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Abstract 

The main objective of this thesis is to propose new techniques to simplify the interpre- 

tation of newly formed `variables' or components, while reducing the dimensionality 

of multivariate data. Most attention is given to the interpretation of principal com- 

ponents, although one chapter is devoted to that of factors in factor analysis. Sparse 

principal components are proposed, in which some of the component loadings are made 

exactly zero. One approach is to make use of the idea of correlation biplots, where 

orthogonal matrix of sparse loadings is obtained from computing the biplot factors of 

the product of principal component loading matrix and functions of their variances. 

Other approaches involve clustering of variables as a pre-processing step, so that sparse 

components are computed from the data or correlation matrix of each cluster. New 

clustering techniques are proposed for this purpose. In addition, a penalized varimax 

approach is proposed for simplifying the interpretation of factors in factor analysis, 

especially for factor solutions with considerably different sum of squares. This is done 

by adding a penalty term to the ordinary varimax criterion. 

Data sets of varying sizes, both synthetic and real, are used to illustrate the pro- 

posed methods, and the results are compared with those of existing ones. In the case 

of principal component analysis, the resulting sparse components are found to be more 
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interpretable (sparser) and explain higher cumulative percentage of adjusted variance 

compared to their counterparts from other techniques. The penalized varimax ap- 

proach contributes in finding a factor solution with simple structures which are not 

revealed by the standard varimax solution. 

The proposed methods are very simple to understand and involve fast algorithms 

compared to some of the existing methods. They contribute much to the interpretation 

of components in a reduced dimension while dealing with dimensionality reduction of 

multivariate data. 
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Chapter 1 

Introduction and preliminaries 

1.1 Introduction 

When conducting an experiment or observing physical or social phenomenon, one usu- 

ally makes records or measurements on a number of variables on specific observational 

units. The number of variables depends on the objective of the study, the characteris- 

tics of the individual (item or subject) under investigation and so on. An investigator 

will often include as many variables as possible in order not to miss relevant informa- 

tion in the future. As a result, most data sets are high-dimensional. Furthermore, such 

data sets are often characterized by the fact that the measurements are simultaneously 

taken from highly correlated variables, and a large number of variables conveys infor- 

mation that can be conveyed by only few original variables or linear combination of 

them. 

The majority of data sets collected and/or analyzed by researchers in all fields of 

application are multivariate. Sometimes, it may make sense to deal with each variable 

separately, but in the majority of the cases, all or most of the variables are dealt with 
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Chapter 1. Introduction and preliminaries 3 

simultaneously in order to get the maximum possible information. This leads to the 

need for multivariate data analysis. Data sets can include measurements from both 

qualitative and quantitative variables but, in this thesis, we are concerned with the 

data sets from quantitative variables. 

An n-by-p data matrix X is viewed as a collection of n points or observations 

in a p-dimensional space. In most cases n>p but, in many contemporary applica- 

tions, the number of variables is comparable or even much larger than the number 

of observations. Such high-dimensional multivariate data sets may create problems 

in computational time, storage (memory), interpretation of results, visualizing data 

structures and so on. 

A general approach to dealing with a high-dimensional multivariate data set is to 

reduce its dimension to a manageable size, say k (< p), while keeping as much of the 

original information as possible. There are two main approaches to do so - taking a 

subset of k variables or replacing the p original variables by k linear combinations of 

the variables (thereby forming new ̀ variables'). Several dimension-reducing techniques 

employing the latter approach are already available. The most efficient and well-known 

one is principal component analysis (PCA). 

If k G« p, then the reduction of dimensionality alone may justify the use of PCA. 

However, the technique is especially useful if the principal components (PCs) are read- 

ily interpreted. Unfortunately, the PCs are not always easily interpretable, especially 

for those involving a large number of original variables, as each principal component 

consists of a linear combination of all the original variables with nonzero-loadings. 

The classical way of ignoring loadings whose absolute values are below some speci- 

fied threshold while interpreting a PC is found to be misleading. As a result, several 
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approaches have been proposed for simplifying interpretation. 

Modern simplifying methods propose sparse principal components, in which many 

of the loadings of a component are forced to be exactly zero. This can be done by either 

restricting the coefficients of the variables to only a few integer values, or imposing a 

certain optimization criterion which drives some of the component loadings to zero. 

The objective of such methods is to approximate the PCs in such a way that they are 

simpler to interpret, without sacrificing much variance. 

However, sparse components based on existing simplifying methods are either not 

sparse enough or their interpretation is not much simpler than the original components. 

Another difficulty is the adjustment of certain tuning parameter(s) which may be 

subjective or time consuming, due to requiring cross-validation. This thesis contributes 

further to the interpretation of dimension-reducing techniques, especially PCA, by 

proposing simple and fast methods of constructing sparse components. Each of the 

resulting sparse components has, typically, a higher number of zero-loadings than those 

based on existing methods, with a minimal loss of information. Moreover, these sparse 

components are non-overlapping with each other with respect to the variables involved, 

leading to simpler interpretation. 

1.2 Notation 

Some specific notations are uniquely defined in each chapter, but some of them are 

globally used throughout the document. Unless explicitly stated otherwise in a par- 

ticular chapter, n denotes the number of observations (samples) while p denotes the 

number of variables. In general, bold small letters refer to vectors while bold capital 
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letters refer to matrices. A p-vector of variables is denoted by x, while X= (xij) 

denotes an n-by-p data matrix, where xsj represents the value of the ith observation 

on the jth variable. The transposes of x and X are denoted by xT and XT, respec- 

tively. Similarly, a vector of constants is denoted by a bold small letter, say a, and a 

matrix of constants by bold capital letter, say A. A matrix A of k (< p) columns is 

sometimes written as Ak. In each chapter, non-bold capital letters may be used for 

other purposes. For instance, the variance of x is written in short as V(x). 

The covariance matrix of x is denoted by E_ (aij), whose (i, j)th element at.; is 

the covariance between the ith and the jth elements of x when i 54 j, and the variance 

of the ith element of x when i=j. Similarly, the correlation matrix is denoted by 

R= (reu), with rsj denoting the (i, j)th element of R. For simplicity, the mean of each 

element of x is assumed to be zero. 

A p-dimensional real-space is denoted by RP. Sometimes, the dimension of a vector 

or a matrix is given by a subscript. Thus, XnXp denotes a matrix X of dimension n- 

by-p and xp denotes a vector x of dimension p-by-1. The identity matrix of dimension 

p-by-p is denoted by Ip. Vectors of ones and zeros are denoted as 1 and 0, respectively. 

The determinant of a square matrix A is written as det(A), and its trace as trace(A). 

The diagonal elements of A are written as diag(A). However, if A is a vector of 

elements (A,, A2, 
..., A, ), then diag(A) denotes a diagonal matrix. The inverse of A is 

denoted by A-1. 

Random variables and their realizations are not differentiated in this thesis. In 

addition, most discussions will not distinguish between samples and populations, with 

E and R referring to either population or sample. 
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1.3 Outline of the thesis 

Each of the chapters in this thesis can be read as a self-contained article. In general, the 

thesis is organized as follows. Chapter 2 deals with common statistical techniques used 

in dimensionality reduction. It is intended to give a general overview of the techniques, 

and is by no means exhaustive. The chapter begins with a brief introduction to 

principal component analysis (PCA), the most efficient and well-known method. This 

is followed by a related but distinct technique, factor analysis. Other techniques 

briefly discussed in this chapter include linear discriminant analysis, cluster analysis, 

canonical correlation analysis, multidimensional scaling and biplots. 

A literature review of some of the interpretable dimension reduction approaches is 

given in Chapter 3, which mainly targets on the interpretation of PCs. The review 

starts with the simple structure rotation technique, discussed with respect to the 

commonly used varimax rotation criterion. However, the majority of the chapter deals 

with the more recent simplifying approaches, which involve constraining the loadings 

of the components. The remaining part of the chapter deals with subset selection, 

which is concerned with the selection of subsets of variables, in contrast to linear 

combinations of variables such as PCs. 

Chapter 4 proposes a new simple method of deriving sparse PCs. It uses an idea 

from correlation biplots, and so is called sparse biplots (sBarse) component analysis. 

The method uses as input the loadings and variances of PCs, and produces simplified 

loadings for all components simultaneously. The advantages and disadvantages of the 

approach are also discussed. 

Another approach proposed for simplifying the interpretation of PCs is based on 
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clustering of variables. Chapter 5 deals with interpretable PCs where each sparse 

(interpretable) PC is constructed from the data matrix of a cluster of variables. For this 

purpose, a new clustering method, called weighted-variance, is proposed. The resulting 

sparse PCs are also compared with those based on existing clustering methods. This 

method is designed especially for the case where the number of samples (n) exceeds 

the number of variables (p). 

Chapter 6 extends the cluster-based sparse PC approach to the general case with 

p»n or n>p, based on another new method of clustering variables, called semi- 

partition. It is designed especially for microarray gene expression data sets where the 

number of genes (variables) is far larger than the number of samples. 

Unlike the preceding chapters, where the main concern is the interpretation of PCs, 

Chapter 7 proposes an approach for facilitating the interpretation of factor loadings 

in factor analysis. It contributes to the varimax rotation problem, by introducing an 

additional penalty constraint to the original criterion. 

The thesis ends with a short discussion and summary in Chapter 8, where each 

chapter is briefly summarized. Some future research directions are also indicated in 

this chapter. 

The methods proposed in each of Chapters 4 to 7 are applied to different kinds 

of data sets. These include synthetic as well as real data sets of varying dimension. 

The real data sets involve both cases of n>p and p»n. The majority of the data 

analysis is performed by MATLAB programs (MATLAB, 2009), which are written by 

and available with the author. A few programs in R are also used as a supplement. 



Chapter 2 

Dimension reduction in 

multivariate data analysis 

In this chapter, we briefly review some statistical methods which (directly or indirectly) 

involve dimension reduction of high-dimensional multivariate data. Sections 2.1 to 2.7, 

respectively, give a brief review of principal component analysis, factor analysis, linear 

discriminant analysis, cluster analysis, canonical correlation analysis, multidimensional 

scaling and biplots. 

2.1 Principal component analysis 

Principal component analysis (PCA) is the most popular and efficient technique for 

reducing the dimension of a high-dimensional multivariate data. It takes observations 

on p correlated variables and transforms them into new uncorrelated variables, called 

principal components (PCs), which successively account for as much variation as pos- 

sible in the original variables (Jolliffe, 2002; Krzanowski, 1988; Rao, 1964). The term 

`principal component' was first introduced by Hotelling (1933). 

8 



Chapter 2. Dimension reduction in multivariate data analysis 9 

Consider a p-vector of random variables x with a known covariance matrix E. [A 

similar procedure can be followed if the correlation matrix R is used instead of E. ] 

Then, PCA aims to find the linear combinations 

y1=a, Tx, i=1,2,..., p, (2.1) 

which successively maximize the variance 

V(yz) =a Za; 

subject to the constraints 

a,,, ai=land TBC=O, i<ý, 

where a; is a p-vector of constants ail, at2i ... , azp. It has been shown (Jolliffe, 2002) 

that V(y; ) is maximized when ai is the ith eigenvector corresponding to the ith largest 

eigenvalue A; of E. The random variable yj gives the ith principal component of x, 

with the property that the at's are orthonormal and yj is uncorrelated to y2 for any 

i j4 j. Furthermore, A is the variance of the ith PC. It is assumed here that all the 

eigenvalues are distinct, but, theoretically, eigenvalues can be equal. Some problems 

related to PCs with equal variances are discussed in Sections 2.4 and 3.4 of Jolliffe 

(2002). 

The PCs can also be expressed in matrix form. If A= (al, a2,. . ., ap) denotes 

an orthogonal matrix of eigenvectors, and A= diag(al, A2, 
... , Ap) denotes a diagonal 

matrix of the corresponding eigenvalues with Al > a2 >""">A (> 0), then the 

vector y of PCs with the ith element y1 is given as 

Y= ATx, (2.2) 
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subject to ATA = AAT = I,. Note that the diagonal matrix of variances of the PCs 

can be given as 

A= AT EA. (2.3) 

The orthogonality of A leads to an alternative expression for (2.3) as 

E= AAAT, (2.4) 

often called the spectral decomposition. 

The criterion used to find PCs in the above procedure is called variance maximiza- 

tion. Principal components can also be obtained using the singular value decomposi- 

tion (SVD) approach. For a mean-centered n-by-p data matrix X of rank r (< p), the 

SVD is 

X= ULAT 

where U and A are, respectively, n-by-r and p-by-r orthogonal matrices and L is r-by- 

r diagonal matrix of singular values. Thus, A gives the eigenvectors of the covariance 

matrix XTX (and hence the loadings of the PCs), while the diagonal elements of L 

give the square roots of the corresponding eigenvalues. The matrix of PC scores Y 

can be derived from U and L as Y := UL. 

Furthermore, XTX and XXT are both symmetric and have the same non-zero 

eigenvalues Al, A2i ... , Ar. The columns of U give the eigenvectors of XXT correspond- 

ing to the nonzero eigenvalues. As given by Rao (1964), if aj and ui are the columns 

of A and U, respectively, corresponding to the ith eigenvalue as, then ai = ai 1/2XTU{ 

and ui = .i 
1/2Xai for i =1,2, ... , r. 

The orthogonality of the matrix of loadings and the uncorrelatedness of the com- 

ponents are the two properties that make PCs so attractive for application. Despite 
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these nice properties, Gower (1967) discusses some critiques of PCA. The first critique 

is related to the scaling on which the variables were measured. There is no problem 

with regular PCA if all variables are of same type (e. g. lengths) measured on the same 

scale (e. g. cm). But, if the variables are measured on different units, then a change in 

the scales will lead to different PCs. Therefore, each variable should be standardized 

to a dimensionless quantity (for instance, dividing by its standard deviation) so that 

the sum of squares and cross products matrix XTX becomes the correlation matrix. 

The other critique addresses the fact that the sum of squares of the loadings for the 

ith PC should be unity. In the absence of this restriction, the variance of y, can be 

made as large as we want by simply enlarging the loadings. These and other more 

critiques are detailed in Gower (1967). 

In practice, the first k (« p) PCs usually account for most of the variation in the 

original p variables, and hence the original data set can be reduced to a set consisting of 

n measurements on k principal components (hence reducing dimensionality). There are 

a number of techniques suggested for choosing the number k of principal components 

to retain. The rule constructed by Kaiser (1960) (based on the correlation matrix) 

suggests that any PC with variance A<1 shouldn't be retained as it contains less 

information than one of the original variables. However, Jolliffe (1972) argues that 

A=1 as cut-off level retains too few components, and hence suggested to use Ai = 0.7. 

Another technique discussed in Cattell (1966) is to use a scree plot, where the number 

of principal components to retain is inferred from the `elbow' of the scree graph. 

Alternatively, one can use the cumulative percentage of total variation, which suggests 

to retain the smallest number of principal components whose cumulative contribution 

of variation 
1 
a{ exceeds . 80 or more. More discussion on the approaches to the 
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estimation of k is given in Jolliffe (2002). 

A geometrical interpretation of PCs is given as follows (Gower, 1967; Pearson, 

1901). Let the sample values of the n points in a p-dimensional space be given as 

x11 ... xi 

X= , 

xnl ... xnp 

where each row vector represents a point. Denote the ith point by P2 (i = 1, ... , n). 

For simplification, assume that every variate is centered, i. e., the origin of the n 

points Ps is at the centroid (or center of gravity) P. The total sum of squares of 

the sample points from the centroid is En 
1(PP1)2. If Qi is the projection of Pi 

onto the first eigenvector of the sum of squares and products matrix XTX, then 

J: (PP, )2 = E(P2Qt)2 + E(PQ2)2 using Pythagoras' theorem. As the total sum of 

squares E(PPt)2 is fixed and E(PtQ; )2 needs to be minimized, then , 
(PQa)2 must 

be maximized. This last term gives the variance of the linear combination with coef- 

ficients of the eigenvector corresponding to the maximal eigenvalue of XTX (see also 

Krzanowski (1988)). Thus, PCA identifies a line which gives the best fit to the n 

points. Such a line minimizes a criterion involving the sum of the squares of the per- 

pendicular distances from each of the points Pi onto the line. Such best-fit line passes 

through the centroid and its direction cosines are one of the eigenvectors of E= XTX. 

2.2 Factor analysis 

Factor analysis (FA) is another technique that involves dimension reduction. The 

essence of FA is that a set of p observed random variables x= (xi) x2,..... xp)T are 
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expressed (with error) as a linear function of k (« p) hypothetical (latent) random 

variables called common factors. Let f= (fl, f2, - - -, fk)T denotes the vector of com- 

mon factors. Then, the factor model is expressed as 

X=rf+E, (2.5) 

where I' is a p-by-k (constant, but unknown) matrix of factor loadings, and e is a 

p-by-1 random vector of errors or specific factors. The commonly used assumptions of 

the factor model are 

E(x) = E(f) = E(¬) = 0, 

and 

E(ffT) = I,,, E(ffT) = 0, and E(ccT) = W, 

where E(. ) stands for "expected value", and %F is a diagonal matrix of elements 

That is, the common factors are uncorrelated with each other and 

are of unit variance, and the error terms are also uncorrelated with each other and of 

the common factors. Thus, the covariance matrix ' of the error terms is diagonal. 

Taking these assumptions into consideration, the covariance matrix of x is modeled 

by 

E= E(x«T) = rrT + lp. (2.6) 

Both r and IY in (2.6) are unknown parameters to be estimated from experimental 

data. There are different methods of estimating the parameters IF and ' (see, for 

instance, Lawley and Maxwell (1971) and Mulaik (1972)). 

Given the matrix E and assuming that IF is uniquely defined with positive diagonal 

elements, then E- ui (also called the reduced covariance matrix) is a rank-k covariance 
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matrix of x, where each diagonal element represents the part of variance due to the k 

common factors. This is called the communality of the variate (Lawley and Maxwell, 

1971). 

In deriving the observed variables as a linear combination of the common and the 

specific factors, the matrix of factor loadings I' gives weights assigned to the common 

factors. If all the factors are assumed to be uncorrelated to one another, then F is 

equivalent to the matrix of correlation between the common factors and the observed 

variables. In fact, if R f, represents the matrix of correlations between f and x each 

with unit variance, then the assumptions of the factor model leads to 

Rf, = E(xfT) = E[(rf + )fr] = FE(ffT) = r. 

In this sense, a larger element ryj of r corresponds to a high correlation between the 

ith observed variable and the jth common factor. 

Some authors consider PCA as a special case of FA, but the two are quite distinct 

techniques (Jolliffe, 2002). Both FA and PCA use covariance or correlation matrix of 

variables, but with different aims. PCA gives more attention to the diagonal (vari- 

ances) of the matrix, while FA gives more attention to the off diagonal (covariance or 

correlation) values. No hypothesis or assumption needs to be made about the vari- 

abler in PCA, while FA is based on a model with particular assumptions about the 

parameters. In addition, PCs are linear combinations of the original variables while in 

FA, the original variables are linear combinations of hypothetical variates or factors. 

Despite the differences between the two, FA is frequently used as an alternative to 

PCA for reducing the dimension of large data sets (Krzanowski, 1988, Sec 16.2.8). It 

reduces the p manifest variables to a relatively small number k of uncorrelated common 
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factors assuming that the FA model holds, which is usually left unchecked. 

2.3 Linear discriminant analysis 

Discriminant analysis is an exploratory multivariate technique which allows the re- 

searcher to study the difference between two or more existing groups (or populations 

or classes) of observations by constructing discriminant functions or rules that dis- 

criminate between the groups best. 

Suppose wehavea random sample x1, x1, ... , xn, of n p-dimensional observations 

from a population with probability density function f (x). Let the observations be 

divided into g groups a priori, say G1, G2, ... , Gg (g > 2), each containing ni ob- 

servations, with ý9 1 ni = n. Assume that with each group there is an associated 

probability density function fi(x) on RP, i=1,2,.. ., g. Given that an object is 

known to come from one of the g groups G;, the aim is to allocate the object to this 

group on the basis of p measured characteristics x associated with the object. The 

allocation requires a discriminant (or allocation) rule, which also requires dividing RP 

into g disjoint regions R1, R2,.. -, R9. Then the discriminant rule is to allocate x to 

Gi if xER. When the groups are known, the discrimination can be made either 

using the maximum likelihood discriminant rule or the Bayes discriminant rule, under 

additional distributional assumptions (Mardia et al., 1982, Chapter 11). 

Fisher's linear discriminant analysis (LDA) looks for a discrimination rule without 

involving any distributional assumption about the population. Let x; j denotes the jth 

individual from the ith group. The sample mean vector for the ith group is given by 

x; =n ý3 `ixj and the overall mean vector is given by x=n ý9 
1 nix,. Assuming 
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the same covariance matrix in each group, the pooled within-group scatter matrix is 

defined as 
9 ni 

`SW = ij lxtij 
(2.7) 

i=1 j=1 

and the between-group scatter matrix is defined as 

9 

SB = ni(xs (2.8) 

Fisher suggested using the ratio of the between-groups sum-of-squares (SB) to within- 

groups sum-of-squares (Sw) to determine the degree of separation between the groups. 

However, we can reduce the multivariate observations xis to univariate observations 

yij = WTxij and compute the usual sums of squares: 

E E(Yij 
- 9i)2 = wT SWca 

ij 

and 

'E 
- 9)2 = WT SBw. 

Now the first step in LDA is finding a transformation vector w so that the ratio 

WTSBW 

WT SWW (2.9) 

is maximized. This can also be equivalently given by a generalized eigenvalue problem: 

(SB-ASW)w=0 

or 

(S-WS$-AI)w=0 

Then, A must be the largest eigenvalue Al of S iW SB with the corresponding eigen- 

vector w= wl. That means, wl gives the direction in the p-dimensional data 
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space along which the between-group variability is greatest relative to the within- 

group variability. Similar procedures can be used to obtain the remaining directions 

w21w3, ... , wp (eigenvectors of Siy SB) corresponding to the eigenvalues A2, A3, ... , /\p, 

by successively maximizing (2.9) subject to having uncorrelated new variables. Let 

11 = (W11 w2, ... , Wk) with k< min(p, g- 1) and consider the Y1j = SZXj. Then the 

first k elements of yid are the first k discriminant coordinates (Seber, 2004). 

In this sense, LDA provides a low-dimensional representation of a data matrix such 

that the true differences between the groups in the original space are reproduced as 

accurately as possible (Krzanowski, 1988). The matrix Y= X1 is a linear transfor- 

mation of X into a new nxk data space Y and fl is the transformation matrix that 

makes the groups to be best separated in the new space Y with respect to the criterion 

(2.9). Usually k is required to be considerably smaller than p, say k=2. However, 

unlike PCA where the principal component loadings A are orthogonal in the original 

space, ATA = I, the discriminant variate loadings are orthogonal in the Sw-space, 

SZTSyi. SZ = I, which gives non-orthogonal projection in the original space. 

2.4 Cluster analysis 

Cluster analysis is a multivariate technique which groups objects (variables or items) 

into an unknown number of clusters based on certain measures of similarity or dis- 

similarity (Everitt, 1974; Hartigan, 1975; Späth, 1980; Romesburg, 2004; Seber, 2004). 

The main goal of cluster analysis is to search the data for `natural' groupings of the 

objects, so that objects within the same group are more homogeneous. That is, it 

groups objects into clusters such that pairs of objects from the same cluster are more 
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similar to each other than are pairs of objects from different clusters. Such homogene- 

ity may help to identically treat the objects in the same group for the purpose of some 

further analysis, compared to the whole heterogeneous data set. The method can also 

be used in the absence of a clear-cut group structure in the data, to separate a set of 

objects into constituent groups so that members of any group differ from one another 

as little as possible based on a given criterion. 

Clustering techniques can be broadly divided into two as hierarchical and non- 

hierarchical (partitioning). In the hierarchical clustering technique, the clusters are 

themselves classified into groups, the process being repeated at different levels to 

form a `cluster tree'. This technique is characterized by either a series of successive 

merging or successive divisions, leading, respectively, to agglomerative (bottom up) 

and divisive (top down) hierarchical methods. The agglomerative hierarchical method 

starts with as many groups as objects, and a pair of groups are successively fused 

together until a single group consisting of all the objects is formed. The divisive 

hierarchical method works in the opposite direction: it starts with a single group 

consisting of all the objects, and each group is successively divided into two groups 

until each object forms a group. In the non-hierarchical clustering techniques, the 

objects are split into overlapping or non-overlapping clusters. 

Clustering requires to define a measure of similarity or dissimilarity (distance) 

between each pair of objects in order to produce a simple group structure from a 

complex data set. If items are to be clustered, the proximity measure is usually 

given by some sort of distance, whereas variables axe usually grouped on the basis of 

similarity measures, such as correlation coefficients or measures of association. 

Suppose xi = [; 1, xi2, ... ' x ]T and xi' = [xil1, Xil2i .... Xi, p]T are two vectors of 
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observations (or two points in a p-dimensional space), which correspond to two objects 

described by the rows of X. The most common dissimilarity measure for measuring 

the nearness of the two points is the Euclidean distance. From the general L2-norm 

of a vector 
i 

p2 
11--lý1i- x( xýxtf 

=1 

the Euclidean distance between xj and x,, is 

11X4 - X-112 = (xi - x;, )T(xý - x1, ). 

A number of different dissimilarity measures have been proposed in the literature. 

In the agglomerative hierarchical clustering technique, the most common measures 

are the single linkage (minimum distance or nearest neighbour), the complete linkage 

(maximum distance or furthest neighbour), and the average linkage (average distance). 

Let D= (d; 3) denotes the n-by-n symmetric matrix of dissimilarities and Cl and C2 

denote two clusters. In the single linkage context, the distance between Cl and C2 is 

given by the smallest dissimilarity between a member of Cl and a member of C2; that 

is, 

d(c, )(c, ) = min{du� :uE Cl, vE C2}, 

while for the complete linkage method the distance is given by 

max{du� :uE C12 VE C2}. 

In the average linkage method, the distance between two clusters is defined by the 

average distance between all pairs of items where one member of a pair belongs to 

each cluster. Mathematically, this is given by 

d(c1)(cz) =1EE duv, 
nin2 

UEC1 VEC2 
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where nl and n2 denote the number of objects in Cl and C2, respectively. 

Most clustering techniques are designed for grouping observations rather than vari- 

ables (Friedman and Rubin, 1967). However, we are interested in clustering variables, 

where the correlation coefficients between the variables are the natural similarities. 

Pairs of variables with relatively large correlations are considered to be ̀ close' to each 

other, while pairs of variables with relatively small correlations are considered to be 

`far away' from each other. Thus, each cluster usually contains highly correlated vari- 

ables, with each variable corresponding to one and only one cluster; i. e., the clusters 

are assumed to be non-overlapping with respect to the variables. 

Consider a p-vector x of variables with correlation matrix R. The following algo- 

rithm summarizes the hierarchical linkage method for clustering variables. 

1. Start with p clusters, each containing a single variable. 

2. Search the matrix R for the most correlated (least dissimilar) pair of clusters. 

Let these clusters be I and J with correlation coefficient rjj. 

3. Merge clusters I and J and label the newly formed cluster as I J. Update 

the entries in the correlation matrix by first deleting the rows and columns 

corresponding to clusters I and J, and then adding a row and column giving the 

`correlations' between cluster IJ and the remaining clusters. 

4. Repeat steps 2 and 3a total of p-1 times. Record the identity of clusters that 

are merged and the coefficients at which the mergers take place. 

In step 3, the merging of two clusters is based on one of the distance measures (single, 

complete, or average linkages), but using rid instead of d j, which switches Max and 

Min in single and complete link. 
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The most popular non-hierarchical clustering method is the k-means method. It 

starts by partitioning the items into k (< n) initial clusters (where k is fixed a priori), 

and proceeds with re-assigning each item to a cluster whose centroid (mean) is nearest, 

until no more reassignments take place. The method can also be adapted to grouping 

the p original variables into k (< p) clusters. 

Dimension reduction in cluster analysis can be related to the notion of variable 

selection. If we wish to reduce the number of variables without sacrificing much 

information, then the variables are first grouped into non-overlapping clusters and then 

one variable is retained from each cluster. In addition, cluster analysis is connected 

with PCA in that for well-defined clusters there is one high-variance PC and one or 

more low-variance PCs associated with each cluster (Jolliffe, 2002, pp. 213). 

2.5 Canonical correlation analysis 

Suppose that a p-vector random variable x is divided into a pl-vector xi and a p2- 

vector x2, where pl + p2 = p. The objective of canonical correlation analysis is to 

identify the canonical correlation vectors al and a2 such that the correlation between 

the linear combinations (also called canonical variables) q5 = ai xl and cp = a2 x2 is 

maximized (Mardia et at., 1982, Chap 10). 

Assume xl and x2 have means µl and L2i and that the covariance matrix E of x 

is correspondingly partitioned as 

E11 Eia 

dal E22 

where E;; (i = 1,2) is a pi x pi covariance matrix corresponding to xi and E12 = E21. 
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Then, the squared correlation L02 between the two linear functions 0 and cp is given by 

2 (a1 T E12a2)2 
(ai Eiiai)(a2 E22a2) 

Assuming that ai EllaI = a2 E22a2 = 1, it is found (Seber, 2004, Sec. 5.7) that the 

maximum value of p2, say ei, is the largest eigenvalue of Eil E12E22 E21 (equivalently, 

of E22 E21Ejj 112). This maximum value occurs when al = all), the eigenvector of 

F1 E12E22 Eli corresponding to ,, and a2 = a21ý, the corresponding eigenvector of 

X22 E21EJJ E12. Here, --Q-2, is termed the first canonical correlation between xl and 

x2i while 4(1) = a11)Txi and WM = a21ýTx2 are the first canonical variables. The 

second canonical variables, 0(2) = a12)Txi and W(2) = a22)Tx2i are chosen so that 

0(2) is uncorrelated with ¢(l), cpi2i is uncorrelated with cpili, and 0(2) and cp(2) have 

maximum squared correlation. The procedure can be extended to choose the 

jth pair of eigenvalues and eigenvectors so that ýpJ2 
gives the jth maximum canonical 

correlation, and OUl = aý'1Tx1 and cpýl = a2 )Tx2 
give the jth canonical variables, j= 

1,2, ... , k, with the constraints that OUl is uncorrelated with 00) (1 = 1,2, ... ,j- 1) 

and cp(j) is uncorrelated with w(') (l = 1,2, ... ,j- 1). Thus, the procedure may help 

to reduce xl and x2 to k-dimensional vectors Ok 0(2), ... , q(k)) and Wk = 

(spill, (p(2),... , ýO(C)), respectively. 

2.6 Multidimensional scaling 

Recall from Section 2.1 that PCA is a dimension-reducing technique which replaces the 

n p-dimensional vectors x1, x2,. - ., xn by n k-dimensional vectors (principal compo- 

nents) yl, yz, ... , yn, where k is much smaller than p. Multidimensional scaling (MDS) 

is another dimension-reducing technique which displays high-dimensional multivariate 
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data in a low-dimensional space. It uses the interpoint distances du� =11 xu - x� ') 

between each pair of objects (u, v), and tries to find a set of k-dimensional vectors 

yY with interpoint distances du v =11 yu - y� 11 such that du� ,: d'u� for all u, v. The 

distances du,, are often given by the proximity (similarity or dissimilarity) measures 

between pairs of objects. There are n(n - 1)/2 such proximity measures available, 

which form the data set analyzed by MDS. Generally speaking, MDS covers any tech- 

nique that produces a graphical representation of objects from multivariate data (Cox 

and Cox, 1994). 

The `classical' solution to MDS is as follows. Let D= (du,, ) be a matrix of dissimi- 

larities with duu =0 and du� = d�u > 0. Define a matrix T= (tu�) where tug, = -1d2 2� 

and 

Mn TMT, 

where Mri = In - (1/n)1n1n is the centering matrix. The matrix D may or may not 

be Euclidean, but it is shown (Gower, 1966; Seber, 2004, p. 236) that D is Euclidean if 

and only if T is positive semidefinite. When D is Euclidean, the configuration y; from 

the classical method of multidimensional scaling is closely connected with PCA. Once 

the matrix T is obtained, the next step is to extract the k largest positive eigenvalues 

of T with corresponding normalized eigenvectors Yk = (yl, y2, ... , yk). The n rows 

of Yk are termed the principal coordinates in k dimensions (Gower, 1966). Hence, 

the classical MDS solution is to choose the configuration in Rk whose coordinates 

are determined by the first k eigenvectors of T. Such geometrical representation of 

proximity data is termed ordination. 

The classical scaling method can also be applied to the matrix of similarities S= 

(su�) where (0 < s,,, < 1) and su� = s,,,,. To apply the above procedure, the similarities 
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can be converted into dissimilarities using some transformation, e. g. dl,, 
v _ (s. -2su�+ 

s,,,, )1/2, and tu� - suv is used in matrix T. 

As given above, the starting point of principal coordinate analysis is an n-by-n 

matrix of (dis)similarities. If the procedure deals directly with the n-by-p original data 

matrix X, the principal coordinate analysis is related to PCA (Borg and Groenen, 1997; 

Jolliffe, 2002). Suppose E denotes the sample covariance matrix. Then the (nonzero 

and distinct) eigenvalues of T= MnXXTMn are also the nonzero eigenvalues of 

nE = XTMnX. Mardia et al. (1982) show the duality between principal coordinate 

analysis and PCA, and state that the principal coordinates of X in k dimensions are 

given by the centered scores of the n objects on the first k PCs (Mardia et al., 1982, 

pp. 405). 

2.7 Biplots 

The concept of classical biplots (also called principal component biplots (Jolliffe, 2002)) 

was first developed and popularized by Gabriel (1971), but Gower and Hand (1996) 

reviewed much subsequent literature and considerably extended the idea. Consider an 

n-by-p centered data matrix X of rank r. Biplots provide plots of the n observations, 

together with the relative positions of the p variables, in fewer than r dimensions. The 

biplots construction begins with finding n row vectors g; and p row vectors hJ such 

that each element in X is represented by their inner product. That is, if x; j is the 

element in the ith row and the jth column of X, then 

xi; =g; h;, i=1,..., n; j=1,..., p. (2 T 
. 10) 
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The SVD of X is helpful in deriving biplots. Suppose 

X= ULAT (2.11) 

where U is an n-by-r matrix of rank r with orthonormal columns us, A is a p-by-r 

matrix of rank r with orthonormal vectors aj, and L is an r-by-r diagonal matrix of 

elements £1 > £2 >_ ... > 6,. > 0. Define L6, a diagonal matrix with elements PQ for 

0< ,ß<1 (j = 1,2, ... , r). Then, X can be factorized into an n-by-r matrix G and a 

p-by-r matrix H as: 

X= ULAT = UL6L'-ßAT = GHT (2.12) 

where G= UM and HT = L'-OA T. Thus, the vectors g= and hý are the rows of G 

and H, respectively, each with r elements. Both G and H (called factors) are of rank 

r. The factorization can be made unique by orthogonal transformation (rotation or 

reflection), or by imposing a particular metric on the columns of G and H. 

In a matrix of rank 2, gs and hj are vectors of length two. Gabriel (1971) repre- 

sented the np elements of X by the plots of the n+p vectors gi and h3, and called 

the plot a `biplot' to stress the joint display of the row and column effect vectors in a 

r-dimensional space. 

For any higher-rank matrix (that is r> 2), approximate biplots can be obtained 

after approximating the matrix by a rank-2 matrix. If X(2) denotes a rank-2 approxi- 

mation to the data matrix X, then 

X= GHT ; Zzl G(2)H(2) = X(2), (2.13) 

where G(2) = (ui, u2) and H(2) = (4lal, £2a2). Alternatively, this can be given as 

G(2) _ (¬lul, £2u2) and H(2) = (al, a2). In the latter case, G(2) gives the values of 
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the first two principal components and H(2) gives the coefficients that determine the 

PCs (the eigenvectors). The idea can be extended to the case where the matrix is 

approximated by rank-k (k < r), in which 

X G(k)HT (k), (2.14) 

where G(k) and H(k) contain the first k columns of G and H, respectively. But, for 

k>2, the graphical representation is less clear. 



Chapter 3 

Interpretable dimension reduction 

Chapter 2 gave a brief overview of the commonly used techniques for reducing the 

dimension of a multivariate data set. Most of the techniques produce solutions in the 

form of linear combinations of the original variables. The most popular and efficient 

method of this type is PCA. 

Principal components (PCs) are really useful if they can be easily interpreted. 

However, each PC is a weighted sum of all the original variables, which can make 

their interpretation difficult, ambiguous and/or even impossible. The process of inter- 

preting components in a multidimensional space is sometimes referred to as reification 

(Krzanowski, 1988). 

Traditionally, PCs are considered easily interpretable if there are plenty of small 

component loadings indicating the negligible importance of the corresponding original 

variables. Thus, the `classical' way for PCs simple interpretation is to ignore loadings 

whose absolute values are below some specified threshold. But, as Cadima and Jolliffe 

(1995) argue, ignoring small-magnitude loadings in the interpretation of PCs can be 

misleading, especially for PCs computed from a covariance matrix. Chipman and Gu 

27 
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(2005) define an interpretable component as one having many of its coefficients zero 

(and hence forming a sparse component) or taking only a few distinct values. In fact, 

as Cadima and Jolliffe (2001) describe, it is difficult to envisage criteria that explicitly 

define interpretability. 

In this chapter, we give a literature review on some of the approaches proposed 

towards interpretable dimension reduction, especially in relation to PCs. The ap- 

proaches are classified and presented in three main categories - rotation, constrained 

optimization and subset selection. It might be important to note here that only PCs 

have the property of orthogonality and uncorrelatedness. Any other alternatives or 

approximations to PCs do not retain either one or both of these properties. 

3.1 Rotation 

Simple structure rotation (Jolliffe, 2002) is historically the first method to aid the 

interpretation of PCs. It is simply a change of the coordinate axes according to a 

certain simplicity criterion. Suppose that the number of PCs to retain and rotate is 

decided to be k. Rotating a p-by-k loading matrix A of the first k PCs is made by 

post-multiplying it by an orthogonal rotation matrix Q: 

B= AQ. 

Then, B gives the matrix of rotated loadings. The rotation problem is to find Q based 

on some rotation criterion. 

The most popular rotation criteria are varimax and quartimax. These are designed 

to drive the loadings of a component towards 0 or towards the maximum possible 

absolute value (which is 1 for normalized loadings). For the commonly used varimax 
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rotation (Kaiser, 1958), Q is chosen to maximize 
kp1Pf( 

B) _- 

(bZ)2] 
(3.1) 

l=1 j=1 j=1 

where bj, is the (j, 1)th element of B. The varimax criterion was initially introduced in 

factor analysis (Bernaards and Jennrich, 2005; Browne, 2001; Kaiser, 1958), and later 

adapted to PCA (Jolliffe, 2002). In PCA, if normalized loadings are rotated, then 

Eß_1 býj = 1, and the criterion (3.1) reduces to 

kpk 
f(B)=b1--. (3.2) 

! =1 j=1 

There are, however, some drawbacks in the rotation approach to PCs (Jolliffe and 

Uddin, 2000; Jolliffe et al., 2003). The main drawback is that the rotated loadings are 

usually still difficult to interpret. In addition, either the orthogonality of the vectors of 

component loadings or the uncorrelatedness of the component scores are, inevitably, 

lost after rotation. Furthermore, different choices of normalization constraints result 

in different solutions. To this effect, Jolliffe (1995) discusses the effect of three different 

normalization constraints: aTaj _A (the ith eigenvalue), st a{ =1 and a1Ta, = %ý 1, 

where a; denotes the ith column of A. The first normalization constraint results 

in non-orthogonal rotated loadings and correlated rotated components. The second 

constraint results in orthogonal rotated loadings but correlated components, while 

the third constraint results in uncorrelated rotated components but non-orthogonal 

loadings. 

3.2 Constrained methods 

As a result of the drawbacks of the rotation approach, many constrained methods have 

been proposed for producing simple PCs. Some of these are briefly outlined below. 
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3.2.1 Restricting the values of loadings 

Hausman (1982) proposes a simplified version of PCs in which the weights (or loadings) 

can take values from some small set, like {-1,0,1} or {1,0}. For this purpose, he 

used an optimisation technique called the branch-and-bound algorithm, which works 

as described below (Hand, 1981). 

Suppose a problem has a large set, say S, of possible solutions and the aim is to 

find xES which optimizes a criterion J= J(x). Assume we wish to maximize J. 

Choose (at random) an element y to provide an initial upper bound. Suppose that we 

are examining a subset Si with upper bound of J denoted as Ji which is greater than 

the current maximum J(y) (so that we can not reject Si). Then the branch-and-bound 

algorithm works as follows: 

1. Split S into Sl, ... , Sq. 

2. Seti=1. 

3. Find an upper bound Ji on Si or if Si is a single element, z, evaluate it to give 

J; = J(z). 

4. If JJ < J(y), go to (5); otherwise, go to (7). 

5. We can reject Si. If Si is the last subset of S go to (6); otherwise, set i to i+1 

and go to (3). 

6. Now all subsets of S have been evaluated or rejected (i. e., either xES which 

maximizes J(x) has been found or there is no element of xES such that 

J(x) > J(y)). 
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7. We can not reject Si. If Si is a single element go to (8); otherwise, go to (9). 

8. Now the single element Si =z is a better solution than y, so replace J(y) by 

J(z). If Si is the last subset of S go to (6); otherwise, set i to i+1 and go to 

(3). 

9. Si is not a single element so we must consider its elements, again by branching 

and bounding. So, set S +- Si and go to (1). 

The branch-and-bound algorithm searches for a single-element solution xES that 

optimizes the criterion J(x) by partitioning S into different subsets, Si. It starts by 

selecting an element y at random so that J(x) is compared to J(y). The algorithm 

repeats until a solution with an optimal value has been found or none of the elements 

give better result than a random value. Step 9 shows that the whole algorithm should 

repeat when the current solution still contains more than one element. Step 6 gives 

the conditions under which the whole algorithm comes to an end. 

Let v denotes a p-dimensional vector of parameters. Hausman (1982) defines the 

vector v as 

at 

for some real number a and some vector t=( t1 ,... , tp) with elements tj all chosen 

from S= {-1,0,11. If each element oft is a member of S, then we say that tE 5(P). 

For a given data matrix X, let f (X; v) be the objective function and let g(X; v) =0 

give some constraints on v. Then the interest is to solve the optimization problem 

max f (X; at) such that g(X; at) =0 and tE 5(P). (3.3) 
t, a 

Hausman (1982) indicated that the above constrained approach can be applied to 

such statistical analyses as PCA, LDA, canonical correlation analysis and multiple 
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regression. In the case of PCA, it maximizes the variance and the first constrained 

principal component (CPC) is yl = äi x, subject to the constraint that äl = at for 

some tE S(). A branch-and-bound algorithm is used to determine äl. The second 

CPC is given by 92 =A ; x, but unlike the unconstrained PCA, d, is not necessarily 

orthogonal to ä2. The vector ä2 may be found by substituting the partial correlation 

matrix of x given yl for R and then repeating the procedure used to find the first 

CPC. This may avoid the two vectors being equal. 

Vines (2000) proposed an iterative algorithm called a ̀ simplicity preserving' trans- 

formation that produces simple components from a variance-covariance matrix as an 

approximation to the PCs, where the coefficients are restricted to integers. The algo- 

rithm starts with a pair of orthogonal directions, say dl and d2, in a p-dimensional 

space, and searches for a linear transformation that preserves the orthogonality of the 

directions 

t(Vi7 
&'2) = (di, d2)P with p=1 

2ý 

-ti 

where 01 = di dl, and c2 = d2 d2. If E is the variance-covariance matrix of the data 

with respect to the original axes di and d2, then the variance-covariance matrix of the 

data with respect to the new axes ml and v2 is E* = PTEP. In addition, if dl and d2 

are vectors of integers, then vl and v2 will also be vectors of integers provided that 

the values of ß are restricted to /ß = i/2q or /3 = 24/i, i= -2q, -24 + 1, 
... , 29. This 

results in 

vi = 29d1 + 29ßd2 

ißl<_1, 
vZ = 29ß4d1 - 29cid2 

vi = 2gd1/ß + 24d2 
IQI>1. 

v2 = 244d1 - 24t d2/, Q 

Vines (2000) generalized the above simplicity preserving transformation to p orthog- 
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onal simple directions based on Jacobi's method. Based on simple examples, q=0 is 

found to give good results. The usual case is that the first few resulting components 

(those with higher variances) are simpler than the later components, with respect to 

the magnitudes of the integer loadings. 

An alternative simple component analysis is proposed by Rousson and Gasser 

(2004), who partition components into two as block (those having the same sign for 

all non-zero loadings) and difference (those having some strictly positive and some 

strictly negative loadings). One motivation to their simple component approach is 

that when a correlation matrix has an approximate block structure with b blocks, 

then b of the principal components might be replaced by b block components. They 

used an explicit definition of simplicity rather than optimizing a criterion of simplicity 

to obtain a simple loading structure. For this purpose, they set some conditions to be 

satisfied in relation to the b block and the k-b difference components. 

In addition, Rousson and Gasser (2004) defined different optimality criteria in rela- 

tion to the percentage of variance explained by components. If R denotes a correlation 

matrix of a p-vector of random variables x and V= (v1i v2, ... , vk) is apxk matrix 

of loadings, then the optimality criterion recommended by Rousson and Gasser (2004) 

is given by 

trace(VTRV) - >k 
Z v; Rv(, 

_1)(výt_1ýRv(_l))-ivýt_1ýRvi Opt(V) 
trace(Ak) 

where Ah denotes a diagonal matrix containing the first k eigenvalues of R. 

R. ousson and Gasser (2004) described a two-stage algorithm for obtaining the k 

simple components. On the first stage, the p variables are classified into b disjoint 

blocks, each corresponding to an approximate block structure in the correlation matrix. 
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An agglomerative hierarchical procedure is used to cluster the blocks. On the second 

stage, the simple difference components are defined. For this purpose, they use the 

fact from PCA that the jth eigenvector of R is equal to the first eigenvector of the 

matrix 

R- RAj-, (A ARA; -, 
)-'Aj 1R. 

To make the simple components close to PCA, the jth simple component (or the 

(j - b)th simple difference component) is obtained by regressing the original variables 

on the first j-1 simple components and computing the first principal component of 

these residual variables. 

Chipman and Gu (2005) introduced three classes of constraints on the coefficients of 

a PC for the sake of interpretability: homogeneity, contrast and sparsity. Homogeneity 

refers to the case where the coefficients are constrained to take only three distinct 

values, 0 or ±c, for the ith direction vi such that vä vi = 1. Among all possible vi, 

the best one can be obtained by either minimizing the angle to the ith PC direction, 

arccos(sTvj), or (equivalently) maximizing the inner product a, Tv over {-c, 0, c} 

values, where a, represents the ith PC direction. The search algorithm works in 

the following way: among all possible vi with m non-zero elements, identify the m 

elements of a; with the largest absolute values and set the corresponding elements of 

vi to f1/y, matching signs with that of a,. All other elements of vi are set to 0 

with v; v; = 1. Repeat this procedure for m=1,2, ... , p. Then, the v; closest to aj is 

identified. Similarly, the contrast constraint refers to the case where the coefficients of 

the ith direction vi take the values -cl, 0, and c2 such that vi 1,, =0 and vi vi = 1. 

The sparsity constraint is an attempt to set as many coefficients to zero as possible. It 

was approached by minimizing the angle (0) between the sparse component (vi) and 



Chapter 3. Interpretable dimension reduction 35 

its corresponding principal component directions (a=). Since the angle is minimized 

when vi - a, a criterion 

Cl = 9/(ir/2) + am/p 

is introduced to be minimized over vi and m, where m (the number of nonzero coeffi- 

cients) is added as a penalty term, and i is a tuning parameter. 

The idea of Chipman and Gu (2005) is further studied and elaborated by Anaya- 

Izquierdo et at. (2010). The approach is developed in such a way that each eigen-vector 

is replaced by a simple vector, close to it in angle terms, whose entries are small integers 

while preserving orthogonality. It is an exploratory approach, where a range of sets of 

pairwise orthogonal simple components are systematically obtained, from which the 

user may choose. 

3.2.2 The simplified component technique 

Jolliffe and Uddin (2000) propose a method called the simplified component technique 

(SCoT) as an alternative to rotation techniques in PCA 
. 
If f (vi) denotes the varimax 

simplicity criterion given by (3.1) for a single factor vi, and V(v, ) is the variance of 

the lth simple component vt x, then the SCoT successively maximizes 

V 
(vj) +f (1/t) (3.4) 

subject to v7 vi = 1, and (for l> 2), v= vl = 0, i<1, where ý is a simplic- 

ity/complexity parameter. 
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3.2.3 A modified principal component technique based on the 

LASSO 

Jolliffe et at. (2003) develop a modified PC, called the SCoTLASS, based on the LASSO 

(Tibshirani, 1996). The SCoTLASS introduces extra constraints 

P 
EIaijI <t, fori=1,2,..., p, (3.5) 
j=1 

to the standard PCA for some tuning parameter t, where aaj is the jth element of the 

ith vector of component loadings. It is indicated that for t< fp-, decreasing the value 

of t progressively decreases the number of variables with nonzero loadings. On the 

other hand, t>f gives PCA, and t=1 leads to the case where only one variable gets 

nonzero-loading. SCoTLASS solves a non-convex constrained optimization problem, 

and is computationally expensive. Witten et at. (2009) propose a new algorithm for 

solving the SCoTLASS problem. 

A complementary approach to the numerical solution of the SCoTLASS was also 

considered by Trendafilov and Jolliffe (2006) based on the projected gradient approach 

by introducing an exterior penalty function. It is a method based on the classical 

gradient approach and modified for analyzing and solving constrained optimization 

problems. 

Trendafilov and Jolliffe (2007) use a similar idea for simplifying the interpretation of 

Fisher discriminant function coefficients. They imposed the LASSO constraint on the 

standard linear discriminant analysis (LDA). Considering the LDA problem outlined 

in Section 2.3, additional constraints 

llwiII <_ ts, i=1,..., k, 
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are imposed on the vector of loadings with ti E [1, fp], which drive many coefficients 

to be exactly zero based on the magnitude of t=, where 11.11 denotes the Ll norm. 

3.2.4 Sparse principal components 

Zou et al. (2006) introduced a modified PCA method called sparse principal compo- 

nent analysis (SPCA). They first transform the PCA problem to a regression-type 

problem to derive PCs. The idea behind this approach is that, as each PC is a linear 

combination of all the p variables, its loadings can be recovered by regressing the PC 

on the p variables. Consider T>0 and the SVD 

X= ULAT 

with the scores of ith PC yj = £tu;, where uj is the ith column of U and £a is the 

(i, i)th element of L. From the ridge regression estimates 

v=argmin(IMYi-Xv112+TItvjI2), (3.6) 

let f. = v/f lvjj. Then ps = a;, the loadings of the ith PC (Zou et al., 2006). 

Now, let xi denotes the ith row of X, and 

n 
(z, v) = arg min E (1 ix; - zvTx1 ý ý2 + Tý ývý ý2) (3.7) 

$, v i=l 

subject to 11z112 = 1. Then, v is proportional to al. If the first k PCs are considered 

with Z= [zl, z2, ... , zk], V= [vl, v2, ... , vk], and 

nk 

(Z, V) = argmin 

(IIX4 

- ZVTx; 112 +r IIviI12 (3.8) 
z'v 

i=1=1 

subject to ZTZ = Ik, then v, is proportional to aj, j=1,2,. . ., k. 

The LASSO approach is used to produce sparse loadings, by adding the LASSO 

penalty E, 
_1 Tl, 3 I Ivj I11 to the criterion in (3.8). Different rl, ý's are used for penalizing 
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the loadings of different principal components. Li (2007) followed the idea of Zou et at. 

(2006) to get sparse sufficient dimension reduction for LDA. 

Unlike ordinary PCs, sparse PCs are in general correlated with each other, and 

thus, the sum of their variances might not show the real explained variance. Actually, 

only PCs satisfy the properties of orthogonality and uncorrelatedness simultaneously. 

All alternatives to the ordinary PCs sacrifice either one or both of these properties. As 

a result, Zou et al. (2006) propose a method for computing variances of components 

adjusted for their correlation. Let Vk denotes the matrix of sparse loadings for the 

first k sparse PCs of E. The diagonal elements of the matrix Sk = VT EVk give the 

vector of (unadjusted) variances of the sparse components. If Fk denotes the upper 

triangular matrix of the Cholesky factorization of Sk, then the vector of adjusted 

variances is given by the squared diagonal elements of Fk. Obviously, if Vk is the 

matrix of PC loadings, the adjusted variances are the same as the variances of the 

PCs. 

Gervini and Rousson (2004) are also concerned with the evaluation of correlated 

components. They argue that a criterion for evaluating dimension-reducing compo- 

vents should satisfy at least two conditions: generality and uniqueness. Generality 

refers to the applicability of the criteria to a wide range of components, while unique- 

ness limits the variance maximization criteria only to the PCs. They proposed two 

additional criteria to satisfy the condition of uniqueness. The first criterion, which is 

related to the sum of variances corrected for correlation, states "if a new component 

yq = aq x is added to a system of q-1 components, an indicator of the real contri- 

bution of yq to the total variance of the system is the residual variance of the linear 

prediction of yq given the first q-1 components" (Gervini and Rousson, 2004, pp. 
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75). For apxk (k < p) loading matrix A and a p-vector x with covariance matrix 

E, they propose a `corrected sum of variances' (CSV) criterion given by 

CSV(A) - 
Ea=1 (aEaq 

- aq EA(q_1) (A(e-1)EA(q_1))-1 AT-, )Ea. 
) 

(3.9) 
ý0=1 A9 

where Aq is the qth eigenvalue of E and A(, ) _ (al, 
... , a. ). The criterion is said 

to satisfy the conditions of generality and uniqueness. Due to the invariant property 

of CSV under permutation of components, they propose a second criterion, called 

`symmetrically corrected sum of variances', which is given by replacing all the A(q_1) 

terms in (3.9) by A_q, apx (k - 1) matrix obtained after deleting the qth column of 

A. 

Another kind of sparse PCA is introduced by d'Aspremont et al. (2007) as a 

cardinality-constrained quadratic program. For a given covariance matrix E, the 

quadratic form VTEV is maximized subject to v having no more than m non-zero 

elements, i. e. 

max vTEv , (3.10) 
vTV=1 

card(v) <m 

where cardinality of a vector refers to the number of its nonzero elements. The sparse- 

ness is controlled by the value of m. The quadratic optimization subject to cardinality 

constraint is hard to solve, but d'Aspremont et at. (2007) relaxed it to a semidefinite 

program. Despite the advanced numerical technique, the choice of the caxdinality 

presents very much the same problem as with the LASSO threshold in SCoTLASS 

and SPCA. Probably the most elegant approach that swiftly treats both LASSO and 

cardinality constraints was recently proposed by Journee et at. (2008). Nevertheless, 

the LASSO/cardinality related approaches to sparseness are numerically demanding 
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while leaving freedom for subjective interpretation. Necessarily, they are followed by 

some kind of validation of the threshold/cardinality, which may not be feasible for 

large data sets. 

Moghaddam et al. (2006) proposed an algorithm for sparse PCA problem (3.10) 

based on the inclusion principle for eigenvalue bounds. Let Ek be the kxk principal 

submatrix of E with eigenvalues A (Ek). Then, for every integer i, 1<i<k, 

AS(E) Ai(Ek) !ý 'ti+p-k(E) (3.11) 

holds for 1<k<p. The best strategy for the algorithm is found to be a bi-directional 

greedy search, called greedy sparse PCA (GSPCA). [Greedy algorithm, as defined 

by National Institute of Standards and Technology (http: //xw2k. nist. gov/dads/ 

html/greedyalgo. html), is an algorithm that always takes the best immediate, or 

local, solution while finding an answer. The word 'greedy' is used from the fact that 

such algorithm examines each entity at most once and decides its fate once and for 

all during that examination. ] They also defined an algorithm called exact sparse PCA 

(ESPCA) which is guaranteed to terminate with the optimal solution. As a cost- 

effective strategy, they recommend using both methods simultaneously. 

Johnstone and Lu (2004) considered sparse PCA for a dataset Ix, E RP, i= 

1, ... , n} in which the number of variables p is comparable to the number of obser- 

vations n, or may even be larger (example, high-dimensional signals or images). For 

such data sets, they propose some initial reduction in dimensionality before applying 

any PCA-type search, which can best be achieved by working in a basis in which the 

signals have a sparse representation. 
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3.3 Subset selection 

3.3.1 Selecting subsets of variables 

McCabe (1984) proposes using an optimality criteria for selecting a subset of variables 

(called principal variables) that contain as much information as possible. Assume that 

x is a p-dimensional normally distributed random vector with mean zero and known 

positive definite covariance matrix E. Consider all possible partitions xl and x2 of x, 

where xl is the vector of k retained variables and x2 is the (p - k)-vector of discarded 

variables. Up to a row-and-column permutation, the corresponding partition of E 

holds 

Eil E12 

S21 122 

where E11 is the kxk covariance matrix of xl. Then, selection of a set of k variables 

is equivalent to selection of kxk matrix Ell from all possible choices. The optimality 

criteria for PCs and other related criteria considered in McCabe (1984) were then 

applied for the optimal choice of Ell. 

Cadima and Jolliffe (2001) considered the problem of identifying subsets of vari- 

ables which best approximate the full set of variables or their first few PCs. They 

stress dimensionality reduction in terms of the original variables, rather than derived 

variables (or PCs) whose definition requires all the original variables. Consider an 

nxp data matrix X of rank p with sample covariance matrix E. From the spectral 

decomposition E= AAAT, the columns of the matrix XA give the PCs of the data. 

Let T represent the subspace spanned by any q PCs, let FC represent the subspace 

spanned by any k of the original variables which are considered to approximate these 
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PCs and let the indices of these k variables be collected in a set of integers K. Then 

the generalized coefficient of determination (GCD) is used as a criterion for similarity 

between the subspaces Y and )C. The expression for the GCD is given as 

GCD(Tý? ý =T %tia Tý'ýlälti" 
ýrE(P. 

)i, (3.12) 
v /£ 

sEr. ý/q 
iEk 

where E,. is the kxk submatrix of E that results from retaining the k rows/columns 

whose row/column numbers are in i, aj denotes the ith eigenvector of E (column 

of A) with the corresponding eigenvalue a1 and aý denotes the subvector of a,, that 

results from retaining only those elements in positions given by the set K. The value 

(p, n)i is the multiple correlation between the ith PC and the k variables spanning 

K. Cadima and Jolliffe (2001) suggest using stepwise algorithm to select a subset of 

variables, once a criterion is identified. 

Wood et at. (2005) propose a method of variable selection in discriminant analysis. 

The objective is to find a subset of original features which can discriminate between 

the groups as successfully as possible compared to the full set of features. Given an 

nxp data matrix X, they introduced a new nxg matrix M which defines the group 

structure of the data by taking a1 in position (i, i) if the ith row of X belongs to 

group j. Denote by In a vector of n 1's, and define the projection matrix associated 

with M as PM = M(MTM)-1MT and the projection matrix associated with In as 

P1 = In(ln1n)-lln = Inln. Define J := (I� - P1�)X and consider the matrices 

of sums of squares and cross-products 

To = JTJ 

and 

(3.13) 

Bo = JT(PM - P1�)J. (3.14) 
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Let r, be the set of k integers chosen from the set 11, 
... , p} to identify the subset of 

variables, and I,, be the pxk matrix formed from the pxp identity matrix by removing 

those columns not in r.. Denote TK, = IT ToIK, B, = IT B0I, c, and t= min{k, g- 1}. 

Then Wood et al. (2005) used a genetic algorithm to maximize the measure of Yanai's 

Generalized Coefficient of Determination (GCD), given by 

GCD = 
tr [T"1Bi] 

(3.15) 
(9 ) 

in order to find the best subsets of variables. 

3.3.2 Feature selection and extraction 

Pattern recognition usually deals with information processing problems such as speech 

recognition, classification of handwritten characters, and so on, each of which contain- 

ing a large number of input variables (Webb, 1999). 

One method to reduce the number of variables is to combine the input variables 

together to make a smaller number of new variables called features (Bishop, 1995). 

Patterns in a classical pattern recognition techniques are represented as a vector of 

feature values, and feature selection and extraction methods are important techniques 

for such problems. 

Feature selection deals with choosing the `best' possible subset of size k from a set 

of p features according to an objective function. An optimal search procedure is the 

branch-and-bound procedure (Section 3.2.1), a top-down procedure in which we start 

with the full set of p variables and construct a tree by deleting redundant variables 

successively. It is, however, computationally expensive for large p. There are several 

suboptimal search algorithms (Webb, 1999). 
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Feature extraction is a method in which a linear transformation of an nxk pattern 

matrix Y is derived from a given nxp pattern matrix X, where Y= XA and A 

is apxk (k < p) transformation matrix (Raymer et al., 2000). Criteria for feature 

extraction can be based on unsupervised setting (that aims to minimize the information 

loss, e. g. PCA), or supervised setting (that aims to maximize the class discrimination, 

e. g. LDA). For PCA, the columns of A consist of the eigenvectors of the covariance 

matrix of the given patterns. 



Chapter 4 

sBarse: sparse biplots component 

analysis 

In this chapter, a very simple method for computing simple components (SCs) is pro- 

posed. Sparse biplots component analysis, or sBarse for short, proceeds as follows. 

Sparse loadings are constructed from the biplots of the input data, either the data 

matrix or the sample correlation matrix. The resulting sBarse components have or- 

thogonal loadings, each original variable corresponding to only one sBarse component 

and, thus, leading to easily interpretable components. This contrasts with many ex- 

isting methods producing SCs with non-orthogonal loadings and/or overlapping vari- 

ables, for example Chipman and Gu (2005), d'Aspremont et al. (2007), Moghaddam 

et al. (2006) and Witten et al. (2009). The sparseness of the sBarse solution and the 

number k of the SCs involved are chosen to maximize the adjusted variance of the 

sBarse components and to be as close as possible to the input data in terms of the 

RV-coefficient (Robert and Escoufier, 1976). 

The chapter is organized as follows. An intuitive introduction to the sBarse method 

45 
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is given in Section 4.1, followed by a more formal treatment in Section 4.2. In Sec- 

tion 4.3, the sBarse method is tested, and compared with other similar methods, on 

the benchmark Jeffers's Pitprop data (Jeffers, 1967). A simulated data set is also used 

to test the performance of the method. Then, the sBarse method is applied to study 

a real gene expression data set concerning breast cancer, a case where the number of 

variables is far larger than the sample size. This data set is used by Chin et at. (2006) 

and is freely available from http: //icbp. lbl. gov/breastcancer/. For comparison, 

we use the subset of the gene expression data set considered in Witten et at. (2009). 

A brief summary of the chapter is given in Section 4.4. 

4.1 Sparse principal components 

4.1.1 Rationale 

There are a number of different ways to achieve PC simplification, as listed in Chap- 

ter 3. The proposed new method produces simplified loadings for all components 

simultaneously in contrast to most of the existing methods where each PC is simpli- 

fied separately from the others. 

Let A be apxp orthogonal matrix of PC loadings, whose jth column represents the 

jth eigenvector of the correlation matrix R corresponding to the jth largest eigenvalue 

A,,, j=1,2, ... , p. Then, each loading aij in A represents the contribution of the ith 

original variable xi in the jth PC. The aim is to simplify the loadings by comparing 

the contribution of a variable to each of the PCs, so that the resulting SCs are easier 

to interpret. The idea is that a variable will be retained only in the SC in which it is 

most important. This can be easily achieved as follows. 
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Assume that each row of A represents a point in RP and let eq denote the qth 

coordinate vector of RP, i. e. e9 = 0, ..., 0,1,0, ... O j. Consider approximation of the ith 
q-1 p-q 

row of A by the nearest eq or -eq, for q=1,2, ... , p. This requires finding the least 

Euclidean distance between the ith row of A and all possible 2p vectors eq and -e9. 

For instance, in a 2-dimensional space, a row in a2x2 matrix of loadings A can 

be approximated by either of the following: (1,0), (0,1), (-1,0), or (0, -1). That is, 

after approximation, only one of the coefficients on the row of A take the value 1 (or 

-1 if the original loading is negative) and the remaining coefficients take 0. 

The above approximation procedure uses only the unweighted loadings A and does 

not take into account the variances of the PCs. To take into account that the first few 

PCs explain the majority of the variation in the data, consider the following matrix of 

weighted loadings B with elements defined by bzj = vý x a22. Since the eigenvalues 

are in decreasing order of magnitude, more weights are being given to the first few 

PCs. 

Let öqj be the Kronecker delta forj=1,2, ... ,p and q=1,2, ... , p. The Euclidean 

squared distances, between the ith row of B and each of the 2p unit vectors eq and 

-e9 are: 
P 

(bij±8gj)2,4=1,2,..., p. (4.1) 
j=1 

For the ith row of B, the minimal distance (4.1) is achieved for sgn(btq)eq for that 

value of q for which IbigI (or b? ) is maximal, sgn(b4) denoting the sign of b*q. The 

vector eq (or -eq) that gives the smallest value of (4.1) is the required approximation 

for the ith row of B and is collected as the ith row of apxp matrix V. The same 

is repeated for all rows i=1, ..., p. The resulting matrix V has exactly one 1 (or -1) 

in each row, but the number of is (or -1s) in a column may vary between 0 and P. 
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Note, that the total number of non-zero elements in V is p. Finally, the first k (< p) 

nonzero-columns of V are normalized into, say, Vk by dividing each column of V by 

the square-root of the number of non-zero elements in the column. The columns of Vk 

contain the loadings for the first k sparse components (SCs). This idea is extended to 

the sBarse method in Section 4.2. 

The main aim of SCs is to simplify interpretation. However, there is one more 

advantage gained: it can help to find the appropriate number k of components to 

retain. Indeed, the weighted loadings in the ith row 

jail A2a22 ... Apa p, 

are the values to be compared in the process of approximation. Since the eigenvalues 

are in decreasing order of magnitudes the last p-k terms are systematically reduced. 

This implies that the approximating eq (or -eq) will be most likely for some qc [1, k]. 

In this case, the last p-k columns in all rows will be identically zero and so the matrix 

of original loadings A can be approximated only by the first k orthogonal SC loadings, 

i. e. can be represented in a reduced k-dimensional subspace of R. The estimation of 

k might be used as an alternative to the scree plot and the cumulative percentage of 

variance explained for deciding the number of PCs to retain (Jolliffe, 2002, p. 115). 

4.1.2 Correlation as a criterion 

The approximation procedure outlined in Section 4.1.1 has the following meaning. 

Since the PCs are uncorrelated, the squared correlation between the ith variable and 

the jth PC is p2j =A ja , where )ºj and ai3 are the variance and the ith loading of the 

jth PC (Jolliffe, 2002, p. 25). This psj is the same as the squared weighted loading, 
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b ý, considered in Section 4.1.1. Hence, the procedure for making B sparse can be 

interpreted in terms of correlations as follows. Consider the ith row of the weighted 

matrix B= (b3), where bi2j =p i2j gives the correlation of the ith variable and the jth 

PC forj=1,2, ... , p. Then, the aim is to relate the ith variable with the jth PC for 

which p2ij is the largest. For the ith row of B, replace by ±1 the jth element for which 

p is the largest and by 0 all the others. Here, the ith variable is being related to a 

particular PC based on its explanatory power. The same is repeated for all rows of B 

until the sparse matrix V is obtained. As a result, the method only holds for PCA 

based on the correlation matrix and not for covariance-based PCA. 

The approximation procedure considers only the component for which each par- 

ticular variable is most important. A natural generalization is to introduce a tuning 

parameter measuring the variable importance and consider more than one component 

for which particular variable is relatively important. Such generalized approximation 

will be studied elsewhere. 

The following example illustrates the approximation procedure using a well known 

data set. 

Example 1: The Pitprop data contains 13 variables measured for 180 pitprops 

cut from Corsican pine timber (Jeffers, 1967). Denote by x11 x2, ... , x13 the variables 

in the order they appear in the cited paper. Unfortunately, the raw Pitprop data seem 

lost, and only their correlation matrix is available. This data set is already a standard 

example in any work on sparse approximation of PCA. Note that the correlation 

coefficient r5,11 = 0.091 in (Jolliffe, 2002, Table 8.2) should be r5,11 = -0.091 (Jeffers, 

1967, Table 2). 

Jeffers (1967) and many other authors chose the first six PCs for further analysis. 
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Their loadings and the variances explained by them are given in the left hand side 

block of Table 4.1. Then, the procedure discussed in Section 4.1.1 is applied to the 

correlation matrix and the solution V6 is given in the right hand side block of Table 4.1. 

The last seven SCs are identically zero. 

Thus, the interpretation of the components for the Pitprop data will be based on 

the first six SCs. The first SC is a weighted sum of the variables 1,2,7,8,9 and 

10, and represents the overall size of the prop. The second spaxse component, with 

nonzero weights for variables 3 and 4, measures the degree of seasoning. The third 

sparse component, with nonzero weights for variables 5 and 6, is a measure of the rate 

of growth of the timber. The fourth, fifth, and sixth sparse components are composed 

by single variables 11,12 and 13, respectively. 
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Table 4.1: Loadings and percentage of cumulative variance (%Cvar) & adjusted vari- 

ante (%Cvar. 4) of the first six PCs and the corresponding SCs, Jeffers's 

Pitprop data. Empty cells have zero values. 

Principal Components Sparse Components 

Variable 1 2 3 4 5 6 1 2 34 56 

XI -. 40 . 22 -. 21 -. 09 -. 08 . 12 -. 41 

X2 -. 41 . 19 -. 24 -. 10 -. 11 . 16 -. 41 

X3 -. 12 . 54 . 14 . 08 . 35 -. 28 . 71 

X4 -. 17 . 46 . 35 . 05 . 36 -. 05 . 71 

X5 -. 06 -. 17 . 48 . 05 -. 18 . 63 . 71 

xe -. 28 -. 01 . 48 -. 06 -. 32 . 05 . 71 

xT -. 40 . 19 . 25 -. 07 -. 22 . 00 -. 41 

xe -. 29 -. 19 -. 24 . 29 . 19 -. 06 -. 41 

xg -. 36 . 02 -. 21 . 10 -. 10 . 03 -. 41 

xlo -. 38 -. 25 -. 12 -. 21 . 16 -. 17 -. 41 

x11 . 01 . 21 . 07 . 80 -. 34 . 18 1 

x12 . 12 . 34 . 09 -. 30 -. 60 -. 17 -1 

xlg . 11 . 31 -. 33 -. 30 -. 08 . 63 1 

%Cvar 32.5 50.7 65.2 73.7 80.7 87.0 28.8 43.3 53.8 61.5 69.2 76.8 

%Cvara, y 32.5 50.7 65.2 73.7 80.7 87.0 28.8 42.9 52.5 59.9 66.7 73.3 

4.2 Computing sBarse components 

The sBarse method was introduced intuitively in Section 4.1. Here, we consider the 

method in a more formal way. First, it is shown that the approximation procedure 

introduced in Section 4.1 is a special case of correlation biplot construction. Then, 

the general sBarse method is presented as a method for seeking the correlation biplot 

which maximizes a criterion involving the RV-coefficient (Robert and Escoufier, 1976) 
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and the variance explained. In this sense, the sBarse solution achieves an optimal fit 

to the data. 

4.2.1 Biplots and their goodness-of-fit 

We start with a brief summary of biplots (see Section 2.7) and of measures of their 

goodness-of-fit to the data (Gabriel, 1971; Gower and Hand, 1996). 

Let X be a standardized nxp data matrix of rank r, with a SVD 

X= ULAT, (4.2) 

where U and A are nxr and pxr orthonormal matrices, and L is rxr diagonal 

matrix of singular values £1 > £2 >""">6,. > 0. Let Lß (0 <05 1) be the diagonal 

matrix whose elements are £ß, t2, ... , Pß so that (4.2) can be rewritten as: 

X= UL'-ßLPAT. (4.3) 

..., _ Let Uk = [ul,..., uk], Ah = [al, ak] and Lk for any kE [1, r]. 
0 Lk 

Put Gß, k := UkLk ß and Hß, k := AkL6. Then, the following rank k least-squares 

approximation holds: 

X= GHT Gß, kHo, k. (4.4) 

The matrices Gß, k and Hß, k are called biplot factors and their rows, called biplots, 

are the markers for the n rows (observations) and p columns (variables) of X. Biplots 

are used to approximate the data X and can be constructed with any factors Gß, k 

and Hp, k, and with any choice of ßE [0,11 and k<r. Interpretation of the most 

important biplots with ß=0,2 and 1 is given in Jolliffe (2002). 
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Biplots are also used to approximate the sample correlation matrix R= XTX 

(Gabriel, 1971; Gower and Hand, 1996, Ch 2,11). We may call such biplots as cor- 

relation biplots, to differentiate them from those based on X. These can also be 

constructed with any choice of 0E [0,1] as above, but with a single biplot factor 

Hß, k = AkL6. For example, the choice of k=2 and ,ß=1 gives the biplot fac- 

tor H2 = A2L2, which gives the best two-dimensional least squares approximation of 

R H2H2 . This follows from the eigenvalue decomposition (EVD) of the sample 

correlation matrix R= AL2AT = AAAT = HHT, where A= L2 contains the eigen- 

values of R. In general, consider the following biplot factor Ba, k = AkAk of rank k 

with aE [0,11. Then, the biplot approximation of R is given by 

R«, k = B«, kBä, k = AkAk Ak A. k 
' (4.5) 

where the choice a=1 gives the best least-squares approximation to R of rank k. The 

standard biplots aim for low-dimensional data visualization, but the aim of the sBarse 

method is, primarily, a sparse and cheap loadings matrix. For this reason a wider 

interval for the power a is adopted. However, increasing the upper limit for a beyond 

1 is not reasonable as this will result in one or very few PCs with poor approximation 

properties. As with standard biplots one can use a range of values a. Considering 

several aE [0,11 gives a list of biplots. Then, the most satisfying one can be chosen 

by the user or identified according to certain criterion. 

It is natural to base this choice on the amount of the variance explained by the 

biplots and/or on their approximation power, measured by Gabriel (2002) as the 

goodness-of-fit of the biplot approximation Ra, k to R using the RV-coefficient (Robert 
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and Escoufier, 1976) : 

RV2 (R, Ra, k) = 
trace(RRa, k)2 (4.6) 

trace(R22)trace(R«, k) 

The RV values lie in the interval [0,11 and values close to 1 indicate better approx- 

imation. 

4.2.2 Sparse biplots and sBarse components 

The biplots considered in the previous section are standard, dense biplots. The sBarse 

method uses their sparse approximations, which are constructed following the approx- 

imation procedure outlined in Section 4.1.1. In fact, the construction described in 

Section 4.1.1 uses biplot Ba with a=0.5, which is then sparsified into V to give the 

sBarse loadings matrix V. The sparse matrix V is called a proper sBarse solution if 

it has first k (< p) non-zero columns and the last p-k columns are identically zero. 

An improper solution is a solution which is not proper, i. e. a sparse matrix containing 

zero column(s) followed by non-zero columns. For example, the sBarse method applied 

to the Pitprop data with a=0.5 results in a proper sBarse solution V6 with k=6, 

given in Table 4.1. 

The sBaxse method, as introduced in Section 4.1.1, employs only one a=0.5. 

However, as with the biplots, one can use a range of values a. Thus, several Ba, aE 

[0,11 can be constructed to give a set of sparse matrices V. Once the set of sparse 

matrices V is available the sBarse method excludes the improper solutions. Then, 

the most satisfying from the list of proper solutions is chosen by the user or identified 

according to a certain criterion. 

In general, the small values of a lead to solutions with more sBarse components, 
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while the bigger a's correspond to fewer sBarse components. An interesting question 

is: how many a's to take to be sure that no valuable solution is missed? The answer 

is: not too many, because large intervals of a's correspond to a single set of sBarse 

components. 

The essence of the sBarse algorithm is to produce a list of proper solutions V and 

rank them according to their explanatory power. The standard PCs are uncorrelated 

and their loadings matrix is orthogonal. However, the SCs from any sparse methods 

cannot satisfy these properties simultaneously. The loadings of the sBarse components 

are orthogonal to each other, but the components are correlated as Sk T RVk is 

not diagonal. As a consequence, the usual sum of variances trace(Sk) is usually too 

optimistic and not appropriate for SCs. Instead, Zou et al. (2006) introduced the 

adjusted variance for correlated SCs. Let Fk be the upper-triangular kxk factor of 

the Cholesky decomposition of Sk, i. e. Sk = FT Fk. Then, the squared elements on 

the main diagonal of Fk give the adjusted variances of the SCs. 

The sBarse algorithm can be summarized as follows. For a set of values aE [0,1] 

the sBarse method finds biplot factors 

B: =AA*, (4.7) 

where A is an orthogonal matrix and Aa is diagonal. Then, the task is to find the 

set of proper sparse matrices Vk with elements from {-1,0,1} which approximate B. 

The number k of the sBarse components to retain may vary over the set of proper 

solutions. As the biplot factor B in (4.7) is a product, for interpretation purposes, 

the approximation Vk of B should also come as a product of an orthogonal matrix 

(of sparse loadings) multiplied by a diagonal matrix of "variances" . That is why (in 
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Section 4.1), Vk is first normalized into Vk such that Vk Vk = Ik and then is assigned 

to be the orthonormal term in the sparse biplot factor. The diagonal term in the 

sparse biplot factor could simply be formed by taking the variances of the new SCs 

(with sparse loadings Vt), i. e. the main diagonal of Sk. However, as the new SCs are 

correlated, it is reasonable to replace their variances by the corresponding adjusted 

ones. Then, the diagonal matrix containing the square root of the adjusted variances 

diag(Fk) is taken to be the second term in the sparse biplot factor. Thus, ' diag(Fk) 

is the sparse biplot factor and 1k is the sBarse loadings matrix. For a given value of a, 

the cumulative proportion of adjusted variances explained by the k sBarse components 

is given by 

trace(diag2 (Fk)) 
(4.8) adjvar,,, _ 

P 

It also seems reasonable to take into account the goodness-of-fit of the sparse 

biplots for each particular value of a. After substituting Vkdiag(Fk) into (4.6), the 

goodness-of-fit of the approximation of R is given by (Gabriel, 2002): 

T trace2 (VT RVkdiag2(Fk)) 
RVä (R, VkdiaS2 (Fk)V = 

trace(RR)trace (kdiag2(Fk)kdiag2(Fk)) 

trace2 (diag(cTRk)diag2(Fk)) 

t race(A2)trace (diag4(Fk)) 

_ 
trace2 (diag(FkFk)diag2(Fk)) 

trace(AZ)trace (diag4(Fk)) (4.9) 

Thus, the proper solutions obtained from sBarse algorithm will be ranked according 

to the product of their cumulative adjusted variances (4.8) and their RV-coefficients 

(4.9). The beat solution is the one with the maximum value of the product: 

adjva ., x RV« , 
(4.10) 

over different values of aE [0,1). 
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Let A and A be the matrices of eigenvectors and eigenvalues of R. The sBarse 

procedure can be summarized in the following algorithm. 

1) Set a=0, max,, =0 and a discretization step 0, say 0= . 02. 

2) Compute B= AA". 

3) Obtain the sparse matrix V from B (as in Section 4.1), i. e.: 

ebb , if IbijI = max(Ibiil, Ibi2I,..., Ibipl) 
vij 

0, otherwise 

4) Check that V is a proper solution, i. e. all first k (< p) columns of V are non-zero. 

If not, go to 13). 

5) If yes, cut off the last p-k columns of V to form Vk. 

6) Check that this Vk has not been found before yet. 

7) If it has, go to 13). 

8) If Vk is new, normalize Vk in VA, such that VTT Vk = Ik. 

9) Compute the Cholesky decomposition: VT T RVk = FT Fk. 

10) Compute the cumulative proportion of adjusted variances: adjvar = trace(diag2(Fk))/p. 

11) Compute the RV-coefficient (RV) using (4.9). 

12) Compute max, = adj var x RV. Compare the new max,, with the old one, and keep 

the value of a, say a�=, for which max. is the largest. 

13) Increment a by 0, i. e., a +- a+A. If a<1, go to step (2); otherwise, stop the 

algorithm. Vk corresponding to a. is the matrix of sBarse loadings. 
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It is possible that the best value of c can be missed if the value of A is not small 

enough. However, the smaller the value of 0, the slower the algorithm, especially if p 

is large (such as in the gene expression data). As an alternative, an improved value of 

a�= can be searched in a neighbourhood of the current value by continuously narrowing 

the search interval and repeating the above algorithm. Suppose that the algorithm is 

applied first on the interval [0,1] and the best solution is obtained for aläx Let LLB' 

and ULM denote the lower and the upper limits of the range of a, so for the first stage 

LLM =0 and ULM = 1. For the second stage, the limits are updated as 

LL (2) E- . 5(aml + LL(1)) and UL(2 4- . 5(aml + UL'I)) 

and repeat the sBarse algorithm on the updated interval [LL(2), UL(2)]. Then check 

if the value of the resulting max,, changes. The value of Dis) at the ith repetition 

(stage) of the algorithm can be set to some function of the difference between LL(') 

and UL(), say, 

O(i) = "1(UL(') - LL(')). 

At the (i + 1) th stage (i = 1,2, """), update the interval as 

LL("') 4--. 5(a() + LL(')) and UL(1 ' +- . 5(am(a)x + ULF')) max 

and repeat the sBarse algorithm. If maxýtý = max'+'ý, then stop the algorithm and use 

the matrix of sBarse components corresponding to amax = am'ax. 

If the raw data matrix X is available, there is no need to form the sample correlation 

matrix R in the sBarse algorithm. Indeed, consider the QR decomposition XVk = 

QT, where Q is an nxk orthonormal matrix, and T is an kxk upper-triangular. 

[Note that Vk can be obtained from the SVD of X. ] As shown by Zou et at. (2006), 
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the adjusted variances of the new SCs are given by the squared elements on the main 

diagonal of T. If the diagonal matrix containing the adjusted variances is denoted by 

diag2(T), then the required sparse biplot is Vkdiag(T), and the RV-coefficient (4.9) is 

found by simply making Fk - Tk. 

4.3 Further application 

In this section, some more details are given for the sBarse solution of the Pitprop data 

(Jeffers, 1967) considered above. The results are compared with other existing sparse 

solutions. Next, simulated data are used to show the performance of the proposed 

method. Finally, a real gene expression data set (Chin et al., 2006) is considered, where 

the sBarse solutions are compared with sparse solutions obtained by other methods. 

The Pitprop data 

For the Pitprop data (continued from Section 4.1.2), there are 29 proper solutions 

(out of 51) obtained by the sBarse algorithm with aE [0,1] and a step size of . 02. 

For many values of a, identical sBarse components are found. The sBarse algorithm 

checks and omits them, i. e. the recalculation of their variances, adjusted variances and 

RV-coefficients is not needed. It is found that for a=0.36 the algorithm produces the 

best proper solution with six sBarse components (the last six columns of Table 4.1), 

accounting for 76.8% of the total unadjusted variance and 73.3% of the total adjusted 

variance. This value of a is not uniquely defined; other values of a, say a=0.4 

or a=0.5, also result in the same solution. Hence, the best solution corresponds 

to an interval of a values. According to the value of the product of total adjusted 
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variance explained and the RV coefficient, the best solution has 6 sBarse components, 

whose characteristics are reported in Table 4.2. The same best solution is obtained at 

a=0.35 using the interval-narrowing approach with less computation time. 

Note that all existing methods for sparse PCA applied to the Pitprop data (d'Aspremont 

et at., 2007; Farcomeni, 2009; Jolliffe et at., 2003; Moghaddam et at., 2006; Zou et at., 

2006) a priori employ the first six SCs explaining a reasonable portion of the original 

variance. In contrast, the sBarse method finds the appropriate number of SCs, which 

happens to be 6. The choice of 4 sBarse components would correspond to Kaiser's 

criterion to retain the first four PCs with variances greater than 1 (explaining 73.97% 

of the total variation). 

Table 4.2: Proper sBarse components for the Pitprop data for aE [0,1] and step . 02. 

Sol a RV Var Adj RV x Adj # sBarse comp. 

1 . 36 . 8580 . 7684 . 7325 . 6285 6 

2 . 68 . 8233 . 5938 . 5910 . 4866 4 

3 . 92 . 7424 . 5590 . 5497 . 4081 4 

4 . 94 . 5829 . 4801 . 4426 . 2580 4 

5 . 96 . 5339 . 4428 . 4294 . 2293 4 

6 1.00 . 6109 . 5016 . 4857 . 2967 4 

This example also shows that the sBarse method does not produce sparse loadings 

for any k=1,2, 
..., p. This is a disadvantage of the method as it might be necessary 

to have a sparse solution with particular number of components, which the method 

cannot produce. In the same time, this can be viewed as an advantage of the method 

as it reduces the freedom of the choice of the proper number of components to retain. 

Table 4.3 gives the loadings of the first three SCs and the corresponding cumulative 

variances (CV), adjusted variances (CAV) and number of zero-loadings (0s) found by 
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the several methods. Most of them produce 4th, 5th and 6th SCs with a single non-zero 

(unit) loading. The values in the table are collected from the original papers, where 

available, otherwise they have been computed by the author. The abbreviations are: 

SPC - simple principal components (Vines, 2000), SPCA - sparse principal component 

analysis (Zou et at., 2006), SCoTLASS - Simplified Component Technique-LASSO 

(Jolliffe et at., 2003) with rr = (2.5,1.5,1.5,1.01,1.01,1.01), DSPCA - direct sparse 

PCA (d'Aspremont et at., 2007), ESPCA - exact sparse PCA (Moghaddam et at., 

2006), SCA - simple component analysis (Rousson and Gasser, 2004) and IDR - 

interpretable dimensionality reduction (Chipman and Gu, 2005) with H, C, and S for 

homogeneity, contrasts and sparsity constraints respectively. 

The solutions produced by SPC (Vines, 2000), IDR H and C (Chipman and Gu, 

2005) and SCoTLASS (Jolliffe et at., 2003) are not sparse. The worst solution seems to 

be the SCA one (Rousson and Gasser, 2004) which explains only 47% of the adjusted 

variance (and 66% for all six sparse components, also not much). The ESPCA solution 

(Moghaddam et at., 2006) is the sparsest one, but explains only 49% of the adjusted 

variance. DSPCA (d'Aspremont et at., 2007) is a bit less sparse, but also not quite 

satisfying with 50% adjusted variance. The sBarse solution is the sparsest one of the 

three remaining with 53% explained adjusted variance. The SPCA (Zou et at., 2006) 

explains 55% adjusted variance at the price of 5 more non-zeros compared to the sBarse 

solutions. The IDR solution (Chipman and Gu, 2005) with sparsity constraint (with 

il = . 9) explains 56% adjusted variance, being less sparse than the sBarse solution. 

However, the IDR solution lacks orthogonality, which devalues its quality as the sBarse 

and SPCA loadings are exactly orthonormal. An additional weakness of the IDR and 

SPCA solutions is that there are variables contributing to more than one SC. In fact, 
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Table 4.3: SC loadings and variances explained by different methods, Pitprop data. 

Empty cells have zero values. 

Method xl X2 X3 x4 x6 x6 x7 x8 x9 x10 x11 x12 x13 CV CAV 08 

uBaree 1 -. 41 -. 41 -. 41 -. 41 -. 41 -. 41 29 29 7 

eBene 2 . 
71 TL 43 43 It 

. Berme 3 . 
71 

. 
71 54 53 11 

SPC 1 . 
32 . 32 . 32 . 32 . 32 . 32 . 32 . 32 -. 32 -. 32 28 28 3 

SPC 2 . 
44 . 44 . 22 . 22 -. 44 . 22 

. 
22 

. 
22 

. 44 47 46 4 

SPC 3 . 08 . 08 -. 37 -. 37 -. 21 -. 46 -. 37 . 33 . 04 . 33 -. 29 . 12 61 59 1 

SPCA 1 -. 48 -. 48 . 18 -. 2b -. 34 -. 42 -. 40 28 28 6 

SPCA 2 . 79 . 62 -. 02 . 01 42 42 9 

SPCA 3 
. 64 . 59 . 49 -. 02 57 55 9 

SCoTLASS 1 -. 48 -. 49 -. 11 -. 38 -. 25 -. 38 -. 41 30 30 6 

SCoTLASS 9 . 70 . 71 OS -. 02 . 01 45 44 8 

SCoTLASS 3 -. 06 -. 09 -. 02 
. 
02 

. 
22 

. 
13 -. 96 55 b4 6 

DSPCA 1 -. 56 -. 58 -. 26 -. 10 -. 37 -. 36 27 27 7 

DSPCA 2 . 71 . 71 42 40 11 

DSPCA 3 . 79 . 81 -. 01 56 50 10 

ESPCA 1 -. 48 -. 49 -. 41 -. 42 -. 43 26 26 8 

ESPCA 2 . 71 . 71 41 40 11 

ESPCA 3 . 
81 

. 
58 55 49 11 

SCA 1 . 45 . 45 . 45 . 45 
. 
45 25 2b 8 

SCA 2 . 50 . 60 . 50 
. 50 35 34 9 

SCA 3 . 71 . 71 49 47 11 

IDR H1 -. 38 -. 38 -. 38 -. 38 -. 38 -. 38 -. 38 30 30 6 

IDR H2 -. 30 -. 30 -. 30 -. 30 
. 
30 

. 
30 

. 
30 

. 30 -. 30 -. 30 -. 30 47 46 2 

IDR H3 -. 33 -. 33 . 33 
. 
33 

. 
33 

. 
33 -. 33 -. 33 -. 33 61 b7 4 

IDR Cl -. 15 -. 15 -. 15 -. 15 -. 1b -. 15 -. 1b -. 15 -. 1b -. 15 . 51 . 51 . 51 16 16 0 

IDR C2 -. 23 -. 23 -. 23 -. 23 
. 40 . 40 . 40 . 40 -. 23 -. 23 -. 23 32 24 2 

IDR C3 -. 30 -. 30 
. 
37 

. 37 . 37 . 37 -. 30 -. 30 -. 30 45 36 4 

1DR 91 -. 42 -. 42 -. 30 -. 42 -. 31 -. 37 -. 39 31 31 6 

IDA 82 -. 69 -. 58 -. 44 45 45 10 

IDR 83 . 43 
. 
58 

. 
b7 -. 39 89 56 9 
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such overlapping effect is present in all solutions except the sBarse one. The sBarse 

solution of the Pitprop data seems to be the best one with respect to overall sparseness, 

ease of interpretation and goodness-of-fit. 

The classical PCs are both orthogonal and uncorrelated. The SCs cannot preserve 

these two features simultaneously. The orthogonality of the SCs is maintained exactly 

only by the sBarse method, SCoTLASS and SPCA. The rest of the methods maintain 

the solutions' orthogonality only approximately, with the IDR (Chipman and Gu, 

2005) deviating most. The correlations among the SCs obtained by the three best 

sparse solutions of the Pitprop are given in Table 4.4. The correlation structures of 

the sBarse and SPCA solutions are quite similar. 

Table 4.4: Correlations among six SCs from three methods for the Pitprop data 

sBarse a= .4 SPCA IDR Sparse (n _ . 9) 
Var x1 Z2 x3 x4 x5 ml Z2 x3 X4 X5 X 23 23 24 x5 

x2 . 16 -. 17 . 11 

23 -. 26 -. 19 -. 33 . 13 -. 39 -. 35 

Z4 . 03 -. 13 -. 08 -. 00 -. 14 . 10 -. 26 . 13 . 17 

ma -. 24 . 20 . 07 -. 03 -. 20 -. 22 . 14 . 03 -. 12 -. 27 . 09 -. 05 

xe . 15 -. 07 -. 33 . 01 -. 18 . 08 . 08 -. 39 -. 01 -. 18 . 09 -. 08 . 16 -. 29 . 07 

Simulated data 

Here, we test the performance of the sBarse method using artificial data, generated by 

one of the models originally considered by Jolliffe (1972). The model is constructed in 

such a way that 10 variables x are linear combinations of 10 independent standardized 

normal variables, zz, as in Table 4.5. 

The model is constructed in such a way that the variables, x1, fall into groups. The 
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Table 4.5: Formulae for generating artificial data (Jolliffe, 1972) 

Variable Variate comb. Variable Variate comb. 

xl z1 xs 2x4+0.75x5+1.5x6 

12 Z2 X7 Z7 

X3 Z2 + Z3 x8 Z7 + 0.5z8 

14 z4 x9 2z7 + 0.5z8 + z9 

X5 z4+0.75x5 xlo 3x7+z8+z9+x10 

variables in each group are linear combinations of the same underlying zi, whereas the 

variables from different groups are independent. The 10 variables fall into 4 groups: 

{x1}, {x2, x3I, {x4, x5, x6}, and {x7, x8, x9, x10I 

The correlation matrix of the variables x1, ..., x10 is calculated for 100 generated 

observations. The correlation between variables from different groups is very small 

(and is assumed to be zero), while the correlation between variables from the same 

group is large. 

The first four PCs of the correlation matrix of the simulated data account for 

92.5% of the total variation. This suggests that it suffices to find the first four SCs. 

Application of the sBarse algorithm to the correlation matrix, with narrowing search- 

interval, results in two proper solutions. The best solution has four sBarse components 

at a=0.15 and max. = 0.91. Table 4.6 gives the loadings and cumulative variances 

of the four PCs and the best sBarse components. Each of the four sBarse components 

reconstructs correctly the corresponding original PCs. The four sBarse components 

account for 91.9% of the total adjusted variance in the original data. This percentage 
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is almost the same as that of the ordinary PCs, but the sBarse components are much 

easier to interpret than the PCs. 

Table 4.6: Loadings and cumulative adjusted variances (%Cvaray) of the first four PCs 

and the corresponding sBarse components, simulated data. Empty cells have 

zero values. 

Principal Components sBarse Components 

Variable 1 2 3 4 1 2 34 

1 -. 004 -. 047 -. 119 . 985 1 

2 -. 116 . 129 -. 672 -. 155 -. 707 

3 -. 093 . 102 -. 696 . 001 -. 707 

4 . 040 . 572 . 084 . 032 . 577 

5 . 039 . 570 . 125 . 049 . 577 

6 . 003 . 563 . 053 . 035 . 577 

7 -. 491 . 010 . 105 . 021 -. 500 

8 -. 492 -. 001 . 064 -. 024 -. 500 

9 -. 494 . 034 . 069 . 010 -. 500 

10 -. 498 . 001 . 069 . 028 -. 500 

%Cvar., U 38.4 65.1 82.6 92.5 37.9 64.3 82.0 91.9 

Gene expression data, p»n 

The sBarse method can be applied to a large data set (such as the microarray gene ex- 

pression) where the number of variables (p) is much larger than the number of samples 

(n). Here, we use a real breast cancer gene expression data set first considered by Chin 

et al. (2006) and publicly available from http: //icbp. lbl. gov/breastcancer/- 

Witten et al. (2009) used this data set to illustrate the penalized matrix decompo- 

sition method for obtaining sparse PCs. They analyze 19,672 gene expression measure- 

ments on 89 samples. For computational reasons, Witten et at. (2009) used a subset 
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of the data consisting of the 5% of genes with highest variance. For comparison, we 

also use the same subset of data, say X, which consists of p= 984 genes (variables) 

and n= 89 samples. 

The data are first standardized and the SVD used to obtain the matrix of principal 

component loadings, A, and the corresponding matrix of singular values, L. Since 

p»n and the data are mean centered, the SVD results in (n - 1) nonzero singular 

values. As a result, the sBarse method is based on the px (n - 1) matrix of loadings 

An-1 and the (n - 1) x (n - 1) diagonal matrix of eigenvalues An-1 = Ln_1. As 

the method depends on the nonzero singular values, the maximum number of sBarse 

components k that one can obtain is n-1. (In general, k< min{n - 1, p}, whether 

n>porn«p. ) 

The sBarse method applied to the breast cancer gene expression data resulted in 88 

sBarse components. This is the maximum number of sBarse components for this data 

set, as n= 89. The best sBarse solution is obtained when a=0.125, at which the RV- 

coefficient is . 3337, and the cumulative unadjusted and adjusted variances explained 

by the 88 components are 27.4% and 19.4%, respectively. The number of nonzero- 

loading genes in a sBarse component ranges from 1 to 92, and each of the 984 genes 

gets a nonzero loading in only one component. The number of nonzero-loading genes 

in the sBarse components generally decreases with decreasing percentage of variances 

explained by the components. As the bar chart in Figure 4.1 shows, the majority of 

the genes are included in the first few sBarse components. The user can choose the 

required number of components depending on the cumulative percentage of variances 

and the level of sparsity. 

We compare the sBarse components with the SCs obtained by Witten et al. (2009), 
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t 

Figure 4.1: Number of nonzero-loading genes in each of the 88 sBarse components, 

displayed in decreasing order of the percentage of variance explained by the 

components 

abbreviated hereafter as the SPC method. The two methods are compared with respect 

to the level of sparsity (number of nonzero-loading genes) of the components and the 

cumulative percentage of adjusted variances explained by the sparse components. 

For a fair comparison between SPC and sBarse, some adjustments are employed. 

The sBarse method cannot control the level of sparsity in a SC, while the SPC method 

can do this explicitly by requiring a particular sum of absolute values of loadings in 

a SC (via the input argument sumabsv in the R function SPC). Also, by construction, 

the sBarse method results in components involving non-overlapping genes. The SPC 

method lacks this feature. However, sumabav can be obtained from the sBarse com- 

ponents and the SPC components can be made as non-overlapping as possible, so that 

both the SPC and sBarse methods are put on a similar footing for a fair comparison. 

This can be accomplished using the following procedures: 

a. Run the sBarse algorithm and compute cl,. .., c,,, where ci is the sum of absolute 

values of the p elements in the ith sBarse component with the ith largest variance. 

0 10 20 30 40 60 60 70 60 00 
"Bn» mnpcn. M Itbal 
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b. Run the SPC algorithm with sumabsv = cl in order to get component 1. If vl denotes 

the first SPC, computed based on the data matrix Xl = X, then the second sparse 

component v2 is computed on the residual data matrix X2 - X1 - Xlvlvi . 
Then, 

perform SPC on X2 with sumabsv = c2 to get component 2. 

c. Repeat this procedure until a required number k' (< k) of SPCs has been obtained. 

In general, the ith SPC vi is computed based on the residual data matrix X1 

X; 
_i - 

Xs-lvi-ivt i for i=2, ... , k'. 

For the breast cancer gene expression data, the ci's computed from the first 25 

sBarse components are used to get 25 SPCs. The values of sumabsv are generally 

decreasing from 9.5917 (for the first sBarse component) to 3.1625 (for the 25th sBarse 

component) (see Figure 4.1). 

The plot on the left hand side of Figure 4.2 gives the number of nonzero-loading 

genes in each of the first 25 SCs for both the sBarse and SPC methods. For both 

methods, the number of nonzero-loading genes generally decreases (and, hence, the 

level of sparsity increases) with decreasing variance explained. However, the SCs from 

the sBarse method are sparser than the corresponding SCs from the SPC method. In 

other words, at a given value of sumabsv, a sBarse component tends to have a smaller 

number of nonzero-loadings, possibly each with larger absolute values, while an SPC 

component tends to have larger number of nonzero-loading genes, each with possibly 

smaller absolute values. Thus, the sBarse method seems superior to the SPC method 

in simplifying interpretation of the components. 

The plot on the right hand side of Figure 4.2 shows the cumulative proportion 

of adjusted variances explained by the first 25 SCs for both methods. The sBarse 
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components explain 11% less variance than the corresponding SPC ones. Note, that 

the first three sBarse and SPC components are equally informative. 
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Figure 4.2: The first 25 sparse components from sBarse and SPC methods for breast 

cancer data - (left) number of nonzero-loadings, and (right) cumulative 

adjusted variances explained 

Components with non-overlapping genes may simplify interpretation of the com- 

ponents. The sBarse components possess this property, while it is not guaranteed by 

the SPC method. 

For large data (such as gene expression), the size of the step length in searching 

for the best aE [0,1] is crucial. In general, a shorter step length can result in a 

better solution, but requires more computational time. Hence, it is recommended to 

consider a compromise between the computation time, the required level of sparsity, 

and the total variance explained when choosing the step length. It turns out, the 

computation time can be reduced considerably by starting with a larger step length 

and then reducing it, repeating the sBarse algorithm only in a neighborhood of the 

current best value of a (see Section 4.2.2). For the breast cancer gene expression 

data, it takes only 4.45 minutes to give the sBarse solution, on an Intel(R) Pentium 4 
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desktop computer with 3.2GHz CPU and . 99 GB of Ram. 

4.4 Summary 

In this chapter, a simple and fast approach to interpretable PCs is proposed. Simplicity 

in the interpretation of a component is related to its level of sparsity, which is inferred 

from the number of zero-loading variables. The objective is to make a component as 

sparse as possible so that it is easily interpretable without losing much information 

contained in the original variables. A nice feature of the method is that it is clearly 

aimed at PCA and not factor analysis, because it keeps enough components to 'explain' 

all the variables. 

The technique involves a biplots approach to matrix approximation, and hence 

referred to as sparse biplots (sBarse) component analysis. Like the ordinary PCA, it 

requires us compute the eigenvalues and eigenvectors of a data or correlation matrix. 

An additional requirement is the estimation of a. But, as aE [0,1] and, intervals 

of cx values correspond to a single solution, the choice of the value of a may not be 

considered as a serous problem. 

The `best' sBarse solution is chosen based on a criterion involving the product of 

the cumulative proportion of adjusted variances explained by the sBarse components 

and the goodness-of-fit of the biplot approximation to the correlation matrix, given 

by the RV-coefficient. The larger the value of the criterion is the better the solution. 

Results of different examples show that the sBarse method produces k (< p) sparse 

components, each of which are sparser than and/or explain at least as high propor- 

tion of adjusted variance as those obtained by other similar approaches proposed in 
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literature. 



Chapter 5 

Clustering approach to 

interpretable principal components 

5.1 Introduction 

In Chapter 3, we outlined a variety of approaches proposed for simplifying the interpre- 

tation of PCs . Rotation to simple structure is the oldest approach, initially designed 

in factor analysis and later adapted to PCA. It aims to make the rotated components 

as interpretable as possible. However, the belief that a rotated component has its ab- 

solute loadings near 1 or 0, while avoiding intermediate values, is not usually true and 

makes interpretation ambiguous. On the other hand, most of the modern simplifying 

approaches are designed to set or drive some of the component loadings to exact zeros 

in order to make the components interpretable. This trend was initiated by Hausman 

(1982), who constrained the PC loadings to the set of three values, {-1,0,1}. The 

SCoTLASS problem (Jolliffe et al., 2003) requires maximization of the standard PCA 

objective function subject to an additional LASSO constraint. It triggered a series 

72 
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of papers where alternative methods were proposed. The sparse principal component 

analysis (Zou et al., 2006) uses a constrained technique (thresholding) to drive some 

of the component loadings to exact zeros. Similarly, d'Aspremont et al. (2007) pro- 

pose a cardinality-constrained objective function for the same purpose. Chipman and 

Gu (2005) introduce three types of "interpretable" components, each corresponding 

to homogeneity, contrast and sparsity constraints. 

Interpretation of a PC can be associated with the level of sparsity of the component, 

measured by the number of zero (or non-zero) loadings. The larger the number of zero 

loadings, the sparser the component and the easier the interpretation. Unfortunately, 

components resulting from some of the above approaches are not sparse enough, and 

some of the sparse components might still not be easily interpretable. 

On the other hand, simple component analysis (SCA) as proposed by Rousson and 

Gasser (2004) involves clustering of variables. They approximate the first k (< p) 

PCs by a mixture of b ̀ block' and (k - b) ̀ difference' components, in which the block 

components are computed from the correlation matrices of each cluster. The argument 

behind SCA is that the block components are easier to interpret than the difference 

components, and hence aims to increase the number of block components. Vichi and 

Saporta (2009) propose a constrained PCA approach which aims to simultaneous clus- 

tering of observations and partitioning of variables. The set of variables in each par- 

tition helps to make a `disjoint' PC with maximum variance. Jolliffe (2002) discusses 

the possibility of deducing approximate PCs from the patterns of correlation matrix, 

which requires the detection of well-defined groups (clusters) of variables. However, 

such patterns may not be easily visible in many real correlation matrices. 

There is a genuine connection between PCA and cluster analysis. Suppose that 
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the first k PCs of a matrix account for the majority of the variation in the original 

data. Then, one possible measure of dissimilarity between pairs of observations is the 

Euclidean distance in the k-dimensional subspace defined by these PCs. However, it 

has been pointed out (Jolliffe, 2002, p. 211) that there is no real advantage in using 

this measure instead of the Euclidean distance in the original p-dimensional space. In 

addition, Yeung and Ruzzo (2001) used PCA for clustering observations and argue 

that clustering with the PCs instead of the original observations does not necessarily 

improve, and often degrades, cluster quality. Another connection is that PCA can 

help to identify the presence of clusters of variables and hence can be considered as 

a competitor to cluster analysis. When variables fall into well-defined clusters, then 

there will be one PC with high variance and one or more PCs with low variance 

associated with each cluster, except in the case where a cluster has only one variable. 

In this chapter, we propose a cluster-based approach for constructing interpretable 

principal components (IPCs). The p variables are first grouped into k `best' clusters, 

each with q, variables (j = 1, ... , k), based on a given criterion, and then the jth 

IPC is constructed from the correlation matrix of the jth cluster. Thus, the jth IPC 

contains qj nonzero loadings corresponding to the variables in the cluster and (p - qj) 

exact-zero loadings corresponding to the variables outside the cluster, with k Ej qj = p. 

The resulting k IPCs are assumed to approximate the first k PCs with respect to the 

cumulative percentage of adjusted variance (Zou et al., 2006) and the structure of the 

component loadings. For this purpose, a new weighted-variance clustering method is 

proposed. In general, the IPC algorithm involves two stages - grouping the p variables 

into k non-overlapping clusters, and constructing the IPCs from the correlation matrix 

of each cluster. Due to the design of the clustering algorithm, which requires p weights 
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(Section 5.3), we explicitly assume in this chapter that n>p. A cluster-based method 

for the case p»n will be considered in Chapter 6. 

Vigneau and Qannari (2003) developed similar procedure to IPC, but they use a 

different criterion and, unlike our method, fix the number of clusters a priori. The 

general idea of the IPC method also has some similarity with the computation of the 

`block' components by Rousson and Gasser (2004), and the `disjoint' PCs by Vichi 

and Saporta (2009), but the methods are quite different with respect to the simplicity 

of the algorithm involved and the interpretability of the resulting components. 

The chapter is organized as follows. Section 5.2 gives the motivation, including two 

simple motivating examples. In Section 5.3, we propose the new clustering method. 

Section 5.4 is devoted to the construction of the IPCs. Applications of the method 

to simulated and to real data sets are given in Section 5.5. The chapter is briefly 

summarized in Section 5.6. 

5.2 Motivation 

A clustering approach to IPCs is motivated by the specific form of the eigenvalue 

decomposition (EVD) of a block-diagonal correlation matrix. Let R be the following 

pxp block-diagonal correlation matrix: 

R9i °9i 
xq2 ... 

°9i 
xqk 

R= 
Oq2x9l Rq2 ... 

Oq 
xqk 

(5.1) 

L O4kx9i °9kxg2 Rqk 
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where each block Rq; is a qi x qi correlation matrix and Ek 
1 qt = p. Then, the 

eigenvalues of R are solutions of the following equation: 

ýdt(R 
f (. ý) = det(R - AIR) _Q ;- 

\iIq) =0 
i=l 

i. e. the eigenvalues of R can be found by solving k smaller eigenvalue problems for 

Rql, ..., Rq, k 
(Horn and Johnson, 1985, p. 24). Let R4; = Aq; L2 Aq denote the EVD of 

Ry,. Then, after substitution in (5.1) one finds that 

A91L2 A9 T °91x92 .". 091x9k 

_ 

O9sx91 A92Lg2 Aq2 
R_ 

092 x9k AL 2AT (5.2) 

09kx91 °9kx92 ". A9kLgkLq 

where 

Aas Oqlx 1 °qj x1 

°g2xl Aq2 °q x1 A= (5.3) 

oqk 
x1 

oqk 
xl 

A9k 

T with A9 Aq{ = Aq Aq = Iq, for each i, which implies AT A= AAT = Ii,, and 

I' 2 
q1 

L2 _ 
°mxgl 

O9k x 9t 

Thus, PCA of a block-diagonal cc 

Oql 
x q2 

O9i 
x qk 

L2 

" (5.4) 

2 o9k 
X 92 

L9k 

rrelation matrix results in a sparse loadings ma- 

trix (5.3). This feature was partially exploited by Rousson and Gasser (2004) for small 

p. In this chapter, this feature is used to construct orthogonal sparse components. 
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In the remaining part of this section, two data sets, one hypothetical and the other 

real, are considered for motivating the IPCs method. The correlation matrix of the 

hypothetical data set is constructed in such a way that the corresponding PCs are 

sparse. The example helps to grasp intuitively the idea of the IPC method. The 

second (real) data set is taken from McCabe (1984) and will be used throughout the 

rest of the chapter for demonstration. 

Motivating example 1 

Consider a hypothetical correlation matrix R of five variables, x1, x27 x3, x4 and x5, 

with two well-defined groups, {x1, x2} and {x3, x4, x5}, as shown in Table 5.1. The 

correlation coefficient between a variable from one group and a variable from another 

group is zero. 

Table 5.1: Hypothetical correlation matrix R and its PCs 

R PC loadings 

Variable xi x2 Z3 X4 X5 PC1 PC2 PC3 PC4 PC5 

XI 1 . 75 0 0 0 -. 7071 00 0 -. 7071 

X2 10 0 0 -. 7071 00 0 . 7071 

X3 1 . 43 . 17 0 -. 6022 . 4798 . 6380 0 

X4 1 . 27 0 -. 6478 . 1734 -. 7418 0 

xb 1 0 -. 4666 -. 8601 . 2064 0 

Variance 1.75 1.5942 . 8507 . 555 . 25 

The last five columns of Table 5.1 gives the PCs of R. The effect on the PC loadings 

of the zero-valued correlations is clearly noticeable from the exact-zero loadings. Each 

of the five PCs are sparse, in that each PC gets nonzero-loadings only for the variables 

in one group. The two nonzero-loading variables for PC1 and PC5 correspond to 
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{x1, x2}, while the three nonzero-loading variables for PC2, PC3, and PC4 correspond 

to 1131 x4, x5}. Thus, the interpretation of each PC involves only the nonzero-loading 

variables in the corresponding component. 

On the other hand, the nonzero-loadings of the sparse principal components in 

Table 5.1 can be obtained directly from the correlation matrices of each cluster of 

variables. To see this, let R1 and R2 denote the correlation matrices of the variables 

in {x1, x2} and {x3i x4, x5}, respectively. These matrices, together with their corre- 

sponding PCs, are shown in Table 5.2. Note from the table that the loadings and 

variances (eigenvalues) of the two PCs of Rl are exactly the same as the nonzero- 

loadings and variances of PCl and PC5 of R. Similarly, the loadings and variances of 

the three PCs of R2 are the same as the nonzero-loadings and variances of PC2, PC3, 

and PC4 of R. 

Table 5.2: Hypothetical correlation submatrices Rl and R2 and their PCs 

RI PC loadings Rz PC loadings 

Variable xl xa PC11 PC21 Variable x3 x4 x5 PC12 PC22 PC32 

xI 

M2 

1 . 75 

1 

-. 7071 -. 7071 

-. 7071 . 7071 

xs 1 

X4 

X5 

. 43 

1 

. 17 

. 27 

1 

-. 6022 . 4798 

-. 6478 . 1734 

-. 4666 -. 8601 

. 6380 

-. 7418 

. 2064 

Variance 1.75 . 25 Variance 1.5942 . 8507 . 555 

Moreover, the largest eigenvalue of R is the same as the largest eigenvalue of R1, 

while the second largest eigenvalue of R is the same as the largest eigenvalue of R2. 

Thus, the loadings of the PCs corresponding to the leading eigenvalues of Rl and 

R2 are used to construct the first two (sparse) components of R with as little as 

possible loss of information. This remains true if more than two well-defined ̀clusters' 
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of variables are available in the matrix. 

The results in this simple example suggest that, if the variables can be grouped 

into least correlated `clusters', then approximate sparse principal components can be 

computed from the correlation matrices of each cluster of variables. 

Motivating example 2 

In the above simple hypothetical example, the two `clusters' of variables are uncorre- 

lated and their correlation matrix leads to sparse PCs. Unfortunately, this is not the 

case for real high-dimensional multivariate data. The correlation coefficient between 

a pair of variables is hardly ever zero, and each PC contains nonzero-loadings for all 

original variables. But, the hypothetical example may suggest one thing: to group 

the variables into clusters in such a way that the correlation between a variable in one 

cluster and a variable in another cluster is as small as possible. 

Now consider a real data set on coal constituents (McCabe, 1984). Table 5.3 

contains the correlation matrix of nine constituent elements of coal in 50 samples, 

together with the loadings of its first four PCs, which account for 85.8% of the total 

variation. 
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Table 5.3: Correlation matrix and PC loadings, coal constituents data 

Correlation matrix PC loadings 

Vers Si S Ca Ti Fe Se Sr Ba 1 PCl PC2 PC3 PC4 

Al . 961 . 419 -. 010 . 926 . 373 . 328 . 030 . 304 . 461 . 136 -. 319 . 133 

Si . 454 -. 071 . 879 . 370 . 280 -. 032 . 269 . 451 . 184 -. 291 . 138 

S -. 058 . 425 . 657 . 465 . 061 . 225 . 356 -. 006 . 489 -. 016 

Ca -. 050 . 195 . 005 . 629 . 103 . 021 -. 587 -. 097 . 560 

Ti . 336 . 416 . 024 . 272 . 453 . 148 -. 271 . 072 

Fe . 424 . 093 . 185 . 323 -. 130 . 517 . 280 

Se . 113 . 261 . 299 -. 081 . 398 -. 302 

Sr . 489 . 079 -. 660 -. 178 -. 068 

BA . 229 -. 351 -. 185 -. 686 

The usual interpretation of PCs depends on the magnitude and sign of their load- 

ings. For the coal constituents data, the first PC contains three variables with large 

(absolute) loadings: Al, Si and Ti; the second PC - two variables {Ca, Sr} with large 

loadings. Similarly, the third PC has large loadings for {S, Fe, Se}, while the fourth 

PC has large loading for {Ba}. Thus, the variables might be (subjectively) grouped 

into four non-overlapping ̀ clusters': {Al, Si, Ti}, {Ca, Sr}, IS, Fe, Se} and {Ba}. 

Alternatively, the variables could be grouped into three ̀ clusters' as {Al, Si, Ti}, {Ca, 

Sr, Ba}, and {S, Fe, Se} based on the loadings of the first three PCs. However, there 

is no formal rule for categorizing a loading as small or large. In addition, each PC 

contains non-zero loadings on all variables. Inevitably, this introduces subjectivity in 

the PC's interpretation. 

For the above ̀clusters' of variables, a close look at the correlation matrix reveals 

that variables in the same group are highly correlated with each other and weakly 

correlated with the variables from different group. Indeed, the correlation coefficients 
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corresponding to the first group {A1, Si, Ti} are . 961, . 926 and . 879. These are the 

three largest correlation coefficients in the matrix. The correlations between each of 

the variables in this group and the variables in the other groups are relatively small. 

Similarly, the correlation coefficient between the variables in the second group {Ca, 

Sr} is . 629, while the correlations between the variables in the second group and each 

of the variables in the other groups are small. The same is true for the third and the 

fourth groups. 

Hence, the absolute sizes of the loadings of the variables in each PC are related 

to the magnitudes of the correlation coefficients between the variables. Subsets of 

variables with large correlation coefficients tend to have larger (absolute) loadings in 

a certain PC than the remaining variables. Thus, the first step in the process of 

finding interpretable principal components is to cluster the variables. The standard 

clustering methods may help in this regard. However, we propose a new clustering 

approach which leads to IPCs which explain as much as possible of the total variance. 

The resulting IPCs will be later compared with those resulting from the standard 

clustering methods. 

5.3 The weighted-variance clustering method 

In this section, a new agglomerative type of clustering method, called weighted- 

variance, is proposed for clustering variables. The method allows us to either group 

the variables into a required number k of clusters (like the other existing methods) or 

choose the `appropriate' number (and `best' set) of clusters among all possible sets of 

clusters. 
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Let x denotes a p-vector of variables with correlation matrix R. Our criterion for an 

optimal clustering of the p variables into k groups involves a function of the variances 

explained by the linear combinations zj=vJx, j=1,2, ... , k, whose variance is 

given by vjTRv,. The vector v3 is found as follows. Assume that the variables are 

grouped into k non-overlapping clusters and that the jth cluster is composed of qj 

variables, j=1, ... , k, so that Ek 1 qj = p. Consider the jth cluster C" with the first 

ei envector v0) _ (vR v01 vý? 1) corresponding to the largest ei envalue of R j, i iii zi)... )9ýl g ýý 

the q, x qj correlation matrix of variables in the jth cluster. Let wj be the qj x1 

vector containing the indices of the original variables clustered into the jth cluster in 

ascending order, i. e. W1J < w2, ß < ... < wq,, j. Define the px qj indicator matrices Gj, 

for j=1, ... , k, as follows: Gj has 1 at its position (w1,3,1) for l=1, 
..., qj and 0 

otherwise. Then, put vj = Gjv(, '). For the k clusters, let Vk be apxk matrix whose 

jth column is vj: 

Vk = (V1) V2, ... ' Vk] . 

The aim is to group the variables into k (unknown a priori) clusters such that the sum 

of variances 
k 

Tk=EVT , 
RVj. 

j=1 

is maximized. 

(5.5) 

Now, let a; (i = 1,2, ... , p) be the ith largest eigenvalue of R, with A, > )2 > 

>_ \p. For a reason to be explained in Section 5.4, the eigenvalue Aj can serve as 

the weight of the variance of zz (hence, we call this the weighted-variance clustering 

method). Here, larger weights are assigned to the variances of the first few linear 
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combinations. Then, (5.5) can be replaced by the sum of weighted-variances 

k 

Tk =E AjVTRV j. 
j=1 

(5.6) 

If Ak denotes akxk diagonal matrix whose diagonal elements are given by the Ad's, 

then (5.6) can be given in matrix form as 

, rk = trace(AkVk RVk). (5.7) 

The weighted-variance clustering algorithm starts with p clusters, each containing a 

single variable, i. e. Cj= {x3}, j=1,2, ... , p. That means, there are as many clusters 

as the number of variables at the first stage. Let Tp denotes the sum of weighted- 

variance (5.6) corresponding to the p clusters. We call this stage 0 (no merging takes 

place). On each subsequent stage, two clusters merge together, reducing the number 

of clusters by one. At the mth stage (0 <m<p- 1), there are p-m clusters 

available, denoted by Cbm), j=1, ... ,p-m with C, (°) = C3 = {xj}. At this stage, 

p-m 
there are possible choices each comprising p-m-1 `candidate' clusters 

2 

for the (m + 1)th stage. Then, the best choices of clusters at the (m + 1)th stage are 

those which, after merging a pair of clusters, maximize 

p-m-1 

Tp-m-1 = \jvj Raj, m=0, ... ,p-2 (5.8) 
j=1 

over the v, 's constructed from all possible ̀ candidate' clusters obtained at the mth 

stage. The algorithm on merging a pair of clusters continues either until a required 

number k of clusters is retained, or all variables are grouped into a single cluster 

(leading to r1). With the latter option, all possible optimal clusters of sizes 1 to p are 

obtained. This allows us to choose the `best' clusters from all possible clusters. This 
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corresponds to a set of p- m* clusters, say C(m*) (m* = 0,1, ... ,p- 1), for which 

Tp_m" is maximised. Note in this case that we need not fix the number k of clusters a 

prior, an advantage over the ordinary hierarchical and the k-means methods. 

As each pair of components vi'x and vTx (i < j) are correlated to each other, it 

would be appropriate to replace the variance by adjusted variance (Zou et al., 2006). 

Let Vp_, n = [vl, V2i ... , Vp_m], and let Fp_m be the upper-triangular (p - m) x (p - m) 

,, 
RVp_m, that is factor of the Cholesky decomposition of VT 

vp 
mRV p-m = r' P 

mFp-m" 

As shown by Zou et al. (2006), the square of the elements on the main diagonal of 

Fp_m, denoted as diagFp_,,,,, gives the vector of adjusted variances. Then, criterion 

(5.8) is replaced by the adjusted criterion 

Tp-m-1 = Ap-m-ldiagr p-m-1, m=0, ... ,p-2, 
(5.9) 

where ''p-m--1 = (0'1, A2, ... , 
Ap-m-1)T. 

The weighted-variance clustering algorithm can be summarized as follows. Denote 

by C= {C1iC2,..., Ck} the set of k (1 <k< p) clusters, where C3 is the jth cluster 

containing q, variables with ßk_1 q3 = p. 

1. Start with p clusters C(°) = {C( O), C2°), ""., Cp°) } where Cý°) _ {x3 }, j is 

a single-variable cluster. 

2. Among the 
p 

possible pairs of clusters from step (1), search for a pair of 
2 

clusters, say CiO) and CEO), for which the criterion 7-p- I in (5.9) has maximum value 

after merging the two clusters. 
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3. Merge Ci and C(O)1 and update the set of clusters to C(l) = {Cl' , C21), """, C(1ý1}, 

which now contains p-1 clusters. 

4. At the mth stage (0 <m<p- 2), search for the pair of clusters, say C1 m) and CI(m) , 

among the 

(p-m 

possible choices, for which the criterion Trp_m_l in (5.9) has 

2 

maximum value when the two clusters are merged. 

5. Merge C; m) and C(m), and update the set of clusters to C(m+l) _ {Cim+i), C2m+1), 

""", �(m+1ýl}, which now contains p-m-1 clusters. 

6. Continue merging and updating the clusters until either 

i) a required number k of clusters C= C(p-k) is reached, or 

ii) m=p-2, leading to a single cluster C(p) containing all the variables. In this 

case, the best set of clusters, say C= C(m*), is chosen to be the one for which 

Tp_m" (0 ý m* <p- 1) is maximum. 

5.4 Interpretable principal components 

Now, assume that the variables are already grouped into k clusters using an arbitrary 

clustering technique and let qj denote the number of variables in the jth cluster with 

The next step is to construct the IPCs. 

5.4.1 Constructing IPCs 

The nonzero loadings of the jth IPC are obtained from the eigenvector corresponding 

to the largest eigenvalue of the correlation matrix of the variables in the jth cluster. 
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Let x3 be the vector of qj variables in the jth cluster with correlation matrix Rj, and 

let v(, ') be the eigenvector corresponding to the largest eigenvalue of Rj. Then, the 

p-vector v3 (j = 1,2, ... , 
k) is formed from výý in such a way that the qj loadings 

of vi ) become the nonzero-loadings of vj for the same set of variables xj, while the 

remaining (p-qj) loadings of vj are zeros. The vector vj is called the jth interpretable 

principal component (IPC). In particular, if the weighted-variance clustering procedure 

of Section 5.3 is employed, the IPCs are available as by-products. 

The expression vjTRv3 in (5.8) gives the variance accounted for by the jth IPC. 

From the property of ordinary PCA, principal components (PCs) are presented in a 

decreasing order of their variances so that the first few PCs explain the majority of 

the variation in the original data. We also order the IPC's in the decreasing order of 

their variances. To allow the IPCs keep this property, we use the variances of the first 

k PCs (A3's) as weights attached to the variances of the corresponding ordered IPCs. 

Thus, the idea behind incorporating weights in (5.8) is to identify those k IPCs which 

preserve as much as possible the explanatory power of the first k PCs. In general, 

the criterion to be maximized is simply the sum of the weighted-variance of the IPCs, 

where A3 serves as the weight for the variance of the jth IPC. 

If the clustering of variables is `optimal' with respect to the maximal value of the 

criterion (5.9), the performance of the IPCs can be assessed using the cumulative per- 

centage of variance explained by the components. However, as the IPCs are correlated 

with each other, the cumulative percentage of adjusted variance (Zou et al., 2006) is 

a better measure of goodness-of-fit. 
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5.4.2 Number of IPCs 

In PCA, there is no hard and fast rule for deciding the number k of PCs to retain in the 

process of reducing dimensionality. Some of the ad hoc rules-of-thumb used in practice 

include the cumulative percentage of total variation and the scree plot (Jolliffe, 2002, 

Section 6.1). The former rule suggests retaining the first k (< p) PCs which explain 

a required cumulative percentage of total variation (say 80% or 90%) in the original 

data, while in the latter rule, one selects the value of k from a scree plot. However, 

the choice of k is subjective in both cases. Another rule suggests to exclude those 

PCs whose eigenvalues are less than the average, [EP 1 Ail /p. For correlation PCs, the 

numerator is equal to p and hence the average is 1. 

On the other hand, the number of IPCs depends on the number of clusters. How- 

ever, there is no simple rule for choosing the number of clusters in cluster analysis, 

though there are some suggestions (Seber, 2004, p. 388). For the hierarchical linkage 

clustering method, the required number of clusters can be inferred from the nodes of 

the dendrogram. In an extreme case, all variables fall into one cluster, in which case 

the single sparse component is the same as the first PC. In another extreme case, each 

variable forms a cluster, resulting in a total of p sparse components. Thus, the number 

of sparse components ranges from 1 to p. However, neither of the two extreme cases is 

interesting as the objective is to obtain interpretable components in a reduced dimen- 

sion, which recover as much as possible of the total variation in the data. In general, 

the investigator may (subjectively) decide on the number of components to work with, 

depending on the trade-off between the required level of sparsity, the dimensionality 

and the cumulative percentage of explained variance. 
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The weighted-variance clustering algorithm proposed in Section 5.3 runs under 

two options - either until a required number k of clusters is obtained, or until all 

original variables are grouped into a single cluster. The first option involves subjective 

judgement like the standard clustering methods, but the second option helps to obtain 

all possible clusters of variables without fixing ka priori. Then, the `best' solution is 

the number of clusters in the configuration which give the maximum value of criterion 

(5.9). This is equivalent to identifying the value of k in (5.9), which gives the maximum 

value of rk : 

-r t= maxTk, k=1,..., p. 

Here, the values of rk can be plotted against k to give the cluster graph. Generally 

in practice, such a graph has the shape of a downward-facing parabola, in that it 

increases to a maximum and then decreases thereafter. Then, the `best' value of k 

corresponds to the peak of the graph. This graph may also be used as an alternative 

tool for deciding the number of PCs to retain in the ordinary PCA. 

The level of sparsity of a component is also affected by the number of components. 

Unlike the constrained sparse techniques (such as the LASSO-based methods), which 

control the number of nonzero loadings per sparse component by introducing a tuning 

parameter, the IPC approach regulates the level of sparsity via the number of clusters. 

The higher the number of clusters the sparser the components, due to the property 

that the variables are non-overlapping in each sparse component. The feature of the 

IPC method not being dependent on a tuning parameter adds one more advantage 

over other similar methods. 
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5.4.3 Principal components, clusters and variable selection 

The idea behind some of the variable selection methods based on PCA is to reduce 

the number of variables without sacrificing too much information about the original 

data set. One of the variable discarding methods proposed in Jolliffe (1972) is the 

principal components method, which associates one variable with each PC for dis- 

carding or retaining purposes. This method, in general, performs PCA and associates 

one variable to each of the last (p - k) components, namely the variable which has 

the largest coefficient in the component. Some criteria are proposed to choose the 

last (p - k) components. Then the variables associated with these components are 

rejected. Another method associates one variable with each of the first k components 

for retaining k variables. 

A potential relationship between cluster analysis and variable selection is that one 

variable could be retained from each cluster as representative of the cluster. Jolliffe 

(1972) discusses the use of cluster analysis as a variable discarding technique. The 

idea is that if the p original variables are grouped into k clusters based on a certain 

optimality criterion, then each cluster can be represented by a single variable from 

the cluster and the remaining (p - k) variables discarded. He considers two of the 

agglomerative hierarchical clustering methods for this purpose - the single-linkage 

and the average-linkage clustering methods. He also discusses techniques of selecting 

a representative variable from the group of variables in a cluster. Jolliffe (1973) applied 

these techniques to real data sets. Similarly, McCabe (1984) proposed a number of 

criteria for identifying `principal variables', where essentially the idea is that a single 

representative variable can replace a cluster of variables. 
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Clustering techniques have also been used as a companion to PCA. Vigneau and 

Qannari (2003) proposed a clustering method in which correlated variables lump to- 

gether based on a criterion involving the squared correlation between a variable in a 

cluster and the leading principal component of the covariance matrix of the cluster. In 

addition, the `gene shaving' algorithm (Hastie et at., 2000), which deals with clustering 

of genes with similar expression, involves discarding ('shaving') a given proportion of 

genes having the smallest absolute correlation with the leading principal component. 

A common problem with using clustering methods for variable selection is that the 

number of representative variables depends on the number k of clusters, which is often 

decided subjectively. To overcome this, Jolliffe (1972) relates the required number of 

clusters to some threshold ro such that the amalgamation of the clusters continues 

until the value of the clustering criterion first falls below ro. Then, the number k of 

clusters formed at this stage is the required solution. However, there is still no hard 

and fast rule for finding the value of ro. 

One advantage of the weighted-variance clustering algorithm over the standard hi- 

erarchical algorithms could be that it chooses the `best' clusters without fixing k or 

ro in advance. That means, having decided to use (5.9), no further choices need be 

made. It can also serve as an alternative hierarchical clustering method to obtain a 

required number k of clusters. 

Example (continued) 

Consider again the correlation matrix of the coal constituents data in Table 5.3. Let 

the variables Al, Si, S, Ca, Ti, Fe, Se, Sr and Ba be denoted by the serial numbers from 

1 to 9. The left-hand plot in Figure 5.1 gives the dendrogram of the clustered vari- 
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ables based on the average-linkage method (see Chapter 2 for the standard clustering 

methods). With a required number of three clusters, the weighted-variance cluster- 

ing method results in the following clusters: {1,2,3,5,6,7}, {4,8}, and {9}, which are 

identical to the ones given by the dendrogram in Figure 5.1. However, the k-means 

method with k=3 results in clusters {1,2,5}, {3,6,7}, and {4,8,9}. If four clusters are 

required, then each of the three approaches results in the same set of clusters: {1,2,5}, 

{4,8}, {3,6,7}, and {9}. 

If the weighted-variance clustering algorithm is allowed to run without fixing the 

number of clusters a priori, then the value of criterion (5.9) is maximum when the 

variables are divided into three clusters {1,2,3,5,6,7}, {4,8}, and {9}. This `best' 

number of clusters is also shown by the cluster plot in Figure 5.1, which relates the 

number of clusters with the maximum value of the criterion (5.9). As noted above, the 

same clusters are found from the dendrogram if three clusters are sought. However, the 

dendrogram does not clearly indicate the `best' number of clusters, as the dissimilarity 

drop may equally suggest either 3 or 5 clusters. 

McCabe (1982) identified a few possible four-variable subsets of principal variables 

for the coal constituents data. The subset with the largest percentage of variation 

explained is found to be {2,4,6,9}. Note that each of these principal variables 

correspond uniquely to one cluster in the four-clusters case. For the case of three- 

clusters, he identified four sets of principal variables with large percentage of variation 

explained, of which three sets fulfil the property that each of the principal variables in 

a set correspond uniquely to one cluster. 
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Figure 5.1: Dendrogram (Left) and cluster plot (Right) for the coal constituents data. 

The first three PCs of the correlation matrix account for 76.1% of the total varia- 

tion while the first four PCs account for 85.8%. If we decide to work with four clusters, 

then the nonzero-loading variables for the corresponding IPCs become {1,2,5}, {4,8}, 

{3,6,7}, and {9}. The variables in each cluster correspond to the large-loading vari- 

ables of the PCs in Table 5.3. The corresponding IPCs account for 76.1% of the total 

adjusted variance. On the other hand, the three IPCs based on the weighted-variance 

clustering method contain nonzero-loadings for sets of variables {1,2,3,5,6,7}, {4,8}, 

and {9}, respectively, and account for 67.4% of the total adjusted variance. 

5.5 Further Applications 

In this section, two synthetic and two real data sets are considered to illustrate the 

IPCs method. The new weighted-variance and two other standard clustering methods 

are employed for clustering variables, with more attention to the weighted-variance 

clustering. The corresponding IPCs are computed using the methods given in Sec- 

tion 5.4. 

1]6]61f0 

V11Mw Ibl 
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Synthetic data I 

We use a simple example to see if the weighted-variance clustering method is able to 

reconstruct the groups of variables given by the data-generating model. It might also 

help to see if the corresponding IPCs can reveal the important features of the PCs 

without sacrificing much information. For this purpose, consider again the artificial 

data generated for ten variables as given in Table 4.5 (Section 4.3 of chapter 4), which 

is based on one of the models considered in Jolliffe (1972). 

By construction, the 10 variables xi fall into 4 groups: {x1}, {x2, x3}, {x4, x5, x6} 

and {x7i xg, xg, x10}. The variables forming each group are linear combinations of the 

variables within the same group plus random disturbances, whereas variables from 

different groups are independent. 

The correlation matrix R10 of the ten variables xi is computed based on 100 random 

observations. The main results were stable over different random samples of the same 

size. The correlation coefficient between a variable from one group and a variable from 

another group is very small, while the correlation coefficients pzj between the variables 

i and j from the same group are found to be as follows: r23 = . 800, r45 = . 865, r46 = 

. 795, r, " = . 804, r78 = . 925, r79 = . 926, r7,10 = . 930, r89 = . 905, r8, lo = . 933, r9, lo = . 954. 

First, the weighted-variance clustering method is applied to R10 with a required 

number of four clusters. The loadings and the variances of the corresponding IPCs, 

together with that of the PCs, are given in Table 5.4. The four IPCs perfectly identify 

the important features of the first four PCs and explain nearly the same cumulative 

variance. 



Chapter 5. Clustering approach to interpretable principal components 94 

Table 5.4: Loadings and cumulative variance (CV) of the PCs and IPCs, synthetic 

data 1. Empty cells have zero values. 

Variable PC1 

PC loadings 

PC2 PC3 PC4 IPC1 

IPC loadings 

IPC2 IPC3 IPC4 

xl . 004 -. 047 -. 119 . 985 1 

X2 . 116 . 129 -. 672 -. 155 -. 707 

X3 . 093 . 102 -. 696 . 001 -. 707 

X4 -. 040 . 572 . 084 . 032 . 582 

X5 -. 039 . 570 . 125 . 049 . 584 

X6 -. 003 . 563 . 053 . 035 . 567 

X7 . 491 . 010 . 105 . 021 . 499 

X8 . 492 -. 001 . 064 -. 024 . 497 

X9 . 494 . 034 . 069 . 010 . 500 

xlo . 498 . 001 . 069 . 028 . 504 

CV(%) 38.4 65.1 82.6 92.5 37.9 64.3 82.0 91.9 

Next, the weighted-variance clustering method is applied without fixing the number 

of clusters a priori. The cluster plot in Figure 5.2 relates the number of possible clusters 

with the value of the criterion (5.9). The plot shows that the criterion is maximized 

when the variables are grouped into four clusters. Moreover, each cluster is found to 

contain the same set of variables as required by the model. 
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Figure 5.2: Cluster plot for synthetic data 1. 

Synthetic data II 

Consider a synthetic data set generated as follows (Zou et al., 2006): 

V1 , N(0,290), V2 ' N(0,300), 

V3 = -0.3V1 + 0.925V2 + c, f« N(0,1), 

and V1, V2, and c are independent normal variates. Then 10 observable variables are 

constructed as follows: 

Xi = V, + eil, ci - N(0,1), i=1,2,3,4, 

Xi = V2+E?, E; -N(0,1), i=5,6,7,8, 

Xi = Vg E3, Es N N(0,1), i=9,10, 

where {cl, } are independent, j=1,2,3; i=1,2, ... , 10. 

We generate 1000 random observations for each of the ten variables and the weighted- 

variance clustering method is applied to the (10 x 10) matrix of correlations. The crite- 

rion (5.9) is maximum when the data are grouped into two clusters: {X1, X2, X3, X4} 

and {X5, X6, X7, X8, X9, X10}. The corresponding IPCs, together with the results of 
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PCA, simple thresholding (ST), and SPCA (Zou et al., 2006) are given in Table 5.5. 

The second sparse component for each of the sparse methods is the same, but the 

first sparse component differs. The variables X9 and X10 are included in the nonzero- 

loading variables of the first IPC. This is due to the fact that the weighted-variance 

clustering method allocates each variable into one of the two clusters, and V3 is highly 

correlated to V2, but weakly to V1. The first ST component also includes these two 

variables, but excludes X5 and X6. Thus, the first IPC fits the first PC much better 

than the first components from both SPCA and ST. 

Table 5.5: Loadings and cumulative variance (CV) of components from PCA, SPCA, 

ST, and IPC methods for synthetic data 2. The empty cells are Os. 

PCA SPCA (A = 0) ST IPC 

Variable 1 2 1 2 1 2 1 2 

xl -. 116 . 478 .5 .5 .5 

xz -. 116 . 467 .5 .5 .5 

x3 -. 116 . 478 .5 .5 .5 

X4 -. 116 . 478 .5 .5 .5 

Xß . 395 . 146 .5 .4 

Xß . 395 . 146 .5 ,4 

27 . 395 . 146 .5 .5 .4 

mg . 395 . 146 .5 .5 .4 

x9 . 401 -. 010 .5 .4 

xio . 401 -. 010 .5 .4 
CV(%) 60.0 99.6 40.9 80.4 38.8 77.4 58.9 98.1 

The 1988 Olympic decathlon data 

This data contain results of the 1988 Olympic decathlon for 33 competitors (Everitt 

and Dunn, 2001, pp. 20 and 57). The ten events (variables) are 100m (x1), long jump 
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(x2), shot putt (x3), high jump (x4), 400m (x5), 110m hurdles (x6), discus (x7), pole 

vault (x8), javelin (x9) and 1500m (x10). We consider the correlation matrix of the ten 

events, as reproduced in Table 5.6. 

Table 5.6: Correlation matrix of events for the 1988 Olympic decathlon (Everitt and 

Dunn, 2001) 

Events X X2 X3 X4 X X6 X7 X$ Xg 

xz 0.540 

X3 0.208 0.142 

X4 0.146 0.273 0.122 

X5 0.606 0.515 -0.095 0.088 

X5 0.638 0.478 0.296 0.307 0.546 

Z7 0.047 0.042 0.806 0.147 -0.142 0.110 

X8 0.389 0.350 0.480 0.213 0.319 0.522 0.344 

xg 0.065 0.182 0.598 0.116 -0.120 0.063 0.443 0.274 

x10 0.261 0.396 -0.269 0.114 0.587 0.143 -0.402 0.031 -0.096 

Application of the weighted-variance clustering approach to the 1988 Olympic de- 

cathlon data results in three 'best' clusters - {xl) 12) 15) x6) x8) x10}, {x31 x71 x9} 

and {x4}. The ̀ best' number of clusters is indicated by the peak of the cluster plot in 

Figure 5.3. For a required number of three clusters, the dendrogram of the hierarchical 

linkage method given on the left-hand plot in Figure 5.3 suggests the same set of clus- 

ters. On the other hand, the k-means method with k=3 groups the events into three 

as {x1, x2, x5, x8, x10}, {x3, x7, x8, x9} and {x4}. The difference might be attributed 

to the fact that the two clustering methods are based on different criteria. Unlike the 

k-means, the target of the weighted-variance method is to approximate PCs, which is 

beyond a mere clustering. 
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Figure 5.3: Average-linkage dendrogram (Left) and cluster plot (Right) for the 1988 

Olympic decathlon data. 

PCA of the decathlon data shows that only the first two PCs have variances greater 

than 1, while the classical scree plot (not shown here) suggests consideration of the 

first three PCs which accounts for 69.7% of the total variation. This result is similar 

to the one suggested by our cluster plot. But, note that using the peak of a cluster 

is more objective than using the elbow of a classical scree plot for determining the 

number of clusters. 

The loadings of the first PC are all positive, giving the usual interpretation of 

overall performance. However, the first IPC, based on the weighted-variance clustering 

method, contains positive loadings only for the six variables in the first cluster while 

the remaining loadings are zeros. This relates the first IPC to the performance of the 

running events. The second IPC has nonzero-loadings for the three `power' events 

- shot, discus and javelin. The third IPC is composed only of the high-jump event. 

The IPC loadings and explained variances are slightly different to those based on the 

k-means clustering method. The k-means method tends to produce clusters of similar 

sizes, which might not lead to IPCs with desirable properties. The PCs and IPCs 
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together with the cumulative variance are given in table 5.7. 

Table 5.7: Component loadings and cumulative adjusted variance (CAV) using PCA, 

IPC based on k-means (KM), and IPC based on weighted variance (WV) 

for the correlation matrix of the 1988 Olympic decathlon. Empty cells have 

zero values. 

PC loadings IPC loadings (KM) IPC loadings (WV) 

Events PC1 PC2 PC3 IPC1 IPC2 IPC3 IPC1 IPC2 IPC3 

zl . 42 -. 15 -. 27 . 48 . 46 

X2 . 39 -. 15 . 17 . 45 . 43 

Z3 . 27 . 48 -. 10 . 59 . 63 

X4 . 21 . 03 . 85 1.00 1.00 

X5 . 36 -. 35 -. 19 . 50 . 47 

xe . 43 -. 07 -. 13 . 44 . 44 

X7 . 18 . 50 -. 05 . 54 . 59 

xa . 38 . 15 -. 14 . 39 . 33 

Xg . 18 . 37 . 19 . 46 . 51 

xio . 17 . 42 . 22 . 35 . 29 

CAV(%) 34.2 60.2 69.7 29.2 54.0 63.2 31.8 54.0 63.2 

The Pitprop data 

As considered in Chapter 4, the pitprop data (Jeffers, 1967) contains 13 variables 

Ili x2-1.. , x13 measured on 180 pitprops cut from Corsican pine timber. Jeffers (1967) 

considered the first six PCs of the correlation matrix for further analysis and interpre- 

tation. Their cumulative percentages of variance explained are 32.4%, 50.7%, 65.1%, 

73.6%, 80.6% and 86.9%. 

We consider four clustering solutions - one based on a particular dendrogram, one 

based on k-means, and two based on the weighted-variance method (with and without 
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fixing the number of components a priori). The left-hand plot in Figure 5.4 gives 

the dendrogram based on the average-linkage method. For a required number of six 

clusters (chosen for this data set for a reason given in Chapter 4, Section 4.1.2), the den- 

drogram groups the variables as 
{x1, x2, x6, x7, x8, x9, x10}, {x3, x4}, {x5}, {x11}, {x12} 

and {x13}, while the k-means method groups them as {x1, x2, x8, x9, x10}, {x3, x4}, 

{X6, X7}, {x12, x13}, {x5} and {x11}. For the same required number of clusters, the 

weighted-variance clustering approach suggests the same set of clusters as the dendro- 

gram. On the other hand, if the weighted-variance algorithm is allowed to run without 

fixing the number of clusters, then the `best' number of clusters is found to be six (see 

the cluster plot in Figure 5.4). The corresponding clusters are again the same as the 

ones derived from the dendrogram. 
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Figure 5.4: Average-linkage dendrogram (Left) and cluster plot (Right) for the Pitprop 

data. 

Now we construct the corresponding IPCs. If the variables are grouped into six 

clusters (based on either the dendrogram or the weighted-variance), then the corre- 

sponding six IPCs explain 76.0% of the total variance, while the cumulative adjusted 

variance is 73.5%. The number of nonzero loadings (which measures the sparsity level) 

in the six IPCs are 7,2,1,1,1 and 1. The cumulative adjusted variance explained by 
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the six IPCs based on the k-means method is 71.1%. 

The Pitprop data set has become a benchmark example and is used in nearly 

every paper studying sparse PCs. In the remaining part of this illustration, the IPCs 

based on the weighted-variance method with six clusters are compared with the sparse 

components obtained by other methods. As most of the methods produce 4th, 5th 

and 6th sparse components with a single nonzero (unit) loading, Table 5.8 contains the 

loadings of the first three sparse components only, and the corresponding cumulative 

variance (CV) and adjusted variance (CAV). This table is part of the table given 

in Chapter 4. The values in the table are collected from the original papers. The 

abbreviations are: SPCA - sparse principal component analysis (Zou et al., 2006), 

SCoTLASS - simplified component technique-LASSO (Jolliffe et at., 2003) with ýr = 

1.75, DSPCA - direct sparse PCA (d'Aspremont et al., 2007), ESPCA - exact sparse 

PCA (Moghaddam et al., 2006), IDR - interpretable dimension reduction (Chipman 

and Gu, 2005) with sparsity constraint 71 = . 9, and sBarse - sparse biplots component 

analysis (Chapter 4, this thesis). 
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Table 5.8: Sparse loadings and variance of the first three components explained by dif- 

ferent methods, Pitprop data. Empty cells have zero values, while 0* indi- 

cates zero to 2 decimal places. 

Method x1 32 x3 x4 x5 x6 x7 x8 x9 x10 x11 x13 x13 CV CAV 2 

SPCA 1 . 48 . 
48 -. 18 

. 
25 

. 
34 

. 
42 

. 40 28 28 6 

SPCA 2 . 
79 

. 
62 -. 02 

. 
01 42 42 9 

SPCA 3 . 64 . 59 . 49 -. 02 57 55 9 

SCoTLASS 1 . 
66 

. 
68 0' 0' 

. 
28 

. 
11 20 20 7 

SCoTLASS 2 0' . 
84 

. 
70 

. 
29 

. 
11 0' 36 33 7 

SCoTLASS 3 . 20 0' -. 17 -. 66 . 70 50 46 7 

DSPCA 1 . 56 . 58 . 26 . 10 . 37 
. 
36 27 27 7 

DSPCA 2 . 71 . 71 42 40 11 

DSPCA 3 -. 79 -. 61 . 01 56 50 10 

ESPCA 1 . 48 . 49 . 
41 

. 42 . 43 26 26 8 

ESPCA 2 . 71 . 71 41 40 11 

ESPCA 3 -. 81 -. 58 55 49 11 

IDR Si -. 42 -. 42 -. 30 -. 42 -. 31 -. 37 -. 39 31 31 6 

IDR 82 -. 69 -. 58 -. 44 45 45 10 

IDR 33 
. 43 . 58 . 57 -. 39 59 56 9 

IPC 1 
. 
42 

. 43 . 27 . 40 . 31 . 38 . 40 31 31 6 

IPC 2 
. 71 . 71 45 45 11 

IPC 3 1 53 52 12 

. Bane 1 -. 41 -. 41 -. 41 -. 41 -. 41 -. 41 29 29 7 

iBsne 2 
. 
71 

. 71 43 43 11 

cBares 3 
. 71 . 71 54 53 11 

The first two components of IPC outperform that of the SPCA with respect to 

both the sparsity level and the cumulative percentage of explained variance. With the 

same number of nonzero loadings (same sparsity level), the first IPC explains a higher 

percentage of variance than the first component of SPCA. In addition, the second IPC, 

accounting for 14% of the total adjusted variance, contains only two nonzero-loading 

variables. But, the second SPCA component, accounting for the same percentage of 

total adjusted variance as the second IPC, has four nonzero-loading variables (and 

hence less sparse). Considering the first three components, IPC performs better than 
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SPCA with respect to the level of sparsity, but not with respect to the explained 

cumulative adjusted variances. 

Similarly, the IPC method performed better than SCoTLASS, when considering the 

first two or the first three sparse components. In addition, the first three components 

from IPC are sparser and explain a higher cumulative percentage of adjusted variance 

than the corresponding components from DSPCA. Compared to ESPCA, the first three 

IPCs account for a larger cumulative percentage of adjusted variance for the price of 

one nonzero-loading variable. The IDR components, accounting for higher cumulative 

percentage, are quite sparse, but they lack orthogonality. Finally, comparison of the 

IPC method with the sBarse method (Chapter 4) shows that the first two sparse 

components of the former explain higher cumulative percentage of variance (45%) 

than the corresponding components of the latter (43%), while the number of zero- 

loading variables are the same in both cases (which is 11). Considering the first three 

sparse components, however, the sBarse method performs better than the IPC method 

with respect to the explained cumulative percentage of variance, but vice versa with 

respect to the level of sparsity measured by the number of zero-loading variable. 

Sparse principal components with non-overlapping variables are expected to give 

simpler and possibly clearer interpretation than those with overlapping variables. The 

IPCs are designed in such a way that a variable gets a nonzero loading in only one 

sparse component. This property is not common for the other methods, e. g. DSPCA, 

ESPCA and IDR. 

The IPCs results can be compared with that of variable selection. The IPC with 

only one nonzero loading might indicate that this particular variable could be one of 

the original variables to be retained in the variable selection process. For example, 



Chapter 5. Clustering approach to interpretable principal components 104 

the last four (of six) IPCs of the Pitprop data set are composed of a single variable, 

namely, the 5th, 11th, 12th and 13th, respectively. On the other hand, the variable 

selection technique proposed by Jolliffe (1973) identified the variables x1, x3, x5,111, 

x12 and x13. But, the method by Cadima and Jolliffe (2001) contain x2 instead of x1, 

i. e., the selected variables are {x2, x3, x5, x11, x12, x13}. McCabe (1984) also found 

the latter subset of variables as the ones explaining the largest percentage of variation 

among the possible subsets of six principal variables. Clearly, the IPCs for the Pitprop 

data are in agreement with the results from these three variable selection methods. 

5.6 Summary 

This chapter is motivated by the specific form of the eigenvalue decomposition of a 

block-diagonal correlation matrix, where PCA of such a matrix results in a sparse load- 

ings matrix. A clustering approach is proposed for approximating a real data matrix 

by a block-diagonal matrix, so that sparse principal components can be constructed 

from the data or correlation matrix of each cluster of variables. For this purpose, a 

weighted-variance clustering approach is proposed, which can be applied to data sets 

with smaller number of variables than observations. 

Different types of data sets are used for illustrating the technique, and the resulting 

cluster-based sparse PCs are compared with those based on existing methods. The 

results show that the sparse PCs based on the weighted-variance clustering method 

perform well with respect to their percentage of cumulative adjusted variance explained 

and their level of sparsity. 



Chapter 6 

Sparse principal components by 

semi-partition clustering 

In Chapter 5, we proposed a clustering approach to interpretable principal components 

(IPCs) in which the variables are first grouped into clusters, and then the IPCs are 

computed from the correlation or data matrix of each cluster, leading to sparse com- 

ponents with non-overlapping variables. However, due to the design, the clustering 

algorithm can only be applied to those data sets with a smaller number of variables 

(p) than observations(n). 

In this chapter, we propose a sparse principal components method based on clus- 

tering which can be applied to data sets with either n>p or p»n. The ultimate 

objective of the chapter is to construct cluster-based sparse principal components 

(CSPCs) from the data or correlation matrix of each cluster, which share some of the 

basic properties of the standard PCs. One such property is variance maximization. 

Thus, we search for a small number of clusters of variables such that the cumulative 

adjusted variance (Zou et ad., 2006) explained by the corresponding CSPCs is max- 

105 
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imized. However, existing standard clustering methods are not designed in this way 

and, thus, may not lead to clusters with such properties. As a result, we propose a 

new type of clustering approach, called the semi-partition, which is assumed to give 

the intended types of clusters. Here, note that we are not intending to propose a "bet- 

ter" clustering technique than the existing ones; rather, we are proposing a clustering 

approach which leads to "better" CSPCs. 

Examples on small as well as large data sets are considered, but more attention 

is given to microarray gene expression data sets. Such data sets are characterized by 

having tens and hundreds of thousands of genes (considered here as variables) while 

the number of samples rarely exceeds a hundred. The information contained in the 

data matrix is often overshadowed by the size of the data, and clustering is often used 

to uncover the information. The purpose of gene-clustering in gene expression data 

analysis might be to find genes that are potentially co-expressed, which has significant 

biological importance. For instance, gene-shaving (Hastie et al., 2000) is such a method 

aimed to identify small subsets of genes with coherent expression patterns and large 

variation across samples. 

The chapter is organized as follows. The semi-partition clustering approach is 

proposed in Section 6.1 and the cluster-based sparse component method is outlined in 

Section 6.2. In Section 6.3, the developed technique is applied to two simple data sets 

with n>p (one synthetic and another real) and to two gene expression data sets with 

p n. A short summary of the chapter is given in Section 6.4. 
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6.1 The semi-partition clustering approach 

The semi-partition clustering algorithm forms clusters of variables sequentially in two 

steps. First, the elements of a vector of variables x are ordered (sorted) based on one 

criterion, and then the ordered variables are partitioned based on another criterion. 

At each stage of cluster formation, a type of semi-partition clustering is used in which 

the ordered vector of variables are partitioned into two groups, say [xlIx2]. The parti- 

tioning is made at the position of the "weakest-link" in the ordered variables where the 

`gap' between the groups is maximal or the link is weak. Then, the first subgroup (x1) 

forms the first cluster, while the other subgroup is subject to new ordering and par- 

titioning. In other words, only one of the two subgroups at a specific stage is subject 

to further partitioning at the next stage (and hence the name semi-partition). Unlike 

the standard partition clustering method, which simultaneously assigns each variable 

into one of the k clusters (a number fixed a priori), the semi-partition method forms 

clusters in a recursive way. Thus, the procedure continues until one of the two options 

is satisfied - either a required number k of clusters is obtained or no more ordering 

and/or partitioning procedure is feasible (see Section 6.1.3). 

As already pointed out, the proposed method can be applied to either small or 

large data sets, but this section is developed based on a gene expression data set as 

the main target so that clustering is made to the genes. 

6.1.1 Gene-ordering 

A gene expression data set with p genes and n samples is usually expressed as apxn 

matrix W. But from now on, we work with the nxp matrix X := WT in this chapter. 
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Let R denotes the matrix of correlations for the p genes. Suppose that the highest 

correlation coefficient is r; j, the correlation coefficient between the ith and the jth 

genes. Then form a set of two indices, say s(2), with elements s(2) =i and s22) = j. 

Now, choose a third gene which is highly correlated to both the ith and the jth genes. 

That is, identify a gene with index k, that maximizes r2k + rjk (i i- i# k) and set 

S3(3) = k, so that s(3) = [s(2)I833)1. Then, select the fourth gene, say s44) = 1, which 

maximizes nil +r2t +rkl and forms s(4) = [S(3)15(4) 41, and so on. The procedure continues 

in a similar way until all the genes have been ordered. In general, the (q + 1)th ordered 

gene, say m, will be the one that maximizes 

9 

fl(s(q), m) _ r, (q) m, over all mý s(q) ,q=2,3, ... 
(6.1) 

i-i 

An alternative criterion might be to take the sum of the squares of the correlation 

coefficients. That is, replacing r (q) in (6.1) by r2(q) . However, this option is not Si ,m Si 'M 

considered here as it ignores the signs of the correlation coefficients, which may have 

a significant effect on the final result. This and other similar options, such as the use 

of I r5(q) mI will be studied elsewhere. 

A similar measure can be developed if the correlation coefficient r3() m 
in (6.1) is 

replaced by a distance (dissimilarity) measure (1 - re(q) 
gym), 

but this time, the (q + 

1)th gene will be the one that minimizes the sum of distances between the gene and 

each of the q genes. The distance measure has similar features with the inter-cluster 

dissimilarity measure used in the average linkage hierarchical clustering method, if the 

q ordered genes are considered as one cluster and the single (q + 1)th gene as another 

cluster (Everitt and Dunn, 2001, Section 6.2). 

The vector of ordered genes is used in Section 6.1.2 to form a cluster. Then, the 
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ordering algorithm repeats on the remaining unclustered genes, and so on. 

6.1.2 Gene-partitioning 

Once the vector of indices of the ordered genes s- s(') is found, we require a par- 

titioning criterion. Consider the p-vector of ordered genes x corresponding to s, and 

re-arrange the correlation matrix R accordingly. [For the sake of simplicity, the formu- 

lation of the criterion is based on the correlation matrix of x, though the computations 

later involve the data matrix. ] It is known that the variance of a linear combination 

y= aTx, given by aTRa, is maximized if a is the eigenvector corresponding to the 

leading eigenvalue of R (constrained to aTa = 1). Now, let s be partitioned into two 

vectors as s- [Si 1 s2] having kl and p- kl genes. Then, R can be rewritten as the 

following block-matrix: 

Ril R12 
R=, 

R21 R22 

where R; (i=1,2) is the correlation matrix of the vector of genes xi corresponding 

to s;, and each element of the matrix R12 =R Ti refers to the correlation coefficient 

between a gene from xl and a gene from x2. If al and ai denote the eigenvectors 

corresponding to the leading eigenvalues of RI, and R22, respectively, then the matrix 

consisting of the variances and covariances of yi = ai xl and yi = ai x2 is 

ai Ruai ai R12ai 
Cy, y = (6.2) 

ai R21al äi R2ai 

The diagonal elements of C,,, 
l, Y, give the variances of yl and yi while each of the off- 

diagonal elements gives the covariance between the two linear combinations. In the 

extreme case, when the genes in the two groups are uncorrelated, R12 = Oklx(p_k1), 
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and Cy, y is block-diagonal. 

Associated with the square symmetric matrix in (6.2), we need a single-number 

summary that involves all the elements of the matrix. Such a number can be given by 

the determinant of the matrix (sometimes called the generalized variance): 

f2(s1,82) _ (Cy, 
y' 

f 

_ ýa, Rllal )x (a R22a') - 
(aTRi2a'1)2 (6.3) 

This number is then used for choosing the `best' partition. That is, we choose a 

partition of s, say si and s2, among all possible partitions for which the value of 

f2(si, s2) in (6.3) is the largest. As p is large, the eigenvalue-eigenvector pairs can be 

efficiently obtained from the SVD of the partitioned data matrices X1 E RnXII and 

X2 E Rri"(p-k') 

At the `best' solution of the first stage of the algorithm, si gives the first cluster 

of kl genes. To form the next cluster, the ordering and partitioning procedures are 

repeated on the remaining p- kl vector of genes contained in s2. In general, the 

data matrix of p- Ek 
o ki ordered genes is used at the ith stage of the partitioning 

procedure with ko = 0. 

The whole procedure of gene-ordering and partitioning continue until no further 

clustering is possible or until one gets the required number of clusters (whichever 

comes first). But, if one is interested in a required number of clusters which exceeds 

the one obtained at the termination of the procedure, then it is possible to repeat the 

whole algorithm on one or more of the resulting clusters. At the extreme case, one 

can continue the procedure until each gene makes a cluster. 
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6.1.3 Initializing a cluster 

The two initializing genes are important factors in forming a new cluster. As a result, 

we need to set some rule. One possible rule is that a pair of genes initializes a new 

cluster if the absolute value of their correlation coefficient is not less than a certain 

(nonnegative) threshold value, say ro. Thus, a minimum absolute correlation coeffi- 

cient (MACC) could be chosen based on the problem under investigation. This step 

helps to avoid unnecessary grouping together of uncorrelated genes. 

The cluster-initializing issue is also related to the criteria for terminating the clus- 

tering algorithm. If the correlation coefficient between a pair of initializing genes is 

less than ro at a particular stage, then the gene ordering and partitioning procedures 

terminates. Suppose that clusters of sizes ki (i = 1,2, ... , m) are already formed by 

the first m clustering stages, and that the absolute correlation coefficient between the 

two initializing genes for the next stage is less than ro. Then, the q= (p - Em 
1 kti) 

unclustered genes either make one cluster each, leading to the total number of clusters 

being (m + q), or may be regarded as ̀ noise' (or outliers) so that they might not make 

clusters. 

As a gene expression data set often contains a huge amount of noise, one of the 

challenges in gene clustering is related to the extraction of useful information from 

background noise. The possibility that the semi-partition method could filter out 

noise may be one merit of the method over the k-means approach, which forces each 

of the genes to join a cluster. However, such genes may not necessarily be noise and, 

instead, require further investigation. 

The following algorithm summarizes the semi-partition clustering procedure: 
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1. Let so ={1,2, ... ' p} contain the initial indices of the genes. Then, find the pair 

of indices from so, such that the nx2 matrix of the corresponding genes has the 

largest absolute correlation coefficient among all pairs from so. If the absolute 

correlation coefficient is less than a pre-specified value ro, stop the algorithm and 

return the result; otherwise, denote this pair by sl and let s2 +- s\s1 (s without 

sl). Find f2(sl, s2) according to (6.3) above. 

2. Identify a gene from s2 which, together with the two genes from sl, form anx3 

matrix with the largest sum of correlation coefficients among all other genes from 

s2. Update sl and 82 by removing this gene from 82 and inserting into sl. Find 

new f2(811 s2), compare with the previous, and keep the largest. 

3. Continue removing a gene from s2 and inserting it into s1, based on the maximal 

value of (6.1), until s2 gets only one gene. 

4. Identify the partition, say si and s2, that gives the largest value f2(si, s2) of the 

criterion (6.3). Then si gives the first cluster of genes. 

5. To get the next cluster, repeat the ordering and partitioning on the vector of 

genes s2 (i. e. so t- s2 and go to step 1, but now p denoting the length of s2). 

6. Continue the algorithm until a required number of clusters is obtained or until 

no further clustering is possible. 

At the end of the algorithm, the variables that are not in any cluster will be considered 

as single-cluster variables. 
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6.1.4 Evaluating the clustering algorithm 

The Rand index (Rand, 1971; Yeung and Ruzzo, 2001) is a known method for eval- 

uating clustering algorithms. It helps to measure the similarity of two clusterings of 

the same data. For a given p-vector x of genes, consider a pair of clusterings of genes 

C1 = {Cll, C22, 
... , 

Clkl } and C2 = {C21, C22, 
... , 

C2k2 }. This could be the case where 

the two clusterings are obtained from applying two different methods to the same data 

set, and hence Cij denotes the jth cluster obtained from the ith method. Rand (1971) 

proposed a measure of similarity between Cl and C2, denoted by S(C1, C2), as 

0.5 x LE1 (EziP)2 
+ E9=1 (E1Pi)2] 

- 
Ei=1 

Lýj=1 Fij 

S(ClsC2)=1- 
p 

2 
(6.4) 

where P denotes the number of genes simultaneously in the ith cluster of Cl and in 

the jth cluster of C2. This can simply be defined as the proportion of concordant gene 

pairs in two partitions among all possible gene pairs (Thalamuthu et at., 2006)). If a 

denotes the number of pairs of elements that are in the same set in Ci and in the same 

set in C2, and b denotes the number of pairs of elements that are in different sets in 

Cl and in different sets in C2, then the Rand index is simply given by 

S(C1iC2) _a+b 
p 

2 

The overlappings between Cl and C2 can be summarized in a contingency table where 

p{,, denotes the number of common genes of groups Cii and C2j: pj= IC11 f C2? 1. The 

values of the Rand index lie between 0 (when the two data clusters do not agree on 
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any pair of genes) and 1 (when the data clusters are exactly the same). 

Thus, the performance of a clustering method can be evaluated based on the simi- 

larity of the resulting clusters with the `true clusters' of a data set. But, this requires 

a data set whose number of true clusters is known. In Section 6.3, we use the Rand 

index for assessing the performances of the semi-partition and the k-means methods 

based on a data set having five (known) clusters. 

6.2 Cluster-based sparse principal components 

The motivation to the construction of the cluster-based sparse PCs is already given in 

Section 5.2 of the previous chapter. This section briefly describes some points related 

to the construction of cluster-based sparse PCs based on the semi-partition clustering 

method. 

6.2.1 Constructing cluster-based sparse principal components 

Assume that the variables are already grouped into k clusters and that the jth cluster 

is composed of qj variables, for j=1, ... ,k and ýý=1 qj = p. Let wj be the qj x1 

vector containing the indices of the original variables clustered into the jth cluster in 

ascending order, i. e. w1J < w2,2 < ,., < w,, j. Define the following px qj indicator 

matrices G3, for j=1, ... , k: G3 has 1 at its position (w1, j, 1) for t=1,... , qi and 

0 otherwise. Then Xj = XGj is the nx qj data submatrix corresponding to the jth 

cluster and let Xj = UJLJAJ be its singular value decomposition (SVD). Denote by 

vý) the singular vector of A3 corresponding to the largest singular value in L3. Then, 

the pxk matrix V of cluster-based sparse principal component (CSPC) loadings is 
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formed as follows: 

V= [Giv11), G2v12)I... IGkv1k)] 

6.2.2 Goodness-of-fit 

The goodness-of-fit for the cluster-based method can be measured using the cumu- 

lative proportion of variances explained by the CSPCs, compared to the cumulative 

proportion of the variances of the data matrix. If the matrix of loadings V is obtained 

based on the matrix R, then the diagonal elements of the kxk symmetric matrix 

Sk VTRV 

give the variances explained by the k CSPCs. But, the sparse components are cor- 

related to each other, and hence the adjusted variances (Zou et at., 2006) are used 

as a better measure of goodness-of-fit. If Fk denotes the upper triangular matrix of 

the Cholesky factorization of Sk, then the adjusted variances are given by the squared 

diagonal elements of Fk. 

6.2.3 Number of cluster-based sparse principal components 

The number of CSPCs depends on the number of clusters. But, as indicated in the 

previous chapter, there is no hard and fast rule for choosing the number of clusters 

in cluster analysis. There are few attempts to determine the number of clusters in 

microarray gene expression data (McLachlan et al., 2004, Section 4.12). 

One simple constraint affecting the number of clusters (and hence the number of 

CSPCs) might be the determination of the threshold ro while initializing a cluster. 

The value of ro may vary depending on the type of data under consideration. For 
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gene expression data, for instance, the genes are often highly correlated to each other 

and a relatively higher value should be set to ro. Depending on the value of ro, some 

genes may be left unclustered. This may not be the case for small data sets with 

n>p, where each of the unclustered variables may form a cluster, leading to sparse 

components each with one nonzero loading variable. But, ro is introduced simply to 

avoid the clustering together of uncorrelated variables and may not be a necessity for 

the semi-partition algorithm to run. The semi-partition algorithm in Section 6.1 can 

continue until no further clustering is possible, without requiring to set ro. In this 

case, the algorithm finds k clusters, which number is unknown a priori and is a result 

of a particular optimal ordering/partitioning process. This implies that the number 

of sparse components should not always be prescribed in advance, say based on the 

scree plot of the original data. 

It is also possible to constrain the number of clusters to a required number k' 

where k' < k. This number k' is supposed to govern the dimension and the sparsity 

of the components. However, if one is interested in k' clusters where k< k' < p, then 

it is possible to repeat the semi-partition algorithm on one or more of the clusters 

themselves. For this purpose, the next possible cluster to be partitioned into two 

further clusters could be the one which gives the "maximum weakest-link" between 

the partitions. That is, if f2() denotes the maximal value of (6.3) corresponding to 

the partitioned correlation matrix of the ith cluster (i = 1,2, ... , k), then the cluster 

that should be divided into further clusters is the one with the largest value of f2(=). 
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6.2.4 Semi-partition versus k-means 

If the k-means method is used for clustering variables, then correlations between the 

variables can serve as the measure of (dis)similarity in which (1-correlation) is propor- 

tional to the squared distance. In many situations, the k-means method outperforms 

many other existing clustering methods. But, one drawback of the k-means method is 

that the solution depends highly on the initial values. In addition, it requires to fix the 

required number k of clusters a priori. It is included in this chapter for comparison 

with the semi-partition, with the number of semi-partition clusters functioning as the 

value of k. 

Recall that the ultimate goal of the semi-partition clustering method is to form 

clusters in such a way that the cumulative adjusted variances explained by the cor- 

responding CSPCs is maximized. The clustering method proposed in Section 6.1 is 

designed to produce clusters of noticeable size differences, and the CSPCs correspond- 

ing to the first few clusters explain large proportion of variances. On the other hand, 

the k-means clusters "tend" to have relatively similar sizes, which leads the corre- 

sponding first few CSPCs to have smaller cumulative variances than those based on 

the semi-partition method. In general, the CSPCs based on the two clustering meth- 

ods can be compared using the percentage of cumulative adjusted variances explained 

by the respective CSPCs (see Section 6.2.2). 

6.3 Application 

In this section, CSPCs based on the semi-partition clustering approach is illustrated 

using different kinds of data sets, and the results are compared with that of the k- 
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means method. The semi-partition clustering algorithm is based on a MATLAB code 

written by the author, while the k-means is based on the MATLAB function kmeans 

with correlation as the distance parameter. In addition, the CSPCs corresponding to 

the semi-partition clusters are compared with the sparse PCs based on Witten et at. 

(2009). 

6.3.1 Simple data sets (n > p) 

Synthetic data 

Here, we consider again the artificial data set generated in Section 4.3, simply to 

illustrate the behaviour of the clustering approach to sparse principal components. 

Recall that the data set contains 10 variables xi (i = 1,2, ... , 10), which fall into 4 

groups (or clusters) by construction: {x1}, {x2i x3}, {x4, x5, x6}, and {x7, x8, xg, xl0}. 

Suppose that n observations are generated, and let xi denotes the n-vector of obser- 

vations for the ith variable. Put X= [x1, x2, ... , xlo], an nxp matrix of observations. 

Then, application of the semi-partition clustering method to X with n= 100 results 

in the four clusters of variables, {x7, x8, x9, x10}, {x4i x5, xs}, {x2, x3}, and {x1}. This 

conforms with the groups of variables given by the initial construction. For a required 

number of four clusters, the hierarchical and the k-means clustering methods also give 

the same set of clusters as the semi-partition method (not shown here). 

Actually, the number of variables involved in this simulated data set is so small that 

the clusters can easily be identified from the dendrogram of the hierarchical clusterings. 

However, it is not easy to identify the required clusters if the number of variables is 

too large, as with gene expression data sets (to be illustrated later). 
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One desirable property of the semi-partition method worth noting is that it forms 

sets of clusters in a sequential way, which may help to construct only the first few 

clusters of variables while leaving some variables unclustered. Such a procedure may 

have an extra advantage of keeping away those variables with outlying observations 

from joining the first few clusters. For instance, we may be interested in only the first 

cluster for the synthetic data, which is found to be {x7, x8, x9, x10}. At this point, the 

other variables are considered unclustered. If the interest is in the first two clusters, 

then we need to search for the second cluster using only the unclustered variables, 

without affecting the first one. This results in {x4, x5, x6} as the second cluster, still 

leaving the variables x1, x2i and x3 unclustered. The same procedure continues if more 

clusters are required until all variables have been clustered. 

If the semi-partition method is considered as a useful clustering method, the above 

issue is especially useful in contrast to the k-means clustering method, which forms 

the k clusters simultaneously and hence requires re-initializing the centroids for each 

change in the required number of clusters. The value of k is usually unknown before 

hand, but the k-means method forces each variable to join one of the k clusters. 

For instance, if k=2 is used in the synthetic data, the k-means clusters become 

{x7, x8, x9, xlo} and {XI, x2, x3, x4, x5, x6}. Such a result might be affected by outlying 

values. 

The CSPCs corresponding to the four clusters of variables is the same as the IPCs 

given in Chapter 5. Table 5.4 gives the loadings and the cumulative percentage of 

adjusted variances for the first four standard PCs and the corresponding CSPCs. The 

CSPCs are much sparser (and simpler to interpret) than the PCs while accounting 

for almost as much cumulative variances as the PCs. The k-means (with k= 4), the 
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hierarchical and the semi-partition clustering methods each gives the same CSPCs. 

Alate Adelges data 

Jeffers (1967) used a data set from Alate Adelges (winged aphids), in which 19 variables 

are measured from 40 individual alate adelges, with the purpose of determining the 

number of distinct taxe that were present at a particular habitat. He uses principal 

component analysis to get guidance on the number of taxa, and he tried to interpret 

the first four PCs. The 19 variables are body length (x1), body width (x2), fore- 

wing length (x3), hind-wing length (x4), number of spirales (x5), number of antennal 

segment I (x6), number of antennal segment II (x7), number of antennal segment 

III (x8), number of antennal segment IV (x9), number of antennal segment V (xlo), 

number of antenna! spines (xli), leg length - tarsus (x12), leg length - tibia (x13), 

leg length - femur (x14), rostrum (x15), ovipositor (x16), number of ovipositor spines 

(x17), anal fold (x18) and number of hind-wing hooks (x19). Their correlation matrix, 

given in Jeffers (1967), is used here. 

For any MACC values in 0< ro < 0.8, the semi-partition clustering method groups 

the 19 variables into four clusters as {x1, x2, x3, X4, x6, X7, x8, X9, x10, x12, x13, x14, 

x15, x19}, {x5, x16, x17}, {x11} and {x18}. The first cluster contains the majority of 

the variables due to the high degree of correlation among them. 

The semi-partition clusters can be compared with those of the hierarchical and 

the k-means methods. Figure 6.1 gives the dendrogram of the hierarchical clusterings 

based on the single, complete, and average (also called group average) linkages. For a 

required number of four clusters, both the complete and the average linkages give the 

same result as that of the semi-partition, but the single linkage gives slightly different 
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results: three clusters each with a single variable (from {x11}, {x17}, and {x18}) and 

the fourth cluster containing all the remaining variables. Indeed, it is emphasized 

(Everitt and Dunn, 2001, Section 6.2.3) that the single linkage is usually the least 

satisfactory method compared to the complete and average linkages. On the other 

hand, the h-means method, with a required number of four clusters, results in {x1, 

x2, x3, x4, x6, x75 x9, x10, x12, x13, x14, x15}i {x5, x16, x17} {x11, x18} and {x8, x19}. 

These are quite different from that of the semi-partition. 

1 ý. 'ice' nSý, ýý ý. 
Figure 6. l: Dendrogrants for the Alate Adelges data: Single-linkage (Left), complete- 

linkage (middle) and average-linkage (Right). 

The first CSPC based on the semi-partition method is almost a general index of the 

size of the individuals, while the other three CSPCs are interpreted with respect to the 

nonzero-loading variables in the respective sparse components. The four CSPCs cx- 

plain 78.52% of the cumulative adjusted variances. The hierarchical clustering method 

based on each of the complete and average linkages give the same result as that of 

the semi-partition, but the one based on the single linkage explains 78.32%. On the 

other hand, the four CSPCs based on the k-means method explain 70.26% of the total 

variation, a higher loss in information than with those based on the semi-partition clus- 

tering. Table 6.1 gives the component loadings and the cumulative adjusted variances 

explained by the components based on each of the ordinary PCA and the cluster-based 

methods. 
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Table 6.1: Loadings and percentage of cumulative adjusted variances (CAV) for the 

first four PCs and CSPCs based on semi-partition (SP) and k-means (KM), 

Alate Adelves data. Empty cells have zero loadinos. 
PCs CSPCB (SP) CSPCs (KM) 

Variable 1 2 3 4 1 23 4 1 2 3 4 

xl . 25 -. 03 . 02 . 07 . 27 . 29 

X2 . 26 -. 07 . 01 . 10 . 28 
. 29 

x3 . 26 -. 03 -. 05 . 07 . 28 . 29 

X4 . 26 -. 09 . 03 . 00 . 28 . 29 

X5 . 16 . 41 -. 19 -. 62 . 58 . 58 

Xß . 24 . 18 . 04 -. 01 . 25 
. 27 

x7 . 25 . 16 . 00 . 02 . 27 . 29 

x8 . 23 -. 24 . 05 . 11 . 25 
. 71 

x9 . 24 -. 04 . 17 . 01 . 26 
. 27 

xlo . 25 . 03 . 10 -. 02 . 27 . 28 

x11 -. 13 . 20 . 93 -. 17 1.00 . 71 

x12 . 26 -. 01 . 03 . 18 . 28 . 30 

x13 . 26 -. 03 . 08 . 20 . 28 . 30 

x14 . 26 -. 07 . 12 . 19 . 28 . 30 

x15 . 25 . 01 . 07 . 04 . 27 . 29 

x1e . 20 . 40 -. 02 . 06 . 59 
. 59 

x17 . 11 . 55 -. 15 . 04 . 57 
. 57 

Miß -. 19 . 35 . 04 . 49 1.00 . 71 

Zig . 20 -. 28 . 05 -. 45 . 22 
. 71 

CAV(%) 73.0 85.4 89.4 92.0 63.9 72.8 76.8 78.5 56.9 65.3 68.5 70.3 

6.3.2 Gene expression data (p » n) 

A gene expression dataset collects together the expression values from a series of DNA 

microarray experiments, with each column representing an experiment. There are 

several thousand rows representing individual genes, and tens of columns representing 
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samples. Two different gene expression data sets are considered here. The first is used 

especially for assessing the performance of the semi-partition clustering method, while 

the second is used for constructing clusters and computing the corresponding CSPCs. 

Comparison of the CSPCs with other sparse components is also based on the second 

data. Due to the large number of genes, the CSPCs are not presented here. 

The Yeast data 

The yeast cell cycle data (henceforth referred to as the yeast data), presented in Yeung 

and Ruzzo (2001), contains the fluctuation of the expression levels of 384 genes over 

17 time points. The data, publicly available at http : //faculty . washington. edu/ 

kayee/pca/, is first log-transformed and then each gene vector is mean-centered and 

normalized to have length 1. 

As indicated by Yeung and Ruzzo (2001), the yeast data is a subset of a larger 

data set initially employed by Cho et al. (1998), who originally categorized the genes 

into five phases of cell cycles. The phase of each gene is given together with the raw 

data in the link given above. The number of genes corresponding to each of the five 

phases are found to be 67,135,75,52, and 55. These can serve as the true clusters 

to which the clusterings from each of the semi-partition and the k-means methods are 

compared based on the Rand index (Section 6.1.4). Denote the five true clusters by 

serial numbers 1 to 5. 

Both the semi-partition and the k-means methods are applied to the yeast data, 

with a required number of five clusters. Let C1, C2, C3, C4 and C5 denote the five 

clusters. The contingency table in Table 6.2 gives the number of genes in these clusters 

and the corresponding true clusters (given as rows). Each cell in the table consists of 
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two values, given outside and inside bracket, corresponding to the number of genes for 

the semi-partition and the k-means clusters, respectively. Each element in the body 

of the table corresponds to the pij defined in (6.4). The last row of the table gives the 

cluster-sizes for the semi-partition (and the k-means) clusters, while the last column 

gives the cluster-sizes for the true clusters. 

The Rand index, computed from Table 6.2, corresponding to the semi-partition is 

found to be 0.79, while the Rand index corresponding to the k-means is 0.80. The 

k-means method performed slightly better than the semi-partition, though the values 

are not far from each other. On the other hand, the cumulative percentage of adjusted 

variances explained by the five semi-partition CSPCs (45.8%) is slightly higher than 

the one explained by the five k-means CSPCs (44.4%). 

Table 6.2: Contingency table for the number of genes in the semi-partition, k-means 

(in brackets) and true clusters, Yeast data 

Semi-partition (k-means) clusters 

True Cl Cl Cz C3 C4 C5 Total 

1 36(48) 5(6) 0(0) 13(0) 13(13) 67 

2 13(17) 120(114) 2(4) 1(0) 1(0) 135 

3 1(2) 32(29) 26(35) 7(9) 7(0) 75 

4 0(0) 0(0) 21(23) 7(26) 24(3) 52 

5 1(1) 0(0) 1(0) 6(19) 47(35) 55 

Total 51(68) 157(149) 50(62) 34(54) 92(51) 384 

The Alon data 

The Alon data (Alon et al., 1999) corresponds to the gene expression measurements 

publicly available from http: //microarray. princeton. edu/oncology/. The data 
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matrix consists of 2000 genes with minimal intensity across 62 samples, 40 tumor and 

22 normal colon tissue samples. But, some of the genes in the data set are duplicated 

(i. e., there are more than one different expression sequences). As such genes are 

highly correlated, only one of the sequences, which has the largest standard deviation, 

is considered. This procedure reduces the number of unique genes to 1909. Thus, 

our final Alon data matrix consists of a mean-centered and normalized vectors of the 

(natural) logarithm of p= 1909 genes in n= 62 samples. 

Application of the semi-partition algorithm to the Alon data with a value of ro 

in [0.5,0.851 results in 10 clusters. The cluster-sizes range from 647 genes for the 

first cluster to 8 genes for the last cluster. The clusters include the last one formed 

from the set of remaining genes when the algorithm terminates due to the fact that 

the maximum absolute correlation coefficient (MACC) between a pair of genes is less 

than 0.5 (set arbitrarily). It might be possible that each of the genes in this last 

cluster convey a unique information, and thus needs further investigation, rather than 

putting them as a `cluster'. However, for the sake of comparison with other similar 

clustering methods, such as k-means, we consider the ten clusters as the final result. 

The cluster-sizes for each of the semi-partition and the k-means clusters are shown in 

Figure 6.5. 

Heat maps are used to look for similarities between genes and between samples. 

They are most effective if rows and columns are ordered so as to allow these patterns to 

be identified. To see if the semi-partition clusters of genes are genuine with respect to 

the expression patterns, two heat maps are plotted, ranging from green (negative) to 

red (positive): one before clustering, and another after clustering the genes. The two 

heat maps (depicted in Figure 6.2) are plotted using a heat map builder freely available 
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at http: //ashleylab. stanford. edu/tools_scripts. html. The rows of the heat 

map represent the genes and the columns represent the samples (with columns 1-40 

for the tumor and columns 41-62 for the normal samples). The genes in the first heat 

map are given in the alphabetical order of their codes, which has no connection with 

the expression levels. In the second heat map, the genes in each cluster are given in 

the order they joined the corresponding cluster, and hence co-expressing genes come 

closer to each other within a cluster. The cluster boundaries (viewed horizontally) 

are visible from this heatmap compared to that of the unclustered genes. The result 

could be a simple and visual demonstration that the method has performed well in 

clustering the genes. 

Most of the regions in the heat map of the unclustered genes look green compared to 

the clustered one, due to the loss in resolution resulting from the large number of genes. 

This feature hides the fact that the two heat maps just represent a rearrangement of 

rows. Figure 6.3 gives a cut-down version of the two heat maps, involving 100 genes 

from each of the first five clusters. This helps to see the distribution of the colors in 

both plots, except the effect of clustering. 

Figure 6.4 gives the dendrogram of the genes based on the average-linkage hier- 

archical clustering method. The horizontal axis of the plot represents the different 

genes while the vertical axis gives the measure of dissimilarity between pairs of genes, 

which are obtained by the pdist function in MATLAB with `correlation' as a distance 

parameter. It might not be simple to identify a required number of clusters from such 

a dense dendrogram. The usual trend in approximating a required number of clusters 

from the mergers of a dendrogram may not give the real situation. For the dendro- 

gram in Figure 6.4, a required number of 10 clusters corresponds to the number of 
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Figure 6.2: Heat map before clustering (Left) and after clustering (Right) using all 

genes, Alon data 

mergers at the dissimilarity measure of about 0.65. But, this leads to the situation 

where almost all genes fall in one cluster. 

However, a general picture of possible clusterings can be visualized from the den- 

drogram, especially from the left part of the plot. We designated the first few of such 

`blocks' of genes by three letters A, B, and C. It is found that most of the genes in 

category A correspond to the second semi-partition cluster, while those under category 

B correspond to the first semi-partition cluster. In general, most of the genes desig- 

nated on the dendrogram by the three letters are found in the first three semi-partition 

clusters. Thus, the semi-partition method may help to find the plausible clusters by 

keeping away some noisy observations from the first few clusters. 

The CSPCs from the semi-partition and the k-means methods arc computed from 

the data matrix of each cluster and then sorted in descending order of their adjusted 
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Figure 6.3: Heat map before clustering (Left) and after clustering (Right) using 100 

fror) c-cich of five, cl, 'stcrs, Alon data 

variances. Then, the two methods are compared with respect to the number of nonzero- 

loadings (the left-hand plot in Figure 6.5) and the cumulative proportion of adjusted 

variances explained (the right-hand plot in Figure 6.5). The left-hand plot shows in 

general that the k-means method tends to produce clusters of similar sizes compared 

to the semi-partition method. But, the k-means is doing better than semi-partition 

with respect to sparseness for the first few components. From the right-hand plot, 

the semi-partition method leads to CSPCs explaining higher cumulative proportion 

of adjusted variances than those of the k-means method, given the same number of 

clusters in both methods. 

For the Alon data set, the semi-partition algorithm takes 5.5 minutes to give both 

the clusters and the corresponding CSPCs on an Intel(R) Pentium 4 computer with 

3.2GHz CPU and . 99 GB of Ram. Compared to the size of the data, the speed seems 
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Figure 6.4: Average-linkage dendrogram for the genes, Alon data 

fair. 

o- _a " 
"1 aaasa+v a+o 

cww 

ö- -I! 
4 

ox 
03 I 

0 25 
02 O-e 

01 0d' 

01 Ö 

123456799 10 
ýe CSPQ 

Figure 6.5: The semi-partition versus k-means clustering methods with respect to the 

number of genes per cluster (Left) and cumulative proportion of adjusted 

variances explained by the corresponding CSPCs (Right), Alon data 

6.3.3 Semi-partition versus gene-shaving 

Gene-shaving (Iiastie et al., 2000) aims to identify few small-sized clusters of genes 

each with similar expression patterns. On the other hand, the semi-partition clustering 

algorithm is designed to identify clusters of genes with similar expression levels, but 



Chapter 6. Sparse principal components by semi-partition clustering 130 

each cluster having a rather large size. As a result, a gene-shaving cluster could 

be a subset of the semi-partition cluster. Gene-shaving may not be considered as a 

clustering method, but our basis for comparison with the semi-partition is attributed 

to the fact that both methods are looking for sets of co-expressing genes. In addition, 

both methods have connections with PCA - the gene-shaving algorithm involves PCA 

in that a cluster of genes are those with high correlation with a PC, while the semi- 

partition method works towards approximating a standard PC with a cluster-based 

sparse PC. 

In this section, we make a simple comparison between the two methods using the 

Alon data. McLachlan et al. (2004) used this data set to demonstrate the (unsuper- 

vised) gene-shaving method. For the sake of comparison, we consider the genes in the 

four gene-shaving clusters given on p. 181 of McLachlan et al. (2004). Table 6.3 relates 

the genes in the four gene-shaving clusters to those obtained by the semi-partition 

clustering method. The result shows that all the genes in the first gene-shaving clus- 

ter fall into the third semi-partition cluster. Similarly, all the genes in the second 

gene shaving cluster fall into the second semi-partition cluster. On the other hand, 

almost all the genes in both the third and the fourth gene-shaving clusters (except 

one gene, which belongs to another semi-partition cluster) are grouped into the first 

semi-partition cluster. 

To see if further partitioning into two of the first semi-partition cluster can identify 

the third and the fourth gene-shaving clusters, we repeated the gene ordering and 

partitioning procedures on this cluster. The result showed that all the genes in the 

fourth gene-shaving cluster (among those already in the first semi-partition cluster in 

the first stage) fall into one of the new semi-partition clusters while all but five genes in 
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the third gene-shaving cluster fall into another cluster. Thus, the semi-partition helps 

to identify a wider range of co-expressing genes whenever this is deemed important. 

There are, however, noticeable differences between the semi-partition and the gene- 

shaving methods. Due to the ultimate objective of constructing sparse principal com- 

ponents, the semi-partition method requires to group all or the majority of the genes 

into non-overlapping clusters, and hence each cluster may contain a relatively large 

number of genes. In addition, the number of clusters may not necessarily be fixed 

a priori, and the cluster-sizes are automatically decided by the algorithm itself. In 

contrast, the gene-shaving method is designed to extract only a small number of co- 

expressing clusters of genes. It requires fixing the number of clusters a priori and the 

optimal cluster size is estimated using the `gap statistic' (Tibshirani et al., 2001). In 

addition, the genes in the gene-shaving clusters may be overlapping. 
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Table 6.3: Cluster membership in the semi-partition (SP) of the genes clustered by 

gene-shaving (GS), Alon data 

GS #1 SP # GS #2 SP # GS #3 SP # GS #4 SP # 

L02426 3 R34876 2 U21914 1 U27143 1 

M26697 3 T57686 2 R15814 1 R49231 1 

T51023 3 T60437 2 D26018 1 R43913 1 

R43914 3 T57468 2 R33367 1 X72727 1 

M84326 3 X12466 2 D14689 1 R22779 1 

M88279 3 M29065 2 L10413 1 L19437 1 

M22382 3 T52642 2 U14588 1 T69748 1 

M14200 3 H24030 2 R53936 1 T70595 4 

T69446 3 T56244 2 D26067 1 T92259 1 

T93589 3 H05899 2 D13641 1 H88250 1 

T84049 3 T63591 2 R09468 1 X68194 1 

T40674 3 H69869 2 R71585 1 H09719 1 

R60859 3 T65758 2 D21260 1 D14043 1 

H89087 3 U02493 2 D13627 1 D17400 1 

R37428 3 M21339 2 U18062 1 H38185 1 

R16156 3 L10911 1 842127 1 

D00761 3 R27813 I X87838 1 

M90104 1 L19437 1 

X01060 1 D15057 1 

R50864 1 U20998 1 

X16135 1 

6.3.4 Cluster-based versus other sparse methods 

Witten et at. (2009) argue that their sparse principal component (SPC) method is 

superior to the sparse principal component analysis by Zou et al. (2006) with respect 

to some basic properties. In this section, the cluster-based sparse principal component 
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(CSPC) method is compared with the SPC method using the Alon data set. The 

comparison involves the level of sparsity and the cumulative proportion of variances 

explained by the components. First, some adjustments are made as follows, for a fair 

comparison between the two methods. 

As discussed in Chapter 4, the SPC function in R (Witten et al., 2009) uses as one 

of its required arguments the sum of the absolute values (sumabsv) of the loadings in 

a sparse component. This value is assumed to measure the level of sparsity and is set 

by the user. On the other hand, the CSPC method is designed in such a way that 

the components involve non-overlapping genes. This feature is not shared by the SPC 

method. However, sumabsv can be calculated from components of the CSPC method 

and the SPC components can be made as non-overlapping as possible, so that both the 

SPC and CSPC methods are put on a similar footing for a fair comparison. This can 

be accomplished using the following procedures [this is similar to that of Section 4.3, 

except the first step]: 

a. Run the semi-partition clustering algorithm and compute cl, ... , c,,, from the 

corresponding sparse components where c, is the sum of absolute values of the 

p elements in the ith CSPC with the ith largest variance. 

b. Run the SPC algorithm in R with sumabsv = cl in order to get component 1. 

Then subtract out this first component and perform SPC on the residuals to get 

component 2, with sumabsv = c2. That is, if vi denotes the first SPC, computed 

based on the data matrix X1, then the second sparse component v2 is computed 

on the residual data matrix X2 = X1 - Xlvlvi 
. 

c. Repeat this procedure until a required number k(! 5 k) of the first SPCs have 
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been obtained. In general, the ith sparse component vi is computed based on the 

residual data matrix Xi - X; 
_1 - 

Xti_lvti_1vý 1 for i=1, ... , 
k', with Xo =X 

and vo being a vector of zeros. 
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Figure 6.6: Comparison of components from CSPC and SPC methods with respect to 

sparsity (left-hand plot) and cumulative proportion of adjusted variances 

explained (right-hand plot) when the respective components are allowed to 

have the same sumabsv values, Alon data. 

The two methods give varying results on the level of sparsity (measured by the 

number of zero-loading genes) and the cumulative proportion of adjusted variances 

as shown in Figure 6.6. The SPC method depends highly on the value of sumabsv: 

higher values result in less sparse components (but with higher cumulative variance ex 

plained), and vice versa. The level of sparsity for both methods is generally decreasing 

with an increase in the explained adjusted variances. The components from the CSPC 

method are in general sparser than the SPC method, but explain smaller cumulative 

percentage of adjusted variances. Thus, the choice between the two methods depends 

on the preference between sparsity of the components and the cumulative variances 

explained by the components. 
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6.4 Summary 

Like Chapter 5, this chapter involves clustering approach as a pre-processing step 

to simplified components. Interpretable sparse PCs are constructed from the data 

matrix of clusters of variables. The simplicity in the interpretation of the cluster- 

based sparse PCs is attributed to the level of sparsity and the non-overlappingness 

of the components with respect to the nonzero-loading variables, which are gained 

through clustering. 

A two-stage clustering approach, called semi-partition, is proposed for this purpose. 

It is designed especially for data sets with a larger number of variables than obser- 

vations, such as gene expression data sets. This is in comparison with the weighted- 

variance clustering method proposed in Chapter 5, which is limited only to those data 

sets with smaller number of variables than observations. The semi-partition cluster- 

ing algorithm is designed in such a way that the percentage of cumulative adjusted 

variance explained by few of the resulting cluster-based sparse PCs is maximized. 

Comparison of the cluster-based sparse PCs using artificial and real data sets show 

that sparse components from semi-partition clustering approach explain higher per- 

centage of cumulative adjusted variance than those based on existing clustering meth- 

ods, such as the k-means method. Furthermore, the level of sparsity differs among 

the two types of cluster-based sparse components. Each sparse component based on 

the k-means method tends to have similar number of nonzero-loading variables, while 

those based on the semi-partition method involve varying number of nonzero loading 

variables. The latter may be preferred when one needs to consider only few sparse 

PCs explaining higher percentage of cumulative adjusted variances, as in the ordinary 
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PCA. 



Chapter 7 

Penalized varimax 

7.1 Introduction 

So far, especially in the last three chapters, we were more interested in new techniques 

for simplifying the interpretation of principal components. This chapter, however, is 

slightly different in that it is concerned with simplifying the interpretation of factors 

in factor analysis. In particular, it deals with penalizing the simple structure varimax 

rotation criterion so that the resulting rotated factors are easily interpreted. 

Analytic rotation methods have a long history in exploratory factor analysis. Browne 

(2001) gives a very complete and comprehensive overview of the field. Details can be 

found in the papers cited there and in the standard texts on factor analysis. See, for 

example, Harman (1976) and Mulaik (1972). 

A common weakness of all analytical methods for simple structure rotation is that 

the rotated factors are usually unequally loaded, which may spoil their interpretation. 

For instance, the quartimax rotation tends to produce solutions with a dominating 

factor (Harman, 1976; Kni sel, 2008). Such a factor is dominated by larger loadings, 

137 
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and hence has a much higher sum of squared loadings compared to the remaining 

factors. On the other hand, the varimax solution has a tendency towards equal sum of 

squared loadings for all factors. This probably explains the great success of the varimax 

criterion. Unfortunately, the existing varimax algorithms do not try to achieve this 

optimal property explicitly. Recently Knüsel (2008) has shown that, indeed, in theory 

the varimax solution should have equal sum of squared loadings for all factors. As is 

well-known (Harman, 1976; Mulaik, 1972), ideally the varimax criterion is maximized 

when there is a single unit loading per factor and all the rest are Os, which also 

implies equal (to 1) sum of squares per factor. Thurstone's simple structure criteria 

(Thurstone, 1947, p. 335) also suggest equidistributed zeros across the rows and the 

columns of the rotated loading matrix. 

In this chapter, a modified varimax criterion is introduced by attaching a penalty 

term to the original varimax objective function. The penalty term explicitly controls 

the size of the column sums of squared loadings, by `equi-distributing the load' from the 

overloaded factors to the less-loaded factors. As a result, the penalized varimax solu- 

tion has equal sum of squared loadings for all factors. The penalized varimax approach 

is designed as a supplement to the classical varimax procedure which treats problems 

with unsatisfactory simple structure possibly caused by uneven sum-of-squares per 

factor. 

The chapter is organized as follows. A formulation of the varimax rotation problem, 

and a list of the most popular algorithms for its solution, are given in Section 7.2. 

Definitions of the penalized vaximax problem are proposed in Section 7.3. It is solved 

by a matrix algorithm making use of the projected gradient method (Jennrich, 2001; 

Trendafilov, 2006). The matrix algorithm directly finds an orthogonal rotation matrix 
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to produce the penalized varimax solution (Section 7.3.2). If the penalty term is 

switched off, the algorithm simply turns into a standard varimax rotation. 

The method is applied to three benchmark data sets: the five socio-economic vari- 

ables (Harman, 1976, p. 135), the 24 psychological tests data (Harman, 1976, p. 123 

and p. 215) and Thurstone's box data (Thurstone, 1947, p. 370). The results are com- 

pared to the classical varimax solutions. It is demonstrated that if the application of 

the penalized varimax is reasonable, it can provide clearer simple structure than the 

standard varimax solution. 

7.2 Varimax criterion 

Varimax (Kaiser, 1958) is the most popular method for analytical rotation in factor 

analysis. Let A be the initial pxk matrix of factor loadings and B := AQ be an 

orthogonally rotated factor loadings matrix. The variance of the squared loadings of 

the jth rotated factor is: 

2 

bjj 
i=1 

p 
i=1 

For a given sum of squared loadings, the variance Vj will be large when there are 

few large squared loadings and all the rest are near zero. The variance Vj will be small 

when all squared loadings have nearly same value. The varimax rotation problem 

(Kaiser, 1958) is to find akxk orthogonal matrix Q such that the total variance of 

all k factors is maximized, i. e. maximize 

kkp1p2 

V-ýVý-ý bý-I' Ebb (7.2) 
j=1 . i=1 Lý=i p i=l 

The original algorithm to find the varimax rotation Q proposed by Kaiser (1958) 
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makes use of successive planar rotations of all possible k(k - 1)/2 pairs of factors, such 

that each pair has maximum variance. 

The varimax rotation problem can be defined in matrix form as follows (Magnus 

and Neudecker, 1988; Sherin, 1966). Compose the matrix: 

S(Q) = CTMpC with Mp = 
(lp 

- 
1Pp1 

pT (7.3) 

where C=B0B and O denotes the Hadamard (elementwise) matrix product. If S 

in (7.3) is divided by p-1, it presents the (sample) covariance matrix of the squared 

orthogonally transformed factor loadings B. Then, the varimax problem is to maximize 

the following objective function (criterion): 

V(Q) = trace S(Q) , (7.4) 

over all possible orthogonal rotations QE 0(k), i. e., 

max trace S(Q) 
QE 0(k) 

(7.5) 

A number of different algorithms are available for solving the varimax problem. See, 

for example, Jennrich (1970), Kaiser (1958), Magnus and Neudecker (1988), Mulaik 

(1972), Sherin (1966), and ten Berge (1984). 

7.3 Varimax with equal column sums of squares 

For an orthogonal rotation Q, the sum of the squared initial loadings equals the sum 

of the squared rotated loadings. That is, 

trace(AAT) = trace(AQQTAT) = trace(BBT). (7.6) 
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The aim of this chapter is to construct an algorithm that finds loadings maximizing 

the varimax criterion subject to having equal sums of squares across the factors. In 

other words, the rotated loadings should possess the property: 

TT bl bi = ... = bk bk . (7.7) 

To achieve this one should solve the original varimax problem (7.5) subject to the 

additional constraint (7.7). An alternative way to impose the additional constraint 

(7.7) on the varimax solution is to modify the varimax criterion by adding a term 

penalizing the deviation from (7.7). This modified varimax problem is called the 

penalized varimax. The next section deals with the construction of such a penalty 

term. 

7.3.1 Penalizing unequal column sums of squares of B 

Consider Lagrange's identity: 

k 1k 2 

kEx, ' = j 
(x) 

j=1 j=1 

+ (xj 
- xq)2 

1<j<q<k 
(7.8) 

where x1, x2i ... xk are any real numbers. Clearly, if rý=1 xj is constant, then Ej_1 xý 

is minimized when xj = x9 for any 1<j<q<k, and conversely. Substituting 

xý = bT bj in (7.8) and using (7.6), we see that 

k 
bß)2 = 1p CCT1p > 

(trace(ATA))2 
(7.9) 

j=1 
k 

equality holding if and only if bi bl = ... = bT bk. The inequality is the result of 

the fact that the second term on the right-hand side of (7.8) is non-negative. The 

inequality can also be inferred from the algebra on the next page. 
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Define the penalty term as 

P(Q) = 1p CCT1P - 
(trace(A TA))2 

k 
(7.10) 

which is a nonnegative continuous function of the rotation matrix QE O(k). As 0(k) 

is compact, there exists Q at which P(Q) achieves its minimum value of 0. Thus, 

P(Q) penalizes unequal column sums of squares of the rotated loading matrix B and 

vanishes when and only when bi bi = ... = bT bk. One can easily see that, in fact, 

P(Q) penalizes the total deviation of all column sums of squares of B from their mean 

value. That is, for j=1, ..., k, put b= EP b and V. =1 Ek b= .1 Ek (E? b? 

Then, 

kkpkp b2 2 
(b3 _b2)2 = Ebý 

i=1 j=1 

_ 
traceBTB 2 

L_. 
(bjTbj 

k) j=1 

Ic 
2 trace BTB k [traceBTBl2 

= E(býbj) 
-2 k 

Ebýbj+k 
kJ j=1 j 

= 1p CCT1p -k (traceATA)2 

since E, ' bJ b3 = traceBTB = traceATA. 

7.3.2 Penalized varimax criterion 

Consider the following penalized varimax criterion: 

PV (Q) = trace CT1VIPC - µp(Q) , (7.11) 

where p is a large positive number and the penalty term P(Q) is given in (7.10). As 

with the standard varimax, by maximizing the PV criterion (7.11), the loadings are 

forced to get either small values around 0 or values near 1 or -1, but having as equal as 
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possible sums of squared loadings of all factors. The importance of the penalty term 

is controlled by varying A. Low values of µ will result in solutions close to the original 

variamax ones, while large values of p can suppress entirely the varimax maximization 

and result in B with equal column sums of squares. 

As the penalty term P(Q) in (7.11) contains a constant term which will not be 

affected by the maximization process, it seems more reasonable and cheaper to work 

with the following penalized varimax criterion: 

PV(Q) = trace CTMPC - µ1g CCT1p . (7.12) 

The penalized varimax criterion PV (Q) in (7.12) is in matrix form. The penalized 

varimax problem requires solving the following constrained maximization problem: 

max PV (Q) 
. QE O(k) 

(7.13) 

Problem (7.13) can be readily solved by the orthogonal rotation algorithm varimaxP 

based on the dynamical system approach proposed by Trendafilov (2006). For this pur- 

pose, the gradient of PV (Q) is needed, which, in turn, requires a smooth approxima- 

tion of the penalty term. The same results are obtained by iterative implementation 

of the gradient projection algorithm of Jennrich (2001). As the penalized varimax 

function PV (Q) is more complicated, alternatively one can rely on the derivative-free 

version of the gradient projection algorithm (Jennrich, 2004). 

Straightforward manipulations (Magnus and Neudecker, 1988) give the gradient of 

trace CTMPC as: 

4AT (B (D (MpC)) 
, (7.14) 

and the gradient of the penalty in (7.12), as: 

4AT (B (D (11C)) (7.15) 
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Then, the gradient of the objective function PV (Q) is: 

4AT {B O [(Mp - µipi) C] } (7.16) 

This gradient will be used, along with the objective function PV (Q), in solving (7.13) 

using the dynamical system approach (Trendafilov, 2006) 

7.4 Numerical examples and comparisons 

Simple artificial data 

An idea about the behaviour of the penalized varimax approach can be given by 

the following small artificial example. Consider the loading matrix given in the first 

two columns of Table 7.1. Strictly speaking, such a loading matrix has nearly perfect 

simple structure, and does not need rotation at all. The only unsatisfied condition for 

perfect simplicity is that the first column has less Os than factors (Thurstone, 1947, 

p. 335). Applying the standard varimax algorithm has no effect, the loadings are left 

unrotated. Then the varimaxP algorithm is applied for different p. For µE [0,2.5], 

varimaxP also leaves the loadings unrotated. After further increasing p, the penalty 

term becomes more important than the varimax term, as seen in the next columns of 

Table 7.1. Finally, one ends up with the worst possible simple structure solution given 

in the last two columns of Table 7.1. This example is artificial and unlikely to happen 

in practice, but it shows that the penalized varimax approach should not be applied 

automatically. Using inappropriate µ may lead to unsatisfactory loadings. In reality, 

loading matrices composed by Os and ±Is only are very hard to find and impossible to 

achieve by orthogonal rotation. In general, the penalized varimax approach is expected 
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to produce factors with balanced contributions to the total variance of the solution, 

while retaining well its simple structure. 

Table 7.1: Limitations of the penalized varimax. 

Initial 

loadings 

varimax 

(MATLAB) 

varimaxP 

(µ = 2.6659) 

varimaxP 

(µ = 2.6669) 

varimaxP 

(µ = 2.7) 

Var I II I II I II I II I II 

1 

2 

3 

10 

10 

01 

10 

10 

01 

1.00 . 06 

1.00 . 06 

. 06 1.00 

. 86 -. 50 

. 86 -. 50 

. 50 . 86 

. 71 -. 71 

. 71 -. 71 

-. 71 -. 71 

B. S. 21 21 21 1.75 1.25 1.5 1.5 

varimax 1.33 1.33 1.31 . 33 . 00 

Data from five socio-economic variables 

The simple structure rotation of the first two principal components of the five socio- 

economic variables (Harman, 1976, p. 135) gives a more realistic example illustrating 

the same potential problem with the penalized varimax approach. The standard vari- 

max solution is given in the first two columns of Table 7.2. The loadings have pretty 

good simple structure. The column sums of squares are of quite similar magnitude 

(2.15/2.52 = . 85). After these observations are made, the application of the penalized 

varimax approach seems unreasonable: there is not much room to either improve or 

spoil the varimax solution. Nevertheless, for illustration purposes, the varimaxP algo- 

rithm is applied with three different µ=1,5,10 and they are depicted in Table 7.2. 

Increasing µ gives more nearly equal column sum of squares while losing little of the 

original simplicity of the µ0 solution. 
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Table 7.2: Factor loadings for the five socio-economic variables from two varimax al- 

gorithms. 

varimax varimaxP varimaxP varimaiP 

(MAMAS) (µ = 1) (µ = 5) (µ - 10) 

Var I II I II I II I II 

1 . 01 . 99 -. 03 . 99 -. 10 . 99 -. 12 . 99 

2 . 94 -. 00 . 94 . 04 . 94 . 10 . 93 . 12 

3 . 13 . 98 . 09 . 99 . 02 . 99 -. 00 . 99 

4 . 82 . 45 . 80 . 49 . 77 . 54 . 75 . 56 

5 . 97 -. 00 . 97 . 04 . 96 . 11 . 96 . 13 

B. S. 2.52 2.15 2.47 2.20 2.40 2.27 2.37 2.30 

varimax 1.8684 1.8560 1.7885 1.7496 

24 psychological tests data 

Three varimax rotations (without Kaiser's normalization) are applied to the max- 

imum likelihood solution for the 24 psychological tests (Harman, 1976, p. 215), called 

for short 24HH data. The value of the varimax criterion for this initial solution is 

0.6249. The first four columns of Table 7.3 are obtained by the classical varimax 

rotation algorithm based on plane rotations and implemented in MATLAB (MATLAB, 

2009). For 100 random starts, the algorithm results in the same optimal loadings with 

no local maxima. The value of the vaximax criterion is 2.5110. For the same number 

of random starts, the varimaxP algorithm without penalty (µ = 0) produces exactly 

the same loadings (not depicted) as the MATLAB one and no local maxima. 

The first factor of the varimax solution has relatively big sum of squares loadings. 

Then the varimaxP algorithm with p= 20 is applied and the solution given in the 
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last four columns in Table 7.3. The value of the penalized varimax criterion for this 

solution is -654.9085, and the value of the varimax criterion is 2.2326. For the HH24 

data, I(traceATA)' = 32.8570, this lower bound in (7.9) being achieved by the penalty 

term for the depicted solution, as 1T CCT1k = 32.8570. In other words, the sum of 

squared loadings of the factors are equal here. For 100 random starts, the varimaxP 

algorithm with µ= 20 produces no local maxima. 
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Table 7.3: Factor loadings for HH24 data from two varimax algorithms. 

varimax (MATLAB) varimaxP (µ = 20) 

Var I II III IV I II III IV 

1 . 25 . 15 . 68 . 13 . 08 . 68 . 17 . 25 

2 . 17 . 06 . 43 . 08 . 07 . 43 . 07 . 16 

3 . 21 -. 05 . 55 . 10 . 08 . 56 -. 04 . 19 

4 . 30 . 07 . 50 . 05 . 18 . 53 . 09 . 16 

5 . 76 . 21 . 12 . 07 . 69 . 23 . 27 . 23 

6 . 80 . 07 . 12 . 16 . 72 . 23 . 13 . 32 

7 . 83 . 15 . 12 -. 01 . 76 . 25 . 21 . 17 

8 . 61 . 23 . 29 . 06 . 51 . 37 . 28 . 21 

9 . 84 . 05 . 11 . 15 . 76 . 23 . 11 . 32 

10 . 17 . 85 -. 08 . 08 . 09 -. 07 . 85 . 13 

11 . 22 . 53 . 13 . 31 . 09 . 11 . 54 . 38 

12 . 05 . 70 . 26 . 03 -. 07 . 24 . 70 . 08 

13 . 24 . 50 . 45 . 02 . 10 . 47 . 52 . 13 

14 . 25 . 12 . 03 . 53 . 14 -. 00 . 12 . 57 

15 . 18 . 11 . 11 . 50 . 06 . 06 . 10 . 53 

16 . 16 . 08 . 40 . 51 -. O l . 35 . 07 . 57 

17 . 20 . 26 . 06 . 54 . 07 . 01 . 25 . 58 

18 . 10 . 35 . 31 . 42 -. 07 . 25 . 34 . 47 

19 . 20 . 17 . 23 . 34 . 08 . 21 . 18 . 40 

20 . 44 . 12 . 36 . 26 . 31 . 39 . 14 . 37 

21 . 23 . 43 . 39 . 17 . 09 . 39 . 44 . 26 

22 . 43 . 12 . 36 . 26 . 30 . 39 . 14 . 37 

23 . 44 . 23 . 47 . 18 . 29 . 50 . 26 . 32 

24 . 41 . 51 . 15 . 23 . 29 . 17 . 53 . 33 

ee 4.35 2.69 2.62 1.81 2.87 2.86 2.86 2.86 

varimax 2.5110 2.2326 

Loadings greater than .4 in the solutions depicted in Table 7.3 are shown in bold 

typeface. The simple structure of the varimaxP (p = 20) solution is clearer than the 

one following from the standard varimax (MATLAB). In fact, the varimaxP simple struc- 
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ture almost exactly matches (except b21,3) the simple structure obtained in (Browne, 

2001, p. 133) from oblique rotation. 

Thurstone's 26 box data 

The same varimax rotation algorithms (without Kaiser's normalization) are applied 

to Thurstone's 26 Box problem (Thurstone, 1947), called for short 26 Box data. The 

initial solution to be analyzed below comprises the first three principal components 

extracted by Cureton and Mulaik (1975) from the correlation matrix of the 26 Box data 

(Thurstone, 1947, p. 370). The value of the varimax criterion for this initial principal 

component solution is 6.1017. 

The first three columns in Table 7.4 are the varimax solution for the 26 Box problem 

obtained by the MATLAB algorithm (MATLAB, 2009). The maximum of the varimax 

objective function is 6.2365. No local maxima are found within 100 random runs. The 

varimaxP algorithm without penalty (µ = 0) produces exactly the same loadings (not 

depicted) as the MATLAB ones and no local maxima for 100 runs. 

The first factor of the standard varimax solution of the 26 Box data (first three 

columns of Table 7.4) has considerably large sum of squares loadings. This is a clear in- 

dication to apply the penalized varimax approach. The next three columns in Table 7.4 

are obtained by the varimaxP algorithm with it = 20. The value of the penalized vari- 

max criterion for this solution is -4298.6981, and the value of the varimax criterion 

is 5.5309. For the 26 Box data, , (traceATA)2 = 215.2114, which is achieved by the 

penalty term for the depicted solution, i. e. 1k CCT1k = 215.2115. In other words, 

the sum of squared loadings of the factors are equal here. For 100 runs, the varimaxP 
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algorithm with p= 20 produces no local maxima. 

The standard varimax solution does not reveal any clear simple structure for the 

26 Box data: the loadings look to be a complete mess. It is clear that the penalized 

varimax solution has much more structured loadings. Moreover, it provides a kind of 

`negative' (as in photography) simple structure in the 26 Box data. 

The difficulties experienced with revealing simple structure in the 26 Box data is 

a notorious problem with the varimax criterion. This is not surprising because the 

weighted varimax solution of Cureton and Mulaik (1975), which reveals the simple 

structure in the 26 Box data, has a varimax value of only 5.3746. The orthogonal 

minimum entropy solution of the 26 Box problem reported by Browne (2001) also 

reveals its simple structure and has varimax value 5.4370. Clearly, all these ̀successful' 

solutions are local maxima for the varimax criterion. 

Such local maxima are also obtained by the penalized varimax approach. While 

experimenting with varimaxP, it was observed that new local maxima emerge when 

using a very short integration step. One can get rid of them by increasing the required 

convergence accuracy, say from 10-4 to 10-7, between two consecutive varimax values. 

For 100 random runs, only one local maximum of the penalized varimax criterion was 

observed with value of -4298.86, which for the varimax criterion gives 5.37. Ironically, 

just this solution reconstructs well the simple structure of the 26 Box data and is given 

in the last three columns of Table 7.4. 
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Table 7.4: Factor loadings for 26 Box data from two varimax algorithms. 

varimax(MATLAB) varimaxP(µ = 20) varimaxP(local) 

Vars I II III I II III I II 111 

xl . 61 -. 22 . 74 -. 25 . 71 . 64 . 98 -. 04 . 14 

X2 . 69 . 68 -. 04 . 63 -. 09 . 73 . 28 . 92 . 12 

X3 . 83 -. 33 -. 42 . 73 . 66 -. 04 . 14 . 23 . 94 

X X2 . 81 . 35 . 44 . 26 . 34 . 89 . 77 . 60 . 13 

xix3 . 90 -. 38 . 17 . 32 . 88 . 33 . 68 . 10 . 72 

X2X3 . 91 . 22 -. 34 . 86 . 32 . 38 . 20 . 71 . 66 

X X2 . 78 . 11 . 59 . 06 . 54 . 83 . 91 . 35 . 16 

xlxz . 80 . 52 . 22 . 46 . 16 . 85 . 57 . 78 . 14 

x2 Ix3 . 83 -. 35 . 41 . 10 . 86 . 46 . 83 . 03 . 53 

xlx3 . 00 -. 41 -. 04 . 52 . 91 . 23 . 56 . 17 . 91 

X X3 . 86 . 41 -. 26 . 82 . 17 . 51 . 22 . 83 . 49 

x24 . 91 . 03 -. 39 . 85 . 45 . 24 . 18 . 57 . 79 

xl/x2 -. 06 -. 79 . 61 -. 70 . 69 -. 13 . 55 -. 83 . 07 

x2/x1 . 06 . 79 -. 61 . 70 -. 69 . 13 -. 55 . 83 -. 07 

XI/x3 -. 15 . 15 . 96 -. 77 . 01 . 61 . 70 -. 17 -. 68 

x3/xl . 15 -. 15 -. 96 . 77 -. 01 -. 61 -. 70 . 17 . 68 

X2/X3 -. 10 . 95 . 28 -. 02 -. 71 . 70 . 08 . 68 -. 73 

X3/X2 . 10 -. 95 -. 28 . 02 . 71 -. 70 -. 08 -. 68 . 73 

2x1 + 2x2 . 80 . 43 . 37 . 32 . 26 . 89 . 70 . 67 . 11 

2x1 + 2x3 . 90 -. 40 . 12 . 34 . 89 . 28 . 64 . 09 . 76 

2x2 + 2xg . 91 . 22 -. 32 . 85 . 33 . 40 . 22 . 72 . 65 

(x1 + x2)1/2 . 79 . 42 . 36 . 32 . 26 . 87 . 69 . 66 . 12 

(x + xg)'/' . 88 -. 38 . 10 . 36 . 86 . 27 . 61 . 10 . 74 

(x2 + x2)1/2 . 90 . 23 -. 29 . 82 . 32 . 41 . 24 . 71 . 63 

xlx'x3 . 98 . 08 . 11 . 54 . 57 . 61 . 62 . 54 . 55 

(x2 I+ x22 +x3)1/2 . 96 . 14 . 01 . 61 . 49 . 57 . 52 . 59 . 56 

B. S. 14.79 5.55 5.08 8.47 8.47 8.47 8.47 8.47 8.47 

varimax 6.2365 5.5309 5.3700 



Chapter 8 

Discussion and future research 

directions 

This thesis aims to contribute towards simplification of the interpretation of new vari- 

ables (or components), especially in PCA, while reducing a p-dimensional multivariate 

data to a lower dimension, say k (« p). Thus, the main objective is to propose simple 

and fast techniques of constructing interpretable components. In addition, the pro- 

posed techniques aim to contribute to the determination of the number k of PCs (and 

hence the number of interpretable components) to retain. 

The sparse biplots (sBarse) component analysis in Chapter 4 proposes a very ef- 

ficient method to simplify the interpretation of PCs, with several advantages over 

existing ones. It may avoid subjective judgement in ignoring small-magnitude load- 

ings in the `classical' way for simple interpretation of PCs. The loadings of each sBarse 

component take values from {0, ±c} with (0 <c< 1). The method is designed in 

such a way that the variables associated with each sBarse component do not overlap, 

leading to clearer interpretation of the components. The first k (< p) sBarse compo- 

152 
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nents have in total p nonzero loadings and are used for interpretation, the remaining 

p-k components being identically zero. Thus, the method may help to suggest the 

number k of components that account for the majority of the variation in the original 

variables. This can be used as an alternative to existing methods, such as the scree 

plot and the cumulative percentage of variance explained by components, which may 

involve subjective judgment. 

The examples given in Chapter 4 illustrate that the sBarse method gives very good 

solutions compared to existing, usually more complicated, methods to obtain simplified 

(sparse) components (SCs). For the Pitprop data, for instance, it gives the sparsest 

orthogonal components among the available SCs by other methods. In addition, it 

can be readily applied to data sets with p»n. For the gene expression data set, 

the sBarse method results in sparser orthogonal components than that of the sparse 

method by Witten et al. (2009). The components also explain a good proportion 

of cumulative variance. Each sBarse component contains a group of nonzero-loading 

genes, which do not overlap with those in the other sBarse components. This leads 

to a clearer and easier interpretation of the components, compared to those computed 

by other sparse methods. 

The sBarse method may not be able to produce sparse loadings for each k= 

1, ... , p. However, this is not a serious problem as we are usually interested in the 

minimal number of SCs accounting for as much variation as possible. Another diffi- 

culty might be the lack of clear guidance for the a's to consider in order not to skip 

the best sparse solution. However, taking only a few of them suffices, as for certain 

discretization, different intervals of a's correspond to identical sBarse solutions. An 

alternative option is to narrow the search interval around the current solution on each 
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consecutive stage of the algorithm. This option may help to speed up the algorithm. 

Chapter 5 proposes a cluster-based approach to interpretable principal components 

(IPCs), in which sparse components are constructed from clusters of variables. The 

motivation for this approach is that important variables comprising a certain com- 

ponent are more correlated with each other than with other variables. As a result, 

variables are grouped into clusters using a certain objective criterion, and an IPC is 

constructed from each cluster. The construction is in such a way that only the vari- 

ables in the corresponding cluster take nonzero loadings, while the remaining variables 

are assigned zero loadings and the IPC is sparse. The nonzero loadings are obtained 

from the eigenvector of the correlation matrix of the variables in the corresponding 

cluster. 

Existing clustering methods might not be suitable for constructing the IPCs due to 

their design and purpose. In addition, these methods often fix the number k of clusters 

a priori. For this reason, a new weighted-variance clustering method is proposed which 

results in k clusters, a number which could either be given as required or automatically 

obtained from the algorithm. The latter option results in the `best' sets of clusters 

among all possible clusters. This may also help in approximating the number k of IPCs, 

which can be inferred from the cluster plot. Application to synthetic and real data 

sets demonstrates that the IPCs based on the weighted-variance clustering method 

explain a higher percentage of cumulative adjusted variances, a desirable property in 

the ordinary PCs, compared to those based on existing clustering methods. 

An additional benefit of the proposed clustering method is that it can be used 

as an alternative pre-processing step in variable selection. That means, once the p 

variables are grouped into k clusters, a representative variable can be retained from 
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each cluster. This is in contrast to the other variable selection methods, such as the 

`principal variables' by McCabe (1984) and other methods discussed by Jolliffe (1972). 

The cluster-based sparse method in Chapter 5 is designed only for data sets with 

a larger number of observations than variables. This restriction led us to propose 

another clustering method, called the semi-partition method, especially designed for 

data sets with a larger number of variables than observations. Chapter 6 proposes a 

cluster-based sparse PCs method based on the semi-partition method. The method is 

developed with microarray gene expression data sets as the main target, although it 

is applicable in general to any type of data set, including those with n>p. 

The procedures in the semi-partition clustering method look in some way like 

that of an ordinary (partitioning) clustering method, but it is based entirely on a 

different criterion due to the objective. Existing clustering methods are solely con- 

cerned with grouping the variables or observations based on some measure of sim- 

ilarities/dissimilarities, whereas the semi-partition clustering method is targeted at 

forming cluster-based sparse principal components (CSPCs) which share some prop- 

erties with the ordinary PCs, such as maximizing variances. Despite these differences, 

the CSPCs based on both the semi-partition and existing methods are computed and 

compared with respect to their adjusted explained variances. The result can show the 

need for proposing a new more appropriate clustering method. 

Comparison of the CSPCs based on the semi-partition method with that of the 

k-means method, using real gene expression data, shows that the CSPCs based on 

the former method explain a higher proportion of cumulative adjusted variances than 

those based on the latter one. In addition, the CSPCs based on the semi-partition 

method show varying levels of sparsity (as measured by the cluster-sizes) while those 
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based on the k-means method show a relatively homogeneous level. This difference is 

crucial when one is interested in considering only the first few CSPCs with high cumu- 

lative percentage of adjusted variances, in which case those based on the semi-partition 

method are preferred. The CSPCs are also compared with the sparse principal compo- 

nents by Witten et at. (2009), and are found to perform well with respect to the level 

of sparsity at comparable levels of adjusted variance explained by the components. 

One limitation of the cluster-based sparse method is that it depends on the quality 

of the semi-partition clusters, which in turn depends on the factors affecting the clus- 

tering method, such as the initialization of a new cluster. Choosing a threshold value 

of the correlation coefficient for a pair of cluster-initializing variables (or genes) might 

pose subjectivity, especially for clusters forming at the later stages of the algorithm. 

This might be a drawback only if interest is in grouping each and every variable into 

a specific cluster (like the k-means method), and if the method is used to determine 

the number of possible clusters. However, this is not the usual case with the semi- 

partition method, especially for large data sets such as those arising in gene expression 

studies, as only the first few clusters (and hence the first few CSPCs) are required to 

approximate the data matrix in a reduced dimension. 

Here, it is possible to compare the methods in Chapters 4 to 6 with respect to 

some features. A common characteristics of the simple component methods given 

in each of the chapters is that the resulting components are non-overlapping with 

respect to their nonzero-loading variables. In addition, no constraint is involved to 

make the components sparse (unlike, say, methods using the LASSO constraint, such 

as SCoTLASS). However, tuning parameters are used in some cases. For instance, the 

sBarse solution can be affected by the value of a used in the biplot factor. Similarly, 
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the semi-partition clustering approach to sparse component requires setting a mini- 

mum absolute correlation coefficient in initializing a new cluster. Both Chapter 5 and 

Chapter 6 involve clustering approach to sparse components, but the weighted-variance 

clustering method of Chapter 5 tends to be more objective in determining the number 

of components (using cluster plot) than that of the semi-partition clustering method 

of Chapter 6. The nonzero-loadings of each sBarse component are equal (and hence 

adds simplicity to its interpretation) while each simple component resulting from the 

clustering methods involves unequal nonzero-loadings. 

Chapter 7 is somewhat different to the other preceding chapters in that it deals 

with simplifying the interpretation of factors in factor analysis rather than PCs. A 

penalized version of the well-known varimax orthogonal rotation method is proposed 

which produces loadings having equal sums of squares for all factors. Such factors are 

balanced and may give more adequate interpretation for some data. The penalized 

varimax is proposed as a supplement (companion) procedure to the standard varimax, 

especially for rotating factor solutions with considerably overloaded factor. This is 

illustrated by the 26 Box data in Table 7.4. 

We end by briefly indicating some possible future research directions. The cluster- 

based PCs method proposed in Chapter 5 is limited to the case where the number 

of variables is less than the number of observations. However, the technique might 

possibly be extended to any type of data. This possibility is not explored in this 

thesis, and shall be done in the future. Another direction with respect to cluster- 

based method could be the use of overlapping clusters, which may result in sparse 

PCs with overlapping variables. It might be necessary to obtain sparse components in 

which a particular variable can assume nonzero loadings in more than one component. 
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This and other issues can be addressed with in possible extension of the sBaxse method 

(Chapter 4), such as introducing a tuning parameter(s) measuring the importance of 

a variable and considering more than one component for which a particular variable 

is relatively important. 
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