ll\IDM, one question that 

remains is how close this approximation is to the true 95% forecast limits. 

To answer this question, consider once again the foreca.c;;t limits of site 1437A ob

tained by this approximation (as shown in Figure 5.2(h)}. The 'true' 95% forcca.c;;t 

limits of the marginal forecast distributions for site 1437 A would be the 2.5% and 

97.5% percentiles of the marginal forecast distributions. These can be estimated 

at each time t yia simulation: simulate samples from the marginal forecast distri

butions by simulating the joint forecast distribution of parent Yt (1431A) and child 

Yi (1437A) via the normal forecast distribution for Yi(1431A) and the conditional 

normal forecast distribution for 1't(1437 A)IYi{1431A}. 

Figure 5.3 shows the approximate forecast limits for site 1437 A based on marginal 

moments, together with the estimated 'true' forecast limits ba.''led on simulation. 

The plot shows the same day as was considered in Figure 5.2 in which there were 
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some unusual traffic flows which created a high level of flow uncertainty. As can be 

seen, even when there is a lot of forecast uncertainty, the forecast limits based on 

marginal moments are in fact dose to the simulated true limits -- certainly a good 

enough approximation given their ease and speed of calculation. When considering 

all flow series considered in Table 5.1, forecast intervab provided by both models 

also have similar 1\118. 

5.3.2 Coverage of LMDM forecast limits 

In Figure 5.2, the forecast limits are quite wide at times and most observations 

lie within them. However, for a ,veIl-calibrated model, approximately only 95% of 

observations should lie within the forecast limits. Over the whole foreca.'3t period, 

Model B actually is well-calibrated for the root nodes with roughly 95% of obser

vations lying within the forecast limits for each series: the wide forecast limits in 

Figure 5.2(a) arc a result of increased forecast uncertainty due to unexpected ob

servations on that particular day. On the other hand, for each root node, l\lodel A 

underestimates the forecast uncertainty with a coverage of roughly only 89%. 

'When forecasting child variables, however, !vlodcl B overestimates the forecast un

certainty with roughly 98% of observations falling within the forecast limits for each 

series, while this time Model A is well-calibrated with a coverage of roughly 95%. 

This suggests that, for child variables, there are factors affecting the variation that 

are not accounted for in l\lodel B. One possible element missing from Model B is 

the use of data for other traffic variables a.ffecting flows. Inueed, it will be shown 

in Chapter 6 how the LMD1\I can accommodate these extra variables a'l predictors 

thus providing better calibrated forecast limits. 
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5.4 Accommodating measurement errors in the 

LMDM 

5.4.1 Measurement errors 

\Vhen building DAGs and L1ID11s for forks and joins in Subsection 4.8.1 of Chapter 

4, yt(3) and }i(6) were ooth modelled as logical variables without errors. However, 

as is common for data in a variety of applications, loop detector data are prone to 

measurement errors due to device malfunctions (as discussed in Chen et al., 2003 

and Bickel et al., 2007) so that modelling Yi(3) ancI yt(6) fl.') logical variables may 

not be a realistic assumption in practice. 

To illustrate, consider the fork consisting of sites 1431A, 1437 A and 6002A in Fig

ure 2.2 of Section 2.3 in Chapter 2. As noted in Section 4.8 of Chapter 4, it would be 

unrealistic to expect yt(6002A) to be exactly equal to yt(1431A)- yt(1437 A) because 

of time-lag eff('cts. However, when examining the errors }i(1431A) - (yt(1437A) + 

yt(6002A)), it is apparent that not only time lag effects affect these errors out also 

other factors which can oe associated with loop detector malfunctions. 

Figure 5.4 shows a histogram and q-q plot of these errors observed in the period 

21:00-22:59 during 2010 with 5% of the extreme errors excluded from the plot. 

The most extreme errors were removed because these would be dealt with using 

intervention to maintain forecast performance. The inclusion of snch extreme errors 

in the plot therefore gives an unrealistic picture of the measurement errors. From 

the histogram in Figure 5.4(a), it is clear that the errors are nearly all positive with 

some significant variability, while the q-q plot in Figure 5.4(b), suggests that an 

a..')smnption of normally distributed measurement error seems rea..'ionable for 95% of 

the data and is worth considering as a simple model. The normal distribution can 
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therefore form the basis for a simple model to accommodate measurement errors 

illustrated in Figure 5.4. 

5.4.2 Accommodating measurement error 

Consider again the fork of Figure 4.9(a) in Subsection 4.8.1 of Chapter 4. In Sec

tion 4.8 of Chapter 4, the layout of the sites and direction of traffic flow suggested 

that the model for Yt(3)IYt(1), Yt(2) could be simply Yt(3) = Yt(1) - Yt(2). However, 

the histogram of Figure 5.4(a) suggests an alternative model which accommodates 

measurement error of the form 

(5.10) 

where Ot(3)(2) is the level of the merumrement error and t't(3) ,....., N(O, vt(3)), for some 

vt(3). As vehicles from 5(1) can only go to 5(2) or 5(3), it is rea<;onable to a<;surne 

a prior for Ot(3)(1) with mean 1 and very small variance. Note that the measurement 

errors at 5(1) and 5(2) arc taken into account automatically through the model 

parameters and observation variances vt(1) and vt(2). The DAG representing this 

new mouel is the same as in Figure 4.10(a) in Subsection 4.8.1 of Chapter 4 except 

that the double oval (representing a logical variable) is now an ordinary single oval. 

The distribution of the errors in the 1\Ianchester network actually differs with the 

time of day, as illustrated in Figure 5.5. 1\loroover, the mean of the error follows 

the usual pattern of the flow observed during the day, where the plots of flow time 

series presented in Section 2.4 of Chapter 2 is an example. To account for this, a 

seasonal factor model can be used for Ot(3)(2) in the same way as for modelling the 

diurnal cycle of ILt (i) in Section 4.8.2 of Chapter 4 . Figure 5.5 also shows the error 

variability changing through the day. In fact for the i\,lanchester network, as with 

the flows themselves, there is a roughly linear relationship between the logs of the 
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means and variances of the errors during periods 19:00-06:59 and 07:00-18:59. The 

variability of ~~(3) can then be accommodated by using a variance law Ll\lDl\1 as 

in (5.5), combined with a dynamically evolving underlying variance V(3) as in (5.6) 

and (5.7). 

An analogous model can be defined to allow for measurement error in a join. 

5.4.3 Forecast performance 

l\lodel (5.10) and the logical model without an error term (described in Subsection 

4.8.1 of Chapter 4) were used to obtain one-step ahead foreca<;ts for the four children 

of root nodes considered as logical variables in the DAG for the l\lanchestcr network 

presented in Subsection 4.8.1 of Chapter 4, namely },(G002A), y't(1445I3), Y;(6002B) 

and }f{9195A). A variance law and dynamically evolving observation variance a.<; 

described in Section 5.2 were used with each model. As in the previous section, 

historical data from February to April 2010 were used to estimate the /3 parameters 

for the variance law model and for eliciting priors, while on-line one-step ahead 

forecasts were obtained for \Vednesday flows in May and June 2010. 

The 1\IedianSE for each series when using these two models is shown in columns 

2 and 3 of Table 5.2. Neither the LPL nor the 1\11S are appropriate for model 

comparison here: the LPL cannot be calculated for the model without an er

ror and the 1\1IS is not appropriate because the error model naturally has wider 

foreca')t limits. Table 5.2 also shows for each series (in columns 4 and G) the 

means and standard deviations of the relative measurement errors (that is, 100 x 

(observed mca<;urcment error at time t)jyt(i». 

As can be seen in Table 5.2, the error model performs significantly better than the 

logical model in terms of 1\ledianSE for two of these series and slightly worse for 

the other two series. Notice that the series which show the greatest improvement 
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TABLE 5.2: ~ledianSE for the error model (5.10) and logical model without 
an error term, together with the means and standard deviations of the relative 

measurement errors. 

I\IedianSE Relative measurement errors 
Series Error model Logical model I\lean Standard devation 

}i(6002A) 142 882 31.2 27.6 
Yt(1445B) 969 1211 9.0 59.8 
}~(6002B) 180 159 -1.2 8.1 
Yt(9195A) 618 616 0.4 3.3 
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in using the error model in comparison to the logical model are those for which 

the relative measurement errors arc high. However, although the error model gives 

greater improvement in forecast performance when the relative mea..'3uremcnt errors 

are high, high relative mea..'3UfCment errors also lUean an illcrease in the uncertainty of 

the resulting foreca..-;ts which, in turn, means that forecast limits are wider for series 

with high relative measurement error than for series with low relative measurement 

errors. Although the choice of which of two children at a fork should be considered 

to be the logical variable is arbitrary, the relative measurement errors for each of 

the children should be considered when making a decision. 

As with the time-varying variance model of Section 5.2, the forecast limits for each 

(child) series in Table 5.2 overestimate the forecast uncertainty, with a coverage 

of roughly 97% for each series when using the logical model, and roughly 99% for 

each series when using the error model. Again, as discussed in Section, 5.3 this is 

indicative that there are factors (such as extra traffic variables, possibly) affecting 

the variability which arc not captured by the model. 

5.5 Discussion 

This chapter proposed a methodology to allow for time-varying observation variances 

in the LI\lDl\I when forecasting traffic flows. However, the assumption of constant 
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variance may also not be reasonable when using the U\IDM for other applications. 

As an example, the flow variability of goods to be distributed over a chain of super

markets can be affected by seasonal effects due to holidays and seasons of the year. 

These seasonal effects can also, for example, be responsible for non-constant variabil

ity of electricity flow distribution to residential areas. The use of discount factors for 

observation variances can be also applied when using UvlDr..Is in these applications, 

and variance laws can also be developed by identifying variance relationships given 

the context-specific knowledge and analysis of available data. 

In addition, the normal model developed in Section 5.4 for incorporating the mea

surement error at nodes previously considered as logical variables in the LMD!-.l 

is only a simple model and other distributions may be more appropriate. As an 

example, a ll1LxturC of distributions may work well. However, as discussed in Chap

ters 2 and 3, traveller information systems and some traffic management systems 

require real-time forecasts, and so the computational costs of considering alternative 

approaches for error modelling must be carefully taken into account. 
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Chapter 6 

Real-time traffic forecasting: 

high-frequency flow data and 

predictor variables with the 

LMDM 

6.1 Introduction 

This chapter shows L1lDl'vl extensions based on cubic splines to accommodate two 

important issues in traffic flow modelling. The problem of modelling flows using high

frequency flow data suitable for on-line traffic management purposes is addressed. 

In addition, methodology for including extra traffic variables as predictors in the 

L1ID~1 is presented. 

107 
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6.2 Traffic data aggregation 

Like in any data analysis task, preliminary data processing is an important step 

for the development of traffic flow models. This involves data aggregation, which 

relates to the time interval adopted to build the time series of flows and other 

available variables from the road traffic network under study. 

Data aggregation is extensively discussed in the traffic modelling literature. This is 

an important issue because different traffic features can be observed depending on the 

aggregation level. If a long time interval (such as, say, 24 hours) is used to aggregate 

flows, the resulting forecasting model will not capture traffic patterns of interest for 

real-time applications, where morning and afternoon peak times arc the periods in 

which traffic flow models are of their most use. On the other hand, the smaller the 

time interval for aggregation, the more variability there is in traffic flows and the 

more difficult is to develop accurate forecasting models. As an example, Abdulhai 

d al. (1999) studied how the accuracy of flow forecasting models decreases as flow 

time series are aggregated into smaller time intervals. 

Although different time intervals for traffic flow aggregation can be suitable depend

ing on the purpose of application of the forecasting models (Vlahogianni et al., 2004), 

IS-min intervals seem to be the common choice (Vlahogianni and Karlaftis, 2011 and 

Chang et al., 2012). This time interval is also recommended in the Highways Capac

ity Manual (2010) to assess the quality of road networks, such as evaluation of their 

capacity. However, as discussed by Vlahogianni and Karlaftis (2011) and Hurdle et 

al. (1997), flows may significantly change during a 15-min period. 

For real-time traffic control systems, where the 11anaged Motorways project de

scribed in Chapter 2 is an example, time intervals smaller than 15-min may be suit

able to support immediate actions to alleviate congestion. What must therefore be 

considered are traffic time series on higher frequencies (as suggested by Vlahogianni 
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et al., 2004). However, the time interval must be carefully chosen in order to avoid 

modelling high-frequency variations which may not be of interest for traffic man

agement purposes. Indeed, Huang and Sadek (2009) pointed out that forecasting 

models using I-min traffic data are not particularly useful from a practical view

point. In this context, data aggregation using 5-min intervals has been commonly 

used for real-time traffic modelling (see, for example, Castro Neto et al., 2009 and 

l\Iin and \Vynter, 2011). 

The Ll\ID~l has so far been previously applied to forecast hourly traffic flows (as in 

Queen et at., 2007 and Queen and Albers, 2009), wherea.'3 I5-min flows were consid

ered for the Ll\lDl\1 extensions described in Chapter 5. Given the crucial role of flow 

aggregation based on higher frequencies for on-line traffic management systems, the 

next section shows how the Ll\lDl\I can be adapted to cope with 5-min data. Data 

available from the l\Ianchester network are suitable for these developments, as loop 

detectors in this motorway collect traffic variables on a minute-by-rninute basis. 

6.3 Modelling the daily flow cycle 

Chapter 5 showed how the LMDM can be extended in order to accommodate im

portant traffic data features, such as the heteroscedasticity of flows over the day and 

measurement errors. The example described in Subsectioll 5.2.3 of Chapter 5 COll

sidered flm\"s from the l\lanchester network aggregated into I5-min intervals. There, 

a seasonal factor representation was used to model the daily cycle in the LM Dl\.I , 

where a 96-dimensional state vector models the seasonality of each time series. This 

model setup implies that the state vector of each root node in the LMDM contains 

one mean flow level parameter for each I5-min period in the day. For the non-root 

nodes, the parameters in the state vector represents the proportion of traffic flowing 

from parent to child for each I5-min interval. 
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\Vhen the dimension of the state vector gets large, numerical problems can arise when 

updating the variances associated with a DLl\l (Prado and vVest, 2010). This can be 

tackled by using alternative equations in the Kalman filter algorithm, as described 

in Durbin and Koopman (2001) and implemented in the R DLAI package (Petris et 

al., 2009). However, when dealing with 5-min data, the dimension of the state vector 

is so large (12 x 24 = 288) that it becomes important to consider alternatives to the 

seasonal factor representation to keep model parsimony. To address this problem, 

the daily cycles in each univariate DLl\l within the LMDl\I can be represented using 

cubic splines. This approach follows from Tebaldi et al. (2002), where splines were 

used to modell-mill traffic flow cycles within DLMs. 

6.3.1 Cubic splines 

Cubic splines are wielely used in regression models in order to relax the linearity 

a."lsumption for continuous regressors, as illustrated in Harrell (2001), Hastie ct al. 

(2001) and Fox and \Veisberg (2011). A cubic spline ha.q the ba.sic form: 

AI 

f(·7:) = L J-'1mhm(x) , (6.1) 
m=l 

where 

m=1,2,3, 

m = 4, ... , "'I, 

for values kr, ... , kM -3 with 

a < kr < k2 < ... < kM - 3 < b, 

where [a,b] E 1R is the domain of x. vVhen x - krn - 3 is negative, then hm{x) = O. 
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The functions hI (x), ... ,hM(x) are called spline basis functions, 1.: 11 "" kU-3 arc the 

spline knots and 131, . .. ,13M arc parameters. In the context of regression, the idea 

is to consider the spline basi::> functions as regressor variahles and then estimate the 

parameter::; fh, ... , 13M. 

6.3.2 Cubic splines in the LMDM 

Let Y t = [Yi(I), ... , Yt(n)]T be an n-dimensional time serie::; vector where the condi

tional independence structure across its components can be represented by a DAG, 

such that an Ll\IDl\J can be defined for Y t. Recall the observation and system 

equations of an Ll\IDl\1 for Y t, described in Section 4.G of Chapter 4 and given as 

Yt(i) (6.2) 

and 

(6.3) 

respectively. The use of splines as described in Sub::;ection 6.3.1 for (static) regression 

can be extended to L1\IDl\1s as follows. Consider first a root node. The daily 

cycle can be modelled in a time series using a spline to fit one full cycle. In this 

case, x would be time t and kb ... ,kAl - 3 would represent times over the cycle. For 

example, for G-min data with a daily cycle over 24 hours, kI could be 13, for example, 

repre::;enting the time period 01:00 01:04 and t would be the current time (which at 

02:0002:04, say, would be t = 25). Prior data can be used to calculate the spline 

basis functions hI (:r), ... ,hu{x) which can then be evaluated at each 5-min time 

period :r = t. The regression vector Ft(i) for root node yt(i) in (6.2) then has the 
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form: 

(6.4) 

Although this form of Ft(i) only models the daily cycle of flows, it is possible that 

Ft(i) has additional elements like exogenous regressors for each Yi(i)'s DUd, as will 

be discussed in Section 6.4. 

For FtU) in (6.4), the associated state vector in (6.2) is: 

(6.5) 

where Pt1, ... ,(JtM arc dynamic versions of the associated parameters in (6.1), which 

evolve through the system equation (6.3) with state evolution matrix C/O) being 

the lU-dimensional identity matrix. 

As an example, suppose that the daily cycle of root node }~(1) is to be represented 

by a spline with (for simplicity) just two knots, kl and k2' and that an exogenous 

regressor, Xt, is also to be included in Yt(1)'s DLM. Then the observation equation 

for Yt ( 1) has the form 

5 

Yt(1) = L Ptmhm(t) + 0tXt + Vt(1), Vt(1) '" N(O, Vt(1)), 
m=l 

so that in (6.2), 

F t (1? (h1(t) ... h5(t) .Tt) 

Bt(l)T - (Btl··· Pt5 at). 

In this case the evolution matrL,{ Ct(l) = blockdiag(I5 ,g) where h is the 5-

dimensional identity matrix and 9 is some scalar in IR for parameter at'5 evolution. 

A child in the L~ID~l is modelled as having its parents as linear regressors. For 
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example, if yt(3) has parents Yi(l) and yt(2), then the simplest observation equation 

for yt(:3) would be 

lIt(3) rv N(O, 11,(3» 

the regression parameters (Qt(1) and Qt(2) in the example above) exhibit a <.laily 

pattern (as in Subsection 4.8.2 of Chapter 4). A spline can be used to model the 

daily cycle by setting each regression parameter to the form L~=l !3tmhm(t). Thus, 

in general the regression and state vectors Ft(i) and ()t(i) for child variable }~(i) 

with (for simplicity) single parent pa{yt(i)) have the forms 

(6.6) 

and 

(6.7) 

Again, ()t(i) evolves through the system equation (6.3) with state evolution matrix 

Gt(i) being the AI-dimensional identity matrix. 

As another example, suppose now that yt(3) has parents yt{l) and yt(2) and the dajly 

cycles exhibited by Yt(l) and yt(2)'s regression parameters are to be r<'presented by 

splines with three and two knots, respectively. Suppose further that an exogenous 

regressor, Zt, is also to be included in yt(3)'s model. Then the observation equation 

for }~(3) has the form 

6 5 

yt(3) = Yt(1) L /3;~hm(t)(1)+Yt(2) L /3i,~hm(t)(2)+l'tZt+7't(3), lIt(3) ('oJ N(O, V,(3», 
.n=l 



Chapter 6. High-fn~q'/1ency flow data and predictor- variables wdh the LMDM 114 

so that in (6.2), 

(hI (t){1) ... h6(t)(1) hI (t)(2) ..• hr,(t)(2) Zt) 

U1~:) ... 11;~) j3g) ... jJg) "t). 

In this ca.-;e the evolution matrix G t (3) = blockdiag(I6, h, g) where h is the k-

dimensional identity matrix and 9 is some scalar in IR for parameter "It'S evolutioIl. 

To take advantage of the computational simplicity of a fully conjugate Ll\1DM, 

normal priors need to be specified for the state vectors. \\Then using the seasonal 

factor model for modelling the daily cycle exhibited by regression parameters in the 

child model, as described in Subsection 4.8.2 of Chapter 4, the regression parameters 

are proportions and so normal priors arc not ideal. However, when using splines to 

model the regression parameters' daily cycles, using normal priors is not a problem 

as the spline regression parameters do not have any restrictions on their values. 

6.3.3 Example 

In order to compare the performance of using cubic splines and seasonal factors for 

modelling daily cycles in the Ll\IDl\I, both models were used to forecast four separate 

bivariate series of the :Manchester network. From the DAG described in Subsection 

4.8 of Chapter 4, these four separate bivariate series was formed by considering 

the four root nodes of the l\,Ianchester network together with one of their children 

each: specifically, t.he four bivariate series considered ,,,,ere (Yt(9206B), Yt(9200B)), 

(Yt(G013B), Yt(6007 L)), (Yt(9188A), Yt(9193J)) and (Yt(1431A), Yt{1437 A)). To also 

a.'lsess whether dynamic estimation of the spline parameters Ptl, ... ,PtAl (a.<; in (6.5) 

and (6.7)) improves foreca.-;t performance, foreca.'Its for these four bivariate series 

were also obtained using a static version of the cubic spline LMDM, by using a 

system equation (6.3) with no error term Wt. 
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Although Harrell (2001) suggests that the positions of knots k l , ... , kM - 3 associated 

with the splines basis functions in (6.4) are not important when fitt.ing splines for 

static regression purposes, it was found that Ll\1Dl\Is for traffic flows give better 

retiults when concentrating the positions of kl' ... ,kM - 3 during morning and after

noon peak periods. Harrell (2001) also recommends using only 3 to 5 knots for titatic 

regression. However, when using splines to represent daily cycles of flows, 15 to 20 

knots were typically found to perform much better for all time series considered in 

this example. This is a small number when compared to the 288 parameters required 

to use a seasonal factor representation to model 5-min flow data. Moreover, overfit

ting is controlled because fitted splines were found to not vary very much over time 

and the parameters f3tb . .. , 131M evolve dynamically to capture any drift in time. 

Observed flows from July to August 2010 were used to estimate the spline basis 

functions and form priors for all state vectors for these three mouels (so that each 

moud had the same equivalent priors). Following the developments presented in 

Section 5.2 of Chapter 5, a time varying oLservation variance was considereu by 

using variance laws and discount factors for t~(i) in equation (6.2) for each of the 

three defined models. Again, historical data from July to August 2010 was used 

to ctitimate parameters associated with the variance laws for each ~(i). One-step 

ahead forecasts for flows were then obtained for September 2010. 

Each model and each series requires two separate discount factors t.o be specified: 

one for estimating ¢t (i) = 11;-1 (i) (that is, the precision of the observation variance 

Vt(i) in equation (6.2)) and one for etitimating Wt. Utiually these diticount factors 

are chosen by comparing the forecast accuracy of different models varying discount 

factor values (as suggested by \Vest and Harrison, 1997 and applied in Subsection 

5.2.3 of Chapter 5). However, the high number of models and the level of complexity 

makes this optimization a demanding ta.c;;k. For example, the optimization of the 

combination of both discount factors for W t and ¢t (i) for a child time series would 
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depend on the optimization of the discount factors for W t and CPt (i) in its parent. 

Due to this, based on preliminary tests, the chosen value for the discount factors for 

both W t and 4>t(i) in all models in this example was 0.99. 

Table 6.1 shows the LPLs for the three models for each bivariate series. The number 

of spline basis functions for static and dynamic spline L1\IDl\ls varied between 15 and 

20 among the considered time series, and the LPL values shown in Tahle 6.1 are for 

the number of basis functions which performed best for each model and each series. 

In Table 6.1, the dynamic spline versions of the Ll\IDl\18 produce the largest LPL 

values for all bivariate series, indicating that the dynamic spline Ll\IDl\ls provide 

the most accurate forecasts. 

TABLE 6.1: LPLs for L~[D~Is with different sf'a<;onal reprf'sf'ntat ions. 

I3ivariate series 
yi(9206ll), }i(9200ll) 
}~(G013ll), }~(6007L) 
1'; (9188A), Yt(9193J) 
y~(1431A), }~(1437 A) 

seasonal factors 
-8,794 
-8,159 
-8,581 
-9,056 

static splines dynamic splines 
-8,857 -8,570 
-8,157 -7,886 
-8,647 -8,336 
-8,830 -8,507 

An alternative parsimonious approach to using cubic splines for modelling the daily 

cycle would be to use a Fourier representation, as in 'West and Harrison (1907), 

Section 8.6. The standard Fourier representation can be used directly for modelling 

the daily cycle exhibited by the parents, but the model would need to be adapted 

somewhat for modelling the daily cycle in the proportion regression parameters in 

the models for child variables. \Vhen modelling the four root nodes, however, the 

Fourier representation was found to perform worse than both the seasonal factor 

model and the splines, and so Fourier models were not pursued further. 
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6.4 Non-linear traffic predictor variables in the 

LMDM 

As described in Chapter 2, the data collection process used by the Highways Agency 

in England includes minute-by-minute measurements of flow, together with occu

pancy, tipeed and headway. Section 2.5 of Chapter 2 particularly described the 

relationship between each of these extra variables and flow llsing the l\lanchester 

network data. 

Although there is great interest and an extensive literature concerning traffic flow 

modelling, few models deal with the analysis of flow in conjunction with the other 

variables. I3a..<;ed on a survey carried out by Vlahogianni et at. (20D4), of forty 

traffic models where flow was considered, just seven used other extra variables, 

,,,hile nOlle considered all three. From a statistical perspective, Ahmed and Cook 

(1979) and Levin and Tsao (1980) fitted independent ARIl\IA models for flow and 

occupancy foreca..<;ting, while \Vhittaker et at. (1997) tackled a similar problem 

using state space models. Neural networks have also been used for modelling flow 

in conjunction with other variables, for example in Innamaa (2000), Abdulhai ct. 

al. (1999) and Gilmore and Abe (1905). l\lultivariate forecasting of flow, speed and 

occupancy using k-nearest neighbour classifiers has also been considered by Clark 

(2003). l\Iore recently, Chandra and AI-Deck (2009) considered vector autoregressive 

models to forecast flows using speed as a predictor variable. 

In the LMD~I, exogenous variables can be easily introduced into the model as regres

sors (as X t and Zt were in the earlier examples). Figure 6.1 shows the scatterplots 

of flow at time t versus occupancy, speed and headway at previous time t - 1 at 

site 9188A for three separate months (t.hey were firstly presented in Section 2.5 of 

Chapter 2). These scatterplot.s suggest non-linear relat.ionships between flow and 

all the possible predictor variables of interest. As previously mentioned, plots of 
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flow at t versus the other traffic variables at t - 1 look broadly comparable at the 

other sites. Adopting a similar approach used ,·.hen modelling the daily flow cycle 

described in Section 6.3, splines can be used to model the non-linear relationships 

between flow at time t and the exogenous variables at time t - 1. These splines can 

then be incorporated into the L11D11 as regressors. 

For traffic control, it is preferable to include all three of the splines (for occupancy, 

speed and headway) as regressors for forecasting flows. Thb is because one predictor 

variable may be better for predicting possible changes in flow behaviour (such as 

congestion) than other predictors at one time, amI a different variable may be better 

for predicting possible changes in flow at another time. Thus, although the model 

with all three predictors may not necessarily be the most parsimonious, it will be 

more responsive to traffic conditions and so, from a practical point of view, will be the 

most useful model for traffic control. Additionally, the fact that certain regressors 

give the best forecast performance on the data considered in this thesis is not a 

guarantee that the same regressors will give the best performance for jlltU1'e data. 

Therefore, the focus here is to present a model which uses all three predictors rather 

than searching for a subset of predictors which performs best for this particular 

dataset. 

The developments presented in this section only considers using the values of the 

traffic variables at time t - 1 for forecasting flows at time t. Different lags could be 

used, so t.hat values of t.he traffic variables at time t - k, for k > 1, conld be used 

instead of, or in addition to, t - 1. \Vhichever lags are used, splines can still be used 

to model the relationships between the traffic variables at t - k and flow at t, and 

the same methods proposed in this section can then be used to incorporate these 

splines into the L1.IDM as regressors. 
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FIGURE 6.1: catterplots of flows at s ite 91 A at time t versus occupancy, 
heaoway and :peed at t - 1, in (a) Febmary, (b) June ann (c) October 2010. 
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6.4.1 Incorporating the predictor variables in the LMDM 

Consider a bivariate time series (Yt(l), Yt(2)), representing the flows at sites 8(1) 

and 5(2), where yt(l) is a root node and pa(yt(2)) = yt(l). Since Yt(l) is a root 

node, the regression and state vectors for yt(l) when using cubic splines to model 

the daily cycle in the LMDl\1 are given by (6.4) and (6.5), respectively. Suppose 

that occupancy at time t - 1 at site 8(1) is to be llsed for forecasting Yt(l) and 

that a cubic spline (6.1) represents the relationship between occupancy at 8(1) at 

time t - 1 and yt(l} with basis functions h?l(t - 1), ... , h~jl (t - 1) and associated 

parameters f3g1, ... ,,8~}1· Then, an Ll\lDl\1 can be defined so that the regression 

vector (6.4) is augmented to 

and the associated state vector (6.5) is augmented to 

(6.9) 

As usual, Ot(1) evolves through the system equation (6.3) with state evolution ma

trL,( G t (1) being the (1\1 + 1\/1 )-dimensional identity matrix. Similarly, the basis 

functions and parameters for cubic splines representing the relationships between 

Yi(l) and headway and speed at 8(1) at t -1 can also be included in (6.8) and (6.9), 

respectively. 

To usc occupancy at site 8(2) at t - 1 for forecasting child yt(2), suppose that 

h?2 (t - 1), ... , h ~12 (t - 1) and ,Sg2, . .. , f3~}2 are the basis functions and associated 

parameters of the cubic spline representing the relationship between occupancy at 

time t - 1 and flow at time t at site 8(2). Based on the regression and state vectors 
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for a child in the UvlDIVI given in (6.6) and (6.7), 

F t (2)T - (Yt(1)h 1(t)··· Yt(1)h M {t) hf~{t - 1) ... h~12(t - 1)), 

8t (2) T (/1tl ... PO,l p~2 ... ,B~~2)' 

State vector 8 t (2) evolves through the system equation (6.3) with state evolution 

matri.'{ G t (2) being the (At + lU2)-dimensional identity matrix. The basis functions 

and parameters for cubic splines representing the relationships between Yt(2) and 

headway and speed at 5(2) at t - 1 can similarly be included in F t (2) and 8 t(2). 

The extension to the case where a child has more than one parent is straightforward. 

Again, consider the scenario in which Yt (3) has parents 1~(1) and Yt(2), where the 

daily cycle for the regression parameters is represented by splines with t.hree knots 

for Yi(l) and two knots for 1~(2), and the exogenous variable Zt needs to be included 

in Yt(3)'s model. Then a spline representing the relationship betwC'en occupancy at 

t.ime t - 1 and flow at time t at site 5(3) can be additionally incorporated into the 

model by setting 

Ft(3)T (h1(t)(1) ... h6{t)(1) h1(t)(2) ... h5(t)(2) Zt h?:l(t - 1) ... h~j~(t - 1)) 

8t (3)T (g(I) ... {P) p(2) .•. 13(2) '" f-P3. .• Bo:l ) 
- J.. t1 ,t6 fJtl t5 Ii fJtl I tJ\fa . 

In this case the evolution matrix G t (3) = blockdiag{h, 15 , g, IMJ where I k is the 

k-dimensional identity matrix and 9 is some scalar in lR for parameter ''it'S evolution. 

Fitted cubic splines are represented by black lines in the scatterplots of flow versus 

the predictor variables given in Figure 6.1. Unlike the splines fitted for the daily 

flow cycle in Subsection 6.3.3, in this case the position of the spline knots did not 

have a considerable effect on the final curve. Also, as suggested by Harrell (2001), 

four knots \vere used as a default for fitting all the splines representing extra traffic 
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variables used in the L11D1L 

A comparison of the scatterplots between the columns of Figure 6.1 snggests that 

the relationships between flow at time t amI the predictor variables at time t - 1 

do not vary very much over time. As a consequence, spline fitting would not have 

to be updated on a frequent basis. However, even if frcquent spline fitting wcrc 

required, fitting is computationally very quick, so it could be used in real-time. 

Similar conclusions me valid when looking at the same scatterplots for traffic data 

collected at other months during 2010 and also for different data collection sites. 

This is also very useful because it means that huge amounts of data are not required 

before the models can be used. 

As mentioned in Chapter 2, only forecasts for \Vednesdays are considered throughout 

this thesis. In a model for all weekdays, it would be parsimoniolls to have a single 

spline for all days of the week. In fact, preliminary data analysis indicates that 

splines fitted using data from \Vednesdays and splines fitted using all weekdays give 

similar results. Furthermore, the forecast performance of the two models using these 

two sets of splines is very similar. Thus, data for all weekdays is used here for fitting 

the splines. 

6.4.2 Model performance 

In order to assess the effect of including occupancy, headway and speed as exogenous 

regressors on the accuracy of the forecasts provided by the LMD11, various models 

were compared for several separate subsets of sites in the l\lanchestcr network. In 

particular, forecast models were run for: 

• all root nodes; 
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• four separate bivariate time series formed by the four root nodes together with 

one of their children; 

• four separate trivariate time series formed by the four root nodes together with 

one of their children and one grandchild. 

The reason for this approach was to evaluate the inclusion of predictor variables at 

a root node on the flow forecasts of its descendants in the DAG. 

In the absence of expert information, historical data from .July and August 2010 

were used to elicit priors. The priors used were comparable across models so that, 

for example, the spline parameters ,Btl, . .. ,f3tAt represent ing the daily cycle for a 

series Y, U), used t he same priors for all models for that series, anel so OIL These 

historical data were also used to estimate the basis functions for all splines used in the 

models. As considered in the example presented in Subsection 6.3.3, the observation 

variance Vt(i) was modelled for each Y,(i) using variance laws and discount factors 

as described in Section 5.2 of Chapter 5. As such, for each series, the parameter 

associated with the variance law was the same for all models and was calculated 

using the prior data. Once again, all discount factors for all models and series were 

set to be 0.99. On-line one-step ahead foreca.sts were then obtained for Wednesday 

flmvs from September to October 2010. 

6.4.3 Root nodes 

For each of the root nodes, five (univariate) DL1Is were considered: 

• ~lodel D (daily cycle model) only uses the daily cycle patterns to forecast flows 

at time t, modelled via splines as described in Subsection 6.3.2; 

• l\Iodel 0 is 110del D with the addition of the single predictor variable occu

pancy at time t - 1, modelled via splines as described in Subsection 6.4.1; 
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• IVlodel S is IVlodel D with the addition of the single predictor variable speed at 

time t - 1, modelled via splines as described in Subsection G.4.1; 

• :r-.lodel H is Model D with the addition of the single predictor variable headway 

at time t - 1, modelled via splines as described in Subsection 6.4.1; 

• !\lodcl F (full model) uses cubic splines to model the daily cycle patterns and 

also uses cubic splines for occupancy, headway and speed memmrcmcnts at 

time t - 1 to forecast flows as described in Subsection G.4.l. 

Table 6.2 gives the LPL for each of these models for all the root nodes. All the 

models with the daily cycle pattern and one single predictor variable (!\lodcls 0, S 

and H) provide better forec&<;ts than !\lodel D, with Model II being the best one 

for almost all sites. 'When comparing these models with !\loclel F, Models Hand 0 

provide slightly better forecasts for site 920GB and !\Iodd H also shows a marginal 

improvement over !\'lodel F for 60138, whereas !\Iodel F is the best among allmodcls 

for sites 9188A and 1431A. A model using Model D with the inverse of headway 

was also considered (since this variable can be viewed as the inverse of flow and 

that is also suggested by the scatterplots in Figure 6.1), but gave worse performance 

compared to model H. 

Although !\Iodel F does not necessarily gives the best forcca.<;ts for all sites, as 

mentioned earlier, from a traffic modelling perspective it is sensible to retain all the 

variables in the model. 

TABLE 6.2: LPLs for various models for all root nodes of the Manchester network. 

Model 

Daily cycle model (D) 
o 
S 
H 

Full model (F) 

Y,(9206B) 
-8,259 
-8,077 
-8,162 
-8,075 
-8,084 

Root node 
Yt(6013B) Y,(9188A) Yi(1431A) 

-7,182 -8,362 -8,128 
-7,138 -8,068 -7,913 
-7,165 -8,141 -7,966 
-7,127 -8,025 -7,931 
-7,128 -8,003 -7,887 
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6.4.4 Children and grandchildren of the root nodes 

In order to assess the effects of including predictor variables for root nodes tUld 

children, forecasts were obtained using LMD11s for the same four (separate) bivariat.e 

series that were considered in Table 6.1. For each bivariate series, three Lr..lDMs 

were considered: 

• Model DID uses Model D for both root node and child; 

• 110del F ID uses Model F for root node and 110del D for child (with parents 

as regressors); 

• r..lodel F IF uses rvIodel F for both root node and child. 

To also evaluate the effect of considering parent flows when fon'casting flows of 

children, independent DLr..ls using all predictor variables (for both parent ami chi1d) 

were also fitted for each of the bivariate series. The LPLs for all of t.hese models are 

shown in Table 6.3. 

From Table 6.3 it is clear that Model F IF is the best model among all possible alter-

natives for each bivariate series. What's more, Model F /F provides better forecasts 

than independent DL11s using all predictor variables for each of the bivariate series. 

Thus, the inclusion of parent information in addition to the predictor variables when 

forecasting a child, is better than simply including the predictor variables. 

TABLE 6.3: LPLs for different models for bivariate time series from the 1\1anc11-
ester network 

Bivariate series 
Ll\IDM Independent 

D/D F/D F/F DLMs (F/F) 
Yi(9206B), }~(9200B) -15,156 -15,064 -14,986 -15,467 
Yt(6013B), Yt(6007 L) -13,620 -13,559 -13,520 -13,852 
Yt(9188A), Yt(9193J) -14,591 -14,219 -14,208 -14,517 
}~(1431A), }~(1437 A) -15,163 -14,862 -14,817 -15,402 
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Notice also that !\Iodcl F /D provides better forecasts when compared to Model 

D /D for all bivariate series in Table 6.3. Thus, using the predictor variables in the 

Ll\IOM seems to improve not only the foreca.,<;ts at the same site that occupancy, 

headway and speed were measured, but also affects the quality of the forecasts of 

its descendants in the OAG. 

Similar conclusions can be made when looking at trivariate time series forecasts 

based on results from Table 6.4, which shows LPLs for L!\IOMs for series formed 

by root nodes together with OIle of their children and one of their a.'isociated grand

children. In this case, model F /0/0, for example, means an LMO!\I for a trivariatc 

time series using !\lodcl F for root node and 1Iodcl D (with parents as regressors) 

for its child and grandchild. 

TABLE 6.4: LPLs for different models for trivariate time series from the :t\Ianch
ester network 

Trivariate series 
L!\10~1 Independent 

D/O/D F/D/O F/F/F OLMs (F IF /F) 
Yi(9206B), Yi(9200B), }'t(9189D) -21,935 -21,811 -21,741 -22,740 
Y,(6013B), Y,(6007L), Y,(6004L) -19,033 -18,972 -18,923 -19,566 
}~(9188A), Yi(9193J), }~(1436"U) -20,207 -19,791 -19,764 -20,598 
}'t(1431A), Y,{1437 A), Y, (1441.4) -21,879 -21,509 -21,426 -22,418 

As another illustration of model improvement when considering occupancy, head-

way and speed for flo\\' forecasting, Figure 6.2 shows the observed flows on a spe

cific day for (child) site 9200B, toget.her wit.h forcca.qt means and one-step ahead 

forecast limits (forecast mean ±2 x forecast standard deviation). The forecasts 

were calculated considering L1IDMs D /0 and F IF for the bivariate time series 

(f'i(9206B), Y,(9200B)). The F /F model has narrower forecast limits than the D/D 

model for the whole day, which is an indication that the inclusion of the predictor 

variables in the model decreases the uncertainty about flO\vs when compared to an 

LMO~l modelling the daily cycle alone. Notice also that the F /F model captures the 

deviations from the usual flow patterns that occur during the periods 07:30-08:30 and 

15:00-17:00, providing much more accurate forecasts than the D/O model. These 
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periods correspond to peak t.imes in the network, times when in fact flow forrca'>ting 

models are most useful. 

In Figure 6.2, most observations lie within their respcctive foreca:->t limits. Thiti 

should happen for approximately only 95% of ohservations in a well-calibrated 

model. Ovcr the \\Thole forecast period, both daily cycle (D) and full (F) models 

arc well-calibrated for the root nodes with roughly 95% of observations lying within 

the forccast limits for each series. 'Whcn forecasting chillI variables a<; well, however, 

l\lodel DID overestimates the forecast uncertainty with roughly 99% to 100% of 

observations falling within the forecast limits for each series, while this time model 

F IF is well-calibrated with a coverage of roughly 95%. A similar behaviour was 

observed for models DID ID and F IF IF when including grandchild variables. As 

proposed in Subsection 5.3.2 of Chapter 5, these coverages arc a strong indication 

that there are factors affecting t.he flow variat.ion which are captured by the inclusion 

of extra variables as predict.ors in the model. 

6.5 Discussion 

The met hodology proposed in this chapter tackles both the problem of using extra 

traffic variables for enhancing flow foreca<;ts a'3 well a<; using a suitable flow aggrega

tion in order to provide forecasts in an on-line traffic environment. Neither of these 

issues are often considered in traffic modelling. 

Cubic splines were introduced into the Ll\IDl\l for accommodating the daily cycle 

exhibited by traffic flows. This approach avoids the use of high-dimem;ional state pa

rameters and possible computational problems when using seasonal factor represen

tations: while providing better forecasts and allowing the moueI to be implemented 

while dealing with data aggregated into small intervals (5-mins here). Cubic splines 
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were also used to model the non-linear relationships which exist between flows and 

occupancy, headway and speed. 

Although the use of cubic splines was exploreu in an Ll\IDl\1 context, the extension 

of the developments presented in this chapter for the general l\IDM, described in 

Section 4.4 of Chapter 4, is straightforward. 

It should be noted that the l\IDl'v1 may not be appropriate for vcry short iutervals ill 

which vehicles do not pass through morc than one site in a time I)('riod. However, 

for many traffic networks, the l\IDl\1 will be appropriate for 5-min intervals. 



Chapter 7 

Extending the MDM: the dynamic 

chain graph model 

7.1 Introduction 

This chapter introduces an extensioll to the 11Dl\I, namely the dynam'ic chain graph 

model (DCGl\I). In this llew model, a chain graph is used to represent the a.',sociation 

structure across time series components at each time frame. This provides a more 

general graphical representation of multi-dimensional time series and accommodates 

structures not previously considered in the MDM. 

7.2 An MDM restriction 

It wa.'> shown in previous chapters how the MD!vI can cope with crucial traffic mod

elling issues in order to forecast multivariate time series of flows given the require

ments of an on-line traffic management environment. Although the MD1.1 Berms 

130 
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to be a suitable model for forecasting traffic flows in real-time, there is still a re

striction which prevents this model from accommodating a particular characteristic 

which may be present in traffic networks. 

To illustrate this restriction, consider the root nodes of the DAG presented in Figure 

4.11 of Chapter 4, which represent the entrances of the 11anchester road network. 

Queen et al. (2008) showed that, in an L11DM for a multivariate time series Yt> 

cov(Y';(i), Y';(j)IDt-d = 0 

for any two root nodes Yi(i) and Y';(j). This actually holds for the general MDM, 

since root nodes are marginally independent in a DAG (Edwards, 20(0). However, 

this is not necessarily the case for traffic flow data, where root nodes can be highly 

correlated. As an example, Figure 7.1 shows scatterplots of flows observed during 

\Vednesdays from June to November 2010 at the root nodes 1431A alld 9206B of 

the Manchester network for four separate 5-min intervals. Figure 7.1(a) indicates 

a strong relationship between flows at both sites when there is traffic build-up at 

the beginning of the day (06:00-06:04). Figures 7.1(b) to 7.1(d) show scattcrplots of 

flows at sites 1431A and 9206B for three 5-min intervals observed during afternoon 

peak times: a relationship between flows of this pair of root nodes can also be 

identified here, although there is a larger variability in flows. 

An approach to tackle this problem can be developed by using a chain graph (CG). 

The correlation association structure among the root nodes, together with the rep

resentation of conditional independence related to causality across time series of 

flows at the non-root nodes, can be jointly accommodated. by using this graphical 

representation. 

Consider the DAG for the ~lanchester network shown in Figure 4.11 of Chapter 

4. For simplicity and ease of presentation, we will consider a subset of the time 
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FIGUHE 7.1: 3-min flow eatterplot : site 9206B versu ' site 1431A for some 
periods of the day: (a,) 06:00-06:04; (b) 15:00-15:04; (c) 1G:2~-16:29 ; (d) 17:25-

17:29 (flo\\" observed during Weclne: days from June t.o November 2010). 

series in this net.work. uppose a multivariate time se ries is formed by all the four 

root node. ) t(9206B ). Yt(6013B) , Yt(91 A) and Yt(1431A) , as well as one of each 

of their r pcctive children, Yt(9200B), Y~(6007L) , Yt(9193J) and Yt(1437A). For 

nota ional convenience redefine 

)~(9206B) = )~(1) . Yt(6013B) = Yt(2) , Yt (91 A) = Yt(3) , Yt(1431A) = Yt (4) , 

Y~(9200B) = )~(5) . )~(6007L) = Yt(6) . Yt (9193J) = Yt(7). Yt(1437A) = Yt( ), 

and set Y t = [l~(1) .... ,Yt( )]T . 

r-. lotivat db the. caU rplots in Figure 7.1 , and similRr to the CG elicitation example 

pre. nted in hapter 4 an a. sociation , tructure aero.s the flows ob erved at the root 
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nodes can be represented by undirected edges between ea h pair of root nod s in 

a CG. Also, given how traffic flows into the Manch st r network and th a sumed 

flow cau al driving mechani m (that is flow from upstr am ite a r informative 

about flows at downstream sites), a direct d edg from ach root nod Yt,(i) to its 

child yt(j), i = 1 ... ,4, j = 5, .. . , mu t a lso b consid r d in th G f r Y t . 

From the e ideas, a CG representing the ubnetwork of th Man h ,t r inters ti 11 

containing only t he components of Y t is shown in Figure 7.2 . 

FIG RE 7 .2: A chain graph for a ub et of data coll ct ion sit of the Man hest r 
network 

Queen and mith (1992) developed the dynamic graphical model (DGM), wh r a 

chain graph Yt i u ed to represent a tim serie vector Y t at every tim fram. 

In that model the components of Y t are parti t ioned into ord r dubs t , call d 

p-sets and the direct d edges in Yt follow the order of p- ets . Thi ' DGM i d fin d 

by impo ing two condition: 

1. each p- et i a chain component ; 

11 if here i a directed edge from a variable in a p-set to a var iable in another 

p- t hen there must be a directed edge from every variable in the fir t p- t 

to very variable in the second. 

The e condition rna not be rea onable for eliciting CG for road traffic networks. 

Can ider he CG in Figure 7.2. Given item (ii ) d scribed above, the DGM from 

Queen and mith would r quire directed edges from, say, yt(l) to all rema ining non 

root nod ' {yt(5) yt(6) yt(7) yt()}. Considering th cau a l driving m chanism 
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assnnwd for traffic flows, directed edges from each root node yt(i) to eveTY non-root 

yt(j), i = 1, ... ,4, j = 5, ... ,8, ,,'ould not make sense given how traffic flows in 

the }.Ianchester network. Therefore, the resulting chain graph based on the DCr .. I 

requirement described in item (ii) may not be suitable to represent network flow 

structures. 

The next section introduces a model where such a requirement is no longer needed. 

7.3 The dynamic chain graph model (DCGM) 

Let Y t = [Yi(l), ... , }'t{r), yt(r + l)~ ... , }~(n)lT, be all n-dimensional time se-

ries vector~ and let Yt(R) = [Yt(l), ... , Yi(r)]T be the root nodes. Hence, Y t = 

[Yt(R)T, Yi(r + 1), ... , }~(n)lT where r can take any integer value between 1 and 

n-1. 

For notational convenience, define 

Xli) - [}~(l)~ ... , l~(i - l)]T, i = r + l~ ... , n, 

X;(i) [Yi(r+l), ... ,yt(i-l)]T, i=r+2, ... ,n, 

Zt(i) [Yi(i+ 1), ... ,}~(n)]T, i = r+ 1, ... ,n-1. 

For i = r + 1, X;(i) is defined to be 0, as is Zt(i) for i = 71. 

To illustrate this notation, suppose Y t = [Yt(R)T, }i(3), yt(4), Yi(5)jT and r = 2, so 

that Yt(R) = [Y;(1), li(2)]T. The subvectors Xt(i), X;(i) and Zt(i) for each Yi(i), 

i = 3,4,5, are 

X;(3) = 0, 

X;(4) = 1~(3), 
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and 

Let (ii = [Ot(1)T, ... ,Ot(n)T] be the state vectors of Yt. where dim(0tCi)) = Sj, 

i = 1, ... , n, and Ot(R)T = [Ot(l)T, ... , Ot(r)T] be the state vector of Yt(R) , where 

dim(Ot(R)) = L:~=1 Si = q. In addition, let yt(i) = [!Jl(i), ... , Yt(i)]T be the observed 

process a..<;sociated with ~(i), i = 1, ... ,n. 

Consider a chain graph 9 for Y t with an association structure across ~(1), ... , ~(R) 

so that these are joined pairwise by undirected edges. Still in this chain graph, 

suppose a conditional independence structure where the components of Y t can be 

gTouped into ordered blocks B I , .•. , Bk , such that HI = Yt(R) and the blocks 

B2,' . . , Bk each have one time series component only so that B2 = ~(1"+1), ... , Bk = 

~(n). Then, the chain graph 9 can be elicited for the time series Y t so that, at 

each time t E Pi, for i = r + 1, ... , n, 

Yt(i)ll[yt(l), ... , Yt(i - l)]\bd(Yi(i))lbd(yt(i)) (7.1) 

and 

where, as defined in Subsection 4.2.1 of Chapter 4, bd(yt(i)) is the boundary of 

~(i). Since 

bd(1i(i)) = pa(yt(i)) U ne(1i(i)) 

where pa(Yt(i)) and ne(~(i)) are, respectively, the parents and neighbours of ~(i), 

and each yt(i), i = r+ 1, ... ,n, forms a block with one component only, we have that 

ne(Yt(i)) = 0, i = r+ 1, ... , n. Therefore, at each time tEN and fori = r+ 1, ... ,71, 
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equations (7.1) and (7.2) can be simplified, respectively, to 

}~(i)ll[}~(l), ... , ¥to - l)]\pa(Yt(i))lpa(¥t(i)) (7.3) 

and 

which are similar to the conditional independence statements induced by a DAG in 

the l\lDl\I definit.ion, described in Section 4.4 of Chapt.er 4. 

The dynamic chain graph model (DCGM) is defined by the following observat.ion 

and system equations and initial information. 

Observation eq'uations: 

}~(i) = Ft(i) T Ot(i) + Vt(i), l't(i) '"" (0, Vi(i)), i = r + 1, ... ,TI. (7.6) 

System equations: 

- -
Ot = GtOt - 1 + Wt, Wt"" (0, Wt) , (7.8) 

-T T T] where Ot = tOter + 1) , ... , Ot(n) . 

Initial info7mation: 

(7.9) 

OolDo rv (mo, Co). (7.10) 

The q x r dynamic regTession matrix Ft(R), the q x q state evolution matrix Gt(R) 

and the q x q evolution variance-covariance matrix Wt(R) are allowed to be a 
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function of yt-l(R) but not {yt(r + 1), ... , yt(n)} or Yt(R); "Et(R) is an r x r 

observational variance-covariance matrix and vt(i) arc scalar observational variances, 

-i = r+ 1, ... , n. The si-dimensional column vector Ft(i) is a known function of xt(i) 

and yt-l(i), but not zt{i), i = r + 1, ... , n or Yt(i). In addition, the r-dimensional 

vector Vt(R), the q-dimensional vector Wt{R), the s-dimensional vector Wt, "rhere 

s = 2:~=r+l Si. and Vt(i), i = r + 1, ... ,n, are independent sequences of independent 

errors. 

The s x s matrices Gt. W t and Co are defined as 

G t = blockdiag(Gt(r + 1), ... ,Gt(n)), 

W t = blockdiag(Wt(r + 1), ... , Wt(n)) 

and 

Co = blockdiag(Co(r + 1), ... , Co(n)) 

where Gt(i) and Wt(i) may be functions of x t- 1(i) and yt-l(i), b1d not zt-l(i), 

i = r + 1, ... , n. The mean vectors Po and rno and covariance matrices So and Co 

of the initial distributions (7.9) and (7.10) are assumed known. 

In the DCGl\I, a separate multivariate state space model is defined for Yt(R), such 

that a non-zero covariance structure between the root nodes of the graph repre

senting Y t can be considered. This cross covariance structure can be sequentially 

estimated in time by making inferences on "Et(R) of equation (7.5). The remaining 

time series components, Y;(r + 1), ... , Y;(n) are still modelled in an l\lDM fashion, 

through the observation equations (7.6) and system equation (7.8). \Vith this ap

proach, all the modelling techniques developed so far for the MUM can still be used 

within the DCGl\I, but now allowing a covariance structure among the time series 

components represented by the root nodes in the chain graph. 
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7.4 Theoretical results of the DCGM 

Let Y t = [Yt(1), ... , y,(n)]T oe a time tieries vector modelled by an MD1\1. The 

independence after sampling of each state vector Ot(i), i = 1, ... , 'fl., is one of the 

main properties of the 1\ID~I, and it allows local computations when modelling 

high-dimensional time series. Now, let Y t = [Y,(1), ... , l't(r), Yt(r + 1), ... , Yt(n)]T, 

be an 'fl.-dimensional time series vector modelled by a DCGl\l such that Yt(R) = 

[Yt(1), ... , }~(r)]T are the root nodes. In the DCGl\1, not only each state vector 

OtU), i = r + 1, ... , n, remains independent after sampling, out each Ot(i) is also 

independent of the state vector Ot(R) after Yt is observed. 

To prove this DCG~1 property, the following Lemma is required. 

Lemma 7.1. (Da'Wid, 1979). Let X,Y,Z and W lJe any random vectors. Then we 

have that XlLY,ZIW <=> XlLYI(Z, W) and XlLZIW. 

Lemma 7.1 can now be utied to prove the following theorem. For ease of presentation, 

let yt denote all available information at time t during the proof. This will simplify 

representations of information subsets at a given time t. 

Theorem 7.2. Let {Ydt~l be governed by a DeCM with r root nodes, whe1'e r can 

be any integer betwfen 1 and n - 1, and let oi = [Ot(I)T, ... , Ot(n)T] be the ~tate 

t'ector of Y t. For notat-ional convenience, let 

cPt(i)T = [Ot{1)T, ... ,Ot(i-1)TJ, i=r+l, ... ,n, 

cP;(i)T = [Ot(r + I)T, ... ,Ot(i _1)T], i = r + 2, ... ,n, 

and 

i = r + 1, ... , n - 1, 
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be the state vectors ofYt(R). Xt(i), X;(i) and Zt(i) (defined at the start of Section 

7.<9) respectively. If we have, 

¢>~-1 (i)Jlyt-1 (i), zt-l (i), 8t-1 (R) Ixt
-

l (i), i = l' + 2, ... , n, (7.12) 

8t_1(i)Jlzt- 1(i),8t_l(R),cp;_1(i)lx t
-

1(i),yt-1(i), i = r+ 1, .. . ,n, (7.13) 

tPt-1 (i)Jl8 t _ 1(R), ¢>~-l (i), 8t_l(i)l y t-l, i = r + 1, ... , n - 1, (7.14) 

then, the following conditional independence statements must also be t,ue: 

¢>;(i)Jlyt (i), zt(i), 8t(R)lxt (i), i = r + 2, ... ,n, (7.16) 

8t(i) Jlzt(i),8t (R), cP;(i)lx\i), yt(i), i = 7' + 1, ... ,n, (7.17) 

tPt(i)Jl8t{R), 4>;{i), 8t(i)l y f, i = r + 1, ... ,n - 1, (7.18) 

This theorem can be proved by defining a chain graph representing the hypotheses 

(7.11) to (7.14), the observation equations (7.5) and (7.6) and system equations (7.7) 

and (7.8). The conditional independence statements (7.15) to (7.18) are then verified 

by applying globall\Iarkov properties in the resulting chain graph. Preliminary chain 

graphs will he considered during the following proof in order to elicit the final graph. 

The proof holds for all r = 1, ... , n - 1 and i = r + 1, ... ,no However, for clarity 

of presentation, the graphs used in the proof consider the particular case in which 

r = 2. 

Proof. Figure 7.3 shows a chain graph representing the components of yt-1 and 8t-1 

for some i = 3, ... , n - 1 (note that, for i = 3, x·t - 1 (i) and 4>;-1 (i) are simply null). 
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The hypothesis (7.11) implies omission of arcs between {yt-l (i) 1 i = 3, ... , n} and 

Applying Lemma 7.1 in hypotheses (7.12) and (7.13), we have the conditional illde-

pendencc statements 

(7.19) 

A.* (')ll t-l(') t-l(')1 t-1(') 'l't-l '2 Y 1., Z 1, X '2, (7.20) 

(7.21) 

and 

{}, ( ')lL t-l(')1 t-l('), t-l(:) t-I Z Z 1 Xl, Y 1. (7.22) 

Hence, hypothesis (7.14) and statements (7.19) and (7.21) imply the omission of arcs 

between {{}t-l(i) 1 i = 3, ... ,n} and Ot-l(R), and also hetween {Ot-l(k) 1 k -=I i} 

and (}t-l(i), i, k = 3, ... , n, In addition, hypothesis (7.11) and statements (7.20) and 

(7.22) imply arc omissions between {yt-l(k) 1 It: > i} and Ot-l(i), for i = 1, ... ,n-1, 

k = 3, ... ,n. 

Figure 7.4 shmvs a chain graph representing a..<;sociations between components of 

yt-I, Ot-l and Ot ba.-;ed on system equations (7.7) and (7.8). In this figure, associa

tions between yt-l and Ot-l described using Figure 7.3 are omitted for ease of pre

sentation. The restriction that Gt(R) and l'Vt(R) are functions of yt-l(R) and not 

t-l ) t-l( )}' t'fi' .. b t T {t-l(') I' 3 } {y (r+ 1 , ... , y n JUS 1 es arc omISSIons e \\een y 1 1. = , ... , nand 

(}t(R). Also, the 11Dl\1 restriction that Gt(i) and l'Vt(i) can be functions of x t- 1 (i) 

and yt-l(i), but not zt-l(i), justifies omissions of arcs between {yt-l(j) 1 j > i} 

and Ot(i), i = 3, ... ,n - 1 and j = 4, ... , n. The arc omissions between Ot(R) and 

Ot(i), i = 3, ... ,11, can be justified by noting that the form of equations (7.7) and 

(7.8) imply that Ot(R)lL{Ot{r + 1), ... , Ot{n)}l y t-l, Ot-l{R). 
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The justification for the remaining arc omissions in Figure 7.4 arc ba..,>ecl on the block 

diagonal forms of G t and Wt, which imply that 

This justifies omission of arcs between {Ot-l(i) Ii = 3, ... , n} and Ot(R), and abo 

between {Ot-l (k) I k =I- ·i} and Oli}, i, k = 3, ... ,71. 

Figure 7.5 shows a chain graph representing associat.ions bet.ween components of 

yt-I, Ot-l, Ot and Yt, based on observation equations (7.5) and (7.6). In this figure, 

associations between yt-l, Ot-l and Ot described using Fignres 7.3 a.nd Figures 7.4 

arc omitted for case of presentation. These observation equat.ions and the forms of 

Ft(R) and Ft(i), i = 3, ... ,n, ensure that, 

and 

These conditional independence statements justify omission of arcs between Ot-l(k) 

to Yt(i), i, k = 1, ... , n. Arcs between {Ot(i) I i = 3, ... , n} a.nd Yt(R) and arcs 

between {Ot{k) I k =I- i} and Yt(i), i, k = 3, ... ,n, can also be omitted given (7.5) 

and (7.6), as these equations imply that 

and 

Since Ft{R} may he a function of yt-1(R) but is not a function of {yt-l(r + 

1), ... , yt-l(n)} and given that Ft(i) is a known function of xt(i) and yt-l(i), but 
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not zt(i), we also have that, 

and 

(')ll t-1(')1 t(') t-1(') , 3 Yt 'I Zt x 'I ,y 'l, Z = , ... , n. 

This justifies missing arcs between {yt-1 (i) Ii = 3, ... ,n} and Yt(R), and between 

{yt-1(/.;) I k> i} and Yt(i), i = 3, ... , n. 

Figure 7.6 shows the moralized resulting chain graph built on preliminary chain 

graphs in Figure 7.3 (Box A), Figure 7.4 (Box B) and Figure 7.5 (Box C). The 

chain components of this graph which are not single nodes are {yt-1 (1), yt-1 (2), }, 

{{}t-l (1), (}t-l (2)},{ (}t(I), (}t(2)} and {Yt(I), Yt(2)}, and the grey undirected edges 

are the result of moralization, as described in Section 4.2.2.1 of Chapter 4. For the 

general case where r is any integer between 1 and 17, - 1, the chain graph would have 

the same general form, only there would be chain components {yt-l (1), ... ,yt-l (r)}, 

within a chain component are joined pairwise by undirected edges. 

The theorem is proved by verifying that, for each statement (7.15) to (7.18), of the 

form AllBIC, the (conditioning) component C separates the (conditioned) compo-

nents A and B. 

Figures 7.7 to 7.10 show the chain graph of Figure 7.6 highlighting the conditioned 

components (orange and brown nodes) and the conditioning components (violet 

nodes) of each statement '(7.15) to (7.18). The global :t\larkov property for chain 

graphs, described in Chapter 4, can then be used to verify each of these conditional 

independence statements. D 
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r-----------------------
A 

I ------------------------
F IGURE 7.3: Chain graph fo r the inductive hypothesis (7.11) to (7.14) of the 

Theorem 7.2. 
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The fo llowing corollary en ures t he independence after sampling of 8t (R) and ach 

8t (i) i = r 1 ... , n under the DCGM. 

Corollary 7 .3 . If 80 (R )Jl... { 80 (r + 1), . . . , 80 (n)} and Jl...~r+1 80(i) , then, for ali t, 

an d 
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r-------------------------~ .B 

FIG RE 7.4: hain graph representing sy tern equations (7.7) and (7. ) of the 
DCGM definition. 
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Proof. Figure 7.11 hows a chain graph r pre enting t he initial independ nce hy

pothese eo(R)Jl..{eo(r + 1), . . . eo(n)} and Jl..~=r+leo(i), (box A), y t m qua

tion (7.7) and (7. ) at time 1 (box B) and the ob ervation quat ion (7.5) a nd 

(7.6) at t ime 1 (box C) . The grey undirect d edge in Figur 7.11 a re the result of 

moral ization. 

From the moraliz d graph in Figure 7.11 t he conditional ind pend nce tat ment 

(7.15) to (7.1 ) can be ded uced for t ime t = 1. Therefore, when eo(R)Jl.. {eo(r + 

1) ... ,eo(n)} and Jl..~r+l eo(i) the condi t ional independ nce stat m nt (7.15) to 

(7.1 ) ar true for t im t = 1 and by induction, fr m Theor m 7.2, condi t ional 

independence tatement (7.15) to (7.1 ) mu t be t rue for a ll time t . 
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r-----------------------
C 

I I ------------------------

FIGURE 7. 5: Chain graph repre enting the ob ervation quation (7.5) and (7.6) 
of the DCGM definition. 

Conditional independence tatement (7.15) to (7.1 ) can be then ombin d into 

two statements: 

and 

Then, by Lemma 7.1 statement (7.23) implies 
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and 

and statement (7.24) implies 

D 

Corollary 7.3 means that if the parameters for Yt (R), YI (r + 1), ... ,YI (11,) are initially 

independent, then they will remain independent after sampling in the DCC 1\1. The 

fact that separate priors are specified for Oo(R) and 00 in (7.9) and (7.10), and that 

Co in (7.10) is block diagonal, ensures that the condition of initial independence 

holds. Thus the parameters Ot(R),Ot(r + 1), ... , Ot(n) can be updated separately 

within the respective models for Yt(R), yt(r + 1)lpa(Yt(r + 1)), ... , Yi(n)l]Ja(Yt(ll)). 

Forecasts can also be obtained separately for Yt(R) and 

yt(r+ 1)lpa(Yt(r+ 1)), ... , yt(n)lpa(Yt(n)). Thus, the n-dimensional model is decom

posed into an r-dimensional multivariate model (with r < n), pIllS n - r separate 

univariate models. 

As with the multircgression dynamic model, the marginal foreca....,ts for Yt(r + 

1), ... , Yt(n) are required and calculation of the marginal foreca.<,t moments is ex

actly the same as for the multiregression dynamic model (Queen & Smith, 1993; 

Queen et ai., 2008). Because Yt{R) do not condition on any other variables, no 

further calculations are required to obtain the ma.rgina.l forecasts for that vector. 
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7.5 The linear dynamic chain graph model 

(LDCGM) 

Suppose a time series Y t = [yt (1), ... , Yi (n )] T with r· root llodes is modelled by 

a DCGM. The non-root nodes {yt(r + 1), ... , yt(n)} in this case can be modelled 

using a regression vector Ft(i) in observation equation (7.6) which must illclude a 

function of the parents of yt(i), i = r+ 1, ... ,no Since all the components of Y t arc 

simultaneously observed, the marginal distributions of the forecast distribution for 

each non-root node Yt(i) is required for forecasting purposes. 

\Vhcn regression is linear and the errors in equations (7.5) to (7.8) are normally 

distributed, then the marginal moments of the forecast distributions for }~(i), i = 

r+ 1, ... , n can be calculated analytically. In this case, the model is a linear dynamic 

chain graph model (LDCGM). 

Let Y t = [yt(1), ... , yt(n)]T he a time series and Yt(R) = [yt(1), ... , Yi.(r)]T be the 

r root nodes. Given a chain graph for Y t , the LDCGr-.l is ddinC'd by obs('rvation 

equations, system equations and initial information a.<; follows. 

Observation equations: 

(7.25) 

yt(i) = Ft(i)T BtU) + Vt(i), Vt(i) rv N(O, Vt(i)), i = r + 1, ... , n. (7.26) 

System equations: 

(7.27) 

- -
Bt = GtBt - 1 + Wt, Wt'" N(O, Wt) . (7.28) 
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Initial in/ormation: 

8 o(R)IDo rv IV(po, Wo(R), ~o(R)), 

OolDo"-' N(mo, Co). 

In this DCGM, the observation equation (7.25) and the system equation (7.27) rep

resent a matrix normal DLr..l, as described in Subsection 3.6.2 of Chapter 3. Hence, 

the observation equation (7.25) uses row vector Yt{R)T rather than Yt{R), and 

the matrix ~t(R) represents the cross-sectional time-varying covariance structure 

among the root nodes Yt{R) at each time t. Additionally, mch Yt(l), ... , Y,(r) has 

the same p-ciirnensional regression vector Ft(R), with p x T state matrix 

where Ot(i) is the p-dimensional state vector for }t(i) and has same evolution matrix 

Gt(R), i = 1, ... , r. 

The dynamic evolution of the state process of Yt{R) is a. function of the state 

matrix 8 t {R) and a matrix of evolution errors nt{R) which follows a matrix normal 

distribution with null vector mean, left variance ma.trix Wt{R) and right variance 

matrix ~t{R) (again, as in Subsection 3.6.2 of Chapter 3). 

The remaining time series components, {Y,(r + 1), ... , Yt{n)}, are modelled through 

equations (7.26) and (7.28). The form of these equations means that an LrvID11 is 

used to model the non-root nodes of Yt(i) with some extra parents from Yt(R). 

Therefore, each Yt(i), i = r + 1, ... ,n follows a conditional rcg,Tession DLM and 

forecasts for {Y,(r+l), ... , Yt{n)} can be obtained by applying the techniques t.o cal

culate marginal moments under the LMDM, as illustrated in Section 4.7 of Chapter 

4. 
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7.6 Example 

To compare the effect of using different graphical representations of road traffic 

network., on the quality of flow forecasts, particular ea.o.;es of both the Ll\IDl\l (in 

\vhich root nodes are uncorrelated) and the LDCGM were Ilsed for the l\lanchest.er 

network data. The 8-dimcnsional time series Y t = [Yt(l), ... , y,(8)]T defined in 

Section 7.2 was used for this comparison. 

5-min data from Kovember 2010 were used to elicit priors for bot.h models, and one

step ahead forecasts were obtained for flows observed from 15:00 to 19:5!J during 

\Yednesdays in December 2010 (the reason for not using data from the whole day 

will be explained later). This part.icular mont.h was chosen hecanse traffic disruptions 

caused by heavy snow were observed at the end of 2010. lIence, the models could 

be compared given that an explicit factor (adverse weather conditions) was affecting 

the traffic being modelled. 

Based on the chain graph in Figure 7.2, the LDCGM defined in Section 7.5 was used 

to forecast Y t . Therefore, given r = 4, the vector of root nodes Yt(R) is modelled 

by a matrix normal DLl\I, with a p x 4 state matrix 8 t (R), where each column is a 

p-dimensional state vector for each time series component in Yt{R). 

In equation (7.25), Ft{R) is a vector common to all the time series ofroot nodes. It is 

then difficult to apply the methodology described in Chapter G to include extra traffic 

variables available for each root node under the LDCGM. Due to this restriction, 

occupancy, speed and headway values were not used in the matrLx normal DLM for 

Yt(R) and 

where h1(t), ... , hu(t) are the spline basis functions representing the cycle from 

the period 15:00 to 19:59, and Gt{R) is an identity matrix of order .M. The state 
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evolution matrix 8 t {R) is given by 

/31.2 fJI,3 

82,2 /;2,3 

/3M,1 ,8/11,2 /3/11,3 /3M,.1 

The form of this evolution matrix results in four separate spline fUllctions modelling 

the seasonal cycle of each root node in Yt(R). Hencc, 8 t {R) can accommodate 

different seasonal patterns for Yi(1), ... , Yi(4). The flow sca'-)ollality pattcl'lls at 

all sites of the l\Ianchester network are fairly similar, with any differellce being 

accounted for in 8 t {R). 

In this examplc, both covariance matrix "Et{R) and evolution variance matrix Wt(R) 

in (7,25) and (7.27) were a..<:;sumed unknown. The evolution variance mat.rix lVt(R) 

W1-1S modelled via a discount fa.ctor, as described in Subsection 3.6.2 of Chapt.er 3. A 

discount factor wa..<:; also lIsed to model t.he time-varying covariance matrix }j,(R), fl .. ') 

described in Section 5.2.2 of Chapter 5. However, as point.ed out by Prado and \\'est 

(2010), variance modelling via discount factors is suitable when the (co)varianccs 

have a behaviour similar to a random walk, that is, when the (co)varianccs have 

a smooth and gradual random changing. This is a reasonable assumption between 

15:00 to 19:59 for these data, so this is the reason why only data during this period 

each day arc considered here. 

In addition, unlike what was observed for root node flow variances (described in 

Subsection 5.2.1 of Chapter 5), it is not necessarily the case that covariances between 

root nodes change with the mean. Hence, variance laws were not considered t.o model 

the observational variance ~t(R) in equat.ions (7.25) and (7.27). 

Given Y,(R), each Yt(i)lpa(Yi(i)), is modelled by a separate univariat.e DUvl 
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{Ft(i), Gt(i), Vt(i), Vt(i)Wt(i)}, i = 5, ... ,8. Hellce, a Bayesian conjugate analysis 

of (Ot (i), <Pt (i)) through a normal-gamma prior together with a discount factor for 

\!t(i), as used in Section 5.2 of Chapter 5 and Subsection 6.4.2 of Chapter 6, can be 

applied for the non-root node modelling under the LDCG1VI. Additionally, discollnt 

factor techniques for the evolution variances Wt(i) and the assllmption of a time-

varying observational variance of the form 

where 

log( variance of flow) = 0: log( mean flow) 

snch that a is estimated from historical data (again as in Section 5.2 of Chapt{'r [) 

and Subsection 6.4.2 of Chaptrr 6) was also consid('red for "Yt(5), ... ,Yt(8) in this 

example. 

The regression vector Ft(i), i = 5, ... ,8, is built based on splines to model t.he daily 

flow cycle and also to include values of occupancy, speed and headway observed CIt. 

time t -1 for each series Yt (i), i = 5, ... ,8. Following t.he ideas developed in S('ct ions 

6.3 and 6.4.1 of Chapter 6, each regression vector Ft(i) is defined as follows. 

F ( ')T [ ( ('))L DT LOT L ST LIlT] . r. 8 t Z = pa Yt l iii .j' 1, = v, ... , , (7.29) 

where, 

Lf = [hg(t -1), ... , hE,\1l(t _1)]T, 

L? = [h~l (t - 1), ... , h?'Jl12(t - 1)]T, 

Lf = [hfl (t - 1), ... , hr,M3(t - l)F 

and 
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The regression vectors in (7.29) contains the spline basis vector Lf to model the 

proportion of vehicles going from pa(Yt(i)) to YtCi) as well as L?, L7 and L.11, 

which are spline basis vectors representing the relationship bl'twcell Yt(i) and occu

pancy, speed and headway observed at site SCi) at time t - 1 respectively. Given 

this regression vector structure, each parameter vector associated with ba,qis vectors 

pa(Yt(i»)Lf, L7, Lf and L[l can then be included in (}t(i). It is also I1ssUll1ed that 

G t = blockdiag{ G t (5), ... ,Gt(8)}, where Gt(i) = I ni , which is an identity matrix 

of order ni = dim(Ft(i), i = 5, ... ,8. 

A DAG for the Y t can be obtained by removing the blue nndirected edges from 

the CG in Figure 7.2. Given this DAG, a UvlDl\I can be defined for Y t such that 

each root node Yi(i), i = 1, ... ,4, follows a univariate DUd, as assumed in the 

previous chapters. For fairness of comparison with the LDCGl\I, occnpallCY, sp('(ld 

and headway observed at root nodes were not used as predictors in the DLl\.ls for 

Yf(i), i = 1, ... ,4, and each observation variance \'t(i), i = 1, ... ,4 was modelled 

using discount factor techniques only. Additionally, the seasonal pattern of cach 

root node in the Ll\IDM was modelled using splines with 

where each Ft(i) contains the spline basis functions representing the cycle from the 

period 15:00 to 19:59 for each Yt(i), i = 1, ... ,4. 

Each non-root node in the LMDl\.I was modelled by separate conditional DLMs for 

¥tU)lpa(Yt(i)), i = 5, ... ,8, in the same fashion as these nodes were modellec.l within 

the LDCG~l. 
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7.6.1 Results 

Table 7.1 shm'ls the log predictive likelihood (LPL) values for the LDCGM and the 

L11DM used to foreca.st a subset of the l\Ianchester network as uescribed above. 

The first row of the table shows LPLs based on forecasts from both models for the 

root nodes only. The matri.x normal DL11 for Yt(R) considered under t.he LDCG11 

framework provided better foreca.sts than the independcnt DLl\ls a.'sslJlllcd by the 

LMDM, and this improvement clearly affects the overall LPL when looking at all 

eight time series considered in the example (second rmv of Table 7.1). 

TABLE 7.1: LPLs for UvlDM and LDCGM using different Y t subsets 

node setup 

Yt(R) (root nodes) 
Y t (all eight nodes) 

model 
LMDM LDCGM 
-6,728 -6,154 
-11,488 -10,914 

Figure 7.12 shows observed flow for yt(1) on 22 December 2010 from 15:00 to 19:59, 

together with one-step ahead forecast means and 90% forecast limits for both the 

LMDM and the LDCGl\L These models provide very similar forecast means, hence 

the superposition of the lines representing the forecast means from both models ill 

Figure 7.12. However, although their forecast limits follow the same pattern dUl'ing 

the period covered by the plot (that is, bigger forecast ranges at periods \'lith bigger 

flow variability) forecast limits from the LDCGM are slightly smaller than the ones 

from the Ll\lDM and so slightly more informative. 

Although the one-step ahead forecast means ancllimits are similar for the two models 

in Figure 7.12, the advantage of using the LDCGM can be clearly seen when looking 

at multivariate forecasts, which can be highly influenced by the covariance structure 

among the root nodes. 

Figure 7.13 shows twelve plots, each with a single (two-dimensional) observed fiow, 

represented by a black dot. Each black dot represents the flow observed during a 
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5-min interval during 18:00-18:59 on 29 December 2010 at the pair of root nodes 

(Yt(l), Yt(2)) of the 11anchester network. The red ellipses in Figure 7.13 represent 

90% forecast regions for root nodes (Yt(l), Yt(2)) based on the forecast distributions 

obtained from the Lr-.l Dr-. I , whereas the blue ellipses in Figure 7.13 represent the 

90% forecast regions for the same nodes ba..<;ecl on the forecast distributions obtained 

from the LDCG~l. These forecast distributions would be obtained before the flows 

represented by black dots in the plots were observed. 

For most 5-min intervals during 18:00-18:59, the observed flows are far from the 

centre of forecast regions for both models, which are represented hy the grey dots 

in the plots (the centre of the forecast regions of both LMDr-.,l and LDCGM are 

very similar). This is possibly due to t.he extra variability in traffic flows during 

December 2010 which are not being captured by the models, since both LMDr-.l and 

LDCG~l use splines to model the smoothed daily flow trend only. 

In all the twelve plots, the LDCGM forecast regions are smaller than the forcca.<;t. 

regions ba.<;cd on the Ll\lDM. r-.loreover, the LDCGM forcca.<;t regions clearly indicate 

a positive correlation among the node pairs in each plot: such positive correlations 

support the root node scatterplots shO\vn in Figure 7.1 and discussed in Section 7.2. 

On the other hand, the LMDM does not exhibit such a correlation struct.ure between 

pairs of root nodes. 

Figure 7.13 also illustrates how the LDCGM accommodates the ullcertainty due to 

unexpected traffic flow levels better than the UvIDM does: the LDCGM managed to 

provide a forecast region with a smaller area than the LMDM forecast. region, while 

better accommodating the uncertainty due to the high flow variations. Indeed, the 

LDCG~l forecast region covers the flow observed during 18:05-18:09 and 18:20-18:24, 

while the Lr-.ID~l forecast region does not. 
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7.7 Discussion 

When using a DAG to represent the conditional indC'pcn<ience statement.s relat.ed to 

causality across a time series vector of flows, the lack of edges among the root lIodes 

leads to the asssumption t.hat flows at the ellt.ranc('s of the lid-work me TTuL1:qinally 

independent. This assumption docs not secm to hold for t.raffic data, as described 

in Section 7.2. 

The representation of the association structure hctween traffic flow time series hy 

a chain graph, where the root nodes are connected by ulldirectpd edg<'s, induces a 

symmetric association structure among these root nodes. In the example presclltcd 

in Section 7.6, the assumption of symmetry among the root no<i('s rC'prcsclIts the hy

pothesis that the advenie weather conditions observed during Deccmber 2010 affects 

all the root nodes of the chain graph ill Figure 7.2 equally, awl t.hat carh 1I0B-root 

node is independent of the adverse weather condition given its root node parellt. 

The elicitation of a chain graph for traffic networks is an extension of t.he DAG 

elicitation procedure described in Chapter 4. A chain graph can be obtained from the 

DAG by just encoding the research hypotheses representing symlllctric a:-;soeiations 

between the root nodes. In the resulting chain graph, the chain componclIts arc the 

blocks formed by the root nodes and each non-root node. Thus, a partial cansal 

ordering can be defined among these chain component.s. 

Although the example described in Section 7.6 focuses on the problem of fOH'ca:-;tillg 

traffic flows, the DCG11 has much wider applicability to any application involvillg 

multivariate time series which exhibit causal and symmetric association structures. 

For example, suppose that of interest is forecasting an econometric n-dimensional 

time series Y t , where T" = 2, n > 2, and the root nodes yt(l) and 1't(2) represent time 

series of gross domestic product and inflation rate for a country of interest. Suppmie 

a chain graph 9 can be elicited for Y t , where an association structure rcprCHents 
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the symmetry between gross domestic prodnct allCi inflation rate, which would be 

described by an undirected edge between Yt(l) and }((2) in Q. Assume fnrt.\wr that 

the root nodes may be potclltial callses of the nOll-root nodes, and theHc callHCS 

would be represented by arcs from {}((l), Yi(2)} to }'iU) in Q, i = T + :3, ... ,no A 

DCCM could be formulated for these series snch that a llluitivariat.e Hingle m()(lel 

is ddined for Yt(l) and Yt(2) wherem; the other series Yi('i), i = r + :l, ... , n are 

modelled byn - 2 (conditional) separate uuivariate models. 

The DCGI\I also extends the dynamic graphical 1llOdd devl'1op('<l by QU(l('ll find 

Smith (1992) as follows. Suppose that a time series Y t = [}/(l), ... , }~(8)lT is 

modelled by this DGM using a chain graph g. Given two o)'(lt'n~d p-s('ts (A, lJ), 

the DCI\l from Queen and Smith requires that, if there is a din'('tC'd edge froIll a 

variable in a p-set A to a variable in 13, then there mllst he a dirc,cted ('dg<' from ("1 1('1'7.1 

variable in A to every variable B. Based OIl the model definit.ion giV{'ll in Section 

7.3, this requirement is no longer needed in the DCCI\1. 

The flexibility of the DCGM allows the w;c of allY lllult.ivariate 1llodl'! for the t.inH' 

series of root nodes. The traffic network considered for all t.he applicatiolls in this 

thesis has only four root nodes. However, when dealing wit.h higher-dilllcnsional 

time series, sparsity could be included in the root node modelling by cOllsi<i('ring a 

graphical model to represent the covariance structure among the root 110(le8, with 

the dynamic graphical model of Carvalho and \VCHt (2007), clcscrih('d in Section 

4.3.2 of Chapter 4, a..<; an example. 

Due to the matrix normal DLM structure for root nodes in the LDCGI\I, variance 

laws (as in Section 5.2 of Chapter 5) and the usc of extra trafIic va.riables a,s predictors 

(as in Section 6.4 of Chapter 6) were not considered for the root nodes in the example 

of Section 7.6. Even with these restrictions, there was evidence that it is worth 

considering a chain graph for the root nodes w hen forecasting traffic flows. I lowever, 

when modelling traffic data for the whole day, a rwttcr multivaria.te model must be 
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developed which uses the extra variables as predictors and which also accommodates 

the covariance structure of the root nodes when discount factor modelling is not 

appropriate. 

The econometric example introduced earlier in which Yt(l) is gross domestic product 

and Yt(2) is inflation rate is another example of whell an alternative mult.ivariate 

model to the matrix normal DLl\I may be more appropriate for the root nodes. 

Although symmetry is assumed between gross domestic product and illflation ratc, 

it is not necessarily the case that Yi (1) and Yt (2) should be modelled using a common 

regression vector F t as required by a matrix normal DLl\1. 
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------------------------------------------
u 

------------------------------------------
FIGURE 7.6 : Moralized chain graph for the inductive hypothe i (7.11) to (7.14) 
(Box A) , sy tern equation (Box B) and ob ervation equation (Box ) of th 

DCGM. 
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FIGURE 7.7: 10ralized chain graph of Figure 7.6, highlighting statem nt (7.15) , 
of the form AllE IC, from theorem 7.2. C are the violet nodes and A and Bare 

orange and brown nodes re pectively 
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FIG RE 7.9: Ioralized chain graph of Figure 7.6, highlighting statem nt (7.17), 
of the form AllB IC, from Theorem 7.2. C are the violet nodes and A and B ar 

orange and brown nodes respectively 
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----------------------- ----------------
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FIG RE 7.10: l\Ioralized chain graph of Figure 7.6, highlight ing statem nt (7.1 ) 
of the form AllB IC, from Theorem 7.2. C are the violet nodes and A and B ar 

orang and brown nodes resp ct iv ly 
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I 

------- =:::=:~ -------

FIGURE 7.11: foralized chain graph for the hypothes is of the Corollary 7.3 (Box 
A), along with system equations (Box B) and obs rvation equation (Box C) of 

the DCGM at time 1. 
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Chapter 8 

Future work 

This chapter discusses some possible research directions to further improve the mod

els developed in this thesis. 

8.1 Model monitoring and intervention 

The forecast accuracy of all models developed here was verifi('d w~ing pa . ...,t traffic 

data. However, when using both the linear multiregression dynamic model (UvlDl\l) 

and the linear dynamic chain graph model (LDCGl\1) in an on-line traffic manage

ment environment in practice: on-line model monitoring techniques are crucial in 

order to monitor how well these models are performing over time. For example, 

these techniques are important tools to identify when forecasting models are not 

capturing new time series patterns not previously considered in the model under 

operation. Depending on the type or frequency of these new patterns, information 

regarding a change in the time series must be fed into the model to maintain fore

cast performance, which can be done via intervention techniques. For an example 

of intervention in Ll\lDl\ls, see Queen and Albers (200n). 
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Given that bot.h the LMD~1 and the LDCGM are sets of (conditional) dynamic linear 

models, it should be relatively straightforward to adapt established monitoring and 

intervention techniques for DL11s (as described in \Vest and Harrison, 1997) into 

their context. 

8.2 Using downstream flows to forecast upstream 

flows 

\Vhen using dynamic linear models to forecast road traffic flows, Tebaldi ct al. (2002) 

used lagged information from downstream sites to foreca.'5t flows at. upstream sites. 

This improved forecasts at periods where unexpected low traffic flows were observed, 

and it can be an indication that flows from downstream sites can be useful when 

foreca..<;ting flows during congestion periods. 

The effect of using lagged downst.ream flows to forecast upstream flows could be 

tested when using L11Dl\ls and LDCGl\ls. \Vhen verifying this t:'ffect in LDCGl\ls, 

it should be noted that the root nodes in this model share the same regression vector 

Ft{R) in the matrix-normal model assumed for them (as explained in Section 7.6 of 

Chapter 7). In this case, the effect of using lagged downstream flows on forecasting 

upstream flows could be used for non-root nodes only. 

Still from the traffic modelling perspective, the graphical structure of both multi

regression dynamic models and dynamic chain graph models allow the llse of con

temporaneo'U8 flows from upstream sites to model downstream sites, and the use of 

such information improves flow foreca"ts when compared to the inclusion of lagged 

flow information, as shown in Section 4.8.4 of Chapter 4. However, the inclusion 

of contemporaneous flows from downstream sites is still not possible, due to the 

conditional independence structure implied by these models, defined in Section 4.4 
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of Chapter 4 for the r..lDr..l and in Section 7.3 of Chapter 7 for the DCG1\I. In this 

sense, graphical structure adaptations of both r..lDMs and DCGMs need to be de

veloped in order to allow contemporaneous information from downstream sites to 

forecast flows at upstream sites. 

8.3 Modelling all weekdays 

As shown in Section 2.4 of Chapter 2, the variability of flows may have different 

patterns depending on the day of week. Due to this, flows from \Vednesdays only 

were considered when using the r..lanchester network data to apply all the method

ologies proposed in this thesis. However, both the L1\IOM and the LOCGM can be 

further improved for forecasting traffic flows by considering variability between days. 

Extensions of these models can be possibly developed along the lilH.'s of hiemn:hi

cal dynamic models (Gamennan and r..ligon, 1993), where the theory of hierarchical 

models introduced by Lindley and Smith (1972) are developed in the dynamic linear 

model context. 

8.4 General chain graph structures for the dy

namic chain graph model 

In Section 7.3 of Chapter 7, the dynamic chain graph model (DCGM) was defined 

for a time series Y t = 1Y;(I), ... , yt(n)]T with r root nodes, r < n. This definition 

assumes the time series being represented by a chain graph with blocks HI, . .. , HI.; 

such that the blocks B2 , ••• , Bk each have one time series component only. The 

DCG~I uses a separate multivariate state space model for the root nodes Yt(R) = 
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[Yt(I), ... , Yt(r)]T, whereas conditionally univariate state space models are defined 

for each remaining time series component yt(r + 1), ... , Yt(n). 

The DCG11 can be extended to consider the case where any of blocks il'2, . .. ,ilk 

have more than one time series component. The main steps for this ext.ension 

are defining a general graph to represent the conditional independence structures 

induced by the extended DCG11 and proving that, in this general case, the state 

vectors 8t (i), i = r + 1, ... ,n, remain independent after sampling, together with the 

independence between each 8t U) and state vector 8 t (R) after Yt is ohserved. 



Appendix A 

Moments of LMDM one-step 

ahead forecast distributions 

\Ve derive in this appendix the first and second moments of both conditional and 

marginal one-step ahead forecast distributions of the L~lDM example described in 

Section 4.7 of Chapter 4. 

A.I Mean and variance of conditional one-step 

ahead forecast distributions 

The Bayesian sequential procedure for a DLM described in section 3.6.1.1 of Chapter 

3 is used to obtain the moments of the forecast distribution of each Y; (i) conditional 

on its parents pa(yt (i)) as follows. Suppose that, at a given time t, the prior infor

mation for each Bt(i), i = 1,2,3, is 
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Hence, the means of the conditional forecast distributions of Yi(i) are, respectively, 

E[l',(2)IDt - b Yt(1)] = ap\2)Yt(1) 

E[}~(3)IDt-1' Yt(2)] = a?)(3)Yt(2)l 

(A.l) 

where apl(i) is the first element of the vector ali), which is the prior mean of Bt(i), 

i = 1, 2l 3. 'Vriting these equations in a matrix form, we havc l 

E[Yi(I)IDt- 1] 

E[Yi(2)IDt- 1 , Yt(I)] 

E[l,(3)IDt- 1 , Yt(2)] 

o 
+ ap}(2) 

o 

o 0 

o 0 

ap)(3) 0 

Yt(l) 

Yt(2) 

Yt(3) 

(A.2) 

The variance of the conditional distributions for Yi(i), i = 1, 2l 3, are, respect.ively, 

F[l'i(2)IDt- 1, Yt(1)] = F t(2) T R t (2)Ft(2) + St-1 (2) (A.4) 

\/[Yi(3)IDt - 1,Yt(2)] = F t (3)T Rt(3)Ft(3) + St-1(3) (A.5) 

where Rt(i) is the prior covariance for Bt(i) and St-l (i) is a posterior estimate 

for ~~ (i) at time t - 1, obtained via conjugate Bayesian inference for the precision 

~o(i) = 1/~~(i), i = 1,2,3 (again, as described in section 3.6.1.1 of Chapter 3) Now, 

for any matrices U, Z E ]RtI, we have the identity 

(A.G) 

Setting Bt(i)Bt(i)T = Rt(i), i = 2,3, and applying identity (A.6) in equations (A.4) 

and (A.5), the conditional forecast variances for Yi(2) and Yi(3) can be written as, 
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respectively, 

and 

A.2 Mean and variance of marginal one-step ahead 

forecast distributions 

Since the time series that compose the vector Y t are observed simultaneously and 

so pa(Y;(i)) is not known when forecClliting Yt' the L~IO:l\I uses the moments of the 

marginal forecast distribution for each yt (1), i = 1,2,3 (unconditional on pa(Yt (i))) 

for one-step ahead forecasting. Using the identity (4.14), we can write 

and, from equation (A.2)' 

a~1)(l) 

E[YtIDt-d = E 0 IDt - 1 

0 

E[Yt(l)IDt- l ] 

E[Yt(2)IDt - 1 , Yt(1)] IDt - 1 

E[Yi(3)IDt -t, Yt(2)] 

0 0 0 

+E a~1)(2) 0 0 

0 a~l) (3) 0 

1't(1) 

1't(2) IDt - 1 

Yt(3) 
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Hence, 

E[Yi(l)IDt-d a~ 1) (1) 0 0 0 E[Yt(l)IDt-d 

E[Yt(2)IDt - 1] 0 + ap) (2) 0 0 E[YI (2) ID t - 1] 

E[r'i(3)IDt - 1] 0 0 (l~l) (3) 0 E[}t(3)ID t - 1] 

and the marginal foreca.st means for Y tare 

a~1)(I) 

E[YtIDt- l ] = a~1){1)aP){2) 

a~l) (1 )aP) (2)(J~ I) (3) 

(A.D) 

The variance of Yi(l) is given by (A.3) and, being a root node, its marginal forecast 

moments are not required. The marginal variances for Yi.(2) and }~(3) ("all be derived 

by applying the identity (4.15) in equations (A.7) and (A.8), rcsu1t.illg in 

V[}~ (2) I Dt-d E{V[yt(2)IDt - l , Vt(1)lID t-t} + V {E[yt(2)ID t - l , V, (1)lIDt-d 

E{trace{Bt {2f F t (2)Ft {2) T B t (2)}ID t-d + SI-l (2) 

+ V {a~l) (2)yt(1 )IDt-d 
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from equations (A.7) and (A.1). Then, we can write V[yt(2)IDI-d as 

b(l,1),t (2) b(2,l),t (2) b(2U),t(2) Yi(l) 

0 
E trace [}~(1) 0 ... 0] x 

b(1,2.1),t(2) b(2,2.1),t (2) b(21,2.1),t (2) 0 

b( 1,1 ),t (2) b(l,2),t(2) b1,24 (2) 

x IDt - 1 + 

where b(i,j),t(2) is the (i,j)lh element of the matrix Bt(2). Therefore, we can write 

the marginal variance of Yi(2)ID t - 1 as 

V[¥,(2)[D'-I[ - {t(b(Ul., (2)') } E[¥,(l)'[ D,_II + S'_I (2) 

+ { a~I)(2) } 2 V[}~(l)IDt-d 

- {t(b(I'il ,(2)')} {V[¥,(l)lD,_d + E[¥,(l)[Dt-ll'} + S'_1(2) 

+ {a~1)(2) } 
2 

V[Yi(l)IDt-d. 

Similarly, we have 

V[1,(3)[D,-d = {t(b(J'il.,(3)')} {V[¥,(2)[Dt-J1 + E[¥,(2)[D,_I]'j 

+5t- 1(3) + {a~1)(3) r V[yt(2)IDt_1]' 

Essentially, in this L1\lDl\I, the marginal forecast moments ¥t(1) are used to obtain 

the marginal forecast moments for }~(2), which in t.urn are used to find the marginal 
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foreca.st moments of Y,(3). 

The marginal covariance between any Y, (i) and Y, (j) is 

Cov(Y,(i), Y,(j)IDt- 1) = E(Y,(i), yt(j)/Dt-d -E(Y,(i)IDt-dE(}~(j)IDt-d. (A.lO) 

Using (A.2) and (A.a), and applying identity (4.16) in (A.lO), we have 

Cov(Yt(I), Y,(2)IDt-d = E(Y,(I), Y,(2)IDt- 1) - E(Y;(1)IDt-dE(}~(2)IDt_d 

= E(Yt(1)E[Yt(2)Jyt(1), Dt-1llDt-d - n~J)(1r~a~1)(2) 

= E(Yt(1)a~1)(2)Yt(l)IDt_l) - a~1)(1)2a~1)(2) 

= a~1)(2)E(Y,(lfIDt_l) - a~1)(1)2aP\2) 

= a~1)(2)[\l(Y,(1)IDt_l) + E(Y,(1)IDt-1n - oll)(1)2oP)(2), 

Cov(yt(l), yt(3)I Dt-d = E(Y,(l), Y,(3)IDt-d - E(1'i(I)IDt - 1)E(Yi(3)IDt _ 1) 

and 

= E(Yt(3)E[Y,(1)IYt(3), Dt-1]IDt- 1) - E(Yt(1)IDt-dE(Yt(3)ID t-t) 

= E(Y,(1)IDt- 1)E(Yt(3)IDt - 1) - E(yt(1)IDt-dE(Yt (3)ID t_d 

=0 

Cov(Yt(2), Yt(3)IDt-d - E(}f(2), Yt(3)IDt - 1) - E(}f(2)ID t-t}E(Yi(3)IDt-d 

- E(Y,(2)E[Y,(3)IYt(2)lIDt- 1 ) - a~1)(1?a~1)(2)2a~1)(3) 

- E(Yi(2)a~1)(3)Y,(2)IDt_d - a~1)(1)2aP)(2)2a~1)(3) 

- ap)(3)E(}f(2)2IDt _ l ) - a~1)(1)2a~1)(2?a~1)(3) 

- aP)(3){V(}~(2)IDt_l) + E(}~(2)IDt_l)2} 

_a~l) (1)2aP) (2)2a~1) (3). 
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A.3 Moments of logical variables 

The marginal moments calculated above can be used to obtain the marginal mean 

and variance for the logical variables, given as 

E(¥t(4)IDt -d = E(}~(I)IDt_l) - E(¥t(2)IDt-d, 

V(¥t(4)IDt -d = V(Yt(I)IDt-d + V(Yt(2)ID t-d - 2Cov(Yt(I), 1"t(2)IDt - 1 ) 

and 

E(Yt(5)1Dt - 1) = E(Yt(2)ID t-d - E(¥t(3)IDt - 1 ), 

V(¥t(5)IDt -d = V(¥t(2)ID t-d + V(¥t(3)ID t-d - 2Cov(Yt(2), Yi(3)IDt-d. 

The marginal covariance between the logical variables Yt (4) and Yt (5) is as follows 

(assume that all expectations and covariances in (A.ll) are conditioned on D t _ d. 

COy {Yt( 4), Yt (5)} - E {}t(4)}~(5)} - E {Yt( 4)} E {Yt(5)} 

- E ([Yr(I) - Yt(2)][Yt(2) - Yt(3)]} 

-E {1'i(l) - Yt(2)} E {Yi(2) - Yt(3)} 

- E {Yt(I)Yt(2)} - E {Yt(I)Yt(3)} - E {{Yt(2)}2} + E {Yi(2)Yt(3)} 

-E {Yt(l)} E {l"t(2)} + E {Yt(l)} E {Yt(3)} + {E {Yt(2)}}2 

-E {Yt(2)} E {Yt(3)} 

- COy {l~(I), Yt(2)} - COy {Yt(l), Yt(3)} - V {1't(2)} 

-COy {l't(2), 1't(3)} 

- COy {Yt(1), Yt(2)} - V {Yt(2)} - COy {Yt(2), Yt(3)} . 

The remaining covariances can be easily obtained by applying identity (4.16) in 

equation (A.IO). 
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