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Abstract

ABSTRACT
Lung cancer is a leading cause of cancer death in Western countries.

Although most cases are due to tobacco smoking, complex genetics may

modulate this disease, as suggested by epidemiological studies and findings

obtained in mouse models.

Systematic population-based association studies testing several

thousands of genetic markers dispersed genome-wide have recently

become a powerful and widely-used approach to identify genetic factors

affecting common diseases.

In this thesis, the role of genetic polymorphisms and risk of cancer

were investigated through a case-control association study in Italian lung

adenocarcinoma (ADCA) patients and unrelated controls from general

population and through a case-control association family-based study in

lung cancer patients and unaffected sibs as controls. I confirmed the

relevance of a polygenic model characterized by additive and

interchangeable effects of rare alleles in the modulation of individual risk of

lung ADCA identifying multiple inherited susceptibility alleles linked to lung

cancer.

Additionally, I studied the role of genetic polymorphisms modulating

individual lung cancer prognosis through a case-only association study in

lung ADCA patients with clinical stage I versus higher clinical stage. In

particular, I identify two genes (FCN3 and TMEM100) down-regulated up to

1.8-fold in normal lung of stage>I as compared to stage I patients. These

results suggest that clinical stage may be genetically determined as



Abstract

reflected in germ-line variations as well as in the transcriptional profile of

normal lung tissue.

Although clinical application of these results awaits replication in

independent and large populations, I found that genetic variants may be

involved in the modulation of not only individual risk of lung cancer but also

clinical staging. The newly identified individual genetic profiles associated

with risk and/or prognosis of lung cancer may thus represent new

diagnostic tools and suggest molecular targets for the development of new

therapies against lung cancer.
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1.Introduction

1. INTRODUCTION

1.1 EPIDEMIOLOGY

The word "epidemiology" derives from the Greek language "epi

demos logos" in which "epi" means "on", "among" or "upon"; "demos" =

"people" and "logos" = "study of" and so is defined "the study of what is

upon the people", suggesting that it applies only to human populations (1).

It is now widely recognised as the tool used to measure the public health

impact of disease and to study the distribution and determinants of a

disease, injury, and other health outcomes in human populations. It is the

basic science of preventive medicine involving studying groups of people in

order to identify causal or/and risk factors of a disease or trait (2). These

factors may be a characteristic of individuals (e.g., their genetic

background) or the exposure to external agents.

According to Buck et al. (1988) the first published use of the word

"epidemiology" was the Spanish "epidemiologia" in a study of bubonic

plague in Spain in 1598 (3). Originally used as the term for the study of

epidemic disease, epidemiology is a continually evolving discipline

evidenced by the changing definitions. It concerns itself with populations

rather than individuals (4). The subject of epidemiology has developed and

can be applied to the control of health conditions, disease distribution and

threats to public health thanks to the methodological development of

techniques such as statistics and clinical epidemiology (5, 6).
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1..Introduction

The observation that patterns of disease observed in a community

are often caused by interaction of several factors in a multiple causation or

multi-factorial aetiology of disease (4) gives the opportunity of

epidemiological approaches to describe the natural history of specific

diseases in populations analysing the aetiological determinants of disease

(2). The field of epidemiology has then expanded considerably in scope to

cover the description and causation of not only epidemic disease, but of

disease in general, and even many common non-disease health-related

conditions, such as high blood pressure and obesity.

The history of epidemiology has been documented in 1978 by

Lilienfeld (7), which investigated the origins of epidemiology, and described

it as the coming together of clinical and statistical sciences. The

establishment of epidemiology as a science was also shown to have

progressed in tandem with public health developments (8). In 1850 the

science of epidemiology was officially "born" by the clinicians when they

founded the London Epidemiological Society. These clinicians included John

Snow, the "father of epidemiology", who firstly investigated the cholera

epidemic in Soho London in 1854 by plotting cases on a map of the area

(7). During the first half of the 20th century the field of epidemiology and

public health were consolidated on monitoring and tackling major diseases,

and began to move towards cancer research. The first case-control study

was carried out in 1926 in london and Glasgow by the investigation of

aetiology of breast cancer (9). Also during the second half of the 20th

century, with improved sanitation, vaccination, and antibiotics, attention

turned to chronic diseases such as cancer and coronary heart disease. Doll

6



1.Introduction

and Hill's carried out case-control and cohort studies establishing the

aetiological link between smoking and lung cancer (10-12). Towards the

end of the 20th century and in the third millennium, the field has further

developed and has been applied to pursuit genetic, lifestyle and biomedical

phenomena (13); and exploring the wider, social determinants of health

and disease (14).

The history of the topic of cancer epidemiological research has been

intricately detailed by dos Santos Silva (15), where she noted that the

concept of cancer incidence, as a formal topic for scientific study, is

relatively new. Until the nineteenth and twentieth centuries, cancer was a

relatively rare since it mainly occurs in older people (7). At the beginning of

the 19th century life expectancy was around 35 years in Europe. Thus many

of those who may have got cancer later in life had died at earlier ages due

to infectious diseases, malnutrition, or accidents (7). By the 20th century,

however, pathogenesis of cancer was studied, and epidemiologists sought

to describe the distribution of the disease in populations and to analyse

potential causes (15). The principal purposes of cancer epidemiology are to

describe the burden of the disease in various human population groups,

generate and test hypotheses on its cause, and testing effectiveness of

treatments and interventions (13). With the sequencing of human genome,

the huge challenge to understand the complex interactions among genes,

environment, and behaviours, in the causation of cancer became central in

cancer epidemiology.

Typically, epidemiology is divided into three main branches:

descriptive, analytic and experimental epidemiology.

7



J .Introduction

- Descriptive epidemiology describes the distribution and the

frequency of sanitary events (deaths, disease, etc.) in terms of person,

place, and time (2). These three pillars correspond to the questions "who?",

"where?", and "when?" and are used to describe and explain health events.

Person characteristics include socio-demographic data such as age,

ethnicity, education, income, occupational status, and marital status as well

as behaviours such as diet, substance abuse, use of health care services,

etc. They are used to describe whether a particular risk factor or outcome is

more prevalent in one population than another. Place characteristics include

geographic location, population density, different features of the geography,

and location of worksites, schools, and health facilities. Finally, time

characteristics include cyclical changes, long term secular trends, and even

daily or hourly occurrences during an epidemic. Sometimes descriptive

epidemiology investigated also the questions "what?", and "how many?"

(13). Since epidemiology jointly considers person, place, and time, it

advances the idea that health and disease as result from the interaction

between individuals and their environment. The aims of descriptive

epidemiology are to describe the extent and spectrum of disease; describe

the natural history of disease; identify disease aetiological factors through

generating hypotheses for further study; predict disease trends; identify

health needs of a community; and evaluate public health intervention

programmes (4). A series of methods have been developed for study

design, statistical analyses, data collection, classification, synthesis,

tabulation and presentation, followed by inference, and interpretation (13).

Descriptive epidemiology has an important surveillance role, particularly in

8



1.Introduction

terms of cancer surveillance. Interpretation of findings from descriptive

epidemiology needs to be done with caution and all potential sources of

bias, confounding, and artefacts in the data need to be explored. To these

ends, it is important that the methods of data collection, collation, and

processing are understood (15). Descriptive epidemiology should not be

considered an end in itself but should be regarded as a means of monitoring

the burden of disease in the population, in addition to generating

hypotheses or highlighting areas for further study and investigation. These

areas could subsequently be explored using methods of analytical

epidemiology.

- Analytical epidemiology takes hypotheses generated by descriptive

means and tests them through an analytical approach. The main aim is to

determine causal factors in the form of aetiological risk factors for a

disease, through investigation of exposure and disease outcome at the

individual level (2). Analytical studies aims to determine whether particular

exposures (variables) such as environmental or behavioural factors

(including physical, chemical, or biological agents) are associated to a

disease outcome (13). Such an association does not necessarily indicate

causation, as chance, confounding and bias need to be considered as

possible sources of the relationship (16). Thus mathematical tools and

appropriate statistical analytical methods were developed for quantifying

and minimizing the uncertainty in the relationship between exposure and

outcome. Epidemiologists further test possible bias by teasing out spurious

or indirect causes described as confounders by increasing certainty through

repetition of observations in different populations; by increasing the number

9



1.Introduction

of subjects under observation which reduces the effects of random variation

and uncertainty and through developing a better understanding of the

underlying biological mechanisms. The criteria for causation in public health

and epidemiology were set down originally by Hill (17). Hills' nine criteria

for associations to be considered as causes were: strength, consistency,

temporality, specificity, biologic gradient (dose-response ratio), plausibility

(biological explanation), coherence (with previous research), experiment

(e.g., further indication from removing exposure), analogy (with previous

results in other settings) (17). These criteria have been adopted by

epidemiologists as a pragmatic approach to assess associations and

causation. Finally, it is important to consider and minimize bias that

includes any systematic error in an epidemiologic study due to an incorrect

estimate of the association (18). Bias comes in many forms and is a

particular challenge in case-control studies (see paragraph 1.7) where

selection bias can be related to the controls' selection, the comparability

between cases and controls, and the statistical efficiency (18).

- Experimental epidemiology aims to evaluate sanitary interventions

either with preventive objective (e.g., vaccinations, sanitary educational) or

therapeutic objective (e.g., testing of new drugs, new surgical techniques)

using intervention studies that explore the associations between

interventions and outcomes such as clinical trials (2).

1.2 CANCER GENETICS AND TUMOUR PROGRESSION

The origins of the term 'cancer' are in the writings of the early

Ancient Greek physician and philosopher Hippocrates (460-377 BC) who

10



J.Introduction

used the Greek word for crab, "karkinoma", to describe the radiating

antennae-like growths of the blood vessels extending "out of control in all

directions" from some breast tumours (19).

Cancer is a common and devastating disease that represents one of

the major public health problems in industrialized countries (20). The

disease accounted worldwide to about 7.9 million deaths (around 13% of all

deaths) in 2007, with an estimation of 12 million deaths in 2030 (World

Health Organization - WHO: http://www.who.int/cancer/enl). The most

prevalent form of cancer is lung carcinoma, representing about 29% and

26% of all cancer in men and women, respectively (Fig. 1). Among women,

breast cancer is the second most prevalent cause of cancer-related deaths,

while among men, the second most prevalent form of cancer is prostate

cancer (www. cancer.org; (20); Fig. 1).
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Fig. 1 Cancer related death rates in the United States, from 1930 until 2006 (20).

Cancer is characterized by uncontrolled growth and spread of

transformed malignant cells which are capable of invasion and destruction

of the adjacent tissue, and metastasizing far from the primitive origin

through blood or lymphatic vessels. Since the middle of 1900, cancer has
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1.Introduction

been understood as genetic disease resulting from the dynamic

accumulation of several changes that can affect structure and expression of

key genes (review in (21)). The list of potentially factors, as we will see,

leading to genetic alterations and associated with cancer includes genetics

(e.g., family history), behaviour (e.g., tobacco habit) and environment

(e.g., radiation).

Tumours grow from a single cell as the result of one or more

mutations which confer a selective growth advantage on its progeny

through a clonal evolution process (22). The transition of a normal cell

towards a neoplastic and malignant phenotype is a multistep process

influenced by several factors that can occur spontaneously inside the cell or

can be induced by external agents (carcinogens) and that can alter either

the probability of transformation or the effects of the transforming events.

(23). Internal spontaneous changes can occur through various genetic and

epigenetic mechanisms, such as point mutation, gene amplification,

translocation, deletion, chromosomal loss, somatic recombination, gene

conversion, or DNA methylation (24). Internal influences include defects in

cell-cycle control and DNA repair mechanisms, defects in regulation of

epigenetic events, variations in metabolism of exogenous carcinogens and

in production or destruction of endogenous mutagens (23). External factors

are instead represented by environmental exposures to exogenous

carcinogens, interaction with surrounding cells and microenvironment,

mechanisms of immune system cellular defence against tumour cells, and

levels of circulating hormones or growth factors (23). All these causal

events may act together or in sequence to initiate or promote

12



1.Introduction

carcinogenesis. Two or more events are necessary before a cell becomes

malignant. It has been estimated, for example, that between four and

seven rate-limiting genetic events are required for common epithelial

cancers development (25). The pattern of alterations that transform a cell is
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lulu-ritcrl f"rl1l" or.-alln·"
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Fig. 2 Genetic predisposition to cancer (26).

not random and is peculiar not only to each type of cancer but can also

differ between cancers of the same type. Tumour development seems to be

analogous to a Darwinian evolution process in which each genetic change,

that confers a growth advantage, is maintained and leads to a progressive

switch of normal cells into cancer cells (22). The entire process of

transformation can take years to decades in humans (23).

There are two main categories of genes that influence the appearance

of cancer (26): major cancer genes with frequent somatic mutations

exerting a strong and evident effect on tumour development (Major Cancer

Predisposition Genes or MPG) and cancer modifier genes (Tumour Modifier

Genes or TMG) that are characterized by naturally occurring germ line
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variants playing a less perceptible role on tumour phenotypes (Fig. 2).

Somatic changes in MPG genes have strong effects on tumour

phenotype. These genes can be further divided in oncogenes and tumour

suppressor genes.

- Oncogenes are characterized by gain-of-function events. They

become the constitutionally and inappropriately activated counterparts of

normal cellular genes, named "proto-oncogenes", that control normal

cellular growth and differentiation (review in (21». In this way, oncogenes

encode proteins that strongly promote cell proliferation, increasing the

chance that a normal cell will develop into a tumour cell. Mechanisms of

oncogene activation range from single-point mutations to chromosomal

abnormalities, such as translocation and amplification (24). Oncogenes and

their products are highly unregulated in many cancer cells.

- Tumour suppressor genes (anti-oncogenes) are involved in

tumourigenesis by loss-of-function events. They normally functions to limit

cell proliferation, so in this case the loss of function takes away the control

and facilitates cancer development, usually in combination with other

genetiC changes (28). Functional activity of tumour suppressor genes can

be lost through several mechanisms such as introduction of inactivating

mutations, loss of chromosomal material, epigenetic silencing and

haploinsufficiency (29). Kinzler and Vogelstein (30) proposed a new

subdivision of this vast gene family in two different categories: gatekeepers

(such as pS3, RB and APe) that directly control cellular proliferation by

inhibiting growth or promoting cell death; and caretakers (such as Mismatch

Repair Genes and Nucleotide Excision Repair Genes) that maintain genome

14
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integrity during DNA replication, repair or recombination, in telomeres

maintenance, or in chromatin assembly thus controlling cell proliferation

and cell apoptosis indirectly. Inactivation of a gatekeeper gene is a limiting

step in the initiation of cancer, whereas inactivation of caretakers indirectly

promotes tumourigenesis through genome instability that results in an

elevated mutation rate of a" genes, including gatekeeper genes or

oncogenes (30).

Germ line mutations in TMG genes have instead a weak effect and

fine-tuning in tumour phenotype modulation, influencing the expression or

activity of other genes through allele-specific effects. These genes are

capable of either affecting the probability that cancer wlll develop

(conferring susceptibility or resistance), influencing the severity of tumour

phenotypes as we" as the differential response to environmental

compounds or drug treatments (26). They are involved in a variety of

functions, such as control of the cellular properties, exposure to carcinogen,

diet or lifestyle factors, systemic molecules (e.g., hormones and growth

factors), local events affecting cancer cells (e.g., chronic inflammation), or

the vulnerability to viruses and bacteria recognized as risk factors for cancer

(26). The modifier genes often have at least two alleles, one of which that

has no effects on tumour phenotype and one that exacerbates or

suppresses disease. The first evidence of the existence of cancer modifier

genes was obtained in mouse models characterized for their genetic

susceptibility or resistance to spontaneous and induced tumourigenesis. In

laboratory animals, modifier effects are usually attributed to genetic

background and can be inherited as Mendelian or polygenic traits. At
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Fig.3 Relationship between the allele frequency of disease susceptibility locus and
their estimated effect size (35).

present, more than 100 mouse loci have been detected that can affect

different types of tumourigenesis and at different tumour phenotypes

(number, size, stage, latency period, survival time) (31). First indirect

evidence for the existence of cancer modifier genes also in humans derived

from epidemiological studies reporting the increase in relative risk values for

first-degree relatives of cancer patients consistent with a polygenic model of

inherited predisposition to cancer (32, 33) and from Crabtree's study (34)

reporting segregation in families that could not be explained by germ line

mutations. Functional allele var-iants of major cancer predisposing genes

associated with increased or decreased tumour development risk are

present in general population and the modulation of tumour phenotype is

often due to different combinations of multiple allelic variant of

predisposition or resistance (see paragraph 1.3). Identification of cancer
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1.Introduction

modifier genes could be very important in order to understand the

biochemical mechanisms of inherited resistance/susceptibility to cancer.

The interest in genetic predisposition to common cancers has

constantly increased in the last decades. At the start of the 1990's first

findings supported the potential role of hereditary components in

determining the risk of cancer. Genetic predisposition is based on the role of

one or more genes or genetic variants, and of the interplay of these genes

or variants with other genetic, environmental and/or lifestyle factors. The

degree of involvement of genetic factors depends on penetrance (Fig. 3

(35».

- High penetrance is due to rare variants (with frequency <1%) with

a high effect on risk (e.g., BRCA1,Odds Ratio (OR)1V5) (35).

- Low penetrance is due to common variants (with frequency >1%)

that individually confer a low effect on risk (ORIV1.3-1.8). Low-penetrance

genetic factors characterize the bulk of inherited cancer risk according to

the polygenic model (see paragraph 1.3) and to the hypothesis of "common

disease, common variant", which suggests that genetic influences on

common traits are at least partially due to a limited number of allelic

variants with a frequency more than 1-5% in a population (35).

Based on familial clustering, three main categories of cancer genetic

predisposition can be distinguished: inherited cancer syndromes, familiar

cancer and predisposition without evident family clustering (23).

- Inherited cancer syndromes account less than 5% of all cancer

cases consist of rare cancers or combination of cancers with strong familiar

history. Examples are retinoblastoma, familial adenomatous polyposis,

17



1.1ntroduction

Wilms' tumour syndrome, and U- Fraumeni syndrome. The genetic changes

are confined to a particular tissue and take place over several cell

generations with specific phenotypic abnormalities. An inherited cancer

predisposing genetic mutation is present in somatic cell and germ line cells,

and therefore can be passed onto a proportion of the offspring through a

well-defined pattern of inheritance as the effect of a single highly penetrant

.. .. .. CANCER
" DEVELOPMENTDElETlON

a) Familial Cancer

INHERITED
GERMUNE
MUTATION

.. .......CANCER
".....,.. DEVELOPMENT

DElETlON

1st-hit" 2nd-hit"

b) Sporadic Cancer

1st-hit"

Fig.4 Knudson's two-hit hypothesis for tumourigenesis.

autosomal dominant allele according to the Mendelian dominant inheritance

(36). Knudson explained the genetic mechanism underlying predisposition

by highly-penetrant variants studying retinoblastoma (37). Knudson

proposed the "two-hits model" (Fig. 4) where the first "hit" affecting the

gene responsible for the development of familial retinoblastoma is inherited

through the germ line and the second "hit" occurs somatically in the other

allele of the same gene (38). Studies have been shown that this second

somatic event may arise by a variety of molecular mechanisms, for example
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new intragenic mutations, gene deletions, chromosomal loss or somatic

recombination (37, 38). The model extends also to sporadic forms of cancer

that are explained to initiate only after two somatic "hits" arise

independently in the two alleles. Knudson's hypothesis was confirmed when

the RB gene was cloned on human chromosome 13 and both copies were

found to be mutated in the tumours (39). It was understandable that people

who inherit an inactivated copy of a tumour suppressor gene had a higher

risk of developing the associated form of cancer than people born with two

normal copies, as postulated in "two-hit model".

Indeed, it was shown that in the tumours of these predisposed

patients, the remaining wild-type copy of the tumour suppressor gene was

lost, a process referred to as loss of heterozygosity (LOH) (38). LOH leads

to either deletion of the tumour suppressor locus or "reduction to

homozygosity" (40, 41). Later studies confirmed that this concept is also

suitable for other tumour suppressor genes. Genetic variants responsible of

these cancer syndromes are very rare (1:1000 or less) but confer a high

risk to develop cancer and the age at onset of hereditary cases is, on

average, earlier since the inheritance of predisposing genetic mutations

through the germ line can accelerate the process of carcinogenesis (42).

- Familial cancers are characterized by evident clustering in families

of common cancers. The main clinical features of familial cancers are two or

more close relatives affected, early age at onset, cancer of specific type

occurring together, multiple or bilateral cancers in one individual. The

pattern in families is generally consistent with dominant inheritance (23).

However, large epidemiological population-based studies on breast cancer
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indicate that only 15-20% of the observed familial risk depends on

mutations in strong predisposing genes, such as BRCAl and BRCA2 (43).

The remaining 80-85% of the familial risk is attributable to other genetic

determinants conferring a low relative risk and to environmental origin.

- Inherited predisposition without family clustering, also named as

sporadic, is a common trait of the great majority of cancer cases (about

95%). However, the adjective "sporadic" does not mean that there is no

hereditary genetic determinant of predisposition, but only that there is no

family history. Predisposition to non-hereditary sporadic forms of cancer can

be described by polygenic model in which the combination of multiple

genetic predisposing factors and environmental risk factors has a main role

in the pathogenesis of the disease (44) (see paragraph 1.3). In the last

years, the scientific community focuses its attention on the hypothesis of

"common disease, common variant" in which susceptibility to common

diseases, as cancer, is the result of a joint "work" of several common

genetiC variants each with a low effect (low penetrant variants), rather than

a result of rare genetiC variants with high effect (high penetrant variants,

under the hypothesis of "common disease, rare variant") (see paragraph

1.2).

In the last few years the genetics of cancer predisposition has

experienced great progress. The greatest discoveries in the genetics of

common inherited cancers relate to breast, ovarian and colorectal cancer.

Of particular note are mutations in two genes for breast and ovarian cancer

(BRCAl and BRCA2), in the APC gene for familial adenomatous polyposis
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and in several mismatch repair genes for hereditary non-polyposis colon

cancer (HNPCC).

Fig. 5 Acquired Capabilities of Cancer during
progression (45).

The malignant cell can be distinguished from its normal healthy

counterpart because of abnormal properties, shared by almost all cancer

cells and that determine the transition towards a more aggressive

behaviour. These are known as the "hallmarks of cancer" (45-47) (Fig. 5):

- Genome instability: cancer cells escape the mechanisms aimed at

the maintenance of genome integrity to acquire an increased mutability and

raise the possibility of further mutations (48). Genome instability is

attributed to loss of function of genes involved in sensing and repairing DNA

damages, in assuring correct chromosomal segregation during mitosis and
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in cell cycle checkpoints (49).

- Limitless replicative potential: normal cells have a finite replicative

potential, named as Hayflick limit (SO). After a certain number of divisions,

cells stop proliferating and become non-proliferative going into senescence,

presumably because the telomeres reach a critical length due to the inability

of DNA polymerase to completely replicate the 3'-ends of chromosomes

during 5 phase. The progressive shortening of telomeres during successive

cycles of replication leads to chromosomal anomalies, such as end-to-end

chromosomal fuslons. karyotypic disarray and ultimately to cell death.

Tumour cells acquire the capability to proliferate without limit since they

maintain telomeres through up-regulation of expression of the telomerase

enzyme that adds hexanucleotide repeats at telomerase ends or the

Alternative Lengthening of Telomeres method (ALT) that maintains

telomeres with inter-chromosomal recombination events. As a consequence

tumour cells undergo an immortalization process (51).

Loss of differentiation: metabolic functions necessary for

specialized activities often disappear or decrease in tumour cells that seems

to evade from anti-proliferative and pro-differentiation signals as they

acquire self-sufficiency in growth signals and insensitive to anti-growth

signals.

- Evasion of apoptosis: the capability of tumour cells to expand is

determined by the imbalance of both cell proliferation and cell death.

Apoptosis (programmed cell death) represents a major barrier to cancer

growth and defects in this mechanism play important roles in a wide variety

of tumour types. Resistance to apoptosls can be acquired through several
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strategies including increase of growth factor secretion, loss of tumour

suppressor genes and oncogene activation. One of the most affected

pathways involves the p53 tumour suppressor gene that represents a key

sensor in detecting DNA damages and inducing the cascade of apoptotic

effectors (52).

- Sustained angiogenesis: cancer progression, in the case of solid

tumours, is invariably dependent on the formation of new blood vessels

from the pre-existing vessels (angiogenesis) because oxygen and nutrients,

supplied by the vasculature, are crucial for cell function and survival. It has

been recognized that the tumour vasculature often exhibits distinct

morphological and biochemical properties as compared to the normal

vasculature, including the increased expression of various cell surface

proteins (integrins and adhesion molecules), growth factor receptors, and

matrix metalloproteinases (45).

- Tissue invasion and metastasis: the acquisition of the capacity to

escape the primary tumour, invade surrounding tissues and colonize distant

new sites is the fundamental definition of malignancy (46). Invasion and

metastasis are complex and not completely understood processes that

comprise the activation of extracellular proteases and the involvement of

numerous cell-cell adhesion and cell-extracellular matrix molecules (CAMs,

integrins and cadherins) and cell-microenvironment interactions. All these

processes help tumour cells to acquire the capability to detach from the

primary tumour, penetrate the basement membrane and the vascular

lumen, and survive outside of their normal microenvironment through

different adaptation mechanisms (53). Metastasis causes 90% of human
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cancer deaths (45).

- Acquisition of drug resistance: treatment of malignancies with

chemotherapy can be limited by drug resistance of cancer cells. Important

mechanisms of drug resistance include apoptosis regulation, cellular stress

response, and cell survival signals. Tumours can be either intrinsically

resistant to many of cytotoxic agents used in cancer therapy or acquire this

property during late stages of development so that therapeutic agents are

no longer effective (54);

- Escape from the host immune system: the capacity of tumour cells

to evade the host immune surveillance involves multiple pathways and

mechanisms: reduction of MHC class I expression, loss of costimulatory

factors, suppression of the immune response and tolerance development in

the host versus tumour antigens (SS).

These capabilities are shared by most types of human tumours. The

paths, however, which cells take on their way to becoming malignant, are

highly variable. Mutations in certain oncogenes and tumour suppressor

genes can occur early in some tumour progression pathways and late in

others, so that the acquisition of specific biological capabilities may appear

at different times during progression (56). Neoplastic cells can remain in a

quiescent state or evolve towards more aggressive clinical behaviour and

malignant characteristics.

Tumour progression is a dynamic multistep and complex process,

which starts with the transformation of a benign into a malignant cell and

potentially leads to surrounding tissue destruction and invasion, metastasis

and finally death (47). Each step is characterized by the acquisition of new
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properties on the level of either single tumour cells or whole tumour tissue

(Fig. 6) (NIH, modified from (28)).

Fig. 6 Stages of tumor progression {NIH, modified from (2S».

Cell migration is the result of a continuous cycle of repetitive steps.

First, the cell becomes polarized and it elongates. Cell protrusions

containing filamentous actin and structural and signalling proteins are

formed, which initiate the recognition of and interaction with the

extracellular matrix (ECM). Then, the leading edge or the whole cell

contracts, and moves forward. Now the cell has to survive in the blood

stream and finally extravasates again to colonize the secondary organ and

grow out (57). The acquisition of features above described are the same for

all forms of cancer cell, but the molecular mechanism may vary from one

invasion pattern to another and the entire process may be quite variable,

thus determining the differences in aggressiveness and malignancy among

tumours. Indeed, there are tumours that acquire the properties of advanced

malignancy before reaching macroscopic size; tumours that may persist for

years in a large well-differentiated quiescent state before shifting to a more
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malignant state and tumours characterized by a strong heterogeneity with

part of the cell population showing a later degree of tumour progression

than other components. Changes in the cell-cycle control and

immortalization are more significant during early stages, while the

alteration on migration and adhesion resulting in the acquisition of an

invasive and metastatic phenotype is typically associated with later events

(47).

Recently, a new hypothesis attempts to describe the establishment

and maintenance of tumour heterogeneity with the existence of cancer

stem cells (CSCs). Cancer stem cell population is defined as a particular

rare subset of undifferentiated tumour cells with stem cell-like properties

that are thought to be responsible of tumour initiation, progression,

maintenance, spreading, resistance to therapy, recurrence, and metastasis.

They are also called cancer initiating cells CCICs). This type of cells is

characterized, as normal stem cells, by self-renewal capacity and the ability

to differentiate leading to the production of all cell types of a tumour, and

thus generating tumour heterogeneity (58). Cancer stem cells are thought

to arise from normal stem or non-stem progenitor cells of an organ and to

persist in a tumour as a small side population of cells that sustains tumour

growth. Although some similarities are evident in cancer stem cell theory

and clonal evolution model (22), several differences are evident. CSCs

explain tumour heterogeneity with different mechanisms, either by a

program of aberrant differentiation or by a competition among neighbours.

Under this hypothesis, normal stem and progenitor cells are considered the

most likely targets of transformation. The cancer stem cell hypothesis states
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that only the "cancer stem cells," contribute to tumour progression, while

the clonal evolution model supposes that any tumour cell has the potential

to become more aggressive, since all may further mutate. The two theories

also explain therapeutic resistance differently: either cancer stem cells are

inherently drug resistant or therapy selects for resistant clones (59).

However, it has been hypothesized that an integration of the two models

should be more successful in oncological research in the next future (60).

Finally, it is important also to focus on the fundamental role of

microenvironment in affecting the efficiency of tumour formation, growth,

invasiveness and metastatic potential. A typical example of the

microenvironment leading to cancer is chronic inflammatory status in

response to tissue injury (e.g., irradiation) or infection. In fact, many

cancers arise from sites of infection such as stomach cancer caused by

Helicobacter pylori infection in stomach and liver cancer after chronic

inflammation caused by hepatitis C infection of the liver (61) (see

paragraph 1.4). The hypothesis is that inflammatory cells act as powerful

tumour promoters facilitating genomic instability and DNA damages through

their generation of reactive oxygen and nitrogen species to fight infection

(61). In other experiments, injection of non-transformed mammary

epithelial cells into irradiated mammary stromal fat pads resulted in

increased tumour growth when compared to those injected into

contralateral, non irradiated mammary fat pads (62). The authors

concluded that irradiation induces no reversible changes in stromal cells

altering the microenvironment and leading to tumour promotion. In some

cases, the trigger for neoplastic progression is speculated to come from
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signals within the stromal microenvironment (62). Summarizing the

described data suggest that microenvironment is crucial not only in tumour

invasion and metastasis, but also in the earlier steps of tumourigenesis.

Cancer is a heterogeneous disease difficult to treat. For that reason it

is necessary to understand the metabolic pathways that are altered in

cancer cells in order to adapt therapies with targeting of multiple and/or

specific pathways. The primary objectives of cancer treatment are cure,

prolongation of life and improvement of the quality of life. Treatment of

cancer usually includes surgery, radiotherapy, hormonal treatment,

immunotherapy and chemotherapy, often used in combination. Despite

recent progress in its treatments, so far few types are curable. Thus, cancer

is under intense research because of the high prevalence and severe

consequences leading to death. Most research aims to apply the knowledge

about cancer in order to allow early diagnosis and understanding the

mechanism of tumour development.

Two complementary analytical methods are used to detect the

specific genetic regions and genes that are involved in the disease process:

linkage analyses and association studies.

- Linkage analyses identify chromosomal regions that co-segregate

with the disease in many affected families or over many generations of an

extended pedigree. The hypothesis is that the disease locus will lie in the

region of the genome that is shared by all affected members of a family or

pedigree. Generally, the number of observed crossovers is small unless to

have numerous families, or very large multi-generation pedigrees, with the

resulting gene being mapped to a large interval (63). This approach is

28



1.Introduction

useful for Mendelian diseases but is particularly unhelpful for complex

diseases where the involvement of many genes and the possible influence

of environmental factors in the pathogenesis mean that large multi-

generation pedigrees or wide detailed family histories are harder to recover.

An analysis by Risch and Merikangas (64) suggested that, in a linkage

study, the number of pedigrees required to map the genes of minor effect

that probably underlie susceptibility to common diseases would be

prohibitively large.
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Fig.7 Estimated efficiency of association and linkage
analysis in relationship to the allele frequency of disease
susceptibility locus (63).

- Association studies (see paragraph 1.7) perform a "genetic

dissection of complex traits" without involving familial inheritance patterns

but comparing frequency of genetic variants in diseased individuals (cases)

and healthy subjects (controls) (65). Generally, tests of association are
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more powerful than linkage studies when the disease alleles are common

(Fig. 7 (63)).

1.3 POLYGENIC MODEL OF INHERITED PREDISPOSITION TO

CANCER

Polygenic traits or diseases controlled by a single major gene or

biochemical pathway are called Mendelian or single-gene traits.

Complicating factors, such as incomplete penetrance and variable age of

onset, are often present in single-gene traits, but they show basic

Mendelian segregation patterns. By contrast, the polygenic model of

inherited predisposition to cancer is based on the assumption that the

combination of multiple genetic predisposing factors and environmental risk

factors has a main role in the pathogenesis of the disease (44).

In the past, there was no consensus regarding the genetic model that

can account for this increased risk, in particular whether it is caused by

aggregation of multiple rare alleles in a subset of genes that have strong

effects ("common disease, rare variant model"), by combination of common

alleles with weak effects ("common disease, common variant model"), or by

some mixture of these hypotheses (43, 66). More recently, complex

polygenic diseases and traits result principally from genetic common

variants in the population rather than being due to specific and relatively

rare mutations, under the hypothesis of "common disease, common

variant". The combined effects of many genetic variants, each with an

individual modest effect, determine the major portion of susceptibility to

cancer. The polygenic model predicts in fact a very high risk for individuals

30



1.Introduction

inheriting the appropriate combination of susceptibility alleles associated

with a specific disease, but only a marginal increase in the relative risk of

the same disease in the progeny carrying a half of the genetic background

of the affected parent. The phenotype is genetically controlled, but it does

not run in families, as actually observed for common cancers (44).

Moreover, this model is in good agreement with epidemiological studies

reporting that the risk of cancer for people with affected first-degree

relatives is about 2- to 4-fold higher as compared to those without a family

history (44).

Polygenic inheritance models of predisposition to diseases is difficult

to demonstrate in humans since genetic heterogeneity, epistasis and gene-

environment interactions may mask the role of genetic factors but it has

been successfully and extensively studied and demonstrated in animal

models (67).

The list of complex diseases controlled by the polygenic model in

humans embraces a large fraction of the common causes of morbidity and

death and includes atherosclerosis, hypertension, psychiatric disorders,

Alzheimer disease, type I and type II diabetes, asthma, rheumatoid

arthritis, and cancer (68-73). The difference between Mendelian and

complex traits is not in the fact that the involved genes in complex diseases

disobey the rules of Mendelian inheritance, but that the pattern of

inheritance is not simple (74).

The main challenge for medical genetiCS in the last decade was to

systematically search and identify genes or genetiC determinants

responsible for the hereditary contributions to complex polygenic traits.
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Indeed, the problems in defining specific gene variants that contribute to

the propensity for common complex disorders are multiple and difficult. In

1994 and 1995, Lander and Schork (67) and also Weissman (75) in their

reviews about the genetics of complex diseases gave a partial list of

difficulties, the main of these are the following:

- incomplete penetrance and phenocopy: some individuals can

inherit a predisposing allele without manifesting the disease (incomplete

penetrance), whereas others can manifest the disease without the

predisposing allele but as a result of environmental or random causes

(phenocopy). The genotype at a given locus may therefore affect the

probability of disease but not fully determine the outcome (67).

- heterogeneity of causation: the same genes may not be

contributing to the disease process in all the affected individuals, thus non

overlapping combinations of gene variants may contribute to the increased

propensity for the same disease in different individuals (e.g., in breast

cancer) (75).

1.4 ENVIRONMENTAL CONTRIBUTION TO CANCER

Differential rates of cancer incidence between different populations

and the observation that immigrants tend to acquire the same cancer risk of

their new country led epidemiologists to conclude that an important cause

of cancer is environmental and that changes in lifestyle and environment

could be helpful for prevention (76). Lung cancer also occurs in non-

smokers and only about 10% of smokers develop lung cancer. Additional

genetic, environmental, hormonal factors and chance (mutation is to some
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extent a stochastic process) determine the ultimate development of cancer

in mutation carriers (77). Humans are in fact daily exposed to a wide range

of potential natural or synthetic toxicants that are carcinogens and so can

increase the incidence of cancer. Many environmental causes of cancer are

now ascertained, the best characterized being smoking as a risk factor for

lung cancer (see paragraph 1.5), alcohol consumption for liver cancer, and

intense exposure to sunlight for skin cancer. Generally, the known

environmental causes indicated as major etiologic factors in the

development of sporadic tumours include exogenous chemicals, diet,

workplace, radiation, oxidative agents, chronic inflammation and infections

(78-81).

The most relevant environmental and lifestyle factors that playa

role in tumour development are briefly summarized below (Fig. 8) (81):

- Diet and nutrition: it is a general consensus that about 35% of

cancers may be preventable by changing our diet. However, no single

dietary factor have shown a strong and consistent effect to establish it

unequivocally as an important carcinogen or anti-carcinogen, except for

drinking alcohol and consumption of foods contaminated with aflatoxin (82).

There is a general consensus that some types of cancer are commoner in

people who are overweight such as cancers of the oesophagus, colorectal,

endometrial, breast, and kidney. A high intake of red meat and fats has

been related to increased risk of several cancers such as stomach, and

colorectal cancers, whereas alcohol consumption is associated with cancers

of the oral cavity, pharynx, larynx, oesophagus, and liver. On the contrary,

adequate consumption of fresh fruits and vegetables is regarded as a
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protective cancer factor since they contain important antioxidants (76, 83);

- Oxidative agents: oxidant by-products of normal metabolism, such

as reactive oxygen species (ROS), cause extensive damage to DNA,

proteins and lipids. The damages are mostly repaired by enzymes and occur

naturally several times per cell and day. Unrepaired damage or modification

of DNA bases may cause genetic mutation in semi-conservative replication

processes of DNA. Oxidative stress is an important mutagenic or

carcinogenic lesion in vivo and is associated with as many as half of all
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human cancers (84). Due to higher cellular metabolic rates and deficiency in
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continue to generate elevated levels of oxidative DNA lesions which may

Fig. 8 Proportion of cancer mortality attributable
to environmental and lifestyle factors (81).
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disrupt normal cellular replication and lead to double-strand breaks and

further chromosome abnormalities. Oxidative endogenous damage is also

estimated to be a major contributor to aging and to degenerative diseases

of aging, since antioxidant defences remove most, but not all, of these

lesions that accumulate in macromolecules with time (78);

- Chronic infection and inflammation: different pathogens have been

clearly correlated to specific cancer risks. For instance, chronic gastric

infection caused by Helicobacter pylori (H. Pylori) causes gastric ulcers and

is a contributing factor in the development of stomach cancer; a subgroup

of sexually transmitted human papillomavirus (HPV) is detectable in

virtually all cervical cancers (8S); hepatitis Band C viruses (HBV and HCV)

are a major cause of chronic inflammation leading to hepatocellular cancer

(78). Other ascertained pathogens include Epstein-Barr virus (HHV-EBV) for

B-cell rnaliqnancies and nasopharyngeal cancer, malaria for Burkitt's

lymphoma, human immunodeficiency virus (HIV) for non-Hodgkin's

lymphoma and Kaposi sarcoma, human herpes simplex virus (H5V) for

Kaposi's sarcoma, schistosomiasis for inflammation associated with bladder

and colon cancer (79). In addition, it has been demonstrated that

inflammatory conditions predispose to cancer since stimulate cytokines and

chemokines that contribute to development of malignant disease influencing

survival, growth, mutation, proliferation, differentiation, interaction with the

extracellular matrix, and movement of cells (61);

- Environmental chemical carcinogens: the environment contains

many potentially carcinogenic compounds including polycyclic aromatic

hydrocarbons (PAHs), heterocyclic amines, and aromatic amines that
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represent important classes of carcinogens (85). Like most other xenobiotic

substances, these chemical compounds are not carcinogenic per se but

undergo metabolic activation producing reactive intermediate metabolites

that can bind covalently DNA and form DNA adducts leading to genetic

mutations. Activation is performed by the phase I enzymes and consists

mainly of an oxidation reaction catalyzed by the enzymes of the cytochrome

P4S0 (CYP) or by microsomal epoxide hydroxylase (mEH). If DNA adducts

escape cellular repair mechanisms and persist, they may lead to miscoding,

resulting in permanent mutations (86). Detoxification is performed by the

phase II enzymes, such as the glutathione-S-transferases (GSTs) and the

N-acetyl transferases (NATs), which favour the elimination of reactive

intermediates by conjugating them with endogenous molecules. Some of

these enzymes could playa dual role in detoxification and activation;

- Radiation: a small fraction of all neoplasia seems to be correlated to

DNA damages of exposure to radiations (e.g., ultraviolet for skin cancer and

ionizing radiations for many forms of cancer) (79).

Often ten or more years pass between exposure to environmental

factors and detectable cancer. The interaction of susceptibility factors and

exposure to carcinogenic environmental agents may lead to the initiation of

cancer development. Inherited genetic variants can affect genes that are

involved in metabolism of xenobiotics and DNA repair. Additional genes that

contribute to carcinogenic process belong to the DNA modification and cell

proliferation control groups.
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1.5 LUNG CANCER

Lung cancer is an important public health problem and the most

common form of cancer in the world accounting for approximately 1.5

million new cases in 2006, 12% of total cancer diagnoses (87), and is a

major cause of cancer deaths in the Western countries (20) (Fig. 1). It is

characterized by late diagnosis and poor prognosis and therapeutic

strategies have shown only a limited effect. Indeed, most cases are

diagnosed at late stages often related to metastases. The overall five-year

survival rates are only 5-15% (88) and it has not significantly improved in

the last 20 years. However, long-term survival of patients who undergo

resection of lung tumours at early stages are higher than 80% (89).

Fig. 9 Incidence of lung histologic subtypes (Modified from
(90) and (91». sec indicates SCLC.

Lung cancer is generally classified in two major histological types:

non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) (Fig.

9, modified from (90) and (91)).

SCLC or microcytoma (also named 'oat cell' carcinoma), is so defined

because of the characteristic shape of its cells. The incidence of this
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histology is about 20% of all newly diagnosed lung cancers. SCLC is most

frequent in males and in heavy smokers. SCLC mostly arises centrally in a

large bronchus and tends to be more aggressive than the NSCLC. It is

characterised by rapid growth and is more likely to spread to other organs

and it is usually disseminated at time of presentation (92). Just because of

its aggressivity, surgical resection is generally not indicated and systemic

therapy is required, especially chemotherapy and radiation therapy. SCLC

responds very well to chemotherapy, but nevertheless the disease is

recurrent after a period which varies from person to person (92). In almost

all cases this type of tumour has a severe prognosis with a 3-year survival

of less than 10%.

NSCLC is the most common type and accounts for 75-80% of all lung

cancers. Generally it is a localized tumour which develops and spreads out

more slowly than SCLC, so that surgical resection is the preferred treatment

(90). NSCLCis further subdivided into three major histological subtypes:

- squamous cell carcinoma (SQCC or epidermoid or spinocellular

carcinoma) generally arises centrally within the lungs inside a large

bronchus although the tumour may sometimes be located peripheral and

involves the squamous epithelium of lung. SQCC most widespread in men

and accounts for approximately 30-40% of all lung tumours (90);

- adenocarcinoma (ADCA or AD or AC) tends to occur in more

peripheral locations arising from smaller airways but it can be found

centrally in a main bronchus and involves glandular tissue forming

recognizable glandular patterns. ADCA accounts about 30-40% of all lung

cancers and it is the most frequent among never smokers, women, and
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young people (93). Today ADCA is the most frequent form of lung cancer in

the world, and the frequency of adenocarcinoma is constantly increasing,

probably due to a change in cigarette production and composition (94).

- large cell carcinoma (LCC) is composed of round large-sized poorly-

differentiated cells and lacks the diagnostic features of the other subtypes.

It accounts for about 15% of all lung cancers.

The histological distinction between NSCLC and SCLC is also

important for therapeutic choices, since there are substantial differences

between the two groups in both treatment and prognosis (95).

Lung cancer cells originate from airway epithelia of bronchi,

bronchioles or alveoli. Differences in site of origin of lung cancer reflect

histological differences. Indeed, the NSCLC histological types all have the

phenotypic features of the differentiated cell types in normal or injured

bronchial epithelium, whereas SCLC cells have neuroendocrine markers

common to endocrine cells that are found in normal bronchial mucosa.

Thus, one possibility is that each of the four major histological types arises

from alterations in its pre-existing normal counterpart. An alternative

hypothesis is that the four types of lung cancer arise from a common stem

cell and are related through a common differentiation pathway (96).

Cancer staging describes the anatomical extent or spread of a

cancer at the time of diagnosis and attempts to group together patients

with similar prognosis. Proper staging is essential to determine the type of

therapy and to assess the prognosis. The staging system for lung cancer is

based on the TNM (tumour size, lymph nodes, metastasis) classification

system, according to UICC (International union against cancer) criteria, and
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takes into account the degree of spread of the primary tumour (T), the

extent of regional lymph node involvement (N), and the presence or

absence of distant metastases (M). Information on each parameter is

attributed separately and later combined together to assign an overall stage

of I, II, III or IV. Tumours of stage I have a maximum primary tumour size

of 5 cm with the exclusion of local or distant metastasis (Tl-2 NOMO). For

Stage II cases, the primary tumour has a minimum dimension of 5 cm or

extends to the breast wall or skin (T3-4 NOMO). Stage III includes primary

tumours of any size with local metastases affecting lymph nodes (Tl-4 Nl-2

MO). The highest stage tumours (Stage IV) present distant metastases in

liver, skeleton, brain or adrenal glands (Tl-4 NO-3 Ml) (97).

There are limitations in the use of the TNM classification. For

example, recent reports observed that Nl patients actually behave as a

heterogeneous subgroup with different lymph node involvement. Indeed,

patients with microscopic Nl and single-node Nl diseases show the same

survival of patients with pathologic NO disease, whereas patients with

multiple-node Nl disease are similar to N2 patients (98). Such

heterogeneity of Nl lung cancer could lead to an underestimation of the

effects of genetic variants affecting nodal status, as the "good prognosis"

variant could be over-represented in Nl patients. These problems make it

necessary to revise regularly the staging system since the development of

more accurate diagnostic methodologies can lead to the identification of

discrepancies among patients belonging to the same group and allow

performing a more homogenous classification. Indeed, TNM system

currently in use for the classification of NSCLCwas first proposed several
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decades ago and has been modified and refined over the years until the last

revision was approved in 1997 (99).

Genetic changes acquired by lung cancers are complex and

heterogeneous. There are molecular lesions that are common to different

lung tumour types and others that are relatively specific to only one of

them. For instance, alterations of c-MYC, E2Fl and RB genes are more

frequent in SCLC, whereas alterations in EGFR, K-RAS and p16/Ink4 genes

are mainly detected in NSCLC, while mutations of pS3 can be detected in

both histological types (100). Besides smoking, a small number of genetic

polymorph isms have been associated with modest increases in lung cancer

risk, thus excluding existence of highly-penetrant, strongly-predisposing

genetic variants for this type of cancer (101). The main deregulated

signalling pathways in lung cancer cells include positive and negative

signallers of cell growth and proliferation, apoptosis, senescence,

angiogenesis, invasion, metastasis, genomic instability, DNA repair

pathways, autocrine and paracrine growth factor circuits (102).

Epidemiological research has convincingly established that tobacco

smoking is the main cause of lung cancer (10, 11, 103, 104); today we

know that about 85% of lung cancer cases arises in current or former

cigarette smokers (105). Overall risk of lung cancer for smokers depends on

several factors. A lifetime smoker has a 20- to 3D-fold increased risk of

developing lung cancer compared to a lifetime non-smokers. Risk increases

with both the duration of smoking and the number of cigarettes smoked per

day, although the former is predicted to have a much stronger effect (106).

Smoking cessation results in decreased risk after a lag period of about 7
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years (107). However, the decreased risk never reaches baseline levels and

risk of lung cancer among former smokers remains elevated as compared to

never smokers.

Tobacco smoke contains an array of biologically active components:

carbon monoxide, benzene, nicotine, polycyclic aromatic hydrocarbons

(PAHs), aromatic amines, N-nitrosamines, aldehydes, oxidative radicals,

butadiene, and heavy metals. Tobacco-specific nitrosamines and PAHs are

the major risk factors (108). Most tobacco carcinogens require metabolic

activation to exert their carcinogenic effects forming mutagenic DNA

adducts. Although the predominant cause of lung cancer is well-ascertained

(i.e., tobacco smoking), there are other factors known to increase the risk

of lung cancer. Exposure to xenobiotics may also increase the risk of

cancer. Occupational agents (e.g., asbestos), some metals (e.g., nickel,

arsenic, cadmium, chromium), chemical elements (e.g., beryllium), ionizing

radiation (e.g., radon), and outdoor and indoor air pollution play an

important role in the causality of lung cancer (109-112). Some of these

agents act in concert with smoking to synergistically increase the risk.

Although 80-90% cases of lung cancer develops among smokers,

only about 10-15% of heavy smokers develop lung cancer and lung cancer

are also observed among non-smokers (113, 114) suggesting that genetic

factors have effects on lung cancer susceptibility.

The first evidence for a genetic control of lung cancer susceptibility

and progression comes from mouse inbred strains that provide an essential

tool for the dissection of the determinants underlying the complex genetic

nature of lung cancer. Several susceptibility and resistance loci have been
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mapped in several crosses between different strains. The major locus

affecting lung cancer susceptibility, the Pulmonary Adenoma Susceptibility 1

(Pasl), was identified in the distal region of mouse chromosome 6 and it is

linked to both tumour multiplicity and volume; therefore, it can affect both

lung cancer risk and lung cancer growth (115). The Lasl gene and the

Kras2 gene were then indicated as primary candidates for the Pasl locus,

the former affecting lung tumour multiplicity and the latter determining lung

tumour progression (116). More recently it has been hypothesized that Pasl

constitutes a genetic cluster composed of six candidate tumour modifier

genes (Bcatl, Lrmpl, Lasl, Ghiso, Kras2 and Lmna-rsl) and it has been

demonstrated that polymorph isms in these genes might confer susceptibility

or resistance to lung tumourigenesis (117). Population-based association

studies were carried out using genetic markers in the human homologous

region on chromosome 12 and demonstrated this locus to be most likely

involved in the genetic control of human lung carcinogenesis (118, 119).

Mapping in other genetic crosses identified Pulmonary adenoma resistance

(Par) loci that inhibit genetic predisposition to lung cancer provided by the

Pasl susceptibility allele: Parl on chromosome 11 (120), Par2 on

chromosome 18, and Par4 on chromosome 6 (121). In addition, a locus

specifically associated with lung tumour growth was mapped on the central

region of mouse chromosome 4 and named Pulmonary adenoma

progression 1 (Papgl) (121). Besides the major susceptibility and

resistance genes, other minor loci have been mapped confirming that lung

cancer in mice is a complex trait controlled by multiple genes with additive

and/or counteracting effects (122).
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In humans, the inherited genetic susceptibility to lung cancer was

first suggested more than 40 years ago following epidemiological evidence

for familial aggregation of lung cancer (123). Family-based studies indicate

that relatives of lung cancer patients are 2-5 times more likely to develop

lung cancer than relatives of control participants (124). This is in agreement

with models of polygenic inheritance supporting the role of multiple

predisposing genes that modulate the development and growth of

neoplastic lesions and the response to environmental carcinogens.

Subsequent linkage analyses of high-risk families identified a locus in

chromosomal region 6q23-2S as potential lung cancer susceptibility (125,

126). Some tumour suppressor genes (e.g., p53), genes linked to the

metabolism of tobacco carcinogens, and DNA repair genes are associated

with an increase in lung cancer risk (101), however most associations have

not been robustly replicated (127, 128). In the last years, under the

hypothesis of "common disease, common variant", several genome-wide

association studies (GWASs) identified three main lung cancer susceptibility

loci at 1Sq2S (129-131), 6p21 (132, 133), and 5p15.33 (132, 134),

providing further powerful evidence of a genetic contribution to lung cancer,

even if with some discrepancies due to ethnlcltv, smoking habits, and

tumour histology (135). More recently, genetiC variants at 13q31.3 have

been interestingly reported to be associated with susceptibility to lung

cancer in never-smokers and to modify the expression of the glypican 5

(GPC5) gene (involved in cell division and cell growth regulation) (136),

providing further evidence that the genetiC factors for risk in smokers and

never-smokers may be different. Together these data strongly indicate that
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lung cancer is a complex multi-factorial disease characterized by the

interplay of environmental and genetic contribution.

Also in lung cancer progression, as for lung cancer susceptibility, it

is possible that genetic polymorph isms or other inherited genetic factors,

which occur in genes controlling basic cellular process, together with

environmental, psychological, social, and biological factors, might have a

role influencing neoplastic development and leading to differences in

patients' prognosis and in their survival rates. In addition, it has been

demonstrated that genetic factors alter treatment response, affecting

disease prognosis and outcome (137, 138). In the last years, several

inherited genetic variants, are being assessed as predictors of different

cancer outcome phenotypes such as Myel1 for cell growth (139); FGFR4for

tissue invasion (140, 141); VEGF for tumour angiogenesis (142); KRAS

(143) and p53 (144) for tumour prognosis. At the moment, except for our

work, no GWASs for the identification of lung cancer prognostic germ line

variations have been published.

In the last ten years, a lot of progress has been made in the

treatment of lung cancer such as adjuvant chemotherapy, targeted therapy,

and individualized therapy. However, lung cancer is still today the leading

cause of death due to cancer remaining a main medical, scientific, and

social problem (90) (Fig. 1).

1.6 SINGLE NUCLEOTIDE POLYMORPHISMS

In 2001 the first two reference versions of the human DNA were

published (145, 146), but both these sequences did not report genetic
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variants that differ among individuals. Subsequent studies, that completed

human genome sequencing, focused on identification of human genetic

variants. The HapMap project (147, 148, http://hapmap.ncbi.nlm.nih.gov/)

aimed to localize and validate variants throughout the genome.

The most common sequence variations in the human genome are

substitutions of a single base called SNPs or single nucleotide

polymorph isms (Fig. 10) that occur with a frequency of more than 1% in at

least one population (149). The different sequence alternatives in a SNPare

named "alleles". SNPs could be bl-, tri-, or tetra-allelic polymorphisms.

However, in humans, tri-allelic and tetra-allelic SNPs are rare almost to the

point of non-existence (reviewed in (149». Observed data indicate a clear

bias towards transitions (i.e., purine-purine or pyrimidine-pyrimidine

changes) instead of transversions (purine-pyrimidine or pyrimidine-purine

exchanges) (150, 151). One probable explanation is the high spontaneous

rate of deamination of 5-methyl cytosine to thymidine in the CpG

dinucleotides, leading to the generation of high levels of CIT SNPs, seen as

G/A SNPson the reverse strand (152, 153).

The major conceptual change arose from two critical events early in

the 1980s: Kan and Dozy (154) demonstrated how DNA polymorphisms

could be identified in non-coding DNA and Botstein et al. (155) proposed

that these DNA polymorph isms could be used as the basis for defining

molecular markers. Before 1978, all known human polymorphisms were

within gene products; however, evolutionary selection on genes does not

lead to high polymorphism. The possibility that molecular genetic methods

could be used to detect polymorphism within any arbitrary segment of DNA
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(154) was of great value since without the constraints of evolutionary

selection, polymorphism rates could be much higher in intervening regions

than within genes.

In 1980s, restriction enzymes were used to identify single base-pair

changes in genomic DNA fragment by the ability of a segment of DNA to be

cut, or not, by a specific restriction enzyme that recognises between 4-6

specific DNA base pairs (155). These nucleotide variants were called

"restriction fragment length polymorph isms" (RFLPs). The discovery of the

Polymerase Chain Reaction (peR) methodology then made possible the

rapid development of highly informative markers for genetic mapping like

single nucleotide polymorphisms. Since SNPsare stable (with a low rate of

recurrent mutation), frequent, and easy to automatically genotyped, they

are the markers of choice for a variety of genetic studies including those on

susceptibility to polygenic diseases and poor drug reactions in order to

understand disease causation and facilitate a more accurate drug

prescribing or development of new drugs (156, 157).

It has been estimated that the human genome contains at least 11

million SNPs, with about 7 million of these occurring with a minor allele

frequency (MAF) of over 5% (158). The distribution of allele frequencies can

vary greatly among different population (159). Depending on their

localization, SNPs can be defined as anonymous variants with no effect on

gene products or functional substitutions affecting either the amino acid

sequence of the protein product or the expression of the gene. Many

polymorphisms lie outside genes and are silent, with no effect on gene

products (160). It has been estimated that only between 60,000 and
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240,000 common SNPs could have a biological effect, as non-synonymous

coding variants, regulators of gene expression, or affecting RNA splicing,

mRNA stability or mRNA translation (161). Most likely there are substantial

differences in SNP densities across the genome with the great majority of

variations localized in non-coding regions and having no functional

consequences on the activity and expression of proteins (145, 146, 162) .. .

SNP

i
SNP

~

A SNPs SNP

i
Chromosome 1 A A CAe G C CA. . .. TT C G G G G T C . . .. A G T C G A C C G ....

Chromosome2 AACAe GCeA TTeGAGG TC .... AG TC AACCG .

Chromosome 3 A A CAT G CC A , TT C G G G G T C . . .. A G T C A ACe G .

Chromosome4 AACA GCCA TTCG ...GGTC .... AGTC(.ACCG ..

~ 1 r~----------B Haplotypes

Haplotype 1 eTC ACGGTT

Haplotype 2 TT G

Haplotype 3 cee GTGATA

Haplotype 4 I I ( t , T T

*
~ l

C Tag SNPs

Fig. 10 SNPs (A), haplotype blocks (B) and TagSNPs (C) (185).

It has been observed that SNPs located in the same genomic interval

are not inherited independently but often tend to be associated with each

other in a set of SNPs called haplotype block (Fig. 10). This correlation

structure is named as linkage disequilibrium (LD), and refers to the fact

that particular alleles at nearby sites can co-occur on the same haplotype

more often than expected by chance (63, 163, 164). When a particular

allele of one SNP is found together on the same chromosome with a specific
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allele of a second SNP, these alleles are said to be in disequilibrium. The

extent of LD in populations is expected to decrease with both time and

recombination distance between markers. Nevertheless stochastic factors

predominate in the behaviour of LD over short distances. Consequently,

although a trend towards decreasing disequilibrium with increasing distance

between markers has generally been observed in empirical data, closely

"linked" markers are not always in LD (165-167). By contrast, in other

instances, LD has been reported between quite distant markers (163, 168-

170). This variability is due to the fact that the factors governing LD among

any specific collection of loci are numerous, complex and only partially

understood. A range of demographic, molecular and evolutionary forces

have a significant effect on the LD patterns:

- Genetic drift: frequencies of genotypes and haplotypes change in a

population every generation owing to the random sampling of gametes that

occurs during the production of a finite number of offspring, particularly in

small populations. In general, the increased drift of small, not growing

populations tends to increase LD since haplotypes are lost from the

population. But the applicability of this phenomenon to gene mapping has

not been well characterized (63).

- Natural selection: natural selection can have a hitchhiking effect in

which an entire haplotype that flanks a favoured variant can be rapidly

swept to high frequency or even fixation (171). Selection against

deleterious variants can also inflate LD, as the deleterious haplotypes are

lost in the population. The second way in which selection can affect LD is

through epistatic selection for combination of alleles at two or more loci on
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the same chromosome (172). This form of selection has been shown to lead

to the association of particular alleles at different loci in Drosophila, not yet

in humans (173).

- Population structure: various aspects of population structure are

believed to influence LD. Population subdivision is likely to have been an

important factor in establishing the patterns of LD in humans, but most of

our limited information comes from studies of model organisms (63).

- Admixture or migration: admixture is the introduction of mates from

one previously distinct population into another. Admixture and migration

(gene flow), between populations can create LD. Initially, LD is proportional

to the allele frequency differences between the populations, and is

unrelated to the distance between markers. In subsequent generations, the

"spurious" LD between unlinked markers quickly dissipates, while LD

between nearby markers is more slowly broken down by recombination. In

theory, this would allow the mapping of disease genes in hybrid populations

without using many genetic markers (174-177). In practice, the diseases

and circumstances for which this mapping approach will be feasible might

turn out to be quite rare and exceptional.

- Variable recombination rates: recombination rates are known to

vary by more than an order of magnitude across the genome. It is even

possible that recombination is largely confined to highly localised hot spots,

with little recombination elsewhere. According to this view, LD will be strong

across the non-recombining regions and break down at hot spots. There are

indications that this reflects the situation for some regions (178), but the

generality of the hot-spot phenomenon, the strength of recombination in
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and outside hot spots, and the length distributions of these regions remain

to be determined.

- Variable mutation rates: some SNPs, such as those at CpG

dinucleotides, might have high mutation rates and therefore show little or

no LD with nearby markers, even in the absence of historical recombination.

- Gene conversion: a short stretch of one copy of a chromosome is

transferred to the other copy during meiosis process. The effect is

equivalent to two very closely spaced recombination events, and can break

down LD in a manner similar to recombination or recurrent mutation. It has

been recently shown that rates of gene conversion in humans are high and

are important in LD between very tightly linked markers (167, 179, 180).

It has been observed that LD varies across the genome. A

"haplotype-block" model has been proposed that suggests the genome

might be structured into discrete regions of high LD, with a mean size of 5-

20 kb in length, separated by regions of recombination hotspots and

breakdown of LD (160). Furthermore, LD can vary considerably also among

different populations, reflecting the effects of population size, structure and

migration history. Some results showed LD between single nucleotide

polymorph isms to be usually limited to short distances (3-5 kb) (166, 181),

although in certain populations it may extend to longer distances, up to 1

Mb (119, 182, 183).

LD is commonly measured by one of two estimators, 0' or r2, that

represent the proportion of variation in one SNP explained by another SNP,

or the proportion of observations in which two specific pairs of their alleles

occur together. 0' or r2 can range from zero (no association between the
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two SNPs) to one (perfect correlation among SNPs) but their interpretation

is slightly different (63). Of= 1, known as a complete linkage disequilibrium,

means that two markers have not been separated by recombination during

the history of sample and occurs only when some haplotypes have

frequency equals to zero. r summarizes both recombinational and

mutational history representing the statistical correlation between two sites.

In general, r=1 is used to measure the statistical association between pairs

of markers and reflects the proportion of information provided by one locus

about the other and takes into account differences in allele frequencies at

the two locus (63).

It has been determined that the majority of 7 million SNPs with a

MAF more than of 5% could be reduced about to 550,000 haplotype blocks

for European and Asian population and to 1,100,000 haplotype blocks for

African population (184). For each LO block, it is determined a tagSNP (Fig.

10) (185), a representative SNP, and its genotyping is sufficient to know

over 80% of SNPswith a MAF>5% in the same LO block.

In June 2002 Gabriel et al. (186) reported in Science, the

construction of a haplotype map (HapMap) of the human genome with the

use of common SNP markers and up to now more than 5 million human

SNPs were validated with genotyping assay by the International HapMap

Project's SNP Consortium (184). Information and data about each SNP and

LO blocks are publicly available online (http://hapmap.ncbLnlm.nih.govl).

The challenge is to determine which genetic variant is responsible for the

inherited components of certain phenotype.
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1.7 OBSERVATIONAL STUDIES

There are two primary non-experimental, observational study designs

which are the mainstay of analytical epidemiology: the cohort study and the

case-control association study (13).

Cohort studies or prospective studies are longitudinal population-

based studies, in which a group of individuals is identified based on

exposure to a suspected risk factor for a disease (exposure ~ disease)

(187). This group is selected before disease onset and then followed

forward in time, together with a group of unexposed individuals, to

ascertain the occurrence of the disease of interest, and their individual prior

exposure information can be related to the subsequent disease

development. With this basic design, there are also a number of different

variations based on whether the design is prospective from the present time

into the future, or defines a cohort and their experiences from historic

records. In addition comparison groups can be identified from within the

same cohort (internal group), i.e., those not exposed. When the whole

cohort has similar exposure experience, an external comparison group is

needed. This is particularly used in occupational cohort studies where a

cohort from one company or industry, may be compared to those from

another company outside the cohort (187). Since data are collected from a

population that is free of disease, it is possible to follow the cohorts of

exposed and unexposed individuals from exposure to outcome, and to

calculate the incidence of the outcome in both the exposed and unexposed

groups (188). Thus, in cohort study the measure of association is the ratio

of these two risks, named relative risk (RR) (see paragraph 1.9). Since the
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exposure is always assessed prior to disease development, this type of

study also allows the advantage of examine rare exposure events, multiple

disease outcomes and incidence and relative risk in exposed and

unexposed, in that way avoiding problems due to selection bias of control

population (15). The main limitations are that cohort studies are expensive

and time-consuming, particularly in prospective designs; the need to

consider changes in exposure status during the time of follow-up that

require repeated measurements; and bias from loss to follow-up, and from

outcome information being influenced by knowledge of exposures

(information bias). Finally, cohort studies have limited utility in conducting a

detailed investigation of risk factors related for outcomes which are rare or

have long induction periods. In such circumstances, where a cohort study is

not feasible, the best option is a case-control study (15). Cohort studies

allow for calculating either cumulative incidence (Le., the number of events

per number of exposed individuals per time) or incidence rate (i.e., the

number of events over a certain time of exposure) (see paragraph 1.9).

Case-control association studies (or retrospective) require two

different and quite large groups of individuals, selected on the bases of

whether they do (cases) or not (controls) develop a particular disease or

trait (disease --+ exposure) (189). Under the hypothesis that affected

individuals carrier genetic variants associated with disease, the aim of

association studies is identifying genetic determinants that make different

patients from healthy subjects and so that are more or less frequent in

patients (189). The analysis consists of a comparison of allele frequencies

between individuals with a disease or trait of interest and disease- or trait-
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free comparison group, in search of a statistical difference that can be

reflected in an estimated effect size (usually quite small, see paragraph

1.8). If most affected individuals in a population share the same mutant

allele at a causative locus in respect to control groups that allele results

"associated" with disease. A significant association with risk or prognosis of

a disease may indicate that a marker plays a role in pathogenesis or

aetiology of the disease or, if this is not a functional marker, it could be in

LD with the functional one. In this case, it is possible to perform a fine

mapping of the genetic interval around the disease locus in order to find the

functional SNP (63). Carriers of a particular disease associated variant will

not necessary develop the disease, but they have an increased/decreased

risk since the genetic variant confers susceptibility or resistance to given

disease or phenotype.

The important aspects of case-control studies are: defining the study

hypothesis; definition and selection of cases; definition and selection of

controls; measurement of exposures or presence of a genetic variant;

analyses; interpretation and reporting. The major strengths of a case-

control study include its direct application to humans, its ability to study

diseases with a very long latency period, and its "informativeness" and

efficiency, such that one study can simultaneously evaluate multiple

hypotheses and interactions (15). Another advantage of case-control

studies is that they allow the evaluation of casual significance, even with

relatively low risk factor exposure or disease prevalence. Rare diseases with

a wide-range of potential risk factors are also particularly suitable for case-

control design. The case-control study is more commonly used than the
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cohort study because it is considered relatively quicker and less expensive

to accumulate cases of an outcome of interest and subsequently gather

controls who are similar enough to the cases to allow for a comparison of

differential exposure (162). On the other hand, the main limitation of case-

control studies is their susceptibility to bias. Since case-control studies are

mounted when the disease is manifested, disease incidence cannot be

calculated and the relative risk cannot be used as a measure of association.

Instead, the measure of association between exposure and outcome used

as an approximation of the relative risk is the odds ratio (see paragraph

1.9). Two different designs of case-control association studies can be

carried out according to the selection of controls to be representative of the

study population or for their comparability with cases:

- Population-based association studies look for differences in

frequency of genetic variants between affected individuals and unrelated

healthy controls testing for the co-occurrence of a marker and disease at

the population level. Population controls are also considered more suitable

than hospital controls, as they avoid the bias arising from the factors which

lead people to use health services, although cost and effectiveness in terms

of participation are recognised issues (190). Exposure variables are

ascertained through questionnaires, interviews and examination of health

records. Interpretation of results of case-control studies should be done

taking into account the potential biases in the form of selection bias in the

choice of cases and controls, information bias in the collection of data, and

confounding factors (16). Ideally, a case-control association study should

match cases and controls by ethnlcltv, age at disease onset, gender, and
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smoking status in the case of lung cancer, since the risk of tobacco smoking

seems to be higher than any risk factor (191). A high quality case-control

study can provide informative results, if cases and controls can be selected

independently of the exposure and controls are selected at random from the

same defined study population as the cases came from, thus the results

would be unbiased and equivalent to a cohort study.
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Fig. 11 Estimated power in case-control studies and family-based designs (192).

- Family-based association studies generally test associations using

genotype information from affected individuals and both of their parents

("trio design"), estimating the frequency with which an allele is transmitted

to the affected offspring. When parents are missing, an alternative family-

based design is looking for genetic differences between affected individuals

and their unaffected sibs as control. The discordant sibling pairs (DSPs)

design is less powerful than trio in case of rare disease; but is more efficient

when the prevalence of disease is high (192) (Fig. 11). Since cases and

controls derive from the same pedigree, family-based studies are not biased
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by population admixture and stratification, and the observed DNA

differences in genetic polymorph isms are putatively responsible for the

disease status. Thus, it may represent an alternative design to population-

based association studies in studying sporadic cancer. However, the poor

feasibility of the recruitment of healthy sibs or parents for cancer patients,

due to late age at cancer onset for most of sporadic cancer cases, make

difficult to carry out such type of study (192).

In those studies aiming to identify the genetic variants correlated

with the progression of a disease (instead of risk), a case-only approach is

required since no prognostic parameters can be defined for the control

group. In this specific study design, frequencies of polymorphic markers are

compared between subsets of cases selected for their poor or favourable

prognosis.

Association studies have been widely used in the attempt to identify

genetic loci contributing to complex diseases. However, so far, negative

results have been more frequent than positive outcomes and the main

criticism of this approach relies on the lack of replication of significant

findings in independent studies (193). The absence of reproducibility is

generally ascribed to inadequate statistical power, biological and phenotypic

complexity, population-specific linkage disequilibrium patterns, population

stratification, and other biases that can lead to spurious associations (194).

Inadequate statistical power of single studies in detecting weak

effects of common variants (195) may be partially resolved using meta-

analyses that summarize data of previous independent studies (in order to

increase the sample size under analysis). Indeed, if the power is low, there
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is a low chance to detect a difference between groups (or an association) if

one exists (196). The reliability of results from meta-analyses depends on

the validity of the primary studies included and on rigorous methodology.

Meta-analyses suffer of several limitations, such as potential heterogeneity

of the studies in the diagnostic criteria, patient selection, laboratory

methods (197). However, these combined analyses present the advantage

of an overall assessment of the potential role of a given polymorphism in a

specific disease increasing the power of single studies. Indeed, most of the

confounding variables present in individual studies, such as population

stratification and population-specific LD, are expected to balance and reduce

their effects (198, 199).

The problem of population stratification (presence in population of

distinct groups with limited inbreeding) arises when cases and controls are

unknowingly sampled from different populations or variations in allele

frequency between groups are present (200). For instance, if a disease is

unique to (or more frequent in) one population and controls have a different

ethnic origin, an association study will most likely produce a positive result

at many loci throughout the genome reflecting the "genetic distance"

between the two populations rather than a real correlation between variants

and the investigated phenotype. The disparity in frequencies among

populations is a well known event and arises from genetic and social

features unique to each population. However, the amount of bias attributed

to stratification is likely to be small and not substantial in case-control

studies with unrelated controls (201). Stratification can be controlled using

either family-based controls or testing a set of unlinked genetic markers in

59



1..Introduction

the study population (202). Thus, if frequency differences are observed for

randomly selected and anonymous markers, one could infer that

populations have genetic differences consistent with stratification.

Biases affecting association studies fell into three broad categories:

recall (information) bias, selection (including response) bias, and analytical

bias (including confounding effects) (13): recall or information bias, where

the case subjects have a differential ability to remember details about their

past life history and this affects the accuracy of information; selection bias

relates to the way cases and controls are selected or not. If they are not

representative of the population from which the cases come, the results are

likely to be distorted. Analytical bias issues include the potential problems of

lack of precision and validity of results can be improved by increasing

sample size (utilising a pre-study power calculation) and by getting better

study design or efficiency (including matching control group e.g., by age)

(13).

Finally, confounding is the most important consideration in the

analysis and interpretation of case-control studies. Basically, confounding

variable is related independently to the risk factor or exposure and the

outcome variable under investigation, and can create an apparent

association or mask real one (203).

Although association studies suffer from several limitations and need

corrections in order to gain more power and reliability, positive findings

have been published and support the use of this approach (204).

As with Consolidated Standards of Reporting Trials (CONSORT)

guidelines, which are widely adopted and improved the quality of clinical
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trial reporting internationally (205), a group of epidemiologists in Europe

have begun to develop similar guidelines with similar aims for reporting

observational studies. The Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) guidelines (206), set out standards for

reporting of observational studies, including case-control studies for all the

issues covered above (http://www.strobe-statement.org/).

1.8 GENOME-WIDE ANALYSIS

Genome-wide association study is the study of genetic common

variation across the entire genome that is designed to associate genetic

variations with phenotypic traits (such as blood pressure or weight) or with

the presence or absence of disease or condition (207). The National

Institute of Health defined GWAS as "Study of common genetic variation

across the entire human genome designed to identify genetic associations

with observable traits" (208).

Interest in GWASs started in 1996, when Risch Nand Merikangas K,

reviewing the statistical framework of association studies, evidenced that

association studies have greater statistical power than linkage analysis to

detect genetic variants with small or moderate effect on a disease or trait

testing a large number of variants across the genome (64).

GWASs represented the most widely used approach to study

relationship between genetic variations and phenotypic diversity (209)

based upon the "common disease, common variant" hypothesis (see

paragraph 1.2). Important disease-causing variants, that are rarer than 1-

5% in population, are not detected with GWA approach.
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As a traditional association study, a typical GWA study consists of

four principal phases: selection of individuals with the trait of interest and a

reference group for comparison; DNA isolation, genotyping and data review;

statistical analysis for association between SNPs and trait of interest and

replication of identified associations or their functional characterization (Fig.

12) (210).
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2009, of which 96 are cancer hits with frequency of more than 10%

(http://hugenavigator.net).

Most of cancer associated loci are tissue-specific, but some are also

common in different types of cancer, such as the 8q24 region in prostate,

colorectal and breast cancer, suggesting possible unsuspected relationships

and common pathways among different diseases not previously implicated,

such as the autophagy pathway in inflammatory bowel disease (211). Other

loci seem associated only with certain histological subtype. For example, the

locus Sp1S.33 was found significantly associated in ADCA histotype but not

in SQCC (212, 213). Up to now, three regions were identified with by GWA

studies associated with lung cancer (see paragraph 1.5): 15q25, 5p15 and

6p21 (reviewed in (134)).

Of course, whole genome information may offer the potential for

discovery of new regions associated with disease (individual SNPs, gene-

gene interactions, high-risk haplotype) establishing utility of genetiC

markers for risk and outcome prediction. In addition, it increased

understanding of basic biological processes and molecular pathways of

disease causation with the future promise of personalized medicine,

differential pharmacological intervention (pharmacogenetics) and new drug

targets. Once genetiC associations are identified, researchers can use the

information to develop better strategies to detect, treat and prevent the

disease.

The success of GWA study is due to the development and upgrading

of the high throughput SNP genotyping platforms commercially available,

that allow genotyping of hundreds of thousands of tagSNPs with their

63



1.Introduction

relative comprehensive annotations and that have constantly increased the

number of variants that can be typed at once. The main companies

producing SNP platforms are Affymetrix (Santa Clara, CA, USA) and

Illumina (San Diego, CA, USA) that developed a last array containing more

than one million of tagSNPs and offer a coverage of 67-89% of SNPs with a

MAF >5% in European and Asian populations and of 50% in African

population (185). Even with a very low cost for each SNP, the total cost for

genotyping 1 million of SNPs in a large sample size is prohibitive and DNA

pooling approach can be used as initial screening in order to reduce costs

as compared to the analysis of individual samples at the same power of

study and with a robust estimation of allele frequency (214, 215). In this

way, an equal amount of DNA samples from cases and controls were pooled

and genotyped together to determine imbalance among allele frequencies of

the two groups.

Despite its success, GWA studies have several limitations, that are

typical of a traditional association study (see paragraph 1.7), but more

evident in this high throughput approach. Indeed, SNP associations

identified in one population are frequently not transferable to other

populations because both allele frequencies and LD blocks are different from

population to population (216). However, most of associations found with

GWA analyses have problems on reproducibility in different series from the

discovery, even though within the same population. This could be due to the

bulk of the genetic heterogeneity or existence of phenocopies across

individuals from the same population that have not been accounted for in

GWA studies and whereby multiple variants in the same or different loci can
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contribute to the same phenotype. In this case, failure in replication does

not mean that the initial findings was spurious, but that replication series

was substantially different from the discovery and thus invalidates test for

association giving different results. In addition, population stratification

or selection for subgroups reflecting population history with different

characteristics alters association analyses, providing associations even for

unlinked loci (false-positive or spurious associations). Moreover, there is

great difficulty moving beyond statistical associations to identifying the

functional and biological explanation of link between a genomic locus

and a given complex trait. It is important also to call attention to the fact.
that GWA approach identifies significant statistical associations for a tagSNP

of entire LD block and does not give information about the exact associated

polymorphic or structural variant in the region and moving from tagSNPs to

disease causal variants is often difficult. Moreover, most associated SNPs

are not localized within a gene or regulatory regions; markers are often

located in introns or in intergenic region. For example, variants on 8q24

that were found associated with multiple solid tumours risk is 300 kb from

the nearest gene (MYC) (217, 218). Another debated topic any of GWA

studies tend to minimize false-positive associations paying attention only on

the highest statistically significant associated SNPs and carrying over from

initial screening into the replication step only these. Indeed, the most

robust findings are often not in the "top" associations and this approach can

cause false-negative results. Another hotly debated topic of GWA approach

is that variants found to be associated with a given disease have a limited

impact on its susceptibility. The mean contribution to the overall risk
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variation estimated for most of these associations is modest (OR in order of

1.1-1.3 for heterozygous genotype and 1.5-1.6 for homozygous genotype,

http://hugenavigator.net). Each variant by itself has in general a small

effect; however, the combination of several low-risk alleles could have a

strong effect and identify individuals with a substantially increased risk

(219).

On the other hand, in the last years, only a small part of inherited

risk has been explained by GWA studies (220). Estimates of residual

missing heritability suggest that numerous other variants, including rare,

structural or other common variants, remain to be found for most of

complex disease.

To perform an excellent GWA study we need to develop a robust

study design to obtain a high power to detect genes of modest risk

minimizing the potential of false association signals due to testing large

numbers of markers and to high genetic heterogeneity interindividual. The

key components are:

- Sufficient sample sizes: since the relatively modest effect sizes of

common genetic variants in modulation of complex disease

susceptibility/resistance, very large samples sizes need to detect them.

Since statistical power of a study is function of MAF, sample size and

supposed genetic effect, a GWA study from general population (with MAF >

5% and OR in order of 1.2-1.5) requires more than 10,000 individuals for

group (221). Ioannidis JPAet al. (222) estimated that a median sample size

of 15,000 participants is needed to have a power of study of 90%.

66



1.1ntroduction

- Rigorous phenotypes (cases and matched controls): since

misclassification of case and control participants can widely reduce study

power, the two groups should be careful defined, selected and matched for

confounding factors (gender, age, smoking, ethnicity, etc.) in order to focus

on differences really associated with the given trait and to minimize

phenotypic heterogeneity and population stratification (35). For lung cancer,

where the contribution of tobacco smoking is important in definition of risk,

it could be useful to use smokers as controls.

- Accurate high throughput genotyping technologies (comprehensive

maps, rigorous assessment of genome-wide signatures, rapid algorithms for

data analysis): quality control measures for genotyping step require a SNP

call rate > 95%, concordance in replicas > 99.5%, MAF > 5%, Hardy-

Weinberg equilibrium and Mendelian inheritance in trio studies. Statistical

analysis of dense genotyping data can be performed with publicly available

tools as SNPLims (http://www.itb.cnr.it/snplims). Genotype Library and

Utilities (GLU) or PLINK (223), that allow archiving, management and basic

analysis of datasets.

- Replication: an important step in evaluating the reliability of results

is replication of initial associations study in independent series in the same

population changing recruitment centre, genotyping platform or method and

then extending results in other population. In the last years much interest

has been focused with contrasting results on the advantages/disadvantages

of splitting the initial available series of samples in two series: a "testing

series" for GWA study and a "validation series" to perform the replication

step for the most promising SNPs (194, 224, 225). An innovative approach
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to the replication-based analysis, proposed by Skol AD et al. (226), could be

to jolntlv analyze the results from both series. The [olnt analysis provides

greater power than replication-based analysis of only the replication series,

although a more stringent significance level is required. Replication

represents the major challenge of GWA studies in the last years since the

extensive lack of reproducibility.

- Functional studies: it is important investigate the functional and

biological value of statistical associations found with a genome-wide

approach to confirm their role and increase understanding of their

mechanisms and their possible interactions with other genes or

environmental factors. Indeed, GWA studies find significant statistically

association for a tagSNP of an entire LD block and without giving

suggestions about the exact associated polymorphic or structural variant in

the region. Moreover, most associations are often located in introns or in

intergenic region, rather than within a gene or regulatory regions such as

the 5' or 3' untranslated regions (UTRs), the promoter, or the splicing

donor/acceptor sites (218, 227).

Software provided with the SNP platforms is sufficient for

management of row data while management and statistical analysis of data

post-genotyping could be done with publicly free tools (e.g., PLINK), that

allow tests for allelic, genotypic, dominant, recessive or additive model

associations with permutations, multiple testing corrections, and test for LD

and Hardy-Weinberg equilibrium (HWE) analyses.

Data from GWA studies are available consulting the Database of

Genotype and Phenotype (dbGaP) of the National Center for Biotechnologies
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Information (NCBI) (228) (http://view.ncbi.nlm.nih.gov/dbgap) and

updated information on published GWA findings are released online to the

scientific community through the National Genome Research Institute site

(http://www.genome.gov/GWAstudies/).
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AIM OF THE PROJECT

In this project I examined the genetic profile related to lung cancer

risk and prognosis. More specifically, the overall aim of this project was the

identification of genetiC profiles predictive of individual risk of lung cancer or

associated to patients' prognosis through genome-wide analysis of DNA and

RNA pools from different groups of Italian lung cancer cases and controls,

followed by individual genotyping of candidate SNPs and by individual

assessment of the transcript levels of candidate genes.

According to these aims, my project is divided in two fundamental

tasks. The first task investigates human genetiC variants that may playa

role in lung cancer risk through GWA in a case-control association studies in

Italian lung ADCA patients and unrelated controls from general population

and a case-control association family-based studies in Italian lung patients

and unaffected sibs as controls. The second task investigates a genetic

profile that can explain the differences in cancer prognosis through GWA in

a case-only association studies in Italian lung ADCA patients with clinical

stage I versus higher clinical stage and a whole-genome expression profile

in normal lung tissue of these patients.
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2. MATERIALS AND METHODS

2.1 PATIENTS AND SAMPLES CHARACTERISTICS

The entire project involved pathologically and clinically documented

Italian lung ADCA patients who underwent surgical resection at three

Institutes in Milan (Italy): Istituto Nazionale Tumori, Istituto Clinico

Humanitas and Ospedale Maggiore Policlinico. Control subjects from general

population were enrolled among healthy blood donors or subjects

participating in a computed tomography screening for lung cancer

prevention (272) at the same Istituto Nazionale Tumori (Milan, Italy) and

matched to the group of cases for their district of birth, age at diagnosis,

gender, and smoking status. Characteristics of lung ADCA patients and

control subjects used in the population-based case-control association study

are summarized in Table 1.

Table 1. Characteristicsof lung adenocarcinomapatients and control
subjects population-basedassociationstudy.

Subject characteristics Controls Cases

No. of subjects 522 482
Medianage (range) a 59 (31-77) 63 (34-77)
Gender

Male 389 361
Female 127 121

Smoker status
Never 25 68
Ever 485 398

Clinical stage
I NA 252
II NA 85
III NA 93
IV NA 43

a Age in years. NA, not applicable.
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For the family-based case-control association study, series consisted

of 80 Italian lung cancer patients and their healthy sibs as control. This

population was recruited, on a voluntary basis, with the help of Marta

Nurizzo Association (Brugherio, Italy,

http://www.martalive.org/foreign.htm) according to recruitment criteria

consisting in the non-smoking status and young age «60 years) of lung

cancer cases (Table 2).

Table 2. Characteristics of discordant sibs series in the family-
based association case-control series.

Subject characteristics Controls Cases

No. of subjects 80 80
Median age (range) * 51 (31 - 73) 52 (31 - 80)
Gender

Male 29 19
Female 51 61

Smoker status
Never 54 75
Ever 26 5

Histological type §

ADCA NA 47
NSCLC NA 30
SCLC NA 3

Clinical stage NA Unknown

* Age in years. § ADCA,adenocarcinoma;NSCLC,non-small cell lung
carcinoma; SCLC,small-cell lung carcinoma; NA, not applicable.

Lung cancer patients used in case-only association study consisted of

pathologically documented 1174 Italian lung cancer patients distributed in a

first series composed of 600 lung ADCA patients (discovery series) and in

two additional independent validation series composed of 317 lung ADCA

and 257 lung SQCCpatients (Table 3).

72



2. Materials and Methods

Gene expression profile analysis in normal tissue was performed in a

series of RNAs from 120 lung ADCA patients derived from the discovery

seires of previous GWA, divided in two groups according to their clinical

stage (lor >1) (Table 4). We selected only smokers to avoid bias in gene

expression associated to the smoking habit (273).

Table 3. Characteristics of lung cancer patients in case-only association
study.
Subject characteristics All patients (N=1174)

Discovery Validation Validation
ADCA series ADCA series SQCCseries

No. of subjects 600 317 257
Age at diagnosis (years)

Median 63 65 67.5
Range 20 - 81 34 - 84 44 - 84

Gender
Male 442 233 233

Female 156 84 21
Smoker status

Never 98 50 7
Ever 494 262 241

Histological type
ADCA 600 317 0
SQCC 0 0 257

Clinical stage
1 300 160 109

>1 300 141 130
Follow-up at 60 months

No. patients alive 316 183 157
Median duration (months) 59.1 60 55.8

Range 4.4 - 60 1.7 - 60 1.9 - 60

For 27 out of 120 cases, we had also available the matched lung

ADCA tissue for analysis of gene expression in matched couples of lung

ADCA tissue and adjacent normal lung tissue (Table 5).

Files were recorded to get personal and clinical data. Study protocols

were approved by the institute ethics committee and written informed
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consent was obtained from each subject for the use of their biological

samples for research purposes.

Table 4. Characteristics of lung ADCA patients used in
gene expression profile analysis of normal tissue.
Parameter Values
No. of patients 120
Median age (range) a 65 (36 - 81)
Gender

Male 99
Female 21

Smoking status
Never 0
Ever 120

Clinical stage
I 60

II 15
III 35
IV 10

aAge in years.

Table 5. Characteristics of 27 out of 120 cases lung ADCA patients used
for paired analysis of the gene expression of lung ADCA tissue and
adjacent normal lung tissue.

Parameter Values

No. of patients 27

Median age (range) a 63 (44 - 76)

Gender
Male 23

Female 4

Smoking status
Never 0
Ever 27

Clinical stage
I 13

II 4
III 6
IV 3

aAgein years.
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2.1.1 Genomic DNA extraction and quantification

Genomic DNA was extracted from peripheral blood sample or from a

small piece of non-tumour lung parenchyma excised during surgery using

the DNeasy Blood & Tissue kit (QIAGEN, Valencia, CA, USA), according to

the manufacturer's instructions. Quality of genomic DNAs was checked on

1% agarose gel stained with ethidium bromide (EtBr) and DNAs were

quantified using Picogreen dsDNA Quantitation Kit (Invitrogen, Carlsbad,

CA, USA) in fluorimetry. The method allows the estimation of DNA

concentration by comparison of the fluorescent signal obtain from each

sample with that collected using a dilution of a DNA standard. Signal can be

measured with a fluorescent microplate reader using excitation wavelength

484 nm, emission wavelength 538 nm, according to the protocol. The

purified DNA was stored at -20°C.

2.1.2 Total RNA extraction and quantification

A small section of lung tumour tissue and normal lung parenchyma

distant from the macroscopic lung cancer tissue was removed at surgery

and stored frozen or in RNAlater solution (Ambion, Austin, TX, USA). Total

RNA was extracted from normal lung or ADCA tissue with the RNeasy Midi

kit (Qiagen) and quantified by Nanodrop Spettrophotometer ND-1000

(Thermo Scientific, Wilmington, DE, USA). The integrity of the total RNA

obtained was evaluated with spectrophotometric analysis using the RNA

6000 Nano Assay Kit (Agilent Technologies, Palo Alto, CA, USA). The

purified RNA was stored at -80°C.
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2.1.3 Preparation of DNA and RNA pools

A genome-wide DNA pooling strategy was used in our case-control

association studies as initial screening in order to minimize interindividual

sample variability and to reduce costs and time as compared to the analysis

of individual samples at the same power of study and with a robust

estimation of allele frequency (214). Then, we confirmed putative

associations by individual genotyping.

DNAs from patients and control series of population-based association

study (Table 1) were respectively pooled to form 4 different pools (two from

cases and two from controls), each constituted by 200 individuals

contributing 30 ng of DNA to the pool. Cases and controls in pools were

matched for gender, age and smoking habits to minimize phenotypic

heterogeneity and population stratification (Table 6) (191). We have so

applied a joint analysis of two experiments, each one including a pool of

either lung ADCA cases or matched healthy controls.

DNA of 80 discordant sibs of family-based study (Table 2) was used

to generate two pools (cases or controls) containing 30 ng of each DNA

sample.

Patients of the discovery series of case-only association study,

composed of 600 lung ADCA patients (Table 3), were divided into two

groups according to their clinical stage (lor >1). As expected, Kaplan-Meier

survival curves (Fig. 13) and Cox regression analysis of survival indicated

poorer survival among patients with higher clinical stage compared with

patients with stage 1 (P=6.47x10-6 and P=2.32x10-05 respectively). For each
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sample 15 ng of DNA was used to create a DNA pool of 300 stage I patients

and a DNA pool of 300 patients at higher clinical stages. Since the accuracy

of analyses using a DNA pooling strategy depends heavily on the estimates

of DNA concentration, we performed serial dilutions of each DNA sample

(284). DNAs were first diluted to 15 ng/ul and their concentrations re-

estimated by using Picogreen dsDNA Quantitation Kit (Invitrogen) in

fluorimetry. Samples were then diluted to 5 nq/ul, re-quantified and finally

15 ng of each DNA were combined. Pools were quantified to check their

correct concentration.

Table 6. Characteristics of Italian lung cancer patients and controls used for
DNA pools.

First ex~eriment Second experiment
Subject characteristics Cases Controls Cases Controls
No. of subjects 200 200 200 200
Median age (years) 61.0 59.0 62.0 61.0
Gender

Male 158 158 140 140
Female 42 42 60 60

Smoker status
Never 29 29 0 0
Ever 171 171 200 200

Histology a

ADCA 200 NA 200 NA
Lymph node status b

NO 128 NA 101 NA
Nl 69 NA 75 NA

Clinical stage NA
I 107 NA 102 NA
II 39 NA 29 NA
III 36 NA 42 NA
IV 15 NA 25 NA

Follow-up (months) C 89.1 (n=61) NA 87.3 NA
(n=64)

a ADCA, adenocarcinoma. b NO, absence of nodal metastasis, Nl, presence of nodal
metastasis. C Median for patients alive at the end of follow-up. NA, not
applicable.
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Fig. 13 Kaplan-Meier curves for lung ADCA patients with
stage I (red line, number of patients = 60) or with higher
clinical stage (blue line, number of patients = 60). Log-
rank test showed a significant difference between the two
curves (P=6.47 x 10-6).

Whole-gene expression analysis for initial screening of transcriptome

was performed on RNA pools obtained using equal amounts of each RNA

sample. In the first experiment (A), the 120 RNA samples from normal lung

(Table 4) were combined in 24 small pools: 12 pools constituted by patients

with stage I and 12 pools by patients with higher clinical stage (5 samples

per pool). These pools were analyzed on Sentrix Bead Chip HumanHT-12

(Iliumina). In the second experiment (B), the same 120 samples were

combined to form only two pool (60 samples per pool) representing stage I

and stage > I patients, respectively. These pools were analyzed in

quadruplicate on the Sentrix Bead Chip HumanRef_8_v2 (Ilium ina).

We used different pooling approach for the three genome-wide

scanning and for the whole-gene expression analysis ,(Table 7). This was
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due to the characteristics of each population and to the fact that each

subsequent study reflects the experience acquired in the previous study.

Table 7. Summary of pooling approaches used in the thesis.

Study Outcome N° Pool samples/ Replicas
Experiment pool

Population-based case- Risk I 2 200 2
control association
study (GWAS) II 2 200 2

Family-based case- Risk I 1 80 4
control association
study (GWAS)

Case-only association Prognosis I 1 300 12
study (GWAS)

Case-only association Prognosis I 24 5 0
study (whole

II 2 60 4transcriptome analysis)

2.2 POPULATION-BASED ASSOCIATION STUDY FOR LUNG

CANCER RISK

2.2.1 Genome-wide SNPs analysis

In order to map genetic variation across human populations to

identify variants associated with lung cancer risk or staging, we performed

genome-wide association study using Iliumina platform in collaboration with

the CNIO Genotyping Unit in Madrid, where the Iliumina platform is already

available.

Genome-wide genotyping for initial screening was carried out in DNA

pools (see paragraph 2.1.3) and 800 ng of DNA per pool was hybridized

using the Infinium II Assay 300K on the Sentrix BeadChip platform
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(Illumina, San Diego, CA, USA), that allows for the analysis of more than

318,000 tagSNPs chosen from the International HapMap Project (274). The

Infinium II Whole-Genome Genotyping Assay used a single bead type and

dual colour channel approach. The DNA samples were isothermally amplified

in an overnight step using random primers and then fragmented by a

controlled enzymatic process that does not require gel electrophoresis (Fig.

14, (275)).
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Fig. 13 Diagram of Infinium II assay protocol (275).

Briefly, after alcohol precipitation and resuspension, the amplified and

fragmented DNA of 300-600 bp are hot denatured and the BeadChip is

prepared for hybridization in the capillary flow-through chamber. Samples

are applied to BeadChips and incubated overnight to permit the annealing of

these to locus-specific SO-mers covalently linked to one of over 500,000

beadtypes. One bead type corresponds to each allele per SNP locus. After

locus-specific hybridization capture, each SNP locus is "scored" by an
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enzymatic single-base extension assay using labelled nucleotides that

confers allelic specificity. These labelled products are subsequently

visualized fluorescent a sandwich-basedby withstaining

immunohistochemistry (IHe) that increases the overall sensitivity of the

assay (Fig. 15).
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Fig. 14 Whole-Genome Genotyping steps (38S).

The intensities of the beads' fluorescence are detected by the

Illumina BeadArray Reader, and are in turn analyzed using Iliumina's

software for automated genotype clustering calling (275). The software

represents samples in cluster of homozygous (red and blue points) and of

heterozygous (violet points) according to the fluorescent signals in a

diagram with normalized intensity in y and "theta" value in x axes. In case

of pool genotyping, the diagram has intermediated values (grey points)

(Fig. 16).
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Data were obtained in the form of intensity files, which were used to

determine the allele frequencies of each SNPand to reconstruct the number

of chromosomes carrying each of the two possible alleles. For each DNA

pool, SNP array analysis was carried out in duplicate to verify genotype

reproducibility and estimate technical variability.
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Fig. 15 Report of a SNP genotyping (275).

2.2.2 Independent confirmation on DNA pools

(Biotage AB, Uppsala, Sweden), according to the manufacturer's

instructions using specific primers reported in Supplementary Table 1 (at
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Pyrosequencing technology is sequencing by synthesis, a simple to

use technique for accurate and quantitative analysis of DNA sequences

performed on PSQ96MA system. PCRassays were performed with primers

(with one of them modified by addition of a biotinylated group at S'-end)

that amplified a short region contained the SNP. Then 20 1.11 of peR products

were mixed with 4 1.11 of streptavidin-coated beads (Biotage) and 36 IJI of

binding buffer and the volume is adjusted to 100 IJI with water. Samples are

then vortex at 1100 rpm for 10 min at room temperature to optimizing the

formation of complex between streptavidin-coated beads and biotinylated

PCR product. The complexes were capture on tool pins membrane by

vacuum filtration and purified by using a denaturation solution. At the end

the complexes were released in a solution with sequencing primer and

samples were analysed with Pyrosequencing assay. Briefly, samples are

denaturated at 80° e and sequencing primer is hybridized to a single-

stranded peR amplicon that serves as a template, and incubated with four

enzymes (DNA polymerase, ATP sulfurylase, luciferase and apyrase) as well

as the substrates adenosine 5' phosphosulfate (APS) and luciferin (Fig. 17,

(276». The first deoxribonucleotide triphosphate (dNTP) is added to the

reaction. DNA polymerase catalyzes the incorporation of the dNTP into the

DNA strand, if it is complementary to the base in the template strand. Each

incorporation event is accompanied by release of pyrophosphate (PPi) in a

quantity equimolar to the amount of incorporated nucleotide. ATP

(adenosine triphosphate) sulfurylase converts PPi to ATP in the presence of

adenosine 5' phosphosulfate and drives the luciferase-mediated conversion

of luciferin to oxyluciferin that generates visible light in amounts that are
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proportional to the amount of ATP (277). The light produced in the

luciferase-catalyzed reaction is detected by a charge coupled device (CCD)

chip and seen as a peak in the raw data output (Pyrogram). The height of

each peak (light signal) is proportional to the number of nucleotides

incorporated. Apyrase, a nucleotide-degrading enzyme, continuously

degrades unincorporated nucleotides and ATP. When degradation is

complete, another nucleotide is added. Addition of dNTPs is performed

c
c

PPi

ATP

sequentially. As the process continues, the complementary DNA strand is

r-
.:»

built up and the nucleotide sequence is determined from the signal peaks in

-- __--..------1--'--.---,..---
---+-.--..,f------,-'----!--

Fig. 17 Pyrosequencing: reactions and principles (276).

the Pyrogram trace (Fig. 17).
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Primers designed to confirm allele frequencies of 47 putative

associated SNPs in the same DNA pools for confirmation were listed in

Supplementary Table 1.

2.2.3 Individual genotyping

Validation of statistically significant associated SNPs in individual

samples was performed using MassARRAY Sequenom assay (Sequenom,

San Diego, CA, USA).

Genotyping of the selected SNPs was carried out following published

protocols applying the multiplex genotyping assay iPLEXTMfor use with the

MassARRAY platform (278). Briefly, multiplex PCR assays were designed

using Sequenom SpectroDESIGNER software by entering sequence

containing the SNP site and 100 bp of flanking sequence on either side of

the SNP (Fig. 18). The SNPswere grouped into multiplexes according to the

mass of the extension product over the SNP site. PCR was carried out in

384-well reaction plates in a volume of 5 j,J1 using 2.5 ng of genomic DNA.

All reactions are ended after a single base extension (SBE) into the SNP site

and SBE products are separated by their mass differences allowing to

genotype (Fig. 18, (278».

The extension products were spotted onto a 384-well spectroCHIP bioarray

before analysis by MALDI-TOF mass spectrometry (Sequenom). To

guarantee quality of genotyping, all samples plus a series of duplicates were

genotyped in the same batch.
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Fig. 18 Diagram of MassARRAY iPLEX Sequenom assay protocol
(278).

2.2.4 Statistical analysis

The consistency of genotype frequencies at each SNP locus with

respect to the Hardy-Weinberg equilibrium was tested (279). The

correlation of the allelic frequencies within and among experiments, or

between allele frequency data obtained by SNP array and pyrosequencing

analyses, was tested by the Pearson's coefficient. Differences in allelic

frequencies between case and control groups were analyzed by the Fisher's

exact test or by chi-square analysis when the normal approximation was

appropriate. Technical component was estimated as mean of the variance
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between replicates within experiment, whereas the component due to

sampling was obtained by comparison between mean allelic frequencies of

the two experiments. The estimation of number of chromosomes in cases

and controls was carried out using the 2x2 contingency table analysis.

Association between each SNP and disease status, computing odds ratios

and 95% confidence intervals, was assessed using the logistic regression or

the extended Mantel-Haenszel chi-square for linear trend. LD of the SNPs

with the surrounding region was assessed using HapMap data (CEU

population). The Kaplan-Meier product-limit method and the log-rank test

(280, 281) were used to evaluate the effect of the genotypes on overall

survival of lung cancer patients.

2.3 FAMILY-BASED ASSOCIATION STUDY FOR LUNG CANCER

RISK

2.3.1 Genome-wide SNPs analvsis

Genome-wide genotyping was carried out in DNA pools prepared from

cases and controls of the family-based series (see paragraph 2.1.3). 200 ng

of DNA per sample was hybridized using the Infinium II Assay Human610-

Quad BeadChip on the Sentrix BeadChip platform (Ilium ina, see paragraph

2.2.2), which allows analysis of 620,901 genetic markers chosen from the

International HapMap release 23. For each DNA pool, SNP array analysis

was carried out in quadruplicate.

87



2. Materials and Methods

2.3.2 Individual genotyping

Individual samples were genotyped using MassARRAY (Sequenom)

(see paragraph 2.2.3).

2.3.3 Statistical analysis

Differences between lung cancer cases and their sib controls in allelic

frequencies assessed in SNP array hybridization were analyzed using

random variance t-statistics (282) and BRB ArrayTools developed by Dr.

Richard Simon and Amy Peng Lam

(http://linus.ncLnih.govLBRBArrayTools.html). Differences in allele

frequencies, estimated from SNP-array analysis of DNA pools, between

cases and controls were tested by Fisher's exact test or by chi-square

analysis when the normal approximation was appropriate. The correlation of

the allelic frequencies between SNP array and individual genotypes was

expressed as a Pearson's coefficient. Association analyses were carried out

using PUNK software (223), which included analysis of HWE, family-based

TDT (258) and population-based association analyses between disease

status and genotype/allelotype. A generalized linear model with binomial

errors was used to test the relationship between genetic susceptibility score

and proportion of lung cancer cases; the mean values of genetic

susceptibility scores were also analyzed using the Kruskal-Wallis test. The

age was down-coded to binary dummy variables (age in decades), which

were used as covariates in logistic analyses. Linkage disequilibrium between

SNP markers was evaluated using JUN program, version 1.6.0

(http://www.genepi.org.au/jlin.html) (283).
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2.4 CASE-ONLY ASSOCIATION STUDY FOR LUNG CANCER

PROGNOSIS

2.4.1 Genome-wide SNPs analysis

DNA pools obtained from 600 lung ADCA patients according to their

clinical stage (see paragraph 2.1.3) were analyzed using the Human610-

Quad BeadChip array (Iliumina), as for family-based series (see paragraph

2.3.2). Twelve SNP-array hybridizations were performed for each DNA pool

as described in paragraph 2.2.2.

2.4.2 Individual genotyping

Selected SNPs were genotyped in individual samples using

MassARRAYSequrnom assay (Sequenom) as described in paragraph 2.2.4.

2.4.3 Gene expression profile with microarray analysis

Microarray gene expression analysis was carried out in RNA pool from

120 lung ADCA patients (see paragraph 2.1.3). Each RNA pool was reverse-

transcribed, labelled with biotin and amplified overnight (14 h) using the

Iliumina Total Prep RNA Amplification kit (Ambion) according to the

manufacturer's protocol. A mixture of 1.5 I-1gof the biotinylated cRNA

samples were hybridized according to manufacturer's protocol to Sentrix

Bead Chip HumanHT-12 (experiment A) or to Sentrix Bead Chip

HumanRef_8_v2 (experiment B) (Iliumina). The arrays contain more than

48,000 or 22,000 bead types representing 47,231 or 18,196 unique

sequences, respectively, derived from human genes in the NCBI Reference
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Sequence (RefSeq) Release 38 or 22, respectively. Array chips were

scanned with an Illumina BeadArray Reader. Intensity values of each

hybridization were quality-checked and the data set was normalized using

the cubic spline algorithm in the BeadStudio Version 3 software. A detection

P-value <0.05 was set as a cut-off to filter the reliable genes, yielding a

matrix containing 12,244 genes and 13,035 detectable transcripts,

respectively. Data were analyzed using BRB ArrayTools (see paragraph

2.4.8). Microarray results were validated by quantitative real-time peR

(qRT-PCR) as described in paragraph 2.4.6.

2.4.4 Quantitative Real-Time peR

From each sample, 1 I-Ig of RNA was used to synthesize cDNA by

reverse-transcription using Transcriptor First Strand cDNA Synthesis Kit

(Roche, Basel, Switzerland) with a 1: 1 mix of oligo( dT) and random

hexamer primers, according to the manufacturer's instructions.

Real-time peR analysis was performed using customized TaqMan®

Low Density Arrays on the 7900HT System (Applied Biosystems, Foster

City, CA, USA). TaqMan Gene Expression Assays used, spotted onto a 384-

well card, are listed in Table 8 and in Table 9. Eight cDNA samples were

analyzed per card. Each sample was measured in duplicate in a single RT-

peR run. 2.5 ng of cDNA template, mixed with TaqMan® Universal peR

Master Mix (Applied Biosystems), in a total volume of 100 Ill, was loaded

per sample loading port. Thermal cycling and fluorescence detection was

performed on the microfluidic card sample block in the Applied Biosystems

ABI Prism 7900HT Sequence Detection System (SDS) with ABI Prism
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7900HT SDS Software 2.2 (Applied Biosystems). The thermal cycling

conditions were 2 min at 50°C and 10 min at 94.5 °c, followed by 40

cycles of 30 s at 97 °c and 1 min at 59.7 °C. Relative expression levels

were calculated using the comparative Ct method calibrating the samples

relative to a cDNA pool from normal lung tissue (calibrator). The raw gene

expression values were normalized according to the expression of

hypoxanthine phosphoribosyltransferase 1 (HPRT1, Hs99999909_m1) gene

as endogenous reference (housekeeping) (Table 8 and Table 9).

The amount of a target gene in a sample, normalized to an

endogenous reference and relative to a calibrator, is given by (285): 2-MCt

where Ct, or threshold cycle, is "the fractional cycle number at which the

amount of amplified target reaches a fixed threshold" and 1111Ct= l1Ct(target

geneinsample)- l1Ct(targetgenein calibrator)·The l1Ct value is calculated as Ct(targetgene)-

Ct(housekeeplng)for each samples and for calibrator sample.

Gene symbol Gene name

Table 8. Genes present on the TaqMan® LowDensity Array for
Microarray validation.

Gcoml
MSXl
TMEMI00
SMAD6
IDHl

VIPRl
Sle14Al

ect.s
PlEKH02

SFTPA2B
SBN02
RRP12

TaqMan® Gene
Expression Assay

No.
GRINLlA complex locus
Msh homeobox 1
Transmembrane protein 100
SMADfamily member 6
Isocitrate dehydrogenase 1 (NADP+),
soluble
Vasoactive intestinal peptide receptor 1
Solute carrier family 14 (urea transporter),
member 1 (Kidd blood group)
B-cell ell/lymphoma 3
Pleckstrin homology domain containing,
family 0 member 2
Surfactant protein A2B
Strawberry notch homolog 2 (Drosophila)
Ribosomal RNAprocessing 12 homolog (S.
cerevisiae)

Hs00291311_ml
Hs00427183_ml
Hs00388033_m 1
Hs00178579_ml
Hs00271858_ml

Hs00270351_ml
Hs00210608_ml

Hs00180403_ml
Hs00368811_ml

Hs00359837_ml
Hs00209130_m1
Hs00958380_ml
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DACT1 Dapper, antagonist of beta-catenin, Hs00420410_m1
homolog 1 (Xenopus laevis)

ITlN1 Intelectin 1 (galactofuranose binding) Hs00914745_m1
C200rf114 Chromosome 20 open reading frame 114 HsOl113243_m1
SElE Selectin E Hs00950401_m1
FCN3 ficolin (collagen/fibrinogen domain Hs00892390_m 1

containing) 3 (Hakata antigen)
COLlA1 Collagen, type I, alpha 1 Hs01076777 _m1
DEFA3/DEFA1 defensin, alpha 3, neutrophil-specific/ HsOO414018_m1

defensin, alpha 1
TXNIP thioredoxin interacting protein HsOO197750_m1
lZTS1 leucine zipper, putative tumor suppressor HsOO232762_m1

1
INHBB Inhibin, beta B HsOO173582_m1
HPRT1 Hypoxanthine phosphoribosyltransferase 1 Hs99999909 m1

Table 9. Genes present on the TaqMan@ LowDensity Array for cytokine-
cytokine receptor pathway validation.

TaqMan® Gene
Gene symbol Gene name Expression

Assay No.
CXCl2 chemokine (C-X-C motif) ligand 2 Hs00601975_m1
CCl2 chemokine (C-C motif) ligand 2 Hs00234140_m1
CXCl14 chemokine (C-X-C motif) ligand 14 HsOO171135_m1

tumor necrosis factor receptor superfamily,
TNFRSF12A member 12A HsOO171993_m1
CCl3 chemokine (C-C motif) ligand 3 HsOO234142_m1

colony stimulating factor 3 receptor
CSF3R (granulocyte) HsOl114427_m1
TNFSF10 tumor necrosis factor (ligand) superfamily,

member 10 Hs00234356_m1
TGFB3 transforming growth factor, beta 3 Hs01086000_m1
CSF3 colony stimulating factor 3 (granulocyte) Hs99999083_m 1
Il7R interleukin 7 receptor Hs00233682_m 1
Il1R1 interleukin 1 receptor, type I HsOO991010_m1
Il8 interleukin 8 HsOO174103_m1
CCl21 chemokine (C-C motif) ligand 21 Hs99999110_m1
CX3CR1 chemokine (C-X3-C motif) receptor 1 Hs00365842_m 1
IL6 interleukin 6 HsOO174131_m1
IL1RL1 interleukin 1 receptor-like 1 Hs01073300_m1
CXCR7 chemokine (C-X-C motif) receptor 7 Hs00604567_m1
ICAM1 intercellular adhesion molecule 1 HsOO164932_m1
ICAM4 intercellular adhesion molecule 4 HsOO169941_m1
CXCLl chemokine (C-X-C motif) ligand 1 (melanoma

growth stimulating activity, alpha) Hs00236937 _m1
CCL4Ll chemokine (C-C motif) ligand 4-like 1 Hs00237011_m 1
CXCL13 chemokine (C-X-C motif) ligand 13 Hs00757930_m 1
HPRT1 Hypoxanthine ohosphoribosyltransferase 1 Hs99999909 m1
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2.4.5 Immunohistochemical Analysis

Immunohistochemical staining was performed on paraffin-embedded

tissue sections of lung ADCA and surrounding normal lung tissue retrieved

from the archives of our Department of Pathology. Antibodies used were

anti-SLC14A1 (AV48116; diluted 1: 1500) and anti-SMAD6 (AV100717;

diluted 1:250) from Sigma-Aldrich™ (Sigma-Aldrich™, St. Louis, MO, USA),

and anti-FeN3 (sc-55202; diluted 1:50) from Santa Cruz Biotecnology, Inc

(Santa Cruz, CA, USA). Immunoreactive signals were detected with Chem-

Mate DAB (Dako, Glostrup, Denmark).

2.4.6 Statistic analysis

Differences between stage I and stage>I lung ADCA cases in allelic

frequencies assessed in SNP-array hybridization were analyzed using

random variance t-statistics (282) and BRB Array Tools

(http://linus.nci.nih.gov/BRB-ArrayTools.html). Differences in chromosome

counts between the two groups were tested by Fisher's exact test or by chi-

square analysis when the normal approximation was appropriate. The

correlation between SNP-array and individual genotype allelic frequencies

was expressed as a Spearman's coefficient. Association between clinical

stage (lor >1) and confounding variables was analyzed using ANOVA

(analysis of variance) or logistic analysis, whereas association between

SNPs and clinical stage was analyzed using PLINK software (223), which

included analysis of HWE, LD between SNPs, and population-based

association between prognosis factors and genotype/allelotype. Age at

cancer diagnosis was down-coded to binary dummy variables (age in
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decades), which were used as covariates in logistic regression analyses. The

average genetic risk score of clinical stage> 1 for individuals was calculated

using the "score" procedure of PLINK, i.e., the sum, across the 22

statistically significantly (P <0.01) associated SNPs in the joint analysis, of

the number of minor alleles (0,1 or 2) at any SNP multiplied by the log of

the odds ratio for that SNP. The reliability of the model was assessed by

bootstrap re-sampling with replacement (286). Overall survival was

assessed using Cox regression analysis and the "survival" package in R,

with follow-up cut at 60 months to reduce bias due to mortality caused by

non-cancer-related factors. All statistical tests were 2-sided.

Analyses of gene expression data were performed using BRB Array

Tools version 3.8.1 (http://linus.nci.nih.gov/BRB-ArraYTools.html). Pathway

analyses were carried out using the DAVID (Database for Annotation,

Visualization and Integrated Discovery) Functional Annotation Tool (DAVID

Bioinformatics Resources 6.7, NIAID/NIH, http://david.abcc.ncifcrf.gov/

(287» and the Ingenuity Pathway Analysis tool (IPA, Ingenuity System,

https:llanalysis.ingenuity.com). Differences in mRNA levels determined in

qRT-PCR were assessed by ANOVA on relative quantification (RQ) data.

Correlation between microarray and qRT-PCR results was assessed using

Pearson's correlation coefficient, r. Kruskal-Wallis test was carried out using

R packages.
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SUPPLEMENTARY TABLES

Supplementary Table 1. Primers used for PCR amplification and genotyping of 47 SNPs

SNP Gene
Forward PCR primer' (seq 5'- Reverse PCR primer1 (seq 5'- Pyrosequencing primer
>3') >3') (seq 5'->3')

rs10518668 B-cacttgccttaatcagatggtca tctcccctccttaaataaatgatg aaagcaattcaatttctct
rs11119493 HHAT gtgctctgtattcaaaagccattt B-aaacatcccaaaatatgggtgaga atttgatatttggttaaatt
rs12556578 tgtggtggcaaatattctttgtt B-gctggtgtcacttgctgaataat tccctttttctatttgg
rs12680976 gggatgcagctagagcaatactta B-aactgtgagtcctccaactttgt taatacaaataaaatcagaa
rs1385049 cctgaatcaaacttgcgtaatg B-atgtatcagttcttagccactgga aattccctatgaaaatatta
rs1433184 gagcaaatgtgggatgattcaaag B-acaccatcagcctgttgttttta tgcatttttgtttacaaatt
rs1584586 tgtctggacccaagcttttc B-gaaacggttcatcactaccagtc tcttagttcagttttggtaa
rs17199134 B-tctttttgactcctcatttcttta gataaacttctctcctttttgtaa aatatgattcaaagttaata
rs2038256 atatttttgggtaggcaacagact B-accctctagctttgctgtttgt ggagttgaggaatttcag
rs3797832 B-ttttcaccaggcttaagacattg tcacaataaatgggaaggatga aattaaaagaaaacgaatt
rs3804479 B-agccaaacaaaggtacagtatgc tcataaaagcaagcgagatttcca agcgagatttccaaaa
rs4897493 ctcttttgctttcacacacaagtt B-gatcacaggatacaaagcacacat atggcatttagaagaaaa
rs1877116 B-tctccttctgccaaattctgct gggctgttgacattgagctact gttatctcaagaatacctg
rs2588767 B-gcctaatattagtttggcactgaa gtattgggaagggattcttcaa cagagtcttaaaaaaacgc
rs3130517 tttttgaagactagccatgacact B-gcctctctctgtgggctattaa tccttttaagacttgatgtt
rs2418422 C9orf27 B-gaggaagaggaaatcaggtagaaa ttctccactatcctcttgcatcta ctcttgcatctagtgctt
rs6488007 B-tacggagtttcactttgggatgat tgctagtccacctgaattctctta acttaaccatatttttgaga
rs16918924 B-ggccatctgcttcaccaa tagagtgggcagcctgaaga tgaagaaaattgtaaatgtt
rs8027776 SEC11A B-cactgcgtccagcctaaaaac cgttctgtcccacctctaatg atcatagagtatgtattctt
rs132470 tttcccaaaagaccctaaatagct B-ccatcctggtgtcataaaacatct cactgtgtgttagcagaa
rs4823406 PHF218 caagcatgcagggactagaat B-accccacacacccacatt gaaattcagtgaagaaaaac
rs6654096 GPM68 B-caaagctgccattgcctttta tggaaagattggggttgaagg tcattattgccctgag
rs5945306 ZNF275 aggtctggttgccagtttaggtg B-aaccacatgcctcgctcttt ctaccaaaacttgaagg
rs2172706 B-gatccagagcttgctgaagtga ataccatgtgagggaagagtaacc tcctactctcttctcttcc
rs1470037 8-atgtcagattttcccctacaacaa cactagaagggcaataggcaaga ggcaataggcaagatg
rs1584586 tgtctggacccaagcttttc B-gaaacggttcatcactaccagtc tcttagttcagttttggtaa
rs1428053 gcagaaaaaagagcaaaataaacc B-tggatctgtagtgatagcccattt aatttgtttctttagaatgc
rs1033822 catgcttattcattcaggaacatc 8-agctagccagtattgtgacattga aaaatacactctgtatgagc
rs1520 KIF6 8-gcttccataaactacccaaggata ggctcccttgcattttataaga attcatgaaatataattcac
rs210798 MYB B-ctctgtccatggatttgactacaa tggcaccagctgtttgtaaa tttaataaaaagcacagga
rs4731775 gtcccccaaatggttttttattgt B-tttctttctcttgcctgactgct caatattgtgaaagcat
rs3812278 CNOT4 gcctcagttaaccaaatctaagga B-tgtcatgttggagttggagtttt ttgggataaagtcatttaat
rs7011544 taaaacatagtggggacctccaa B-tgtcattgcacatatcacactcag gggacctccaagaatct
rs302917 B-aaaggattggaggagaaatattca atggtgctgtttttgaaaacttg tggaaataaatttgacaga
rs7907321 CTNNA3 ggggaattgttgtatttgaaagaa B-caatcatgcttcaaattgcttaga tgacgtgtatattttgttat
rs2515373 CNTN5 B-tcttagggggcacgtggt cacagagggtggaatgttga gttgaaattctcctacctc
rs7670329 tctagatgagcaccaataatgcc B-gaatgttgctcatttgaaacagtt gcaccaataatgcctt
rs8062660 B-ccaaactcatgggtgtctgaa agagggataggaaatgtgtcagg gagtaccagctgcca
rs2869832 B-tctgttgcctttcccttctg tggcccaggtttctcctgtt gagaaaatcacgactatcaa
rs2139875 LOC388458 B-gaacttggtaacactgccaacaat cctcagcatcaggcaatatacat tttaatttccagattttcac
rs8113515 gttttaccacattattggcagttg B-cacaaatggctgtctcatctgta aaggcaatttccttt
rs967785 GK B-ccgtagagatcctgtgtgaagtag gcattttgcagggagtgg gggagtggtttagcaa
rs1199508 DGAT2L6 tagcaataaacaagctgattcaaa B-gccacatatggacatcaaattttc ccatctgattttgagactta
rs5949639 B-tccctctgagctttcaagatcact tggggcattaaatgaattaaggt agacaaattactgttattgg
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'For each SNP one peR primer is modified by addition of a biotinylated group at the 5' extremity (8),

rs1933800 gaatgttcccaacacaaagaaat 8-atgatattatgattcgtggagtgc acaccataatagaaccca
rs5943261 acagctttttgcattgtgattacc 8- tctctctcaatcccctatcattct ttttgcattgtgattacc
rs6918015 acacaggaagcagtggctagatga 8-aggcttcaagtgcttctgaatcaa agaggcaaaggccac
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3.RESULTS

3.1 RESULTS OF POPULATION-BASED ASSOCIATION STUDY

FOR LUNG CANCERRISK

3.1.1 Multiple unlinked SNPs are associated with a decreased lung

ADCA risk

SNP-array hybridization design was carried out using a DNA pooling

strategy in a joint analysis of 2 experiments, each conducted in duplicate in

pools of either 200 lung ADCA cases or 200 matched healthy controls

extracted from our series (Table 6). Correlation of the allelic frequencies

between replicates within each experiment was 0.991 in both experiments,

whereas correlation between experiments was 0.984.

Statistical analyses of allelic frequencies of the two independent

experiments pointed to 235 SNPs statistically correlated (P < 0.01) within

and between experiments and significant allelic imbalance between case

and control DNA pools. From these SNPs putative associated with lung

cancer risk, we selected a subset of 47 SNPs to limit costs of the experiment

(Table 10), giving priority to SNPs with the highest statistical association (P

< 1 X 10-7 in at least 1 replica), reduced variation of allele frequency

between the two experiments (coefficient of variation, i.e., standard

deviation/mean allele frequency, ~5%), frequency of the rare allele ~0.20,

and close vicinity « 1 Mb) to another SNPof the 235 SNP list.
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Table 10. 47 SNPs putative associated with lung cancer risk in GWA analysis of the
two experiments.

SNP name Position
P value C

a Chromosome (Mb) b
Gene First Second

experiment experiment

rs10518668 1 83,1 1,31 X 10-13 3,33 X 10-16

rsl1119493 1 210,6 HHAT 1,59 X 10-12 6,16 X 10-12

rs2172706 1 154,7 KCNN3 * 4,03 X 10-6 8,80 X 10-3

rs1470037 2 81,9 6,59 X 10-3 2,74 X 10-6

rs1584586 3 150,2 TSC22D2 * 3,54 X 10-11 9,00 X 10-3

rs17199134 4 172,3 7,77 X 10-16 4,08 X 10-9

rs1877116 4 66,0 1,46 X 10-3 6,59 X 10-3

rs2588767 4 66,9 1,49 X 10-3 2,62 X 10-6

rs7670329 4 180,3 1,94 X 10-6 6,78 X 10-3

rs3797832 5 108,4 FER 1,52 X 10-10 6,16 X 10-11

rs1428053 5 116,7 9,00 X 10-3 3,78 X 10-3

rs3804479 6 6,6 LY86 1,11 X 10-16 9,00 X 10-3

rs4897493 6 131,4 EPB41L2 * 6,63 X 10-10 3,36 X 10-10

rs3130517 6 31,3 1,81 X 10-6 7,15 X 10-6

rs1033822 6 18,8 8,00 X 10-8 2,75 X 10-4

rs1520 6 39,5 KIF6 4,10 X 10-7 5,00 X 10-8

rs210798 6 135,5 MYB 9,00 X 10-3 1,00 X 10-8

rs6918015 6 151,5 1,34 X 10-4 5,50 X 10-5

rs4731775 7 130,9 MKLN1 1,82 X 10-3 5,62 X 10-4

rs3812278 7 135,1 CNOT4 1,14 X 10-6 6,90 X 10-4

rs12680976 8 140,0 2,54 X 10-9 4,70 X 10-14

rs1385049 8 51,8 SNTG1 * 1,59 X 10-12 9,00 X 10-3

rs1433184 8 108,5 ANGPTl 2,54 X 10-11 2,41 X 10-13

rs7011544 8 111,1 9,27 X 10-3 4,06 X 10-4

rs2418422 9 118,7 C9orf27 4,10 X 10-3 2,35 X 10-3

rs302917 9 135,6 GTF3C4, DDX31 * 2,00 X 10-8 4,46 X 10-5

rs7907321 10 68,0 CTNNA3 4,77 X 10-3 2,00 X 10-8

rs2515373 11 99,5 CNTN5 1,00 X 10-8 7,14 X 10-5

rs6488007 12 31,9 1,21 X 10-3 2,16 X 10-3

rs16918924 12 31,9 4,15 X 10-3 1,09 X 10-3

rs2038256 14 29,2 C14orf23, FOXG1B * 2,35 X 10-11 2,83 X 10-12

rs8027776 15 85,3 SECllA 9,05 X 10-5 8,99 X 10-6

rs8062660 16 59,2 3,73 X 10-3 1,18 X 10-5

rs2869832 17 63,3 2,04 X 10-5 4,92 X 10-3

rs2139875 18 4,2 9,00 X 10-3 2,00 X 10-8

rs8113515 19 43,8 PSG9 * 6,98 X 10-6 1,20 X 10-3

rs132470 22 45,2 ARHGAP8, PRR5 3,71 X 10-3 3,62 X 10-4

rs4823406 22 45,3 PHF21B 7,30 X 10-4 9,87 X 10-3

rs12556578 X 62,7 7,08 X 10-10 1,39 X 10-8

rs6654096 X 14,0 GPM6B 1,41 X 10-6 4,14 X 10-4

rs5945306 X 152,7 4,07 X 10-4 3,19 X 10-4

rs967785 X 30,7 GK 3,83 X 10-4 4,17XlO-3

rs1199508 X 69,4 DGAT2L6 1,00 X 10-7 8,77 X 10-4

rs5949639 X 95,0 9,00 X 10-3 3,12 X 10-3

rs1933800 X 97,7 1,90 X 10-5 6,00 X 10-8
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rs5943261 X 1084 6,15 X 10-3 2,66 X 10-4
a SNPssorted by chromosomeand position; * gene in LDwith relative SNP(HapMap3
GenomeBrowserrelease#2); b Positionin megabasesaccordingto Ensemblrelease59; c P
valuesobtained by the Fisher'sexact test or by chi-squareanalysiswhen the normal
approximationwasappropriate.

The independent confirmation of allele frequency obtained from 300K

SNP assay was carried out using pyrosequencing analysis. Primers designed

(Supplementary Table 1) to analyze the 47 SNPs in the same DNA pools led

to the selection of 16 SNPs, based on strength of association (-log P > 1.5,

Table 11) and concordance between the two experiments, and analyzed in

the individual samples by MassARRAYSequenom Assay (Sequenom).

Table 11. 16 SNP validated in the pyrosequencing analysis on DNA pools.
SNpa Chromosome Mbb Gene P Fisher -logP
rs2172706 1 154,7 KCNN3 * 3.30 x 10-3 2,48
rs1470037 2 81,9 8,85 x 10-5 4,05
rs1877116 4 66,0 1.20 x 10-3 2,92
rs3130517 § 6 31,3 2,45 x 10-4 3,61
rs4897493 6 131,4 EPB41L2 * 1.09 x 10-2 1,96
rs6918015 6 151,5 1.39 x 10-2 1,86
rs4731775 t 7 130,9 MKLN1 6,15 x 10-4 3,21
rs2515373 11 99,5 CNTN5 8,11 x 10-5 4,09
rs16918924 12 31,9 2,69 x 10-4 3,57
rs6488007 12 31,9 1.76 x 10-2 1,75
rs8062660 16 59,2 1.80 x 10-2 1,74
rs2139875° 18 4,2 1.31 x 10-2 1,88
rs8113515° 19 43,8 PSG9 * 4,31 x 10-4 3,37
rs5945306 X 152,7 2,54 x 10-6 5,60
rs967785 X 30,7 GK 2.62 x 10-2 1,58
rs5943261 X 108,4 3.16 x 10-2 1 50
a SNPs sorted by chromosome and position; § failed pre-extend (Sequenom); 0

failed in homogenous mass extension (hME) design (Sequenom); t failed
genotyping; * gene mapping in the LD region with relative SNP (HapMap3
Genome Browser release #2); b Position in megabases according to Ensembl
release 59.

Among these 16 SNPs, 1 SNP failed in the pre-extend analysis, 2 SNP

failed in homogenous mass extension (hME) design, and 1 SNP failed in the

genotyping. Frequency of the rare alleles of the 12 remaining SNPs in

controls ranged from 0.07 to 0.36. None of these SNPs showed significant

deviations from the Hardy-Weinberg equilibrium. Paired analysis for
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possible LD between the 12 SNPs detected a significant LD between

rs6488007 and rs16918924, mapping at a 13.6 kb distance on

chromosomes 12, with a preferential segregation of the rare alleles of the

two SNPs in the same individuals (P<O.OOOl), in both controls (0' = 0.88)

and cases (0' = 0.79). Although these SNPs were linked, their genotypes

matched only partially in the series of controls and cases, indicating that

each of the two SNPs contained a distinct set of genetic information. Thus,

they were maintained in the study and analyzed separately. The SNPs

selection steps are summarized in Fig. 19.

>318,000 ~NPs in GWA
..

DNApool allele frequency analysis
... P~1.0 x lOol; MAF>O.2

235 SNPs
... p~ 1.0 X 1007

47 SNPs
...

Independent confirmation on DNA pools
(Pvroseq uencing)

... -logP> 1.5

16SNPs
~ 17 excluded from MassARRAYgenotyping

Individual genotyping (MassARRAY
Sequenom Assay)

...
12SNPs

... Logistic analysis, P<O.OS

8SNPs

Fig. 19 Schematic representation of SNPs selection in
population-based case-control association study.
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Significant allelic associations with lung ADCA risk were observed for

8 SNPs (P:$0.05); 7 autosomal and one on chromosomes X (Table 12). The

SNPon chromosomes X (rs5945306) showed significant allelic association in

both sexes. None of the 8 SNPs showed statistical associations with the

confounding variables of gender, smoking habit and age, except for SNPs

mapping on chromosomes X, for which logistic analyses were adjusted by

sex.

Table 12. List of 8 SNPs showing significant association with lung ADCA risk
after MassARRAYSequenom assay on individual samples.
SNpa Chromosome Position (Mb) b Gene
rs2172706 1 154,7 KCNN3 *
rs1470037 2 81,9
rs1877116 4 66,0
rs4897493 6 131,4 EPB41L2 *
rs2515373 11 99,5 CNTN5
rs6488007 12 31,9
rs16918924 12 31,9
rs5945306 X 152,7
a SNPs sorted by chromosome and position; b Position in megabases
according to Ensembl release 59; * gene mapping in the LD region with
relative SNP (HapMap3 Genome Browser release #2).

We assessed the lung cancer risk by genotype or allele status testing

a genetic model based on dominant or codominant effects of the rare allele

on this risk. A significant association between the rare allele carrier status

and decreased risk of lung ADCA was found for the 8 SNPs (OR "'0.6-0.8, P

< 0.05; Fig. 20), except for the SNP rs2515373 that shows a borderline

association (OR = 0.73; 95% Cl: 0.52-1.02; Fig. 20). No significant

association was observed between rare allele carrier status and survival rate

of lung ADCA patients at any SNPs.
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SNP elY. Genotype Number of
controls/cases

rs2172706 AA 3081316
GG orAG 2061158

rs1470037 2 TT 3751319
GG orTG 139/95

rs1877116 4 AA 320J326
GG orAG 1931146

rs4897493 6 TT 3871385
CC orTC 132192

rs2516373 11 AA 419J406
GG orAG 102172

rs648eOO7 12 AA 3021281
GG orAG 190/127

rsl6918924 12 AA 3861392
CCor AC 127182

rs5946306 X TT 416/412
CCorTC 96.161

0.5 0.6 0.8 1.0
Per-allele OR (95% Cl)

Fig. 20 Plot of the risk of lung cancer associated with the rare allele carrier status
at each of 8 SNPs identified by genome-wide scan, in a series constituted by
Italian cases and controls. Shaded squares denote odd ratios (ORs). Horizontal
lines represent 95% CIs. The vertical line indicates the null effect (OR=1.0).

3.1.2 The confirmed SNPs point to a polygenic model with additive

and interchangeable effects

We tested the hypothesis of a polygenic model under the assumption

of additive and independent effects of rare alleles of the 8 SNPs that showed

associations with lung ADCA risk. Gender-adjusted allele dosage-response

analysis (i.e., number of alleles versus risk of lung ADCA) evidenced that

risk of lung cancer significantly decreased according to the number of rare

alleles carried (Fig. 21, P = 5.3 x 10-9). In particular, carriers of 2 to 6 rare

alleles showed a statistically significant decreased risk of lung cancer, with a

decreasing trend up to an OR=0.29; (95% Cl 0.13-0.67) for individuals

carrying 5-6 rare alleles (Fig. 21). Overall, carriers of 2 or more rare alleles

(n=344/229, controls/cases) versus carrier of 0 or 1 rare allele
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(n= 137/177, controls/cases) showed about 2-fold lower risk of lung ADCA

(OR=0.52, 95% Cl 0.39 - 0.68, P = 2.8xlO-6).

No. of Number of
rare alleles controls/cases

0 42/56
- 1 95/121

2 143/122
3 100/71
4 74/26
50r6 27/10

0.16 0.25 0.4 0.6 1.0 1.6
Per-carrier OR (95% Cl)

Fig. 21 Plot of the risk of lung cancer associated with the carrier status of
each rare allele of the 8 SNPs reported in Fig. 21.

3.2 RESULTS OF FAMILY-BASED ASSOCIATION STUDY FOR

LUNGCANCERRISK

3.2.1 Multiple unlinked SNPs are associated with lung ADCA risk

Genome-wide analysis of allelic frequencies of each SNP from case

and sib-control DNA pools, deleting SNPs whose minor allele frequency in

both cases and controls was <0.1, revealed 659 SNPs with parametric P-

values s 1.0 x 10-7 (equivalent at a false discovery rate P = 0.0008). For

these 659 SNPs, we estimated the number of chromosomes in cases and

controls and obtained 82 SNPs putatively associated with disease at P s

0.001. All of them were assayed for mass spectrometry analysis on
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~ sib-TOT test, P<O.l

620,901 SNPs in GWA
~

Discordant-sibships DNA pool allele frequency analysis
~ P~LO x 10-7; MAF>0.1

659 SNPs

~ P~O.OOl

82SNPs

~
Discordant-sibships individual genotyping

(MassARRAY Sequenom Assay)
~ 7 SNPs failed MassSpectrometry analysis

75 SNPs

36SNPs

Fig. 22 Schematic representation of SNPsselection in discordant
sib-pairs study.

MassARRAY Sequenom assay (Sequenom): three SNPs failed PCR or

MassEXTEND primer design and, therefore, 79 SNPs were genotyped by

MassARRAY in 80 cases and their respective healthy sib controls. After

MassARRAY genotyping, two SNPs failed genotyping, one SNP was

monomorphic and one SNP showed highly significant deviation from the

Hardy-Weinberg equilibrium (most likely because of bias in genotype calls

due to preferential allele amplification or to technical problems in their

assays), and were therefore removed from the study, reducing the number

of markers to 75 SNPs. The SNPs selection steps are summarized in Fig. 22.

Correlation analysis of the minor allele frequencies estimated in cases

and controls either in DNA pools by SNP array analysis or in individual

samples by MassARRAY for the 75 SNPs associated with lung cancer
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demonstrated the reliability of the pooling approach (r = 0.78, P < 2.2 x 10-

16, Fig 23).

o

~-o
o

o
o

o o

o

o
o

o 0

oo oo

o

I

0.5

Single-point analysis using the sib- TDT test (258) indicated that 36 of

o
o

r=O.78, P<2.2e-16

I I I I

0.4

the 75 genotyped SNPs were significantly associated with disease status

0.1 0.2 0.3

(Table 13). The strongest associations were observed for SNPs rsl1833102

0.0
Frequency of the rare allele (DNA pools)

mapping in the carboxypeptidase M (CPM) gene on chromosomes 12,

Fig. 23 Correlation between SNPfrequencies measured by SNP
array analysis of DNApools and frequencies measured by
genotyping of individual samples. Plotted data represent
frequencies of the rare allele of 75 SNPsputatively associated with
lung cancer risk.

rs17120323 in the sarcoglycan zeta (SGCZ) gene on chromosome 8,

rs124457s8 within cadherin 13, H-cadherin (heart) (CDH13) gene on

chromosome 16, and rs325702 mapping in the cyclic nucleotide-gated

channel alpha 4 (CNGA4) gene on chromosome 11.
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Table 13. 36 SNPsshowing statistically significant association with lung cancer risk in the
discordant sibs series.

SNpa Chromosome Position Gene P-value b OR C 95% Cl
(Mb) §

rs639739 1 4,4 0.0124 0.5 0.24 - 1.06
rs12748434 1 52,3 NRDl 0.058 2.30 0.78 - 6.81
rs1261411 1 57,0 PPAP2B 0.0114 1.65 1.01 - 2.69 d

rs2765529 1 119,6 WARS2 0.0482 0.66 0.39 - 1.14
rs6676647 1 119,8 0.0233 0.64 0.37 - 1.09
rsl0931664 2 195,8 0.058 0.57 0.24 - 1.36
rs721377 3 14,4 SLC6A6 * 0.0126 0.33 0.12-0.95d

rs9813644 3 49,9 MSTlR *, CAMKV * 0.0254 3.63 0.74 - 17.80
rs1918071 3 55,0 CACNA2D3 0.072 0.55 0.26 - 1.14
rs1456196 3 117,7 0.0348 1.68 0.78 - 3.60
rs12648320 4 92,3 FAM190A 0.0196 0.54 0.30 - 0.97 d

rs28475332 4 188,4 0.0201 0.41 0.16 - 1.02
rs7713580 5 41,9 0.096 1.56 0.68 - 3.60
rs16889292 6 78,4 0.0339 0.14 0.02 - 1.12
rs12663498 6 151,0 PLEKHG1 0.055 0.49 0.27 - 0.91
rs17160175 t 7 31,5 CCDC129 * 0.033 1.86 0.92 - 3.76
rsll773530 7 31,5 CCDC129 * 0.0164 1.95 0.97 - 3.93
rs4330610 7 85,3 0.059 0.36 0.09 - 1.39
rs17120323 8 14,7 SGCZ 0.0011 e 1.94 1.11 - 3.38 d

rs3019885 8 118,0 SLC30A8 0.052 0.69 0.42 - 1.13
rs12342234 9 13,3 0.0126 1.83 0.88 - 3.81
rs16937762 9 19,8 SLC24A2 0.0196 0.35 0.11 - 1.11
rs12001157 9 72,1 APBAl 0.090 1.63 0.78 - 3.42
rs325702 11 6,3 FAM160A2, CNGA4 0.0045 2.41 1.06 - 5.49 d

rs820900 11 38,2 0.0114 0.31 0.10-0.99d

rs10842402 12 24,9 0.061 0.63 0.33 - 1.19
rs11833102 12 69,3 CPM 0.0006 e 2.44 1.21 - 4.94 d

rs9544359 13 77,3 0.0254 1.91 0.93 - 3.94
rs1958226 14 82,2 0.052 0.55 0.24 - 1.26
rsll074274 15 95,0 MCTP2 0.0348 2.54 0.87 - 7.43
rs12445758 16 83,3 CDH13 0.0016 e 1.93 1.16 - 3.22 d

rs790097 17 71,6 SDK2 0.096 0.48 0.16 - 1.45
rs4426464 19 1,8 ONECUn 0.0067 2.57 1.17-5.65d

rs755032 20 24,0 0.0067 2.04 0.91 - 4.57
rs2516542 22 21,4 TOP3B 0.0076 3.1 1.18-8.11d

rs4823153 22 44,3 0.0046 0.51 0.27 - 0.97
a SNPs sorted by chromosome and position; b DFAM procedure in PLINK toolset, nominal P-
values. SNPs sorted by chromosome and position. c Based on allelic test for association. d

P<0.05, logistic regression procedure in PLINK toolset, based on allelic test for association,
i.e., rare allele versus common allele. e P<0.05 by 20,000 permutations of the whole series
(75 SNPs). t SNP rsl7160175 excluded from the polygenic model due to its high linkage
disequilibrium with rs11773530 (D'= 1.0, r2 = 0.97). § Position in megabases according to
Ensembl release 59; * gene mapping in the LD region with relative SNP (HapMap3 Genome
Browser release #2).

3.2.2 Four SNPs were confirmed in population series

The 36 statistically associated SNPs with lung cancer in the discordant

sibs analysis (Table 13) were replicated in a population-based lung ADCA
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case-control series (Table 1). None of them showed significant deviation

from the Hardy-Weinberg equilibrium, except for rs11074274 (P = 0.005, in

cases only). Unadjusted logistic analysis indicated that 4 SNPs (rs12748434,

rs1261411, rs4330610, and rs301988S) were statistically significant

associated (P<O.OS, Table 14). When adjusted for sex, age and smoking

habit only the last three SNPs were significantly associated in the

population-based series (P < 0.05, Table 14).

Table 14. SNPsshowing statistically significant association with lung
adenocarcinoma risk in the pODulation-basedseries.
SNP a Chromosome Position (Mb) Gene ORb 95% Cl P-value C

§

rs12748434 1 52,3 NRD1 0.70 0.51 - 0.96 0.026
rs1261411 1 57,0 PPAP2B 1.23 1.03 - 1.48 0.024
t

rs4330610 7 85,3 0.57 0.35 - 0.94 0.025
t

rs3019885 8 118,Q SLC30A8 1.21 1.01 - 1.45 0.036
t

a SNPssorted by chromosome and position; bBased on allelic test for association. C

Logistic regression procedure in PLINK toolset; nominal P-values; t Statistically
associated SNPs in adjusted analysis for sex, age and smoking habit; § Position in
megabases according to Ensembl release 59.

Comparison of the cases with early tumour onset (age up to 60 years;

n= 198) versus the whole controls confirmed the association of the SNP

rs301988S on chromosome 8 (P = 0.029) and detected the association of

the SNP rs16937762 on chromosome 9 (P = 0.024).

3.2.3 The polygenic model explains lung cancer risk in discordant

sibships

In the family-based series we tested the previous proposed polygenic

model for the interpretation of individual risk of lung cancer.
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Analysis included a total of 35 SNPs (Table 13) and 151 subjects. SNP

rs17160175 was excluded for its high linkage disequilibrium with

rsl1773530 (0'= 1.0, ~ = 0.97). Five controls and four cases were

removed from the dataset because >80% genotypes were missing.

f/) co
Cl Q
f/)

B
"-
Cl
U
C c.o 0
CV
u Q
en 0c.: 0

'0
c: ~ 0
0 Qt:
0
Q,e
0..

N P=5.ge-09
Q 0

·2 ·1 0 1 2 3 4
Genetic susceptibility score

Fig. 24 A polygenic inheritance model with additive and
interchangeable effects of rare alleles at lung cancer modifier
loci explains the individual risk of lung cancer in the family-
based series. Scatterplot shows the proportions of subjects that
are cases as a function of genetic susceptibility score and the
fitted line.

To test the model, a score of +1 or -1 was attributed to the rare

allele of each SNP based on its association with increased or decreased lung

cancer risk, respectively. For each subject, the sum of the scores for all 35

SNPswas obtained as a general estimator of the individual genetic risk. The

average estimator was -1.6 ± 0.3 (mean ± standard error) in controls and

2.0 ± 0.3 in cases, respectively (P = 2.0 X 10-11, Kruskal-Wallis test). The
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proportion of lung cancer cases increased at higher genetic susceptibility

scores (Fig. 24; P = 5.9 x 10-9).

Then, we tested the same model in the replication study that has

been carried out in the population-based series, by calculating for each

individual the genetic susceptibility score as we have done in the family-

based series. Applying the same polygenic model in the population-based

series, by using the three confirmed SNPs (Table 14), we found that the

average estimator was 1.25 ± 0.03 in controls and 1.40 ± 0.03 in cases,

respectively (P = 0.0019, Kruskal-Wallis test). Analysis limited only to non-

smoker cases (n=66) versus all controls (n=S03) or versus non-smoker

controls (n=2S) gave similar results.

3.3 RESULTS OF GENOME-WIDE SNPs ANALYSIS IN CASE-

ONLY ASSOCIATION STUDY FOR LUNG CANCER PROGNOSIS

3.3.1 Multiple unlinked SNPs are associated with lung ADCA

prognosis

Analysis to test for possible associations between clinical stage and

confounding variables, such as gender, age at diagnosis and smoking habit,

revealed a relatively weak statistical association between clinical stage and

smoking status, with a borderline significant decrease of ever-smokers in

clinical stage >1 (OR=0.61, 95% Cl 0.39 - 0.95, P=0.030, logistic analysis).

No statistically significant associations were observed between clinical stage

and either age at diagnosis or gender.
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Genome-wide SNP array analysis conducted in 12 replicas of DNA

pools from lung cancer cases at clinical stage I or at higher clinical stages

(Table 3)/ respectively/ allowed the screening of 620/901 SNPs. Analysis of

allelic frequencies of each SNP from DNA pools/ deleting SNPs whose minor

allele frequency was >0.10 in the pools/ revealed 10/571 SNPs at

parametric P-values s 1.0 x 10-5• For these 10/571 SNPs/ using a 2x2

contingency table analysis to reconstructed the number of chromosomes in

the two groups we identified 80 most statistically associated SNPs with

clinical stage at P s 1.0 X 10-4• The SNPs selection steps are summarized in

Fig.25.

620,901 SNPs in GWA

~

DNA pool allele frequency analysis
~ P~LO x 10-s; MAF>0_1

10,571 SNPs

~ p~ 1.0 X 10-4

80SNPs

~
Individual genotyping (MassARRAY

Sequenom Assay)
~ 17 excluded from MassARRAY genotyping

63SNPs

~ Logistic analysis, P<0.05

Fig. 25 Schematic representation of SNPs selection in case-only
GWAS.
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Table 15. 63 SNPs putative associated with lung cancer staging.

SNpa Chromosome Position Gene Pvaluec ORd 95% ICd Pvalue d
(Mb)b

rs951774 2 102,9 IL1RL1*,IL1RL2* 1.48 x 10-5 0.67 0.48 to 0.95 2.6 x 10-2

rsl0187901 2 140,6 7.26 x 10-5 0.60 0.39 to 0.93 2.8 x 10-2

rs13390491 2 179,6 TTN 9.33 x 10-5 1.65 1.20 to 2.27 1.8xl0-3
rsl0498217 2 228,0 COL4A4 1.23 x 10-5 0.56 0.37 to 0.84 6.9 x 10-3

rs16843438 2 242,1 TMEM16G 8.48 x 10-6 0.56 0.39 to 0.80 1.6xl0-3
rs2574711 3 11,7 VGLL4 5.28 x 10-5 0.55 0.36 to 0.85 3.5x 10-3

rs7694589 4 30,3 4.45 x 10-5 0.68 0.52 to 0.90 9.4x 10-3

rsll722134 4 73,6 2.79 x 10-5 1.68 1.05 to 2.69 2.5 x 10-2

rs1994854 4 77,8 7.59 x 10.7 0.55 0.40 to 0.77 2.1 x 10-4
rs423997 4 86,3 2.88 x 10-6 1.34 1.05 to 1.72 1.2 x 10-2

rs4505911 5 68,2 5.01 x 10-5 0.45 0.26 to 0.78 4.1xl0-3
rslo900886 5 105,2 2.40 x 10-5 0.54 0.38 to 0.78 1.0xl0-4
rs13189604 5 107,2 FBXL17 3.54 x 10-6 7.3 X 10-1

rs3823111 6 53,5 KLHL31 4.95 x 10-6 2.33 1.26 t04.33 5.0 x 10-3

rs806435 6 88,8 SPACAl 6.59 x 10-6 1.96 1.34 to 2.86 4.8 x 10-4

rs458523 6 95,1 1.72xl0-5 1.54 1.20 to 1.97 5.8 x 10-4

rs565968 6 125,4 IBRDCl 1.24xl0-6 0.78 0.62 to 0.98 4.3x 10-2

rsl0278557 7 15,7 MEOX2 3.42 x 10-5 0.50 0.37 to 0.67 5.0 x 10-6

rsl3438238 7 54,3 4.14x 10-10 3.3 x 10-1

rs2877213 7 54,9 4.02 x 10-5 6.7 X 10-1

rs845559 7 55,2 EGFR 8.98 x 10-6 4.9 X 10-1

rs17819684 7 82,7 PCLO 9.86 x 10.5 1.45 1.12to 1.87 2.4x 10-3

rs2299297 7 104,7 MLL5 6.56 x 10-5 1.64 1.24t02.16 4.2 x 10-4

rs2648 7 128,8 TSPAN33 7.57 x 10-6 2.29 1.43 to 3.68 8.0 x 10-4

rs17125699 8 17,7 3.87 x 10-5 0.52 0.28 to 0.98 4.4x 10-2

rsl0738132 8 98,2 4.54 x 10-7 3.6 X 10-1

rs972519 9 4,5 SLC1Al 7.14 x 10.6 0.60 0.41 to 0.89 7.3 x 10-3

rs824249 9 28,8 1.78x 10-5 0.55 0.37 to 0.82 3.1 x 10-3

rsl0491726 9 114,3 LTB4DH, ZNF483 3.87 x 10-5 1.2 X 10.1

rsl0987191 9 129,0 2.28 x 10-7 0.47 0.29 to 0.77 2.7 x 10-3

rsl1259181 10 14,6 FAM107B 6.87 x 10.5 0.60 0.38 to 0.95 2.2 x 10.2

rs2797902 10 31,3 ZNF468 * 5.05 x 10-5 1.4 X 10.1

rsl0832757 11 17,3 NUCB2 3.33 x 10-5 0.54 0.40 to 0.72 4.6 x 10-5

rs7107350 11 21,2 NELLl 5.52 x 10-6 2.01 1.34 to 3.00 7.2x 10-4

rs3808996 11 125,0 SLC37A2 6.72 x 10-5 0.60 0.40to 0.89 1.3 x 10-2

rs3825305 12 63,0 PPM1H 6.13x 10-5 0.50 0.31 to 0.79 3.3 x 10-3

rs9596742 13 53,6 1.01 x 10-5 0.43 0.28 to 0.67 1.3 x 10-4

rs2391875 13 111,5 3.03 x 10-5 0.53 0.37 toO.75 2.0 x 10-4

rs8020076 14 28,5 6.34 x 10.6 1.66 1.28 to 2.14 8.2 x 10-5

rs718998 14 37,4 SLC25A21 9.70 x 10-5 1.45 1.07 to 1.96 2.0 x 10-2

rs1255641 14 64,0 PPP2R5E 6.62 x 10-5 1.75 1.24 to 2.47 1.1 x 10-3

rsl0520058 15 38,6 SPREDl 7.82 x 10-7 0.35 0.20 to 0.64 5.4 x 10-4

rs2937940 15 86,4 7.86 x 10-5 1.88 1.40 to 2.54 1.9 x 10-5

rs9927531 16 26,5 7.19x 10.5 1.76 1.23 to 2.51 1.6 x 10-3

rs1183259 16 60,4 5.28 x 10.5 0.51 0.33 to 0.77 1.8 x 10-3

rs4788587 16 72,0 PKD1L3 2.22 x 10.5 0.66 0.48 to 0.91 1.2 x 10-2

rsl0514440 16 78,7 WWOX 1.48x 10-5 3.38 1.67 to 6.82 5.4 x 10-4

rs1860444 17 48,9 3.57 x 10-6 3.10 1.71 to 5.63 4.3 x 10-4

rs16950191 17 49,7 CA10 4.69 x 10-5 1.38 1.03 to 1.84 3.2x 10-2

rs12610723 19 3,8 MATK 1.13 x 10-5 2.41 1.36 to 4.26 2.8 x 10.3

rs2287700 19 14,6 PKNl 8.46 x 10-5 1.99 1.21 to 3.26 7.9 x 10.3

rs4805442 19 30,1 6.30 x 10.5 0.48 0.32 to 0.72 4.3x 10-4

rs6030680 20 41,8 PTPRT 2.28 x 10-6 1.61 1.21 to 2.13 1.1 x 10.3

rs4553110 X 6,5 7.85 x 10-5 0.62 0.44 to 0.88 5.2 x 10-3

rs12687904 X 6,8 4.26 x 10-5 0.51 0.28 to 0.90 1.4 x 10-2

rs4830793 X 12,7 FRMPD4 9.56 x 10-5 2.19 1.25 to 3.81 4.0 x 10-3
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rs7887846 X 22,7 5.58 x 10.5 0.62 0.43 to 0.89 1.3x 10.2
rs5972356 X 31,3 DMD 3.89x 10.7 0.56 0.35 to 0.87 7.4 x 10-3
rs5927730 X 31,4 DMD 4.19x 10.5 0.66 0.47to 0.92 1.8x 10.2
rs5906595 X 48,1 6.65 x 10.5 5.8 X 10-2
rs5969041 X 86,2 7.37x10·5 7.2x10·2
rs404481 X 102,5 TCEAL8 8.31 x 10.5 0.66 0.48 to 0.89 7.8 x 10.3
rs2207031 X 128,0 3.30x10-6 2.24 1.45to 3.47 1.9x10-4
a SNPs sorted by chromosomeand position; • gene in LDwith relative SNP (HapMap3Genome Browser release#2); b Position
in megabasesaccording to Ensembl release59; C P valuesobtained by chi-square analysis from GWA; dOR, odds-ratio obtained
by logistic regressionprocedureof PLINKtoolset, based on allelic test for association, i.e., rare allele versus common allele,
adjustedby age at tumour diagnosis in decades, and smokingstatus; Cl, confidence interval;§SNPs showing statistically
significant(P <0.05) associationwith clinical stage in individualQenotyoinQ.

To validate the SNP-array findings in DNA pools, the 80 SNPs were

selected for genotyping in the individual cases by MassARRAY. Of the 80

SNPs, 2 mitochondrial SNPs, 1 SNP on chromosome Y, and 9 redundant

SNPs in tight LD with closely SNPs «58 kb distance) in the same locus in

the HapMap Caucasian (CEU) population were excluded. One SNP failed PCR

or MassEXTEND primer design and 4 additional SNPs failed genotyping,

reducing the number of markers to 63 SNPs (Table 15).

A good correlation of the minor allele frequencies obtained by

MassARRAYgenotyping in single individuals or by SNP-array analysis in DNA

pools was observed (r=0.79, P<2.2 x 10-16), demonstrating the reliability of

the DNA pooling approach (Fig. 26). None of the selected SNPs showed

significant deviation from the HWE, except for rs565968 (P=0.00076). No

statistically significant LD was observed between any SNP pairs (r2<0.1).

Association analysis using a logistic model adjusted for smoking

status indicated that 54 of 63 SNPs were significantly associated with

clinical stage status (Table 15, P<0.05). The strongest association was

observed for SNP rs10278557 (P=5.0 x 10-6), which maps in the

mesenchyme homeobox 2 (MEOX2) gene on chromosome 7.
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Fig. 26 Correlation between SNP frequencies measured by SNP
array analysis of DNA pools and frequencies measured by
genotyping of individual samples. Plotted data represent
frequencies of the rare allele of 63 SNPs putatively associated
with lung cancer risk.

o

The 63 SNPs were then tested in two independent series of 317 lung

ADCA and 257 lung SQCC patients (Table 3). The ADCA series of patients

showed similar phenotypic characteristics as compared to the discovery

series, whereas the SQCCseries had an older age at diagnosis and a higher

frequency of males and of ever-smokers as compared to the ADCA series. A

statistically significant association was found between clinical stage and age

at tumour diagnosis in the SQCC series (P=O.005, Kruskal-Wallis test), but

not in the ADCA series; neither gender nor smoking status was associated

with clinical stage in either of the two series. No statistically significant

deviation (P<O.Ol) from the HWE was observed in the two series for any of

the 63 SNPs.
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In the small independent ADCA series, 3 SNPs (rs7694589,

rs3823111, rs169S0191) were confirmed to be statistically associated with

clinical stage (P<O.OS, logistic analysis, Table 16), while in the lung SQCC

series, 3 other SNPs showed significant association with clinical stage

(rsl0491726, rsl0S200S8, and rs480S442; P<O.OS, logistic analysis

adjusted for age at diagnosis, Table 17).

Table 16. SNPs showing statistically significant association with clinical stage in ADCA
independent series.

SNpa Position Gene Rare/Common OR C 95% Cl C P value CChromosome (Mb) b allele
rs7694589 4 30,3 T/C 2.1 1.38 to 3.06 4.1 x 10-4
rs3823111 6 53,5 KLHL31 T/C 2.7 1.13 to 6.38 2.6 x 10-2
rs16950191 17 497 CAlO A/C 1.6 1.06 to 2.29 2.4 x 10-2
a SNPs sorted by chromosome and position; b Position in megabases according to Ensembl
release 59; C Unadjusted logistic regression procedure in PLINK toolset; P values obtained by
allelic test for association' Cl confidence interval.

Table 17. SNPs showing statistically significant association with clinical stage in SQCC
independent series.

Position Rare/
SNpa Chromosome (Mb) b

Gene Common ORc 95% Cl C P value C

allele
rs10491726 9 114,3 LTB4DH, T/C 0.5325 0,29-0,98 0.04266

ZNF483
rs10520058 15 38,6 SPRED1 A/C 0.3582 0,14-0,91 0.03014
rs4805442 19 30 1 A/G 0.475 0,27-083 0.009019
a SNPs sorted by chromosome and position; b Position in megabases according to Ensembl
release 59; C Logistic regression procedure in PLINK toolset, adjusted for age at diagnosis; P
values obtained by allelic test for association' Cl confidence interval.

To test for possible heterogeneity between the ADCA series and to

increase the statistical power of association analyses (288), we carried out a

joint analysis of the GWA and ADCA replication series bringing the total

sample size of 917 lung ADCA patients (Table 3). Logistic analysis in the

whole series adjusted for age at diagnosis and smoking status revealed 22

SNPs showing statistically significant association with clinical stage at

statistical threshold of P<O.Ol (Table 18). The strongest association
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remained for the SNP rs10278557 (P=1.1 x 10-5) mapping in the MEOX2

gene.

Table 18. 22 SNPs associated with lung ADCA clinical stage in the joint analysis of the GWA and
replication ADCA series and used to build up the polygenic model with additive effects of SNP rare
alleles on risk of clinical stage> 1.
SNP a Chromosome Position Gene Rare OR 95% CIe P-value e

(Mb) b Allele e

rs951774 2 102,9 ILIRLl *, ILIRL2* A 0.7 0.5 to 6.9 x 10-
0.9 3

rs13390491 2 179,6 TIN T 1.4 1.1 to 6.3 x 10-
1.8 3

rsl0498217 2 228.0 COL4A4 T 0.7 0.5 to 9.4 x 10-
0.9 3

rs1994854 4 77,8 A 0.7 0.5 to 2.8 x 10-
0.9 3

rs4S0S911 5 68,2 A 0.5 0.3 to 4.0 x 10-
0.8 3

rsl0900886 5 105,2 A 0.7 0.5 to 7.7 x 10-
0.9 3

rs3823111 6 53,S KLHL31 T 2.6 1.6 to 2.1 x 10-
4.3 4

rs806435 6 88,8 SPACAl T 1.8 1.3 to 2.5 x 10-
2.4 4

rsl0278557 7 15,7 MEOX2 A 0.6 0.4 to 1.1 x 10-
0.7 5

rs2299297 7 104,7 MLLS T 1.6 1.3 to 7.5 x 10-
2.0 5

rs824249 9 28,8 T 0.6 0.5 to 9.5 x 10-
0.9 3

rsl0987191 9 129 A 0.5 0.4 to 2.5 x 10-
0.8 3

rsl0832757 11 17,3 NUCB2 A 0.6 0.5 to 5.8 x 10-
0.8 5

rs9596742 13 53,6 A 0.6 0.5 to 7.7 x 10-
0.9 3

rs2391875 13 111,5 A 0.6 0.4 to 8.8 x 10-
0.8 5

rs8020076 14 28,S C 1.3 1.1 to 9.8 x 10-
1.6 3

rsl0520058 15 38,6 SPREDl A 0.5 0.3 to 5.8 x 10-
0.8 3

rs9927531 16 26,S A 1.7 1.3 to 2.5 x 10-
2.3 4

rs10514440 16 78,7 WWOX T 2.4 1.4 to 1.1 x 10-
4.1 3

rs16950191 17 49,7 CA10 A 1.5 1.2 to 1.6 x 10-
1.8 3

rs7887846 X 22,7 A 0.7 0.5 to 7.8 x 10-
0.9 3

rs2207031 X 128 A 1.8 1.2 to 1.4 x 10-
2.5 3

a SNPs sorted by chromosome and position; b Position in megabases according to Ensembl release
59; e Logistic regression procedure in PLINK toolset, based on allelic test for association with
clinical stage, adjusted for age at cancer diagnosis and smoking status. SNPs selected based on P
<0.01 threshold for association.
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3.3.2 Differences in lung ADCA outcome are associated with

patients' genetic profile

Using our polygenic model (289), we evaluate additive effects of

these 22 SNP in modulating individual clinical stage. 81 of 917 patients with

more than 30% missing genotypes were removed from the dataset. For

each patient, the allele-based odds ratio (Table 18) was attributed to the

carrier status of an allele of each SNP associated with clinical stage status,

based on its association with the probability of carrying a stage >1 lung

ADCA. To test the model, a score of +1 was attributed to the carrier status

of a risk allele of each SNP based on its association with increased

probability of developing lung cancer with higher clinical stage. For each

o
o
o

Fig. 27 Genetic risk score in patients with clinical stage I and in
patients with higher clinical stage. The horizontal line within the
box represents the median value of the genetic estimator of
outcome (in base 2 logarithmic units); the upper and lower
boundaries of each box represent 75th and 25th percentile,
respectively; upper and lower bars indicate the relative highest
and lowest values, respectively (P<2.2 x 10-16).
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patient, a genetic risk score was calculated as the sum of the scores for all

22 SNPs to obtain a general estimator of individual outcome. The average

genetic estimator was -7.9 x 10-3 ± 5.4 x 10-4 (mean ± standard error) for

patients with clinical stage I (n=418) and 3.2 x 10-3 ± 5.3 x 10-4 for

patients with higher clinical stage (n=403) (P<2.2 x 10-16, ANOVA analysis,

Fig. 27). The 22 SNPsexplained 20.7% of the phenotypic variance in clinical

staging. Although with a lower size effect as compared to the first series

and to the whole series, the genetic estimator was statistically associated to

clinical stage in the second ADCA series alone (P = 0.0006, ANOVA

analysis), suggesting the predictive value of the 22-SNPs genetic profile on

clinical staging of lung cancer patients.

-

To verify the robustness of the model in our series, since we did not

10

have sufficient available lung ADCA samples for a larger second replication
117
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Fig. 28 Genetic risk of developing a more aggressive lung ADCA
(clinical stage >1) in patients grouped according to the quartiles
of genetic risk score, with the lowest quartile as the reference
group. Bars denote ORs. Vertical lines represent 95% CIs.
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step, we carried out an empirical replication using bootstrap samples

(8=2000 resamplings), as proposed in a recent paper (290). We found that

the difference in the genetic estimator between stage 1 and stage >1

patients was = -11.1 x 10-3,95% confidence interval (Cl) = -12.7 x 10-3 to

-9.7 X 10-3, Pdiff = 0.0005.

Subjects were divided in 4 groups based on the quartiles of the

genetic risk score. Application of the generalized linear model to the quartile

groups, with the lowest quartile as the reference, revealed a significant

association between the genetic estimator and increased probability to

develop a more aggressive lung ADCA cancer (OR= 2.9, 95% Cl 1.9 - 4.6,

P=2.7 x 10-6 for the second quartile, OR= 6.8, 95% Cl 4.4 - 10.7, P<2 x

1.0
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Fig. 29 Kaplan-Meier survival curves in lung ADCApatients grouped
as in Fig 3.9. Follow-up is shown truncated at 60 months (P = 8.0 X

10-8, logrank test).
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10-16 for the third quartile; and OR= 14.5, 95% Cl 9.1 - 23.6, P <2 x 10-16

for the forth quartile group, Fig. 28).

Finally, Kaplan-Meier curves showed statistically significant

association of the genetic risk score, in quartiles, and overall survival (P =

8.0x10-8, log-rank test; Fig. 29).

Use of multivariate Cox proportional hazard models for survival

(adjusted for age and smoking habit) to evaluate the association between

the genetic risk score and overall survival showed that the risk of death for

the quartiles 3 to 4 (HR= 1.5, 95% Cl 1.1 - 2.0, P = 0.016; HR= 2.3, 95%

Cl 1.7 - 3.0, P = 8.7 X 10-8, respectively) was statistically significant higher

from that of the lowest quartile.

3.4 RESULTS OF GENOME-WIDE MICROARRAY ANALYSIS IN

PATIENT-BASED ASSOCIATION STUDY

3.4.1 A gene expression profile of normal lung is associated with

clinicalstage

Preliminarily, we found no statistically significant associations

between gender or age with clinical stage, indicating that either variables do

not modulate clinical staging in our series.

To identify stage-associated genes, we performed a microarray

analysis of 120 normal lung tissues from lung ADCA patients, differentially

grouped in two microarrays experiments. In normal lung, statistically

significant differences in expression levels between clinical stage I and >1,

patients were detected for 55 (Fig. 30 A) in experiment A and for 361 (the
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Fig. 30 Heat map of 55 transcripts (at threshold nominal level of P<l x
10-3) and of top 68 out of 361 transcripts (at threshold nominal level of
P< 1 x 10-5) whose expression levels showed statistically significant
differences in normal lung of stage 1as compared to stage >1patients in
the first experiment (A) and in the second experiment (8). Gene names
are given on the right. Expression levels of the listed genes are indicated
by the color bar (green, low; red, high).

top 68 genes with P < 1 X 10-5 are listed in Fig. 30 B) transcripts in

experiment B (P<O.OOl, see also Supplementary Table 2 and 3 at the end
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To validate the results obtained with microarray experiments, we

o

performed qRT-PCR on the 120 individual RNAs samples. We selected a

o

<)

o

r= 0.89, P=2.7x 10-8

0.5

Fold changes obtained with Microanay

Fig. 31 Correlation between microarray gene expression
data obtained on RNA pools and qRT-PCRon individual
RNAsamples for 22 genes.

total of 22 genes, 13 of which were shared by both gene lists (GCOM1,

MSX1, TMEM100, SMAD6, IDH1, VIPR1, SlC14A1, BCl3, PlEKH02,

SFTPA2B, SBN02, RRP12, DACT1), and 2 (TXNIP, lZTS1) and 7 (ITlN1,

C20orfl14, SElE, FCN3, COLlA1, DEFA3, INHBB) genes that showed the

most significant statistical associations in experiment A and B, respectively

(Table 8). The correlation between microarray assay and qRT-PCR in

detected levels was excellent (r=0.89, P=2.7x10·8, Fig. 31), indicating that

microarray analysis detected real variations and that expression data were

reproducible.
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Among the 22 assayed genes, 11 genes showed a statistically

significant difference in expression between stage I and stage > I patients

(P<O.OS, Kruskal-Wallis test, Fig. 32, Table 19).

Table 19. Gene expression results of 22 assayed genes in patients with stage I and higher
clinical stage using qRT-PCR.

Gene symbol RQmean ± SE P-value Fold change a
Clinical stage I Clinical stage > I

BCl3 0.70 ± 0.06 0.91 ± 0.07 0.052 0.77
C20orfl14 1.68 ± 0.43 0.95 ± 0.23 0.014 * 1.77
COLlA1 0.50 ± 0.07 0.75 ± 0.19 0.698 0.67
DACT1 0.83 ± 0.07 0.94 ± 0.07 0.096 0.88
DEFA3 0.51 ± 0.11 1.25 ± 0.51 0.964 0.41
FCN3 1.49 ± 0.18 0.81 ± 0.11 0.005 * 1.84
GCOM1 1.19 ± 0.14 0.85 ± 0.07 0.116 1.40
IDH1 1.13 ± 0.09 0.88 ± 0.04 0.042 * l.28
INHBB 0.6 ±O 0.08 0.85 ± 0.14 0.198 0.71
ITlN1 0.65 ± 0.21 2.39 ± 1.12 0.610 0.27
lZTS1 0.66 ± 0.09 0.74 ± 0.06 0.045 * 0.89
MSX1 0.63 ± 0.07 0.75 ± 0.06 0.038 * 0.84
PlEKH02 0.93 ± 0.07 1.00 ± 0.04 0.209 0.93
RRP12 0.80 ± 0.04 1.00 ± 0.06 0.051 0.80
SBN02 1.02 ± 0.07 1.03 ± 0.05 0.470 0.99
SElE 0.82 ± 0.11 1.29 ± 0.2 0.040 * 0.64
SFTPA2B 1.45 ± 0.26 1.09 ± 0.15 0.280 1.33
SlC14A1 1.46 ± 0.13 1.03 ± 0.12 0.016 * 1.42
SMAD6 1.34 ± 0.16 0.89 ± 0.11 0.044 * 1.51
TMEM100 1.57 ± 0.23 0.86 ± 0.11 0.005 * 1.83
TXNIP l.18 ± 0.11 0.84 ± 0.06 0.013 * 1.40
VIPR1 1.20 ± 0.17 0.71 ± 0.09 0.040 * 1.69
RQ, relative quantification ." Genes showing statistically significant variation (P<0.05) of
expression between patients with stage I and higher clinical stage patients using Kruskal-
Wallis test. a Clinical stage I vs. clinical stage >1.

Among the statistically significant associated genes, FeN3 (ficolin 3)

and TMEM100 (transmembrane protein 100) showed the stronger

differences between stage I and stage>I patients (fold change> 1.8, Table

19) and the best statistical associations with clinical stage (P=O.OOS, Table

19, Fig. 32).
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Fig. 32 mRNA expression levels (mean ± S.E.) of genes in normal lung tissue of
lung ADCA patients assessed by qRT-PCR by clinical stage. Asterisks indicate
statistically significant differences (P < 0.05) as compared to the reference
group (open bars).

3.4.2 Differential expression profiles of cytokine and cytokine-

related genes according to clinical stage

The gene lists obtained from the two experiments in relationship to

lung cancer stage were uploaded into the IPA tool for gene network search

and into the DAVID Functional Annotation Tool for pathway analysis. The

first list of 55 genes revealed no statistically significant results, whereas the

first network identified by IPA tool uploading the second list of 361 genes

was "Antigen Presentation, Cell-mediated Immune Response, Humoral

Immune Response" (Fig. 33). In addition, in overall analysis of biochemical

pathways (KEGG database in DAVID tool) the best statistically associated

pathway identified in the list of 361 genes was "Cytokine-cytokine receptor

interaction" (hsa04060, P=0.00057; Table 20).

123



3. Results

Table 20. KEGGpathway analysis by DAVID of the 361 statistically differentially expressed
genes between stage I and higher clinical stage patients

KEGGpathway Gene p* Genes
count

hsa04060: Cytokine-
5.7 x 10-4

CXCl2,CCl2,CXCl14, TNFRSF12A, CCl3,
cytokine receptor 15 CSF3R, TNFSFIO, INHBB, TGFB3, CSF3,
interaction Il7R, IURl, Il8, CCl21, CX3CRl

hsa04514:Cell adhesion
8 0.015 ICAMl, HLA-DRB5, ClDNl, SElE, HLA-

molecules (CAMs) A29.1, HLA-E, HLA-DMA, VCAMl,

hsa04940:Type I diabetes 4 0.044 HLA-DRB5, HLA-A29.1, HLA-E, HLA-DMA,mellitus

hsa0451O:Focal adhesion 9 0.049 LAMBl, COl3Al, THBS2, PDGFD, COUA2,
COl6A2, BCARl, COLIAl, COL6A3,

* Calculated by the DAVID functional annotation tool, using a modifier Fisher exact test.

Based on this information, we used qRT-PCRon customized TaqMan@

Low Density Arrays (assays listed in Table 9) to analyze the 120 individual

RNAs samples for expression of 22 cytokine-related genes highlighted by

the KEGGbiochemical pathway analysis (Table 20) and by IPA tool analysis.

Analysis of qRT-PCR in normal lung tissue found that the expressions of 6

genes were statistically different between stage I and stage >1 patients

(P<O.OS, Kruskal-Wallis test, Table 21 and Fig. 34), with TNFSF10/TRAIL

(tumour necrosis factor ligand superfamily, member 10) showing the best

statistical association (P=0.007, Table 21, Fig. 34) and IL6 (interleukin 6)

showing the higher modulation (tv1.S-fold up-regulation in stage >1

patients, Table 21).
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Fig. 33 IPA network diagram showing the biological associations of 35 genes
associated with "Antigen Presentation, Cell-mediated Immune Response,
Humoral Immune Response". Genes that showed up-regulation or down-
regulation in our samples are in red or in green, respect~ely. The significance
of the nodes are displayed using various shapes that represent the functional
classes of the gene products as shown in the key.
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Fig. 34 mRNAexpression levels (mean ± S.E.) of cytokine-related genes in normal
lung tissue of lung ADCApatients assessed by qRT-PCRby clinical stage. Data are
given as in Fig. 34.
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Table 21. Gene expression results of 22 cytokine-related genes in patients with stage
I and higher clinical stage using qRT-PCR.

Gene RQmean ± SE P-value
Fold-

symbol Clinical stage I Clinical stage >1 change a

CCL2 0.89 ± 0.11 1.23±0.14 0.020 * 0.72

CCL21 0.93 ± 0.08 1.09 ± 0.08 0.079 0.85

CCL3 1.53 ± 0.17 1.50 ± 0.14 0.834 1.02

CCL4U 2.15 ± 0.28 2.12 ± 0.27 0.629 1.01

CSF3 0.51 ± 0.11 0.64 ± 0.13 0.515 0.80

CSF3R 1.12 ± 0.07 0.92 ± 0.06 0.024 * 1.22

CX3CR1 1.39 ± 0.12 1.04 ± 0.10 0.049 * 1.34

CXCU 0.73 ± 0.11 0.78±0.14 0.946 0.94

CXCLl3 2.09 ± 0.48 1.50 ± 0.34 0.326 1.39

CXCLl4 0.90 ± 0.13 1.24 ± 0.16 0.147 0.73

CXCL2 0.73 ± 0.08 0.83 ± 0.10 0.400 0.88

CXCR7 0.91 ± 0.06 1.00 ± 0.06 0.123 0.91

1CAM1 0.62 ± 0.08 0.79 ± 0.09 0.229 0.78

1CAM4 1.21 ± 0.09 1.24 ± 0.10 0.832 0.98

1UR1 0.85 ± 0.04 0.85 ± 0.05 0.828 1.00

1LlRLl 1.09 ± 0.13 0.84 ± 0.07 0.737 1.30

1L6 0.70 ± 0.10 1.04 ± 0.13 0.032 * 0.67

1L7R 1.S4±0.13 1.11 ± 0.08 0.029 * 1.39

1L8 0.48 ± 0.11 0.68 ± 0.12 0.152 0.71

TGFB3 0.79 ± 0.05 0.92 ± 0.06 0.065 0.86

TNFRSF12A 0.75 ± 0.07 0.90 ± 0.08 0.128 0.83

TNFSF10 1.41 ± 0.10 1.04 ± 0.08 0.007 * 1.36
RQ, relative quantification. * Genes showing statistically significant variation (P<0.05)
of expression between patients with stage I and higher clinical stage patients in using
Kruskal-Wallis test. a Clinical stage I vs. clinical stage >1.
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Fig. 35 mRNA expression levels (mean ± S.E.) of FeN3 and TMEM100
assessed by qRT-peR in lung tissue of ADeA patients by stage and type of
tissue (N, normal; T, tumor). Asterisks indicate statistically significant
differences (P < 0.01) as compared to the reference group (open bars).
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3.4.3 Differential expression between normal and tumour tissue

To determine whether the mRNA levels of the 11 modulated genes

between stage I and stage> I (and validated by qRT-PCR) are modulated in

tumour tissue, we compared gene expression levels in 27 matched pairs of

lung ADCA and adjacent normal lung tissue by qRT-PCR. Most of the

assayed genes, i.e., 9 out of 11, showed statistically significant deregulation

in ADCA tissue as compared to normal tissue (P<O.05, Kruskal-Wallis test,

Table 22). All deregulated genes, except for IDH1, showed down-regulation

in ADCA tissue as compared to normal lung tissue (Table 22). FCN3, SELE

and TMEM100 showed ~40-fold lower mRNA levels in lung ADCA than in

normal lung tissue (P<O.OOOl, Table 22, Fig. 35).

Table 22. Gene expression results of 22 assayed genes in lung ADCA tissue and
adjacent normal lung tissue using QRT-PCR.

RQmean ± SE Fold-
Gene symbol

Tumour tissue
P change aNormal tissue

C20orfl14 1.74 ± 0.69 1.27 ± 0.43 0.849 1.37

FeN3 1.59 ± 0.25 0.02 ± 0.01 2.8 x 10-10 • 79.5

IDHl 1.29 ± 0.14 1.73 ± 0.25 0.416 0.75

LZTSl 0.97 ± 0.19 0.35 ± 0.04 9.8 x 10-06 • 2.77

MSXl 0.78 ± 0.17 0.12 ± 0.02 4.0 x 10-09 · 6.50

SELE 1.33 ± 0.37 0.02 ± 0.00 8.1 x 10-09 · 66.5

SLC14Al 1.37±0.17 0.12 ± 0.02 1.3 x 10-09 · 11.4

SMAD6 1.70 ± 0.27 0.15 ± 0.02 1.3 x 10-09 · 11.3

TMEM100 1.60 ± 0.23 0.04 ± 0.02 5.2 x 10-10 • 40.0

TXNIP 1.16 ± 0.16 0.27 ± 0.05 2.6 x 10-08 • 4.30

VIPRl 1.54 ± 0.24 0.05 ± 0.01 2.8 x 10-10 · 30.8
RQ, relative quantification. • Genes showing statistically significant variation
(P<0.05) of expression between lung ADCA and adjacent normal lung tissue using
Kruskal-Wallis test. a Normal tissue vs. tumour tissue.

To select promising candidate genes for further analysis, we decided

to perform validation at the protein level for the 9 genes modulated

between normal tissue and ADCA tissue using immunohistochemistry. Only
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commercial antibodies tested for IHC were selected. Immunohistochemical

staining was performed for FCN3, SLC14Al and SMAD6 on paraffin-

embedded tissue sections of lung ADCA and surrounding normal lung tissue

to determine whether mRNA over-expression was reflected by an increase

of their corresponding proteins in normal and tumour tissue. We confirmed

5..C14A1

. FOJ3

Fig. 36 Immunohistochemical staining of FCN3,SLC14Al and SMAD6
proteins. No or few proteins were detected in tumour tissues (right
panels), whereas a clear staining patterns were observed in normal
tissues for each proteins (left panel).
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differential expression of proteins FCN3, SLC14A1 and SMAD6 between

normal and tumour tissue (Fig. 36).

3.4.4Integration of GWAS and gene expression profiling

By integrating data from GWA with gene expression signatures from

case-only study, we found 6 SNPs, among those with P S 1 X 10-7 in GWA,

that map within genes slightly differentially expressed P<O.OOl, Table 23)

in the second microarray experiment.

Table 23. Integration of GWA data with microarray results.
Ratio

SNpa P-value
Chromosome

Position
Gene*

P-value stage=I
GWA (Mb) Microarray vs.

stage>!

rs4340697 1 x 10-7 3 64.60 ADAMTS9 1.45 x 10-4 0.81
rs11140860 < 1 x 10-7 9 72.52 C9orf135 1.72 x 10-5 1.30
rs16927500 < 1 x 10-7 11 35.49 PAMR1 5.30 x 10-4 0.83
rs7305739 < 1 x 10-7 12 13.36 EMPl 3.68 x 10-4 0.80
rs2839531 < 1 X 10-7 21 43.89 RSPHl 1.80 x 10-6 1.36
rs1799969 < 1 x 10-7 19 10.39 ICAM1, 2.99 x 10-4 0.79,0.81

ICAM4*
a SNPs sorted by chromosome and position; b Position in megabases according to
Ensembl release 59; * gene in LD with relative SNP (HapMap3 Genome Browser
release #2)

Focusing on regions where we identified the 54 most associated SNPs

with clinical stage (Table 15), we found detectable expression of 18 of 30

known genes (Table 24) in normal lung tissue of lung ADCA patients, but we

found no statistically significant differences in mRNA expression levels

between the clinical stage I and stage >I patients at any of the 18 genes

(Table 24), suggesting that the SNP candidacy may rest on non-

synonymous variations that are in linkage disequilibrium with the identified
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SNPs, or on splicing alternative variants rather than alteration of transcript

regulation.

Then, we undertook a more direct approach to link GWAS and

microarray and to assess whether GWAS and microarray analyses have

identified similar sets of genes performing DAVID functional annotations

pathway analyses using the SSS unique genes out of 8S4 genes identified

with GWAS among the top 1,334 SNPs (with P :S 1 x 10-7), and the top 361

genes identified in gene expression data.

Table 24. Integration of microarray results with GWA data.

Gene*
Fold change

SNP P-value GWA
microarray

IL1RL1*,IL1RL2* 1.26 rs951774 4.00 x 10-7

VGLL4 0.97 rs2s74711 < 1 x 10-7

MLL5 1.00 rs2299297 < 1 x 10-7

TSPAN33 1.04 rs2648 < 1 x 10-7

SLC1A1 0.88 rs972s19 < 1 x 10-7

LTB4DH, ZNF483 1.07, 1.02 rs10491726 6.00 x 10-7

FAM107B 1.03 rs112s9181 < 1 x 10-7

NUCB2 0.84 rs108327s7 < 1 x 10-7

NELL1 0.99 rs71073s0 < 1 x 10-7

PPM1H 0.95 rs382s30s < 1 x 10-7

PPP2RsE 1.03 rs1255641 < 1 x 10-7

SPRED1 1.04 rs10s200s8 < 1 x 10-7

WWOX 1.08 rs10514440 < 1 x 10-7

MATK 1.05 rs12610723 < 1 x 10-7

PKN1 1.03 rs2287700 < 1 x 10-7

PTPRT 0.96 rs6030680 1 x 10-7

DMD 1.11 rs5972356, rs5927730 < 1 x 10-7, 7 X 10-7

TCEAL8 1.01 rs404481 1 x 10-7

*gene in LD with relative SNP (HapMap3 Genome Browser release #2)

Results of functional annotation clustering sorted by statistically

significance (P < O.OS) can be found in Fig. 37. Interestingly, in both list,

most of the top functional clusters derived from GWAS and microarray data

130



3. Results

are directly or indirectly related to cell adhesion: cell adhesion molecules

and focal adhesion in GWAS results and cell adhesion molecules,

extracellular matrix-receptor interaction, and focal adhesion in gene

expression data.

GWAS

Arrhythmogenic right ventncular ..liiii_iiiiiiii__ iiiii=:.:.:iii:iii_iii~iiiil-------j
calcium signaling pathway

Cell adhesion molecules (CAMs)
Focal adhesion

Hypertrophic cardiomyopathy (HCM)

Vascular smooth muscle contraction ~~~~~~~~~~;_----,---~---y-_J
o 2 4 6 8 10 12 14

Cytokine-cytokine receptor Interaction lD-iiiiiiii---=--_-iiiiiii-- iI
Graft -versus-host disease

Intestinal immune networ1< for IgA production _111:1 __ ===:!:1
Cell adhesion molecules (CAMs)

Allograft rejection

ECM-receptor Interaction
Hematopoietic cell lineage ~ IIIlilI;;:::Z:.

Type I diabetes mellitus m
Chemokine signaling pathway 1Im m:l:!:!:m::m!lr.l'Zlilllliill

Viral myocarditis
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Fig. 37 Clustering of functional annotation pathways based on GWAS- (upper panel)
and microarray-dericed genes (lower panel) (with P<O.OS).
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Supplementary Table 2. List of genes differentially expressed between clinical stage I and >1patients in the first
experiment.

Gene symbol
stage=l/ Gene Start Gene End

P-value b stage>1 Gene name Chromosome
ratio

(Mb) C (Mb) c

NBL1 3.32 x 10-4 0.76 Neuroblastoma, suppression of 19.97 19.98
tumorigenicity 1

STK40 6.31 x 10-4 0.83 Serine/threonine kinase 40 36.81 36.85

CITED4 2.27 x 10-4 0.69 Cbp/p300-interacting 41.33 41.33
transactivator, with Glu/Asp-rich
carboxy-terminal domain, 4

SCP2 7.00 x 10.4 1.32 Sterol carrier protein 2 53.39 53.52

TXNIP 2.33 x 10-5 1.37 Thioredoxin interacting protein 145.44 145.44

GPR89A 8.86 x 10-4 1.22 G protein-coupled receptor 89A 145.76 145.83

DEDD 5.02 x 10-4 0.86 Death effector domain containing 1 161.09 161.10

IDH1 1.59 x 10-4 1.33 Isocitrate dehydrogenase 1 2 209.10 209.13
(NADP+), soluble

ITGA9 5.91 x 10-4 0.80 Integrin, alpha 9 3 37.49 37.87

VIPR1 1.79 x 10-4 1.45 Vasoactive intestinal peptide 3 42.S3 42.58
receptor 1

MSX1 8.35 x 10-5 0.71 Msh homeobox 1 4 4.86 4.87

HADH 2.40 x 10-4 1.19 Hydroxyacyl-Coenzyme A 4 108.91 108.96
dehydrogenase

PCDHBS 5.07 x 10-4 0.85 Protocadherin beta 5 5 140.51 140.52

FGF18 7.86 x 10-4 0.83 Fibroblast growth factor 18 5 170.85 170.88

MT01 7.62 x 10-4 1.17 Mitochondrial translation 6 74.17 74.22
optimization 1 homolog (S.
cerevisiae)

IFNGR1 7.86 x 10-4 1.20 Interferon gamma receptor 1 6 137.52 137.54

AEBP1 2.86 x 10-4 0.70 AE binding protein 1 7 44.14 44.15

CLlP2 4.97 x 10-4 0.81 CAP-GLY domain containing 7 73.70 73.82
linker protein 2

ATP6VOE2 3.40 x 10-4 1.20 ATPase, H+ transporting VO 7 149.57 149.58
subunite2

LZTS1 3.38 x 10-5 0.76 Leucine zipper, putative tumor 8 20.10 20.16
suppressor 1

C8orf58 1.53 x 10-4 0.82 Chromosome 8 open reading 8 22.46 22.46
frame 58

CHMP5 9.70x 10-4 1.20 Chromatin modifying protein 5 9 33.26 33.28

GNA14 7.01 x 10-4 1.18 Guanine nucleotide binding 9 80.04 80.26
protein (G protein)

GALNT12 8.77 x 10-4 1.21 UDP-N-acetyl-alpha-D- 9 101.57 101.61
galactosamine:polypeptide N-
acetylgalactosaminyltransferase
12 (GaINAc-T12)

IER5L 3.09x 104 0.73 Immediate early response 5-like 9 131.94 131.94

C10orf73 5.35 x 10-4 1.27 PREDICTED: chromosome 10 10 50.34 50.34
open reading frame 73

C10orf57 4.96 x 10-4 1.19 Chromosome 10 open reading 10 82.17 82.19
frame 57

RRP12 5.31 x 10-4 0.78 Ribosomal RNA processing 12 10 99.12 99.16
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homolog (S. cerevisiae)

PRDX3 2.27 x 10-4 1.25 Peroxiredoxin 3 10 120.93 120.94

SFTPA2B 4.80 x 10-4 1.39 Surfactant, pulmonary- 10 81.32 81.32
associated protein A2B

CCDC86 2.22 x 10.4 0.76 Coiled-coil domain containing 86 11 60.61 60.62

APLP2 6.74 x 10-4 1.21 Amyloid beta (A4) precursor-like 11 129.94 130.01
protein 2

LOC728715 9.81 x 10-4 0.79 PREDICTED: similar to 12 31.26 31.36
hCG38149

FLJ40142 6.54 x 10-4 1.21 FLJ40142 protein 12 110.48 110.51

RNF10 5.94 x 10-4 0.81 Ring finger protein 10 12 120.97 121.02

VPS37B 2.61 x 10-4 0.76 Vacuolar protein sorting 37 12 123.35 123.38
homolog S (S. cerevisiae)

DACT1 5.32 x 10-4 0.81 Dapper, antagonist of beta- 14 59.10 59.12
catenin, homolog 1 (Xenopus
laevis)

GCOM1 6.27 x 10-5 1.40 GRINL 1A combined protein 15 57.88 58.Q7

PLEKH02 3.80 x 10-4 0.80 Pleckstrin homology domain 15 65.13 65.21
containing, family 0 member 2

SMAD6 1.34 x 10-4 1.59 SMAD family member 6 15 66.99 67.07

SOLH 3.05 x 10-4 0.83 Small optic lobes homolog 16 0.58 0.60
(Drosophila)

RAS34 5.24 x 10-4 0.86 RAB34, member RAS oncogene 17 27.04 27.05
family

TMEM100 1.08x10-4 1.55 Transmembrane protein 100 17 53.79 53.80

CYGS 9.47 x 10-4 0.78 Cyloglobin 17 74.52 74.53

SLC14A1 2.04 x 10-4 1.43 Solute carrier family 14 (urea 18 43.30 43.33
transporter), member 1 (Kidd
blood group)

SBN02 4.99 x 10-4 0.70 Strawberry notch homolog 2 19 1.11 1.17
(Drosophila)

MIDN 4.30 x 10-4 0.71 Midnolin 19 1.25 1.26

TRIP10 6.12x10-5 0.72 Thyroid hormone receptor 19 6.74 6.75
interactor 10

PLVAP 5.73x10-4 0.71 Plasmalemma vesicle 19 17.46 17.49
associated protein

BCL3 2.98 x 10-4 0.64 B-cell CLUlymphoma 3 19 45.25 45.26

ITCH 6.80 x 10-4 0.84 Itchy homolog E3 ubiquitin 20 32.95 33.10
protein ligase (mouse)

ZMYND8 7.12 x 10-4 1.16 Zinc finger, MYND-type 20 45.84 45.99
containing 8

ARMCX3 3.76x10-4 1.22 Armadillo repeat containing, X- X 100.88 100.88
linked 3

PSMD10 8.65 x 10-4 1.16 Proteasome (prosome, X 107.33 107.33
macropain) 26S subunit, non-
ATPase,10

SLC25A43 6.42 x 10-4 1.18 Solute carrier family 25, member X 118.53 118.59
43

a Gene sorted by chromosome and position; bp-value obtained by Class Comparison Analysis using BRB ArrayTools
version 3.8.1; c Position in megabases according to Ensemble Release 60.
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Supplementary Table 3. List of genes differentially expressed between clinical stage I and >1patients in the second
experiment.
Gene symbol P-value b stage=l/ Gene name Chromosome Gene Start Gene End

stage> I (Mb) C (Mb) C

ratio

MTE < 1 x 10.7 0.66 Metallothionein E 14.03 14.15
FCN3 < 1 x 10-7 1.53 Ficolin (collagenlfibrinogen 27.7 27.7

domain containing) 3 (Hakata
antigen)

CITED4 1.4X10-6 0.72 Cbp/p300-interacting 41.33 41.33
transactivator, with Glu/Asp-
rich carboxy-terminal domain,
4

GADD45A 9.00 X 10-6 0.79 Growth arrest and DNA- 68.15 68.15
damage-inducible, alpha

ITLN1 < 1 x 10-7 0.35 Intelectin 1 (galactofuranose 160.85 160.85
binding)

SELE < 1 x 10-7 0.58 Selectin E (endothelial 169.69 169.7
adhesion molecule 1)

TPR 3.9 X 10-6 0.77 Translocated promoter region 186.28 186.34
(to activated MET oncogene)

SLC30A1 5 X 10-7 0.7 Solute carrier family 30 (zinc 211.74 211.75
transporter), member 1

LOC652694 6.1 X 10-6 0.71 PREDICTED: similar to Ig 2 0.004 0.005
kappa chain V-I region HK102
precursor

FHL2 3.8 X 10-6 0.72 Four and a half LIM domains 2 2 105.97 106.05

INHBB 3.1 X 10-6 0.73 inhibin, beta B (activin AB beta 2 121.1 121.11
polypeptide) (INHBB).

COL3A1 3 X 10-7 0.72 Collagen, type III, alpha 1 2 189.84 189.88
(Ehlers-Dan los syndrome type
IV, autosomal dominant)

VIPR1 1 X 10-7 1.45 Vasoactive intestinal peptide 3 42.53 42.58
receptor 1

DNHD2 B.9 X 1Q-6 1.34 PREDICTED: dynein heavy 3 55,31 59,53
chain domain 2

CLDN1 4 X 10-6 0.73 Claudin 1 3 190.02 190.04

CXCL2 3.5 X 10-6 0.77 Chemokine (C-X-C motin 4 74.96 74.97
ligand 2

CXCL14 7.2 X 10-6 0.77 Chemokine (C-X-C rnonf) 5 134.91 134.91
ligand 14

LOC649143 1.1 X 10-6 1.46 PREDICTED: similar to HLA 6
class II histocompatibility
antigen, DRB1-9 beta chain
precursor (MHC class I antigen
DRB1*9) (DR-9) (DR9)

SERPINB1 7.6 X 10-6 0.78 Serpin peptidase inhibitor, 6 2.83 2.84
clade B (ovalbumin), member
1

C60rf105 6.9 X 10-6 1.3 Chromosome 6 open reading 6 11.71 11.81
frame 105

HLA-A29.1 5 X 10-7 1.4 Major histocompatibility 6 29.9 29.9
complex class I HLA-A29.1

GSTA2 1 X 10-7 1.41 Glutathione S-transferase A2 6 52.61 52.63

GSTA1 6.4 X 10-6 1.36 Glutathione S-transferase A 1 6 52.66 52.67
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RN7SK < 1 x 10-7 0_6 RNA, 7SK small nuclear 6 52_86 52_86
(RN7SK) on chromosome 6

LOC647169 5 X 10-7 1.4 PREDICTED: similar to Chain 6 52_63 52_64
A, Glutathione Transferase A1-
1 Complexed With An
Ethacrynic Acid Glutathione
Conjugate (Mutant R15k)

IL6 6 X 10-7 0_72 Interleukin 6 (interferon, beta 7 22_77 22_77
2)

IGFBP3 3.9 X 10-6 0.77 Insulin-like growth factor 7 45.95 45.96
binding protein 3

COL1A2 6.4 X 10-6 0.77 Collagen, type I, alpha 2 7 94.02 94.06

NPTX2 5 X 10-7 0.71 Neuronal pentraxin " 7 98.25 98.26

DEFA1 2 X 10-7 0.7 Defensin, alpha 1 8 6.84 6.84

LOC728358 < 1 x 10-7 0.67 Defensin, alpha 1 (DEFA1B) 8 6.85 6.86

DEFA3 < 1 x 10-7 0.61 Defensin, alpha 3, neutrophil- 8 6.87 6.88
specific

EFCA81 6 X 10-7 1.39 EF-hand calcium binding 8 49.62 49.65
domain 1

TMEM70 5.2 X 10-6 0.76 Transmembrane protein 70 8 74.88 74.9

CTHRC1 1 X 10-7 0.71 Collagen triple helix repeat 8 104.38 104.4
containing 1

ENPP2 2 X 10-7 0.69 Ectonucleotide 8 120.57 120.69
pyrophosphatase/phosphodies
terase 2 (autotaxin)

MYC 1.4 X 10-6 0.72 V-myc myelocytomatosis viral 8 128.75 128.75
oncogene homolog (avian)

LY6H 8 X 10-7 0.7 Lymphocyte anijgen 6 8 144.24 144.24
complex, locus H

LCN2 4.8 X 10-6 1.31 Lipocalin 2 9 130.91 130.92

SFTPA28 5.8 X 10-6 1.38 Surfactant, pulmonary- 10 81,31 81,32
associated protein A2B

FJX1 3.1X10-6 0.75 Four jointed box 1 (Drosophila) 11 35_64 35.64

MS4A8B 5.9 X 10-6 1.43 Membrane-spanning 4- 11 60.47 60.48
domains, subfamily A, member
88

PDGFD 6.4 X 10-6 0.78 Platelet derived growth factor 11 103.78 104.04
D

SOCS2 4.1X10-6 0.77 Suppressor of cytokine 12 93.96 93.97
signaling 2

NP 3.4 X 10-6 0.73 Nucleoside phosphorylase 14 20.94 20.95

NLF2 2.3 X 10-6 0.75 PREDICTED: nuclear localized 15 62.46 62.46
factor 2

SMAD6 < 1 x 10-7 1.43 SMAD family member 6 15 66.99 67.07

TNFRSF12A 6 X 10-7 0.68 Tumor necrosis factor receptor 16 3.07 3.07
superfamily, member 12A

MT1E 6.5 X 10-6 0.78 Metallothionein 1E 16 56.66 56.66

MT1M 1 X 10-6 0.74 Metallothionein 1M 16 56.67 56.67

MT1G 4 X 10-7 0.74 Metallothionein 1G 16 56.7 56.7

MT1H 3.2 X 10-6 0.72 Metallothionein 1H 16 56.7 56.71

MT1X 1.7 X 10-6 0.73 Metallothionein 1X 16 56.71 56.72
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C200rf114 <1x10-7 1.82 Chromosome200penreading 20 31.86 31.9
frame 114

C200rf127 3.8 X 10-6 0.75 Chromosome 20 open reading 20 33.81 33.81
frame 127

RSPH1 1.8 X 10-6 1.36 Radial spoke head 1 homolog 21 43.89 43.92
(Chlamydomonas)

IGLL3 2.2 X 10-6 0.68 Immunoglobulin lambda-like 22 23.92 23.98
polypeptide 3

XIST 8 X 10-7 1.59 X (inactive)-specific transcript X 73.04 73.07
(non-protein coding)

CT45-4 9 X 10-7 0.7 Cancer/testis antigen CT45-4 X 134.93 134.95

LOC647460 5.2 X 10-6 0.74 PREDICTED: similar to Ig
kappa chain V-I region HK101
precursor

a Gene sorted by chromosome and position; bp-value obtained by Class Comparison Analysis using BRB ArrayTools
version 3.8.1; c Position in megabases according to Ensemble Release 60.

0.67LOC400578 < 1 x 10-7 PREDICTED: similar to
Keratin, type I cytoskeletal14
(Cytokeratin-14) (CK-14)
(Keratin-14) (K14)
PREDICTED: similar to
Keratin, type I cytoskeletal16
(Cytokeratin-16) (CK-16)
(Keratin-16) (K16)
Solute carrier family 6
(neurotransmitter transporter,
serotonin), member 4
Collagen, type I, alpha 1

Transmembrane protein 100

Nuclear factor of activated T-
cells, cytoplasmic, calcineurin-
dependent1
Growth arrest and DNA-
damage-inducible, beta
Prion protein 2 (dublet)

MGC102966 6 X 10-7 0.72

SLC6A4 3 X 10-7 1.47

COL1A1

TMEM100

NFATC1

< 1 x 10-7

1 X 10-7

9.1 X 10-6

0.63

1.45

0.72

GADD458 6.8 X 10-6 0.74

< 1 X 10-7 0.54PRND
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17 28.52 28.56

17 48.26 48.28

17 53.8 53.81

18 77.16 77.29

19 2.48 2.48

20 4.7 4.71
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4. DISCUSSION

It is now believed that both cancer initiation risk and later neoplastic

events (tumour growth, invasion, metastatic spread, response to

therapeutic interventions, and survival) may be strongly influenced by

factors predetermined by individual's genetic background. Recent progress

in decoding the human genome has provided information about thousands

of potentially important gene polymorphisms affecting both normal

physiological mechanisms and cancer pathogenesis. These variants act

through their products involved in various regulatory systems and metabolic

chains at different levels of biological organization. It seems likely that

combinations of these common polymorphic gene variants frequently found

in populations may exert regulation of basic processes such as proliferation,

differentiation, and apoptosis, and may influence different stages of

carcinogenesis, as supported by several reports of significant associations

between germ line variations and risk or prognosis of different cancer types.

At the beginning of my project, population-based association studies

were widely-used approach for the identification of common genetic factors

affecting common diseases, such as cancer (291), but only few genome-

wide studies were carried out. In 2006, this research group has reported a

study on >80,000 SNPs that led to the identification of a functional

association between the region containing the PDCD5 (programmed cell

death 5) gene and lung cancer risk in two independent Caucasian

populations (292). In 2007, the same research group reported an
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association between SNPson Kruppel-like factor 6 (KLF6) gene and reduced

risk of lung cancer suggesting its candidacy in modulated lung cancer

susceptibility (293) using one of the first Affimetrix platforms (lOOK SNP

array). These preliminary studies opened new prospects to carry out

additional genome-wide scans in order to investigate the hypothesis of a

polygenic inheritance of susceptibility to lung cancer in humans (294).

At the moment, as at the beginning of my project, no GWASs for the

identification of lung cancer prognostic germ line variations have been

published. However, some studies have suggested the involvement of

genetic elements influencing of neoplastic development and leading to

differences in patients' prognosis, treatment response and survival rates

(141, 142, 292, 295).

4.1 POPULATION-BASED AND FAMILY-BASED ASSOCIATION

STUDIES FOR LUNG CANCER RISK

To address the initial aim of identifying genetic determinants of lung

ADCA risk we have carried out a genome-wide association study (GWAS) in

Italian lung ADCA patients (population-based study) and healthy unrelated

controls and a GWAS in Italian lung patients and their unaffected sibs as

controls (family-based study).

In the population-based GWAS, we decided to focus specifically on

lung ADCA, instead of lung cancer patients in general, to avoid problems

deriving from histotype admixture and because this histotype is most likely

the one where inherited components play the stronger role as suggested by
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its high frequency among young and non-smoker lung cancer patients (94,

296, 297). We used a joint analysis of two independent populations rather

than a replication-based analysis to increase power to detect genetic

association (226). However, although the correlation between the

measurements of allelic frequencies was high, concordance between two

different experiments in the identification of SNPs associated to the risk of

lung ADCA was not high, leading to 235 SNPs only with P values < 0.01 in

both experiments. This result might be due to either technical variance

representing almost one third of the observed variance, or to the wide

genetic differences that make not plausible the comparison of groups of

individuals although taken from the same population. Indeed, the compared

groups differed much more than expected because of the effect of sampling.

We identified 12 SNPs putatively associated with lung cancer risk.

Genotyping of these SNPs in individual samples led to statistical

confirmation of 8 of 12 (67%) SNPs.This result provided evidence that the

screening system was sufficiently accurate to determine real differences in

allele frequency between cases and controls.

The 8 SNPs associated with lung ADCA risk identified several

chromosomal regions putatively associated with lung cancer risk (Table 12).

Most of the 8 SNPs do not have an apparent functional activity but they

most likely represent genetic markers in significant linkage disequilibrium

(LD) with the genomic regions containing the functional variations. Among

these, SNP rs2515373 on Chromosome 11 maps within intron 3 of the

contactin 5 (CNTN5) gene, which encodes a glycosylphosphatidylinositol-

anchored neuronal membrane protein that functions as a cell-adhesion
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molecule. A role for this protein in tumour invasion and metastasis is

possible, since another gene of this same family (contacting 1) encodes a

product that modulates invasion and metastasis of lung ADCA cells (298).

The other SNPs show significant LD with genomic regions containing genes

that may carry functional variations. For instance, SNP rs2172706 maps on

Chromosome 1 at a distance of 10 kb from the 3D-end of the KCNN3 gene

(potassium intermediate/small conductance calcium-activated channel,

subfamily N, member 3), and at a distance of 70 kb from the 50 of the

ADAR gene (adenosine deaminase RNA-specific). A wide LD region (140 kb)

around rs2172706 is observed, preferentially including the ADAR gene and

partially including the 30 region of KCNN3. SNP rs4897493 on Chromosome

6 is in LD with the EPB41L2gene, a member of the protein 4.1 superfamily

involved in linking cell surface glycoproteins to the actin cytoskeleton and

acting in tumour suppression (299). At present, it is unknown whether the

effects of single SNPson lung cancer risk are mediated by encoded proteins

or by non-coding RNAs in LD with the relative SNPs.

These preliminary findings suggest the involvement of multiple

common alleles in the inherited modulation of lung ADCA risk in the general

population. Indeed, the rare allele carrier status at each of the 8 confirmed

SNPs was associated with a significant modulation of lung cancer risk (Fig.

20), suggesting that multiple, and unlinked genetiC loci may control

individual susceptibility to lung cancer in humans. These findings would not

exclude that rare germ line mutations could provide a high risk of lung

cancer in carriers; however, such putative mutations would have a low
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impact on the risk of the disease at the general population level and would

not be detectable by GWAstudies.

The results of this first GWAS are consistent with a polygenic

inheritance model characterized by dominant or co-dominant effects of rare

alleles at 8 unlinked markers. Indeed, we found a significant trend of

decreased lung ADCA risk by the carrier status of two or more rare alleles,

with effects particularly strong for carriers of four or more rare alleles (OR <

0.3; Fig. 21). Thus, the combination of multiple genetiC variants may have a

strong effect on lung ADCA risk. Dosage effects and interchangeability of

rare alleles in the same individual in modulation of lung ADCA risk suggest

that candidate genes act on independent biochemical pathways, as the

known functions of genes in LD with the associated SNPswould predict.

It should also be considered that the 8 SNPs associated with lung

ADCA risk in our study may show different LD in different ethnic groups,

and consequently, may be relevant only in certain populations, because

ethnic-related loci are plausible under the assumption of the polygenic

model.

Our results are in agreement with findings obtained in the well

characterized model constituted by mouse inbred strains, where the

polygenic nature of control of strain susceptibility to carcinogen-induced

lung tumourigenesis has been dearly demonstrated (31, 300). In addition,

we have reported that genetiC variants causing an inhibition of genetiC

susceptibility to lung tumourigenesis are common in inbred strains (301),

consistent with the present findings of the reduction of lung cancer risk by

the rare alleles in humans. Therefore, the same type (polygenic) of genetic
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control of susceptibility to lung tumourigenesis may be operative in both

mammalian species, although the genetic loci involved may differ.

Our results suggest that a polygenic control of susceptibility to lung

cancer may also operate in humans, leading to possible strong effects on

cancer risk of the combination of multiple genetic variants at the individual

level and, consequently, representing an important determinant of lung

cancer risk in the general population.

Since most of the lung cancer cases that we have analyzed consist of

smokers, the identified loci may affect susceptibility to smoking-induced

lung cancer.

Of course, this first analysis would not provide exhaustive coverage of

the genetic components affecting lung cancer risk, but it would represent a

demonstration of the plausibility of the polygenic model of lung cancer risk

in the general population and a first example of how genome-wide screens

could represent a useful approach to dissect the genetic determinants

underlying the susceptibility to common complex diseases. Studies in large

population series are needed to confirm our results that could represent a

first step toward the definition of a genetic profile for the estimation of

individual genetic risk of lung cancer. The future possibility of an estimation

of the individual risk of lung cancer could be helpful for the control of lung

cancer incidence at population level, since high risk individuals may be more

motivated to stop smoking and to undergo early diagnostic procedures

(302).

In the second GWASwe planned to use a sibling-based study design

to detected loci statistically associated with lung cancer risk. Unlike the
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previous GWAS, given the difficult to recruit healthy sibs due to old age at

diagnosis for most of the cases, we included all lung tumour histotypes.

Despite the poor feasibility of the recruitment of healthy sibs controls to

carry out family-based genome-wide association studies in lung cancer, ,

the possible benefits resulting from the appropriate matching of cases and

controls may justify the effort. Even a small size of population (Table 2),

this type of study offers complete robustness to potential population

heterogeneity eliminating problems that are related to case-control studies

with controls from the general population. In particular, an important

advantage of the discordant sibs design is the possibility to exclude the

potential for bias due to population stratification, which is common in

population-based studies (258). Indeed, cases and controls derive from the

same pedigree whose DNA differences may lie in genetic polymorphisms

putatively responsible for the disease status. The effect (lung cancer risk

estimation) detected by the discordant sib pair design (1:1 case:control

ratio) and sib transmission disequilibrium test is due to the combined

presence of linkage and association (258). In addition, even the limited

number of sib-pairs, all cases are non-smokers and younger lung cancer

patients. Thus genetic factors may most likely have played a role in lung

cancer development in these cases, as they did not smoke and suffered

from lung cancer at young age.

In this genome-wide association study using DNA pools, we identified

36 SNPs that showed significant linkage/association in the family-based

series (Table 13). Individual genotyping confirmed the robustness of our

pooling approach (Fig. 23), demonstrating that this method produces
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reliable results and is time- and cost-effective. Of the 36 genetic markers,

13 mapped within genes. The most significantly associated SNPs (P :S

0.0045), i.e., rs11833102, rs17120323, rs1244S758 and rs32S702, mapped

in carboxypeptidase M (CPM), sarcoglycan zeta (SGCZ), cadherin 13, H-

cadherin (heart) (CDH13) and cyclic nucleotide-gated channel alpha 4

(CNGA4) genes, respectively. Overexpression of CPMwas recently reported

to correlate negatively with disease survival in human lung ADCA patients

(303), and aberrant methylation of the CDH13 gene was observed in lung

ADCA (304). Thus, our findings point to the relevance of genetic

components in the modulation of individual lung cancer risk in non-smokers.

Interestingly, we found that one of the associated SNPs (rs12663498,

P = 0.055) maps to 6q25.1, the same locus previously linked to lung cancer

risk in pedigrees with multiple lung cancer members (126). The SNP maps

within the pleckstrin homology domain containing family G (with RhoGef

domain) member 1 (PLEKHG1) gene, which lies 2 Mb from RGS17, the

major candidate gene for the familial lung cancer susceptibility locus (127).

The application of the previously proposed polygenic model to the 35

SNPs associated in the discordant sib-based series showed a highly

statistically significant association between the genetic susceptibility score

and the proportion of lung cancer cases (Fig. 24).

Our single-point analysis confirmed in the population-based series

only 3 of 36 SNPs that were statistically associated in the family-based

series (Tables 14). This result could be expected if we consider the

differences between these two series, i.e., the family-based series is

constituted by young non-smoker lung cancer patients whereas the
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population-based series is constituted by mostly smokers with a higher

median age at tumour diagnosis. In addition, since the results of the family-

based series are not biased by population structure and most of the

detected SNPs presumably represent real associations, the scarce effects of

the same SNPs in the population-based series rest on either the existence of

significant population admixture, masking real associations, or the existence

of phenocopies and a high degree of genetic heterogeneity in the general

population. In the latter case, a model of "private" genetic epidemiology

(305) may account for the genetic effects detected in lung cancer families.

Interesting, in mouse models, our group recently detected a high degree of

genetic heterogeneity affecting genetic susceptibility to skin tumourigenesis

and to inflammatory response, i.e., the same phenotype being linked to

different loci in different mouse lines (306), thus supporting the role of the

"private" genetic epidemiology in an experimental model.

Another aspect that we should take into consideration is the role of

genetic heterogeneity in the predisposition to cancer. Indeed, independent

loci may modulate the risk of sporadic and of familial cancer, as the model

of breast cancer susceptibility demonstrated (307, 308). Also, we should

consider the great impact of the major environmental risk factor, i.e.,

smoking habit, and the difficulty in separating the genetic and

environmental contributions to lung cancer risk. Indeed, a study in

monozygotic and dizygotic twins showed that the possible sharing of the

same environmental risk factors may playa major role in lung cancer risk

(309).
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In 2008, three separate GWASs on several thousand of samples were

published and all three studies found a region on chromosome 15q25

associated with lung cancer risk (130-132). Two of the GWASs identified

polymorphisms directly associated with lung cancer (130, 131), whereas the

third study identified an association between the same genetic region and

nicotine dependence and concluded that the association with lung cancer

goes indirectly through smoking (132).

Even if not included in the 47 SNPs with P < 1 X 10-7 and thus not

considered for further analysis, SNPs of that region (rs12916375) was

included in our initial top list of 235 SNPs (P < 0.01) in population-based

study, indicating that also in our series the chromosome 15q25 region may

be involved in lung ADCA risk in general population. To further test the

candidacy of these region in our population and having already available

DNA pools from our population-based case-control study, we analyzed two

coding polymorphisms reportedly associated with lung cancer risk:

rs1051730, a synonymous change within the CHRNA3 gene (130-132), and

the rs16969968, a D398N polymorphism of the CHRNA5 gene (131).

Because the rs1051730 showed a slightly weaker statistical association with

lung cancer risk as compared with the rs16969968 and because of an

almost complete linkage disequilibrium between these two single-nucleotide

polymorph isms in the European population, only the CHRNA5 polymorphism

was analyzed in individuals of the whole series (Table 1). The frequency of

the A (398Asn) allele differed significantly between controls and cases (0.41

and 0.48, respectively; P = 0.0001) with the homozygosity status of the A

allele significantly associated with lung ADCA risk (OR=1.9, 95% Cl 1.3-
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2.7; P = 0.0003) as well as the heterozygosity status (OR=1.4, 95% Cl

1.0-1.9; P = 0.024) when compared with GG (Asp398Asp) homozygous

subjects. Comparison of subjects carrying the A (398Asn) allele as dominant

effect versus GG (Asp398Asp) homozygous subjects also showed a

significant association of the A allele with lung ADCA risk (OR=1.5, 95% Cl

1.2-2.0; P = 0.002). No significant associations of the CHRNA5 D398N

polymorphism with patients' clinical stage or overall survival were detected.

(310, 311). Our findings in non-smokers discordant sib pairs did not confirm

the previously reported population-based association of lung cancer risk

with the chromosome 15q25 nicotinic receptor locus. These results are

consistent with a recent meta-analysis in >1000 never-smoker cases and

>1800 controls (312) and by a recent pooled analysis (136), showing that

this locus is not associated with lung cancer risk in never-smokers.

Interestingly, a large GWAS in never-smokers found statistically significant

association between lung cancer and a locus at 13q31.3 (137). All these

findings suggest that the genetic factors for risk in smokers and never-

smokers may be different and that lung cancer risk in non-smokers may

have an inherited susceptibility component that may take the place of the

strong role played by the smoking habit in smokers (313), as reviewing in

(314 ).

Subsequent GWASs identified lung cancer susceptibility loci also at

6p21 (133, 134), and 5p15.33 (133, 135), providing further powerful

evidence of a genetic contribution to lung cancer, even if several

discrepancies due to population characteristic such as ethnicity and smoking

(136). In fact, in Asian population the association has not been confirmed
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for the variants in lSq25 reported in the Caucasian studies, due to their

rare allele frequencies, and no variants in 6p21 were replicated in

Caucasians (136). In our two GWA studies, we did not find any associations

among the top SNPs between polymorphisms in 5p1S.33 and 6p21.33 and

lung cancer risk. When we genotyped rs4016181 (in Sp1S.33, CLPTM1L

gene) and rs3117S82 (in 6p21.33, BAT3-MSHSgene) in individual samples

from our population-based case-control study we found a borderline

association with lung ADCA risk only for the SNP in Sp1S.33 locus P=O.02).

Since analysis of candidate genes located in these regions by

individual studies has had only limited success in identifying speclflc

variants that are conclusively associated with lung cancer risk, the

International Lung Cancer Consortium (ILCCO) recently conducted a

genotyping study in a total of 8,431 lung cancer cases and 11,072 controls

of European and Asian ethnic groups (128). This study suggests that only

the SNP rsS60191 (TPS3BP1) of ten variants tested is associated to lung

cancer risk and refuses all other associations focusing on the importance of

consortia and of great case-control studies in replicating or refuting

published genetic associations. Notwithstanding the identification of these

loci (1Sq2S, Sp1S and 6p21) associated with a modulation of lung cancer

risk in particular population, a model explaining the complex genetiCS of

lung cancer predisposition different to our proposed polygenic model is still

waiting to be defined.
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4.2 CASE-ONLY ASSOCIATION STUDY FOR LUNG CANCER

PROGNOSIS

Tumour progression is defined as the dynamic stepwise process

through which neoplastic cells evolve towards more malignant

characteristics and more aggressive clinical behaviour (315). This process is

a critical point in clinical cancer management since most cancer deaths still

result from metastasis and the spread of cancer to other parts of the body

begins early in the growth of the primary tumour (316). In the last years,

variations in cancer aggressiveness and malignancy have been mainly

associated with the accumulation of multiple somatic alterations and

epigenetic changes in the neoplastic cells (317). Indeed, most studies

aimed to identify factors that affect cancer patient's outcome/survival are

focused on genetic alterations or transcriptional changes in cancer tissues.

However, such studies have ignored the fact that cancer is a mass of

heterogeneous cells whose growth is dependent upon reciprocal interactions

between genetically transformed cells and the microenvironment in which

they live. Indeed, genetic studies carried out in experimental mouse models

support the biological plausibility of a genetic modulation of cancer

progression (295), suggesting that germ line variations may also playa role

in the control of lung cancer patients' outcome. Although in the last years

several GWA studies have focused on genetic risk for lung cancer, none has

examined the possible genetic modulation of lung cancer staging, that is the

most powerful prognostic factor in cancer patients (318).

To address the hypothesis stating that genetic constitution might also

contribute to tumour development, we planned to investigate the role of
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genetic control in lung cancer progression through case-only association

studies in a group of Italian patients affected by lung ADCA. We collected an

initial relatively large case series containing patients of the same lung

cancer histotype, i.e., ADCA, and of the same ethnicity, which follow-up and

epidemiological data were available. Clinical stage according to the tumour-

node-metastasis (TNM) system (100, 319) is the most powerful prognostic

factor in cancer patients and the main determinant of lung cancer patient's

survival. Thus, in order to look for possible coding SNPs that could explain

the different effects on lung tumour prognosis, we divided our series

according to their clinical staging, comparing stage I and higher clinical

stage patients, and we investigated SNPs with different allele frequencies

between the two groups.

We identified 63 SNPs putatively associated with clinical stage.

Genotyping in individual samples led to statistical confirmation of 54 of 63

(85.7%) SNPs, demonstrating the robustness of our pooling approach (Fig.

26). The most significantly associated SNPs (P :S 5.0 x 10-6), i.e.,

rsl0278557, maps to chromosome 7 in the intronic region of the

mesenchyme homeobox 2 (MEOX2) gene, also known as growth arrest-

specific homeobox (GAX) gene, which encodes a member of a subfamily of

non-clustered, diverged, antennapedia-like homeobox-containing genes.

The encoded MEOX2 protein is a key regulator of vascular-cell function.

MEOX2has been proposed as a candidate tumour suppressor gene in Wilms

tumour, and showed differential expression and aberrant methylation in

lung cancer (320, 321). To test the reproducibility of our results we chose

two smaller lung cancer populations with different lung histological type
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(317 ADCA and 257 SQCC,Table 3). Even though ADCA and SQCC belong

to the same main lung cancer histological group of non-small cell lung

cancer (NSCLC), differences in etiologic, clinical and molecular

characteristics have been widely reported (322). Indeed, one of the loci

recently associated with lung cancer risk, the SplS.33 locus, was found

significantly associated in ADCA subtype but not in squamous cell carcinoma

(212, 213). Also the results of our confirmation analyses identify different

associations between ADCA and SQCC series, reflecting the differences

across histology. In fact, though the loss of statistical power in confirmation

series due to the smaller number of subjects compared to discovery series,

logistic regression analysis of the same 54 SNPs pointed to 3 SNPs

significant associated with clinical stage in ADCA series that were not

confirmed by analysis in SQCCseries. Our findings suggested that several

loci are involved in the modulation of lung tumour progression in general

population and that the involvement is strongly histology-specific.

JOint analysis of the GWA and replication series to increase the

statistical power of the study and to obtain an overall unbiased estimate

(288) identified 22 SNPs that, at nominal statistical P-value <0.01, showed

statistical association with clinical stage (Table 19). Analysis of additive

effects of risk associated to the minor alleles of these 22 SNPs using a

polygenic model (289, 323) in 917 lung cancer patients (Table 3) revealed a

statistically significant association between the general estimator score and

increased risk of higher clinical stage (Fig. 27 and 28) and with risk of death

(Fig. 29), suggesting the complex genetiC control of lung ADCA patients'

clinical prognosis. The predictive value of the genetiC estimator calculated
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on the 22 SNPs genetic profile was statistically associated to clinical stage

also in the second smaller ADCA series only (P=0.0006).

Empirical replication using bootstrap samples from the original data,

rather than replication in independent samples, has been proposed in

association studies since bootstrap samples likely share the same

population structure of original data, whereas an independent series may be

characterized by a different population structure and, thus, lead to false-

negative results on analysis (290). Our empirical replication using bootstrap

samples confirmed the statistically significant difference between stage I

and stage >1 patients in their genetic estimator based on 22 SNPs.

Of the 22 candidate SNPs, ten mapped within genes. Among these,

the most significantly associated SNP in the joint analysis (rsl0278557, P =

1.1 X 10-5, Table 19) maps on chromosome 7 in the intronic region of the

mesenchyme homeobox 2 (MEOX2) gene, described above. Other important

genes are the myeloid/lymphoid or mixed-lineage leukemia 5 (trlthorax

homolog, Drosophila) (MLL5), the sprouty-related, EVHl domain containing

1 (SPRED1, rsl0520058, Table 4), and WW domain containing

oxidoreductase (WWOX, rsl0514440, Table 4) candidacies are also of

interest.

Indeed, MLLSgene belongs to the evolutionarily conserved trithorax

family of human genes that activate and regulate diverse genes, including

homeobox (HOX) genes that are important in oncogenesis and tumour

suppression (324, 325). MLL5 is located on chromosome 7q22, which

frequently is deleted in myeloid leukaemia, and recent studies demonstrate

that MLLSis a key regulator of normal haematopoiesis (326).
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SPRED1 gene negatively regulates the Ras-ERK signalling pathway,

cell motility, and metastasis, and its germ line loss-of-function mutations

cause a neurofibromatosis 1-like syndrome (327, 328).

wwox gene acts as a tumour suppressor in different tumour types

and plays a regulatory role in a wide variety of cellular functions such as

protein degradation, transcription, and RNA splicing (see review in (329».

More recently, WWOXwas found to be often altered or silenced by promoter

methylation in NSCLC(330).

At present, it is unknown whether the observed associations between

SNPs and lung cancer clinical stage underlie effects of non-synonymous or

regulatory variants in linkage disequilibrium with these SNPs. Replication in

large cohorts of patients and on different types of cancer would provide

strong information whether a SNPmay have a role on cancer prognosis and

whether this effect is specific only for a subset of tumour types.

Together, these results indicate for the first time that clinical staging

of lung ADCA can be under genetiC control, with each individual patient

displaying a own tendency toward a low or high clinical stage, modulated by

individual genetiC variations. Indeed, it presented the first effort to identify

whole genomic alterations that determine different outcome in lung cancer

patients and would allow to draw a SNP profile associated with lung cancer

clinical stage and overall survival, representing a first step towards the

possible clinical use of such a profile for the personalized follow-up of

patients at genetiC risk of poor clinical outcome. The significant association

of the 22 SNPs with lung cancer clinical stage and survival opens the

possibility that the functional products of the genes linked to these SNPs
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use novel biochemical pathways associated with lung cancer patients'

outcome, and that the identification of these pathways might provide gene

targets for therapies to counter lung cancer progression.

It seems that much of the genetic architecture of complex traits

remains unexplained. A new strategy should be developed for estimating

the degree of false positive finding. In order to analyze the role of genetic

heterogeneity, SNPs panels assembled in the last few years that permit to

identify ethnic and sub-ethnic group, as well as individuals in paternity

testing could be useful (331). The use of these panels has been proposed in

controlling for admixture in association studies (332). Genotyping such a

panel of SNPs in our series would allow identification of genetically-related

subgroups of individuals. In turn, adjusting by genetic clusters may allow

highlighting genetic differences between cases and controls that would be

masked by genetic heterogeneity. Thus, further clarification of the role of

genetic mechanisms in lung cancer patients' outcome may hold the promise

of improved therapy and disease outcome.

It is also known that SNPs in regulatory elements can affect gene

expression levels. Therefore, we planned to analyze whole-genome

expression profiles in normal lung tissue from patients with different clinical

stage, in order to identify transcripts whose expression levels are associated

with lung ADCAprognosis.

The identification of candidate genes by the transcriptional profile

analyses allows tracing possible biochemical pathways that are associated

with lung cancer prognosis. This could overcome the genetic heterogeneity

of this disease, reducing its complex genetic architecture to fewer
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pathways. Over the last years there has been an increase in the use of

microarray technology in cancer research for transcriptional analysis of

primary tumours. Indeed, most of the studies use microarray analysis of

tumor tissues compared with normal tissues for profiling of molecular

characteristics in order to identify possible classifiers for prognosis

(333,334) or to predict for aggressive forms of different stage of cancer

(335). In lung cancer, the microarray analysis has identified gene

expression profiles related to disease recurrence, prognosis and survival in

ADCA (336) and in SQCC patients (337). The number of publications

relating to the use of microarrays for analysis of normal tissue is much

more limited. There are some studies that used normal tissue to generate

gene signatures that discriminated cell populations in sensitive and resistant

to radiotherapy or to identify genes and pathways involved in tissue

response to radiation injury (reviewed in 338). Recently, some studies

analyzed gene expression profiles comparing normal breast tissues from

cancer patients with normal breast tissues from non-cancer patients and

indicated that gene alteration associated with tumor development is already

detected in normal tissue, leading to higher risk for development of a

malignant disease in the breast (339,340).

Under this hypothesis that the dynamic microenvironment in which

cancer grows may influence its aggressiveness and that individual genetiC

constitution may affect the expression profile of normal lung and also

explain differences in the cancer outcome, we performed a genome-wide

transcriptional analysis in normal tissue comparing gene expression profiles

of lung ADCA patients with different stages. Although we cannot exclude
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possible presence of micro-metastases in tumour adjacent normal tissue,

macroscopic analysis in our samples indicated no apparent contamination of

cancer cells. Lung gene expression patterns could be altered by genetic

heterogeneity of human population and by environmental factors, first of all

exposure to cigarette smoke. We attempted to minimize all these

confounding factors by studying a relatively large number of well-

characterized Italian ADeA patients and performing gene expression

analysis only among smokers. Thus, we analyzed expression level of 120

normal tissues from smoker ADeA patients comparing stage I with higher

(Table 4), in order to examine relationships between gene expression

profiles in normal tissue and staging.

In order to verify microarray reproducibility and estimate technical

variability we used a joint analysis of two independent microarray

experiments in RNA pools and we identified a set of 11 stage-associated

genes able to distinguish patients with stage I from patients with higher

stage (Table 21). This gene set included genes that are biologically plausible

contributing to pathogenesis of disease. Indeed, of the two genes whose

transcript levels in normal lung tissue showed the higher modulation

between stage I and stage>I patients and the best statistical association

with patients' clinical stage, FeN3 (ficolin 3) encodes a collagen-like defence

molecule that is involved in the maintenance of tissue homeostasis and of

the innate immune system and acting as recognition molecules in the

complement system (335). FeN3 might playa protective role against the

development of autoimmunity (336) and FeN3 deficiency is associated with

immunodeficiency and with susceptibility to fever, neutropenia, and
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infection (337, 338). Interestingly, susceptibility to infection has been

reported to increase the risk of cancer, including lung cancer (339).

The other best statistically associated and most modulated gene,

TMEMIOO,encodes a transmembrane protein of unknown function(s); in the

developing mouse embryo, TMEMIOO is expressed predominantly in

endothelial cells and thus might be involved in angiogenesis (340).

Among the other genes, C200rfl14 gene, known also as LPLUNC1,

encodes for a protein that is expressed in the upper respiratory tract and

oral cavity, and that may function in host defence (341).

IDHl (isocitrate dehydrogenase 1) gene encodes for a NADP(+)-

dependent isocitrate dehydrogenase, that has a significant role in

cytoplasmic NADPHproduction and in peroxisomal NADPHregeneration and

whose coding mutation at the arginine in 132, that results in loss of the

enzyme's catalytic activity, was associated with malignant gliomas (342)

and thyroid cancers (343).

LZTS1 (leucine zipper, putative tumour suppressor 1) encodes a

tumour suppressor protein ubiquitously expressed in normal tissues and its

expression is often much lower in tumour tissues (344) confirming our

results in ADCA lung tissues. It may have a role in cell-cycle control by

interacting with the Cdkl/cyclinB1 complex and preventing the uncontrolled

cell proliferation. Loss of heterozygosity (LOH) in the LZTS1's locus is a

common characteristic of many types of cancer as ovarian carcinoma (345),

oral squamous cell carcinomas (346) and bladder cancer (347).

MSX1 (msh homeobox 1) encodes a small member of the muscle

segment homeobox gene family that functions as a transcriptional repressor
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during embryogenesis interacting with components of the core transcription

complex (348).

SELEgene encodes for E-selectin, a protein involved in cell adhesion

and responsible for the accumulation of blood leukocytes at sites of

inflammation by mediating the adhesion of cells to the vascular lining. High

serum E-selectin levels had prognostic significance and could be a potential

prognosis factor in NSCLCpatients (349).

SLC14A1 (solute carrier family 14, member 1) gene encodes for a

membrane transporter.

SMAD6 (SMAD family member 6) gene encodes for a signal

transducer, whose expression effects the progression of oesophageal

squamous cell carcinoma (350) and high expression levels are associated to

prognosis and improved survival in oral squamous cell carcinoma patients

(351).

TXNIP (thioredoxin interacting protein), also known as vitamin D3 up-

regulated protein 1 (VDUP1), is a known tumour suppressor gene, that is

involved in redox stress responses (352), regulation of cellular proliferation

(353), and in the differentiation of myeloid and macrophage lineages (354).

Its expression is frequently lost in cancer tissue including breast,

gastrointestinal, renal, and liver tumours (355-358). Our findings of the

down-regulation of TXNIP expression in lung cancer are in agreement with

similar observations reported in small series of NSCLC(359).

VIPR1 (vasoactive intestinal peptide receptor 1) gene encodes for a

small neuropeptide involved in ion flux in lung and intestinal epithelia that

was proposed as tumour suppressor since it was found down-regulated in
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lung adenocarcinoma (360). Most of these genes seem involved in the

control of the response of innate or acquired cellular immunities; therefore,

immunity response as detected in normal lung by transcriptional analysis

may be associated with clinical stage in lung ADCA patients.

Biochemical pathway analysis of the whole transcriptional profile

indicated the involvement of cytokines and cytokine receptors. Overall, the

biochemical pathways of genes in normal lung tissue that were associated

with clinical staging in lung ADCA patients are involved in the control of

inflammation and infection (Table 20). Of the detectable genes, most were

found to be up-regulated in normal tissues from patients with higher clinical

stage, indicating the crucial role of these inflammatory mediators in tumour

growth and progression. It is known that lung tissue samples subjected to

gene profiling may contain an abundance of migratory inflammatory cells

and blood vessels so that analysis of whole lung tissue represents an

amalgam of expression by all of these cell types. However it is interesting

that inflammatory responses were more evidence in normal tissue

surrounding the tumour at advanced stages. These findings are consistent

with reports showing that non-malignant lung stromal areas in advanced-

stage non-squamous cell lung carcinoma contain high levels of neutrophil

infiltration and vascular endothelial cells recruited by chemokines/cytokines

(361-364). Their expression was differentially regulated in the tumour and

lymph node sites during the progression of tumour growth (365). Further

analysis of genes involved in this pathway identified 6 additional genes

whose expression in normal lung was statistically associated with clinical

staging (Table 4). Among these genes, IL6 (interleukin 6) showed the
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stronger modulation (Table 23). This gene encodes a cytokine implicated in

a wide variety of inflammation-associated disease states. Moreover, high

serum IL6 level was found to correlate with tumour invasiveness, size, and

grade and with clinical stage and survival in patients with gastric (366),

colorectal (367), and breast cancer (368).

TNFSF10 (tumour necrosis factor (ligand) superfamily, member 10),

also known as tumour necrosis factor-related apoptosis inducing ligand

(TRAIL), is a member of the TNF superfamily of cytokines that induces

apoptosis in about 50% of investigated tumour cell lines and play an

important role in tumour surveillance (reviewed in (369». TNFSF10/TRAIL

is a key regulator of inflammatory response (370) and its expression has

been implicated in asthma (371), and a specific haplotype of this gene is

associated with risk of asthma (372)

CCL2 (chemokine (C-C motif) ligand 2), also known as monocyte

chemoattractant protein-1 (MCP-l), has been previously demonstrated to

increase tumour growth and bone metastasis through its chemotactic

activity for monocytes/macrophages and basophiles to tumour sites (373).

Monitoring of CCL2concentration in serum may enable prediction of clinical

course of interstitial lung disease (374). CCL2 is also involved in the

advanced stage of atherosclerotic cerebro-vascular disease (375) and is

associated with poor prognosis in associated small vessel vasculitis (376).

In our study, we found that the expression level of these molecules is

just different in the normal tissue from lung cancer patients with different

clinical stage and our observation that a signature is associated with clinical

stage across heterogeneous population of patients is encouraging and it
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could be an important marker of prognosis following further clinical

validation.

We further investigated the expression of the 11 modulated genes

according to clinical stage in tumour tissue, and, interestingly, all of these

genes except for IDHl were down-regulated in lung ADCA tissue as

compared to normal lung (Table 22); such down-regulation in tumour tissue

paralleled the decreased expression levels of the same genes, except SELE,

in normal lung of stage >1 as compared to stage 1 patients (Table 19).

These findings were also confirmed at level of proteins (Fig. 36).

Our findings suggest that clinical staging of lung ADCA patients may

be genetically modulated, at least partially, and that a transcriptional profile

signature associated with clinical staging is detectable in normal lung tissue

of lung ADCA patients. Such a signature may underlie individual genetic

predisposition to low or high clinical stage. Characterization of the identified

candidate genes whose expression is associated with clinical stage might

shed light on the genetic mechanisms underlying individual predisposition to

tumour aggressiveness and might define new genetic targets for drugs

aimed at countering cancer progression.

Our GWAS and microarray analyses both allowed identification of

candidate genes and pathways associated with lung cancer clinical stage.

Each of these two different approaches have several advantages and

weakness, thus by combining data from the two analyses we could identify

a small fraction of genes putatively involved in lung cancer outcome.

To prioritize the discovery of candidate loci associated with lung

cancer prognosis we carried out an integration of data from GWA with gene
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expression signatures from case-only study. We found 6 SNPs, among those

with P ~ 1 X 10-7 in GWA, that map within genes slightly differentially

expressed (P<0.001, Table 23) in the second microarray experiment.

Among these, ADAMTS9 gene encodes a member of the disintegrin and

metalloproteinase with thrombospondin motifs protein family. Members of

the ADAMTS family have been implicated in the cleavage of proteoglycans,

the control of organ shape during development and angiogenesis. In

particular ADAMTS9 contributes to the inhibition of angiogenesis in the

tumour microenvironment (377). Recently, ADAMTS9 has been

characterized as a novel tumour suppressor gene in esophageal squamous

cell carcinoma and has been shown to be epigenetically silenced in

association with lymph node metastases in nasopharyngeal carcinoma

(378). This gene is localized to chromosome 3p14.3-p14.2, an area known

to be lost in hereditary renal tumours (379). Interestingly, the SNP

rs1799969 on chromosome 19 maps within ICAM1 gene and in LD with the

near ICAM4 gene, two genes belonging to the intercellular adhesion

molecule protein family. Both are down-regulated in normal tissue from

higher clinical stage patients. These genes are candidates for additional

studies that could clarify their role and function related to tumour

progression.

When we focused on regions where we identified the 54 most

associated SNPs with clinical stage (Table 15), we found on the Sentrix

Bead Chip HumanRef_8_v2 (Iliumina) detectable expression of 18 of 30

known genes (Table 24) in normal lung tissue of our lung ADCA patients,

but we found no statistically significant differences in mRNA expression
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levels between the clinical stage I and stage >1 patients at any of the 18

genes (Table 24), suggesting that the SNP candidacy may rest on non-

synonymous variations that are in linkage disequilibrium with the identified

SNPs, or on splicing alternative variants rather than alteration of transcript

regulation.

In order to test whether these two approaches identified common

pathways, DAVID functional annotation tool was used for pathways analyses

of GWAS and microarray data. We found that the top GWAS and

differentially expressed genes were enriched in cell adhesion molecules

focusing in different aspects such as focal adhesion, extracellular matrix and

cell adhesion itself. The involvement of cell adhesion system in cancer

progression is now well ascertained (380). In fact, integrins play an

important role in different aspects of tumourigenesis such as cell

proliferation, cell motility, and apoptosis (381), and cadherins were found

involved in tumour cell proliferation through cyclins and cyclin-dependent

kinases (382). In addition, modulation of cell adhesion was found to be

involved in angiogenesis (383) and to play an important role in epithelial-to-

mesenchymal transition that is thought to be a key step in malignant

transformation (384). This result suggest that functional annotation

analyses using candidate genes identified by GWAS and by gene expression

profiling can help to refine the identification of candidate genes or pathways

associated with a certain phenotype.
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CONCLUSIONS

The results showed in the present thesis indicated that genetic

constitution plays an important role in lung cancer susceptibility and

progression. We suggested and confirmed the relevance of a polygenic

model characterized by additive and interchangeable effects of rare alleles

in the modulation of individual risk of lung ADCA identifying multiple

inherited susceptibility alleles linked to lung cancer. Furthermore, we

detected 22 genetiC variants that together explained a large individual

variation in clinical stage and that were also associated with overall survival,

demonstrating that the individual genetiC constitution may affect clinical

stage of lung cancer patients.

In the second part of this thesis I addressed the critical question of

whether a gene expression profile of normal lung tissue can be associated

with clinical stage in lung adenocarcinoma (ADCA) patients. The results of

such analysis pointed to 11 differentially expressed genes, with FCN3 and

TMEMIOOshowing the best statistical association with clinical stage and the

higher modulation. The same FCN3and TMEMIOOgenes were also >40-fold

down-regulated in lung ADCA tissue as compared to normal tissue.

Moreover, analysis of biochemical pathways pointed to a transcriptional

signature involving cytokines and cytokine receptors. In addition, combining

GWAS and microarray data, we identified cell adhesion as a common

biological function and this new approach can help to refine the

identification of candidate genes and/or functions involved in tumour

development.
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These findings provided evidence that clinical stage may be at least

partially genetically determined as reflected in the transcriptional profile of

normal lung tissue and in the germ line polymorph isms.

The elucidation of the molecular events controlling cancer prognosis

and susceptibility could have a great impact on methods for a better

prediction of lung cancer outcome and diagnosis and on adequate

therapeutic choices. In particular, the identification of the genetic variations

and of genes differentially expressed in inherited constitution is essential

knowledge concerning tumour initiation and progression in lung ADCA

cancers. This should help ultimately to identify new potential target areas

for the cancer therapy, design of new efficient drugs to cure cancer with

personalized chemotherapeutic and preventive strategies, based on

individual genetic constitution.

The identification and subsequent functional characterization of the

genetic factors modulating individual risk of lung cancer and/or associated

to patients' prognosis represents an important step toward a better

understanding of the biological and molecular basis of lung cancer

development and progression.
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