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I have seen all the works that are done under the sun; and, behold, all is vanity and vexation of spirit. 

That which is crooked cannot be made straight: and that which is wanting cannot be numbered. 

I communed with mine own heart, saying, Lo, I am come to great estate, and have gotten more wisdom 

than all they that have been before me in Jerusalem: yea, my heart had great experience of wisdom and 

knowledge. 

And I gave my heart to know wisdom, and to know madness and folly: I perceived that this also is 

vexation of spirit. 

For in much wisdom is much grief., and he that increaseth knowledge increaseth sorrow. 

Ecclesiastes I 14-18 

« Ofrati, » dissi « che per cento milia 

perigli siete giunti a 1'occidente, 

a questa tanto picciola vigilia 

d'i nostri sensi ch'e del rimanente, 

non vogliate negar l'esperienza, 

di retro al sol, del mondo sanza gente. 

Considerate la vostra semenza: 

fatti non foste a viver come bruti, 

ma per seguir virtute e canoscenza. N 

« Brothers, »I said, «o you, who having crossed 

a hundred thousand dangers, reach the west, 

to this brief waking-time that still is left 

unto your senses, you must not deny 

experience of that which lies beyond 

the sun, and of the world that is unpeopled. 

Consider well the seed that gave you birth: 

you were not made to live your lives as brutes, 

but to be followers of worth and knowledge. » 

Dante Alighieri, Commedia, Inferno - Canto XXVI vv. 85 -126 
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Abstract 

We developed and tested a new approach to treat low energy electron collisions with 

molecular clusters, called Multiple Scattering, which simplifies the scattering process by 

dividing the target cluster into molecular sub-units; ab initio methods are employed to cal- 

culate collisional data for the electron - sub-unit scattering process, which is later combined 

by the Multiple Scattering method to account for the interference between sub-units. We 

applied the novel method to the scattering from water and formic acid clusters; the results 

(cross sections) were compared to other theoretical and experimental results, showing good 

agreement. The ab initio R-matrix method was employed both for producing the collisional 

information on the sub-units and also for calculating comparison cross sections where pre- 

vious results were not available. 
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Chapter 1 

Introduction 

The present research aims at developing and implementing a fast computational method, 

based on Multiple Scattering (MS) ideas, to calculate cross sections for the low energy electron 

collision process with molecular clusters. In order to assess its validity and determine the 

range of applicability, the method is applied to the study of electron collisions with different 

types of small clusters. Results are compared, when possible, to more accurate ab initio 

calculations and experiments. 

The existing low energy ab initio scattering methods (e. g. Kohn variational method, 

Swinger multichannel method, Rome symmetry-adapted Single Centre Expansion, R-matrix 

- UK, Bonn and JILA implementations) are generally constrained by the target size and are 

therefore unable to treat big targets; in most cases, this is not due to the method per se, but to its 

computational requirements, which depend strongly on the number of electrons and spatial 

extent of the target (Khakoo et al. 2006). Calculations therefore become in practice unfeasible 

if large targets (either big molecules or molecular aggregates) are chosen. Recent calculations 

on big targets involve, for instance, the electron scattering from formamide (Goumans et al. 

2009), tetrahydrofurane (THF) (Milosavljevic et al. 2008), glucose (da Costa et al. 2010), DNA 

components - sugars (Baccarelli et al. 2009), bases (Gianturco et al. 2008, Blanco & Garcia 

2007, Dora et al. 2009), and other constituents (Winstead & McKoy 2008, Winstead et al. 2007). 

The majority of studies are on isolated (gas phase) molecules, although these may in some 

cases not be significant models for the simulation of realistic targets. In particular, over the 

1 



2 Chapter 1- Introduction 

last years, many attempts have been made to describe the effect that low energy electrons 

have on biologically relevant molecules, mainly in connection to the radiation damage in 

biological environments; in this respect, the results for gas phase molecules, although helpful, 

may sometimes not provide the best starting point for the realistic description of the large 

scale process. For this reason, being able to study aggregates of these molecules may be very 

useful. 

Non ab initio methods are computationally less demanding and hence applicable to the 

study of larger and more significant targets, although they may lack the accuracy of ab 

initio ones. The development and evaluation of a novel method to treat low energy electron 

collisions from molecular clusters, with little computational requirements, making use of 

input obtained from ab initio methods, is the main objective of this work. 

1.1 Low energy electrons and biological radiation damage 

In recent years, many studies have focussed on the damage of nucleic acids (DNA and 

RNA) caused by the interaction of ionising radiation (e. g. a, ß and y rays, ions, X-rays) 

with biological tissue, because of its potential mutagenic, recombinagenic and carcinogenic 

effects. Such effects are initiated by the high energy particle and other fast particles produced 

by the primary radiation, interacting with cellular constituents and generating different 

secondary products (excited molecules, radicals, cations, anions and secondary electrons) 

through ionisation, excitation and energy transfer processes. While the primary energy 

deposition process and its effects are quite well understood (Inokuti 1971, Mott & Massey 

1965), allowing the calculation of energy absorption from different types of ionising radiation, 

the relationship between absorbed dose and biological effect is still not well defined. Yet, 

understanding the biological, physical and chemical processes that lead to DNA and RNA 

damage could be extremely helpful both for cancer prevention and cure. 

The majority of the secondary products have energies below 30 eV, and are produced 

in large quantities (- 105 / MeV); in addition, it has been shown that more energy flows 

into ionisation than excitation (Inokuti 1971), so that secondary electrons (SE) carry most of 

the deposited energy. Boudaiffa et al. (2000) have shown that electrons having an energy 
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below 20 eV play a significant role in the DNA damage, causing single- and double-strand 

breaks, along with base, sugar and phosphate lesions (Pan et al. 2003, Abdoul-Carime & 

Sanche 2002, Cai et al. 2006, Pan & Sanche 2005), and base release (Zheng et al. 2005), even 

when energetically below the DNA ionisation threshold. In the same article, Boudafffa 

et al. (2000) also observed a strong energy dependence of the incidence of DNA strand 

breaks and concluded that the reaction starts with a resonant electron attachment to various 

DNA components (bases, deoxyribose, phosphate or hydration water molecules) followed 

by bond dissociation. The fragmentation products may also further react with other DNA 

components. 

Low energy secondary electrons' also initiate several other processes when interacting 

with molecules surrounding DNA and RNA, leading to the production of radicals and 

ions which can in turn interact to produce new species or damage biomolecules. Such 

reactions usually proceed through the resonant attachment of an electron to the target, 

forming temporary negative ions (TNI), which may later fragment either decaying into 

dissociative electronically excited states or dissociating into a stable anion and a neutral 

radical (Sanche 2005). The latter process is referred to as dissociative electron attachment 

(DEA). 

It is crucial to understand how the mechanism of DNA damage is affected by the presence 

of cellular components (e. g. H2O, 02, proteins). Of particular importance for clarifying the 

radiation damage processes is the interaction of secondary electrons with water molecules, 

in various aggregation states, because water is widely present in all biological environments 

and forms hydration layers around biomolecules; the latter are essential for structural sta- 

bilisation (see e. g. the works of Kabeläc & Hobza (2007), Saenger (1984) on DNA, and 

those of Rueda et al. (2003) and Rueda et al. (2006) showing that the helical form is unsta- 

ble in the gas phase or in non polar solvents) and activity (influencing the affinities with 

which DNA is bound by proteins and drugs (Privalov et al. 2007)). Due to its large dipole 

moment, water tends to trap low energy electrons and plays an important role in electron 

induced processes (Garrett et al. 2005) and in the induction of DNA damage (e. g. Ptasinska & 

'We define low energy electrons (LEEs) as those whose energy is below the ionisation threshold of the target. 
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Sanche 2007, Yokoya et al. 2009), for instance by generating OH radicals, which later interact 

with DNA causing considerable damage (Chatgilialoglu & O'Neill 2001, Ward et al. 1985). 

In general, when TNIs are formed, the presence of solvation water (often arranged in clus- 
ters) around molecules allows various mechanisms to occurr, depending on the way the 

extra energy is dissipated in the clusters (Balog et al. 2004); various experimental studies 

are focussing on the effect of hydration on nucleic acids and proteins (see for instance Kim 

et al. 1996, on nucleic bases). 

The damage of other macromolecules present in the cellular environment can also have 

effects on the nucleic acids. All DNA and RNA functions depend on their interaction with 

proteins, which are also responsible for damage repair (along with transcription, translation 

and replication). Damage of such proteins may impair their functioning, as many recent 

studies have demonstrated; for example Daly (2009) showed that the radiation resistance of 

some bacteria (particularly deinococcus radiodurans) is related to their ability to protect DNA 

repair enzymes. 

1.2 Molecular clusters 

Clusters are ensembles of atoms or molecules which are not bonded by covalent bonds, 

and whose character may be regarded as between that of a bulk and that of a gas. The 

interaction between the atoms or molecules forming a cluster (also called monomers), is 

limited to the usual intermolecular forces (e. g. dispersion, dipole - dipole interaction, 

hydrogen bonding). 

Clusters are important because they behave differently form either isolated molecules 

and liquid- or solid-phase, as it has been observed in many different fields, where they play 

significant roles. Here we firstly give an overview of the environments where molecular 

clusters have been observed, and some example of their reactions; we then focus briefly on 

the clusters which are studied in this work - water and formic acid ones. Finally we present 

the two main reasons why small clusters have been chosen as targets in this thesis. 

Although a vast literature is available on atomic clusters, we will not address them, since 

our method has been particularly developed to treat molecular ones. 
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1.2.1 Clusters in different environments 

Molecular clusters are present in interstellar clouds, where they form in the rapid ejection 

of molecules from solid surfaces during electron or ion impacts (Duley 1996). Clusters of 

H2, H2O, CO and hydrocarbons have been observed; an extensive literature exists on the 

formation and properties of neutral and ionic clusters (Sugano 1991, Haberland 1994). 

In the earth's atmosphere, cosmic rays generate ions which then stabilise by reacting with 

other atmospheric molecules and through charge-driven clustering with polar molecules 

(H2O, NH3) (Harrison & Carslaw 2003, Aplin & McPheat 2005); such clusters grow to 

form ultrafine aerosols which are responsible for starting the nucleation into water droplets 

(Morrell & Shields 2010); the effects are different at different altitudes (formation of clouds, 

fog, deposition of nitrogen, acidification of precipitations, formation of potentially dangerous 

aerosols, Castleman & Jena 2006). Various molecular cluster structures have been detected 

- NH4 (H2O),,, HSO4 (H2SO4) 
n 

(HNO3),,,, NO3 (HNO3) 
n- and atmospheric abundances 

calculated, particularly for N20 (H2O), CO2 (H2O), (H2O) (Lemke & Seward 2008). Of 

particular importance are clusters of hydrated acids, whose growth is faster than that of 

clusters made of water only, and which may then become stable nuclei (Aloisio et al. 2002). 

The formation of clouds has effects both on the soil and for the albedo, which is critical for 

the temperature of the planet (Charlson et al. 2001). 

Clusters of small and large molecules have also been observed in biological environments: 

the interaction of the former ones with biomolecules is important for structural stabilisa- 

tion and reactions; they also play a role in the radiation damage processes. Clusters of 

biomolecules are also being studied, often showing a markedly different behaviour from the 

isolated molecules (see e. g., among many others, the experimental results of Nam et al. (2007) 

and Schlathölter et al. (2006) on dimers of DNA bases). There is a much smaller number of 

theoretical studies (e. g. Gianturco et al. (2005) on formic acid dimer, Freitas et al. (2009) on 

(CH2O) (H2O) complex). 

In general, clusters are also present in a variety of dense gaseous media (Kreil et al. 1998), 

where they form spontaneously; in this environment, many studies analysed the interaction 

between electrons and clusters, particularly focussing on the effect clusters have in electron 
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transport and electron attachment processes (Kreil et al. 1998). In particular, a vast literature 

is available on electron capture in molecular clusters, which may differ markedly from the 

same process in isolated molecules; H2O clusters, for instance, can capture LEEs forming 

(H2O) (Dixon-Warren et al. (1991) studied clusters with n> 11); this ion may be viewed 

as an excess electron trapped in the field of oriented H2O dipoles (Landman et al. 1987, Coe 

et al. 1990, Haberland 1994). There are studies on electron attachment to (NO),,, (CO)� (Senn 

et al. 1999), 02 clusters (Matejcik et al. 1996, Kreil et al. 1998) and N20 clusters (Hanel et al. 

2001); the presence of zero energy resonances characterises the anion formation in clusters 

but it is absent from the same process on isolated molecules (Märk 1991, Stamatovic 1988). 

1.2.2 Water and formic acid clusters 

In this work, we have studied electron collisions with different water and formic acid clus- 

ters; the former have been observed to constitute some hydration layers around biomolecules; 

studies on the structure of DNA revealed that, while the first layer is characterised by water 

molecules forming well-ordered bridges between two acceptor atoms, often belonging to 

different strands (Kosztin et al. 1999, Arai et al. 2005, Yonetani et al. 2008), the outer layers 

have a less ordered structure. However, such structure cannot be explained in terms of bulk 

water, as showed comparing simulation and time-resolved Stokes-Shift experiments (Sen 

et al. 2009) and from microcalorimetric analysis (Arai et al. 2005, Dragan et al. 2008); particu- 

larly, the density is higher than that of bulk water. These outer layers may be then explained 

in terms of clustered water, as it is denser than liquid water or ice but still structured by 

hydrogen bonds with the neighbouring water molecules (as shown by Yonetani et al. (2008) 

for the second hydration layer of DNA). 

Water clusters (homogeneous, but especially heterogeneous, with other atmospheric 

species) may play an important role in the radiative balance (Kjaergaard et al. 2003), in the 

oxydation of trace gases and in other atmospheric processes (Sennikov et al. 2006). 

As for the clusters of formic acid, they are also of importance both in biological environ- 

ments and in the interstellar medium, where they are expected to play a role in the formation 

of more complex molecules (Irvine et al. 1989). Moreover, formic acid generally represents 
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a good model for the study of larger carboxylic acids, which usually arrange themselves 
in very stable dimers through the formation of two hydrogen bonds (the carboxyl group 
functions as both a hydrogen bond acceptor and donor). Both HCOOH and (HCOOH)2 are 

viewed as potential key components in the formation of small biomolecules in the interstellar 

medium (Ban et al. 2000). 

1.2.3 Small molecular clusters and present research 

The present research is focussed on the study of electron collisions with molecular clus- 
ters; the Multiple Scattering method, under implementation and testing, has been developed 

in such a way as to be applicable to the most general cases: firstly, it can treat heterogeneous 

clusters, so that its application can easily be extended to other relevant systems other than 

those illustrated in this work. Moreover, although this research is focussed on the scatter- 
ing process with small clusters made up by no more than five monomers, the method is in 

principle applicable to larger systems. 

Apart from their intrinsic interest, molecular clusters have been chosen as targets of 

this research for two reasons; the first is of a methodological kind: the testing process of 

the method, as well as the assessment of its applicability range, is based on a comparison 

between the results it provides and other results, either experimental or theoretical. In 

most cases, particularly for water clusters, no electron scattering results are available that 

could be used as a reference, with the exception of Gorfinkiel et al. (2002) on (H20)2. It 

was therefore necessary to perform parallel calculations with a more accurate scattering 

programme. The UK R-matrix suite of codes has been chosen to perform these calculations; 

as will be better explained later, this code, being ab initio, suffers from limitations on the 

target size, mainly due to high computational requirements, and cannot be applied to the 

study of electron scattering from large molecules. 2 For this reason there has been the need 

to choose targets that could be treated both with a Multiple Scattering approach and with an 

R-matrix one, and molecular clusters made up by a small number of monomers represent 

'Work is at present under way to re-engineer the suite so that it can effectively make use of current compu- 

tational capabilities, thus enabling the study of more complex collisional processes with larger targets. 
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an ideal compromise. In fact, very small clusters (typically consisting of two or three small 

monomers) can be studied easily with both methods, providing enough data to perform an 

accurate comparison and to test the new Multiple Scattering (MS) approach. Afterwards, 

the number of monomers forming the cluster has been increased, and the electron scattering 

study with these targets has been continued with the MS code only. 

Finally, the choice of molecular clusters is also justified by practical reasons, which are 

related to the applicability of the Multiple Scattering technique. The underpinning idea, 

more extensively presented later, is to divide the target into parts (henceforth called sub- 

units), and to combine scattering information on each of these in order to obtain collisional 
data relative to the target as a whole. A requirement for the combination to be performed 

correctly is that the sub-units forming the target should be as independent as possible, 

avoiding for instance significant electron sharing. It is then clear that having a molecular 

cluster as target makes it possible to partition it into its molecular constituents, so that each 

monomer is considered as a separate sub-unit. Such choice is ideal for applying the Multiple 

Scattering technique since, according to the definition of cluster, the interaction between 

monomers is never strong and no intramolecular covalent bonds are present (the formation 

of hydrogen bonds is possibly the most common way of formation of molecular clusters - 

both homogeneous and heterogeneous - between biologically relevant species). 

1.3 Presentation of the methods used 

As mentioned above, two methods have been applied to the study of LEE interaction with 

small molecular clusters. The R-matrix method (Burke & Berrington 1993), well established 

and widely used for this type of calculations, has been employed to provide input collisional 

data relative to the sub-units independently, which is required by the MS code to run. It 

has also been used for comparison purposes, in order to provide results (cross sections) that 

could be compared with those obtained with the MS method, under development and test. 

An overview of both methods is introduced here, stressing the main differences between 

them; a more in-depth explanation of their theoretical functioning is presented later. 



Section 1.3 - Presentation of the methods 9 

1.3.1 R-matrix method 

The R-matrix is an ab initio method based on the idea that, since the scattering process 

between two generic particles is driven by their interaction potential, and since such potential 

is different when the particles are far away and when they are closer, it is possible to separate 

the relative coordinate space into an inner and an outer region. In the spherical inner 

region, short-range interactions dominate, so exchange and correlation effects are explicitly 

taken into account. In the outer region only long-range interactions are relevant and hence 

included, while exchange and correlation are neglected. 

The inner region calculation is the most computationally demanding, due to the inclusion 

of short range interactions; the memory and time requirements depend strongly on the size 

of the region itself and on the number of target electrons, as it will be shown in chapter 

2. The inner region should always be large enough to contain most of the target electronic 

density, so that the latter is negligible outside it and short range interactions may be safely 

disregarded. When large targets are being studied, the choice of a small inner region could 

cause exchange and correlation to be excluded from the calculation in regions of space where 

they are not negligible. 

The UK polyatomic R-matrix suite (Morgan et al. 1997) has not only been used alongside 

the Multiple Scattering to perform parallel calculations for comparison purposes, but has 

also served as a generator of the input required by the Multiple Scattering code to work. 

In fact, the MS code simply combines the sub-units' scattering data; such data has to be 

generated independently and input. In principle, any method able to provide scattering 

information (i. e. to compute T -matrices for the electron - sub-unit scattering process) could 

be used, but the R-matrix has been chosen for two important reasons. Firstly, the MS division 

of the target into sub-units (initially treated independently and later allowed to interact) for 

all practical purposes is achieved dividing the coordinate space into spherical regions, each 

of which contains one sub-unit (in the present research one molecular monomer). When 

the regions are initially considered as independent scatterers, the idea of applying the R- 

matrix method for this looks quite natural, because it is based on an analogous spherical 

division (between inner and outer regions). Moreover, it will be also shown later that 
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two T-matrices are actually needed by the MS code for each monomer: one comes from a 

standard scattering calculation, while the other must be obtained including only the short- 

range interaction between the monomer and the scattering electron. This "modified" data 

can be easily obtained with the R-matrix code, where the long-range interaction can be easily 
"switched off" in the outer region part of the calculation. 

A second reason for choosing the R-matrix method is for consistency's sake. Since the 

MS results will often be compared with cluster results obtained with the R-matrix code, it 

is reasonable to use the same programme for the input required on the sub-units. It is then 

possible to perform calculations of consistent complexity and accuracy, so that the eventual 

differences between the final MS and R-matrix cross sections may only be attributed to the 

Multiple Scattering treatment. 

1.3.2 The Multiple Scattering method 

The Multiple Scattering method is based on the assumption that the sub-units forming 

the target are independent and non interacting. Any form of bonding between them is 

completely disregarded and, if eventually present, should be artificially included, although 

this is not always possible. The only interaction which is accounted for is the interference 

effect (the multiple scattering) of the scattering electron wavefunction. 

This method, firstly employed in the study of scattering processes in the 1970s, was 

originally applied to the electron - molecule collisions, where atomic sub-units were defined 

(Dill & Dehmer 1974). Notwithstanding the good outcomes, the definition of atomic sub- 

units for molecules clashes with the assumptions underpinning the method, whose use for 

electron scattering with molecules was later dropped when more refined quantum chemistry 

techniques became available. The Multiple Scattering method has been reactivated recently 

by Caron and co-workers, who applied it to the electron collisions with the water dimer 

and DNA models (where the sub-units consisted of bases, sugars and phosphates, Caron 

et al. 2008, Caron et al. 2009), and also to study the band structure of water ice. 

In this thesis, we follow their approach in the study of low energy electron collisions 

with molecular clusters; as specified before, these clusters represent ideal targets for the MS 
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method, because the inter-monomer interaction is very weak. Therefore, to a first approx- 

imation, the scattering process may be described as a series of collisions with independent 

molecules; interference effects are considered at a later stage. As introduced in the presenta- 

tion of the R-matrix method, the Multiple Scattering code we have developed only accounts 

for such interference effects, by combining collisional information on each monomer treated 

as an independent scatterer. This information is not calculated by the code itself, and needs 

to be provided by other means. In this respect, we also followed the approach of Caron and 

co-workers, who firstly employed the R-matrix method for this scope. 

Although several recent studies made use of the MS method, among which a work 

on electron scattering with (H20)2 (Bouchiha et at. 2008), it has never been methodically 

employed in the low energy electron collisions with molecular clusters; in our research we 

have therefore tried to clarify the range of applicability of the Multiple Scattering approach 

in the study of such process, and to determine the limitations and issues related to it. 

1.4 Outline of the thesis 

A more detailed description of the theoretical methods employed is given in chapters 

2 (R-matrix) and 3 (Multiple Scattering), with particular stress on the versions used in this 

research (UK R-matrix suite of codes and the MS code developed at the Open University). 

The results are described and analysed in the following chapters. The study on water 

clusters is presented in chapter 4; different water dimer geometries, mainly differing by 

their dipole moment, have been studied, corresponding to various relative minima of the 

potential energy surface (PES). Particular attention has been focussed on the effect of the 

dipole moment on the agreement between the well established R-matrix method's results 

and the Multiple Scattering ones. A non-equilibrium water trimer geometry has also been 

studied with both methods. As for larger water clusters, calculations of cross section for 

(H20)4 and (H20)5 have been performed using the MS approach only. 

In chapter 5 the results obtained for HCOOH are presented. The formic acid dimer has 

been studied with the MS code and the results have been compared to earlier theoretical and 

experimental ones available. 
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Our attempts to further modify the MS treatment in order to perform calculations for 

inelastic collisions and its application to the (H20)2 cluster at equilibrium geometry are 

presented in chapter 6. 

The final conclusions and remarks are reported in chapter 7. 



Chapter 2 

R-matrix Theory 

The R-matrix is a close-coupling expansion method based on the division of the coordi- 

nate space into two regions: an inner region, where the modelling of the scattering particle 

- target interaction is complex, and an outer region, where the equations describing such 

interaction may be simplified (Burke & Berrington 1993). It was originally introduced by 

Wigner (1946) and Wigner & Eisenbud (1947) to study nuclear reactions, and later developed 

for electron - atom collisions by Burke and collaborators (Burke et al. (1971), Burke & Robb 

(1975) and Burke (1976)). The electron - molecule collision treatment was later implemented 

by Schneider and collaborators (Schneider (1975), Schneider & Hay (1976)), Burke et al. (1977) 

for diatomic molecules, and Nestmann et al. (1991) and Morgan et al. (1997) for polyatomic 

molecules. 

The mentioned division of the space is performed by means of a spherical boundary cen- 

tred on the centre of mass of the target. It is justified by the assumption that the interaction 

between the electron and the target molecule shows different features when the radial coordi- 

nate of the scattering electron lies in different regions. If the boundary is constructed so that 

the density corresponding to the electronic states included in the close-coupling expansion 

is entirely contained inside the sphere (or, more precisely, is negligible ouside it), then only 

the scattering electron can be found in the outer region. The most important consequence 

is that the Pauli exclusion principle needs to be taken into account in the inner region only; 

outside it, the scattering electron is virtually distinguishable from the target ones, with a 

13 
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consequent simplification of the physics, and it moves in a local potential arising from the 
long range interaction with the target. A single centre expansion of the potential and of the 

wavefunction may then be used. 

For such assumption to be valid, the boundary radius must be large enough to contain 

all the target electronic wavefunctions. This may cause problems when such wavefunctions 

are very extended, which happens both when the molecule is spatially large and when the 

wavefunctions themselves are diffuse, for instance when Rydberg states are included in the 

calculation. 

In the inner region, the interaction potential is strong, non-local, dominated by short 

range interactions, and multicentred. The wavefunctions may be found using ab initio 

quantum chemistry methods, as initially formulated for the R-matrix approach by Burke and 

collaborators (Burke et al. (1971) and Burke & Robb (1975)). As a consequence, modelling 

the scattering problem in the inner region is generally the most demanding step from a 

computational perspective. However, provided the continuum basis spans the appropriate 

energy range, the inner region problem is energy-independent and is solved only once; the 

energy dependence is obtained from the outer region part of the calculation. 

R-matrix calculations consist of three fundamental parts: the description of the target 

(presented in section 2.2), the inner region calculation (section 2.3), and the outer region 

calculation (section 2.4). In the following sections, the theory will be presented as it is 

implemented for polyatomic molecules in the UK polyatomic R-matrix suite. Section 2.1 will 

introduce the notation and the approximations used; sections 2.5 and 2.6 will respectively 

discuss practical issues related to the code implementation and give an overview of the types 

of resonances (or temporary negative ions) that can be encountered in an electron - molecule 

collision. 

2.1 Approximations and notation 

Given a system composed by electrons and nuclei, the position of each from the centre of 

mass will be denoted by ra where a labels either an electron or a nucleus. When electronic 

functions are considered, the dependence of spin will be included in the notation defining 
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a coordinate xa = (ra, Ua). Finally, the set of all the electronic and nuclear variables will be 

collectively indicated as X and R respectively. 

Throughout this chapter, attention will be focussed on solving the electronic problem only. 

This semplification is justified by some initial assumptions, which are commonly used in 

quantum chemistry. The Hamiltonian describing the motion of the system can be generally 

divided into an electronic and a nuclear part. ' Since nuclei are much slower than electrons, 

being heavier, it is a good approximation to neglect the nuclear kinetic energy and consider 

the nuclear repulsion constant. 

The solution of the Schrödinger equation involving the electronic Hamiltonian only is 

then a function depending explicitly on the electronic coordinates, and parametrically on 

the nuclear coordinates. This means that the electronic problem can be solved at different 

nuclear geometries, and different electronic solutions obtained for each of these. 

In more mathematical terms, such approximation, called Born-Oppenheimer approximation 

(see, for example Szabo & Ostlund 1996), means that the total wavefunction maybe factorised 

as: 

0(X, R, t) _ qft (X, tI R) üt (R, t), (2.1) 

and the nuclear and electronic motions may be decoupled. 

Taking advantage of such approximation, the whole scattering problem can be solved 

keeping the nuclei fixed at a certain geometry (normally the equilibrium geometry, or that 

of a local minimum of the potential); this assumption, which, unlike the Born-Oppenheimer, 

is related to the scattering process, is called Fixed Nuclei approximation. 

The theory shown in this chapter assumes that both the Born-Oppenheimer and Fixed 

Nuclei approximations are valid, and therefore refers to the electronic motion only: it is 

assumed that the nuclear positions are fixed, so that the total Hamiltonian depends on the 

electronic coordinates only. For simplicity, the parametrical dependence on the nuclear 

geometry is dropped from the notation throughout the chapter. 

Moreover, attention will be focussed on the stationary solutions of the Schrödinger 

'Or, more precisely, into terms accounting for the nuclear motion (operator V) and terms that do not include 

it. 
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equation: assuming that the process is conservative, the energy of the system is conserved 
in time, and the Hamiltonian does not depend explicitly on it. It is then possible to factorise 

the electronic wavefunction as: 

V (X, tIR)=tY(XIR)e '`, (2.2) 

so that the time-dependent Schrödinger equation is simplified into its time-independent 

formulation: 

t 
ý, t = ih da = EV; 

HtY = EY. (2.3) 

2.2 Description of the target 

The electronic states of the target molecule are described by multiconfigurational wave- 

functions D;, which are linear combinations of single configurations (Pp: 

Oi(xl 
... XN) _ 

1: f 
pIPp(xl ... xN); 

(2.4) 

p 

Each configuration is a function of all the electronic space-spin coordinates and can be written 

more explicitly as: 

(ßp(XI ... XN) -` ýp(X. X 
i... 

X 
"I XI... XA (2.5) 

where , rq are monoelectronic functions (molecular spin-orbitals), products of the electronic 

spatial functions and the spin functions - TO) = Xi(r)ß, (m) - and oq their occupation 

numbers, satisfying the relation Lq oq =N for all p. More explicitly, each configuration Op is 

an antisymmetric product of the monoelectronic functions, written as a Slater determinant: 

0t 
N! 
1 

X](xl) T2 (XI) 
... XN(xl) 

;6 (X2) X2(x2) 
... 

TN (X2) 

(2.6) 

X1(XN) X2(x'N) 
""" XMXN) 
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2.2.1 Molecular orbitals and the Hartree Fock self consistent Field method 

The molecular orbitals (MOs) Xi are expanded as linear combinations of Gaussian type 

orbitals (GTOs) centred on each nucleus; the GTOs are spatial functions of the form: 

Tj(r)=Nre Yi'zYti, 
ml 

(B, 0), (2.7) 

where (r, 0,0) are the polar coordinates of vector r, Ylj,,,,, are spherical harmonics, y, an expo- 

nent determining the extent of the function and Na normalisation constant. Although GTOs 

do not have a correct cuspidate behaviour to correctly reproduce the electronic distribution 

very close to the nuclei, they are a very convenient choice for a basis set because multicentre 

integrals can be easily evaluated analytically. 

Molecular orbitals are therefore expanded on the GTO basis as: 

Ni 

Xi _E ai, iri" (2.8) 
j=1 

The kind and number of basis functions to include, Ni, are chosen from standard tabulated 

basis sets, depending on the type of description one requires. 

The construction of molecular orbitals proceeds through the solution of the N-electronic 

problem Hpo = Eo0o, where (Po is a single configuration of the type 2.6 representing the 

ground state. 

The N-electron problem is solved introducing the Hartree-Fock approximation, which al- 

lows one to write the N-electronic Hamiltonian H as a sum of monoelectronic ones h; (x; ), 

where the nonlocal part of the potential - the electron - electron repulsion - is treated in 

an average way. That is, 

M 
Zp 

VHF (xi) I (2.9) 37, 
-) H= hi (xi) = Lr 

(_v ?- 2 rip 
ii P=] 

where vi is the average potential experienced by the i-th electron due to the interaction 

with all the other electrons; the index i runs over the N electrons and the index P over the 

M nuclei. In this approximation, the molecular orbitals are obtained variationally, as those 

which minimise the energy Eo = 
((Po1 H 10o); the variational parameters here are in fact the 

expansion coefficients a;, i of equation (2.8). 
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By guessing an initial set of molecular orbitals (that is, a set of coefficients a, j), one 

calculates the average potentials VHF, the monoelectronic hamiltonians h;, and solves the 

eigenvalue problem h, Xj = eiXi, from which a new set of orbitals Xi are obtained. The 

procedure (called Hartree-Fock self consistent field - HF-SCF) is repeated until self-consistency. 

In the end each orbital is characterised by an energy ei; the ground state configuration is 

formed by the N/2 lowest-energy orbitals (assuming the system is closed-shell). Although 

the Hartree-Fock orbitals best describe the ground state configuration (Po, they are also used 

to generate excited configurations simply by promoting electrons to higher-energy orbitals 

(those not occupied in the ground state configuration, known as unoccupied or virtual orbitals). 

A set of configurations (Pp may then be obtained by inserting different orbitals into the Slater 

determinant. 

2.2.2 Natural orbitals 

It may be convenient in some cases to make use of an alternative orbitals basis, different to 

that of Hartree-Fock molecular orbitals; in particular, it is possible to define a set of orbitals, 

called natural orbitals, firstly introduced by P. -O. Löwdin (1955), for which a Configuration 

Interaction (CI) expansion is more rapidly convergent than with the Hartree-Fock ones 

(Szabo & Ostlund 1996). 

Given a normalised N-electron wavefunction pi(X) like that of equation (2.6), it is possible 

to define a function of two variables called first-order reduced density matrix O: 

Q(xl, xi) =N J'dx2. .. 
dxN 4(xl ... XN) 0*(xi ... XN), (2.10) 

which can be expanded on the orthonormal basis of Hartree-Fock spin-orbitals 
iii as: 

S2(xl, xi) _ Qi, j Xi(xi) Xj(xi). (2.11) 

The elements Qi, j form a matrix £2, which is a discrete representation of Q(x1, xi); it is 

Hermitian, its trace equals the number of electrons N and is generally non-diagonal. 

It is possible to find a different orbital basis { rli } for which the matrix representation of 

2(x1, xi) is diagonal: 

C2(xl, xý )=ý, ok ý1k(x1) ýlk(xl ), (2.12) 
k 
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where ok is the occupation number of the natural spin-orbital rlk. 

The importance of natural orbitals (NOs) is that they give the most rapidly convergent 

CI expansion, so that fewer configurations are required to obtain the same accuracy given by 

configurations formed by any other orthonormal basis set. Natural orbitals, particularly state 

averaged ones, are very useful when several electronic states are included in the expansion, 

and they have been used for some targets in this research. 

2.2.3 Configuration Interaction method 

In the R-matrix method, the molecular electronic states are represented by multiconfig- 

urational functions, as expressed in equation (2.4). The number and type of configurations 

included define the Configuration Interaction (CI) model; even if one is interested in the 

elastic scattering off a molecule in the ground state, it is always recommended to use a mul- 

ticonfigurational wavefunction to improve the description. There are different CI models; 

the most relevant are called full-CI, SDCI and CASCI; the latter has been used in this work. 

Full-Cl is the most computationally expensive of all models, since it includes all the 

possible configurations that can be obtained with the N electrons using all the n orbitals 

obtained from a given HF-SCF calculation. The number of orbitals n depends on the basis 

set used: in principle n can be infinite, in which case a full-CI would provide the exact energy 

of all the electronic states (neglecting relativistic effects). In practice, the basis set is always 

finite, and the full-Cl energy provides upper bounds to the exact energies. Even when small 

bases are used, however, the number of configurations generated (N) in a full-Cl is in most 

cases too large to be considered. For this reason, alternative models are preferred, where the 

CI expansion is truncated and only a fraction of the possible configurations is included. 

The SDCI model (Singles-Doubles Configuration Interaction) includes all the single and 

double excitations, i. e. those configurations where one or two electrons have been promoted 

from an orbital occupied in the reference configuration to an unoccupied (high-energy) one. 

All the possible combination thereof are included. 

The CASCI model (Complete Active Space Configuration Interaction) relies on more 

chemically oriented assumptions: while the SDCI includes very unlikely and high-energetic 
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configurations (such as, for instance, that obtained by promoting a very bound electron 

from the lowest molecular orbital (MO) to the highest unoccupied MO, which will hardly 

contribute to the target ground state description) the CASCI model divides the molecular 

orbital space into a core space (the c lowest orbitals), an active space (the next a orbitals) and a 

virtual space (the remaining ones). While the nc electrons in the core space are left "frozen", 

the na active ones are allowed to occupy any orbital in the active space, and all the possible (Aa) 

configurations are included. The virtual2 orbitals v are all left unoccupied (nv =n- nc - na). 

The more configurations included, the lower is the molecular energy, which is obtained 

variationally diagonalising the matrix of elements ((Pil R(N) 10i), where fl(N) is the N-electron 

Born-Oppenheimer Hamiltonian, which can we written, in atomic units, as: 

NNMNM 
H(N) 

_1 N 
ZP 

+111 
ZPZQ (2.13) 

2 rP, i 2 ri, j 
2 

ý1 
rPQ 

i=1 i=1 P=1 i j=1 , Q= 
i#j P*Q 

so that the multi-configurational functions of equation (2.4): 

$i(xl 
... XN) - 

1: fi, 
P(PP(xl ... XN) 

P 

are eigenfunction of R(N). In equation (2.13) the indices i and j run over the N target electrons 

and the indices P and Q run over the M nuclei; ZP is the charge of the P-th nucleus and ra, b 

is the distance between particles a and b. 

The target properties that will be later used in the outer region are calculated using the 

target wavefunctions thus obtained. These are multipole moments for the differest states 

I(D; ) and are calculated as: 
NM 

(1) ý 
ri jew) + ZArP: 

iýv, w - 
Qv, 

w 
i=1 P=1 

Qa w" «Dv1 ri ® ri I1)0 +E ZP (rP (3 rP)i 

p 

(2.14) 

where indices i and P run over the N electrons and M nuclei respectively, and rq _ (xq, yq, zq) 

2Note that virtual orbitals are here defined as those contained in the virtual space, i. e. those not taking part 

in the Cl model, always left unoccupied. In section 2.2.1, on the other hand, they were defined as the orbitals 

which are not occupied when the molecule is in the ground state. 
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is the coordinate vector of particle q. The term r® r' is the short for all the possible couples 

(xx', xy', xz', yx'... ) and can be intuitively extended to the product of more than two vectors. 

2.3 Inner region 

In the inner region calculation, the scattering electron is added to the system. The 

(N + 1)-electronic wavefunctions3 are built using the close-coupling approximation as: 

{uii(rN+1) 
(Xl xN+1) = C, j, k(Xl XN) Yl�mi(rN+1)Qi(ýN+1) +dj, kýß j(xl ... XN+1)i 

ij 
rN+i 

j 

(2.15) 

where the scattering electron is labelled (N + 1) and ß; are spin functions. The functions (D, 

are the multi-configurational wavefunctions from equation (2.2.3), describing target states 

involving the N target electrons. The set of orbitals ui, j, which do not vanish at the R-matrix 

boundary unlike those describing the target, is introduced to describe the scattering electron; 

these orbitals are referred to as continuum orbitals. 

Particular care must be put in the coupling between the target states (Di and the continuum 

functions shown in brackets: each contribution must have the correct spatial and spin 

symmetry of the total (N + 1)-electron wavefunction 41 (for this reason the spin functions of 

the scattering electron are explicitly indicated). Besides, the Pauli principle has to be taken 

into account by means of the anti-symmetrisation operator A. 

The continuum orbitals u;, 1 are built from GTOs centred on the target centre of mass; 

again, the choice of GTOs is very convenient when multicentral integrals are calculated. The 

continuum GTO basis set is constructed by fitting a set of Bessel functions within a finite 

region of space, whose extent depends on the radius defining the R-matrix boundary. The 

Bessel functions included in the construction are those with eigenenergies up to a certain 

value, which is chosen taking into account the energy range of the scattering process to 

be studied, so that the same basis for the continuum orbitals may be used for all energies 

of interest. Although nodeless gaussian functions are used to fit Bessel functions, which 

'From now on, the (N + 1)-electron functions will be denoted by a- for clarity, in order to distinguish them 

from the N-electron functions shown so far. 
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have many nodes at high values of 1, the fitting procedure developed by Faure et al. (2002), 

based on a minimisation suggested by Nestmann & Peyerimhoff (1990), gives good results 
(provided the energy range of the scattering electron and the spatial extention of the inner 

region are correctly taken into account). 

The continuum orbitals are orthogonalised with respect to the target orbitals and suc- 

cessively among themselves. Issues arise when a large R-matrix boundary is chosen: many 

GTOs must then be included for a good continuum description, and this may lead to linear 

dependence with the target orbitals. 

The second summation on the right hand side of equation (2.15) includes (N + 1)- 

electron configurations 1(x1 ... xN+l) which are analogous to the N-electron configurations 

gp(xi ... xN) of equation (2.5), and which vanish at the R-matrix boundary since all the elec- 

trons occupy target molecular orbitals. They are also referred to as L2 terms, because they 

are square integrable. 

The inclusion of this second term in the expansion (2.15) is necessary to account for 

important regions of configurational space that would be otherwise omitted because of the 

orthogonality between molecular and continuum orbitals (occupied respectively by N elec- 

trons and one electron). In the (N + 1)-electron configurations 4i all electrons occupy target 

molecular orbitals, so correlation effects, including virtual excitation to higher electronic 

states, are accounted for. 

The (N+1)-electron Hamiltonian H(N+1) is identical to the N-electron one, H(Nl , of equation 

(2.13), with the only difference that the electron indices i and j run from 1 to N+1. 

When solving the Schrödinger equation in the inner region, it must be taken into ac- 

count that, unlike the corresponding target wavefunctions (Di in equation (2.5), the (N + 1) 

wavefunctions lPk in equation (2.15) are not negligible at or outside the boundary. The usual 

Hamiltonian is not convenient for a problem in a finite region (Shimamura 1977) since it 

is not Hermitian because of non-zero surface contributions. An operator, L, called Bloch 

operator (Bloch 1957) is introduced to eliminate such contributions: 
N+1 

L(N+1) 
.2EEI (D, c 

'lc, mc(Pi)) b(ri - a) 
(. 4 

-br1 
(q)i, Ylý m, (Pi) (2.16) 

i=l ce 

Here a is the radius of the boundary sphere and b an arbitrary constant, often set to zero. 
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The inner region functions k are obtained by diagonalising the matrix of elements 
( 

, kl 
H(N+1) + LiN+1) I 

k, 
ý 

and are therefore eigenfunctions of the (H( N+1) + L(N+1)) 
operator `with 

eigenvalues Ek; they form an orthonormal set which is a complete basis for (N + 1)- 

electron functions in the inner region (within the basis used). The total wavefunction, 
ýP, 

which depends on the coordinates of the (N + 1) electrons and on the energy of the system, 

can be expanded (in the internal region only) as: 

T(Xl 
... XN+1. E) Ak(E)ýk(Xl 

... XN+1 ). (2.17) 

k 

This wavefunction satisfies the Schrödinger equation: 

H(N+l)qj = Nf, 

which can be then modified to include the Bloch operator: 

(H(N+1) 
- Eý - 

(H(N+i) + L(N+i) - L(N+i) - E) ýY = 0; 

(H(N+1) + L(N+i) - E) W- L(N+1) 
, 

whose formal solution is 

(2.18) 

(2.19) 

(2.20) 

jýj 
= 

(H(N+1) 
+ L(N+1) - E)-1 L(N+1)jýj. (2.21) 

Expanding on the {I k)) 
basis, defined by equation (2.15), using the projector oper- 

ator 1= Lk IýTk) (, kJ and considering that the functions I k) are eigenfunctions of the 
(H(N+1) + L(N+1) - E)-1 operator with eigenvalues (Ex 

1 
E) , we obtain: 

\ Iý'k) 
kl L(N+]) I 1. 

I")=E / (2.22) 
k 

Ek -E 

Now we can substitute the expression (2.16) for the Bloch operator and project onto the states 

I ý; 
ýYl rný(r{)r; 

,, 
obtaining: 

1_1 
(ý. 

-Yjr. mc i 

N+, I k) N+1 db-1 l\ ti 

ýiý 
rN+1 

I 
ýl 

2 Ek -EL: dr; r; 

) ((I)`, YI"'m., lip 

k i=1 C' (2.23) 

All the radial integrals in (2.22) and (2.22) are limited to the inner region, so the radial 

parts run from r; =0 to r; = a. 
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Defining the reduced radial functions as: 

F, (r = a) = 
(cYic, 

mc_\ 

IrN+1 

r=a 

and the surface amplitudes as: 

(2.24) 

fc, k(a) = 
(cYic. 

mc 
1 ý(2. 25) 

rN+1 

we can evaluate the functions in equation (2.23) at the boundary rN+1 = a, obtaining: 

Fc(a) =1E 
(1: 

2a 
fc, k(a)fc', k(a) rdFý- 

C, k 
Ek -E dr - bFý 

r=a 
= 

_ 
ýa)ýa dr' I 

-bF,, (a)I. (2.26) 

ca 
Here the R-matrix has been defined as 

Rc c (E, a) =1 
fc, k(a)fc,, k(a) (2.27) 

2a 
k 

Ek -E 

The R-matrix method is named after function (2.27) because the fundamental idea it is 

based on is the use of this function to link the scattering solutions in the inner and the outer 

regions. Writing equation (2.26) in matrix form, one gets: 

R E, a) - 
F(a) 

( 
aF'(a)' 

(2.28) 

where the arbitrary constant b has been set to zero. It is clear then that the inverse of the 

R-matrix calculated at the boundary is related to the logarythmic derivative of the scattering 

radial function: 

R-1 (E, a) =a 
F' I (2.29) 
Fa 

The indices c and c' label channels, which may be defined as 

Ac(Xl 
" ""XN. rN+1. WN+1) _ (Di, (X1 

... XN)Ylc, mc(rN+1)Qc(WN+1): (2.30) 

again, ac(uN+J ), the spin function of the (N + 1)-th electron, is included to indicate that the 

function A, is correctly antisymmetrised and that the total spin symmetry is appropriately 

accounted for. The index c is just a numbering index and refers to sets of indices defining 

the channel (c = (i, ac OT, 1c, mc)), so that for each value of ca target state and the scattering 

electron's angular and spin components are specified. 
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A channel may be seen as a possible outcome of the collision process, which is uniquely 

defined by a specific target state and by the angular momentum of the scattering electron 

and the spin of the (N + 1) system. 

The propagation described in the next section is carried out on the R-matrix (which 

contains the radial function) because its numerical properties make it a more appropriate 

function to deal with in the outer region than the radial function Fc itself or its derivative 

(Light & Walker 1976). 

The aim of the inner region calculation, then, is only to compute R(E, a) at the boundary; 

to do so, it is sufficient to know the (H(N+1) + L(N+l)) eigenfunctionsk, their eigenvalues Ek 

and to compute the surface amplitudes fck(r). The energy dependent coefficients Ak(E) of 

the expansion (2.17) do not need to be computed. 

2.4 Outer region 

In the outer region, the wavefunction may be written in terms of channels as: 

T(x1 
... xN+1) Ac(x1 

... xNr rN+1.60N+1) 
Fc(rN+1) 

c 
rN+1 

(2.31) 

where Fa(r) is the reduced radial function defined in equation (2.24). 

Applying the Schrödinger equation to ýF and projecting it onto the channel functions 

((A 
rN+ý 

1), it can be shown that the radial functions Fa(r) must satisfy the set of coupled 

equations: 

(d2_ 1c (lc + 1) 
+ k? 

) 
F, (r) =2ýV,,, -(r)F, -(r), (2.32) 

dr2 r2 

where k- = 2(E - E, ) and E;, is the energy of the i, -th state of the target that defines channels. 

This set of equations can be solved by propagating the R-matrix from the boundary a to 

a larger distance ao�t where the interaction with the target is negligible (usually ao�t 50 - 

200 ao) (Baluja et al. 1982, Morgan 1984). A Gailitis expansion method (Gailitis 1976, Noble 

& Nesbet 1984) is then used to solve the outer region problem. 

The potential in the outer region may be written as a local potential accounting for the 
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long range interaction only using the multipole expansion: 

(v) 

Vc,, '(r) = 
2: 

Yv+i+i y=o 

where the coefficients are defined as: 

(2.33) 

21, +1 
aý ý, = 21ý +1 

Cý1ý, y, 1r I m,, my, mr)C(1c, Y, IC, I 0,0, O)Qýx (2.34) 

where C(11,12,13 1 m1, m2, m3) is a Clebsch-Gordan coefficient and Q, (' the target transi- 

tion moments (the Coulomb potential when y=0, the dipole moment when y=1, the 

quadrupole moment when y=2, etc., as shown in equation (2.14)). Q ,ý represents a perma- 

nent moment of the c-th target state and Q( Y) 
#c the transition moments responsible for the 

coupling between channels. 

It is possible that a calculation is needed where the interaction is set to zero in the whole 

outer region; this may be required, for instance, to provide input T-matrices for the Multiple 

Scattering code where the long range interaction needs to be completely neglected. In such 

a case, the solutions are matched to Bessel functions instead of Gailitis ones. 

Each equation of the set (2.32) has nape!, linearly independent solutions, where nape! is 

the number of open channels, i. e. those channels whose threshold energy Ec is below the 

scattering electron kinetic energy (E). These solutions will be referred to using a second 

index (Fc, c) and at an asymptotic distance have the form: 

i 
rýý 

I 
--L- 

[sin (kýr 
- 21, ) b,,,, + cos (kýr 

- 21, ) K,,,, ]; [open channels] 
Fc c-(r) 22 

IeI, lr _ 0. [closed channels] 
(2.35) 

The diagonal term on the left hand side of the open channel expression is the solution of the 

homogeneous equations (i. e. absence of interaction), while the nondiagonal term accounts 

for all the interaction. 

All the information on the collision process can be obtained from the matrix K, of elements 

Kc,,,, called reaction matrix. The S-matrix is defined as: 

S= (1 + iK) (1 - iK)-1 (2.36) 
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and the eigenphase sum, which is a useful analytical tool, especially to identify resonances, 

may be calculated from: 

b=ý arctan(Kd, ), (2.37) 

where Kd is the diagonalised reaction matrix. 

Finally, matrix T, from which the cross section is determined, is calculated as: 

T=S-1 (2.38) 

The general expression to compute the cross section of a process o(cfi� - c;,,; ) is propor- 

tional to the element I Tcif, c f 
Iz, where the process itself is identified by the initial and final 

channels ci�i and c fi,,. Since each channel specifies the state of the target, the total spin and 

the angular components of the scattering electron 
(C 

= (ia, 6COT, 1C, MC)), and since this work 

aims to study the more general process (icy, e- ic, ) with focus on the initial and final states 

of the target only, it is necessary to sum over all the T-matrix elements including the same 

initial and final target states (as well as over the partial waves and total spin) to obtain the 

desired cross section (Taylor 2006): 

nýý 2QTOT +1 
Tcrý[r] 

2 
Q(týý, ý tý; ý; 

)= 
I 

�c;,; 
(2.39) z k. 2(2ac;.,; + 1) 

"ini r mini'<fin m`ir>; 'mcfin 

where ac,,,; is the spin angular momentum of the ic;, state, acOT the total spin angular 

momentum of the system and r denotes the irreducible representation, whose role will be 

clarified in section 2.5.4. 

2.5 Computational implementation and practical issues 

There are various issues arising when the theory explained above is implemented com- 

putationally. The most important will be presented here, after an overview of the calculation 

steps in the UK R-matrix polyatomic code. 

2.5.1 UK R-matrix polyatomic suite 

A schematic overview of the input required and the stages involved in the scattering 

calculations performed with the UK R-matrix suite, as implemented to treat the collision 
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from polyatomic molecules, is provided below; the calculations consist of three parts: the 

target (table 2.1), inner region (table 2.2) and outer region (table 2.3) calculations. A detailed 

description of the programmes may be found in Tennyson (2010). 

INPUT 

" geometry (nuclear coordi- 

nates), point group & atomic 

orbitals are chosen 

" CI model is chosen 

CALCULATIONS REFs 

- atomic integrals are calculated 

- Hartree Fock Self Consistent Field calculation; orthogonal target §2.2.1 [§2.2.2] 

orbitals obtained (alternatively NOs can be provided) 

- configurations are generated with the appropriate spin and space §2.2.3 

symmetry 

- Hamiltonian matrix for the N-electron calculation is built; eigen- eq. (2.13) 

values and eigenvectors are calculated (only the first few are nor- 

mally needed) 

- the target properties are calculated eq. (2.14) 

Table 2.1: Stages of the target calculation. Under'REFs', references to the relevant equations and sections of 

the thesis, illustrating the corresponding stage, are indicated. 

2.5.2 Partial wave expansion 

The decomposition of the scattering functions in partial waves, as implicitly effected 

in equation (2.15), is exact if all the values of I are included; in practice the functions are 

expanded up to a certain value Imax, because the inclusion of a very large number of partial 

waves increases the computational requirements and makes the solution of the problem 

impractical. In the UK polyatomic R-matrix suite, only partial waves up to 1=5 can be 

included; 'max =4 is mostly used. 

Sometimes the number of partial waves required for convergence is higher than 1max = 5, 

especially when the interaction potential includes long range terms (targets with a significant 
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INPUT 

" continuum orbital basis 

set input 

" R-matrix radius a& dele- 

tion threshold for orthogo- 

nalisation set 

" CI model is chosen (con- 

sistently with target calcula- 

tion) 

CALCULATIONS REFs 

- integrals are calculated 

- continuum orbitals are orthogonalised to target orbitals and then 

among themselves 

- continuum orbitals with overlap less than the deletion threshold 

are discarded 

- configurations are generated 

- Hamiltonian matrix for the (N + 1)-electron calculation is built; 

all eigenvalues are calculated 

eq. (2.15) 

Table 2.2: Stages of the inner region scattering calculation. Under'REFs', references to the relevant equations 

and sections of the thesis, illustrating the corresponding stage, are indicated. 

dipole moment are a case in point). The remaining terms can be included using the first 

Born approximation (Chu & Dalgarno 1974, Gibson et al. 1987), and can be obtained in a 

closed form without passing through a partial wave expansion. This correction includes 

contributions from all angular momenta (Watson & McKoy 1979, Fliflet & McKoy 1980). 

In the calculations presented in this thesis, the use of the Born approximation will be 

discussed in each case; it will be clear that sometimes it is not needed, especially when 

comparing theoretical results. 

2.5.3 Balanced calculations 

A balance between the representation of the target wavefunctions - (P; in equation (2.4) 

- and the (N+ 1) wavefunctions in the inner region - ýk in equation (2.15) - is fundamental 

in the R-matrix treatment of scattering processes. 
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INPUT CALCULATIONS REFS 

- the R-matrix is built at the boundary using the (N+ 1) eigen na! ues eq. (2.27) 

and boundary amplitudes 

" ao� t is set 

" target states to be included 

in the outer region set 

- the R-matrix is propagated from a to ao,,, using target properties 

(transition moments) 

- K-matrix, S-matrix & T-matrix calculated 

- cross section & eigenphase sum calculated 

- (Time delay/eigenphase sum analysis of resonances, bound states) 

eqs. (2.35), 

(2.36), (2.38) 

eqs. (2.39), 

(2.37) 

§2.6 

Table 2.3: Stages of the outer region scattering calculation. Under'REFs', references to the relevant equations 

and sections in the thesis, illustrating the corresponding stage, are indicated. 

The ability to identify the position of resonances depends mainly on the relationship 

between the eigenenergies of the target and the eigenenergies of the confined (N + 1) system. 

Improving the description of one of the two systems without improving the other has the 

effect of increasing or decreasing the differences between these two sets of energies, with a 

corresponding shift in the resonance energies. 

For example, if the (N + 1) description is improved, the Ek energies of equation (2.27) will 

be lowered, and the resonance features potentially associated with them will be lowered too 

and could become bound. 

It is not always easy to carry out balanced calculations for the target and for the (N + 1)- 

electron systems. In this thesis, the Complete Active Space Configuration Interaction model 

(CAS-CI) has been used for all calculations. If N is the total number of electrons, and 

n, o,., is the number of frozen ones, the model for the target calculation may be written as 

(core)", -re (CAS)H-"core. It is then easy to define a model of comparable complexity for the LZ 

configurations included in the expansion of the ýk (N + 1) wavefunctions: these should be 

of the form (core)", -- (CAS)H-ncore+1 
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When other models different from CAS-CI are used, the correct choice of configurations 
to include may not be trivial (Tennyson 1996) and achieving a balance between the N and 
(N + 1) calculations very difficult. 

2.5.4 Symmetry properties 

Symmetry properties may be extensively used to reduce the computational requirements 

of the calculations; for this reason, the higher the symmetry of the target, the lighter the 

calculation. 

Given a molecule belonging to a certain point group, its molecular orbitals and electronic 

wavefunctions are associated with the different irreducible representations (IRs) of that 

group. This means that they transform like the IRs under the symmetry elements defining 

the group. Since the integral of a product of two functions belonging to different IRs is 

zero, it is possible to reduce the number of operations required with a consequent decrease 

in calculation complexity. A direct consequence of this is that the Hamiltonian and the K, 

S and T matrices assume a block-diagonal form, so that it is possible to define different 

matrices (e. g. T1"", where t identifies the IR). The block-diagonal form of the Hamiltonian 

matrix, in particular, reduces significantly the inner region calculation, as each block can be 

diagonalised independently. 

It is for this reason that equation (2.39) includes a sum over the irreducible representations 

t: the T-matrix elements are in fact calculated separately for each IR. 

2.6 Resonances 

In electron collisions, a resonance is the temporary trapping of the scattering electron to 

form a quasi-bound, short lived, state whose lifetime is however much longer than the usual 

collision time. Many reactions triggered by low-energy electron scattering pass through such 

a metastable state (AB-)t which later decays through different pathways. 

The presence of a resonance leads to a sharp rise of the eigenphase sum (which usually 

varies slowly as a function of the energy) and it can usually also be seen as a peak in the 
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cross section centred at ER, the resonance energy (Taylor 2006). The resonance parameters 

(position and width) can be obtained by fitting the eigenphase sum to the Breit-Wigner 

formula (Atkins & Friedman 1997): 

b(E) = L.. ý 
arctan RI+ bý R(E)Ei, (2.40) 

Vi l 

J i 

where the indices i and j run over the resonant and non resonant channels respectively, bý R is 

the background eigenphase (the eigenphase of the non resonant channels) and FR the width 

of the resonance, from which it is possible to extract the resonance lifetime: 

TR~rR (2.41) 

There are also other ways of obtaining resonance patameters; for instance by analysing 

the time-delay matrix Q, defined as: 

Q= -ihSdE' (2.42) 

whose largest eigenvalue q represents the longest time delay of the incident particle and has 

a Lorentzian form close to a resonance (Stibbe & Tennyson 1998): 

q(E) = rR (2.43) ((E 
- ER)2 + (FR )2) 

2 

There are different types of resonances; the simplest one is called shape resonance, which 

can be viewed in a chemical way as caused by the scattering electron temporarily occupying 

an unoccupied molecular orbital of the target (often the LUMO). The energy of such orbital 

must not be negative, otherwise it would be a bound state, which some systems may support 

(particularly cations). Shape resonances can be explained in terms of a trapping behind the 

centrifugal barrier caused by the angular momentum of the scattering electron in the electron 

- molecule potential. Such resonances often decay through dissociative electron attachment 

and are rather broad and short lived. 

Feshbach resonances are caused by the excitation of the target which then causes trapping 

of the scattering electron; they are usually narrower than shape resonances and particularly 

important when the target is a cation, in which case they usually decay through dissocia- 

tive recombiniation. Due to their nature, Feshbach resonances cannot be obtained from 

calculations where the target is frozen in its ground state. 
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Core-excited shape resonances are a combination of shape and Feshbach resonances; firstly 

the target is electronically excited, and then the electron is trapped in a metastable state by a 

potential barrier. Both Feshbach and core-excited shape resonances belong to the core-excited 

type resonances, since they involve target excited states. They can decay into all lower target 

states, but normally core-excited shape resonances decay into the parent excited state. 

Other resonances involving vibrational excitation of the nuclear motion are called nuclear- 

excited resonances, and they cannot be studied within the fixed-nuclei approximation. In this 

work we have encountered both shape resonances (in the collisions with formic acid and its 

dimer) and Feshbach resonances (in the collision with the water dimer). 
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Chapter 3 

Multiple Scattering theory 

The Multiple Scattering (MS) method has been developed over the years, firstly in solid 

state physics to calculate the electronic properties of solids (Korringa 1947, Kohn & Rostoker 

1954, Mores 1956), in nuclear physics to compute nuclear scattering cross sections (Agassi 

& Gal 1973) and in molecular physics. Its first implementation to treat electron - molecule 

scattering and photoionization was developed by Dill, Dehmer and collaborators (Dill & 

Dehmer 1974, Dehmer & Dill 1975, Siegel et al. 1976, Dehmer et al. 1979, Siegel et al. 1980, 

Siegel et al. 1981); at that time it was impossible to realistically describe the noncentral 

molecular core region of a polyatomic molecule due to the limited computational resources 

available. A way to circumvent the problem was found in using jointly two well known 

techniques: Multiple Scattering for treating nonseparable eigenvalue problems and the 

electron scattering theory. 

The basic idea in the Dill & Dehmer's 1974 paper was to model the multicentred molecular 

potential as a set of non overlapping atomic potentials immersed in an interstitial region of 

constant potential. The partitioning of the coordinate space is shown in figure 3.1: non 

overlapping spherical regions I; contain one atom; the model atomic spherical potential is 

summed to the monopole terms due to the surrounding atoms, re-expanded about the sphere 

centre. The potential in the interstitial region II, bound by regions I; and a larger spherical 

boundary, is constant, while in the outmost region III it is spherical, and calculated summing 

the monopole terms from all the atoms. 

35 
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III / 

ý\ 

/fl ý 

Figure 3.1: Schematic representation of the space partition in the Multiple Scattering method for a heteronu- 

clear diatomic molecule, as in Dill & Dehmer (1974). In this example, the target has been divided into two 

sub-units. The spheres li are centred on the centre of mass of each sub-unit. 

The assumption that the molecular potential may be approximated in this way is referred 

to as muffin-tin approximation. Williams & Morgan (1974) and Siegel et al. (1976) relaxed the 

hypothesis that potentials in regions I and III must be spherically symmetric, in order to 

attempt a more complete description of the target which could better represent effects due 

to charge density sitting between two atomic centres. 

Later, it was also demonstrated that the Multiple Scattering theory (in all its applications, 

including electron - molecule scattering) allowed the possibility for the spheres defining 

the regions I;, which enclosed the atomic potential, to have an arbitrary shape and even 

to overlap (Butler & Nesbet 1990, Butler et al. 1992, Butler et al. 1993), and that no field 

corrections were needed, as originally supposed by Ziesche (1974) and Faulkner (1979), as 

long as the potential range of the atoms did not overlap. 

In later-years, electron - molecule collision studies with Multiple Scattering technique 

dropped significantly, because of the drastic improvement of ab initio implementations that 

used quantum chemistry techniques, which allowed a more accurate description of the mul- 

ticentred molecular potential using, among other things, Configuration interaction methods. 

Only recently, Caron and co-workers resumed the use of the MS method for electron 
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scattering, adapting it to the treatment of targets too large to be studied with standard ab 

initio techniques. Their approach, which has been followed in this research, is to partition 

the target into molecules whose size allows to perform ab initio calculations, thus defining 

molecular sub-units instead of atomic ones. The Multiple Scattering treatment is applied to 

model the collision process with the whole target. 

Initially their applications made use of atomic scattering data (from argon and krypton) 

to model the electron collision process with DNA pseudomolecules (rungs, backbone and 

base pairs) (Caron & Sanche 2003, Caron & Sanche 2004, Caron & Sanche 2005, Caron & 

Sanche 2006). The work of Bouchiha et al. (2008) on the water dimer was the first theoretical 

study to make use of collision data on molecules, obtained with R-matrix calculations; the 

sub-units consisted of single water molecules. It was one of the first realistic attempts 

to investigate the behaviour of a molecular cluster under LEE impact, in order to bridge 

gas-phase and solid-state results. The choice to use the R-matrix method to provide the 

sub-units' information proved particularly good, for reasons discussed below, and was 

therefore applied to studies on the band structure of water ice (Caron et al. 2007) and on LEE 

scattering by DNA, where the sub-units consisted of single bases, sugars and phosphates 

(Caron et al. 2008, Caron et al. 2009). 

Makochekanwa et al. (2005) applied the Multiple Scattering method to the study of the 

vibrational excitation of water, but their approach is consistently different to that of Caron 

and co-workers. 

In this chapter, the Multiple Scattering technique is presented; the theory is introduced 

in a general way in section 3.1 for elastic collisions, then the application to the particular case 

of scattering from molecular clusters and the computational implementation are discussed 

in section 3.2. 

The theoretical treatment for elastic scattering from clusters, introduced below, is substan- 

tially similar to that presented in Bouchiha et al. (2008); the computational implementations, 

though, differ in several points. Some bugs in the code have been corrected and it has 

been proven that some procedures employed in that work were not needed, or, in one case, 

incorrect. Finally, the Multiple Scattering code used in this work has been rewritten and 
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developed to solve more general cases: besides the introduction of the inelastic procedure 

(see chapter 6), it is now possible to treat heterogeneous clusters made up by any number 

of sub-units, which may be different in size, number of atoms, geometrical parameters and 

symmetry properties. Such generalisation has allowed us to study a wider range of targets 

and has also been useful to check and confirm some results. 

3.1 Elastic treatment 

As when it was first used, the Multiple Scattering goal is to simplify a problem otherwise 

too computationally costly to be performed, by dividing it into smaller and more easily solved 

problems. In its application to low energy electron scattering with molecular clusters, where 

the "cost" of an ab initio calculation depends upon the size of the target (in terms of extension 

in space and number of electrons), the approach is to partition the coordinate space occupied 

by the target into volumes (or sub-regions) containing single molecules. Ab initio methods 

are then employed to treat the collision process with each sub-unit independently, and the 

results are finally combined in order to retrieve scattering information relative to the cluster 

as a whole. 

The Multiple Scattering method only deals with the "combination" step; it is assumed 

that scattering data on the sub-units has already been calculated by other means. In this 

thesis, the general expression scattering data refers to quantities that contain information 

on the collision process, and may be therefore used to calculate several observables. In 

particular, our treatment makes use of the sub-units' T-matrices. 

In this section, the treatment of elastic scattering will be presented. It is then assumed 

that the cluster only undergoes elastic collisions, and no excitations are included; the same 

applies to the electron collision with each sub-unit. 

The asymptotic form of the total wavefunction fi(r), describing the electron scattered 

from the whole cluster, may be written as: 

ý(r) = 1: YL- (r") [JP(kr)ýL, 
L' +Z hl, (kr)T1, L, fi , (3.1) 

where the first term in the square brackets represents the incident plane wave of momentum 
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k=V and the second term the scattered wave having the same energy (because the 

process is elastic); E is the kinetic energy of the scattering electron. The index L indicates 

collectively (1, m), YL(r) are spherical harmonics and ji and h, are the spherical Bessel and 

Hankel functions of the first kind respectively; the coordinates are referred to the centre of 

mass of the cluster. The matrix TG (where G stands for global) contains the information of 

the scattering process with the whole target, whence the cross section or the eigenphase sum 

can be obtained. 

Expansion (3.1) should include an infinite number of partial waves to be complete; in 

practice, the expansion is carried out up to a certain value of 1, indicated as lmax 

The intrinsic purpose of the Multiple Scattering treatment presented here is to express 

the unknown global matrix T'G in terms of the sub-units T-matrices 3T"}; the derivation of 

such relation will proceed through four steps: 

1- the incoming wavefunction on each sub-unit is written, as a function of the quantities 

%% 

2- the scattered wavefunction from each sub-unit is calculated; 

3- all the wavefunctions scattered by neighbouring sub-units, together with the incident 

plane wave, are summed to obtain the total incoming wave on each sub-unit, allowing 

the calculation of g; 

4- the total scattered wavefunction is calculated and matched with expression (3.1) to 

obtain an expression for TG in terms of {T"). 

The vector notation used throughout is represented in figure 3.2, where n and n' label 

two generic molecular sub-units. 

The following re-expansion formula (Dill & Dehmer 1974, Danos & Maximon 1965) for 

the spherical harmonics defined by Messiah (1962) will be used: 

Yr htºkr iºt+º2-º' 
2'º' YrYrh kr kr (3.2) L(ýl) 

( l) = (-)""F", ' 

t' Lt(ý2) L2(ý3) ºt( 2))º2( 3), 
Lt, L2 
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Figure 3.2: Schematic representation of the vector notation used in the MS treatment. CM indicates the 

centre of mass of the cluster, the circles labelled n and n' two generic sub-units, whose centre of mass positions 

are identified by vectors R� and Rn- respectively. The position of the scattering electron is r from the cluster's 

centre of mass and rn and rn- from those of the sub-units. The figure shows only two sub-units, although the 

notation and the treatment of this chapter are general for clusters made up by any number of them. 

where 

Flmý mZ 
m3 = 47i(2I1 +1)(212+1)(213 + 1) 

11 12 13 11 12 13 
, 000 ml m2 m3 000 11 ml m2 m3 

(3.3) 

11 12 13 
and is Wigner 3-j symbol (Messiah 1962). 

m1 m2 m3 
From the definition of spherical Bessel functions, equation (3.2) also holds when the 

functions hl are replaced by ji. The vectors r1 and r2 are related by r2 = rl - r3, with Ir31 > Ir21" 

Such inequality is very important and will be carefully considered in section 3.2.4. 

3.1.1 Step (1]: incoming wavefunction on each monomer 

The incident plane wave from equation (3.1) is 

ýin, Pw(r) _ý YL'(r)lr'(1cr)fi'ý (3.4) 
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which can be re-expanded around r� considering the relation r� =r-R,,: 

ýin, PWýrný 

where we defined: 

and: 

ill+! Z-I' (-)m'FIt, 12,1' 
-m, 

YLi(! 'n)Jll(krn)YLZ(ýn)JIZ(kRn)fL' _ 
L' LI, L2 

YL, (Pn )jl, (krn )Miý 

L', L, 

L: YL, (P 
n)ll, ( krn )$L, 

L, 
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(3.5) 

Mn 
Li, L' 

i1t+12-l' (_)m'F1mi ýz 
-m'YLZ(ýnýJ12(krn); 

(3.6) 

L2 

gL, -ý 
MLi, 

L'fL" 
L' 

(3.7) 

Equation (3.5) represents the wave incident on the generic sub-unit n due to the incoming 

plane wave only, expressed as a function of the scattering electron coordinate with respect 

to the centre of mass of sub-unit n, r,,; the total incoming wave, including the contribution 

of both the plane wave and the waves scattered from the neighbouring sub-units, may be 

written in a similar form as: 

ýin, n (rn) YL, (i'n ) jl, (krn )$L, (3.8) 

where the yet unknown functions {g" } contain all the contributions. 

3.1.2 Step [2]: wavefunction scattered from each monomer 

Given the incoming wavefunction expressed by (3.8), the scattered wavefunction for 

sub-unit n can be written making use of the sub-unit T-matrix T": 

ýsc, nýrný =12 YL'(ý'n)llp (krn)Ti', L$L 
L, L' 

(3.9) 

which can be re-expanded around the centre of mass of another generic sub-unit n', consid- 

ering the relation r�' = r� - R�-,,,: 

ý ýsc, n(ln') 
YLz(Pn'ýJIZ(krn' Xn 

Lz 
',, n 

L' 
Tnn 

L', LöL 
L, L', L2 

(3.10) 



42 Chapter 3- Multiple Scattering theory 

where we defined: 

XL2 i, =2 itt+IZ-P(_)m'Fim, 1ýz 
_m, 

ý'L, (Rn', 
n)hjý 

(kRn', 
n). 

L, 

The definition (3.11) has been written in the assumption that n* n', but it can be naturally 

extended by defining Xi,, " L2 = 0, since it will be useful later. Equation (3.10) expresses the 

wave scattered off sub-unit n and incoming onto sub-unit n'. 

3.1.3 Step [3]: total incoming wavefunction and derivation of g 

The total incoming wavefunction on scatterer n from equation (3.8) can be now re-derived 

from the obvious relation 

ýin, n(rn) _ lpin, PW(rn) + 
1: ýsc, n'(rn); (3.12) 

n'#n 

substituting equations (3.5) for ý;,,, pw(r�) and (3.10) for 

',, YLI ýýn)Jh(krn) 7L, + 
f. ýXL1, L'TL', L$L 

L, n'#n L, L' 
(3.13) 

Comparing the two expressions (3.8) and (3.13) for ( in, n, it is possible to obtain the 

following relation for g: 

gLn - 
8L + Xn n' 7. n' n' 

iiL,, L' L', LöL 
n'#n L, L' 

(3.14) 

It is very easy to write this relation in matrix form; to do so, the following vectors and 

matrices are defined: 

81 

ý= 
-2 9 

; ý_ S2 

- x 

gN 8 

X1,1 X1,2 ... X1, N 

X2,1 X2,2 ... X2, N 

XN, 1 XN, 2 
... XN, N 

; ý= 

T1 00 

0 T2 0 
(3.15) 

00 TN 

0 X1'2 ... XI, N 

X2,1 0 ... X2, N 

XN, 1 XN, 2 
, 0 

(3.16) 
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Notice that T' and X"'"' are matrices themselves, and g and g" vectors. They have 

dimension (lmax + 1)2 since the index L= (1, m) runs from (0,0) to (lmax, +lmax); matrices X"'"', 

T" and 0 have dimensions ((Imax + 1)2, (lmax + 1)2). The final dimension of matrices and 0 

is then Nx (lmax + 1)2, where N is the number of sub-units the target has been divided into, 

and matrices T and X have dimension (N x (lmax + 1)2, Nx (lmax + 1)2). 

Given these definitions, equation (3.14) may be rewritten in a, clearer, matrix form as 

whose solution is 

G+ XTG, (3.17) 

C= (ll - XT)-1 E, (3.18) 

where 1 is a unit matrix with dimension (N x (lmax + 1)2, Nx (lmax + 1)2). 

At this point, the unknown vectors introduced in equation (3.8) to include all the terms 

that contribute to the incoming wave on each sub-unit (i. e. the incoming plane wave plus the 

waves scattered by neighbouring sub-units) have been expressed, as expected, in terms of 

the plane wave amplitudes E multiplied by the multiple scattering term (1 - XT)-1 which 

will be discussed later. 

3.1.4 Step [4]: total scattered wavefunction 

Once 0 is known, it is possible to add the waves scattered by all the sub-units, given by 

equation (3.9): 

ýsc, TOT 
E ýsc, n = 

= ý Lý L. ý 
YL'(Pn)hj'(krn)7i', LBi 11 

n L, L' 

YL, (P)hl' (kr)Ni,, L'Ti', LSLl 

where a re-expansion around r has been carried out (r = r� - (-R�)) and we defined: 

(3.19) 

Nn 11l +12 P(_)m'Fh, 1z, P YLz(-An))IZ(kRn) (3.20) 
LI, L' = n1, m2, -m' 

L2 
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It is then convenient to define matrices 

M= f 
Ml M2 ... MN ]; N= 

N1 

N2 

NN 

(3.21) 

where M and N are defined in equations (3.6) and (3.20). Then equation (3.7) can be rewritten 

in matrix form as E= ]M f. Remembering that the scattered wave part in equation (3.1) is 

Osc, TOT(r) =2j: YL-(f)hl, (kr)Ti Lfi , (3.22) 
L, L' 

comparing it to equation (3.19), and using equation (3.18), it is possible to write: 

NT = ]NT (1 - XT)-1 = NT (1 - XT)-1 MT= Tc f, (3.23) 

so that an expression for the global T-matrix TG can be obtained: 

T(-' = NT (1 - ß{7I')-1 M. (3.24) 

Here, as expected, TG has the same dimension of T" (referred to as (D, D) for brevity), since 

matrices N and M have dimension (D, ND) and (ND, D) respectively. 

3.1.5 Terms contributing to the global T -matrix T' 

The terms constituting equation (3.24) may be divided into re-expansion terms M (from r 

to r") and N (from r� to r), and a multiple scattering term (1 - XT)-1. The latter represents 

the multiple scattering contribution; in fact, the matrix X includes the "interference" effect 

due to the presence of waves scattered by the other sub-units. The symmetric blocks X"'" 

in matrix X are zero, therefore there is obviously no multiple scattering effect between a 

sub-unit and itself; moreover, if X were null, there would be no interference effect at all: 

the final T-matrix would just be a superposition of sub-units' T-matrices, and the final cross 

section would simply be aG Z E" Q" « E" IT" 1Z. This indicates that the collision process 

would be superficially approximated to the sum of independent collisions of the electron 

with each of the sub-units. 
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3.2 Discussion and practical application to molecular clusters 

Having derived the expression for Tý-', the issue remains as to how the T" should be 

generated. 

3.2.1 T -matrix cutoff 

The articles by Caron and co-workers, treating the scattering process with condensed- 

phase water, DNA and water clusters, have pointed out the need to introduce a modification 

in equation (3.24), as was also confirmed by our tests. The equation should be rewritten as 

TG = NT (Il - XT, )-' M. (3.25) 

A new T-matrix 'II', is introduced in the multiple scattering term; the label 'c' stands for 

cutoff, since it is necessary to apply two cutoffs to the T-matrices forming it. 

The first cutoff is needed when dipolar molecules are treated; due to its long range, the 

dipole interaction leads to large elastic cross sections at low energies, eventually divergent; 

however, in the muffin-tin approximation it is assumed that the sub-unit potential is of 

finite range. Therefore a cutoff must be introduced to limit the range of action of the dipole 

interaction. This is achieved by including the dipole interaction up to a certain distance ac 

from the sub-unit's centre of mass, and neglecting it at larger distances. 

The appropriate choice of ac is not trivial, and must be considered carefully. Although 

any theoretical method is, in principle, appropriate to obtain the initial sub-units' T-matrices 

{T") which are needed to build matrix T of equation (3.15), it will now become evident 

that the R-matrix method is particularly fit for this task. The reason is that the partition 

between inner and outer regions reflects naturally the MS division of space into sub-regions 

required by the muffin-tin approximation. In the R-matrix technique, the dipole moment 

cutoff may be easily introduced by modifying the outer region calculation so that the long 

range potential is neglected. 

This can be done in two ways: one is to increase or reduce the R-matrix sphere radius 

a, and subsequently skip the R-matrix propagation performed in the outer region, matching 

the scattering wavefunctions with Bessel functions at r=a (see section 2.4; this procedure 
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implies that a, =a in all cases, and it is not indicated when very large or very small values of a, 

are needed. A large R-matrix radius would cause an unnecessary increase in computational 

requirements, which would not be justified by geometrical considerations; on the other 

hand, too small a radius a would introduce errors since a relevant part of the electronic 

target wavefunctions might then leak outside the boundary and be incorrectly neglected; 

to avoid this happening, a more compact basis set for the orbitals may be chosen, with a 

consequent reduction of the quality of the target representation. 

A more sensible approach, which has been used in this work, consists in using different 

values for a and ac. The choice of a is based on the usual considerations about the spatial 

extent of the target wavefunctions, for which the use of a large value would be preferable, and 

is also influenced by the need to minimise the overlap between the spheres containing the 

sub-units, for which, conversely, a small value of a and more compact orbitals are preferred. 

The R-matrix calculated at r=a is then propagated with the usual propagation method from 

a to ac. This step has the approximate effect of adding (if a< ar) or subtracting (if a> ac) the 

dipole interaction in the region between a and ac. Matching with Bessel functions at r=a, 

implies that the dipole moment interaction is disregarded between ac and oo. The tests that 

need to be performed to select the correct values of a and ac will be reported for each type of 

cluster in the result chapters, where it will be shown that in fact the choice of a and ac is less 

critical than initial works implied. 

Caron et al. (2007) and Bouchiha et al. (2008) also analysed the need for a second cutoff 

on the T-matrices forming Tc; this cutoff is applied on the number of partial waves included. 

The partial wave expansion in the R-matrix calculations is carried out up to I=4 or 5, but 

it has been observed that the use of the full angular momentum content of the T -matrix at 

all energies produces an incorrect Multiple Scattering cross section (this was also noticed in 

the studies on DNA Caron et al. 2008). Such behaviour may be explained in terms of the 

angular momentum energy barrier E(1, r) = Ir 1r; the electrons scattering from one sub-unit 

are able to reach another one only if their energy is large enough to overcome the barrier, 

i. e., only if Ee > E(1, R�,,, ), where Ee is the electron energy and R�,,,, the distance between two 

generic sub-units. The relevant angular momenta that have to be included in Tc, therefore, 
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are those for which the following relation (where the energy is in Rydberg) holds: 

1(1 + 1) 
\ Ee. 2 Rnn, 

(3.26) 

The same conclusion may be reached with a mathematical reasoning, observing that 

the elements of matrix X, shown in equation (3.11), include spherical Hankel functions of 

the first kind hi (kRn, n'), which diverge as (kR,,,,, -)-(1+1) when the argument tends to zero; 

the singularity is dominated by the sub-units distance Rn, n,. A truncation on the angular 

momentum expansion is an inexpensive way of getting rid of such behaviour (Caron et al. 

2008). 

The partial wave cutoff is achieved, in practice, by truncating the T-matrix, including in 

the matrix Tc only those elements corresponding to channels associated with partial waves 

1<1,; the others are set to zero. ' So there is no change in the way the T-matrices are 

generated; the R-matrix calculation is not modified and needs to be run once. 

When solving the MS problem in an energy range, different partial wave cutoff values 

are applied in different energy sub-ranges; problems may then arise due to the discreteness 

of 1, causing discontinuities in the cross section at the "cutoff energies" E(1) = 1(1+1). This issue 
,7 

is circumvented by a two-point interpolation of the cross sections: at any energy E lying 

between two cutoff energies (Eý1) <E< E(1+1)) the cross section is a combination of 0)(E) and 

0+1)(E), weighted according to the differences IE 
- E`1)) and 

IE 
- E(1+1)I Here 0) indicates 

the Multiple Scattering cross section, obtained from T(', where Tc includes partial waves 

up to I only; these cross sections will be henceforth referred to as cutoff cross sections. So the 

interpolation is not actually performed on the partial waves, but on cross sections including 

a different number of them. 

Bouchiha et al. (2008) also observed that a modification is sometimes needed in equation 

(3.26) and suggest the introduction of an ad hoc energy correction parameter y to shift the 

cutoff energies, so that equation (3.26) is rewritten as: 

1(1 + 1) 
< ), Ee" 

R2 n, n' 
(3.27) 

'This procedure is an approximate way to remove contributions from higher partial waves and may introduce 

errors. 
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A value of y=0.75 (upwards energy shifting) is used in Bouchiha et al. 's (2008) article on 

water dimer to get rid of some spurious peaks. The use of such a parameter has been studied 

in this thesis, in order to determine whether it is actually needed. As will be described in 

later chapters, we found that in some cases y is not needed, while in other cases a value 

of y<1 must be used to ensure a smooth cross section and to eliminate spurious peaks 

from high partial wave contributions. A more in-depth analysis will be carried out for each 

system treated. 

3.2.2 Rotation of T -matrices 

In its application to molecular clusters, the most natural and straightforward interpreta- 

tion of the target partitioning into sub-units is the definition of each monomer of the cluster 

as a different sub-unit. This choice turns out to be particularly helpful when homogeneous 

clusters are treated; in this case, there is no need to run N separate calculations to obtain the N 

sub-units T-matrices needed in equation (3.15) to build matrix T. 2 If the internal coordinates 

of the monomers are sufficiently similar, it is possible to calculate only one T-matrix with 

cutoff and one without, with the monomer in some convenient orientation OR_m, and then 

apply a rotation to it, in order to account for the various orientations of each monomer in 

the cluster (0, ", 
CIS). 

The rotation of the T -matrices is performed by the MS programme, provided the three 

Euler angles defining it are given. These angles can be found by solving for the coordinate 

rotation matrix R(a, ß, y), which transforms the orientation of the monomer into that of the 

cluster - i. e. R"(a, ß, y)OR_m = Ocnis; the index n indicates that one rotation matrix is defined 

per each monomer forming the cluster. The rotation matrix is constructed according to the 

formula (Messiah 1962): 
(\ 

R(a, ß, y) = 

cos y cos ß cos a- sin y sin a- sin y cos ß cos a- cosy sin a sin ß cos a 

cos y cos ß sin a+ sin y cos a- sin y cos ß sin a+ cosy cos a sin ß sin a 

- cos y sin ß sin y sin ß cos ß 
(3.28) 

2The computation of the monomer T-matrices is the only preliminary calculation needed, and the most time 

and computer resource consuming. 
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where a, ß and y are the Euler angles, and the index n has been dropped for simplicity. 3 

Once the Euler angles are known, it is possible to build the matrix which applies the rotation 

onto the T -matrices; the rotation is actually applied onto the spherical harmonics in whose 

representation the T-matrix has been originally built (i. e. those defining channels in equation 

2.30, from which the K-matrix is constructed as in equation 2.35, and therefore the T-matrix 

as in equation 2.38). If the spherical harmonics have been defined as those of Messiah (1962), 4 

the spherical harmonics rotation matrix W(a, ß, y) is built according to the Wigner formula: 

WLi, L2 (a, a, Y) = e-iami w(m)t, Mz 
(p)e-iYm2 

where 

I 

(ý) t (l + ml)! (1 - ml)! (l + m2)! (l - m2)! 21+mý-m2-2t 2t-ml+m2w,,. 
_ (-) Zn 

r (I + m1 - t)! (I - m2 - t)! t! (t - m1 + m2)! -, 

(3.29) 

(3.30) 

with = cos() 2and q= sin (2). The indices L1 and L2 refer collectively to (11, m1) and (12, m2), 

and 11 = 12 =I (the rotation does not mix elements with different total angular momentum). 

Once matrix W is built, it is applied onto the T-matrix, obtaining a rotated T-matrix: 

TROT = WTW-1. (3.31) 

The procedure to find the Euler angles is the following: firstly, the orientations of the 

isolated monomer, OR-m, and of the monomer in the cluster, O"ºs, are obtained. These 

are calculated choosing three independent geometrical parameters (e. g. position of atoms, 

direction of bonds, atom - atom vectors) expressed with respect to the coordinate system 

employed in the respective calculations. The orientation matrices thus obtained, OR, and 

Ols, are 3x3 matrices. The rotation matrix R" is such that it transforms OR_m into Ocºs, i. e. 

R" OR-in = O"ºs, and it is therefore obtained with the formula R" = O"ºSOR-1 
m. Once R" is 

known, the Euler angles are calculated using equation (3.28) and input to the programme. 

The way to choose an appropriate set of geometrical parameters for the construction 

of the orientation matrices is not trivial. If the geometries of the isolated and clusterised 
'if one wants to keep the index n, which labels the N monomers forming the cluster, there would be N Euler 

angle triplets - (a", ß", y") - one per monomer. 
"Otherwise, a further transformation is necessary, in order to account for the different definitions. 
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0 

0 

Vt 

Figure 3.3: Schematic illustration of the definition of vectors v1 and v2 for the water molecule: v2 identifies 

the oxygen-CM direction; v, lies on the (HOH) plane and is orthogonal to v2; V3 is orthogonal to the previous 

vectors and points out of the plane. All vectors are unitary. 

monomers were identical, the position of three atoms would be sufficient (provided they 

are independent, i. e. they are not aligned). In practice, the clusterisation often introduces 

geometrical modifications in the bond lengths and angles, so that building the orientation 

matrices using the position of three atoms only would cause the solution of the equation 

R" = OC15OK1 
m to be not unitary; it is therefore safer to employ other geometrical criteria. 

The one we have been using, and encoded in a small Fortran programme called eulerrot, is 

to define three orthonormal vectors v1, v2 and v3 describing the orientation of the molecule. 

Their definition is different for each molecule treated. Figure 3.3 shows how the vectors are 

defined when water clusters are studied: firstly v2 is defined along the oxygen-CM direction; 

vl is chosen lying on the HOH plane and orthogonal to v2; V3 is orthogonal to both of them 

(v3 = v1 X v2). The vectors are then expressed in terms of the coordinate system employed in 

the monomer or dimer calculations and the orientation matrices built: O=( v1 v2 V3 
) 

These definitions are robust with respect to changes of the bond lengths and angles. 

3.2.3 Propagation of V' 

An important difference between our approach and that used in Bouchiha et al. (2008) 

is in the use of a propagation step which has been abandoned in the present treatment. In 

their work, the T-matrix 7" calculated using equation (3.25) was converted back into an 

R-matrix at r= ac using an approximate formula, and then propagated to an asymptotic 
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distance using the standard method employed in the R-matrix code. The cluster's dipole 

moment was used to build the potential for this propagation. Matching to the asymptotic 

wavefunctions provided an "asymptotic" T-matrix, that now included the effect of the long- 

range electron - cluster dipole moment interaction, and which was used to determine the 

cross section for the cluster. 

In the present work, such propagation step has been dropped; firstly because converting 

a T-matrix into an R-matrix can only be done accurately far away from the target, where the 

interaction with the scattering electron may be assumed negligible. This is obviously not 

the case at r= ac. Moreover, it was observed in practice that the extra propagation step was 

actually not needed, since it worsens the agreement between the MS cross section and the 

R-matrix one used for comparison in a wide energy range for all the (H20)2 geometries. 

3.2.4 Geometrical constraints 

In the derivation of equation (3.24) in section 3.1, the re-expansion formula (3.2) has 

been used in three occasion (equations 3.5,3.10 and 3.19). Such formula may be used if the 

inequality JRI > Ir't holds, where r' is the coordinate into which the expansion is performed, 

R=r- r', and r is the original coordinate. 

The conditions that must be satisfied when the re-expansion formula is used in section 

3.1 may be reduced to: 

! rni < JR, J; 
(3.32) 

IrnI < IRn, n'I. 

where r, Rn and Rn, n- are defined as in figure 3.2. 

While Rn and Rn, n- are fixed parameters defined by the geometry of the cluster, vector rn 

points to the scattering electron from the centre of mass of sub-unit n, and can in principle 

assume any value. In practice, however, the re-expansion is performed when the scattering 

electron is interacting with the sub-unit only, which means that rn extends up to the distances 

for which the sub-unit's potential is non-negligible. 

The inequalities (3.32) then imply that: the sub-units' potentials must not overlap with 

the cluster centre of mass (first inequality) or with the centres of mass of the other sub-units 
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(second one). The second conclusion recalls that of Butler et al. (1993), who relaxed the 

original constraint of non-overlapping regions, as long as the potentials did not overlap. In 

order to verify whether we meet these requirements, we must have an idea of the extent of 

the monomer potentials. In our MS approach, making use of R-matrix data, the molecular 

potentials considered for the multiple scattering term (i. e. those included in T,, where the 

long-range interactions are cut off) are certainly contained inside the sub-region boundaries 

(because of the constraint imposed by the R-matrix technique on the target electronic density), 

so it can be assumed that max(Ir�l) < a. It is less obvious whether ac could be used instead 

of a: in principle it is possible to choose ac <a and remove the long range interactions down 

to ac, but this procedure, as stressed in section 3.2.1, is approximate. It is then safer for our 

purposes to rewrite the inequalities 3.32 as: 

( 

Ja< (RnI; 

R< IRn, 
n a< IRn, 
n' 

I. 
(3.33) 

which are easier to verify. Considering also that for all the cluster geometries studied in this 

thesis the relation IR, I < JR,,,,,, I always holds5, the inequalities may be reduced to one, i. e. 

a<IRnI. 

Analysing our cluster geometries, it is clear that inequalities (3.33) are not always met: 

all the clusters studied involve an overlap (of different extent) between the spheres, because 

the radii of the R-matrix sphere required to achieve a reasonable monomer calculation 

are bigger than the monomer - CM distances R� and sometimes even bigger than the 

monomer - monomer distances R,,,,,,. However, although these conditions are not fulfilled 

in our calculations, the good results obtained, both for the water and the formic acid clusters, 

seem to imply that these restrictions are not fundamental. They are not to be underestimated, 

however: one of the tests carried out on the formic acid dimer, for instance, consisted of 

varying the. inter-monomer distance; when the monomers were brought closer than in the 

equilibrium geometry, spurious peaks appeared in the cutoff cross sections at higher energies 

than in the equilibrium case, and were included in the final interpolated cross section. We 

deemed this effect due to the too large overlap between the sub-units, as it is explained in 

'The inequality IR�I < IR�, 
�' 

I holds for most of the small non linear clusters. 
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section 5.3.2. 

3.2.5 Practical computational implementation 

An outline of the programme implemented to perform Multiple Scattering calculations 

(together with the prior steps and calculations) is shown schematically in figure 3.4, where 

the simplest case of a three-sub-units cluster is considered. 
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Figure 3.4: Outline of the code and of the prior calculations needed for a MS calculation. The outline considers 

a cluster made up by three sub-units, of which two are the same molecule (labelled molecule 1). The rotation 

matrices are then applied on T' to account for the different orientations A and B, obtaining matrices TI A and 

T1 B. No rotation is necessary for molecule 2 with T-matrix T2 if the orientation considered in the R-matrix 

calculation is the same as that in the cluster; otherwise it should too be rotated. 
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The first step is to produce the sub-units T-matrices using the R-matrix suite. Two T- 
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matrices are calculated for each sub-unit: one considering all the dipole moment interaction, 

and another including it up to a, (in the inner region it is automatically taken into account). 

The inner region calculation needs to be run only once, and the outer region twice. If the 

cluster is (at least in part) homogeneous, one R-matrix calculation is needed for each different 

molecule only, and rotation matrices are built to produce rotated T-matrices. 

Matrices T and Tc are constructed, together with matrices X, N and M which depend 

on the cluster geometry only. The global T-matrix TG is then obtained from a simple matrix 

multiplication. The MS cross section is calculated from it, using the standard formula. 

The outline also shows the dependence of each procedure on geometry parameters; all 

the steps shown, apart from the rotation of the T -matrices, are energy dependent, so the wole 

process must be repeated at each energy value. 

The code is very general and can treat heterogeneous clusters with no increase in com- 

putational requirements: the speed of each MS calculation is completely determined by the 

size of matrices T, T, X, N and M, which is proportional to N(lmax + 1)2. The only sensitive 

parameters are then l,,, ax and N. For a cluster comprised of 3 sub-units, with Imax set to 4, a 

cycle over 1000 energy points usually takes no more that 20 minutes on a standard desktop 

computer; the MS programme has not been written with efficiency in mind and can certainly 

be improved. 

Of course, the time for generating the molecular T-matrices with the R-matrix method 

is not included in this estimate; R-matrix calculations are not only computationally more 

demanding, but they require a much more careful choice of delicate parameters, among 

which the CI model, the atomic and continuum basis sets, the boundary radius, etc., thus 

requiring many tests to be performed before the final calculation is run. For this reason, 
homogeneous cluster calculations are much easier and faster than those for heterogeneous 

ones. 



Chapter 4 

Elastic scattering from water clusters 

This chapter describes the results obtained by applying the Multiple Scattering technique 

to water clusters, (H2O),,, n=2,3,4,5. Bouchiha et al. (2008) presented the cross sections 

generated using the first version of the Multiple Scattering code for the elastic scattering from 

the dimer (H20)2 in its equilibrium geometry, and compared them to R-matrix cross sections. 

The energy range was [0 -10 eV]; the results were very promising, as the comparison showed 

good agreement between the cross sections for all energies. 

In the work presented here (most of which is published in Caprasecca et al. 2009), the 

new version of the MS code has been used for different geometries of the water dimer, among 

which the equilibrium one. The programmes have also been used on larger water clusters. 

For the dimer and the trimer, full R-matrix calculations were also performed, to provide cross 

sections to use for a comparison. For larger clusters, R-matrix calculations were unfeasible 

due to the size of the targets. To this date there are no experimental cross sections available 

for electron collisions with water clusters. 

4.1 Water monomer 

In order to produce the T -matrices T and Tc required by the MS method to build matrices 

T and Tc of equation (3.25), R-matrix scattering calculations on the isolated water monomer 

were performed. The equilibrium geometry of water in the ground state has been widely 

studied, and its geometrical parameters are well known. The two O-H bond lengths are 

55 
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Figure 4.1: Ball-and-stick model of H20. 

1.808 ao and the HOH angle measures 104.52°(Benedict et al. 1956); the molecule therefore 

belongs to the C2U symmetry point group. Water has a large dipole moment of 1.855 D (Dyke 

& Muenter 1973), which strongly influences the collision process. 

The calculations were performed following the previous work on electron scattering from 

isolated water by Gorfinkiel et al. (2002); the double-zeta plus polarisation (DZP) Gaussian 

basis set of Dunning (1970) was used for the oxygen, augmented with 2s and 1p functions 

(providing 6 s-type, 3 p-type and 1 d-type atomic orbitals), while the triple-zeta (TZ) basis of 

Dunning (1971) was used for the hydrogens, augmented with 2p functions (3 s-type and 2 

p-type atomic orbitals). 

Molecular orbitals (MOs) were obtained from a Hartree-Fock self-consistent field calcu- 

lation, and then pseudo-natural orbitals (NOs) were generated from Singles-Doubles Con- 

figuration Interaction (SDCI) calculations, where approximately 33 000 and 50 000 configu- 

rations for singlets and triplets respectively were included in the wavefunctions expansion. 

A weighted average of the NOs from the ground state'Al, and the lowest 1 B1 and 3B1 states, 

with weights 4,3 and 2 respectively, gave a set of NOs providing the best set of threshold 

energies and dipole moment for the ground state (Gorfinkiel et al. 2002). 

These NOs were then used in a CASCI calculation, where two electrons were frozen in 

the lowest la1 orbital, and all the possible configurations with the 8 remaining electrons in 

the active space (2a1-5a1,1b1-2b1,1b2-2b2) were included. Such choice again follows 

Gorfinkiel et al. (2002), where the same CASCI model was used in order to mantain the 

balance between the N- and (N + 1)-electron wavefunctions. 

The continuum orbital Gaussian basis was generated (Faure et al. 2002) taking into 

account both the energy range of the collision process and the R-matrix boundary radius, set 
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present accurate values 

Ground state energy / Eh -76.0923 -76.2905 (a) 

Dipole moment /D1.8629 1.855 (b) 

Table 4.1: Ground state energy and dipole moment for the water monomer; comparison with: (a) van Harrevelt 

& van Hemert (2000) (MRDCI calculations); (b) experiment by Dyke & Muenter (1973). 

to 6 ao as described below. The continuum basis set comprised 7 s-type, 5 p-type, 5 d-type, 4 

f-type and 2 g-type GTOs, thus including partial waves from 0 to 4. A test was also carried 

out including partial waves up to 5 (again, see below); in that case, 2 extra h-type orbitals 

were added. 

Only the ground state was included in the target calculation; its calculated energy and 

dipole moment are listed in table 4.1 and compared with more accurate values. 

4.1.1 Choice of a and ac 

The two parameters a and a, have a different physical meaning and must be chosen upon 

different considerations. 

The R-matrix boundary a, defining the size of the inner region, is chosen considering 

the spatial extent of the target electronic density, which depends both on the molecular 

geometry and on the basis set used. Smaller and more compact basis sets are confined inside 

a smaller region, while the inclusion of diffuse orbitals requires larger radii if the leaking 

outside the inner region is to be avoided. In general, the choice of the basis set is guided 

by the characteristics of the molecular electronic states: although the more compact basis 

sets are more convenient, larger ones may be necessary to ensure a target description of a 

reasonable quality. 

The UK polyatomic R-matrix suite provides two ways to test the appropriateness of a. 

As a first option, it calculates the approximate amplitudes of the molecular orbitals at the 

boundary, as a rough way to check that the value of a is appropriate. It is approximate because 

the amplitudes are calculated centering the orbital wavefunctions on the CM, intstead of on 

the nuclei. If the amplitudes are bigger than a certain value (typically - 10-3) a larger a must 
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be used. A proper check consists in running different calculations with various boundary 

radii; in principle, the differences in the results should only be due to the exclusion of part 

of the target electron density from the inner region calculations, thus providing a useful 

tool to decide whether the value of a is appropriate. In practice, results also depend on 

the continuum basis set, that is dependent on a (a change in radius leads to a change in all 

the basis set exponents; hence the difficulty in ensuring that the quality of the continuum 

description remains the same for all radii). 

When an appropriate radius a is found for a particular system, in principle any other 

larger radius could also be used (provided the continuum bases are generated correctly); 

such increase would not, however, improve the accuracy of the calculation, while the com- 

putational requirements would greatly increase (because of the need for a larger number of 

continuum functions); therefore, the smallest value of a providing correct results is normally 

used. 

The molecular and continuum basis sets employed in our H2O calculation were similar 

to those used by Caron et al. (2007) and Bouchiha et al. (2008), where an R-matrix radius 

a=6 ao was found to be appropriate; we performed some tests using a smaller (a =5 ao) and 

two larger radii (a = 10,14 ao); the cross sections obtained, presented in figure 4.2, confirm 

that the choice of a=6 ao was correct. 

While a is a parameter chosen to ensure the quality of the R-matrix calculation, ac is 

related to the Multiple Scattering calculation whose input T -matrices must be provided. It 

defines the radial limit at which the long-renge interactions are cut off, and it is particularly 

needed when dipolar molecules are treated. Since such limit has nothing to do with the 

R-matrix theory, a different parameter, ac, has been introduced, although, as it will be seen, 

in many cases it is set equal to a. In the studies carried out by Caron et al. (2007) to find 

an appropriate value for ac, whose results we have reproduced and complemented and are 

plotted in figure 4.3, various cross sections are analysed; these are obtained from R-matrix 

calculations performed using the same a (here, for H20, a=6 ao) and introducing different 

cutoff radii ac. Some of the cross sections (those with ac = 8,10,50 ao) show a more or 

less marked dipole-driven behaviour at low energy, which should be removed in order to 
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Figure 4.2: Total elastic cross section for isolated H20, from a 1-state R-matrix calculation, with a=5,6,10 

and 14 ao. 

Figure 4.3: Total elastic cross section for the isolated water molecule, from a 1-state R-matrix calculation with 

a=6 ao and different values of a,. 

comply with the Muffin-tin approximation. On the other hand, the very small values (4 and 

2.6 ao) produce cross sections which are appreciably smaller than the abovementioned in 
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the whole energy range, including high energies, thus suggesting that the effect of the cutoff 

is too large. A good compromise seems to be the choice ac =6 ao, which does not show a 

dipole-driven behaviour at low energies, while at higher energies the cross section is closer 

to that obtained with larger a, values. 

This conclusion is in agreement with the results of Caron et al. (2007), who found that the 

electronic band structure of water ice was well reproduced when a=6 ao was used. However, 

as an additional test, we decided to employ the T-matrices from R-matrix calculations with 

different ac in MS calculations; despite the visible effect that ac has on the monomer cross 

sections, we found that its effect is much less marked in the MS results, when the new, 

debugged, version of the code was used. The choice of ac seems to be less relevant than we 

expected; such result, however, is not striking, as it was also observed by Caron et al. (2008) 

that the value of a, is not critical, and previously by Case (1982) that no great differences are 

encountered for fairly wide variations of the sub-unit sphere radii. 

Although setting ac =a in all calculations (eliminating in actual fact the need for the cutoff 

parameter) may seem reasonable, we deem that ac may potentially have a non negligible 

effect on other systems not studied here, and should still be regarded as an independent 

parameter, if only because of its physical justification and usage, which are well distinct 

from those of a. 

4.2 Water dimer 

4.2.1 Geometries 

Five water dimer geometries have been studied; all of them correspond to relative minima 

of the potential energy surface. The geometry parameters have been taken from Park et al. 

(2001) (theequilibrium geometry) and Huang et al. (2006) (all the others); some of these are 

listed in table 4.2. 

The geometries studied are characterised by similar parameters, including the inter- 

monomer distance, and differ mainly for the value of the dipole moment; they were chosen 

under the constraint that the geometry of the monomers is not heavily distorted from that of 
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geometry monomer 1 monomer 2 R1,2 

O-H0O-H2 HOH O-H1 O-H2 HOH 

H20 1.81 1.81 104.5 

EQ1.810 1.823 104.5 1.814 1.814 104.6 5.50 

[-] [+0.013] [-) [+0.004] [+0.004] [+0.1 ] 

Z1 1.816 1.822 104.82 1.816 1.822 104.82 5.37 

[+0.006] [+0.012] [+0.32] [+0.006] [+0.012] [+0.32] 

Z2 1.815 1.821 105.08 1.815 1.821 105.08 5.34 

[+0.005] [+0.011] [+0.58) [+0.005) [+0.011] [+0.58] 

S 1.816 1.822 104.95 1.816 1.822 104.95 5.36 

[+0.006) [+0.012] [+0.45] [+0.006] [+0.012] [+0.45] 

L 1.818 1.818 101.61 1.818 1.818 104.50 5.70 

[+0.008] [+0.008] [-2.82] [+0.008] [+0.008] [-] 

Table 4.2: Bond lengths (in ao) and angles (in degrees) of the isolated monomer and the five dimer geometries 

considered in this work. The values of the isolated monomer parameters are the same as in Gorfinkiel et al. 
(2002); those for the dieter geometry EQ are from Park et al. (2001) and those for the other dimers are from 

Huang et al. (2006). The difference between each parameter in the dimer and in the isolated monomer is also 

shown in square brackets, together with the inter-monomer distance R1,2 (also in ao), listed in the last column. 

isolated water. In fact, in the MS calculations the clusters have been treated as homogeneous: 

their geometries are "built" by taking two identical monomers (in the gas-phase equilibrium 

geometry) and rotating their T-matrices to reflect their relative orientations in the dimer. 

The distance between the centres of mass of the monomers in the dimer is also an input 

parameter (it is employed to construct the IM, X and N matrices of equations 3.6,3.11 and 

3.20 used in equation 3.25). When the dimer is made up by monomers whose geometry 

is different to that of gas-phase water, the geometry of the cluster in the MS calculation is 

slightly different to that in the R-matrix one, where the parameters listed in table 4.2 are used. 

In this table, differences between the gas-phase and the dimerised geometries are reported 

in brackets. The largest difference is found for the geometry labelled L, which also presents a 
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Figure 4.4: Ball-and-stick models of (H2O)2, geometries EQ, S and L. 

more marked heterogeneity between the two monomers, having somewhat different angles 

(the difference is still less than 5% of the total value). In this case, a heterogeneous calculation 

was also carried out for testing purposes, as explained below. 

The MS calculations are mostly influenced by the inter-monomer distance, the monomers' 

relative orientation and the global dipole moment (i. e. that of the dimer as a whole); it is 

the latter we are particularly interested in. The global dipole moment is not an input 

parameter and never explicitly calculated in the MS code; it depends on the monomers' 

relative orientations, which are input and indirectly determine the global dipole moment. 

One of the main objects of the work on water dimers was to establish whether the global 

dipole is intrinsically accounted for in the global T-matrix T" of equation (3.25). It was to 

include this interaction that Bouchiha et al. (2008) suggested the use of an extra propagation 

step, as mentioned in section 3.2.3; our results, though, show that the propagation is not 

needed. 

The dimer geometries are labelled according to their dipole moment magnitude: apart 
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Figure 4.5: Ball-and-stick models of (HBO)� geomctric's Zi and /_-,. 

from the equilibrium dimer EQ, there are two zero-dipole dimers (ZI and Z2), one dimer 

with a dipole moment smaller than the equilibrium geometry (S) and one with a larger one 

(L). Table 4.3 lists the dipole moments obtained in the present R-matrix calculations (see 

next section), compared with those from Huang et al. (2006). Two different zero-dipole 

geometries have been studied because the comparison between their cross sections, being 

independent of the dipole interaction, could provide useful information on the effect of the 

other parameters (mainly the relative orientation, as the inter-monomer distance in very 

similar in all the dimer geometries). 

4.2.2 R-matrix calculations 

The R-matrix calculations on the water dimers are also performed following the work of 

Gorfinkiel et al. (2002) on isolated water, with some minor changes. The double-zeta plus 

polarisation Gaussian basis set of Dunning (1970) is used for the oxygens and the triple-zeta 

basis set of Dunning (1971) for the hydrogens, augmented with a diffuse s-type and two 
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geometry point group energy / Eh dipole moment /D 

(a) (b) (c) 

H20 C2v -76.0923 1.86 1.85 

EQ Cs -152.1118 2.73 2.56 2.70 

Zl Cr -152.1104 0.00 0.00 0.00 

Z2 C2j, -152.1097 0.00 0.00 0.00 

S C2 -152.1098 1.77 1.65 1.72 

L C2v -152.1096 4.36 4.12 4.15 

Table 4.3: Symmetries (point group), energies (in Hartree) and dipole moments (in Debye) of the dimer 

geometries considered in this work. (a): present R-matrix calculations; (b): Huang et al. (2006); (c): Tschumper 

et al. (2002). 

p-type functions extracted from the basis set used by Gil et al. (1994). No natural orbitals are 

generated and the HF-SCF molecular orbitals are used. 

The CASCI model included two forzen core orbitals (occupied by 4 electrons) and 11 

active orbitals occupied by the 16 remaining electrons. The symmetry of the core and active 

orbitals vary throughout the dimer calculations, because the dimer geometries belong to 

different point groups. In all cases, symmetry properties are used to reduce the computa- 

tional requirements of the calculations; the real symmetry group of the clusters has always 
been considered in the calculations, except in one case, for the Z2 geometry, belonging to 

the Cy, point group, that had not been implemented in the R-matrix code at the time of the 

calculations. For that geometry, different calculations have been carried out using different 

subgroups of C2h (Ci, C;, C5, C2); all the results agree, although the C1 calculation is obvi- 

ously the slowest and most demanding. Such outcome may seem obvious, but the tests 

were needed to check the R-matrix results as the UK polyatomic code had problems with 

combining some target orientations and symmetry groups (some of these are still unsolved). 
Details on the calculation for each dimer geometry are listed in table 4.4. 

The R-matrix radius was set to 13 ao, following tests performed by Gorfinkiel (2007) on 
the dimer at the equilibrium geometry; this radius proved valid for the other geometries as 

well. The continuum orbital basis set, optimised for a= 13 ao (Faure et al. 2002), includes 13 
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geom symmetry core orbitals active orbitals no. configs 

orig used NN+1 

EQ Cs Cs (la', 2a')4 (3a'-10a', 1a"-3a")16 4 627 23 953 

Zl C; C; (lag, la� )4 (2ag-bag, 2a�-7a�)16 4 575 23 745 

Z2 C2h Cl (la, 2a)4 (3a-13a)16 9 075 23 595 

"" CS (la', 2a')4 (3a'-lla', la", 2a")16 4 815 24 705 

C; (lag, la, )4 (2ag-6ag, 2a�-7a�)16 4 575 23 745 

C2 (la, lb)4 (2a-6a, 2b-7b)16 4 575 23 745 

S C2 C2 (la, lb)4 (2a-6a, 2b-7b)16 4 575 23 745 

L C2U C2U (1a1,2a1)4 (3a1-8a1, lbl-3b� 1b2,2b2)16 2 471 25 213 

65 

Table 4.4: Summary of the calculations. The CAS model is specified by the core and active orbitals in brackets, 

with the number of electrons occupying them indicated as a superscript. The number of resulting configurations 

is also indicated, for the N and the (N + 1) calculations. For the latter, the sum of all the configurations from 

the different calculations performed for each irreducible rappresentation is listed. The reason why the same 

CI model produces a different number of configurations (see the C, and C; calculations for the Z2 geometry) 

is due to the different number of combinations resulting from the inclusion of orbitals belonging to different 

irreducible rappresentation, even if the total number of core and active orbitals is the same; this inequality holds 

when different subgroups of a larger group are employed. 

s-, 11 p-, 10 d-, 8f- and 6 g-type gaussian functions. Tests with partial waves up to 5 included 

also 5 h-type functions. 

The calculated dipole moments differ from those of Huang et al. (2006) by less that 10% 

for all geometries (see table 4.3); such accuracy is sufficient for the purpose of this work. 

4.2.3 Multiple Scattering calculations 

The monomer T-matrices T and Tc produced in the R-matrix calculation need to be 

rotated to account for the relative orientations of the sub-units in the dimer. The Euler angles 

representing the rotation are obtained comparing the orientation of the water molecule in 

the R-matrix calculation (where the vector on the molecular plane bisecting the OH angle 
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is placed along 2 and the H-H vector along 9) to that of each monomer in the dimer 

geometry. Since the dimerised monomers are not identical to the isolated one, no rotation 

can transform one into the other exactly, so three vectors were chosen instead of the atom 

positions to identify the orientations. As explained in section 3.2.2, one vector is in the 

direction Ö, pointing towards 0, another lies on the (HOH) plane and is orthogonal 

to the first, and the third is orthogonal to the previous two. The Euler angles obtained for all 

the dimers are listed in table 4.5. 

geom ai ßl yl a2 P2 y2 

EQ 90.0 146.95 270.0 90.0 34.90 180.0 

Z, 52.41 90.0 0.0 232.46 90.0 180.0 

Z2 52.65 90.0 180.0 232.65 90.0 0.0 

S 52.60 90.0 0.0 252.68 39.68 138.72 

L 50.80 90.0 0.0 50.80 90.0 90.0 

Table 4.5: Euler angles for the MS dimer calculations (in degrees). 

In order to test the effect of the small differences in geometry between the MS calculation 

and the values in table 4.2, a heterogeneous calculation was performed on the dimer labelled 

L, for which these differences are largest. Two monomer R-matrix calculations were run using 

the geometry parameters from the dimer, and then rotated; while the second monomer is 

very similar to the standard gas-phase geometry, the first one differs markedly especially for 

the narrower HOH angle. The standard (homogeneous) and heterogeneous cross sections 

are compared in figure 4.6. 

The differences in the cross section are minimal, demonstrating that a 5% variation of 
the bond angles (affecting, for instance, the total dipole moment), does not have a big effect 

on the total elastic cross section. This justifies our decision to treat the other (less distorted) 

dimer geometries as if they were completely homogeneous. 

The effect of changing the energy correction parameter y, which has the effect of shifting 

upwards (when y< 1) or downwards (when y> 1) the energy cutoff values (see section 
3.2.1) was tested. As previously explained, a cutoff must be applied to the number of partial 
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waves included in the cutoff T-matrix Tc of equation (3.25) (while matrix T includes all 

of them). The need for it is explained in terms of the energy necessary to overcome the 

centrifugal barrier, so the number of partial waves to be included in the calculation varies 

with the scattering energy. We call cutoff energies those energies E1,: such that E'c _ IC(4+1) 
yRz 

for integer values of 1c (R being the inter-monomer distance). When the scattering energy E 

equals a cutoff energy E<<, all partial waves up to 1c must be included, while when E=E! c+1 

is reached, the contribution from partial wave lc +1 is added. Instead of calculating a single 

cross section with a variable number of partial waves, we prefer to compute n cross sections, 

each of which uses the same number of partial waves in the whole energy range; these cross 

sections will be referred to as cutoff cross sections, a/,, and labelled according to the highest 

partial wave lc they comprise. Here, the number of cutoff cross sections calculated, n, is 

equal to 'max + 1, where 'max is the highest partial wave available from the R-matrix input 

- typically 4 or 5- (i. e. cross sections co, al... a'max will be computed). Finally, the cross 

section taken as the result of the Multiple Scattering calculation, referred to as the interpolated 

cross section, 61NT is obtained including each cutoff cross section in the relevant energy range. 

Because of the discreteness of l, this procedure would cause discontinuities at the cutoff 
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Figure 4.6: Elastic cross sections for the L dimer geometry, calculated as an heterogeneous and homogeneous 

cluster, using the MS technique. 



68 

N 
0 

cc% 

C 
0 

0 
N 
U) 
W 
U) 
0 
L U 
U 

W 
ß 

W 

C1xaFrtcr 4- Elastic 5catteringfrom WattT cluStr"rS 

500 

400 

300 

200 

100 

II I 
III 
IIº 
III 
III 
IIº 
IIº 
IIº 
I11 
IIº 
II1 
II1 
I11 
IIý 

I ii 
ii 
ii 
ii 

ýi i ri11 
111 
111 
i\1 

I 

1ý ý 
ý 

L\ýý 

v-- 11 

i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 
i 

ýi 
ýi 

i 

I 

ý 
1ý 

0 a 
1 

6 

2 
6 

3 
6 

4 
a 

\`ý'-ý------- 
ýý----- 

I 0' 2 
II 
46 

E /eV 

I 
8 10 

Figure 4.7: MS elastic cross sections for the dimer geometry Z2 for different 'max values (see text). The peaks 

appearing when high partial waves contributions are included are not physical. An interpolation procedure is 

therefore needed. 

energies E""; therefore, a two-point interpolation is carried out. This means that each cutoff 

cross section ß4 starts being taken into account from Elc-1, where it is combined linearly 

with cross section a1 c-1 (its contribution is proportional to the ratio E FE, c 
1, so that it fully 

contributes at E=E; between Eli and E<<+1 it is combined linearly with 64+1. 

Figure 4.7 shows the cutoff cross sections Q<<, lc = 0,... 4, for the dimer geometry Z2; 

high partial wave cross sections (especially 04) show peaks which do not correspond to 

physical resonances and are removed by the interpolation procedure. The parameter y has 

the effect of shifting Eli upwards or downwards; in our calculations on (H20)2, we firstly 

tried y=1.00, which gives the "uncorrected" values of E<<. For 4 dimer geometries out of 5, 

this cross section is in very good agreement with the R-matrix results, as is shown later. In 

one case (dimer geometry Z2), a spurious peak arises: as figure 4.8a shows, the interpolated 

cross section is smooth until E3 is reached; at that point, Q4 starts being included and since 

it shows tall peaks and is ill-behaved below 8 eV (see figure 4.7) it causes a marked peak to 
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Figure 4.8: MS elastic cross sections for the dimer geometry Z2. The interpolation procedure between the 

cross sections in figure 4.7 has been carried out using (a) y=1.0 (no energy correction) and (b) y=0.75. 

appear in 6INT between 6 and 8 eV. This peak is evidently of non-physical character, since 

the cutoff cross sections 6° to Q3 are smooth and flat at that energy; its shape is also quite 

unlikely to be that of a physical resonance. We decided to try a different value for y, setting 

it to 0.75, as done in Bouchiha et al. (2008). Its effect is clear in figure 4.8b: the cutoff energies 
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Figure 4.9: Elastic cross sections for the EQ dimer geometry, calculated with the R-matrix and Multiple 

Scattering methods. Both y=1.00 and 0.75 are used. 

are shifted upwards, so that at E3 (now E3 7.5 eV) the cross section 64 displays only the 

tail of the peak. The interpolated cross section aö 75 is therefore smooth. 

Tests with different values of y are very easy and fast to perform, since the main part of 

the MS calculation (i. e. the generation of the cutoff cross sections) is not affected by it and 

must be run once. The same value of y=0.75 has been used for consistency in all the other 

dimer calculations (EQ, Z1, L and S), where its effect is virtually negligible. 

4.2.4 Results and comparison with R-matrix calculations 

Figure 4.9 shows the comparison between the elastic cross sections obtained with the 

R-matrix and MS methods at the equilibrium geometry (EQ), as functions of the energy. 

The agreement between the two is generally good, especially at higher energies, although 

discrepancies arise at low energy, particularly below 1.5 eV. The two values of y=1.00 and 

0.75 produce almost identical Multiple Scattering cross sections, as it is also observed for 
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most of the other geometries. 

A much better agreement can be observed for the S geometry, as shown in figure 4.10. As 

in the case for the equilibrium geometry, the energy correction parameter has a small effect 

on the MS cross sections, although y=0.75 makes the agreement with the R-matrix cross 

section slightly worse, as it lowers the MS cross section between 1 and 8 eV. A small step is 

visible at -6 eV in the cross section for y=1.00, which is due to the contribution of the a4 

cutoff cross section. 

400 

R-matrix 
Multiple Scattering, y=1.00 
Multiple Scattering, y=0.75 

N 

c0300 
O 

Ü 

W 
U) 

2 200 

IC 

100 

I 
2 

1 
4 

i1i11 
68 10 

E /eV 

Figure 4.10: Elastic cross sections for the S dimer geometry, calculated with the R-matrix and Multiple 

Scattering methods. Both y=1.00 and 0.75 are used. 

In both figures 4.9 and 4.10 the Multiple Scattering cross section is higher than the R- 

matrix one at lower energies; the crossing happens around the energy of 1 eV. It appears 

that the effect of the electron - dimer's dipole moment interaction, though never explicitly 

calculated in the MS programme, is correctly accounted for: the low energy behaviour of 

the R-matrix cross section is reasonably well reproduced. However, when the comparison is 

carried out for the two zero-dipole geometries (figure 4.11), the agreement at low energies is 

much worse: in this case it is evident that the elastic cross section is markedly overestimated 
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Figure 4.11: Elastic cross sections for the (a) Z, and (b) Z2 dimer geometries, calculated with the R-matrix 

and Multiple Scattering methods. Both y=1.00 and 0.75 are used. The Z2 geometry shows a spurious peak 

for y=1.00 that is eliminated by setting y=0.75. 

by the Multiple Scattering method for energies below 1 eV, since it seems to diverge when 

E --> 0. The R-matrix method, on the other hand, correctly predicts the shape of the cross 

section at low energies which would be expected in a collision with a non-polar target. It 

would seem that the electron - dimer's dipole moment interaction is not well represented in 

the MS calculations. 
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Figure 4.12: Elastic cross sections for the L dimer geometry, calculated with the R-matrix and Multiple 

Scattering methods. y=1.00 and 0.75 are used. This is the only case where the MS method underestimates 

the cross section at low energy. 

The re-orientation of the water monomers to the dimer configuration (achieved with 

the rotation of the T-matrices) is the process that should lead to the cancellation of the 

two monomer dipole moments in the Z1 and Z2 geometries. However, this is clearly not 

the case. The failure is evidently due to the approximate nature of the Multiple Scattering 

method, which implicitly constructs the electron - dimer interaction potential from electron - 

monomer potentials; the limitations of the method when it comes to accounting for the 

e- - (H20)2 dipole moment interaction are more obvious the more different the monomer 

and dimer dipole moments are (as the results for the L geometry, displayed in figure 4.12, 

show). 

At energies higher than 1 eV, though, the agreement with the R-matrix results is remark- 

able for all the geometries. 

The comparisons carried out were extremely helpful in starting to understand the limi- 

tations and the validity range of the Multiple Scattering method. If one neglects the energies 

below 1 eV, the Multiple Scattering results are generally in very good agreement with the 
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R-matrix ones, indicating that the method combines correctly the monomer's scattering in- 

formation at energies where the collision is not strongly driven by the dipole moment. Figure 

4.13 shows all the R-matrix (a) and Multiple Scattering (b) cross sections for the dimers stud- 

ied, in the energy interval 1- 10 eV. If one considers that the different dimer geometries 

are characterised by very similar parameters (e. g. the inter-monomer distance) and that the 

difference in the cross sections is virtually only due to the relative orientation of the two 

water molecules, then it becomes evident that the Multiple Scattering is generally able to 

reproduce very well the more accurate R-matrix results. 

Finally, the small difference between the Zl and Z2 cross sections is visible in both figures 

4.13a and 4.13b; the Zl cross section is slightly higher than the Z2 one in the whole 1- 

10 eV energy range in both plots. The two geometries are characterised by the same dipole 

moment and also by very similar orientations and inter-monomer distances, as tables 4.2 

and 4.5 show; the main difference is that Zi is not planar, while Z2 is. The extremely good 

agreement between the R-matrix and Multiple Scattering cross sections indicate that such 

characteristic is well accounted for by the MS method. 

4.2.5 Effect of the dipole moment interaction 

The inability of the Multiple Scattering approach to correctly account for the total dipole 

moment of the cluster has been further analysed. Bouchiha et al. (2008) decided that an extra 

propagation was needed because the agreement between the R-matrix and MS cross sections 

was not as good as expected, and the propagation step improved it. 

The extra propagation involved converting the global T -matrix TG. obtained with the 

standard Multiple Scattering method using equation 3.25, into an R-matrix, using the rela- 
tions: 

KG = -i(2-1 - 7G)-1TG (4.1) 

RG _ý (J - NKG)(I' - N'KG)-', (4.2) 

where k= NT, am is the boundary of the sphere labelled III in figure 3.1, JL, L' _ jl(kammI)bL, L', 
NL, L' _ 11t(karn)ÖL, L', JL, L' = 11( ni)bL, L', NL 

, L' ='lr(kaJn)bL, L', j, and ilr are the spherical Bessel 

functions of the first and second kind, and j! (z) = äz, qi; (z) = dZ 
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Figure 4.13: Elastic cross sections for all the dimer geometries, calculated with (a) the R-matrix and (b) the 

Multiple Scattering methods. 

While the K- and T-matrices do not depend on the radial distance r, the R-matrix does. all, 

in equation (4.2) should be set to a distance at which the interaction is negligible, but it was 

set equal to a (the radius that would be used in an R-matrix calculation for the whole dimer) 

in Bouchiha et al. (2008). The R-matrix RG thus obtained was propagated to an asymptotic 

distance using the standard R-matrix outer region propagation, with the inclusion of the 
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electron - dimer's dipole moment interaction, and then converted back into a T-matrix T', 

from which the cross section was calculated. 
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Figure 4.14: Elastic cross sections for the L dimer geometry, calculated with the R-matrix method and 

the Multiple Scattering method; the latter is run with and without the propagation step as introduced and 

performed by Bouchiha et al. (2008). 

This procedure is highly approximate, since the conversions from and to K- and T- 

matrices can be performed only in the absence of any electron - target interaction; this is 

clearly not the case at r= a111 = adim, where the long range interaction with the target is not 

yet negligible. 

When we tried this procedure, we obtained cross sections whose agreement with the 

R-matrix cross sections was worse than when the propagation was not used. An example 

for geometry L is shown in figure 4.14, while similarly poor comparisons for the other 

geometries were observed. We concluded that the approximate conversion T-R, followed 

by the propagation, did not lead to a better description of the long-range effect of the 

electron - dimer's dipole moment interaction. Hence, we chose not to use it. 

We then tested a different approach: we used the dipole moment of the dimer in the 
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R-matrix outer region calculations for the monomer, to see if this would improve the cross 

sections. We modified the monomers' target properties in the input for the R-matrix outer 

region calculation so that the dipole moment would have the magnitude of that of the cluster 

(but conserving its original orientation). The propagation from a to the distance at which the 

asymptotic expansion is then carried out (when calculating T") and that from a to a, (when 

calculating TT, if a* ac) then includes the interaction with the dipole moment of the cluster; 

when the Multiple Scattering fails in the combination of the individual dipole moments, it 

will however indirectly consider the correct value. 

The results obtained, shown in figure 4.15, display marked discrepancies with the R- 

matrix results, much larger than with the standard approach. For the L geometry, the cross 

section is significantly overestimated, and is more than twice the R-matrix one even at 3 

eV. A similar behaviour is noticeable for the equilibrium geometry EQ, where the standard 

Multiple Scattering calculation still compares better with the R-matrix results. Finally, the 

cross section for the zero-dipole geometry Zl has the correct non-diverging behaviour at low 

energy, but its comparison with the R-matrix results is still not satisfactory between 0 and 

3 eV. The standard MS cross section, despite its diverging behaviour, agrees better down to 

1 eV. Using the dipole moment of the dimer in the calculations for the monomers does not 

seem to be a solution for the dipole moment problem as it does not improve any MS cross 

section. 

We conclude that the Multiple Scattering approach fails at calculating reliable cross 

sections at very low energies, up to approximately 1 eV, but in the remaining energy range 

[1 - 10 eV] is able to produce results that are generally in good agreement with the R-matrix 

ones, with discrepancies of the order of few percent. 

4.2.6 Partial waves convergence 

The total number of partial waves used in a MS calculation depends on the value of 

'max used in the monomer R-matrix calculations, where typically 'max = 4. In order to have 

converged cross sections that can be compared with experiments, one would have to use a 

Born-type approximation to add the contribution of the missing partial waves' >'max (see 
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Figure 4.15: Comparison between the elastic cross sections for the geometries (a) EQ, (b) Z1, (c) L, calculated 

with the R-matrix and Multiple Scattering methods; the MS calculations are run both with the standard 

procedure and using the dimer's dipole moment in the R-matrix monomer's calculations. 
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section 2.5.2). This can be done in an approximate way by adding a quantity to the cross 

sections (the correction is only energy-dependent); if this is done, the contribution would 

be the same to the MS and R-matrix cross sections and therefore the comparisons shown 

and the conclusions drawn so far would not be affected. This type of correction, however, 

has been recently shown to provide cross sections that are not very good at low energies 

(Zhang et al. 2009); a better way of completing the partial wave expansion is to correct the 

T-matrices (Baluja et al. 2007), which could potentially affect the MS and R-matrix cross 

sections differently. 
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Figure 4.16: R-matrix and Multiple Scattering elastic cross sections for the Z2 dimer geometry, where a 

different number of partial waves was included. The contribution of higher partial waves has a similar effect on 

both calculations; therefore it does not improve the comparison. 

In order to assess whether the effect would be different in the MS and R-matrix results, 

we decided to change the number of partial waves Imax in the monomer and dimer R-matrix 

calculations and see how the cross sections change. 

We then performed R-matrix calculations on the monomer and on the dimers including 
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partial waves up to 3 and up to 5. Clearly, the number of cutoff cross sections cr' varies, since 

it depends on 'max: the cutoff cross sections calculated for each MS run are from aO to almax. 

Small differences can be observed between the same cutoff cross sections in calculations 

where Imax is different; they are responsible for the variations observed in the interpolated 

MS cross section, since the cutoff energies El, are not affected by lmax" 

As figure 4.16 shows for the Z2 geometry, the partial wave expansion is not convergent in 

either calculations; however, the effect of adding (or removing) partial waves is very similar 

for the R-matrix and Multiple Scattering results. Therefore the conclusions drawn so far are 

not affected by the number of partial waves included and remain valid. 

4.3 Water trimer 

4.3.1 R-matrix calculation 

The R-matrix calculation on the water trimer raised some issues due to the size of the 

target and its number of electrons. The equilibrium geometry (Nielsen et al. 1999) has no 

symmetry properties which could lighten the computational complexity; moreover, at the 

time the calculations were run, it was not clear whether the R-matrix code could handle 

the C1 symmetry group. Since we did not have any experimental or theoretical results to 

compare ours with, we chose another geometry, corresponding to a relative minimum of the 

potential energy surface. This geometry is labelled ppp in Klopper et al. (1995); the three 

water monomers lie on a plane perpendicular to a C3 axis, so that the point group the cluster 
belongs to is C3h. 1 The UK polyatomic R-matrix code is not implemented to treat the C3 

axis, so the molecule was studied as a Cs. Some parameters for this and the equilibrium 

geometry (labelled uud) are reported in table 4.6; bond lengths are generally larger than those 

of isolated water, and bond angles wider. 

Tests were performed to check whether the generation of natural orbitals could improve 

the calculations. The same basis set used in the dimer calculations was employed; natural 
'The energy of the ppp geometry is only slightly above that of the equilibrium geometry (0.002 Eh, Klopper 

et al. 1995). 
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Figure 4.17: Ball-and-stick models of (H20)3, ppp geometry. 

geometry parameter monomer 1 monomer 2 monomer 3 average 

(H20)3 uud C, 

0-H1 / ao 1.833 [+0.023[ 1.835 [+0.025[ 1.835 [+0.025[ 

O-H2 / ao 1.812 [+0.002] 1.812 [+0.002[ 1.812 [+0.002] 

H OH / deg 105.0 [+0.5[ 104.9 [+0.4] 104.7 [+0.2[ 

R/ ao 5.297 5.284 5.278 5.287 

a/ deg 228.64 346.84 108.81 

ß/ deg 95.12 80.05 87.07 

y/ deg 3.76 358.64 357.12 

O-H, / ao 1.829 1+0.0191 1.829 1+0.0191 1.829 [+0.019] 

O-H2 / ao 1.810 ý-ý 1.810 ý-ý 1.810 ý-ý 

H HO / deg 105.9 [+1.41 105.9 J+1,41 105.9 [+1.4) 

(H20)3 PPP C3h R/ ao 5.287 5.287 5.287 5.287 

a/ deg 222.64 342.64 102.64 

/ deg 90.00 90.00 90.00 

/ deg 0.00 0.00 0.00 

Table 4.6: Geometrical parameters for the two trimer geometries uud (equilibrium) and ppp, taken from 

Klopper et al. (1995). The difference between each parameter in the trimer and in the isolated monomer is 

also shown in square brackets. The set of Euler angles (a, ß, y) is also reported. The inter-monomer distances 

R�, �, are listed under the column of monomer n and are referred to the distance between such monomer and the 

following one. 



82 Chapter 4- Elastic scattering from water clusters 

orbitals were generated with a SDCI model, where the configurational space spanned by 

the single excitations was (1 a'-12 a', 1 a"-3 a")14 (13 a'-58 a', 4 a"-12 a")', while that 

spanned by the double excitations was (1 a'-12 a', 1 a"-3 a")13 (13 a'-43 a', 4 a"-12 a")2; 

more than 100 000 configurations were generated. 

The natural orbitals thus obtained (or the Hartree-Fock molecular orbitals where these 

were employed) were then used in a CASCI calculation - (1 a'-6 a')12 (7 a'-15 a', 1 a"- 

3 a")1S, generating 8 029 configurations in the N-electron calculation and 40 696 in the (N + 1)- 

electron calculation. Such configuration interaction models were chosen after many tests, 

and are a fair compromise between a good description of the system and the computational 

capacity of the machines used. The dipole moment obtained was 0.00 D (as predicted by 

other calculations) and the CI energy -228.2009 2203 Eh. Both a= 14 as and 15 ao were tried 

for the R-matrix radius; the number of continuum orbitals basis functions used is listed in 

table 4.7 for both the a= 14 and 15 ao. 

radius a s-type p-type d-type f-type g-type 

14 ao 14 12 11 86 

15 ao 14 13 11 97 

Table 4.7: Number of GTOs in the basis sets used to construct the continuum orbitals in the water trimer 

calculations. The basis set for a= 15 ao was taken from Bouchiha et al. (2006); that for a= 14 ao was generated 

with programme GTOBAS (Faure et al. 2002). 

Figure 4.18 shows the elastic cross sections for three tests performed (a = 15 ao with both 

natural and HF-SCF molecular orbitals; a= 14 ao with natural orbitals). Firstly, comparing 

the results for the radius a= 15 ao, with HF-SCF molecular orbitals and with natural 

orbitals, it seems that the use of the latter slightly improves the results; this can be concluded 

analysing the eigenphase sums, shown in panel (b): at higher energies the use of NOs 

provides slightly higher eigenphase sums. The difference in the cross sections is however 

very small, amounting to up to 2% at 0.2 eV. As for the R-matrix radius, the results also 

show that a radius of 14 ao is large enough, at least when NOs are employed, since the cross 

sections agree very well at all energies. 
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E/eV 

Figure 4.18: (a) Elastic cross sections and (b) eigenphase sum as functions of the energy, for the water trimer 

from three R-matrix calculations with the parameters indicated in the figure. 

Following these tests, we decided to employ the natural orbitals in the Cl expansion and 

to set the R-matrix radius to 14 ao. 

4.3.2 Multiple Scattering Results 

The Multiple Scattering calculations are similar to those described for the water dimers; 

since the monomers in both ppp and uud trimers are only slightly distorted, the undistorted 

gas-phase monomer geometries were employed in the R-matrix calculations run to provide 

collisional input, as it had been done for all the dimer geometries. We run MS calculations 

both for the ppp and the equilibrium (uud) trimers. The former contains monomers with 

identical parameters, and is completely homogeneous; also, due to the C3 symmetry axis, 

the Euler angles (shown in table 4.6) are easy to find. In the equilibrium geometry the 

monomers differ only slightly. 

The inter-monomer distances used were 5.287 ao for both ppp and uud geometries. In 

the first case, R1,2 = R2,3 = R1,3; in the second case the value 5.287 ao is an average of the 

three inter-monomer distances which however differ by less than 0.4% at most. Since the 
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partial wave cutoff is justified in terms of the wave scattered by a sub-unit and reaching a 

neighbouring one, the relevant parameter in the calculation of the cutoff energies EI, is the 

monomer - monomer distance, and the two average values were then used for this purpose. 

The comparison between the elastic cross sections obtained using the R-matrix and the 

Multiple Scattering methods is shown in figure 4.19 for the ppp trimer; as expected, given the 

results for those dimer geometries with zero dipole moments, the Multiple Scattering cross 

section diverges at low energies even though the target is non-polar. Between 0.5 eV and 

3 eV, the MS method underestimates the cross section. The MS results show a marked dip 

which is not present in the R-matrix cross section; at higher energies the comparison with 

the R-matrix cross section improves. 
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Figure 4.19: Elastic cross sections for the ppp water trimer geometry, produced with the R-matrix (a = 14 

ao, using NOs) and Multiple Scattering methods. 

The Multiple Scattering cross section shown in figure 4.19 is calculated using y=0.75, 

as for the dimer geometries. A study on the effect of this parameter in the present case, 

reported in figure 4.20, shows that the dip observed between 0.5 eV and 5 eV is produced 
by values of y<1, which shift the matching with the u2 contribution to higher energies. On 
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the other hand, values of y>1 include too early the contributions from a3 and U4, causing 

two tall peaks to appear, one centred at 3 eV and the other very broad appearing between 5 

and 8 eV when y=1.25. 
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Figure 4.20: (a) MS cross sections with different numbers of partial waves included, from 0 to 'max, and (b) 

the interpolated cross section for different values of y, showing the appearance of high peaks when y>0.75. 
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Figure 4.21 shows the elastic cross section calculated with the MS method for the Cl 

equilibrium trimer geometry (uud), whose dipole moment is 1.071 D (Gregory et al. 1997). It 

is very similar to that obtained for the ppp geometry, particularly the low energy divergent 

behaviour and the presence of two peaks, which are easily washed out by using y=0.75. 
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Figure 4.21: Multiple scattering elastic cross sections for the uud trimer geometry. 

10 

From the calculations on the water trimer we can draw similar conclusions to those 

we drew for the dimer geometries. We notice an overestimate of the dipole moment (in 

both trimer geometries, the dipole moment is smaller than the monomer one), which is 

particularly evident at low energies, where the cross sections display a divergent behaviour 

even for the non-polar ppp geometry, unlike the corresponding R-matrix results. Once more, 

the choice of y=0.75 provides a way to remove non-physical peaks, which arise at the cutoff 

energies. 
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4.4 Water tetramer and pentamer and extension to (H2O) 

This section reports the Multiple Scattering results for the water tetramer (two geome- 

tries) and pentamer, for which it has not been possible to perform R-matrix calculations. 

The geometry parameters of the two tetramer geometries (H20)4 labelled udud and pppp, 

belonging to the S4 and C4h point groups respectively, have been taken from Schütz et al. 

(1995), while those of the pentamer (H20)5 (in the equilibrium geometry, C1) from Xantheas 

& Dunning (1993). Some relevant parameters are listed in table 4.8. The question arises as 

to which distance should be used to compute the cutoff energies E'c for the pentamer (the 

tetramer's inter-monomer distances are identical for all pairs of sub-units). We decided to 

make use of the average value of the distance between two neighbouring sub-units, as we 

did for the uud trimer. 

4 
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Figure 4.22: Ball-and-stick models of (HZO)5, equilibrium geometry. 

The Multiple Scattering cross sections are shown in figure 4.23. It is evident that the use 

of y=0.75 is necessary to remove a broad unphysical looking peak around 7.5 eV from the 

pppp tetramer cross section. Apart from that, the cross sections for y=0.75 and y=1.0 

are not too dissimilar. The absence of prior results to compare with does not allow much 

discussion on these cross sections. The divergent behaviour below 1 eV characterises all 

the clusters, although both tetramer geometries are non-polar (the dipole moment of the 

pentamer is - 0.9 D, Toledo et al. 2009). 
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geometry symm parameter mon 1 mon 2 mon 3 mon 4 mon 5 average 

0-H, / ao 1.861 1.861 1.861 1.861 1.861 [+0.051[ 

O-H2 / ao 1.824 1.824 1.824 1.824 1.824 [+0.014[ 

HÖH / deg 105.0 105.0 105.0 105.0 105.0 [+0.5[ 

(a) (H, 0)4 udud S4 R/ ao 5.187 5.187 5.187 5.187 5.187 

a/ deg 45.52 135.52 225.52 315.52 

A/ deg 50.75 129.25 50.75 129.25 

y/ deg 139.23 220.77 139.23 220.77 

O-H, / ao 1.850 1.850 1.850 1.850 1.850 1+0.0401 

O-H2 / ao 1.818 1.818 1.818 1.818 1.818 1+0.008] 

ROH / deg 106.3 106.3 106.3 106.3 106.3 [+i. 81 

(a) (H20)4 PPPP CO R/ a0 5.260 5.260 5.260 5.260 5.260 

a/ deg 25.23 115.23 205.23 295.23 

9/ deg 90.00 90.00 90.00 90.00 

y/ deg 180.00 180.00 180.00 180.00 

0-H, / ao 1.783 1.782 1.781 1.872 1.781 1.782 t-o. 0281 

O-H2 / ao 1.803 1.802 1.803 1.802 1.802 1.802 [-o. oo81 

H OH I/ deg 106.00 106.08 106.27 105.99 106.68 106.20 (+1.71 

(b) (H20)5 C, R/ ao 5.436 5.434 5.428 5.446 5.475 5.444 

a/ deg 256.49 334.39 45.58 119.87 172.62 

ß/ deg 117.24 59.98 122.67 52.24 115.19 

y/ deg 214.68 132.62 226.87 130.86 198.69 

Table 4.8: Geometrical parameters of the water tetramers and pen tamer studied. The internal coordinates 

of each monomeric sub-unit (0-H bonds and HOH angle) are listed and compared to those of the isolated 

water. They have been taken from (a) Schütz et al. (1995) and (b) Xantheas & Dunning (1993). The set of 

Euler angles (a, ß, y) used for the re-orientation of the T-matrices are also reported, together with the distance 

between nearest neighbours R; the latter is the distance between the sub-unit under whose column the value is 

listed and the following sub-unit. 

There is a clear tendency of the cross sections for (H2O) to increase as n increases, which 

was to be expected, although there is no direct proportionality between a((H20)�) and n: the 

effect of the orientation and position of the monomers is still very important, as our studies 

on the water dimers also showed. Here, for instance, it is interesting to notice that the 

two (H20)4 geometries are characterised by almost identical parameters (the inter-monomer 
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distances differ by - 1%, both dipole moments are zero); the only geometrical difference is 

that the pppp tetramer is planar, while the udud one is not: the monomers alternately point 

upwards and downwards with respect to the oxygen plane. The effect that this has on the 

size of the cross sections is very marked, confirming once more that the arrangement of the 

sub-units is a critical parameter. 

E/ eV 

Figure 4.23: Elastic cross sections for the udud and pppp tetramer geometries, and for the equilibrium 

pen tamer (Multiple Scattering only). 

Multiple Scattering calculations on larger water clusters can be performed easily once 

their geometry is known, since all the parameters needed to run can be extracted from it. 

The atoms forming the clusters must firstly be associated to the different monomers; then 

the monomers' centres of mass and the inter-monomer distances are calculated. Finally, the 

Euler angles can be computed using the Fortran programme we have written, eulerrot. 

There are two remaining issues; the first is: which value must be used as R for the 

interpolation procedure. This is easily chosen for clusters (H20)2 and (H20). ß, while for 

(H2O), ,, n > 4, it may be an issue, as figure 4.25 illustrates for a generic cluster made up 

by four monomers. In the tetramer and pentamer studies, it was easy to distinguish the 
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geometry point group dipole moment /D 

orig used 

(H20)3 PPP C3h Cs 0.0 (a) 

(H20)3 uud Cl - 1.07 (b) 

(H20)4 udud S4 - 0.0 (a) 

(H20)4 PPPP C4h - 0.0 (a) 

(H20)5 (EQ) Cl - 0.9 (c) 

Table 4.9: Symmetries and dipole moments of the water clusters (H2O),,, n=3,4,5 studied. The 

symmetry used is referred to the point group employed in the R-matrix calculations, hence it is 

available for the ppp water trimer only. The dipole moments are obtained from: (a) symmetry 

considerations; (b) Gregory et al. (1997); (c) Toledo et al. (2009). The R-matrix calculation for the 

ppp trimer confirmed the value of 0.0 D, due to the molecular symmetry. 

distances between closest neighbour sub-units (IR; I in the figure) to those between more 

distant ones (IR; I), as the values are clearly different. Moreover, even for the non-symmetric 

trimer and pentamer, the 1R; 1 distances were very similar, differing by less than 1%; since the 

multiple scattering effect is mostly due to the interference between neighbouring sub-units, 

udud 

ý ý' 

r. 4 

ýýý` 

pppp 

.( .ý 

Figure 4.24: Ball-and-stick models of (H20)4, udud and pppp geometries. 
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Figure 4.25: Schematic representation of the inter-monomer distances in a generic tetramer. The solid circles 

represent the sub-units' positions, and the inter-monomer distances are divided into those between neighbouring 

units Ri and those between distant sub-units R. 

the average R (where = IRI 0) is the number of neighbour-neighbour distances) was an �ý>> 
appropriate value to use in the MS programme. If less regular clusters are studied, though, 

showing quite different R; values, the average R may loose its physical meaning. However, 

it is reasonable to expect that such difference would not be extreme. In the case of water, for 

instance, studies on the structure of large clusters (various geometries of (H20)20, Tokmachev 

et al. 2010) and of the liquid phase (still not fully understood, see e. g. Fu et al. 2009) show 

that it is meaningful to define closest neighbours, since the radial distribution function shows 

in both cases a first marked peak around 5.3 ao (the case of liquid water is more complex, as 

the position of a second peak at 6.4 ao is still not completely clarified). 

The second issue may arise when very large clusters are treated; structures of such 

large aggregates start being available, particularly for water. In this case, it would be 

possible to distinguish between internal sub-units and surface sub-units, experiencing different 

interactions, while in the case of small clusters all the sub-units can be regarded as surface 

ones, since the surface-to-volume ratio is large. In the work on water dimer by Bouchiha 

et al. (2008) it is calculated that the surface-to-volume ratio remains larger than 1 for clusters 

made up by up to - 500 molecules (considering an average monomer-monomer distance 

of 5.5 ao, as in water); when a cluster is made up by a larger number of monomers, they 

suggest to partition the physical space into three regions: an inner region treated as a bulk 
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(as done in the work on ice, where all the T-matrices have a cutoff on the extent of the 

dipole interaction, and a uniform background potential is assumed in the interstitial regions 

between sub-regions, Caron et al. 2007), a narrow intermediate region matching the inside 

of the cluster with the outside, and an outer surface region, where the calculation resembles 

that on small clusters. Future studies on very large clusters may clarify whether this partition 

is appropriate. 

4.5 Summary 

The Multiple Scattering calculations for electron collisions with water clusters for wich 

an R-matrix comparison is possible show a good agreement with R-matrix results in the 

energy range [1 eV - 10 eVJ. The use of the y parameter is essential for some clusters, and a 

value of 0.75 is found to prevent spurious peaks to appear. Its use has however a negligible 

effect on most of them, so that in general y=0.75 seems to be an appropriate choice in all 

cases. The cross sections of clusters for which no comparison is available appear sensible. 

It is reasonable to wonder whether the peak removal is an acceptable procedure or not, 

and what the risks are that physically meaningful peaks could be removed, especially when 

comparisons with other results are not possible. In order to address this problem, we first 

analyse the cases encountered so far where a peak appeared in the interpolated cross section: 

namely, geometries Z2 of (H2O)21 ppp and uud of (H2O)3 and pppp of (H2O)4. We first note 

that no evident characteristics that could justify the peaks distinguish them from the others: 

they are characterised by different dipole moments and symmetries. There does not seem to 

be a particular reason why these geometries should behave differently to the others. In fact, 

all the water clusters display peaks in the cutoff cross sections, particularly those including 

high partial waves; these features usually appear at energies where the corresponding partial 

waves should not contribute to the final cross section, and are therefore cut out during the 

interpolation. When this does not happen, and a peak appears in aINT, it is always sufficient 
to set y=0.75 to avoid the inclusion of the peak. Analysing figures 4.8 and 4.20, it can 
be observed that the peaks always arise at a cutoff energy E1', where a non-peaked cutoff 

cross section a', is combined with a peaked one, alr+I. We also notice that this peak is never 
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wholly included in c1NT: quite conversely, only its tail contributes to the interpolated cross 

section, so that reducing y from 1.0 to 0.75, i. e. slightly shifting the cutoff energies to higher 

values, is sufficient to completely remove the peak. It is this feature that leads us to classify 

the peak as non-physical (together with the help provided comparing with other results 

eventually available): one would expect a physical resonance to appear fully around the 

resonant energy in the cutoff cross section (or cross sections) that mostly contribute to cTNT 

at those energies. 

In the next chapter, results will be shown for a collision process whose cross section is 

known to display peaks associated with shape resonances. This study will allow us to test 

wheter the MS method is able to reproduce such resonances. In addtion, it will help us 

ascertain whether the peaks are affected by the interpolation procedure and changes in y. 
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Chapter 5 

Elastic scattering from formic acid 

monomer and dimer 

Formic acid, HCOOH, is a dipolar molecule that can be found in many different envi- 

ronments, e. g. in the interstellar clouds (Ellder et at. 1980, Irvine et al. 1989), in star forming 

regions (Hollis et al. 2003, Cazaux et al. 2003), and also in biological environments, where it 

plays a role in different biochemical processes and is a building block of several compounds. 

Its gas-phase and dimeric forms have been extensively studied, both experimentally and 

theoretically, particularly because of the important role they have as key compounds in the 

formation of small biomolecules in the interstellar medium, where they seem to provide the 

building blocks of larger molecules of biological significance, especially in the early universe 

(Irvine et al. 1989, Ban et al. 2000). The resonances observed at low energies in various studies 

on electron collisions with the formic acid monomer and dimer have been observed to lead 

to fragmentation; these systems are therefore ideal to analyse dissociation patterns in the 

biological environment, as both of them are prototypes for larger carboxylic acid monomers 

and dimers. 

In this chapter our results obtained for the LEE collision with these systems are presented; 

the monomer has been studied using the R-matrix method (section 5.2), and the dimer with 

the Multiple Scattering one (section 5.3). Section 5.1 reports theoretical and experimental 

results found in the literature, in particular regarding the position and type of resonances 

95 



96 Chapter 5- Elastic scattering from formic acid monomer and dimer 

found at low energies. 

5.1 Review of previous work 

5.1.1 Formic acid monomer 

The majority of the experimental studies on the interaction between low energy electrons 

and the formic acid monomer have focussed on dissociative electron attachment (DEA). 

Different resonances have been found, leading to the production of different ions. Pelc et al. 

(2002) and Pelc et al. (2003) found that the most abundant fragment from the DEA process 

is the HCOO- ion, with a resonance peak at 1.25 eV showing a very sharp onset. They also 

showed that the H loss occurrs from the hydroxyl group O-H, as it was later confirmed by 

calculations (Gianturco & Lucchese 2004). The production of two other fragments, OH" and 

O-, displays peaks at 6.8 eV and E>8.0 eV respectively. Prabhudesai et al. (2005), using 

a different apparatus, found ion signals at 1.4 eV (HCOO-), 7.6 eV and 9.3 eV (OH-/O-). 

They also identified a peak due to the production of H- ion at 7.3 eV, with a shoulder at 9.3 

eV (see tables 5.1 and 5.2). 

Many different experimental and theoretical studies have focussed on the dissociation 

process leading to the production of the HCOO- ion; Peic and co-workers (Pelc et al. 2002, 

Pelc et al. 2003) inferred that the formation of this ion comes from an ionic temporary state 

(HCOOH-)t which later either decays by dissociation to HCOO- or by auto-detachment 

leaving the parent molecule vibrationally excited. They concluded that a series of closely 

spaced overlapping shape resonances was involved in the dissociation process (whereas the 

higher energy ones are core excited resonances). 

This notion was later refuted by Gianturco & Lucchese (2004), who used a purely local 

potential to locate resonant states for the formic acid and found a resonance of A" symmetry 

at 3.48 and 3.49 eV (for the neutral molecule in the cis and trans geometries respectively) with 

0.93 eV width, and a broader one of A' symmetry at 11.98 and 12.06 eV. They concluded that 

the first is a n' resonance (whose density is entirely on HCOO and has nodes on the O-H 

bond) which leads to the dissociation of the molecule through vibrational energy redistri- 
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bution from the carbonyl bond to the dissociative O-H stretching mode; they attribute the 

discrepancy with other results to their use of several approximations both in the interaction 

potential and in the quantum dynamics. 

Research group ET 

Tronc et al. (1987) 1.8 

Aflatooni et al. (2001) 1.73 

Pelc et al. (2003) 

Gianturco & Lucchese (2004) 3.48 

Prabhudesai et al. (2005) 1.4 

Allan (2006) 2.0 

Bettega (2006) 1.9 

Rescigno et al. (2006) 1.9 

Trevisan et al. (2006) 1.9 

Table 5.1: Position and width (in eV) of the TC' resonance in formic acid monomer studies; the determination 

method is specified in the last column. The values for the ground state geometry only are listed in Gianturco & 

Lucchese's (2004) case. 

Research group 

Pelc et al. (2003) { 
Gianturco & Lucchese (2004) 

Prabhudesai et al. (2005) { 

E Ion yield / symmetry 

6.8 OH- 

>8.0 0- 

11.98 A' resonance 

12.06 A' resonance 

7.6 OH-/0- 

9.3 OH-/O- 

7.3 H- 

9.3 H 

Table 5.2: Position (in eV) of the other resonances found in the formic acid monomer studies. The ion observed 

(experiments) or the symmetry of the resonances (theory) are shown in the last column. 

Technique/ method used 

Electron transmission spectroscopy 

0.82 Electron transmission spectroscopy 

-0.5 DEA 

0.93 Calculated elastic cross sections 

DEA 

Elastic and momentum transfer cross sections 

Differential and momentum transfer cross sections 

0.2 Calculated DEA cross sections 

0.2 Calculated momentum transfer cross sections 

1.25 

Rescigno et al. (2006) pointed out two problems in the interpretation given by Gianturco 

& Lucchese (2004), the main being a symmetry issue; they proposed a different dissociation 
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pathway passing through the n" resonance and then proceding to a symmetry breaking, 

coupling this resonance to a a* orbital on the OH bond, leading to the dissociation of the 

bond itself and the production of the HCOO- ion. They found the resonance to be at - 1.9 

eV with a width of ti 0.2 eV. 

Electron transmission spectroscopy experiments (Tronc et al. 1987, Aflatooni et al. 2001) 

found a resonance at 1.8 eV and 1.73 eV respectively (the latter result confirmed by cal- 

culations performed by the same authors) due to the temporary occupation of the first 7t* 

orbital. 

More recently, differential and total elastic cross sections and momentum transfer cross 

sections for the scattering by formic acid have been determined. Allan (2006) presented 

experimental differential cross sections for the elastic scattering, noticing a rr' resonance 

around 2 eV which causes strong vibrational excitation; he also stated that the vibrationally 

inelastic cross section amounts to half of the elastic cross section at that energy. 

A similar conclusion was drawn by Trevisan et al. (2006), who presented calculated 

momentum transfer cross sections showing a very sharp rt' resonance near 1.9 eV; the 

comparison with the experimental results of Vizcaino et al. (2006) showed that the resonance 

has a relatively small branching ratio to the vibrationally elastic channel, coupling more 

strongly to the vibrationally excited and dissociative attachment channels. The calculated 

differential and momentum transfer cross sections of Bettega (2006) confirm the presence of 

a n' shape resonance of A" symmetry at - 1.9 eV. The agreement between the differential 

cross section for the elastic electron scattering measured by Vizcaino et al. (2006) and those 

calculated by Trevisan et al. (2006) and Gianturco & Lucchese (2006) is generally good. 

Very recently, Gallup et al. (2009a) questioned the reaction pathway proposed by Rescigno 

et al. (2006), leading to dissociation of the O-H bond; employing a one-dimensional model, 

where the dissociation is assumed to occur along the O-H bond coordinate only, they 

suggested that a short-lived a' resonance, with the additional electron located on the OH 

bond, is responsible for the break up. The effect of such resonance would not be visible 

in total electron scattering cross sections but it is in DEA cross sections. Debate followed 

(Rescigno et al. 2009, Gallup et al. 2009b) and is likely to continue. 



Section 5.1 - Review of previous work 99 

Table 5.1 summarises the energies at which the various authors mentioned above find 

the 7r* resonance. The theoretical results of Gianturco & Lucchese (2004) find this reso- 

nance at higher energy than the other groups; this is due to an underestimate of the target 

polarisability. 

5.1.2 Clustered formic acid 

In recent years, numerous studies on aggregates of formic acid have been carried out, 

particularly because their behaviour, under some conditions, resembles that of aggregates 

of larger molecules, among which are biologically relevant ones. 

In particular, dimers of carboxylic acids, (RCOOH)2 are characterised by two hydro- 

gen bonds forming an eight-membered ring (Madeja & Havenith 2002, Chocholousova 

et al. 2002); this conformation is responsible for reaction pathways which are absent in the 

monomers. This suggests that the formic acid dimer (and, more generally, its clusters) can 

serve as a simple model system to study the effect of hydrogen bridges, particularly towards 

electron attack. 

It has been observed that in dimer anions of carboxylic acids (including formic acid) and 

nucleic acid bases a proton is transferred from the acid to the base in their most stable struc- 

tures, reached by a barrier-free proton transfer (D4bkowska, Rak, Gutowski, Nilles, Stokes & 

Bowen 2004, D4bkowska, Rak, Gutowski, Nilles, Stokes, Radisic & Bowen 2004). The theoret- 

ical study of dissociative electron attachment by Gianturco et al. (2005) also showed that the 

formic acid dimer behaves quite differently from the monomer: the formation of HCOOH-, 

HCOO-, (HCOOH)2 and [(HCOOH) (HCOO)]- was predicted by their calculations in the 

Fixed Nuclei approximation (considering the dimer equilibrium geometry) and using an 

adiabatic potential model. They found several main resonances at low energies, which they 

linked to possible dissociation pathways leading to (HCOOH)2 and [(HCOOH) (H0OO)] 

at 2.87 eV (resonance of A� symmetry), HCOOH- and HCOO-, both at 3.68 eV (Bg); they 

also found a resonance at 9.92 eV interpreted as a precursor state to the fragmentation into 

(HCOOH) (HCOO) and H-, in agreement with the resonance at 9 eV detected by Sedlacko 
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et al. (2005) for HCOOH film. Further resonances at higher energies were correlated to the 

observed production of smaller fragments, such as CO2 and 0-. Information complemen- 

tary to that given by DEA was given by Allan's (2007) measurements of the cross section 

for vibrational excitation and elastic scattering. The A" shape resonance observed for the 

monomer at 1.9 eV (resulting from a temporary occupation of a rr` orbital) is split into two 

Au and Bg resonances in the dimer, appearing at 1.40 and 1.96 eV respectively. Allan (2007) 

also showed that the formic acid dimer, unlike the monomer, is subject to a reaction follow- 

ing the vertical electron attachment, proceeding to a lowering of the symmetry and a rapid 

proton transfer (also confirmed by calculations of Bachorz et al. 2005). The mechanism is 

a source of slow electrons and is analogous to an electron-driven proton transfer process 

observed in proteins and other biomolecules by Sobolewski and co-workers (Sobolewski & 

Domcke 2006, Sobolewski et al. 2002). 

Larger aggregates were also studied: DEA experiments performed by Martin et al. (2005) 

on formic acid clusters showed that, while the most common fragment from gas phase formic 

acid at low electron energies is HCOO-, electron attachment to clusters is strongly enhanced 

and leads to non-dissociated ions (HCOOH)n (n 11 in their work) as well as dissociated 

anionic complexes (HCOOH)n (HCOO) -. The most abundant non-dissociated products 

are (HCOOH) 2 and (HCOOH) (HCOO) -; the first is the product of electron attachment 

to a cluster (because this reaction is never observed in the monomer), while the second 

can be a product from either a monomer or a cluster. Also, various other dissociation 

reactions are open for clusters, including the formation of (H2O) (HCOO-), which the 

authors attributed to a reaction initiated in the cyclic hydrogen bonded dimer. Sedlacko et al. 
(2005) performed electron stimulated desorption experiments on formic acid film deposited 

on a substrate, that also showed that the main dissociation reaction observed in the gas 

phase (HCOOH + e- -)(HCOOH -) t> HCOO- + H) at - 1.25 eV is no longer observed 

in the condensed phase (it may still be operative but HCOO- would remain on the surface). 
Conversely, formation of H- from the condensed phase HCOOH was observed from the 

reaction HCOOH + e- -' (HCOOH -) t-i HCOOH *+ H-, via a core excited resonance 

appearing around 9 eV. Moreover, the experiments on the clusters detected the H000H- 
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ion which was not present in the electron attachment to gas phase formic acid experiments. 
The resonances observed for the formic acid aggregates are summarised in table 5.3. 

Research group target E Ion yield / symmetry 

Martinet al. (2005) clusters -1.0 dissociation into H2O (HCOOH)- and HCO 

Sedlacko et al. (2005) film 9.0 formation of H- 

2.87 A� resonance; [(HCOOH)2]-, [(HCOOH) (H000)]- 

3.68 BR resonance; HCOOH-, HCOO 

9.92 Ag resonance; formation of H- 
Gianturco et al. (2005) dimer 

11.71 B� resonance; 

13.99 B� resonance; C02,0-, others 

14.05 AR resonance; 

1.40 A� shape resonance 
Allan (2007) dimer 

1.96 B. shape resonance 

Table 5.3: Position (in eV) of the resonances observed or calculated for the formic acid aggregates. The kind 

of aggregate, the type of resonance and the products are also reported. 

5.2 R-matrix calculations for the formic acid monomer 

The formic acid monomer may be found in the cis or trans configurations, depending on 

the orientation of the O-H bond; the trans configuration is the most stable, and its trans- 

trans dimers are also more stable than the trans-cis and cis-cis ones (Hocking 1976); all the 

dimers are stabilised by the formation of two hydrogen bonds. For this reason the monomer 

R-matrix calculation was performed for the trans geometry. The geometry parameters have 

been taken from the NIST Computational Chemistry Comparison and Benchmark DataBase 

(2010) (obtained from a calculation using MP2 method and cc-pVTZ basis set); the formic 

acid is a planar molecule belonging to the Cs point group, which consists of two irreducible 

representations, A' and A"; symmetry properties were used in our R-matrix calculations to 

lighten the computation process. 

Unlike the calculations for the water monomer, for which previous studies were available, 

the low energy electron collision process with formic acid had not been treated before with 
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Figure 5.1: Ball-and-stick model of trans-HCOOH. 

the R-matrix method. The tests performed to choose the correct parameters for the target 

calculations (basis set, choice of HF-SCF molecular or natural orbitals, number of states to 

include), for the scattering calculations (R-matrix radius, continuum functions basis set) and 

for the Multiple Scattering input (choice of ac in the dimer calculation) are described below. 

Since the main object of this study was to verify that the Multiple Scattering method 

is able to reproduce shape resonances, we did not attempt to perform the best R-matrix 

calculation possible, but one that would reproduce the monomer resonance and provide a 

reasonable MS input. 

5.2.1 Molecular orbital basis set 

Three basis sets have been tried: (1) one similar to that employed in the water calculation 

(referred to as Dunning), which included the triple-zeta basis of Dunning (1971) (for H) and 

double-zeta of Dunning (1970) (for 0 and C), augmented with diffuse s and p functions; (2) a 

6-31G basis (Hehre et al. 1972) and (3) a 6-31G" basis (Hariharan & Pople 1973). The number 

of functions for each set is listed in table 5.4. 

The basis set labelled Dunning and the 6-31G" basis set include diffuse functions which 

do not cause problems in the water case; since the formic acid is a larger molecule than water, 
however, they may require a large R-matrix radius a; for this reason a less diffuse basis set 

(6-31G) was also tested. 

The CASCI model used includes 6 frozen electrons and 18 active electrons distributed 

among 12 orbitals (la'-3a')6 (4a'-12a', 1a"-3a")18, generating a total of 38 896 configura- 
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basis set atom s-type p-type d-type 

H2 

6-31G C32 

032 

6-31G** 

Dunning 

{ 
{ 

H21 

C321 

321 0 

H42 

C521 

0631 

Table 5.4: Number of atomic orbitals included in the basis sets used for the formic acid monomer calculations. 

tions in the target calculation and 82 175 in the (N + 1) calculation. Our attempts to enlarge 

further the active space (including 13 orbitals instead of 12) resulted in a very memory 

demanding N+1 calculation, which was in practice unfeasible. The target energies, at 

Hartree-Fock and Cl levels, together with the dipole moment obtained from the Cl calcula- 

tion, are reported in table 5.5, where they are compared with accurate values. The largest 

basis set, Dunning, provides the lowest energy, although the differences with the other calcu- 

lations are almost negligible; the comparison with an accurate energy value (-189.845118 Eh, 

B3LYP, aug-cc-pVTZ basis set; NIST Computational Chemistry Comparison and Benchmark 

DataBase 2010) is not very good, since all our energies are at least 1 Eh higher; this may be 

partly due to the use of different geometries. The 6-31G** basis set provides a dipole moment 

in agreement with the experimental one (1.41 Debye; Lide 1998), while the other calculations 

over- and underestimate it (Dunning and 6-31G respectively). 

Figure 5.2 shows the electron - HCOOH elastic cross sections from R-matrix calculations, 

carried out using the three basis sets, with R-matrix radii a= 10 ao (when Dunning and 6- 

31G"* basis sets are employed) and a=8 ao (for the 6-31G one), HF-SCF orbitals and including 

the first 5 states. All cross sections display a resonance of A" symmetry (better analysed 

later), whose position, shape and width are strongly influenced by the choice of basis set; the 
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basis set HF energy / Eh Cl energy / Eh dipole moment / Debye 

Dunning -188.818 959 -188.836 621 +1.008 [+0.53%) 1.52 +0.11 [+7.8%) 

6-31G** -188.767 457 -188.800 967 +1.044 [+0.55%] 1.41 - [-) 

6-31G -188.662 410 -188.702 743 +1.142 [+0.60°x°] 1.21 -0.20 [-14.2%] 

accurate values -189.845 118 (a) 1.41 (b) 

Table 5.5: Hartree-Fock and CI energy and dipole moment for HCOOH, calculated using three different 

atomic orbital basis sets. The absolute and relative differences with an accurate energy value (a) from NIST 

Computational Chemistry Comparison and Benchmark DataBase (2010) (B3LYP, aug-cc-pVTZ basis set) and 

with the experimental dipole moment (b) by Lide (1998) are shown. 

A' component, conversely, is minimally affected by it and displays a regular behaviour in 

all three cases, showing a dip at 0.2 eV. The larger basis sets, Dunning and 6-31G**, provide 

results that agree quite well on the position and shape of the resonance, displayed at about 

3.3 eV, although the Dunning peak is slightly wider. The differences with the results obtained 

employing the 6-31G basis set are more evident, as in the latter calculations the resonance 

appears at a much lower energy (centred at about 2.6 eV) and its width is smaller. This 

calculation is therefore in better agreement with the experimental results, which report the 

resonance at around 2 eV, and the 6-31G basis set seems to be the most appropriate one 

in this respect, although it provides the highest Cl energy and underestimates the dipole 

moment by 14%. For this reason, we were unable to decide which basis set performed best, 

and we continued employing all three, both for producing monomer cross sections and for 

providing the input T-matrices needed in the Multiple Scattering approach. 

From a computational perspective, the requirements of the 6-31G** basis set calculations 

are very similar to those of the Dunning basis set, while the calculations employing the 

smaller 6-31G basis set are faster and less demanding, due to the smaller number of orbitals 

involved. 
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E /eV 

Figure 5.2: Elastic electron - HCOOH cross section, calculated using different basis sets, with a= 10 ao 

(6-31G" and Dunning) and a=8 ao (6-31G). Five states are included in the close-coupling expansion. 

5.2.2 Number of states in the close-coupling expansion and choice of molecular 

orbitals 

In the energy range where we focused our attention, [0 - 10 eV], five target states are 

open, as table 5.6 shows; we decided to include all of them (the first two 'A' states, and the 

first 'A", 3A' and 3A" states) in the scattering calculation, in order to avoid spurious peaks 

(pseudoresonances), that appear when target states associated with channels that are open 

in the energy range considered are not included in the close coupling expansion (Tennyson 

2010). Table 5.6 also reports the vertical excitation energies calculated by Gruber-Stadler & 

Muhlhauser (2006) (MRD-CI model, cc-pVDZ+SPDbasis set) and Lourderaj & Sathyamurthy 

(2006) (MRCI model, 6-311++G(p, d) basis set); their energies are lower than ours and hence 

closer to those we calculated using the smaller 6-31G basis set; the discrepancies are more 

marked the higher the state, and particularly evident for the 2'A' state. 

The number of states included in the close-coupling expansion does not influence the 

energy of the ground state; however it has effects on some target properties. For instance, it 
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state symm present results reference values 

Dunning 6-31G** 6-31G (a) (b) 

'A' ----- 
3A" 6.493 6.218 5.756 5.62 5.64 

1A" 6.791 6.476 6.005 5.88 5.97 

3A' 7.388 7.033 6.614 6.50 6.71 

'A' 9.453 9.796 9.490 7.80 7.57 

Table 5.6: List of the five lowest states of HCOOH in our calculations. The energy differences with respect to 

the ground state are reported in eV Reference values are also indicated, taken from: (a) MRD-CI calculations 

(cc-pVDZ+SPD basis set) by Gruber-Stadler & Muhlhauser (2006); (b) MRCI calculations (6-311 ++G(d, p) 

basis set) by Lourderaj & Sathyamurthy (2006). 

improves the description of the polarisability (discussed later), which is calculated as a sum 

over states. The polarisability may greatly affect the description of the scattering process, and 

its effects are particularly evident when resonances are found; the position of the resonance 

may vary considerably, depending on the value of the polarisability. This effect can be seen 

in figure 5.3, where the elastic cross sections from R-matrix calculations including 1 and 5 

states are shown (6-31G** basis set employed): the 2A' component of the cross section is not 

heavily influenced by the inclusion of a different number of states, while the 2A" component 

is, and particularly the resonant peak, which is characterised by a different position and 

width in each case. The inclusion of a large number of states is therefore to be preferred; 

however, the requirements of the calculations increase proportionally, especially those for 

the scattering process, and a compromise must be sought. 

A more accurate analysis on the effect that the number of states has on the polarisability 

is carried out later, when attempts are made to improve its representation. 

As for the choice of molecular orbitals, we performed tests where HF-SCF and natu- 

ral orbitals were employed; the latter were generated from the ground state wavefunc- 

tion using a SDCI model, that included 19 orbitals available for single and double excita- 

tions: [(1a'-l0a', la", 2a")23 (11a'-25a', 3a"-6a")1] (singles), [(1a'-10a', la", 2a")22 (11a'- 
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Figure 5.3: Elastic cross sections for the R-matrix calculations performed using the same basis set (6-31G") 

and R-matrix radius (a = 10 ao), but different number of states; HF-SCF orbitals were employed. 

25a', 3a"-6a")2] (doubles). The natural orbitals were then used in a CASCI calculation as 

described above. When natural orbitals are employed, the CI energy is slightly lower (less 

than 0.05%) than that obtained with HF-SCF molecular orbitals. Negligible differences are 

also observed in the values of the dipole moment. We therefore deemed it an unnecessary 

step to generate and use natural orbitals; HF-SCF molecular orbitals are hence employed 

throughout the rest of the chapter. 

5.2.3 R-matrix radius 

In this section the tests carried out to identify the most appropriate R-matrix radius a are 

presented; since the value of a depends on the spatial extent of the target electronic functions, 

separate tests needed to be performed for each choice of basis set. As previously done for 

the water monomer, we carried out calculations at increasing values of a until convergence 

was reached. ' 

'Strictly speaking, it is not correct to call it "convergence", since the results at different radii depend also on 

other parameters, such as the number of functions in the continuum basis set and its ability to correctly describe 

the scattering electron in the inner region. 
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Figure 5.4: R-matrix elastic cross sections for the electron collision with formic acid, calculated with the 

6-31G" basis set and the R-matrix radii indicated in the figure. 

The cross sections shown in figure 5.4 correspond to R-matrix calculations performed 

using the 6-31G"" basis set, with three different values of a. The 2A" contribution (the most 

influenced in previous tests presented) is here very stable (because the target properties are 

unchanged): the position and shape of the resonant feature at 3.3 eV are unperturbed. The 

non-resonant 2A' component is more affected by the choice of a, especially when a changes 

from 7 to 8 ao; this probably means that a=7 a0 is too small a radius for the basis set 

chosen and does not prevent the target electronic density leaking outside the inner region. 

The difference between the cross sections calculated with a=8 and 10 a0 are only slightly 

different; therefore we decided to use the largest radius in future calculations with the 6-31G"" 

basis set. 

Similar tests were performed with the other basis sets. When the more diffuse Dunning 

basis set was employed, it was not possible to perform R-matrix calculations with radii a=7 

and 8 ao, due to the leaking of the target electron density outside the inner region sphere. 

As explained in the previous chapter, an approximate test is automatically performed by the 

total 
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UK R-matrix code, which calculates the amplitude of each molecular orbital (for simplicity 

centred at the molecular centre of mass) at the boundary. When such amplitude is larger 

than a threshold value (typically 10-3), the R-matrix radius is considered not adequate for 

the spatial extent of the target electronic density, and the use of a larger one is required. The 

amplitudes calculated when the radius was set to 7 and 8 ao exceeded the threshold and the 

calculations were not continued; from further tests employing larger radii, it appears that 

for this basis set satisfactory convergence is achieved between 10 and 14 ao, and a= 10 ao is 

appropriate. 

Finally, the compact 6-31G basis set allows the use of much smaller R-matrix radii; the 

tests carried out, whose results are not shown here, show that a radius of 8 ao is adequate 

for this basis set. 

5.2.4 Choice of a, 

When R-matrix results are used as input in Multiple Scattering calculations, the radial 

distance ac, after which the dipole moment interaction is cut off, must be chosen, in order to 

correctly build the cutoff T -matrices Tc. Analogous tests carried out for water showed that, 

although cutting off the dipole moment interaction at ac has a marked effect on the resulting 

monomer cross sections, it has a less noticeable one on the Multiple Scattering results. 

The tests carried out for HCOOH are characterised by a different behaviour, which is 

quite unexpected, as figure 5.5 shows. The figure presents the elastic cross sections obtained 

from R-matrix calculations with the 6-31G** basis set, where a= 10 ao and ac varies over a 

rather large range (from 6 ao to 50 ao, including a cross section with no dipole cutoff, ideally 

corresponding to ac _ co). Similar tests using the two other basis sets, 6-31G and Dunning, 

are not shown here; they provide similar results to those reported in figure 5.5 and identical 

conclusions can be drawn in all cases. As mentioned in section 2.4, the cutoff T-matrices 

are calculated propagating the R-matrix to the corresponding radius ac, and then matching 

with Bessel functions, so that the long range interactions are included up to a, Conversely, 

the standard procedure, which is used to calculate the untrimmed T-matrices, includes a 

propagation up to a large enough distance (typically 50 or 100 ao), followed by the Gailitis 
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Figure 5.5: Elastic cross section for the electron - HCOOH scattering, calculated using the 6-31G" basis set 

and a= 10 ao; the calculations were performed setting different values for a, as indicated in the figure. 

expansion. 

The unexpected result is that in the formic acid case, unlike what it had been concluded 

from the tests on water, the cross sections calculated with different a, values are remarkably 

similar. The cross section calculated setting ac = 50 ao differs the most from the others, 

displaying a slightly dipole-driven behaviour at very low energies, below 1 eV, where minor 

discrepancies may be also noted between the other cutoff cross sections. However, at energies 

over 1 eV, all cross sections look very similar, and above 3 eV the differences are in practice 

negligible. The effect of the inclusion of the dipole moment was also more evident at lower 

energies in the water case, but the discrepancies were relatively large in the whole energy 

range studied, and much more marked than here. We expected to observe a similar effect 
for HCOOH, since its dipole moment is not too different to that of water (1.41 D- Lide 

(1998) - and 1.855 D- Dyke & Muenter (1973) - respectively). On one hand, it should be 

pointed out that the propagation from a to ac is an approximate way to remove or add the 

dipole interaction, especially for small scattering electron - target distances. However, the 

same approximate procedure had evident effects on the water cross sections. These results 
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seem to indicate that for the formic acid the inclusion of the dipole moment in the range [ac 

- oo) is not as significant as it was for water, except at very low energies. 

As it is expected, the effect of ac is even less marked in the Multiple Scattering calculations. 

The MS cross sections calculated with ac spanning from 6 ao to 0o differ at most by 0.1 % in the 

[1 - 10 eV] energy range. The parameter a, seems therefore to have very little effect and we 

chose to set it to a, the R-matrix boundary radius, in all our Multiple Scattering calculations. 

5.2.5 Results and comparison 

Following the tests just described, the R-matrix calculations for HCOOH are performed 

as described below: 

- basis set: all three basis sets (Dunning, 6-31G" and 6-31G); 

- max number of partial waves: lmax = 4; 

- molecular orbitals: HF-SCF; 

- CAS model: CASCI, (la'-3a')6, (4a'-12a', 1a"-3a")18; 

- number of states in the close-coupling expansion: 5 (11A', 21A', 13 A', 11A", 13 A"); 

- R-matrix radius: a= 10 ao (Dunning and 6-31G"), a=8 ao (6-31G); 

- cutoff radius: a, =a [for MS cutoff input]. 

Figure 5.6 shows the elastic cross sections for the e- - HCOOH collision process. All 

our cross sections display a marked resonance of A" symmetry, centred at 3.4 eV (Dunning), 

3.3 eV (6-31G**) and 2.4 eV (6-31G). The symmetry of the resonance is in agreement with the 

calculations and experiments described in section 5.1, reporting a shape resonance associated 

with a transient negative ion, with the extra electron occupying a Tr* orbital. 

Analysing the position of the resonance, we can notice that most experimental and theoreti- 

cal works find it at lower energies than in our results; in the figure, the experimental resonant 

energies of Allan (2006) and the theoretical ones of Bettega (2006), Rescigno et al. (2006) and 

Trevisan et al. (2006) are indicated by arrows; comparing with the other results listed in 
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Figure 5.6: Elastic cross section for the e- - HCOOH collision, calculated with the R-matrix method as 

described above, employing different atomic orbital basis sets and R-matrix radii (a = 10 as with 6-31G" and 

Dunning, a=8 ao with 6-31G). These are the same results shown in figure 5.2. Comparison with earlier 

theoretical results of Gianturco et al. (2005) and experimental data from Kimura et al. (2000) is provided. 

Arrows indicate the position of the shape resonance as found by (a) Bettega (2006), Rescigno et al. (2006), 

Trevisan et al. (2006); (b) Allan (2006). 

table 5.1, and with the experimental cross section of Kimura et al. (2000), 2 it can be noticed 

that, with the exception of Gianturco & Lucchese (2004), the resonance is found at E<2 eV. 

In this respect, the use of the more compact basis set 6-31G, displaying a peak at 2.4 eV, 

provides better results than the larger basis sets, even though the former one underestimates 

the dipole moment by 14 % and is characterised by higher HF and CI ground state energies. 

Still analysing the position of the resonances, our cross sections employing larger basis 

sets are in very good agreement with those of Gianturco & Lucchese (2004): the resonant 

energies are very close, and also the width of the peaks are comparable. However, Gianturco 

& Lucchese (2004) were more interested in reproducing the resonant features, analysing 

the corresponding electron distributions, than in producing realistic elastic cross sections; 

2Since the typical resolution in electron scattering experiments is of the order of 0.5 eV, much larger than the 

rotational spacings, the experimental elastic cross sections also include rotationally inelastic contributions. 
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their calculations greatly underestimate the polarisation effects, focussing mostly on the 

short range interactions. This can explain why our cross sections display the resonances at 

higher energies than most of the other experimental and theoretical studies: the values of the 

mean polarisabilities we obtain, reported in table 5.7, are at least two orders of magnitude 

lower than the experimental one (22.40 aä, NIST Computational Chemistry Comparison 

and Benchmark DataBase 2010). It is however unclear why the 6-31G basis set, providing 

a polarisability not better than those calculated with the other basis sets, produces cross 

sections which are in better agreement with the experiments. 

basis set ä/ aö 

Dunning 0.201 

6-31G* 0.045 

6-31G 0.061 

Table 5.7: Mean target polarisability, calculated using the three basis sets and including 5 states. The 

experimental value is 22.40aä (NIST Computational Chemistry Comparison and Benchmark DataBase 2010). 

Before addressing the problem of the representation of the polarisability, it is worth 

noticing that, in absolute values, our cross sections are lower than those of Kimura et al. 

(2000) and Gianturco & Lucchese (2004) and the shapes also are fairly different, particularly 

below 3 eV. At low energies, our cross sections are quite flat down to - 0.5 eV, where 

they show a shallow dip and a sharp rise at very low energies. The dip is more marked 

when the 6-31G basis set is used, and it is due to the A' contribution to the total cross 

sections. Both cross sections of Kimura et al. (2000) and Gianturco & Lucchese (2004) are 

characterised by a constant increase as energy decreases, from approximately 4 and 5 eV 

respectively. Such discrepancy is likely to be due to the contributions from higher partial 

waves; in all our calculations, Imax = 4, while Gianturco & Lucchese (2004) include partial 

waves up to Imax = 16. The UK R-matrix suite does not allow to include partial waves 

higher than 5, but the contributions from higher ones can be included with a Born-type 

approximation (section 2.5.2). However, since our primary interest in this chapter is more 

to analyse the results provided by the Multiple Scattering method when applied to a system 
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displaying shape resonances, than to reproduce reliable cross sections that can be compared 

with experimental results, we decided not to make use of the Born-type approximation. 

Representation of the polarisability 

In the UK R-matrix suite, the polarisability is calculated as a sum over states: 

av, w = 2E (01 yv in) (ni yw 10) 
1 (5.1) 

F... -F.,, n>O 
-11 -V 

where v and w are cartesian components x, y, z, 10) is the state for which the polarisability 

is calculated (the ground state, in our case), In) are electronic states included in the close- 

coupling expansion and y,, u, the dipole operators. The way the polarisability is calculated 

in equation (5.1) implies that the more states are added in the close-coupling expansion, the 

more accurate the result. The failure to obtain reasonable values for the mean polarisability 

= tr(a) is partly due to the inclusion of a too few states (5, in all our calculations); we 

therefore studied how ä varies as a larger number of states is added. We expect that adding 

more states in the close coupling expansion will improve the description of the polarisability, 

but it is also known that the latter does not converge if Pseudo-Continuum Orbitals (PCOs) 

are not used (Gorfinkiel & Tennyson 2004). We therefore performed further calculations 

including PCOs; before describing these, we will analyse the results obtained without them, 

where the three basis sets employed so far were used in the CASCI model described above. 

Figure 5.7 shows the values of the mean polarisability as functions of the number of 

states included in the close-coupling expansion. The results from calculations without PCOs 

clearly show that ä rises sharply when more states are added. Convergence is achieved, in 

all cases, when -100 states are included: the values of the polarisability obtained employing 

the 6-31G and 6-31G* basis sets are very similar, converging to -5.5 ao, while the Dunning 

basis set (which fared best when 5 states only were included) converges at -4 ao; this is also 

somewhat surprising because the 6-31G** and Dunning basis sets are quite similar and the 

results obtained with them were always comparable. In general, however, all the basis sets 

fare very poorly, since they converge to less than a quarter of the experimental polarisability 

(22.04 a3, NIST Computational Chemistry Comparison and Benchmark DataBase 2010). 
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In the attempt of improving the description of the polarisability, we introduced a set of 

pseudo-continuum orbitals (PCOs); the calculations were performed following the proce- 

dure first outlined by Gorfinkiel & Tennyson (2005): an extra basis set is added, centred 

on the centre of mass of the target, in order to represent states which cannot be described 

using only a basis set centred on the atomic nuclei. The use of PCOs has been found to im- 

prove greatly the description of the polarisability, in studies where smaller molecules than 

HCOOH were studied. The PCO basis set is constituted by even tempered GTOs (Schmidt 

& Ruedenberg 1979) where the exponents a; are obtained as: 

a; = aoßt-i, i=1,2,... L. (5.2) 

We started trying a PCO basis set (henceforth referred to as PCO1), built with a0 = 0.14 and 

ß=1.3; the configurations were built "at Hartree Fock level", i. e. using only occupied MOs, 

plus the PCOs - (G. S. )N + (G. S. )N-1(PCO)1. This model, much simpler than a CAS one, and 

generating a smaller number of configurations, has been found by Jones & Tennyson (2010) 
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Figure 5.7: Mean polarisability calculated with different models and basis sets, as a function of the number 

of states in the close-coupling expansion. 
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to provide higher polarisabilities than corresponding CAS models, because the latter include 

correlation, which reduces the polarisability. The addition of PCOs, and the use of a Hartree 

Fock model, is then the best possible situation if one wants to increase the polarisability. 

Figure 5.7 shows the results obtained for ä when PCO1 basis set is used; these are rather 

disappointing. Firstly, we notice that the convergence of the polarisability is much slower: 

the polarisability calculated without PCOs converged when -100 states were included in the 

close coupling expansion; if PCOs are introduced, ä is convergent at around 500 states. This 

is, in general, a great disadvantage: while target calculations can be performed in few hours 

even if hundreds of states are included, scattering calculations of equivalent accuracy would 

be in practice unfeasible. Secondly, and most importantly, the inclusion of the PCO basis 

set does not seem to improve at all the description of the polarisability: for all the MO basis 

sets shown, Ti converges to approximately 5.5 aö, which is again well below the experimental 

value. There are no major differences between the results obtained with different MO basis 

sets, although the 6-31G one provides lower polarisabilities than the others. The PCO basis 

improves the description of the polarisability for the Dunning basis set only, which converged 

to -4 aä when PCOs were not used, and now converges to -5.5 aö. In the other two cases, 

no improvement is visible. 

Given these results, we wondered whether the unsatisfactory representation of ä could 

be due to a limitation of the target MO basis sets chosen; since the Dunning basis set fared 

relatively better than the others when PCOs were employed, showing a fair improvement 

(-+37%), we performed two calculations with a similar, somewhat larger, basis set (the aug- 

cc-pVTZ of Dunning 1971), which comprises 5 s-, 4 p-, 3 d- and 2f-type GTOs for 0 and C, 

and 4 s-, 3 p- and 2 d-type GTOs for H (we will be referring to this as to Dunning (TZ). We also 

tried a different PCO basis set (PCO2), built with ao = 0.07 and ß=1.2, which characterised 

by more diffuse functions than PCO1 . The configurations included were again at Hartree 

Fock level. The new Dunning (TZ) basis set was only used in PCO calculations, so no CAS 

model without PCOs was tried. 

A summary of the models is in table 5.8, while figure 5.8 shows the polarisabilities 

obtained with both Dunning and Dunning (TZ) MO basis sets, with both PCO basis sets. 
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name PCO basis set 

ao ßN 

model 

no PCOs --0 (CORE)", (CAS)"a (la'-3a')6 (4a'-12a', la"-3a")18 

(G. S. )N (la'-l0a', la"-2a")24 
PCO1 0.14 1.3 64 

(G. S. )N-1 (PCO)1 (la'-10a' la"-2a")23 (13a'-53a' 4a"-26a")1 

(G. S. )N (la'-l0a', la"-2a")24 
PCO2 0.07 1.2 85 

(G. S. )N-1 (PCO)1 (la'-10a', la"-2a")23 (13a'-69a', 4a"-31a")1 

Table 5.8: Models employed for the calculation of the polarisability, with and without PCOs. N is the number 

of PCOs in the basis. 

Firstly, comparing PCO1 and PCO2, we conclude that the latter provides worse results, as 

the polarisabilities are lower than those obtained with the PCOI basis set, in both Dunning 

and Dunning (TZ) MO calculations. Other PCO basis sets have been tried, providing even 

worse results (not shown here); it seems that the PCO1 basis set fares best among all the PCO 

2 

200 400 600 800 1000 
Number of states 

Figure 5.8: Mean polarisability calculated with different models and basis sets, as a function of the number 

of states in the close-coupling expansion. 
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Comparing the polarisabilities obtained with the Dunning and Dunning (TZ) basis sets, 

an improvement is noticeable when the latter one is used. On one hand, it can be concluded 

that the previous unsatisfactory results shown in figure 5.7 were partly due to the MO basis 

sets, as Jones & Tennyson (2010) also find that a large number of MOs is needed to obtain 

a good representation of the polarisability. However, the convergence of the polarisabilities 

provided by the Dunning (TZ) + PCO1 basis sets is again very slow (more than 1000 states 

are needed); the final value is almost twice as large as the previous ones obtained (around 

10.5 aö, which is still less than half of the experimental value). 

These tests seem to indicate that the PCO basis, which was successfully employed in stud- 

ies on Lie (Tarana & Tennyson 2008), LiH, CO (Jones & Tennyson 2010), C2, H3 (Gorfinkiel 

& Tennyson 2004), H2 (Gorfinkiel & Tennyson 2005), does not work so well for larger 

molecules, where it does not improve the description of the polarisability (a similar prob- 

lem, for CH3OH, was experienced by Baker 2010). This may be also due, as we already said, 

to the too limited number of MOs in our calculations. Attempts to introduce CAS models, 

in spite of the Hartree Fock level employed so far, had the effect of including correlation, 

further reducing the polarisability (Jones & Tennyson 2010). 

We finally decided against using PCOs in our calculations, because they fared poorly at 

improving the description of the polarisability; their use would also raise issues with the 

extent of the R-matrix inner region, since the PCOs we used are too diffuse to be contained 

in R-matrix radii of 8 and 10 ao; perhaps radii larger than 15 a0 would need to be employed. 

Although the comparison between our cross sections without PCOs and the experimental 

and theoretical ones of figure 5.6 is qualitatively not good, and the problem of representing 

the polarisability to a satisfactory level needs to be addressed if a proper comparison is to 

be carried out with other results, our primary interest, as stressed earlier, is not to perform 

the best R-matrix calculation possible, but a more basic study which would allow us to 

reproduce the resonant features of the system and which would provide a starting point for 

a Multiple Scattering calculation on the dimer. We deem our results, which reproduce the 

resonance, accurate enough to verify whether the Multiple Scattering method is able to deal 

with shape resonances or not. 
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Figure 5.9: Ball-and-stick model of (HCOOH), in the equilibrium geometry (trans-trans). 

5.3 Formic acid dimer calculation 

5.3.1 Geometry 

The dimer geometry was taken from calculations at MP2 level using an aug-cc-pVDZ 

basis set (Chocholousova et al. 2002). The dimer is made up by 2 monomers in the trans 

configuration, establishing 2 hydrogen bonds which make this structure extremely stable, 

and is symmetric with respect to an inversion point (therefore the dipole moment is, by 

construction, zero). Some geometrical parameters are listed in table 5.9, where it is clear 

that the dimerised monomer geometry is not heavily distorted from that in the gas-phase, 

with the only exception of the C-Ö H angle, which is wider in the dimer because of the 

formation of hydrogen bonds. The symmetry group the dimer belongs to is C21� because it is 

planar and has an inversion point; the dipole moment is therefore zero. The inter-monomer 

distance is 5.698 a0. 

Similarly to the water clusters, two R-matrix calculations have been performed on the 

formic acid monomer: a standard one and one with the dipole moment cutoff applied. The 

T-matrices have been rotated according to the monomers' orientations in the dimer structure 

(the Euler angles are shown in table 5.10) and a homogeneous Multiple Scattering calculation 

has then been performed. The T-matrices T and Tc are generated as stated in the previous 

section: including 5 states, using HF-SCF molecular orbitals and all three basis sets; the 

R-matrix radius was set to 8 (6-31G) and 10 a0 (6-31G** and Dunning). The radius for the 

dipole cutoff was set to ac =a (other values were also used, providing almost identical MS 

results). 

The Multiple Scattering cross sections are particularly interesting and need an accurate 
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parameter gas-phase dimerised difference 

C-H 2.066 2.081 +0.015 (+0.73°ro) 

C=0 2.273 2.330 +0.057 (+2.49%) 

C-0 2.542 2.506 -0.036 (-1.41°ro) 

0-H 1.833 1.892 +0.059 (+3.20%) 

0=C-H 125.30 122.09 -3.210 (-2.56%) 

HC-0 109.52 111.59 +2.070 (+1.89%) 

0=C -0 125.19 126.32 +1.130 (+0.90%) 

C-5-H 105.97 109.19 +3.220 (+3.04%) 

inter-monomer distance 5.698 

Table 5.9: Formic acid parameters, in the gas phase (from NIST Computational Chemistry Comparison and 

Benchmark DataBase (2010)) and in the dimer (from Chocholousova et al. (2002)). Lengths are in ao and angles 

in degrees. The difference between the parameters in the monomer and the dimer are also listed. 

monomer aßy 

1 59.748 180.0 37.326 

2 239.748 180.0 37.326 

Table 5.10: Euler angles employed for the (HCOOH)z Multiple Scattering calculation. 

analysis. In general, our results where larger basis sets (Dunning and 6-31G**) were used 

have a similar behaviour, as it was also observed in the monomer results of figure 5.6, while 

the cross sections for the more compact 6-31G basis set differ quite markedly from the other 

two. All these results are shown in figure 5.10, together with the theoretical cross sections of 

Gianturco et al. (2005). 

We start analysing the cross sections calculated with the Dunning and 6-31G** basis sets. 

Partial waves up to 4 are included and the energy correction parameter is set to y=0.75, 

consistently with our water clusters calculations (an analysis of y is presented later). The 

most significant features in the MS elastic cross sections are two peaks; the first, at 2.65 eV (6- 

31G`") and 2.75 eV (Dunning), corresponds in position and width to the first resonances into 
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Figure 5.10: Elastic cross section for the e- - (HCOOH)2 collision, calculated with the Multiple Scattering 

method, y=0.75; the monomer R-matrix calculations were performed using the three basis sets discussed 

earlier and setting a=8 ao (6-31 G) and 10 ao (Dunning, 6-31G"); partial waves up to 1=4 were included and 

a, = a. Comparison with Gianturco et al. (2005) is shown; the arrows indicate where the two shape resonances 

are found by Allan (2007). 

which the monomer A" shape resonance is split into, according to Gianturco et al. (2005). 

The second peak they observe, around 3.5 eV, is narrower than ours, which are broader, 

characterised by a less defined shape, and displayed at higher energies. 

The cross sections we obtain with the 6-31G basis set show a peak at 2.4 eV, with a 

shoulder at 2.8 eV, and a second peak at lower energy, centred at 1.6 eV. The position of 

these peaks, at lower energy than the corresponding 6-31G** and Dunning calculations, are 

in better agreement with the experimental results of Allan (2007), who finds them at 1.40 

and 1.96 eV. 

These initial observations are very similar to those we made when analysing the monomer 

results: particularly, the cross section calculated with the 6-31G basis set displays peaks at 

lower energies, in better agreement with the experimental and most of the theoretical results; 

those calculated with the 6-31G** and Dunning basis sets are characterised by resonances 
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at higher energies, in better agreement with the results of Gianturco and co-workers. The 

reason for the apparently better performance of the smaller basis set is not clear; in any case 

it is not possible to carry out an analysis of the polarisabilities, because the MS code does not 

compute them, neither are they input at any point. It is however likely that the effect of the 

polarisability is underestimated here too, as it was in the R-matrix calculations producing the 

input data; this surely has a strong effect on the cross sections, particularly at low energies 

(see Gianturco et al. (2005), figure 13). 

The discrepancies between the shape of our cross sections and those of Gianturco et al. 

(2005) at low energies are again very strong: the former show a very marked dip, with a 

minimum around 0.2 eV, and a sharp rise as E -i 0, while the latter has a less steep increase, 

starting from higher values of E. This dip may correspond to the Ramsauer Townsend 

type minimum predicted by Gianturco et al. (2005) in the Ag component of the cross section 

(although theirs is at a lower energy, - 0.1 eV, and too small to be noticeable in the total 

cross section), or may just be an artifact due to the incorrect account of the dipole moment 

effect at low energy, which we have already observed for the water clusters. The low 

energy behaviour of our MS cross sections, in fact, probably suffers from the same problems 

encountered when studying the water clusters, related to the construction of the cluster's 

overall dipole moment; in particular, considering that the formic acid dimer is non-polar, 

but made up by polar monomers, it is likely that the MS cross sections at low energies are 

not reliable, as we saw for the Zl and Z2 geometries of (H20)2, and for the ppp geometry of 

(H2O)3. 

Finally, our cross sections are generally lower than those of Gianturco et al. (2005) in most 

of the energy range (apart from the resonant energies); this is again due to contributions from 

partial waves higher than lmax = 4, not included in the R-matrix calculations providing the 

input T-matrices. 

Apart from these discrepancies, the features we are mostly interested in are the peaks 

shown by all our cross sections, approximately separated by 1 eV in all cases; a similar 

distance in energy is observed in the results by Gianturco et al. (2005), while the experimental 

resonances of Allan (2007), indicated by arrows in figure 5.10, are slightly closer. In both 
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these works, the resonances are found to be of A� and Bg symmetry; our Multiple Scattering 

approach does not allow symmetry considerations as the resulting T-matrices T and T, are 

not block-diagonal after the rotation is performed. 
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1 2 34 

E/eV 
5 6 7 

Figure 5.11: Partial wave analysis of the MS cross section of (HCOOH)2, with input T-matrices generated 

using the 6-31G" basis set, a= ac = 10 ao. Cutoff and interpolated cross sections are shown; vertical lines 

mark the cutoff energies E2 (at which a3 starts being included in a"NT) resulting from setting (a) y=1.00 and 

(b) y=0.75. 

We analyse now how the partial wave contribution to Tc affects the Multiple scattering 

cross sections. The cutoff cross sections in figure 5.11 have been calculated from T-matrices 

generated with an R-matrix calculation where a= ac = 10 a0, and the 6-31G* basis set was 

employed. The conclusions drawn here are also valid for the Dunning basis set, which 

provides similar results. All the cutoff cross sections shown present marked resonances. The 

co and a' cross sections, i. e. those including partial waves up to 0 and 1, present a peak at 3.3 

eV, while a3 and 64 present a broader peak around the same energy, looking more like the 

convolution of two peaks in the a3 case. The tall peaks appearing at lower energies (2.1 eV in 

a4, for instance) are evidently due to the incorrect behaviour the high partial waves present 



124 Chapter 5- Elastic scattering from formic acid monomer and dimer 

at low energy, as explained in section 3.2.1, and in fact do not contribute to the interpolated 

cross sections. The double peak of the a3 cutoff cross section is marginally included in a 00 
(where a small bump appears at 3.0 eV), while it is not in artvy_T 75 because the energy E2 (after 

which a3 starts contributing to c'NT) is shifted to higher energy, as the vertical dotted lines 

show. The an f cross section also presents a very small bump at 0.9 eV, due to the a2 peak 

around 0.8 eV, which is washed out by setting y=0.75. 

The most noticeable result is the marked peak the a2 cross section shows at 2.6 eV, which 

is absent from all the other cutoff cross sections, followed by a smaller and broader one at 

3.8 eV; the first one is responsible for the first resonance both interpolated cross sections 

show at that energy, and it is clearly not a non-physical resonance, since the a2 cross section 

is the one which mostly contributes to both LINT at that energy. Changing y from 1.00 to 0.75 

has the only effect of reducing its height. 

The second, broader, peak that the interpolated cross sections show between 3.5 and 

3.7 eV is due to the resonance that the a3 cross section displays around the same energy, and 

also corresponds to the resonance present in all the other cutoff cross sections, except a2, 

although at slightly lower energies. Such peak is more marked in the y=1.00 interpolated 

cross section, because the threshold energy E2 at which the a3 cross section starts being 

included is lower (2.51 eV when y=1.00,3.35 eV when y=0.75, indicated in the figure by 

the vertical lines labelled (a) and (b)). 

At very low energies, the minimum discussed before is present in both interpolated cross 

sections at 0.2 eV. 

Comparing the two cross sections for different values of y, we see that the one with 

y=0.75 is generally lower than the other, particularly between 2 and 6 eV; as noted above, 

this cross section does not show the small bumps at 0.9 and 3.0 eV and is generally smoother 

(for instance at 5 eV). The two peaks are shorter and broader than those in the y=1.00 cross 

section. 

Analysing more closely the cutoff cross sections a', one could wonder whether the peak 

at 2.6 eV in a2 (henceforth referred to as resonance I or R1) is due to the same resonance the 

other cross sections display at 3.3 eV (resonance 2 or R2), shifted by 0.7 eV, or to a different one 
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Figure 5.12: Partial wave analysis of the MS cross section of (HCOOH)2, with input T-matrices generated 

using the 6-31G basis set, a=a, =8 ao. Cutoff and interpolated cross sections are shown; vertical lines mark 

the cutoff energy E3 when (a) y=1.00 and (b) y=0.75. 

(that is, whether R1 and R2 are the expression of the same resonance or not). In the former 

case, the interpolation, which produces two peaks, would mistakenly account twice for the 

same resonance appearing at different energies. On the other hand, at 2.6 eV the major 

contribution to aINT must come from a2, and it is impossible to remove the peak unless a 

very large value of y is used (at least y=1.7), for which there would be no justification. 

If R1 and R2 were two different resonances, we would however expect that all the cutoff 

cross sections including the resonant partial wave (a', I >, 2) would show a peak, so that two 

peaks would be present in a2, a3 and a4, to account for both R1 and R2. Actually, from a 

closer analysis of the cutoff partial waves, both a2 and cr 3 show two peaks, at 2.6 and 3.8 eV in 

a2, and at 3.0 and 3.4 eV in a3, which move closer as I increases and possibly merge in a4. We 

therefore conclude that the two peaks visible in the interpolated cross sections correspond 

to physical resonances. 

Figure 5.12 shows the analogous plot resulting from the use of the 6-31G basis set, which 

presents resonances at lower energies than the other basis sets, both in the monomer and 
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dimer cross sections. Certain aspects of this figure resemble those of the previous one: a° 

and al display a peak at 2.4 eV (R2), while a2 and a3 are characterised by the presence of 

two peaks, at 1.5 and 2.8 eV in a2 (which could be assigned to Rl and R2 shifted), and at 2.4 

and 2.5 eV in a3 (almost merged together); a4 shows one peak only at 2.3 eV, which may be 

interpreted as Rl and R2 merged. As in the previous case, a2 is responsible for the presence 

of the first peak in the interpolated cross sections, and a3 for the second. These similarities 

between the results from calculations employing the 6-31G basis set and those employing 

the two larger basis sets seem to confirm the physical origin of the peaks, ruling out the 

possibility that the splitting of the monomer resonance is due to an incorrect inclusion of the 

partial waves contributions at various energies. 

It is worth noticing that setting y=1.00 produces a series of broad and not well defined 

peaks, mostly due to the behaviour of the a3 cross section at E>3.0 eV; this effect is partly 

avoided by setting y=0.75, athough a shoulder is visible at 2.8 eV and the behaviour at 

E>3.0 eV is still irregular. The choice of setting y=0.75 also affects the height and position 

of the two main resonances. 

In general, the peak positions in the cross sections calculated with this basis set agree 

better with the experiments; unfortunately these cross sections have a less defined shape 

that seems to depend quite a bit on y. 

5.3.2 Study of the resonance positions as functions of the inter-monomer distance 

The splitting of the formic acid monomer's A" resonance into two dimer resonances 

is attributed to a spontaneous proton transfer initiated by the attachment of an electron 

(Bachorz et al. 2005), where the negatively charged formic acid acts as a strong base and 

attracts a proton via a barrier-free reaction (D4bkowska, Rak, Gutowski, Nilles, Stokes 

& Bowen 2004, Dabkowska, Rak, Gutowski, Nilles, Stokes, Radisic & Bowen 2004). The 

effect would justify the observed splitting of the O-H stretch frequency in energy loss 

experiments (Allan 2007). However, the fact that our MS calculations and those of Gianturco 

et al. (2005), both based on a Fixed Nuclei approximation, reproduce two resonances in the 

(HCOOH)2 cross sections, indicates that the splitting of the monomer's resonance is not due 
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to a structural effect (proton transfer), but rather to a scattering effect. 

Our calculations are constrained by a fixed geometry, which does not allow a proper 

study of reactions involving changes in the nuclear geometry; still, the position of the shape 

resonances is a useful indicator of complex reaction pathways. For this reason, we decided 

to run various Multiple Scattering calculations with the formic acid monomers at increasing 

distances, without changing any other geometrical parameter. This test could also clarify 

whether the two resonances obtained in the Multiple Scattering cross sections are physical, 

and really due to the effect the dimerisation has on the scattering process. Figure 5.13 shows 

various cutoff cross sections at different inter-monomer distances, labelled d, which indicates 

the displacement from the equilibrium distance R1,2 of equation (3.26). The cross sections 

are calculated using input T-matrices obtained employing the 6-31G** basis set. 
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Figure 5.13: Cutoff cross sections as functions of the inter-monomer distance, from the equilibrium one 

(R = 5.698 a°, d=0.0). Integer and half-integer displacements d are plotted. The different panels show 

different cutoff cross sections: (a) a°, (b) a1, (c) a2, (d) a3. The last cutoff cross section, a4, is not shown. These 

cross sections are calculated from R-matrix input employing the 6-31G" basis set. 

Figure 5.13a, displaying the v° cutoff cross section, shows that the position of the peak 
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at 3.3 eV does not change when the distance between the monomers is increased; at low 

energies it is visible how the dip becomes more visible as d increases (although the MS 

results in this energy range are most likely not reliable); at higher energies the cross section 

tends to get smaller with increasing d. 

The al cross section, depicted in figure 5.13b, displays a more limited variation at high 

energies, although the marked minimum at 0.2 eV disappears as d is increased. 

The a2 cross section (figure 5.13c), which was responsible for the appearance of the first 

peak in the interpolated cross section at the equilibrium geometry, clearly shows the two 

peaks originally at 2.6 and 3.8 eV moving closer and completely merging at 3.35 eV when 

d=4.0 ao. Such behaviour causes the two resonances R1 and R2 in aINT to merge as the 

separation between monomers increases, as it will be discussed later. 

Finally, the a3 cross section, shown in figure 5.13d, which contributes to the interpolated 

cross sections at higher energies, and is responsible for the R2 peak, originally shows two 

overlapping peaks at 3.0 and 3.4 eV; as d increases, instead of merging as seen in a2, it seems 

that the lower peak moves very quickly towards lower energies, where it does not contribute 

to the interpolated cross section. 

Both a2 and a3 show various peaks at energies where the cross sections do not contribute 

to aTT. For instance, a3 starts being included in the interpolated cross section from 3.35 eV 

(for d=0 ao), and is dominant in the energy range [5.03 eV, 8.93 eV], so the peak at 2.5 eV, 

moving to lower energies when d increases, does never contribute. 

Figure 5.14 presents the interpolated and cutoff cross sections when the inter-monomer 

distance is increased by 1 ao (R1,2 = 6.698 ao, d=1.0 ao); clearly the two peaks corresponding 

to the resonances, previously labelled R1 and R2, are closer than in the equilibrium geometry. 

This is also visible when the interpolated cross sections a'NT (y = 0.75), calculated at 

different values of the displacement coordinate d, are plotted together, as shown in figure 

5.15. As d increases, i. e. as the monomers move apart, the two peaks observed at 2.6 and 3.7 

eV move closer and finally merge at 3.3 eV (when d=5.0 ao). The two resonances may then 

be explained in terms of the splitting of the original shape resonance in the monomer as an 

effect of the dimerisation. As the monomers move apart, they become more isolated, and 
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Figure 5.14: MS cutoff and interpolated cross sections when the HCOOH-HCOOH distance is increased 

by I a0 from the equilibrium one (R1,2 = 6.698 ao). 

therefore the interference effect causing multiple scattering should tend to zero. Such effect 

is accounted for in the so called multiple scattering term (1 - X7)-1 (see equation 3.25), which 

may be "switched off" in our MS code. The resulting cross section is shown in figure 5.15, 

labelled no MS, calculated both at the equilibrium geometry (d = 0.0 ao) and that displaced by 

5.0 ao. Both results display a peak which agrees, in position and width, with that including 

the multiple scattering effect, for large values of d. This seems to confirm that the splitting of 

the monomer resonance is due to the interference between the sub-units, since it disappears 

when the multiple scattering term is turned off, and also when the monomers are separated. 

Discrepancies between the cross section at d=5 ao (with MS) and those without MS 

and are however visible, particularly at low energies. As the inter-monomer distance in- 

creases, the parameter R1,2 in the interpolation procedure, which defines the cutoff energies 

E', increases as well, so that the cutoff energies decrease and the cross sections for larger dis- 

placements need partial waves higher than 1=4 to be included. This is shown in the figure 
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Figure 5.15: MS interpolated cross section (y = 0.75) as a function of the inter-monomer distance, from 

the equilibrium value (R = 5.698 ao, d=0.0 ao) to that displaced by 5 ao (d = 5.0 ao). The cross sections 

where the multiple scattering term is switched off are shown at two values of d. When a1,1 >4 should start 

being included, the curves' thickness is reduced, and they are eventually discontinued when such partial waves' 

contribution becomes dominant. 

by reducing the width of the lines where partial wave 1=5 should start being included, and 

interrupting them when the contribution from higher partial waves is dominant. 

At each value of the intermonomer distance, the MS elastic cross section with y=0.75 

was analysed and the resonances were fitted to Lorentzian functions in order to determine 

their position and width. The resonance energies are plotted against the value of d in figure 

5.16 and fitted with exponential functions of the form E= c1 + c2e`3d. The functions shown 

in figure fit better the resonances at lower values of d than at higher ones: at d=4 ao the 

difference between the resonant energies is about 0.5 eV, and they merge at d=5 ao (at an 

energy of - 3.2 eV), while the fitting functions seem to join at higer values of d. 

In our tests, we also tried reducing the inter-monomer distance; for small displacements, 

0>d> -0.5 ao, the cross sections do not vary considerably, displaying the two resonances 

slightly more spaced than for d=0. When the distance is further reduced, the non-physical 
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Figure 5.16: Position of the two resonances as a function of the inter-monomer distance, from the equilibrium 

one (R = 5.698 ao, d=0.0 ao) to that displaced by 5 ao (d = 5.0 ao). The fitting functions are exponential of 

the form y= c1 + c2e''x. 

peaks characterising the cutoff cross sections at low energies (particularly those including 

the higher partial waves) move to higher energy, and get included in the interpolated cross 

section instead of being cut out. The latter hence displays several peaks of non-physical 

origin, which can no longer be eliminated by reducing y. This effect can be explained 

considering that the electronic densities of the monomers overlap to such extent that the 

assumptions underpinning the Multiple Scattering approach are no longer valid. 

5.4 Summary 

The formic acid dimer was studied to verify whether the Multiple Scattering method is 

able to reproduce the presence of shape resonances; the features we aimed at reproducing 

were two shape resonances produced by the splitting of the monomer's All shape resonance 

because of dimerisation effects. The Multiple Scattering method succeeded at reproducing 

the two peaks; we also showed that these are merged when the formic acid monomers move 
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apart and may then be explained in terms of interference effects between the two monomeric 

sub-units. 

From a quantitative point of view, the comparison with other calculated cross sections is 

acceptable, even though the R-matrix calculations used for the generation of the T -matrices 

were not very accurate, lacking a good representation of the polarisability and the contribu- 

tion from partial waves higher than 4. This affected the comparison with other experimental 

and theoretical results, particularly for what concerns the position of the resonances. It is 

surely possible to improve the R-matrix calculations, once the mentioned issues are prop- 

erly addressed, obtaining more reliable cross sections which can be better compared to the 

existing results. 



Chapter 6 

Multiple scattering study of inelastic 

collisions with the water dimer 

The Multiple Scattering method has been adapted to treat electronically inelastic colli- 

sions; the theory, as described below, does not apply to every inelastic process, but relies 

on some assumptions that limit its validity to certain specific cases. The extension to a 

wider range of electronic excitation processes, not included in this treatment, may be un- 
dertaken by further modifying the theoretical approach; for the moment, however, we focus 

on verifying whether inelastic cross sections may be calculated within said limitations. It is 

understood that all the assumptions made for the elastic treatment (mainly, the non-overlap 

of the sub-units' potentials) still hold here. 

We assume that, during the collision, only one excitation process may take place, i. e. 

one sub-unit undergoes electronic excitation while the others are limited to elastic scattering 

only; the case in which all the sub-units scatter elastically is also taken into account. This 

assumption drastically limits the cases that can be treated, since it rules out the possibility 

of studying excitations to states of the cluster which are located on more than one sub-unit. 

This is however unavoidable, given the general assumption the MS method is subject to, 

even in the elastic case, i. e. that the interaction potential of the cluster may be approximated 

as a linear combination of the potentials of the subunits. However, since clusters are not 

strongly bonded, it is not unreasonable to expect that the lowest excited states are strongly 
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localised on one sub-unit, and roughly correspond to a configuration where that sub-unit 

is in an excited state (has undergone electronic excitation), while the others only scatter 

elastically. 

The theory developed, illustrated in the following section, has been applied to the inelas- 

tic scattering with the water dimer, and its results compared with R-matrix ones. From the 

comparisons it is clear that the results are not good and this work is still regarded as a work 

in progress. 

6.1 Multiple Scattering inelastic treatment 

In order to simplify the following treatment, we also assume that the sub-units forming 

the clusters may be divided into three ensembles, E, P and Q. Sub-units in E can only undergo 

elastic scattering, while sub-units in P and Q can be excited to states Ip) and jq) respectively, 

at different energies. Here, by Jp) and (q) we refer to monomer states. As explained above, in 

order to comply with the assumptions underpinning the multiple scattering theory, we can 

only consider excitations into cluster states that can be approximated as one monomer in an 

excited state and all the other monomers in the ground state (disregarding for the moment 

multiple excitations). We therefore define cluster states IP) and IQ) as: 

IP) = 10 ... O)EIO ... p... 0)pIo ... 0)Q; (6.1) 

IQ) = 10 ... O)EIO ... O)pIO ... q... O)Q, (6.2) 

where the kets I )E, I )p and I )Q define the states of the monomers belonging to the E, P and 

Q ensembles respectively (including all the possible permutations). Given this definition, it 

follows that the energy needed to excite the cluster from the ground state to, for instance, 

IP) is equal to that needed to excite an isolated monomer belonging to the ensemble P to 

its excited state ip). However, when we study the electron collision with each monomer 

separately, in order to provide the collisional information needed by the MS code, it should 

be expected that the electronic density of the monomer states (and therefore their energies) 

is different when the molecule is isolated or clusterised. We refer to the effects caused by the 

presence of surrounding molecules on the electronic density as to clusterisation effects; these 
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are disregarded in the MS approach, but they can be partially accounted for, at least for what 

concerns the energy levels, by artificially shifting upwards or downwards the thresholds 

of the monomers' electronic states in order to match them to the cluster ones; this issue is 

addressed in section 6.1.8. 

For the moment, let us assume that the threshold of the dimer state JP) is identical to 

that of the monomer state gyp), and that the same holds for states IQ) and Jq). At a certain 

scattering energy, here referred to as E0, we define Ep and EQ as: 

EPQ=Eo - DEnQ, (6.3) 

where DEC is the threshold energy at which channel C opens for the cluster and EC is the 

energy available after the excitation of one sub-unit has taken place. Let us also assume that 

the thresholds AEp and AEQ are related as in figure (6.1), i. e. AEp < DEQ. 

We now divide the collision problem into three energy ranges: (1) when Eo < DEp (elastic 

scattering only); (2) when AEp < Eo < DEQ (sub-units belonging to P may undergo inelastic 

scattering - not simultaneously); (3) when Eo > AEQ (sub-units belonging to P and Q may 

undergo inelastic scattering - again, not simultaneously). The first case has been already 

studied in the previous section, whose conclusion can be written mathematically as: 

TG = NT (Il - XT)-11M. (6.4) 

In order to obtain such equation, we derived an expression for the vector amplitudes gn of 

equation (3.8), collectively written 6: 0= (1 - XTY1 E. 

In the second case, when the impinging electron energy Eo satisfies the relation DEp < 

Eo < DEQ, the sub-units belonging to the ensemble P can undergo inelastic scattering. 

Recalling the definition of cluster state IP) as in equation (6.1), the asymptotic wavefunction 

i(r), relative to the scattering of an electron off the whole cluster, may be written as: 

Y 
(r) 

_ YL'(r) Lll'(kor)6L, L' + 2hj (kor)t , LL + 2h1, (knr) ; i] fL, (6.5) 
L, L' 

where both T4. EL and TGY are global T -matrices (elastic and inelastic respectively), i. e. they 

refer to the cluster as a whole. The first term in brackets describes the plane wave representing 

the incoming electron; the second and third terms account for the wavefunction of the 
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Figure 6.1: Schematic representation of the electronic states of the sub-units forming a cluster, which are 

available to excitation. Higher electronic states are not shown. 

electron scattered elastically with energy Eo (ko = ö) and inelastically with energy Ep 

from equation (6.3) (kp VTp-). 

We can now follow the steps introduced in the elastic treatment: firstly we write the 

incoming wavefunction on each sub-unit, as a function of quantities g; then we calculate 

the wavefunction scattered from each, which will be summed together in order to obtain 

the total incoming wave on each sub-unit. This allows to express g in terms of the known 

amplitudes g. Finally, the total scattered wavefunction is matched with equation (6.5) and 

the global T-matrices TG, F, L and TG"P are obtained. 

6.1.1 Step [1]: incoming wavefunction on each monomer 

The re-expansion of the incoming plane wave, as described in equation (3.5), is still valid 
here; however, the total incoming wave on each scatterer, previously written as in equation 

(3.8), needs now to be changed to: 

(0) (P) 1 
YLi (rn) jl, (korn) gi + jl, (kPrn) giý Jý 

LI 
(6.6) 

in order to account for the possibility of having scattered functions of energy Ep. 
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6.1.2 Step [2]: wavefunction scattered from each monomer 

At this point, a distinction needs to be made: sub-units belonging to ensembles E and 

Q can only scatter elastically, while sub-units belonging to P can scatter inelastically the 

wavefunction with energy Eo (since we are still analysing the case AEp < Eo < AEQ). No 

inelastic scattering of the wavefunction with energy Ep is allowed because of the initial 

assumption that the cluster may undergo one inelastic process only; such wavefunction in 

fact has already been scattered inelastically (losing part of its energy). 

Then: 

ýIsc, nEA(rn) = 

tPsc, W(rn) _ 

00 0 ýYc, (ýn) 
[(h(korn) 

T'c, (Eo)+h(knr) Tý L(Eo)) 
(8+ 

00 (p) 

+ 
(h(krn) 

Ti, L(EP)) Si ; 

L, L' 

{(1i(r) ýýýYc-(r"n) 
TL(Eo) 8+ h(kern) Tc(EP)ý 81 " (6.7b) 

1I, L, L' 

(6.7a) 

00 Op 

In the last two equations, matrices T "(Ec) and T"(EC) are the elastic and inelastic T_ 

matrices of sub-units n, calculated at the scattering electron energy Ec. The two terms in the 

first brackets of equation (6.7a) describe the response of sub-units belonging to ensemble P 

to the incoming wavefunction having energy Eo: the first accounts for the elastic scattering 

(the scattered wave is still characterised by energy Eo), while the second accounts for the 

inelastic scattering (outgoing wave of energy Ep), following the excitation of sub-unit n 

from the ground state 10) to state 1p). The second brackets contain the term describing the 

elastic scattering of the wavefunction of energy Ep (which has already undergone an inelastic 

scattering). Equation (6.7b) is similar but does not contain the inelastic term. 

Both equations can now be re-expanded around n', which stands for a generic sub-unit, 



138 Chapter 6- Inelastic scattering with (H20)2 

different from n: 

0 oP (o) 
ýsc, 

nEP(rn') _ 
L, L', Ll 

YL, ýýn') 
RjI, 

(korn') XLt, L' Ti, L(Eo) + jl, (kPrn') XLý ALL, TLý LýEOýý $i+ 

(P)n, 
n Don 1l (P)n1l 

+ 
(iii 

(kPrn') XL,, L, TL, L(Ep)1 $LJ, (6.8a) 

(0) , 00 (o) ýsc, 
nýP(rn') 

YL1 (in') jl, (kOrn') XL n 
ý, 

L' TL' 
L(EO)ý $L+ 

, `` 1 
+ 

(]l1(kPrn, 
) 

(Xi, 
L, TL 

ý(EP) I 
ý%ýLJ, 

(6.8b) 

(0) (P), 

where matrices X"', " and X", " are consistent with definition (3.11): 

1 
Xn", =2 1h+1212,1' YL (ý )h+(kcRn', 

n), C= {0, P}. (6.4) L2, L mi, m2, -m 1nn1, 
Lý 

6.1.3 Step [3]: total incoming wavefunction and derivation of g 

The total incoming wavefunction on each scatterer can be derived as follows: 

ýin, nEP(rn) = in, PW(rn) + 
1: ýsc, 

n'(rn) + ýsc, 
n"(rn); (6.10a) 

n'*n n"¢P 
n'EP 

Oin, nitP(rn) _ Oin, PW(rn) +E ýsc, 
n'(rn) + tPsc, n"(rn). (6.10b) 

n'EP n"*n 
n" VP 

obtaining: 

-ý 
(0)n 

n, 
ODn, (0)n, (0)n 

n� 
00n� (0)n� 

ýin, nEP(rn) YLI(rn) it, + XLýL' TL', L(EO) öL + XLýL' TL', L(EO) äL + 
L, n'#n L, L' n" VP L, L' 

n'EP 

(P), 0, (P)n, (P)nn � 00 (P)n 
+)! ý 

ýkPrný 1: ý XnLI, n 
L, TL, L(EP) 8L + 

2: 1: XLý 
L, 7'L,, L(EP) $L + 

n'*n L, L' n" VP L, L' 
n'EP 

(P) , op , (0) , 

+1l, (kPrn) XL, L, Tc', L(Eo) gc 
n'#n L, L' 
n'EP 

In this equation, the first line accounts for the terms with energy Eo, which include the 

plane wave and the waves scattered elastically; the expressions for sub-units n' EP and 

that for the n" ýP are identical, and the only sub-unit left out is n itself, which does not 

self-scatter. However, taking advantage of the property of matrices Xn n' (Xn'n = 0), sub-unit 

(6.11) 
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n can be formally introduced in the summation, so that the first line of equation (6.11) may 

be rewritten as: 
Z1, 

L 
, 00 , (0) , Jii(korn) SLi + 

L.. r , 
TL 

', L(EO) 
gL (6.12) 

n' L, L' 

The same may be done on the second line, which accounts for the elastic scattering of waves 

having energy Ep; it may then be rewritten as: 

) 1: 
!ý 

(p)n 
n' 

Oon, (p)L, 
" It1(kPYn XLiL' TL, L(Ep) gL 

' 
n' L, L' 

(6.13) 

The third line of equation (6.11) accounts for the inelastic scattering of the wave with energy 

Eo, which is performed by sub-units in ensemble P only and depends on the monomers' 
Op 

inelastic T-matrices T"(Eo). Such matrices are not defined for sub-units n" ý P, but we may 

"(Eo) = 0, n" ý P. With such assumption, the easily extend the definition assuming that T ýý 

third line too may be formally written as a sum over all the sub-units: 

(P)n (0)n 
1i, (kPrn) X 

L;, L' TL', L(Eo) 8L . (6.14) 
n' L, L' 

Finally, writing the equation equivalent to (6.11), for sub-units n 10 P, and making the 

same assumptions as above, we obtain an identical result, so that it is possible to write, for 

all sub-units: 

X(0) 
, 00 , (0) , 

ýin, 
n(rn) -ý YL, (ý'n) jl, (korn) 8L +uE XLýnL, 1'L, L(Eo) $L + 

L, n' L, L' 

, 
(P) (p) , 

(T00L op (o) 
+jl, (kprn) XIn, ý 

L, ,, L(Ep) 8i + TL,, L(Eo) $L 1 (6.15) 
n' L, L' 

Comparing this result with equation(6.6) and defining vectors G and(P) consistently with 

definition (3.15), it is now possible to write: 

(0) _ (0)oo (0) 
G= G+ XT (Eo) 0; (6.16a) 

(P) (P) 00 (P) (P)Op (0) 
'=XT (EP) '8 + XT (Eo) '8, (6.16b) 

which can be solved to obtain: 
(0) (0)00 1 

0= I ll- XT (Eo) J ý; (6.17a) 

(P) (P)00 11 (P)OP (0)00 1 

G= 
(Il- 

ýY 1I' (EP) J XT (Eo) 
(Il- 

XT(Eo)) G. (6.17b) 
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It is important to notice that expression (6.17a), accounting for the elastic scattering, is 

identical to that obtained in the elastic treatment (equation 3.18). 

6.1.4 Step [4]: total scattered wavefunction 

and 
(P) Now that vectors 

(0) 
are known, equations (6.7a) and (6.7b) may be used to express 

the scattered wavefunction from each monomer. Summing the contributions from all the 

sub-units, and re-expanding them around r, it is possible to obtain an expression for the total 

scattered wavefunction, which will be later compared to equation (6.5). 

1 (o) oo (o> ýsc, nEP(r) =2E YL, (P) hi, (kor) Ný,, L' Ti' L(Eo) 8L+ 

(P) 0P (0) (P) 00 (P) 
+hý(kpr) 

(Nl, 
L, Ti,, L(Eo) gý+ NL, Ti, 

L(EP) 8i (6.18a) 

ýIsc, nQP(r) =21: YL' (f) 
[h+ 

(k0r) NL,, L, TL,, L(E°) 
ýýi+ 

L, L', Ll 

(P) 00 (P) 1 

+hý (kPr) Ni 
,, L, Ti,, L(EP) gL J, (6.18b) 

(0) (P) 

where matrices N" and N" are consistent with definition (3.20): 
(Nn 

(_)m'F, YL2 (-f")1º2(kCR"), C= {0, P}. (6.19) LLL ml, m2, -m 
Lý 

Again, from our previous extension of inelastic T-matrices (Tnff(E0) = 0, n" ý P), the 
(P) OP (0) 

missing term hip (kpr) NLj L, T",, L(Eo) 9n (which is zero for ný P) can be added to equation 

(6.18b), so that the same equation can be written to express the wave scattered off any 

sub-unit, whether belonging to P or not. Hence: 

ýsc, TOT(r) =I sc, n = (6.20) 

n 

1 
YL, (P) hj+ (kor) I 

M1P1'IC 
(Eo) 

iý 
+ hl+ý (kpr) 

ANT 
(Eo) 

(0) + NT 
(Ep) 

2L` Lt \ )L It 
Comparing this with equation (6.5), it is possible to obtain relations between the cluster 

and sub-units' T-matrices: 
-1 

ý, EL _ý., (Eo) 
(I- ýýý (Eo)) M; (6.21a) 

(P) 00 (P)OO -1 (P) OP (0)00 1-1 
Tc', P =ý1 Il+ T (EP) 

(Il- 
XT (Ep)) XT (Eo) 

(Il- 
XT (Eo)1 M. (6.21b) 
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Here, matrix M is defined as in equations (3.21) and (3.6); unlike matrices N, it does not 

depend on the channel (0, P or Q). Again, the result obtained for the elastic T-matrix TG, EL 

is identical to that resulting from the elastic treatment (equation 3.24). 

Finally, when the energy overcomes the second threshold AEQ, both sub-units belonging 

to P and Q are allowed to undergo inelastic scattering (but not simultaneously). The resulting 

equations (6.21a) and (6.21b) do not change; a third relation must be added for the inelastic 

T-matrix relative to the excitation to the state IQ): 

Il- 
ýxCý (Eo)l 

I 
M, (6.22) TG 'Q =(Il 

) 
Il+ 7I' (EQ)( 

/ 
Il- 

ý7C 
(EQ)l 

lý 
'1C (Eo)( 

/ 

(Q) Oq (Q) (P) OP (P) 

where matrices N, T and X are defined in an analogous way to N, T and X. 

6.1.5 Extension to more general cases 

The results presented above, obtained in the assumption that the sub-units belong to the 

ensembles E, P and Q, can be easily extended to more general cases, where, mantaining the 

restriction that no multiple excitations are allowed, the number of ensembles is not limited 

to these three. The elastic T-matrix always assumes the form of equation (6.21a), while the 

inelastic channels, regardless of the number of sub-units contributing to them, are used to 

build the inelastic T-matrices in the following way: 

(C) 00 (C)00 `-1 (C) Oc (0)00 `-t 
Tc;, c =1Iý1 Il+'1C (Ec) 

(Il- 
ýCT (Ec) I ýY T (Eo) 

(Il- 
XT (Eo) I M. (6.23) 

Here, kc = and Ec = Eo - AEc, and the sub-units' inelastic T-matrices are defined 

as: 

(6.24) 
0, nýC 

where C contains sub-units with the same excitation threshold DES. 

A further extension is needed if more than one state is available to one ensemble for 

excitation, as illustrated in figure 6.2. It turns out that the equations obtained so far are valid 

in this case too: i. e. state ip') is regarded as a new state, whose contribution comes from 

Oc 
oc r, nEC 
7" _ 

0, nýC 
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excited 
state lp') - 

4EP., 

excited 
state (p) £ ~- 

0 EP 

ground 
state 10) 

excited 
4 state lq) 

a Ea 

ensemble E ensemble P ensemble Q 

Figure 6.2: Schematic representation of the electronic states of the sub-units forming a cluster, which are 

available to excitation. Two electronic states are available for excitation of sub-units belonging to ensemble P. 

sub-units in ensemble P only: 
OP' 

Optn T", nEP 

0, nýP 

6.1.6 Terms contributing to the global T -matrices 

(6.25) 

P 
As for the elastic case, one can identify re-expansion terms M (from r to r�) and N (from r� 

to r); the latter depends on the threshold energy DEc. There are also multiple scattering terms, 

of which one is related to the elastic scattering of a wavefunction that did not loose energy, 
(C)UO (1- 
XT (Eo)) , and one to the elastic scattering of a wavefunction that underwent inelastic 

I (C)oo \-' 
scattering from the other sub-units, with a consequent energy loss, 11- XT (Ec) I 

P (0) 
In the absence of any multiple scattering effect, matrices X and X become null (i. e. a 

zero matrix), and equations (6.21a) and (6.23) reduce, as expected, to: 

(0)00 
Tc, EL(E0) =NT (Eo)IM, 

(C)Oc 
7ýý(Eo) =NT (Eo)M, 

0, nýP 

(6.26a) 

(6.26b) 

i. e. they revert to the sub-units' T-matrices, although rotated and re-expanded. 
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In general, it is important to stress that, at each scattering energy Eo, matrices Tc, EL(Eo) 

and TG, C(E0) are calculated using monomers' T-matrices for different energies. 

6.1.7 Cutoff 

The reasons why two cutoffs were applied on the multiple scattering T-matrix in the 

elastic treatment still hold here. The T-matrices appearing in the terms accounting for the 

interference between sub-units must have the cutoffs applied on the number of partial waves 
(c)oo 

and on the extent of the dipole interaction. As stated above, the two terms I- XT (Eo)) 

POO 11 
and (Il- XT (Er) I clearly introduce multiple scattering effects; the value of ac, defining 

the radial distance from which the dipole interaction is disregarded, assumes the same value 

in both cases, as it only depends on the distance between sub-units. On the other hand, the 

partial wave cutoff depends on the energy of the incoming wavefunction, which is different 

in the two cases (E0 and EC). Therefore, the number of partial waves included in the elastic 
00 00 T-matrices T (E0) and T (EC) is in general different at a certain scattering energy E0. Equation 

(3.27) should be rewritten in more general terms as: 

1(1 + 1) 
R2 yEc, 

n, n' 

(6.27) 

where Ec is, as defined before, the energy of the scattered wavefunction. Such modification 

is justified by the interpretation given to the cutoff. 
oc 

As for the other T -matrices in equation (6.23), the inelastic one, T (Eo), does not account 

for the multiple scattering, as it is the only term left if the interference is turned off (i. e. all 

X-matrices are set to zero - see equation 6.26b) and should therefore reproduce the correct 

behaviour of the inelastic channel of a single sub-unit. 

In practice, it is not clear whether the cutoff should be applied to the remaining term, 
00 
T (EC). In our attempt to apply the inelastic treatment to water clusters we will analyse 

different solutions. 
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6.1.8 Computational implementation 

The inelastic model has been implemented by significantly modifying the elastic Multiple 

Scattering code, although the programme outline, described in section 3.2.5, is substantially 

unchanged. The modifications increased the memory requirements and also affected the 

computational time. Minor modifications included the reading of the inelastic T-matrices 
(C) (C) 

and the computation of matrices X and N; the most memory consuming modification, 

however, is the storage of all the elastic T-matrices at the same time, since at each energy step 

E0, the elastic T-matrices calculated at the various EC must be read. The most straightforward 

solution, although certainly not the most economical, was to store all the elastic and inelastic 

T-matrices for all the energy steps into a single vector; the memory requirements are however 

easily manageable on a desktop machine. 

The issue of how to include in the inelastic treatment the effect that the clusterisation 

has on the channel threshold energies was also addressed. As stated before, the code is able 

to treat those excitations which can be approximated as the excitation of a single sub-unit; 

however, the neighbouring sub-units often have an effect on the energy at which a channel 

opens, shifting it to higher or lower energies. This in practice means that the energy of the 

isolated monomer state (p) does not equal the energy of the cluster state (P). In order to 

address this problem, the code allows a customisable energy shift of the inelastic T -matrices, 

so that the threshold energies can be easily modified. 

The interpolation procedure, illustrated in section 3.2.1, involves an interpolation of the 

cutoff cross sections, each of which is calculated in the whole energy range. The inelastic 
00 

theory introduces a second cutoff on the T (EC) matrices, which is independent to that 
00 

applied to the T (Eo) matrices; the cutoff cross sections will therefore be identified by two 

indices and henceforth referred to as a1'. 12, where 11 refers to Eo and 12 to Ec. The interpolation 

procedure has not been changed substantially: a first run interpolates in the usual way the 

cross sections Qh. 12 having the same value of 12, generating cross sections UINT12. The latter 

are then interpolated with respect to 12. There is no reason why 11 should be interpolated 

before 12, and the opposite procedure may be followed instead. 

Under certain aspects, it may be argued that the inelastic treatment lacks most of the 
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self-sufficiency that the elastic one had; the Multiple Scattering theory has been developed 

in such a way that it is able to produce a cluster's scattering data from virtually only sub- 

units' information; the only input relative to the cluster are the geometrical parameters. 

The inelastic treatment, on the other hand, needs a good prior knowledge of the cluster's 

properties, which can be obtained from previous theoretical or experimental studies. In 

particular, it is necessary to know the spatial distribution of the unoccupied orbitals, in 

order to assign each excited state to a sub-unit, when possible, and also the cluster excitation 

energies. Without such information, it is very difficult to produce reliable results and 

therefore the treatment is highly dependent on previous studies. 

6.2 Application to the water dimer 

We applied the Inelastic Multiple Scattering code to the water dimer cluster in the equi- 

librium geometry. For this target, a recent theoretical study by Chipman (2005) provides 

the information required as input, i. e. the localisation of the first two excited states of the 

dimer on different monomers. The first singlet and triplet excited states of A" symmetry are 

localised on the bond donor molecule (i. e. the in plane one), while those of A' symmetry, at 

higher energy, are localised on the bond acceptor molecule (the out of plane one) - see figure 

6.3. They both correspond to an excitation to the first excited state of the monomer, of Bl 

symmetry (A" if CS point group is used instead of C2v and the reflection plane is chosen as 

that containing the molecule). In Chipman (2005), the first excited states of H2O and (H20)2 

in the equilibrium geometry were calculated with a CIS (Configuration Interaction Singles, 

Del Bene et al. 1971) and a EOM-CCSD (Equations-of-motion coupled-cluster with singles 

and doubles, Dalgaard & Monkhorst 1983) models and aug-cc-pVTZ basis set. The vertical 

excitation energies are reported in tables 6.1 and 6.2, along with ours. A more comprehensive 

report for the monomer may be found in Gorfinkiel et al. (2002). 

As in chapter 4, we performed R-matrix calculations both on the water monomer (to 

provide collisional input for the MS code) and on the water dimer. The latter served both 

to provide cross sections to use as a comparison (as in the elastic case) and also to produce 

excitation energies for the dimer's states, which are an additional input required by the 
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inelastic MS code. 

, be--4 
{ 

*904 

Figure 6.3: Ball-and-stick model of (H20)2, equilibrium geometry. The monomer on the left is the bond donor, 

in plane, while the other is the bond acceptor, out of plane. 

method 1B1/eV 3 B1 / eV 

Cheng et al. (1999) photoabsorption cross section 7.4 

Chipman (2005) calc. EOM-CCSD/aug-cc-pVTZ 7.54 7.13 

Chipman (2005) calc. CIS/aug-cc-pVTZ 8.62 7.92 

present calc. CASCI/Dunning 7.51 7.04 

Table 6.1: Vertical excitation thresholds for H2O. Also see Gorfinkiel et al. (2002). The EOM-CCSD model 

of Chipman (2005) stands for Equations-of-motion coupled cluster with singles and doubles (Dalgaard & 

Monkhorst 1983, Stanton & Bartlett 1993, Purvis & Bartlett 1982). 

6.2.1 Inelastic R-matrix calculations for H 20 

R-matrix calculations on H2O were performed as in the work of Gorfinkiel et al. (2002), as 

for our elastic calculations. The basis set employed (Dunning) was the DZP Gaussian basis 

set of Dunning (1970), augmented with two s-type and one p-type functions, for 0, and the TZ 

basis of Dunning (1971), augmented with two p-type functions, for H. Natural orbitals were 

employed. The R-matrix sphere was extended to 10 ao to allow the more diffuse excited states 

to be contained in the inner region, and the first 9 states were included in the calculation 

(the vertical excitation energies of the first two excited states are listed in table 6.1). The 
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method IA" / eV 3A" / eV 

Valenzano et al. (2005) MRCI/TZVP 7.29 6.99 

Chipman (2005) EOM-CCSD/6-311(2+)G" 7.13 6.81 

Chipman (2005) CIS/aug-cc-pVTZ 8.66 8.05 

present CASCI/Dunning 8.25 7.66 

Table 6.2: Calculated vertical excitation energies for (H20)2. 

continuum basis optimised for a= 10 ao (Faure et al. 2002) comprised 9 s-type, 7 p-type, 7 

d-type, 7f-type and 6 g-type gaussian functions. The CAS model employed included 2 frozen 

electrons in the lowest al orbital and 8 electrons in the active space, defined as (2a1-4a1, 

lb1-2b1,1b2-2b2), generating -1 100 (target) and -9 100 (scattering) configurations. 

The inelastic cross sections for the first two excited states (the singlet and triplet states of 

symmetry B1) are shown in figure 6.4 up to 13 eV, because the ionisation threshold is 12.6 eV 

(NIST Computational Chemistry Comparison and Benchmark DataBase 2010) and at higher 

energies this process must therefore be included. The most noticeable features are the peaks 

at 9.15 eV, present in both cross sections, which are due to a 2A1 Feshbach resonance whose 

parent state is the first 3A1 state (Gorfinkiel et al. 2002). A very narrow Feshbach resonance at 

an energy slightly below the first excitation threshold has also been observed by Gorfinkiel 

et al. (2002) and others, and appears in our elastic cross section (not shown here) at 6.96 eV. 

The excitation energies for the 1 B1 and 3B1 states, reported in table 6.1, are in good 

agreement with those calculated by Chipman (2005). 

6.2.2 Inelastic R-matrix calculations for (H20)2 

The dimer R-matrix calculation was performed as in Gorfinkiel (2007); the same basis sets 

of Dunning (1970) and Dunning (1971), used in the monomer calculation, were employed. 

An arithmetic average of the natural orbitals from the ground state 'Al, and the lowest ýA, 

and 1 B, states produced a set of natural orbitals for the target and scattering calculations. A 

CAS model with 8 electrons frozen and an active space defined as (5a'-11a', 1a"-3a") was 

employed, producing - 34 600 and - 152 500 configurations respectively. The first 8 states 
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Figure 6.4: Inelastic R-matrix cross sections for the electronic excitation into the first two states of H20, 

indicated in the figure. 

were included in the close-coupling expansion; the excitation energies of the two lowest 

ones (triplet and singlet belonging to symmetry A") are listed in table 6.2. The inelastic cross 

sections for the excitation into the first four states of (H 20)2 are shown in figure 6.5; the 

elastic cross section, not shown here, display two very narrow resonances originating from 

the splitting of the first Feshbach resonance of the monomer, at 7.63 and 7.82 eV, as shown in 

Gorfinkiel (2007); the latter resonance is also visible as a little spike on the 3A" cross section. 

6.2.3 Inelastic Multiple Scattering calculations for (H20)2 

The Multiple Scattering calculations were run inputting the geometrical parameters em- 

ployed in the elastic calculation, listed in tables 4.2 and 4.5; the additional input required 

by the inelastic code consists in the energy shifts, by which the excitation energies of the 

monomer must be shifted in order to match those of the dimer. The way such shifts have been 

calculated is illustrated in table 6.3, where each dimer state is associated to a monomer one: 

the A" states of the dimer (both singlet and triplet) are associated to the in plane monomer 

(monomer 1), since Chipman (2005) found that the LUMO is localised there. The lowest A' 
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Figure 6.5: Inelastic R-matrix cross sections for the electronic excitation into the four lowest states of (1-12 0)2' 

indicated in the figure. 

molecular orbital of the dimer, on the other hand, is localised on the out of plane monomer 

(monomer 2). For the calculation of the energy shifts, we chose to use the dimer energies 

calculated with the R-matrix method, since we will be comparing the MS cross sections with 

the R-matrix ones. 

(H20)2 states corresponding H2O states shift 

sym exc. thr. sym exc. thr. excited mon. 

3A" (7.665) 3B, (7.035) monomer 1 +0.630 

3A' (7.860) 3B, (7.035) monomer 2 +0.825 

'A" (8.250) 1B, (7.508) monomer 1 +0.742 

'A' (8.505) 1B, (7.508) monomer 2 +0.997 

Table 6.3: Shift required to match the monomer and dimer states. All the energies are in eV, calculated with 

the R-matrix method both for H2O and (H20)2. 

Once the input is constructed, the programme is run several times, obtaining the cutoff 

cross sections ah, l2, where 11 refers to the maximum partial wave included in the T-matrices 



150 Chapter 6- Inelastic scattering with (H20)2 

calculated at Eo, and 12 to the maximum partial wave in those calculated at EC. These are 

then interpolated, running the interpolation procedure twice for each inelastic channel, as 

explained in section 6.1: firstly relatively to 11, then to 12. Even though 9 states were included 

in the monomer R-matrix calculation, the MS code was designed to read the T -matrices 

relative to the two lowest excited states only, disregarding the others, since we are only 

interested in these. After reading them, the energy shifts were applied, and four dimer 

thresholds generated. The elastic and inelastic T-matrices were built as detailed in section 
00 

6.1, namely, the T (Eo) matrices of equation (6.21a), from which the elastic dimer T-matrix is 

calculated, are formed as in the elastic case: 

00 
Tmonl 

T (Eo) 
0 

0 
ýnon2 (6.28) 

00 00 
where both monomer T -matrices P are calculated at E0; cutoff T-matrix Tc (E0) is computed 

in a similar way, using the trimmed monomer T-matrices. 

For what concerns the inelastic dimer T-matrices T'ý-', C of equation 6.23, they need three 
00 00 Oc 

different T-matrices: T (E0), T (EC) and T (E0); the first two are calculated as in equation 

6.28, from elastic monomer T-matrices at the scattering energy E0 and at Ec = E0 - DEC, 
Oc 

respectively. As for the inelastic T-matrices T (E0), they are formed in the following way. 

Firstly, we recall that there are four inelastic channels (in energy order, IP) = 13A"), IQ) = 13A' ), 

IP) = 11A"), IQ') = I'A')) and two ensembles (P, formed by monomer 1 only - responsible 

for the excitations into the singlet and triplet A" states - and Q, formed by monomer 2- 
OP 0-, 3A" 

responsible for the states of symmetry A'). Therefore matrix T= T is built as: 

0,3B, 
OP ý-, 3A" T monl 
'li= T00 

00 
(6.29) 

Op 
the element T2,2 is 0 because, following equation (6.24), monomer 2 does not belong to 
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ensemble P. Similarly, the other matrices are built as: 

Oq 0,3A, 
T= T 

CV 0--4'A" 
T= T 

Oq' O-41A' 
T= T 

00 

0-+3BI 
0T mon2 

0-OBI 
T monl 0 

00 

00 

0T mon2 

(6.30) 

(6.31) 

(6.32) 

and the corresponding cutoff T-matrices are built accordingly. 

All the monomer T-matrices employed are energy shifted according to table 6.3. 

As expected, the MS inelastic calculations are more memory and time consuming than the 

corresponding elastic ones, taking up to 50% longer; the running time is however reasonable, 

even on an average desktop computer, and the whole set of calculations with all the cutoff 

values is executed in less than one hour, provided the monomer collisional input is available. 

6.3 Results 
00 00 

As mentioned in section 6.1, the two T-matrices T (E0) and T (Ec) appearing in brackets 

in equation (6.23) clearly account for the interference between sub-units and therefore both 

dipole and partial wave cutoffs need to be aplied to them. In particular, the number of partial 

waves to be included at each energy in the two terms is different, since the energy of the 

incoming wave is Eo in one case and EC in the other. 
oC The inelastic T-matrix 'IC (Eo), on the other hand, needs no cutoff. As for the remaining 

00 
one, 'IC (EC), it is not clear whether either of the two cutoffs should be applied; we therefore 

run two different calculations, where such T-matrix has been built, in one case applying 

the cutoffs on the monomer's T-matrices, and in the other case applying no cutoff. When 

the cutoff on the number of partial waves to be included is employed, equation (6.27) was 

followed (i. e. the number of partial wave contributions is calculated according to the energy 

of the incoming wave, Eo or Ec). It would be possible to study the effect of the cutoffs 

separately (i. e. applying each one independently), since, as explained, their use is justified 
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by considerations of a different kind (the cutoff on the number of partial waves eliminates 

those which cannot overcome the centrifugal barrier at a certain energy; the cutoff on the 

extent of the long range interaction, which in our case is limited to the dipole moment, on 

the other hand, is applied to comply with the assumption that the sub-units' potentials do 

not overlap). However, the underlying justification in both cases is that the sub-units whose 

T-matrices are cut off take part in the multiple scattering process; therefore we have applied 

both cutoffs at the same time. 

Figure 6.6 presents inelastic cross sections for the first excited state of the dimer (3A") 

produced with the Inelastic Multiple Scattering code; in one case the cutoffs have been 
00 

applied to T (EC), in the other case they have not. The figure also presents a MS inelastic 

cross section (labelled 2) obtained applying the cutoffs on 12, but keeping 11 = 0. This in 
00 0c 

practice means that T (Eo) and T (E0) are formed with a contribution from the 1=0 partial 
00 

wave only, while T (EC) includes the correct number of partial waves required at each energy, 

following equation (6.27). The R-matrix cross section is also shown in the figure. Apart from 

the shape of the MS cross sections, which will be discussed later, it is clear that applying the 

cutoffs brings the MS cross section closer to the R-matrix one, used as reference; the size of 

the untrimmed MS cross section is much larger by several orders of magnitude, and very 

different in shape. Only at high energies (around 13 eV) it becomes comparable with the 
00 

R-matrix cross section. We then conclude that the cutoffs need to be applied to 7I' (EC). 

The difference between cross sections (1) and (2) is more marked at low energies, where 

the inclusion of all the 11 partial waves in the T-matrices calculated at Eo has the effect of 

significantly increasing the cross section near the threshold for the excitation into the first 

state. Cross section (2) therefore resembles the R-matrix one in both shape and size. 

The difference between these cross sections is more evident in figure 6.7, where the results 

for the excitation into the 'A" dimer state are shown. The "no cutoff" cross section (not visible 

in the figure) is again too high in the whole energy range, and from now on we will not plot it 
oc 

anymore, concluding that the cutoffs need to be applied to T (Eo). Comparing cross sections 

(1) (including all the partial waves needed at each energy in T(Eo)) and (2) (where only ll =0 

is kept, and the interpolation is carried out on 12 only), we can see that in the second case 
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Figure 6.6: Inelastic cross sections for the excitation to the dimer 3A" state; comparison between R-matrix 

and MS results (obtained applying different cutoffs). In cross section labelled (1) all the partial waves needed 
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Figure 6.8: R-matrix and MS inelastic cross sections for the excitation into the lowest four states of (H20)2. 

The symmetry of the states is specified in the figure. 

the cross section displays a correct behaviour at the threshold, while the inclusion of the 

other partial waves gives the cross section a divergent behaviour. The several-eV wide peak 

visible at around 10 eV in cross section (1) is only due to the interpolation procedure (i. e. 

it is generated when trying to match a cutoff cross section to another) and has no physical 

meaning. It could be removed tuning the parameter y, which has been set to 0.75 in both 

interpolation procedures, but a very large value should be used instead. Again, MS cross 

section (2) resembles better the reference R-matrix one in shape and is also closer to it in size, 

if compared to cross section (1), but in absolute terms the discrepancies are very marked, 

amounting to 100% of the R-matrix cross sections between 9 and 13 eV. 

Figure 6.8 summarises a comparison between the MS inelastic cross sections (including 

either all 11 partial waves or 11 =0 only) and the R-matrix cross sections for the four excitations 

studied. The threshold values (listed in table 6.3) always coincide because of the artificial 

shifting carried out in the MS calculation. Several conclusions can be drawn from the analysis 

of figure 6.8. 
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i. Firstly, the MS vs R-matrix comparison is in general very poor. In plot (a) (excitation 

to the 3A" state) the MS code underestimates the cross section, while in plots (c) and 

(d) (1A" and 1A" states) it overestimates it. Plot (b) (excitation to the 3A' state) is the 

only one displaying a quite good agreement between R-matrix and MS results. 

ii. The cross sections with all 11 contributions are divergent at energies close to the thresh- 

old. This behaviour looks similar to that observed in the elastic cross sections, which 

was explained in terms of the dipole moment interaction not being described properly; 

in that case, we concluded that the MS results should not be considered reliable below 

1 eV. The same conclusion cannot be drawn here: the discrepancies are very marked 

not only at energies close to the threshold, but in the whole energy range; the extent 

of the divergence is different in the various plots: the 3A' cross sections (plot b) are in 

good agreement about 1 eV after the threshold, while the singlet cross sections (plots 

c and d) show large discrepancies up to high energies (outside our range). 

iii. The MS cross sections including 11 partial wave 0 only, labelled (2), generally in better 

agreement with the R-matrix ones than those labelled (1), are characterised by a good 

behaviour at the threshold, but the comparison is still poor. They all display marked 

peaks which are remnants of the Feshbach resonance observed in the monomer, which 

we were unable to avoid. But most importantly, they are in general very similar, 

almost identical, to the monomer cross sections. In order to better analyse this too 

marked similarity, figure 6.9a shows the MS cross sections for the excitation into the 

dimer 3A" and 3A' states, plotted together with the R-matrix cross sections for the 

excitation into the monomer 3B1 state (all these cross sections are obtained from the 

same T-matrix elements). The Feshbach resonance of the monomer is still the most 

noticeable feature, and evidently the Multiple Scattering code is unable to remove it. 

Such resonance does not appear in any of the dimer's cross sections, although this 

may be due to the energy grid chosen, too large to display a possibly very narrow 

peak; it is also possible that the resonance is split in the dimer case, as it happens 

for the first Feshbach resonance (of 2B1 symmetry). However, this would be due to 

dimerisation effects (i. e. structural interaction between sub-units); we already noted 
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how the MS inelastic code is unable to account for these (e. g. the shift of the energy 

thresholds), since it relies on the assumption that the only interaction between sub- 

units is limited to the multiple scattering effects during the collision process. Even 

disregarding the Feshbach resonances it is still evident that the MS dimer cross sections 

resemble the monomer cross sections more than they resemble the R-matrix dimer ones. 

The same conclusions can be drawn for figure 6.9b, where the MS cross sections for 

the excitation into the dimer IA" and 'A' states are plotted together with the R-matrix 

cross sections for the excitation into the monomer 1 Bl state. This behaviour can be 
oc 

expressed mathematically as TG', C ; ztT, where TG, C is the global MS T-matrix for the 
Oc 

excitation into the dimer state IC) and T is the monomer T-matrix for the excitation 
oc 

into the monomer state Ic). Recalling equation (6.23) and also that T (Eo) is formed by 
oc 

the monomer T (Eo) from sub-units belonging to ensemble C only, we can conclude 

that, including partial wave 11 =0 only (producing the MS cross section labelled 2), the 

term in square brackets in (6.23) (i. e. the multiple scattering term) is almost negligible, 

affecting minimally the final cross section. If, on the other hand, higher partial waves 
00 

are included in T (Eo) according to the standard procedure (producing cross sections 

labelled 1), the term in brackets contributes more to the final T-matrix, increasing by 

oo 1-1 
several orders of magnitude the cross section. In particular, the term 

(I- 
XT (Es)) 

was responsible for the divergence observed in the elastic cross section, which was in 

that case limited to E<1 eV. Here the effect is much more noticeable even for EC >1 eV 

(Eo > DEC +1 eV), because the inelastic cross sections are in general more than one order 

of magnitude lower than the elastic ones. Therefore, in one case we underestimate the 

interference effects (hence cross sections (2) are almost identical to the monomer R- 

matrix ones, as seen in figure 6.9), in the other case the incorrect low energy behaviour 

of the interference term is dominant and suppresses all other contributions. 

As a final remark, the main difference between 3A" and 3A' cross sections, as well as 

that between 'A" and IA' ones, is due to the localisation of the excited states they refer 

to on two different water molecules (the in plane and out of plane ones). The effect of 

such localisation can be analysed looking at figure 6.10, where the cross sections for the 
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singlet states: R-matrix cross section for monomer state 1 B, and MS cross sections for dimer states 'A' and 
1A". For the dimer cross sections in both panels, continuous lines refer to states of A" symmetry, dashed lines 

to states of A' symmetry. 

excitation into the triplet (3A" and 3A') and the singlets states ('A" and 1A') are shown; the 

thresholds have all been shifted to zero. Comparing each couple of lines at the top of both 

figures, showing the cross sections of A" and A' symmetry (continuous and dashed lines 
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respectively), it is evident that the difference is quite marked for the R-matrix results (top 

plots); the cross sections for the states of A' symmetry are lower than the corresponding 

states of A" symmetry by approximately 30%, and the shapes are generally different. Such 

differences are approximately only due to the localisation of the same state on different 

monomers, since all states correspond to a monomer excitation into B, (singlet or triplet) 

states. 

The effect of the localisation is much less evident in the Multiple Scattering results (bottom 

plots), where the difference amounts to - 5% at most, and the shapes are almost identical. 

This, again, is due to the fact that the MS cross sections (2) are virtually identical to the 

monomer R-matrix ones, as we noticed before, and that the interference effects are almost 

completely negligible. To very little extent, the MS code accounts for the localisation, since 

the dashed lines are lower than the corresponding continuous ones, but certainly the effect is 

not properly included. Perhaps, even in clusters where the excited states are well localised on 
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the monomers, as Chipman (2005) suggests, the Multiple Scattering method cannot include 

the effects that cause the differences observed in the cross sections. 

6.4 Conclusion 

Applying the Inelastic Multiple Scattering code to the study of the excitation into the 
lowest four states of (H20)2, we concluded that the method, as currently devised, fares very 

poorly in describing such inelastic process. 

In the first place, when the standard interpolation procedure is carried out and the correct 

number of partial waves is included in the cutoff T-matrices, the resulting cross sections differ 

strongly from the R-matrix ones. 

Secondly, if the partial wave 11 =0 only is retained (which provides better shaped cross 

sections, even though it is a procedure lacking physical justification), the cross sections look 

extremely similar to the monomer ones. The MS cross sections for the excitation into A' 

and A" dimer states (both singlets and triplets) are virtually identical. In the first case, the 

incorrect low energy behaviour of the interference effect is too strong (in the elastic cross 

section it was only evident at E<1 eV), while in the second case the interference effects are 

virtually suppressed. 

Our inability to produce reliable inelastic cross sections for the water dimer may be due 

to an incorrect computational implementation of the theory or perhaps to mistakes or bugs 

in the code that we have been unable to find. But the discrepancies may also indicate that 

the excited states of the cluster cannot be correctly described as [monomerg. s. monomer"] in 

a scattering study, even if a prior calculation on (H2O)2 seems to indicate that this is a good 

approximation. It is also possible that, as one sub-unit undergoes an electronic excitation and 

scatters the electron inelastically, the effect that the sudden change of electronic distribution 

has on the other sub-units is not negligible (even though time considerations would suggest 

this is an unlikely explanation); in such a case, the treatment developed here would be 

too simplistic and should be perhaps modified to include one sub-units' response to the 

excitation of the other. 

More generally, even if the code worked for (H2O)2, the method would still be less general 
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than the elastic version, which only requires geometrical parameters to run; before applying 

it to other systems, prior information would be needed about the electronic structure of the 

target. 

In conclusion, the study presented in this chapter is still regarded as a work in progress, 

and the inelastic MS approach as still incomplete. Future studies may help clarify the issues 

encountered. 



Chapter 7 

Conclusions 

7.1 Outline of the work done 

The research presented in this thesis has been focused on the development of a novel 

theoretical method, derived from the Multiple Scattering theory of Dill & Dehmer (1974) 

and making use of ab initio scattering data, which has been employed to calculate cross 

sections for the collision process between a low energy electron and a molecular cluster. The 

primary aim of the method is to provide reliable results without making use of semiempirical 

parameters, and overcoming the strong dependence on the size and number of electrons of 

the target which is typical of standard ab initio methods. In order to achieve this, several 

assumptions, implicit in the basis of the MS method, needed to be made, which limit the 

number of targets that can be studied, and which may be summarised as: the method only 

accounts for the multiple scattering of the impinging electron's wavefiinction; any other interaction 

between the sub-units, and its effect on the collision, are totally disregarded. 

The research carried out consisted in applying the method developed to the study of 

collisions with various cluster systems, in order to assess its validity, identify the application 

range and establish its limitations; the results of these studies were compared to others 

obtained with other theoretical methods (particularly the R-matrix one) whenever possible. 

The Multiple Scattering method was firstly applied to calculating elastic cross sections 

for several geometries of the water dimer, mostly differing by their dipole moments; from 

161 
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the very encouraging results it was concluded that the method is able to account well for 

the effect of the relative orientation of the monomers, and, in a more limited energy range, 

for the effect of the overall dipole moment, producing good results at energies higher than 

1 eV. At lower enegies the effect of the dipole moment of the cluster, which is not correctly 

accounted for by the combination of differently oriented T-matrices, is very important; its 

poor description leads to an incorrect estimate of the cross sections. Larger water clusters 

were then studied, and a good agreement with R-matrix results was observed for (H20)3. 

The MS code was also applied to larger water clusters ((H20)4 and (H20)5), for which 

geometrical parameters were known, producing reasonable cross sections (R-matrix calcu- 

lations could not be performed) in a very efficient way, without the drastical increase in 

the computational and time requirements that would characterise other ab initio methods. 

The mentioned requirements depend only on the size of the monomers' T-matrices (i. e. on 

the number of partial waves included) and on the number of sub-units forming the cluster; 

matrix operations only are involved. The most time consuming operations are the R-matrix 

calculations for the monomers that generate the T-matrices which serve as input. 

In order to test whether the method would correctly reproduce cross sections for systems 

characterised by shape resonances, a study was carried out on the formic acid dimer, whose 

elastic cross sections display two marked shape resonances below 7 eV. The MS results 

successfully reproduced these features, which appeared at different energies depending on 

the basis sets employed in the monomer R-matrix calculations; the qualitative comparison 

with existing theoretical and experimental results proved quite good, although since the 

R-matrix calculations for the monomers were not of excellent quality (partly because of the 

poor description of the polarisability), the agreement with experimental data (resonance 

positions) was not so good. It was however established that the method is able to reproduce 

shape resonances. 

An attempt to modify the MS treatment in order to describe inelastic processes did 

not succeed; a limitation of the method is that the calculations require a very accurate prior 

knowledge of the cluster excited states (particularly their energies and their exact localisation 

on the monomers). Even when such information is available, the results we obtained for the 
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excitation into the lowest four states of (H20)2 in the equilibrium geometry (employing two 

partial wave cutoff methods) either showed marked discrepancies with the R-matrix cross 

sections, or were very similar to the monomer ones. This indicates that there is something 

incorrect in the derivation or implementation of the technique. 

The conclusions reported in the next sections refer to the elastic calculations only. 

7.2 Effect of the parameters 

Apart from the geometrical and collisional input (cluster geometry parameters and 

monomer T-matrices), the MS code requires the use of two parameters, y and a,, which 

must be chosen independently. The additional parameter a, which determines the radius 

of the R-matrix inner region, is employed when the collisional input for the sub-units is 

generated with the R-matrix code, and it is not intrinsic in the MS technique. In the studies 

carried out in this thesis, it was observed that the choice of a is uninfluential, and it must 

be based on considerations relative to the R-matrix method alone. In general, larger values 

of a ensure that the target electron density is negligible in the outer region, hence ensuring 

correct R-matrix results. 

The parameter ac is introduced to limit the extent of the long range interaction when cal- 

culations on the cutoff T-matrices Tc are performed. It is required because of the assumption 

that the sub-units' potentials do not overlap. Different values of ac may have a very marked 

effect on the sub-units' cross sections, as it was observed in the case of water. However, 

such effect is drastically reduced when MS cross sections are calculated. In both kinds of 

clusters analysed (water and formic acid ones) it was concluded that the effect of ac is hardly 

noticeable (provided it is within a reasonable range), and in all cases we decided to set a, = a. 

The possibility cannot be excluded, however, that ac may have a more marked effect when 

other types of clusters are studied. 

Finally, it was noted that the interpolation procedure, which builds the final MS cross 

section combining cutoff cross sections a1, according to the cutoff energies El, may be tuned 

by means of an ad hoc energy correction parameter y. Its effect is to shift the cutoff energies 

to higher or lower values. Setting y to 0.75 (instead of the "natural" choice of 1) provided 
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better cross sections in some cases, avoiding the appearance of spurious peaks which were 

due to the "jump" from one cutoff cross section to another. In other cases, when spurious 

peaks did not appear, its effect was negligible. The same value y=0.75 was used in both 

water and formic acid clusters, and therefore seems to be independent on the nature of the 

cluster. Further studies should be carried out on other types of clusters in order to assess its 

general validity. 

7.3 Range of application and limitations 

For the targets treated in this thesis, all of which comprise monomers with a non zero 

dipole moment, the MS method produces reliable elastic cross sections for energies of the 

scattering electron higher than -1 eV; although the effect of the monomers positions and 

relative orientations seem to be correctly accounted for, the cluster's dipole moment is not 

always described correctly; at low energies, where such effect is critical, the cross sections are 

not reliable. The application to clusters of non-polar molecules should potentially be easier. 

The most important limitation of the MS treatment is that it cannot account for any 

mutual interaction between sub-units, other than that due to the multiple scattering of the 

impinging electron's wavefunction. Distortions of the sub-units' electron densities, due to 

covalent or hydrogen bonds, or more generally to van-der-Waals interaction, are completely 

neglected. In some cases such effects may be partially introduced in the calculation, e. g. 

modifying the sub-units' geometries in order to account for the distortion, but in general 

these issues cannot be properly addressed. For this reason the method gives the best results 

with molecular clusters where the monomeric sub-units are minimally influenced by the 

others, and there is virtually no electron density between them (although dipole-dipole 

interactions are still present when polar sub-units are treated). 

7.4 Final remarks and future work 

In conclusion, within the limitations addressed above, the Multiple Scattering method 

provides reliable elastic cross sections with little memory and computing time requirements; 
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it correctly reproduces shape resonances. It requires a minimal input, which is limited 

to geometrical parameters and can make use of collisional information obtained with any 

theoretical method, although the R-matrix one is particularly suitable for the task due to 

some of its characteristics. 

If issues related to surface effects are addressed, it can be successfully applied in the 

future to the study of very large clusters, potentially describing the solid or liquid phases in 

a realistical way, although a static description of the targets may in these cases be incomplete. 

The method can be applied just as easily to heterogeneous clusters, and therefore an ensemble 

of sub-units may be built up in such a way to describe realistical biological environments. 

Its application to the study of LEE scattering from biomolecules (e. g. the recent works of 

Caron and co-workers) may be further investigated, and will likely be extended to include 

the effect of a biologically significant environment. 

Finally, the MS method developed here may be easily applied to positron scattering with 

no modification of the code. 

In general, its application is likely to lead in the near future to new theoretical research on 

low energy electron collisions with macromolecules and clusters, particularly biological ones 

but not necessarily limited to them, mainly because of the method's limited computational 

requirements, which absolutely distinguish it from the ab initio methods available today. 
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