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Abstract

The main aim of this thesis was to infer mammalian gene regulatory networks from
tens of thousands gene expression profiles via a new “reverse-engineering” approach.
Human and Mouse gene regulatory networks were both inferred and the results col-
lected in a database that represents part of the non-written material that will sup-
port the thesis (http://netview.tigem.it). Each gene regulatory network consists of a
set of gene pairs (connections) and a score based on Mutual Information, which states
their statistical dependence. The inferred connections are organized into a network
that allows exploration of the global features of gene regulation in a mammalian cell.
We collected a massive and heterogeneous dataset of 22,255 gene expression profiles
from a variety of human samples and experimental conditions. We developed a new
mutual-information (MI) reverse-engineering approach able to quantify the extent
to which the mRNA levels of two genes are related to each other across such a com-
plex dataset. The resulting network consists of 4,817,629 connections among 22,255
transcripts. The inferred connections were compared against known protein-protein
and other regulatory interactions to assess their biological significance. We experi-
mentally identified a subset of predicted protein-protein interactions not previously
described in the literature. We discovered regulatory modules within the network,
consisting of genes strongly connected to each other, which carry out specific biolog-
ical functions. We found that these connected genes tend to be in physical proximity
at the chromatin level in the nucleus. We show that the network can be used to pre-

dict the biological function and subcellular localization of a protein, and to elucidate
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the function of a disease-gene. Specifically we discovered that the gene granulin pre-
cursor { GRN), whose mutations cause frontotemporal lobar degeneration, is involved
in lysosome function. We have developed an online tool (http://netview.tigem.it) for

querying and exploring the gene regulatory network.



Chapter 1

Introduction

The study of individual gene, and protein function, has been largely the main focus
of traditional biology, known as “reductionist” approach. The advent of new tech-
nologies, particularly high-throughput technologies, have considerable changed the
traditional approach. Nowadays, researchers aim at integrating different sources of
information in order to understand the function of a gene as part of a larger network
of regulations and interactions.

The common belief that, by identifying one gene responsible for a genetic disease,
this would lead quickly to a full understanding of the pathogenesis of the disease,
is now known to be wrong. For example proteins have multiple domains (function
units) with different “potential” function. So, mutations in one gene would certainly
have more than one consequence. This has been confirmed in many species, from
baker’s yeast to human. So, it is almost impossible to understand the pathogenesis
of one disease just by analyzing the function/structure of one gene or its protein
product, but the surrounding “gene regulatory network” must also be considered.

Modern biology often follows the “Holism”! idea, which states that all the prop-
erties of a given system cannot be determined by its components parts alone. The

general principle of holism was concisely summarized by Aristotle in the Meta-

!Greek word meaning all, whole, entire, total



physics: “The whole is more than the sum of its parts”. Under this paradigm the
“systems biology” area of research was born. Systems biology aims to study a biolog-
ical system as a whole rather than study its components. The main challenge is the
identification of “gene regulatory networks” by transforming high-throughput
datasets into biological insights.

The flow of genetic information has been described as the central dogma of
molecular biology. The first step is the synthesis of RNA using a DNA-dependent
RNA polymerase described as transcription schematised with red (DNA) and blue
(RNA) blocks in Figure 1.1. The second step is the polypeptide synthesis and is
referred as translation and schematised with blue blocks (RNA) and circles (pro-
teins) in Figure 1.1. At the level of proteins, among the others, we observe two
types of physical interactions: protein-protein interactions, where proteins form a
protein complex, and protein-DNA interactions, where “Transcription Factor” pro-
teins bind to the target sequences usually in the immediate vicinity of a gene, and
guide the activation of the polymerase that subsequently transcribes the gene. The
transcribed gene is referred to as the target of the transcription factor. The process
just described is obviously a rough description of the complex regulatory mecha-
nism occurring in a cell. However, for the purposes of the following work, this is a
sufficient abstraction of this complex mechanism that is also schematised in Figure
1.1.

In a topological sense, a network is a set of nodes and a set of directed or
undirected edges between the nodes. Biological networks exist at various levels as

shown in Figure 1.1

e Transcription regulatory networks: Genes are the nodes and edges represent
transcription regulation between a transcription factor and a target gene. A
gene serves as the source of a direct regulatory edge to a target gene by pro-

ducing a RNA or protein molecule that functions as a transcriptional activator
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Figure 1.1: Different kinds of networks in Biology.

or inhibitor of the target gene. If the gene is an activator, then it is the source

of a positive regulatory connection; if an inhibitor, then it is the source of a

negative regulatory connection.

e Protein networks: Proteins are the nodes and edges represent physical inter-

actions between two proteins. These edges are bidirectional (or undirected).

e Metabolite networks: Metabolites are the nodes and an edge represent the

reaction catalyzed by an enzyme between the two metabolites. In this kind of

network edges are directional.

We must notice that a given interaction (or reaction) can be observed under

a certain condition and not in another. Moreover, a gene can be transcribed only

under certain conditions. One of these conditions can the tissue. It is known that

the genes can be mainly divided in house-keeping (expressed in all the tissues) and

tissue-specific. Genes that are only expressed in certain tissues can be inaccessible in

others. The accessibility of the DNA sequence representing a gene can be due to the

folding of the chromatin structure. Chromosomes in a dividing cell are packed up

into neat bundles ready for cell division. In reality, chromosome hence chromatin of

the cells during normal activity is folded in such a way that not all the regions can

be accessed hence transeribed by the polymerase (heterochromatin). The folding of
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the chromatin allows chromosome regions that are far apart to be spatially close to
each other.

The aim of this thesis is to develop a reverse-engineering algorithm able to infer
gene regulatory networks by analysing massive gene expression profiles from high-
troughput technologies. The gene regulatory networks so obtained will elucidate
transcriptome organisation, gene function and gene regulation in mammalian sys-
tems. The data analysed in this study were downloaded for a public repository for
gene expression profiles. The idea is to reverse-engineering mammalians gene net-
works from a collection of heterogeneous data, hence from different tissues and, in
general, different biological conditions that are not uniformly distributed.

The thesis is organized as follows: In Chapter 2, we introduce in more details gene
regulatory networks and described various mathematical models used for reverse-
engineering the gene regulatory network. In Chapter 3, we performe a comparative
studyv among different approaches to reverse-engineering using ready-to-use software
fomn each class of models described in Chapter 2. We tested these approaches on ex-
perimental data sets as well as on in-silico datasets. In Chapter 4, we described
a novel approach to reverse-engineering gene regulatory networks using massive
datasets of gene expression profiles from human and mouse species. In Chapter 5, we
validate the inferred networks by comparing our results with known protein-protein,
and other types, of interactions collected from literature. Moreover, we show how to
make use of the topology of the gene network to predict gene function. In Chapter
6, we ezperimentally validate some of the new predictions of the reverse-engineering
algorithm in terms of new protein-protein interactions and gene function prediction.
In Chapter 7, we conclude the thesis highlighting the limitation of the proposed
approach and introduced a new statistical model able to generalise the proposed
reverse-engineering approach.

The work described in this thesis has been presented in the following publications,

[9, 23, 47, 57], and is part of the following manuscripts submitted and in preparation,
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(22, 15, 14].



Chapter 2

Introduction to

reverse-engineering

Reverse-engineering techniques have principally focused on decoding the mechanisms
of transcription control, the first step in gene expression. This is because DNA mi-
croarray techuology has enabled rescarchers to efficiently measure the concentration
of all RNA transcripts in a cell, making such data abundant. Measuring peptide,
protein and metabolite regulators of gene expression is generally more difficult, and
such data are not often available. But with improved technologies for protein and
metabolite measurement, reverse-engineering techniques may be extended also to
these kind of data.

Reverse-engineering techniques can be divided in two main classes: “physical”
and “influence” approaches. A physical approach seeks to identify the transcription
factors (TF) that regulate gene transcription, and the DNA motifs to which the
factors bind. In other words, it seeks to identify true physical interactions between
regulatory proteins and their target promoters. An advantage of this strategy is that
it can reduce the dimensionality of the reverse-engineering problem by restricting
possible regulators to TFs. The second strategy, which we call the “influence” ap-

proach, seeks to identify regulatory influences between RNA transcripts. In other
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words, it looks for transcripts that act as “inputs”’, whose concentration changes
can explain the changes in “output” transcripts. Each transcript may act as both
an input and an output. The input transcripts can be considered the regulators of
transcription. By construction, such a model does not generally describe physical
interactions between molecules since transcription is rarely controlled directly by
RNA (and never by messenger RNA, which is the type of RNA predominantly mea-
sured by DNA microarrays). Thus, in general, the regulator transcripts may exert
their effect indirectly through the action of proteins, metabolites and effects on the
cellular environment (Fig. 2.1). Nevertheless, in some cases, the regulator transcripts
may encode the TF's that directly regulate transcription. In such cases, the influence
model may accurately reflect a physical interaction. An advantage of the influence
strategy is that the model can implicitly capture regulatory mechanisms at the pro-
tein and metabolite level that are not experimentally measured. That is, it is not
restricted to describing only transcription factor/DNA interactions.

A functional interaction between two genes in a gene network does not neces-
sarily imply a physical interaction, but can also refer to an indirect regulation via
proteins, metabolites and ncRNA that have not been measured directly (Figure 2.1).
We must mention that the concept of influence interaction is not well defined and
strongly depend on the mathematical formalism the gene network is approximated
with. Therefore in what follows we will refer to functional interactions by the term
“connection”, whereas the term “interaction” will be used only when a physical
interaction between the DNA, RNA or protein products of the genes is occurring.

The identification of gene regulatory networks is crucial for understanding path-
ways and functions that take place within a cell. Gene regulatory networks can be
inferred by analysing the transcriptional response of a population of cells in multi-
ple experimental conditions. High-throughput technologies such as microarray and
more recently nert generation sequencing allow us to measure quantitatively the ex-

pression levels of the genes under specific experimental conditions. The capability to
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Figure 2.1: Biological networks are regulated at many levels. (A) Shows an example
network where transcription factors (blue and green shapes) influence the expression
of different transcripts (brown lines). One protein is a membrance-bound metabolite
transporter. The metabolite it imports (brown triangle) binds one of the transcrip-
tion factors enabling it to bind DNA and initiate transcription. (B) A gene network
model of the real network in (A). Because the model is inferred from measurements
of transcripts only, it describes transcripts as directly influencing the level of each
other, even though they do not physically interact.
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“obtain” the fingerprint of a ccll at a specific time and condition, together with the
large number of expression data now available allow to use methods from engineer-
ing, mathematics and statistics to explore and analyse gene expression data. In the
following chapter, we present different approaches to infer or “reverse-engineer” gene
regulatory networks from gene expression profiles measured by microarray technol-
ogy.

Assume that one is interested in analysing the response of a cell under certain
conditions. for example when the expression of some of its genes is modified (or
perturbed) by an external agent (i.e. drug, heat shock). The genes that are directly
or indirectly regulated by the perturbed genes will then likely change their expression
too. From an engineering point of view, knowledge of how genes’ expression change
following the perturbation experiment allow us to identify the network of regulatory
interactions occurring among them. This identification process takes different names
depending on the field of application. such as: system identification and reverse-
engineering.

We refer to a gene network as the collections of gene-gene influences captured
from expression data. A gene network is not just a static list of edges (connections
between genes) but it contains information about the topological organisation of its
nodes (genes). For example, a community in a network of genes identifies a group of
genes that are highly connected among each other and poorly connected with genes
outside the group. Communities of genes can be used to detect the modularity of
the cell. where groups of genes cooperate to accomplish a specific function.

In what follows we will describe reverse-engineering algorithms to infer gene-
gene influence interactions (connections). A description of other methods based on
the physical approach and more details on computational aspects can be found in

[54, 5, 41, 90, 38, 13, 107].
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2.1 Microarray technology and microarray data
repositories

A DNA microarray (DNA chip) is a collection of small DNA oligomers on a solid
surface of approximately 1 cm? (chip). DNA oligomers on the chip are organized in
approximately 250,000 “spots” (depending on the chip model), and each spot, called
probe, contains millions of copy of the same DNA sequence. Microarrays are used
to simultaneously measure the expression of thousands of genes starting from total
RNA extracted from a population of cells.

Total RNA is converted into cDNA through reverse transcriptase and marked
with a fluorescent marker. cDNA is then placed on the microarray chip and the com-
plementarity between two fragments allows the hybridization of a cDNA sequence
to the corresponding DNA “spot”. The number of hybridized probes in a spot is
directly related to the expression level of the gene represented by the spot. Gene
expression levels are quantified through fluorescence analysis, the higher the num-
ber of hybridized copy of a probe the higher the fluorescence level measured that is
associated to that spot.

There exist many types of microarray all based on the same principles: the two
color microarrays are used to measure both the gene expression levels of treated
cells and gene expression levels of the control cells on the same chip; other types of
microarray can be used to measure single nucleotide polymorphism, fusion genes,
alternative splicing, and so on. Here, we concentrate on DNA single color microarray.
Hercon we usc the termn hybridization and gene expression profile (GEP) to refer to
the set of gene expression levels collected on a single microarray chip. Moreover, we
refer to a set of hybridizations with the term experiment.

The fluorescence levels that are collected from a microarray hybridization are

called raw data. The hybridizations in the same experiment are usually “normal-
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ized”. The normalization process is a data pre-processing step where the measure-
ment noise is removed, the background fluorescence is subtracted and the average
fluorescence level among the spots associated to the same probe is computed. The
process yields a set of comparable gene expression profiles. We refer to a set of
normalized GEPs (or experiment) with the term processed GEPs.

There exist two major GEPs repositories: Gene Expression Omibus (GEO [35])
and Array Express. Array Express [87] is a public repository of gene expression
profiles described in literature. GEPs are logically organized into experiments. An
experiment is a collection of GEPs (usually performed in a single laboratory) to-
gether with their METADATA to trace information such as the applied experimental
protocol, type of samples (cell types or tissues), and all the other information re-
quired by the MIAME standard [20]. Recently, data from GEO have been curated
(METADATA curation) and imported into Array Express in order to be MIAME
compliant (data in GEO are not). Most of the experiments in Array Express come
with the processed GEPs. Here, we downloaded and analyzed processed GEPs from

Array Express repository.

2.2 Reverse-engineering approaches

2.2.1 Bayesian networks

Definition 2.1 A Bayesian Network (BN) is a directed acyclic graph (DAG) G =
(V, A) together with a set of local probability distributions P. The vertices V' cor-
responds to variables, and the arcs or edges A represent probabilistic dependency
between the variables. An arc from variable X to variable Y states a probabilistic
dependence between the two variables, i.e. the state of Y depends on the state of X.
In this case, X s called a parent of Y. A node with no parents is unconditional. P

contains the local probability distributions of each node X conditioned on its parents.
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A Bayesian Network provides a graphical representation of probabilistic relation-
ships among a set of random variables X;, with ¢ = 1...n. An example of Bayesian
network is provided in Fig. 2.2. A variable in a Bayesian network can be either
discrete or continuous. Bayesian networks can handle incomplete data sets and the
statistical nature of the formalism provides a framework to account for noisy data
typical of biological experiments.

Owing to its advantages, researchers have devoted considerable attention in re-
cent vears to the use of Bayesian network approaches for reverse-engineering gene
networks [43, 80, 97, 34, 119, 98, 50, 120, 100, 102].

A Bavesian network describes the relationship between variables at both quali-
tative and quantitative level. At a qualitative level, the relationships between vari-
ables X; are simply dependence and conditional independence. These relations are
encoded in the structure of a directed graph, G, to achieve a compact and inter-
pretable representation. Vertices of the graph correspond to variables and directed
edges between vertices represent dependencies between variables.

At a quantitative level, relations between variables are described by a family of
joint probability distributions P(Xj,...,X,) that are consistent with the indepen-

dence assertions embedded in the graph G and have the form:

N
P(XI’---yXN) =HP(Xi =T | Xj=$ja---’Xj+p=$j+p) (2-1)

i=1

where the p + 1 genes on which the probability is conditioned are called the parents
of gene 7 and represent its regulators, and the joint probability density is expressed
as a product of conditional probabilities by applying the chain rule of probabilities

and independence. This rule is based on Bayes’theorem:

P(A,B) = P(B| A)P(A) = P(A| B)P(B) (2.2)
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BAYESIAN NETWORKS INFORMATION-THEORETIC ORDINARY DIFFERENTIAL EQUATIONS

W MI(A,H)=0 dA/dt=61A +828B +63
P(AIIB,C.D,E)=P(AlIB,C) WA B0 e rg‘o,s g':;e:ﬁy' o
0 < MI(A.D) < MIN{MI(A B).MI(B.D)} dA/dt=1(A,B,C)

Figure 2.2: Systematic overview of the theory underlying different approaches to
reverse-engineering gene regulatory networks. Bayesian networks: A is conditionally
independent from D and E given B and C; Information-Theoretic networks: Mu-
tual information is 0 for statistically independent variables, and Data Processing
Inequality helps pruning the network; Ordinary Differential Equations: Determinis-
tic approach where the rate of transcription of gene A is a function (f) of the level
of its direct causal regulators.

Note that the JPD (joint probabilty distribution) can be decomposed as the
product of conditional probabilities as in Eq. 2.1 only if the Markov assumption
holds, i.e. each variable X; is independent of its non-descendants, given its parents
in the directed acyclic graph G. A schematic overview of the theory underlying
Bayesian networks is given in Figure 2.2.

The Markov assumption allows to write the conditional probability distribution
only conditioning on the parents node. For example in Fig. 2.2 node A is independent
from all the others nodes given its parent B and C. The same does not hold if we
consider the Markov blanket of node A, that states that node A is independent from
all the others nodes given its parent, its children and its children’s other parents
(node H in Figure).

The joint probability distribution, P(A,...,H), for the Bayesian network in

Figure 2.2 is given by

P(D)P(E)P(H)P(B | D)P(C | E)P(A| B,C)P(F | A,H)P(G | 4)  (2.3)
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In order to reverse engineer a Bayesian network model of a gene network, we
must. find two sets of parameters: the conditional probability functions relating the
state of the regulators to the state of the transcripts and the directed acyclic graph
G (i.e. the regulators of each transcript) that “best” describes the gene expression
data D. where D is assumed to be a steady-state data set.

The model-learning algorithm usually assumes a specific form of the conditional
probability function. Any function can be used, including Boolean and linear func-
tions. But there will be a tradeoff between model realism and model simplicity. More
realistic models will have more parameters, which will require more experimental
data and greater computational effort to solve.

The network structure is usually determined using a heuristic search such as
greedy-hill climbing approach, stochastic methods or simulated annealing (which do
not guarantee convergence to the global optimal solution). Heuristics approaches are
used because trying out all possible combinations of interactions among genes is a
NP-hard problem. For each network structure G visited in the search, the algorithm
learns the maximum likelihood parameters for the conditional probability functions.
It then computes a score that evaluates each graph G (i.e. a possible network topol-
ogy) with respect to the gene expression data D. The score can be defined using

Bayes'rule:
P(D | G)P(G)

P(GlD)= P(D)

(2.4)

where P(G) can either contain some a priori knowledge on network structure, if
available, or can be a constant non-informative prior, and P(D | G) is a function, to
be chosen by the algorithm, that evaluates the probability that the data D has been
generated by the graph G. The most popular scores are the Bayesian Information
Criteria (BIC) and the Bayesian Dirichlet equivalence (BDe). Both scores incorpo-
rate a penalty for complexity to guard against over fitting of data. The BDe score

is based on the full Bayesian posterior probability P(G | D) and has an inherent
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penalty for complexity since it computes the marginal likelihood P(D | G) by inte-
grating the probability of the data over all possible parameters assigned to G. The
BIC score is an asymptotic approximation to the BDe score that uses an explicitly
penalized estimate to the likelihood. One then selects the highest-scoring network
as the correct network.

In Bayesian networks, the learning problem is usually underdetermined and sev-
eral high scoring networks are found. To address this problem, one can use model
averaging or bootstrapping to select the most probable regulatory connection and
to obtain confidence estimates for the connection. For example, if a particular inter-
action between two transcripts repeatedly occurs in high-scoring models, one gains
confidence that this edge is a true dependency. Alternatively, one can augment an
incomplete data set with prior information to help select the most likely model
structure.

The main limitation of Bayesian networks is that they assume that the network
structure is acyclic (i.e. no feedback loops). Dynamic Bayesian networks [119, 34,
80] overcome this limitation and can be used to infer cyclic phenomena such as
feedback loops that are prevalent in biological systems. Dynamic Bayesian networks,
an extension of Bayesian networks, are able to infer interactions from a dataset D
consisting of time-series data rather than steady-state data.

A word of caution: Bayesian networks model probabilistic dependencies among
variables and not causality, i.e. the parents of a node are not necessarily also the
direct causes of its behaviour. However, we can interpret the edges as a causal links
if we assume that the Causal Markov Condition holds. This can be stated simply
as: a variable X is independent of every other variable (except the targets of X)
conditional on all its direct causes. It is not known whether this assumption is a
good approximation of what happens in real biological networks.

For more information and a detailed study of Bayesian networks for gene network

inference we refer the reader to [43].
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2.2.2 Association Networks

Association networks connect pairs of transcripts that exhibit high statistical simi-
larity (i.e. statistical dependence) in their responses in all experiments in the dataset.
To measure similarity, algorithms often use Pearson correlation, which assumes linear
dependence between two variables, or mutual information, which makes no assump-
tions about the form of the dependence. If no assumptions are made, association
networks are undirected. Algorithms in this class of model add a connection be-
tween all transcripts pairs with expression profiles that exceed a given threshold
of similarity. This step, however, does not distinguish between direct and indirect
relations. To address this problem, a pruning process can be undertaken to remove

connections that are better explained by a more direct path through the graph.

Correlation

Association networks based on correlations often use Pearson correlation coefficient

between pair of transcript X and Y to compute similarity. This is computed as:

Yoimy (@i — &)y — §)
\/Z?:I] (1'1' - f)(z lecvil(yi ~ ?7)2

(2.5)

Txy =

de la Fuente et al [30] used Pearson correlation or Spearman rank correlation to
connect all similar transcripts. To prune the network i.e. to remove redundant con-
nections, they used partial correlation coefficients. Partial correlation measures the
correlation between two variables after subtracting the correlation between each

variable and one or more additional variables.

Mutual Information

Consider a discrete variable X with C possible states, zy,...,z¢ each with its cor-

responding probability p(x;). The average amount of information gained from a
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measurement that specifies one particular value x; is given by entropy H(X) and is
computed as:

C
=—>_p(z) log(p(=)) (2.6)

The entropy H(X) has the following properties:

If an outcome of the measurement is completely determined by z; i.e. the
probability p(z;) is one and all other probabilities p(z;) with ¢ # j are zero,
then H(X) = 0.

For equiprobable events the entropy H(X) is maximum and is given by:

p(r) = £ — H(X) = log(C)

e Entropy remains unchanged when impossible events are added.

If the logarithm to base C is used, the entropy is normalized i.e.

0< HX)<1

The joint entropy H(X,Y’) of two discrete variables X and Y, with ¥ assuming

values in the set {y1,...,yc}, is given by:

c c
H(X,Y) == plai,yj)log(p(zi, y;)) (2.7)

i=1 j=1

p(x:,y;) denotes the joint probability that X is in state z; and Y in state y;. If the
variables X and Y are statistically independent the joint probability factorises and

the joint entropy H(X,Y) becomes:

H(X,Y)=H(X)+ H(Y) (2.8)
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The mutual information MI(X,Y) or MIxy between variables X and Y is
defined as:

MIX,Y)=H(X)+H(Y)-H(X,Y)>0 (2.9)
Two of the main strategies to estimate MI are:

1. Histogram technique: Consider a collection of N simultaneous measurements of
two continuous variables X and Y. First, the range of values of each variable
is calculated and then that range is divided into M sub-ranges. The data
are thus partitioned into M discrete bins ¢; and k; denotes the number of
measurement of X that lie within bin a;. Probabilities p(a;) are approximated
by the corresponding relative frequencies of occurrence:

k;
P(ai) - 7\7

and the MI(X,Y) between two datasets X and Y may be expressed as:

1 ki
MI(X,Y) = logN + ZJ kijlogk—ii; (2.10)

k;; denotes the number of measurements where X lies in a; and Y in b;.

2. Kernel Density Estimation: With a generalized kernel function K(X), the

kernel density estimator f(X) is given by:

f(X)=—]VlﬁiK(X;xi) (2.11)

The parameter h is called smoothing parameter or window width and the

kernel function K'(X) is required to be a normalized probability density. For
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Gaussian kernel, density estimate then reads:

FX) thz ( ;f—)—z> (2.12)

For two-dimensional Gaussian kernel estimate is written as:

N

R X - ; 2 -y 2
FX.Y) = %—%’—2 S eap (—( zi) 2:2(}/ ) ) (2.13)
T i=

Appropriate value of h depends on the unknown density being estimate. Monte

Carlo simulations can be used to obtain optimal value of h [12].

We refer reader to [105] for more details on MI and its estimation.

There are many algorithms which have successfully applied the association net-
work based on MI [21, 12, 39] and shown its application in biological systems.

Relevance Network: Butte et al [21] showed the application of relevance net-
work on 2467 genes in Saccharomyces cerevisiae. They estimated the MI pair-wise
from 79 measurements using the histogram technique. Each transcript in network
was thus completely connected to every other transcript with calculated mutual in-
formation. To prune the network, they chose a threshold mutual information (TMI),
which was based on estimating average MI after permuting the data n times and
selecting the maximum MI. They selected an edge if its MI was higher than TMI.

ARACNe: Basso et al [12] showed the application of ARACNe on 7907 genes
in Human B cells. The MI between each pair of genes was estimated using ker-
nel density estimation. To select the smoothing parameter they used Monte Carlo
simulation. The algorithm created an initial graph by connecting all transcript pairs
with a mutual information value above a p-value computed again using Monte Carlo
simulation. Final pruning of the network was done using data processing inequal-
ity (DPI) principle that asserts that if both (x,y) and (y, z) are directly interact-

ing and (z,z) is indirectly interacting through y, then MI(x,z) < MI(z,y) and
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MI(x,z) < MI(y,z). ARACNe is more detailed in Chapter 3 in section 3.1.2.
CLR: Faith et al [39] inferred the network of 4345 genes from 445 expression
data in Escherichia coli using CLR which is an extension of relevance network. For
pruning the network, CLR calculated the statistical likelihood of each MI value
within its network context by computing the distribution of MI scores for all possi-

ble regulators of gene i and distribution of MI scores for all possible targets of gene 1.

The definition of MI requires each data point, i.e. each experiment, to be statistically
independent from the others. Thus information-theoretic approaches, as described
here, can deal with steady-state gene expression data set, or with time-series data as
long as the sampling time is long enough to assume that each point is independent.

Edges in networks derived by information-theoretic approaches represent statisti-
cal dependences among gene expression profiles. As in the case of Bayesian network,
the edge does not represent a direct causal interaction between two genes, but only
a statistical dependency.

Theoretically, the main difference between MI and Pearson correlation coefficient
is that MI can quantify also nonlinear dependencies between variables. Moreover,
Pearson correlation cannot imply that two variables are statistically independent.
In practical application, however, MI and Pearson correlation may yield almost
identical results [105].

In addition MI can be extended to more than two variables, whereas Pearson

Correlation is limited to two variables.

2.2.3 Ordinary differential equations (ODEs)

Reverse-engineering algorithms based on ordinary differential equations (ODEs) (17,
44, 112, 118, 111, 108] relate changes in gene transcript concentration to each other

and to an external perturbation. By external perturbation we mean an experimental
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treatment that can alter the transcription rate of some of the genes in the cell. An
example of perturbation is the treatment with a chemical compound (i.e. a drug), or
a genetic perturbation involving over-expression or down-regulation of one or more
genes.

This is a deterministic approach not based on estimation of conditional prob-
abilities, unlike Bayesian networks and association network approaches. A set of
ordinary differential equations, one for cach gene, describes the gene regulation as a

function of other genes:

z;(t) = fi(xl,...,xN,u,G,-) (2.14)

where 6; is a set of parameters describing interactions among genes (the edges of
the graph), i = 1... NV, x;(t) is the concentration of transcript 7 measured at time ¢,
&;(t) is the rate of transcription of transcript ¢, N is the number of genes, and u is an
external perturbation to the system. Since ODEs are deterministic, the interactions
among genes (0;) represent causal interactions, and not statistical dependencies as
the other methods.

An algorithm usually presupposes the form of the influence functions f; and
nonlinear functions can lead to exponential rise in the unknown parameters to be
estimated. Researchers have studied various functions, including sigmoidal functions
[114], linear 32, 44, 26] and non-linear [48] functions.

Reverse-engineering a network using ODEs means choosing a functional form
for f; and then estimating the unknown parameters 8; for each ¢ from the gene
expression data D using some optimization technique.

The easiest form that this function can assume is the linear forin where Equation

2.14 becomes:

2i(t) =) wya; +pi (2.15)
J

where w;; represents the influence of transcript 7 on transcript ¢ and p; is an exter-

nally applied perturbation to the level of transcript ¢. Linear functions have proven
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to be the most versatile in the analysis of experimental data sets [32, 44]. In part,
this is due to the simplifying power of linear functions; they dramatically reduce
the number of parameters needed to describe the influence function and avoid prob-
lems with overfitting. Thus, the amount of data required to solve a linear model is
much less than that required by more complex nonlinear models. This advantage
is crucial in light of the high cost of experimental data and the high dimensional-
ity of the systems. On the other hand, linear functions do not show a rich variety
of dynamic behaviour. They only have one isolated stationary state in which the
temporal change of transcript vanishes, once reaching this state the concentrations
of the network components remain constant. Furthermore, the linear model places
a strong constraint on the nature of regulatory interactions in the cell. Therefore,
oscillations or multistationarity, which are both important properties of true bi-
ological networks, and are nonlinear phenomena, cannot be captured with linear
models. Also, higher noise in the microarray data limits their application to make
only qualitative statements and not quantitative statements about the underlying
network.

ODE-based approaches can be applied to both steady state and time-series ex-
pression profiles. The advantage of ODE approaches is that once the parameters,
0; for all 7 are known, Equations 2.14 and 2.15 can be used to make predictions on
the behaviour of the network to different conditions (i.e. gene knock-out, treatment

with an external agent, etc.) [33].

2.2.4 Other Approaches
Clustering

Clustering, although not properly a network inference algorithm, is the current
method of choice to visualize and analyze gene expression data. Clustering is based

on the idea of grouping genes with similar expression profiles into clusters [36].
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Clusters typically contain genes that function within related pathways or biological
processes. It is therefore possible to assign functions to previously uncharacterized

genes based on the functions of other genes in the same cluster.

Boolean Networks

Boolean networks [1. 2, 68, 53, 58] offer a binary, discrete-time description of a
system. This model assumes that each gene is in two possible states, expressed or
not expressed. Interactions among genes are modeled through Boolean logic func-
tions. These models are quite simple and can be easily applied but the underlying
assumption seems very unrealistic, in particular, modeling genes as discrete entities
assuming one of only two states. Also the amount of data needed to infer the network

increases as 2", where n is the number of genes.



Chapter 3

Comparison of

Reverse-engineering algorithms

In this chapter we test and compare different reverse-engineering algorithms. Each
algorithm is based on a different mathematical or statistical model. The input data
to the algorithms are the genc expression profiles and, in some cases, details on the
performed perturbation experiments. The output is a gene regulatory network where
each node is a gene and each edge expresses the influence of one gene on the other.
Part of the work described in this chapter has been published in [9].

Generally speaking the identification of a system involves three main entities

(73],

1. A collection of experimental data.
These are usually expression data, which are generated through microarray
hybridisation experiments. The data contain the information that allow the
identification, or reverse-engineering, of the system that generated them. Gene
expression profiles obtained by microarrays are often referred to as observa-

tions.

2. A set of candidate models.
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Figure 3.1: System identification process.

The set of candidate models is obtained by specifying the collection of models
that can possibly describe the observed data. In this step, it is possible to
account for the prior knowledge on the characteristics of the biological system.
Each model comes with a set of parameters that can be learned from the data

according to how well they explain the observations.

3. A set of rules that allows to accept or reject a candidate model.
The set of rules is applied over the set of candidate models. The rules are usu-
ally expressed in terms of an evaluation function (or objective function) used

to check the accuracy of the models in fitting the experimental observations.

Once the model is selected, a model validation step is performed. This step allows
to check for the “goodness of fit” of the model to the experimental observations.

Figure 3.1 reports the classical system identification process.
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Infer a gene network? Predict targets of a
perturbation?
yes ves
What kind of expression What kind of expression |_Time
data? data? Series

steady-state steady-state

START
(expression data)

ARACNE(*)
BANJO (DBN)
CLUSTERING

Time
Series

ARACNE
BANJO (BN)
NIR
CLUSTERING

Figure 3.2: Flow chart to choose the most suitable network inference algorithms ac-
cording to the problem to be addressed. (*): check for independence of time points
(see text for details); (BN): Bayesian Networks; (DBN): Dynamic Bayesian Net-
works.

3.1 Gene network inference algorithms

Hereon we indicate with x; the set of gene expression measurements of gene i; with
D, the set of all the expressions of all the genes, and with a;; a connection between
genes ¢ and j, representing a functional or physical interaction between the two
genes’ products (mRNA or protein).

The choice of the algorithm to reverse-engineer a gene network depends of the
type of data available (time-series or steady state). The choice of the algorithm also
determines the type of network that is possible to infer (directed or undirected,
weighted or not, cyclic or acyclic). An overview of current softwares along with their

range of applicability is reported in Figure 3.2 and in Table 3.1, respectively.

3.1.1 BANJO

Reverse-engineering a Bayesian network means to search for the directed acyclic
graph, G, that best describes the influence relationships hidden into the data, D,

as detailed in Section 2.2.1. Figure 3.3 reports the steps followed by the Banjo [119)
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Software Data type
BANJO S/D

www.cs.duke.edu/~amink/software/banjo

ARACNe S/D
http://amdec-bioinfo.cu-genome.org/html/aracneregistration.html

NIR S
http://dibernardo.tigem.it

Hierarchical Clustering S/D
http://bonsai.ims.u-tokyo.ac.jp/ mdehoon/software/cluster/

Table 3.1: Features of the network inference algorithms reviewed. S: steady-state;
D: dynamic time-series.
inference process.

The “searcher” is the core of the Banjo algorithm. The first step, Proposer,
consists of selecting a graph structure, Grougn, to be evaluated according to the
data. The strategies currently implemented in Banjo are the simulated annealing
and the hill climbing.

The graph G, ougn is then scanned for cycles, Cycle Checker, and the acyclic
graph G generated. The two possible strategies to visit the graph and remove the
cycles are the Breadth First Search and Depth First Search.

The acyclic graph G is then evaluated, Evaluator, according to a scoring func-
tion. Banjo implements a Bayesian score, defined as the logarithm of the probability

of the proposed graph model given the data,

BayesianScore(G) = argmazc {logp(G | D)} (3.1)
= argmazg {logp(G) +1logp(D | G) — logp(D)}

o argmazg {logp(D | G)} (3.2)

where Eq. 3.2 is proportiional to Eq. 3.1 under the hypothesis of equiprobability
both over the graph models and over the different data configurations.

The Decider decides, possibly stochastically, whether to accept the proposed
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Figure 3.3: Core BANJO Objects

network (as the new current network) and best scored networks are then reported.

3.1.2 ARACNe

ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) [12, 76]
belongs to the family of association networks for identifying transcriptional interac-
tions between gene products. Relevance networks algorithms, first proposed in [21]
(see also [39]), are described in Section 2.2.2.

The computational core of ARACNe consists in the evaluation of pairwise Mutual
Information in Equation 2.9 between each pair of genes of interest. The computa-
tion of Equation 2.9 requires the knowledge of the marginal and joint probability
distributions of the two genes X and Y that have to be estimated from the expres-
sion profile. In [16] various methods used to estimate probability distributions from
observations are discussed.

ARACNe implements a Gaussian Kernel estimator first reported in [104] that de-

fines a function f in terms of a Gaussian kernel function known as Kernel Estimator
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and estimate the MI between each pair of genes by using the 2.12 as estimation of the
marginal distribution and the 2.13 as joint probability distribution. This approach
has a straightforward graphic explanation; it consists in drawing M “bumps”, one
for each observation, with mean x and a priori fixed height. A classical Gaussian
shaped plot is than obtained by summing up the bumps.

We remind that MI(X,Y) = 0 if and only if X and Y are statistically inde-
pendent. In experimental setting, the estimated MI never equals zero. Under this
scenario the recovered gene network would be full connected (each gene is connected
to all the other genes of the network). To remove redundant, hence false predicted
connections among genes, ARACNe implements a bootstrap strategy that allows to
compute a random MI given the number of observations. This approach allows to
set a threshold that discriminates between statistically dependent and independent
pairs of genes, given the data.

The threshold over the MIs allows to remove most of the false positives predicted
interactions. Biological networks are very sparse and usually the pruning strategy
just described is not sufficient. There are cases where, for example, a commmon regu-
lator of two genes forces the two regulated genes to have an high MI. Consider the
network scheme in Figure 2.2, gene B and C will have an high MI score even though
they are not directly connected. The information “flows” between B and C through
A, hence there is a common shared information (i.e. MI) between B and C, but the
interaction is not direct.

The false predicted connections should be kept only when the interest is on
the functional relationship between the genes. In this case the recovered network
will preserve the connections between the genes whose expression profiles coherently
change across a set of hybridisations. ARACNe implements a pruning strategy based
on the concept of “Data Processing Inequality” (DPI), in order to remove indirect

interactions.
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Definition 3.1 The data processing inequality in information theory states that
given three random variables X, Y and Z which form a Markov chain in the or-
der X - Y — Z, then the mutual information between X and Y is greater than or

equal to the mutual information between X and Z. That is MI(X;Y) > MI(X; Z).

The ARACNe implementation of the DPI scans all the full connected triplets of genes
in the network and removes the recovered connection with lowest MI (according to
a certain tolerance).

The main limitation of the ARACNe algorithm is that it requires a set of com-
parable gene expression profiles, i. e. all the expressions it uses to reverse-engineer a
gene network must be normalised together. This constitutes a problem in presence
of an heterogeneous set of data (different tissues, different laboratories and so on).
In Chapter 4 we propose a new reverse-engineering algorithm that overcomes this

limitation and thus can be applied to massive and heterogeneous dataset.

3.1.3 NIR

ODE-based algorithms have been developed (Network Identification by multiple Re-
gression, NIR) that use a series of steady state gene expression profiles to reconstruct
gene regulatory networks [44].

The network is described as a system of linear ordinary differential equations [28)
representing the rate of synthesis of a transcript as a function of the concentrations

of every other transcript in a cell and the external perturbation:

N
Ti(tk) = Z ai;z;(te) + biu(tc), (3.3)

=1

where i =1...N;k=1... M, N is the number of genes, M is the number of time-
points, z;(tx) is the concentration of transcript ¢+ measured at time t;; ;(¢;) is the

rate of change of concentration of gene i at time tx, i.€. the first derivative of the
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mRNA concentration of gene i measured at time #;; a;; represents the influence of
gene j on gene 7; b; represents the effect of the external perturbation on z; and u(ty)
represents the external perturbation at time t;.

In the case of steady-state data, z;(tx) = 0 and Eq. 3.3 for gene ¢ becomes
independent of time and can be simplified and rewritten in the form of a linear

regression:

1\7
Zai]’l‘j = —biu (34)
j=t

The NIR algorithm [44] computes the edges a;; from steady-state gene expres-
sion data using Eq.(3.4). NIR needs as input: the gene expression profiles following
each perturbation experiment (z;), knowledge of which genes have been directly
perturbed in each perturbation experiment (b;u) and optionally, the standard de-
viation of replicate measurements. NIR is based on a network sparsity assumption,
i.e. a maximum number of ingoing edges per gene (maximum number of regulators
per gene), which can be chosen by the user. The output is in matrix format where
each element is the edge a;;. The inference algorithm reduces to solving Eq.(3.4) for
the unknown parameters a;j, i.e. a classic linear regression problem.

Other algorithms based on ODEs have been proposed in literature {17, 111, 32,
108].

The NIR parallel version and its implementation

Equation 3.4 can be rewritten using vector notation:
Te = by, i=1 N
g’.i _"E - blula 1= L] - (35)

Let us suppose that we have conducted M experiments such that we know the genes
directly perturbed (u;(k), k= 1,..., M) as well as the expression profiles following

the experiments (transcript concentration levels from microarray data z(k), k =
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1,...,M). We can then solve the equation (3.5) for the unknown parameters a;;,
and thus obtain the ingoing edges for each gene.

NIR applies the multiple linear regression method to estimate the unknown
model parameters (a;;). It relies on the assumptions that the data z are realiza-
tions of a normally distributed random variable with known variances and the per-
turbations, u, are perfectly known. Generally, the response y may be related to k

regressors and the model

Y= Po+ Bxy + Jara + ... + O, (3.6)

is termed a multiple linear regression with k regressors.
Having M experiments (response observation points) at our disposal, then the

model becomes:

k
yi=bo+ > Bz, i=1... M. (3.7)

j=1
The response (y) is given by the experimental perturbation values u; € R*M, the
regression variable values (X) are given by the concentrations of the gene transcripts
and the regression variable parameters are given by the components of the vector

a;, so that, in matrix form, the model becomes:

with X € RV*M_ In NIR, the regression analysis aims to best-fit the data by esti-
mating the parameters of the model.

NIR estimates the parameters of the regression variables for each gene, using
the least squares method. These are the values for which the first derivative of the
residual sum square function is zero:

d = "‘y_iXT(XXT)_17 (3.9)

=T
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under the assumption that the regressors are linearly independent.

Biological networks are sparse [83], thus NIR adopts the sparsity assumption that
imposes an upper bound on the number of ingoing edges per gene (i.e. maximum
number of regulators per gene), restk < N, which can be chosen by the user.

For each gene the restk parameters that result in the smallest mean square
deviation identify the restk ingoing edges for that gene. The weight of the identified
edges is given by the value of the estimated parameters. The choice of restk affects
either the sensitivity to measurement errors or the execution time. A low value
of restk induces an increase in the solution sensitivity to measurement errors. A
high value prohibitively increases the computational time needed to identify the
regulatory network due to the high number of the regressor combinations to be
included in the model. This number is equal to the number of combinations without
repetitions of N objects taken restk at a time:

N!
DN restk = restk!(N — restk)!’

(3.10)

This is polynomial of degree restk in the number of genes. The exhaustive approach
which evaluates the regression for each combination is not feasible for gene networks
larger than 100 genes (with 100 genes and restk = 10 the number of combinations
is of the order of 10'3), thus NIR uses the following heuristic approach.

For each gene ¢:

e At the first step NIR computes (3.9) N times by considering the regression
variables one at time; the topd variables for which the sum of the squared

deviations is minimized are selected as possible ingoing edges for the gene.

o At the second step NIR computes (3.9) by considering the remaining N — 1

variables jointly with each of the first topd selected ones, that is MM—;‘—O—M

(Gauss formula) pairs of variables; the topd pairs of variables for which the
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sum of the squared deviations is minimized are selected as possible pairs of

ingoing edges for the gene.

e At step k+1 NIR computes (3.9) by considering the remaining N — k variables

jointly with each of the topd sets of k variables selected at the previous step,

that is 2dCN _22k"’0”d+3) sets of k variables are considered; the topd sets of

k + 1 variables for which the sum of the squared deviations is minimized are

selected as possible sets of k£ + 1 ingoing edges for the gene.

e The process ends when the number of regression variables selected reaches
restk; the set of restk variables for which the sum of the squared deviations
is minimized identifies the set of parameters a; corresponding to the input

regulations affecting expression profile of gene i.

The final output is an adjacency matrix, where each element is the edge a;;, that
encodes the directed graph. The number of times (3.9) is calculated for each gene
is O(restk - topd - N), so the overall number of times (3.9) is calculated is O(restk -
topd - N*). The computational complexity of (3.9) at step k + 1, for the submatrix
of X whose rows correspond to a set of k variables (0 < k < restk — 1), is O(k2N).

The overall computational complexity is therefore O(topd(restk - N)3).

The NIR algorithm can be easily parallelized to handle large problems in a compu-
tationally efficient manner by distributing the overall computational burden among
different processors to reduce the total execution time. In order to address the high
computational cost issue of the NIR algorithm we have applied some specific imple-
mentation optimizations along with parallel programming techniques.

The computational core of the NIR algorithm is the equation (3.9) where X
is a submatrix of the gene expression matrix composed only of k rows (with k =

1,2, ...,restk). From the matrix-matrix product definition applied to the submatrix
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X(v,v), with v = [iy, ..., 1] vector of k indices, it follows that:
X(v,0)(X (v, )" = (XX")(v,0). (3.11)

Therefore for each step of the algorithm, we don’t compute any matrix-matrix prod-
uct operation X(v,1 : N)(X(v,1 : N))T. On the contrary the product X X7 is
computed once and for all at the beginning of the program. At each step k, our
implementation just selects the symmetric submatrix of X X7 whose row and col-
umn indices correspond to the k possible ingoing edges for the gene. Let S be this
submatrix of dimension & stored in packed format.

In each experiment only one gene is perturbed. This implies that for each gene
i the perturbation vector u; is equal to (0,...,0, %, 0,...,0) and then the product
u; X T reduces to the i-th row of X7. Denote this row by 7.

S is positive definite so we can apply the Cholesky factorization to the matrix
S in order to compute d; as solution of the system of equations Sd; = —r, thus
avoiding the matrix inversion. We rely on the LAPACK routine DPPSV to solve this
system of equations with a computational complexity of O(k3).

By avoiding the matrix product in (3.9), the parallel algorithm complexity is de-
creased by one order of magnitude: at the generic step the computational complexity
is O(k®), the overall computational complexity is therefore O(topd - restk* - N %)

The parallelization is implemented by assigning different genes to different com-
puting processes: each process takes care of N/p genes where p is the number of
processes available. The computing steps described in the previous section can be
performed independently for each gene so each process can compute the results for
its genes independently without communication. The parallel algorithm has been
implemented in C using the MPI standard.

This work is partly described in [47].
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3.2 In-silico and experimental data

Due to the lack of knowledge of all the real interactions between genes in a real bi-
ological network, it is very challenging to test gene regulatory network inference al-
gorithms. Moreover, the availability and the heterogeneity of biological experiments
do not always allow to reverse-engineer a network of interest. For these reasons we
adopted a simulative environment to run the algorithms, test and compare their

performances.

3.2.1 Generation of ‘In silico’ data

An in-silico gene regulatory network consists of a set of nodes that represent the
genes and a set of edges that represent the interactions between the genes. There
exist many implementations of network simulators such as [101, 29, 110] able to
generate networks whose topology reflects the topology of a biological network (i.e.
scale-free and small-world effect, [3, 11, 83]) with different mathematical models for
simulating gene expression data.

To simulate gene expression data and gene regulations in the form of a net-
work, we used linear ODEs relating the changes in gene transcript concentration
to each other and to the external perturbations (refer to sec. 2.2.3). Linear ODEs
can simulate gene networks as directed signed graphs with realistic dynamics and
generate both steady-state and time-series gene expression profiles. Linear ODEs
are generic, since any non-linear process can be approximated to a linear process, as
long as the system is not far from equilibrium, whereas non-linear processes are all
different from each other. There are many other choices possible [19] but we valued
the capability of linear ODEs of quickly generating many random networks with
realistic behaviour and the availability of a general mathematical theory. The code

is available in Appendix C.
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In-silico networks

The comparative analysis was performed by generating three different sets of 20
networks each, with different network dimensions (10, 100 and 1000) and different
average in-degree (2 and 10). To generate each network, we first created a random
network using MATLAB® command rss that needs as input the order of the model,
N, the number of input and output of the system, u and y respectively. The rss

command generates stable continuous-time state-space models,

T = Ax + Bu

y=Cr+ Du

where z represents the state vector; y is the output vector; u is the input vector;
A is the state transition matrix which defines the dynamics of the system; B is the
input coefficient matrix: C is the output coefficient matrix; D is the feedthrough (or
feedforward) matrix. The rss command generates A (N x N), B (N x 1), C (N x
N), D (N x 1) which alltogether define the state-space models {72].

The algorithm implemented in the rss command, generates a network of size
N. It randomly chooses the number of complex and real eigen-values for matrix A
(complex eigen-values always exist in pairs, eigen-value and its complex conjugate).
For real part of eigen-values, negative random numbers generated from normal dis-
tribution are taken and for imaginary part positive random numbers (again from
normal distribution). These eigen-values are placed on the diagonal of a zero matrix,
Z, of order N x N. If the eigen-value pair is complex, then the real and imaginary
part of the eigen-values and its complex conjugate are placed on block diagonal of
Z. Another matrix, T, of size N x N is generated randomly from normal distribu-
tion and is then orthogonalised. Finally A is computed as T~1ZT. B is generated

randomly using normal distribution.
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Once we generated the state-space model, we set B and C equal to the identity
matrix and D equal to a zero matrix so that the output of the system equals its
states. Here A represents the network which is a full rank matrix with eigen-values
whose real part are less than 0 to ensure the stability of the dynamical system [72]
(i.e. all the gene mRNAs reach an equilibrium between their transcription rate and
degradation rate after a given time period). For each row of A, we then randomly
selected K elements (including the diagonal), and set the other elements to zero (to
make the network sparse). We then checked the stability of this new network by
computing its eigen-values, and if A was not stable, we then selected a different set
of K elements in each row until we got a stable network A.

We used the above-described method to generate networks of size 10 and 100. But
to generate network of 1000 genes, we used a different approach. We first generated
the network of 100 genes in the same way as described above. We then expanded the
network of 100 genes to obtain a network of 1000 genes. To do this, we replicated each
row in A, 10 times, adding to each element noise of mean 0 and standard deviation
equal to 10% of the absolute value of the corresponding element of the original row
in A. While replicating, we removed the diagonal element from the original row
and moved it to the diagonal position of the row where it was replicated. It means
that each gene has self feedback loop. All the remaining elements in the expanded
1000x1000 matrix were filled with zeros. This is done to simulate clusters of genes
that are co-regulated. In the final network of 1000 genes, each gene was controlled
only by the original 100 genes in A, and by self feedback, and not from the other
genes in the same cluster. We then checked the stability of A by computing its eigen-
values that should be negative [72]. If matrix A were not stable, we then repeated
the above steps with different random noise until we got a stable network A. In
this way, we generated a sparse network in which 100 genes are the main regulators
controlling most of the remaining genes in the network, or in network theory words,

they act as hubs. Remaining genes are on the network periphery and they do not
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control any genes but themselves.

In-silico gene expression data

For each network, we simulated steady state and time-series expression data.

¢ Steady State in which the measurement is taken once the system reaches the

steady state after a perturbation.

¢ Time Series in which measurement is taken at M different time points fol-

lowing a perturbation.

Matrix B contains the information of which gene(s) is (are) perturbed in the net-
work. B has all its elements equal to 0 except for the gene(s) that is (are) perturbed.
For all datasets, M was chosen equal to 10, 100 and 1000 experiments.

We simulated microarray resulting from two kinds of perturbations, P

1. Global perturbation: all the genes are perturbed simultaneously in each per-
turbation experiment. We randomly generated the perturbation matrix P of
size N x M with values generated from Gaussian distribution with mean p = 0
and standard-deviation o = 1. Global perturbations simulate environmental
perturbations to the cell state, such as increase of temperature, drug treatment

and so on.

2. Local perturbation: in each experiment a single different gene is perturbed. We
selected P equal to the identity matrix representing single gene perturbation
in each experiment. In local perturbation, a maximum of M = N experiments
can be obtained. Local perturbations simulate, for example, single gene over-

expression or knockdown.
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Steady State

To simulate the data, we used Eq. 3.4. In compact form it is written as:

AX = —BU (3.12)

or

AX = —P (3.13)

where P is equal to BU. Data matrix X is obtained by taking the inverse of A and

left multiplying it with the perturbation matrix:

X=-A"'P (3.14)

Time-series data

Time-series simulated microarray data are generated by perturbing 10% of the genes
simultaneously in the network. The genes to be perturbed are chosen randomly and
this information is stored in B. U (1 x M) contains the information about what kind
of perturbation is applied. In our simulations we applied a constant step perturbation
of amplitude equal to 1. Once matrix A (N x N) and B (N x 1) were generated,
we simulated the gene expression profile dataset X = [X (1), ..., X(tp)] of equally
sampled time points which was obtained using lstim command in MATLAB® by
solving:

X =AX+BU (3.15)

Isim command simulates the time response of the state space model to the given
input signal U and gives an output at the sampling time specified. Initial condition
for all genes is set to 0. Time ¢, was chosen equal to 4 times the inverse of the real
part of the smallest eigen-value of A [72]. This ensures that at time ¢, all the genes

are close to their steady state value.



3.2.2 Experimental data 47

@ ]
2 L g
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A Cell/Organism & & Qenes @ True network
A HumanBecels S 254 7907 [12] 26 MYC targets [12]
B S cerevisiae S 300 6312 [55] 844 TF-gene interactions [67]
C HumanBecells S 254 23 [12] 11 MYC targets+11 non-targets [12]
D S. cerevisiae S 300 90 [55] subset of TF-gene interactions [67]
E E. coli S 9 9 [44] 9 gene network [44]
F E. coli T 6 9 9 gene network [44]

Table 3.2: Experimental datasets used as examples. S: steady-state; T: time-series.

Noise in the data

Biological data are noisy. In a real scenario, the inference of a regulatory network
is performed on noisy expression profiles. To conform the simulated data to real
expressions we added noise to any generated gene expression. The noise follows a
Gaussian distribution with zero mean and standard deviation proportional to the

level of the expression simulated [44],
Xo=X+0, | XY (3.16)

where X, is the noisy data, | X | represents the absolute values of the elements of X,
(@ refers to element wise product of two matrices, Y is a matrix of same size as X
and is obtained from Gaussian distribution with mean p = 0 and standard-deviation

o = 1 (in the simulations ¢ = 0.1, 10% of noise).

3.2.2 Experimental data

We selected three different organisms collecting six dataset of gene expression pro-

files. Table 3.2 lists the organisms selected along with the details of the dataset.

The dataset differ in the number of genes that ranges from tens to thousands.
This scenario helps in testing the algorithms in different real experimental settings.

The largest dataset, in terms of number of genes, is the B-cell dataset (A and C).
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As the reference “true network” we used 11 known targets of MYC and 11 that are
not targets of MYC [12], to test the predictive performance of different algorithms,
on dataset C. For dataset A we used a list of 26 known targets of MYC.

Saccharomyces cerevisiae (dataset B and D) is a well studied organism and many
biological confirmed interactions are already catalogued. As the reference “true net-
work” we used 844 TF-target (transcription factor - target) confirmed interactions
obtained from Chromatin immunoprecipitatin (ChIP) experiments [67]. As in the
case of human B-cells, we also selected a subset of genes to test algorithms on a
system of smaller dimension (dataset D).

The Escherichia coli dataset contains the expressions of the genes that are in-
volved in the SOS DNA repair pathway of this organism [44]. The steady state
expressions, were obtained by over-expressing different genes with an arabinose-
controlled episomal expression plasmid. Cells were grown under constant physiolog-
ical conditions to their steady state (~5.5 hours after the addition of arabinose) and
change in expression relative to unperturbed cells was measured. In time-series ex-
pressions cells were induced with Norfloxacin drug and total RNA was extracted at
the following time points: 0, 12, 24, 36, 48 and 60 minutes from the drug treatment

(triplicate).

IRMA: In vivo assesment of Reverse-engineering and Modeling Approaches.

We also tested these reverse-engineering algorithms on a synthetic network (Fig. 3.4)
built in Saccharomyces cerevisiae [23]. Five well-known genes were chosen in order to
obtain a network containing different kinds of interactions, so that it can model both
transcriptional and protein-protein interactions, positive and negative feedbacks and
it can be turned on and off by changing growing conditions. In order to isolate the
synthetic network from the cellular environment non-essential and non-redundant

genes were selected and endogenous ones were deleted. The coding sequence of each

lhttp:/ /gardnerlab.bu.edu
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gene was assembled with a non-self specific promoter in order to crcate the desired
transcriptional interactions between the network’s species, and each cassette was
integrated by homologous recombination within the locus of another gene obtaining
its simultaneous deletion. Thus, the system was built in such a way that the chosen
promoters are regulated only by the transcription factors of the network and not
by external gene products. The following genes have been chosen for the synthetic

network:

e As activators and repressors encoding genes: CBF1, GAL4, SWI5, GALS80 and
ASH1.

¢ As promoter genes: HO, MET16, GAL1-10 and ASH1.

These activators and repressors regulate each other with the desired network topol-
ogy, shown in figure 3.4.

Gal4 activates GAL10 promoter only in the presence of galactose that releases
the inhibitor Gal80 from Gal4; in contrast when cells are cultured in glucose Gal80
binds to Gal4 activation domain and thus inhibits GAL10 transcription.

The resulting synthetic network is a ‘switchable’ isolated system which can be
easily turned on and off by changing the medium (galactose or glucose). Its behavior
can be altered only by perturbing the expression of the network genes. This makes
such a network a good model to test the performance of different modeling and

inference strategy.

3.2.3 Assessing the performance of algorithms

Suppose to have two graphs with the same set of nodes, how can we define a distance
between them? Such a distance could then be used to compare the algorithm perfor-
mances by setting one of the graph as the true gene network while the other would

be the predicted network. We have chosen two parameters to test and compare the
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Figure 3.4: Structure of the synthetic network. The genes are all non-essential. Each
red box shows the promoter (pr), each blue one the coding sequence of the gene and
each green ones the Tag. Solid green lines represent regulation (arrow: upregulation,
minus sign: inhibition); dashed black lines represent translation. Ellipses represent
protein products. The HO open reading frame was deleted by integrating the CBF1-
GFP cassette downstream to HO endogenous promoter. SHE1, CBF1 and SWI5
loci were deleted by integration of MET16pr-GAL4, GAL1-10prSWI5-MYC9 and
ASHI1prGALS80-3xFlag, respectively. The deletion of SHE2, CBF1 and SWI5 loci
has been done from 200-500 bp upstream of the start site to the Stop of each gene.
The triple HA tag has been integrated before the Stop codon of ASH1 gene.
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predictions: one is the Positive predicted values (PPV), that measures the percent-
age of correct predicted interactions; the other is the Sensitivity that measures how
much of the real network is covered by the predictions. The two parameters are
computed from the True Positives, False Positives and False Negatives predictions
as PPV =TP/(TP + FP) and Sensitivity = TP/(TP + FN).

We also consider as random the performance of an algorithm that randomly
connect genes assuming a uniform probability distribution over the set of possible
edges.

Some algorithms infer the network just as an undirected graph, and others as
a directed and/or signed graph, thus, in order to facilitate comparison among al-
gorithms, we computed PPV and Sensitivity by first transforming the real network
(signed directed graph) and the inferred network (when directed and/or signed) in
an undirected graph (labeled * in the table).

If the algorithm infers a directed graph and/or a signed directed graph, we also
compared PPV and Sensitivity in this case (labeled ¢ and ¢ in the table, respectively).
While computing PPV and Sensitivity we did not include self-feedback loops (diag-
onal elements of the adjacency matrix) since all the genes in the simulated networks
have self-feedback loops and this could be an advantage for some algorithms as NIR
that always recover a network with self-feedbacks.

To transform the signed network to directed network in matrix form, we took
the absolute value of the numbers in the weighted adjacency matrix. To transform
directed network into undirected network, we symmetrize the matrix and than we
select only the values in the upper triangule. While computing PPV and Sensitivity
for undirected network, we considered only the upper triangular matrix, i.e. only
the upper half of the matrix, A4, to avoid counting the connections twice.

To check if the algorithm has performed significantly better than random, we
computed the p-value using a Binomial distribution to estimate the probability

of getting the correct number of edges using a probability of success equal to the
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random probability.

Dialogue for Reverse Engineering Assessment and Methods: testing per-

formances

The Dialogue for Reverse Engineering Assessment and Methods (DREAM!) [91] is
an annual meeting to compare and discuss new reverse-engineering methodologies.
It is possible to run an algorithm on biological or simulated dataset, which are
provided by the organisers. There are different challenges and one of these consists
in reverse-engineering gene regulatory networks from gene expression profiles.

The algorithm performances are compared by applying two scoring metrics: the
Area Under the ROC curve (AUROC), which summarizes the tradeoff between the
true positive prediction ratio and the false positive prediction ratio; and the Area
Under the Precision Recall curve (AUPR) that summarizes the PPV-Sensitivity
tradeoff. The predicted edges, sorted according to their significance. may only con-
tain a subset of the true edges. The remaining (null predicted) true edges are then
ranked randomly, and this procedure gives rise to a p-value associated to both the
AUROC (Payroc) and the AUPR (Paypr) scores. The p-values (one for each net-
work), for each metric, are then evaluated together by taking their geometric means.

The final score is computed as —% logyo (Pavroc X Pavpr) [91].

3.3 Results: ‘“n silico’ evaluation

All of the algorithms were run on all the datasets using default parameters (Ap-
pendix A). BANJO was not run on the 1000 genes dataset since it was crashing due
to memory limitations, whereas NIR needed an excessively long computation time.
The parallel version of NIR [47] overcomes this limitation, as described in Section

3.1.3. Results of the comparison are described in Table 3.3, 3.4 and 3.5.

http:/ /compbio.mit.edu/recombsat/
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Datasets ARACNe BANJO NIR Clustering ~ Random
PPV/Se PPV/Se PPV/Se PPV/Se PPV

10x10 0.43%/0.43*  0.41%/0.52* 0.60/0.53* 0.36*/0.34" 0.36“
0.25¢/0.28¢  0.49¢/0.42¢ 0.20¢

0.19°/0.06° 0.47°/0.40° 0.10°

10x100 0.63“/0.65* 0.97“/0.09* 0.72“/0.88“  0.40*/0.38" 0.36“
0.787/0.07¢ 0.69/0.88% 0.20¢

0.80°/0.06° 0.69°/0.88° 0.10°

100x10 0.21*/0.12*  0.20*/0.04* 0.26“/0.04*  0.20%/0.12¥ 0.19*
0.104/0.02¢  0.19¢/0.03¢ 0.10¢

0.07¢/0.01°  0.17°/0.02° 0.05°

100x100  0.29%/0.24* 0.71*/0.00* 0.72“/0.63* 0.24*/0.14*  0.19"
0.48/0.00¢  0.70%/0.62¢ 0.10¢

0.74°/0.00° 0.70°/0.62° 0.05*

100x1000  0.57“/0.44* 0.99*/0.05* 0.93“/0.84* 0.27*/0.17*  0.19*
0.652/0.03¢  0.92%/0.84¢ 0.10¢

0.66°/0.03° 0.92°/0.84° 0.05°

1000x1000  0.04*/0.23 - - 0.06“/0.03*  0.02*

Table 3.3: Results of the application of network inference algorithms on the simulated
Global perturbation. PPV: Positive Predicted Value; Se: Sensitivity. In bold the
algorithms that perform significantly better than random. using as a random model
a Binomial distribution.
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Datasets ARACNe BANJO NIR Clustering Random
PPV/Se PPV/Se PPV /Se PPV/Se PPV

10x10 0.53“/0.61* 0.41¥/0.50% 0.63%/0.96" 0.39%/0.38% 0.36
0.25%/0.18% 0.571/0.93¢ 0.20¢

0.15°/0.05° 0.57°/0.93* 0.10°

100x100  0.56“/0.28* 0.71*/0.00%  0.97%/0.87*  0.29*/0.18*  0.19®
0.42¢/0.00¢ 0.96%/0.86¢ 0.10¢

0.60°/0.00° 0.96°/0.86* 0.05°

1000x1000 0.66“/0.65* - 0.91*/0.82%(*) 0.20*/0.10*  0.02*
- 0.96/0.86¢(*) 0.01*

Table 3.4: Results of the application of network inference algorithms on the sim-
ulated Local perturbation. PPV: Positive Predicted Value; Se: Sensitivity. In bold
the algorithms that perform significantly better than random, using as a random
model a Binomial distribution. (*) Results obtained running the parallel version of
NIR [47]

Algorithm performances are higher when applied on local perturbations data
(one gene perturbed at time), with respect to global perturbation data (multiple
genes perturbed). Multiple perturbation data should carry more information with
respect to single perturbation data due to the higher number of genes perturbed.
However, results show that algorithms are able to recover better a signal from single
perturbation data. Also the number of expression profiles is an important parameter.
When we try to recover a network by using very few hybridisation with respect to
the number of genes, due to the weakness of the signal, performances are very low
independently from the algorithm applied (only NIR is slightly better than random).

Despite the dataset configuration BANJO’s sensitivity (or network coverage) is
always very low with a very high PPV, meaning that despite the very few predicted
connections these are indeed correct. For the remaining algorithms, performances
improve when using local perturbation data (Table 3.4).

Performance is again random for the time-series ‘dynamic’ dataset (Table 3.5),
except for BANJO albeit with a very low Sensitivity. In this case, we ran ARACNe
as well, although the time-points cannot be assumed independent from each other.

BANJO has been shown to work on dynamic data but needs a very high number of
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Dataset ARACNe BANJO NIR Clustering Random
€S pPpV/Se PPV/Se  PPV/Se PPV/Se PPV

10x10 0.35%70.84% 0.36%/0.34 - 0.34%/0.35%  0.36%
0.244/0.22¢ 0.20¢

0.39°/0.01° 0.10°

10x100  0.36*/0.96%  0.38“/0.45“ - 0.33/0.34*  0.36%
0.234/0.29¢ 0.20¢

0.20°/0.13° 0.10°

100x10  0.19*/0.63*  0.18%/0.05* - 0.19%/0.27*  0.19*
0.10%/0.03¢ 0.10¢

0.03°/0.00° 0.05°

100x100  0.19/0.84*  0.11%/0.03" - 0.19*/0.31*  0.19%
0.114/0.03¢ 0.10¢

0.06%/0.01° 0.05°

100x1000  0.19*/0.87*  0.20%/0.03* - 0.19*/0.32*  0.19*
0.114/0.02¢ 0.10¢

0.06%/0.01° 0.05°

1000x1000  0.02*/0.96* - - 0.02¢/0.37*  0.02%

Table 3.5: Results of the application of network inference algorithms on the simu-
lated Time Series data. PPV: Positive Predicted Value; Se: Sensitivity. In bold the
algorithms that perform significantly better than random, using as a random model
a Binomial distribution.
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number of procs time (secs)

1 98896
10 9725
20 4798
40 2406
60 1643
30 1259
100 969

Table 3.6: Total execution times in seconds

experiments (time-points) as compared to the number of genes [119].

3.3.1 Application of parallel NIR

In order to measure the result accuracy we ran the program, by using the local
steady-state ‘in-silico’ data discussed in Section 3.2.1, on 20 different networks count-
ing 1000 genes, with 10 as average in-degree per gene.

The program has been executed on 100 processors of an HP XC6000 Cluster with
Itanium 2 biprocessors nodes and a Quadrics ELAN 4 network. On average it took
984 seconds to generate the results for each gene network. The program recovered
most of the true interactions as shown in the Table 3.4.

Parameters were: restk = 11, topd = 50. As shown in Table 3.4, NIR per-
formances were better than the one of ARACNe, even in the case of 1000 gene
networks.

Moreover we ran the program on a 2500 gene network. We set the same values for
the parameters restk and topd as before. It took around 12,450 seconds to generate
the results and we obtained the following values for PPV and Sensitivity: 0.26¢,
0.27* and 0.10%, 0.11* (random PPV: 0.008* and 0.004%), respectively. In order to
measure the parallel efficiency we run the program for the same 1000 gene network

on different number of processors. The execution times are shown in Table 3.6.
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Datasets ARACNe BANJO NIR Clustering  Random

PPV /Se PPV/Se PPV/Se PPV/Se PPV

A 0.14%/0.35% - - 0.02¥/1.00°  0.00"
B 0.00*/0.01% - - 0.004/0.21*  0.00%
C 0.78%/0.64*  0.60%/0.27% - 0.45%/0.91%  0.48%
D 0.07%/0.17* 0.17%/0.02% - 0.11%/0.44*  0.02¢
E 0.69%/0.34*  0.78*/0.44* 0.80*/0.88*  (.8*/0.63" 0.71*
0.67¢/0.24¢  0.74%/0.67¢ 0.63%

0.50/0.02°  0.59°/0.53* 0.32°

F 0.75%/0.37*  0.73*/0.69" - 0.90*/0.59*  0.71%
0.614/0.39¢ 0.63¢

0.00° /0.00° 0.32¢

Table 3.7: Results of the application of network inference algorithms on the ex-
perimental datasets. PPV: Positive Predicted Value; Se: Sensitivity. In bold the
algorithms that perform significantly better than random, using as a random model
a Binomial distribution. Details concerning the datasets analysed are reported in
Table 3.2.

3.4 Results: Experimental evaluation

The algorithms have been tested on real expression data collected from litera-
ture. The details of the data are reported in Table 3.2. The results of the reverse-
engineering is reported in Table 3.7. We were unable to run all the algorithms on all
the dataset because of the limitations outlined in Section 3.3. However, we should
point out that these results could not be suitable for algorithm comparison pur-
poses due to the limited dataset dimensions and to the limited knowledge of the real
biological networks.

Due to the dimensions of the dataset, ARACNe was the only software able to
infer the network from dataset A and B. Dataset E and F are very small and come
from dense biological networks forcing the random performance to be very high.
NIR can only be applied on dataset E, because all the other datasets were missing

the information regarding the target of the perturbation.
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3.4.1 Reverse Engineering the IRMA network

In order to reverse-engineer the IRMA network, we used gene expressions collected
after having grown IRMA on two different medium, one containing glucose (switch-
off) and one containing galactose (switch-on). To generate steady-state data we
perturbed this network of 5 genes by over-expressing each gene in a separate exper-
iment (one gene at time). To over-express the genes, we expressed them under the
control of a strong constitutive GPD promoter.

Time-series data were collected by growing IRMA cells both in glucose (switch-
off) and galactose (switch-on). Measurements were taken every 20 minutes by using

real time PCR over the transcript of the 5 genes.

Application of the Banjo algorithm

In order to reverse-engineer IRMA we applied Banjo to the “switch on” and “switch
off’ time-series data. Banjo recovers the Dynamic Bayesian Network that better
describes the observed data. In order to estimate the joint probability distribution
(sec Scction 2.2.1) of all the variables in the network, Banjo first discretizes the data
using a quantile discretization procedure. The Proposer/Sercher strategies were set
to random local move and simulated annealing, respectively. The amount of time
Banjo uses to explore the Bayesian Network space was set to one minute. All the
other parameters such as reannealingTemperature, coolingFactor, and so on, were
left with their default values. Of course the parameter values were not arbitrary
chosen; those values were selected as the best values (in terms of network inference
accuracy) in [9]. As well as for time-series observations, Banjo is able to infer the
Directed Acyclic Bayesian Network on steady state observations. We applied Banjo
on both “Glucose steady-state”, “Galactose steady-state” dataset and to the switch

on and switch off time-series. Results are reported in Figure 3.5.
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Figure 3.5: Reverse-engineering IRMA from experimental data using the Bayesian
Network approach. (A-B) Inferred network using Banjo for the switch on and switch
off time-series. Gray lines: inferred interactions that are not present in the true net-
work. PPV (Positive Predictive Value = (—ﬁT{Fﬁ)) and Se (Sensitivity = (—T%FN)) )
values for an unsigned directed graph. The random PPV is equal to 0.40. (C-D) In-
ferred network using the Banjo for the steady-state experimental data from network

gene overxpression in cells grown in galactose or glucose medium, respectively.
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ARACNE INFERENCE

A

Galactose steady-state Glucose steady-state

True Network

PPV =0.67
Se =0.57

PPV=0.75
Se =086

Figure 3.6: Reverse-engineering IRMA from experimental data using the
Information-Theoretic approach. (A-B) Inferred network using ARACNE for the
steady-state experimental data from network gene overxpression in cells grown in
galactose or glucose medium, respectively. Grey lines: inferred interactions that are

not present in the true network. PPV (Positive Predictive Value = (—T%FP)) and Se
(Sensitivity = (—T—P—Tfp—m ) for an unsigned undirected graph. The random PPV for

the unsigned undirected graph is equal to 0.70 (7/10).

Application of the ARACNE algorithm

In order to reverse-engineer IRMA we applied ARACNE on both “Glucose steady-
state”, “Galactose steady-state” datasets, and concatenated them to obtain a larger
one. Whereas, the lack of the statistical independence assumption for time-series
data did not allow to run ARACNE on dataset containing time-series experimental
data. All the parameter were set to their default values. For instance, Kernel width
and Number of bins are automatically detected by the software; no threshold and p-
value among both MI values and MI P-value were used, respectively; DPI tolerance

to remove false positive connections was left to its default value, 0.15.

Application of the NIR algorithm

NIR [44] solves equation (3.4) to obtain the network matrix A from gene expression
data. We considered a fixed number of regressors for each gene (k = 2), i.e. we assume

that each gene can be regulated by a maximum of 2 other genes. The regressor set
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Figure 3.7: Panel A (B) report the inferred interactions by reverse-engineering IRMA

network from steady-state data when Galactose (Glucose) is provided to the cells.

was chosen according the residual sum of square error (RSS) minimization criterion.

The small size of the system (5 genes) allowed to exhaustively search for the best
g o .

regressors. Perturbation values were set equal to 1. Results are reported in Figure

3.7.

Computation of the random performance

In order to compute the random PPV, that is the one of an algorithm that con-
nects genes in the network randomly from a uniform distribution, we considered
the expected value of an hypergeometrically distribuited random variable whose

distribution function and expected value are, respectively:

M N-M N~1

7 n—2x n—1

N N
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In our case, N is the number of possible edges in the network; M is the number of

true edges, n is the number of predicted edges. Then we computed as random PPV:

T Prona _E[l']_M
PPV’““""‘TP+FP' n N’

3.5 Discussion and Conclusion

We analysed and compared the performances of different reverse-engineering algo-
rithms on both in-silico and experimental expression data. In particular, concerning
the simulated expression data, we used two classes of perturbations that we defined
as “local” and “global”. As outlined in the result section, for the local perturba-
tion (Table 3.3) and the global perturbation (Table 3.4), there is a difference in the
amount of information that is possible to recover following the two types of pertur-
bations. Algorithms perform better when only a small subset of genes (possibly only
one gene) is perturbed at a time.

Results on in-silico data are in line with respect to the results on experimental
data. Since BANJO requires the estimation of a probability density function it
can only be applied when many experiments are available. Moreover, BANJO is
very precise but its sensitivity is very low. ARACNe performs generally better than
BANJO, and even though it is not generally correct, it can also be applied to time-
series dataset. ARACNe computes pair-wise “distances”, and this allows it to run on
larger dataset with respect to the other algorithms that relate a given gene to many
others. NIR performs well also when the amount of data is small, it can be applied

on steady-state data and performs well both on local and on global perturbations.



Chapter 4

Reverse-engineering gene networks
from massive and heterogeneous

gene expression profiles
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4.1 Introduction

Tens of thousands of protein-protein, protein-DNA and protein-RNA interactions
have been experimentally identified in mammalian organisms [60, 115]. However,
they constitute only a small part of the complex network of regulatory interactions
occurring in a cell. Due to the time required to experimentally identify specific
interactions, cfforts have been made to infer gene regulatory networks directly from
gene expression profiles, using a variety of “reverse-enginecring” algorithms [24, 9,
10, 12, 31). Among the plethora of different approaches to reverse-engineering, the
most successful, and generally applicable, are those based on information-theoretic
approaches [9]. The network among genes is reconstructed by considering pairs of
genes and checking whether the two genes in each pair are co-expressed across the
experimental dataset. Co-expression can be measured either by correlation, or by
a more robust measure, called mutual information (MI). As described in Chapter
2, a gene-gene “connection”, thus inferred, is not necessarily a physical interaction
between the protein (or RNA) products of the two genes, but can also imply a
functional, but indirect, regulation.

Reverse-engineering becomes much more powerful as the number of gene expres-
sion profiles used to infer the network increases as shown in Chapter 3.5 [9, 75].
However, the requirement of using homogeneous gene expression profiles (i.e. from
a specific cell type, tissue or condition) typically limits their number to the order
of hundreds. Indeed, it is common belief that reverse-engineering a gene network
by combining gene expression profiles from heterogeneous samples will generate too
much noise, thus hampering the detection of biologically relevant signals. Our start-
ing hypothesis was that, despite the extreme heterogeneity of gene expression profiles
coming from different cell types, tissues, and conditions, it is indeed possible to infer
a meaningful “consensus” gene regulatory network.

In this chapter we describe a new reverse-engineering algorithm able to use het-
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erogeneous and massive sets of gene expression profiles to infer a gene network.

4.2 A new algorithm for reverse-engineering

4.2.1 Normalisation of Gene Expression Profiles

Gene expression profiles (GEPs) are usually organized in experiments. GEPs within
experiments are normalized together using standard techniques described in 2.2.4.
This procedure yields GEPs that are normalized within each experiment, but that
are not normalized across experiments. This means that the expression level of
a gene in two different experiments, although with the same absolute value, can
refer to two different levels of expression. Normalised GEPs cannot therefore be
merged across experiments. One way to obtain a single set of comparable GEPs
from different experiment is to consider them as part of the same experiment, hence
considering raw expression data for each GEP, and then normalise them all at once.
Since standard normalization techniques are both difficult to apply to large datasets
and could yield incorrect results due the assumptions underlying these techniques,
we decided to proceed differently.

In order to derive numerically comparable measures of gene expression for dif-
ferent experiments, we discretized normalised GEPs within each experiment via
quantile discretization [71]. This method is based on equal frequency binning. Here,
the expression values of all arrays within an experiment are discretized into a pre-
determined number of bins (three). The three bins, with equal number of values,
are determined using the three quantiles of the normalized expression values as cut
points. Each expression value is then replaced by an integer value corresponding to
the bin it falls into.

The choice of the number of bins may affect the subsequent results of the reverse-

engineering analysis, however as shown in Section 5.3 this is not the case in our
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settings.

4.2.2 Mutual Information

As described in Chapters 2 and 3, mutual information (MI) is a pseudo distance be-
tween probability distributions; it measures the amount of information two random
variables share. We decided to use a MI reverse-engineering approach due to the
good advantages of this approach over the others reverse-engineering approaches as
detailed in Chapter 3.

Genes can be seen as random variables and their profiles as a random process.
Once gene expression profiles are properly discretized into bins, it is possible to
compute MI for each couple of genes by merging all the discretised data together.
Specifically, for each pair of probes, we considered two discrete random variables
I €{l,..,3} and J € {1,...,3} respectively describing the discretised state of the
two genes. In this context MI can be defined as:

3 3
MI,-j=ZZ7r,-jlog g (4.1)

Y
T T s
i=1 j=1 t 7

where 7;; represents the joint probability P(I = i,J = j) and m;, = Zj mi; and
T.; = D, Mi; are respectively their marginal probabilities P(I = 3) and P(J = j).

Let n;; be the counts of the outcomes of pair (I = 7, J = j) in the discretized sample
set, then the frequency #;; := i gives rise to a probability matrix 1= (ri;) of
dimension 3x3, where n is the number of experiments where both I and J appear.
These values can be used as an estimate of the unknown true joint probabilities

matrix II = (m;). This leads to a point estimate of MI equal to

mi,. = Z Tij log fyht (4.2)

—~ T i+ T4
ij
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Parallel implementation of the MI

The computational complexity of our algorithm is o(N? - K) where N is the num-
ber of genes (or probes in the case of microarrays) and K is the total number of
expression profiles. Typically, both the number of genes measured and the number
of available GEPs in public repositories are in the order of 10*. Due to the high
computational cost, we decided to implement a parallel version of the algorithm to
reduce computational time. The parallel algorithm distributes the gene expression
profiles among several computing processes. Each process gets N/p probes where
p is the number of processes available and N is the total number of probes. The
processors are named Py to P,_; and logically organized in a topological ring where

i follows j if ¢ > j and B, follows P,_;.

Figure 4.1: Processors are organized in a topological ring. Data is passed among
processors according to their topological organization.

At the beginning of the computation each process calculates the discretization of
its own gene expression profiles and computes the mutual information for each pair
of its N/p probes. At the first communication step each process sends its probes to
the following process and computes the MI for all the pairs of probes where the first

is the local probe while the second is the received probe. At the i"* communication
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step process P; receives probes from process F(j—imod(p)- The algorithm completes in
(2] communication steps. The parallel algorithm has been implemented in C using
the MPI standard. The code is available in Appendix B. The algorithm has been
executed on 105 processors of an HP XC6000 Cluster with Itanium 2 biprocessors

nodes and a Quadrics ELAN 4 network.

4.2.3 Biological interpretation of the Mutual Information

In information theory the MI of two random variables, X and Y, measures the
amount of information they share, that is the quantity on information (expresses in
bits) we know about variable X by only observing Y. In this this work the MI is
computed for each pair of genes from their expression profiles. A zero value of the
MI in this context would mean that if we only observe the expression of gene X we
are not able to predict the expression of gene Y to any extent. Whereas, an high
value of the MI would mean that it is sufficicnt to observe one of the two genes to
assess the expression behavior of the other.

By definition an high value of the MI means that the distributions of the two
variables, genes expression values for instance, are statistically dependent. Meaning
that their expressions are coherently changing across the observations. By assum-
ing that co-expressed genes are involved in related processes or that their protein
products form a protein complex, the MI would allow to associate new processes or

interactors to genes or proteins for which this information is unknown.

4.3 Application to simulated data

4.3.1 Simulated Dataset

We applied our reverse engineering algorithm on simulated in-silico gene expression

data described in Chapter 3 [9]. Specifically, the in-silico dataset we used consists
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of 20 networks of 10, 100 and 1000 genes. For each network, we used a set of 100
expression profiles generated by perturbing onc gene at the time (local perturbation)
and a the set of 1000 gene expression profiles obtained via global perturbation, as
reported in Section 3.2.1.

Moreover, in order to make this in-silico dataset comparable to real gene ex-
pression profiles coming from different experiments, and therefore with values not
comparable across experiments, we proceeded as follows. For each gene network, we
subdivided each set of the 1000 in-silico expression profiles into 10 different subsets
of 100 expression profiles each. We then added a constant value to each of the sub-
sets to simulate heterogeneity in the data. This dataset was mainly used to test the
cfficacy of the quantile discretization (sce 4.2.1 for details). We refer to this simu-

lated dataset as Dataset A.

A second set of simulated expression profiles (using a continuous differential equa-
tion model) were used to test and compare this reverse-engineering algorithm with
other available algorithms. This sct of simulated expression profiles is part of the
fourth challenge of the third edition of the Dialogue for Reverse Engineering Assess-
ment and Methods (DREAM) [91]. In this set, data are generated from 5 networks
of genes (sub-networks of biologically validated gene networks, 2 for E. Coli and 3
for S. Cerevisiae). Regulation dynamics were assumed to follow a thermodynamic
model. Gaussian noise was added to the gencrated expression profiles.

Each network consists of 100 genes. Two sets of 101 expression profiles were
generated for each network. The j* expression profile is simulated by deleting a
copy of the j** from the gene network (heterozygous mutant); the 101** expression
profile corresponds to the response of the wild type (original) network. In a second
version of this dataset, expression profiles are simulated by removing both the copies

of a gene (homozygote null mutant). We refer to these datasets as Dataset B and C.



4.3.2 Performance on simulated data and comparison with state-of-the-art

reverse-engineering algorithms 70
100
M with quintile
= random I
® ARACNe
80 |
g
2
Seot 4
a
2
2 p
j:
a
2 40 4
2
a
0k _ _ _______ *_ _
o 1 N i L
0 20 80 100

40 60
Sensitivity (%)

Figure 4.2: Gene network inference performances on Dataset A.

4.3.2 Performance on simulated data and comparison with

state-of-the-art reverse-engineering algorithms

As described in Chapters 2 and 3, information theoretic approaches to reverse-
engincering gene regulatory network have been first applied wore than a decade
ago [21]. The very first practical application came with ARACNe [77], successfully
applied to infer the regulatory network in human B-Cells [12]. Our approach differs
from ARACNe in the way of computing the MI: ARACNe uses the continuos version
of the formula described in Section 2.2.2 and in Section 3.1.2, where the distribution
function is obtained by fitting a gaussian distribution over the set of expression
values; our method applies the discrete version of the Equation 4.1.

We applied ARACNe [77] on Dataset A. Since ARACNe needs a single normilised
dataset to run properly, and since each network in Dataset A consists of 10 different
expression subsets, we first applied ARACNe on each subset and then considered
the union of the gene networks thus inferred in further analyses. On Dataset A,
we also applied the new MI reverse-engineering approach described previously. We

observed that the average precision of our approach across the 20 networks (True
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Positives/ (True Positive plus False Positive)) is 47%, whereas ARACNe reaches a
precison of 21%. For comparison, when ARACNE is run on all the 1000 in-silico ex-
pression profiles together, its precision is 66% [9]. This means that ARACNE is very
good at inferring gene networks but only if gene expression profiles are coming from

homogeneous samples, where standard normalization procedures can be applied.

Both the approaches were also applied on Datasets B and C. The set of algorithm
predictions are compared by applying two scoring metrics: the Area Under the ROC
curve (AUROC) that summarizes the tradeoff between the true positive prediction
ratio and the false positive prediction ratio; whereas, the Area Under the Preci-
sion Recall curve (AUPR) that summarizes the Precision-Recall tradeoff. The edges
predicted, sorted according to their weights, may only contain a subset of the true
edges. The remaining (null predicted) true edges are then ranked randomly, and
this procedure gives rise to a p-value associated to both the AUROC (Puyroc) and
the AUPR (Paypr) scores. The 5 p-values (one for each network), for each met-
ric. are then cvaluated together by taking their geometric means. The final score is

computed as —% logyo (Pavroc x Pavpr) [91)-

Score Overall Payroc Overall Pyypr Pos

ARACNe 7.38 0.26 893 x 10~ 1! 10
our method 5.49 0.40 8.93 x 10~ 11

Table 4.1: The performances of the two theoretical-information based algorithms
were compared on a set of simulated expression profiles (Dataset B and C) [91]. We
report the averaged performances obtained by analysing the heterozygous mutants
and homozygote null mutant generated expression profiles. The “Pos” column con-
tain the position of the two algorithms when compared with the performances of
the other teams that participated at the DREAM3 (challenge 4).

Results are reported in Table 4.1. Given that the real synthetic network is di-
rected and the inferred network has no directionality, and due to the symmetric
nature of the mutual information, we forced the real network to be undirected be-

fore checking the algorithm performances.
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It can be seen that even when expression profiles are optimal, that is data are
not heterogeneous as in the case of simulated Datasets B and C, the two algorithm

perform similarly and would rank among the top 10 in the DREAM competition.

4.4 Discussions and conclusions

Gene expression profiles are widely used to infer gene regulatory networks. The
amount of biological data produced during the last decade was followed by a prolif-
eration of reverse-engineering algorithm that make use of these data.

In Chapter 3, algorithms, under different assumption of network models, were
tested and compared. Those algorithm can only be applied when the GEPs are
comparable, that is, they are part of the same experiment, thus strongly limiting
the number of expression profiles that can be analysed. Here, we presented a novel

algorithm able to use expression profiles, even when they are not comparable.



Chapter 5

Reverse-engineering of human and

mouse regulatory networks
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5.1 Introduction

In this Chapter we describe the application of the new reverse-engineering approach
presented in Chapter 4. The algorithm was run on two very large datasets of GEPs
from human and mouse species. We show the reliability of the results by comparing
the inferred gene networks with literature validated sets of inferred regulatory inter-
actions. After the validation of the method we studied the properties concerning the
topology of the recovered network and we show how these results are in line with
previous findings. Moreover, we applied a community finding algorithm on the gene
networks to discover groups of genes that are highly connected to each other and
participate to the same biological function.

We show that the resulting networks can be used to discover protein-protein
interactions, biological function and subcellular localisation of a protein, and to

elucidate the function of a disease-gene.

5.2 Human and Mouse gene expression profiles

We collected 20,255 GEPs from 591 different experiments performed on a variety
of human tissues, cell types, and conditions from the public microarray repository
Array Express. A total of 22,283 different transcripts were measured, corresponding
to the number of probes of the Affymetrix HG-U133A chip. From the same reposi-
tory, we collected 8,895 GEPs from 614 experiment performed on a variety of mouse
tissues, cell types, and conditions. Our aim was to exploit this massive datasets
to yield consensus gene regulatory networks among the 22,283 human transcripts,
and 45,101 mouse transcripts, using the reverse-engineering approach described in

Chapter 4.
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Figure 5.1: Comparison of the algorithm performance when changing the number of
bins. Simulated networks of size 100 generated in [9] were used for the comparison.
Data used in panel A are related to the inference from locally perturbed GEPs (100
data points). Whereas, in panel B were used simulated GEPs related to the global
perturbation (1000 data points).

5.3 Application of the reverse-engineering algo-

rithm

The algorithm presented in Section 4.2 was applied to the set of GEPs presented
in the previous section. The algorithm was applied to the set of GEPs from human
and mouse separately. The algorithm produced a MI value for each pair of probes
in each of the two species. MI is always greater or equal to zero. MI equals zero only
when the expressions of two probes are statistical independent. It is rare to find a
pair of probes whose MI is exactly zero. Probes almost always share a signal, even
though imperceptible. due to pre-processing and to finite sample size, which prevent
computation of the exact MI value.

One of the algorithm parameters to be chosen is the number of discretisation
states (or bins) the expression data have to be discretised into. It is possible to chose
it arbitrarily according to data availability. However, the change in this parameter
does not considerably affects the results as shown in Figure 5.1. Since the results

are not changing significantly, and the computational complexity of the algorithin
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inference process depends on the number of bins we decided to use three as a good
balance between these factors.

The number of probes in HG-U133A is 22,283. This means that the number of
indirected pairs of probes is 248,254,903. The number of probes in Mouse430A_2 is
45,101, resulting in a number of indirected pairs of probes equal to 1,017,027,550.
The reverse-engineering algorithm produced two completely connected undirected
networks. The assumption of biological independence among most pairs of genes im-
ply the statistical independence of their expression profiles. Under this assumption,
we adopted a null hypothesis that allowed us to select a threshold over the MIs.
This threshold was used to discriminate statistically significant gene-gene connec-
tions. Under the null hypothesis of independence, the distribution of the MI follows
approximately a Gamma distribution [46, 56).

We therefore fitted a Gamma distribution to the values of the MI across all the
probes’ pairs in human or mouse, using Maximum Likelihood estimation [49] are
shown in Figures 5.2 and 5.6. We thus could assign a p-value to the MI of each
gene pair and retained only those MI with a p-value < 0.01. This correspond to a
threshold for MI equal to 0.04 for human and 0.025 for mouse.

We could have further pruned the networks by using one of the recently proposed
schemes, such as the CLEAR method [40] and the Data Processing Inequality (DPI)
method introduced by [77] and described in Section 3.1.2, but we decided against
it, since we wanted to keep as many interactions as possible to have a broader
overview of gene function and regulation. We were not interested in identifying
‘direct’ interactions as done in [12], but we focused on the identification of “co-

expressed” genes, i.e. both direct and indirect interactions.
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Figure 5.2: Fitting a Gamma distribution the histogram of the MIs recovered from
human expression profiles along with the gamma pdf.

5.3.1 Human network

The number of significant connections is 4,817,629 connections (among 22,283 probes).
To our knowledge, this is the largest and most comprehensive dataset ever used to
reverse-engineer the human gene regulatory network.

To validate at least a subset of predictions, we generated a reference human
interactome, Golden Standard (GoS), consisting of 105.588 experimentally verified
interactions including protein-protein [115], transcription factor-target gene, and
metabolic interactions [60] (Table 5.1).

In order to validate the biological relevance of the predicted interactions of our
reverse-engineering approach, we built a golden standard (GoS) interaction network
from the following interaction databases:

Reactome [60] is a curated knowledge-base of biological pathways; It represents
a resource of core pathways and reactions in human biology. It collects a total of

32.821 metabolite-metabolite interactions' reported in literature.

Lnmumber of interactions obtained by mapping the specific dataset identifiers over the identifiers
complained within the HG-U133A microarray model
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ID  Source Probewise Probes Genewise UnigenelDs
1 Cipher+TissueSpecific 270,937 13,525 80,828 7,766
2 Reactome 113,867 3,303 32,821 1,759

1&2  1&2 350,116 13,911 102,112 7,980

Table 5.1: Details of the Golden Standard Interactome. Number of interactions in the
interaction databases used to build the Golden Standard, along with the cardinality
of their intersection.

Cipher [115] is a tool to predict disease-genes on the bases of a computational
framework that integrates human protein-protein interactions, disease phenotype
similarities, and known gene-phonotype associations. Authors provide a protein in-
teraction network assembled from the HPDR, BIND, MINT and OPHID protein-
protein interaction databases. It accounts for 40,649 interactions!.

Tissue Specific Protein Interactions [18] is a global human interaction network
obtained by integrating data from 21 different sources to define a network of a total
of 67,200 physical interactions’.

Genes in the GoS network are identified with human UNIGENE IDs. On the
other hand, microarray model HG-U133A identifies genes with probe IDs. In order
to perform the comparison of the human interactome against the GoS network,
we first mapped HG-U133A probes to 14,340 UNIGENE IDs using the annotation
file provided by Affymetrix. Each gene-gene connection may correspond to multiple
probe-wise connections because each gene can be associated to multiple probes. We
therefore assigned to each gene-gene connection a MI value equal to the maximum
MI among the corresponding probes-wise connections. The probe-oriented network
was thus reduced to a gene-oriented one and made compatible with the GoS network.

Figure 5.3 shows the percentage of human predicted connections that were con-
firmed by the GoS interactome. Connections are ordered according to their M1, from
the highest to the lowest. The network reaches a maximum of 90% of correct predic-
tions, with an average precision of 32%. The percentage of correct connections, had
these been randomly guessed, would have been equal to 0.0028%. The GoS interac-

tome includes only a subset of the interactions occurring in a cell. Moreover, a high
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Figure 5.3: In-silico validation of the Human network compared with an experi-
mental Golden Standard (GoS) interactome collected from different databases. The
human network (blue-line) significantly outperforms correlation-based approaches
(CoexpresDB dashed line). The Venn diagram reports the details of the interactions
part of the GoS interactome.
MI does not necessarily imply physical interactions, as reported in the GoS, but
more often functional relationships. Despite these limitations, the GoS interactome
provides evidence of the biological significance of the inferred connections.

Figure 5.3 also shows the percentage of correctly predicted connections by Co-
expresDB [84], a database of human co-expressed genes measured using a classic
Pearson Correlation Coefficient (PCC). CoexpresDB performance is better than

random, but much worse than our mutual information based approach.

The structure of the human network

The structure of the human network is typical of biological networks (82, 94]: it has
an exponential degree distribution consisting of a large number of genes with very
few connections, and very few genes with a large number of connections, termed

hubs reported in Table 5.2.
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Figure 5.4: Relation between human gene connection degree (z-axis) versus gene
expression level (y-axis). Genes were grouped in equally sampled (500 genes each)
quantiles and the average gene connection degrees computed (z-axis). The log aver-
age expression level of the genes falling into each quantile is reported in the y-axis.

We observed that, as the number of connections of a gene increases, so does its
average expression level as reported in Figure 5.4.

In order to relate gene degree to the average expression level of a gene, we pro-
ceeded as follow: since GEPs are normalized within experiments, and not compara-
ble across experiments, we could not use the whole dataset to estinate the average
expression of each gene. To this end, we used 618 human gene expression profiles
from Array Express [88] measuring expression across a variety of normal tissues.
GEPs were normalised together by applying the Affymetrix MAS5 algorithm. Av-
erage gene expression levels were then compared with gene connection degrees, i.e.
the number of connections of a gene. Genes were first divided into equally sampled
quantiles (500 each in human) then the average expression levels and the average
gene connection degrees were computed. Due to the high degree variance in some of

the quantiles, we decided to keep only those human quantiles where the connection
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Probeset ID Unigene ID  Gene Symbol Connections

220531 _at Hs. 710464 FLJ14126 5733
215366_at Hs.585343 SNX13 5449
207969 x.at  Hs.169222 ACRV1 5364
216292 at Hs.677419 — 5326
216900_s.at Hs.10734 CHRNA4 5267
207140_at Hs.37009 ALPI 5262
207685.at Hs.533022 CRYBB3 5156
210923_at Hs.104637 SLC1A7 5105
216739_at Hs.589088 — 5010
1494 f_at Hs.439056 CYP2A6 5002
214558 at Hs.123034 GPR12 4989
215511 at Hs.475018 TCF20 4979
215557_at Hs.658129 — 4973
214923 _at Hs.712567 ATP6V1D 4957
220222 _at — C8orf39 4919
32540._at Hs.655661 PPP3CC 4918
211788_s.at  Hs.644635 TREX2 4870
206878_at Hs.113227 DAO 4858
216440_at Hs.658200 ERC1 4840
216159.s.at  Hs.654267 — 4798
208486 _at Hs.380681 DRD5 4778
34846_at Hs.351887 CAMK?2B 4720
215479_at Hs.663736 - 4720
221466_at Hs.673854 P2RY4 4715
207991 x_at  Hs.169222 ACRV1 4698
220671 _at Hs.639842 CCRN4L 4697
220826_at Hs.677183 C2lorf77 4670
202485_s_at Hs.25674 MBD2 4653
216437_at Hs.677301 — 4638
221199_at Hs.302025 GFRA4 4636
207960_at — - 4592
215246_at Hs.642978 LARP7 4590
210271 _at Hs.322431 NEUROD2 4578
216116.at Hs.655006 NCKIPSD 4575
221378_at Hs.248204 CER1 4570
206256_at Hs.2246 CPN1 4566
211314 _at Hs.591169 CACNAIG 4563
221460_at Hs.258574 OR2C1 4559
217293.at — — 4542
220082_at Hs.192927 PPP1R14D 4529

Table 5.2: Human hub genes. Top 40 most connected human genes.
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Figure 5.5: Relation between the number of connections associated to a gene (z-axis)
and its dosage sensitivity (or Intrinsic Protein Disorder, y-axis) in human.

degree standard deviation was less 30.

On the contrary, the intrinsic protein disorder [70] of the protein product of a human
gene significantly decreases (P = 0.009) as its connection degree increases, as shown
in Figure 5.5. Protein disorder, defined as the length of the unstructured part of a
protein, is an important determinant of gene dosage sensitivity [113].

In order to relate gene degree to the average protein disorder of a gene, we
proceeded as before, but this time we used GlobPlot [70] to compute the protein
disorder for each gene. We thus obtained a protein disorder score for 12,494 human

genes (19,860 probes).

5.3.2 Mouse network

We repeated the same procedure described in Section 5.3.1 to infer the mouse net-
work. The number of probes in Mouse430A .2 is 45,101. This means that the number

of indirected pairs of probes are 1,017,027,550. However, the number of significant
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Figure 5.6: Fitting of a Gamma distribution over the MIs. The figure shows the his-
togram of the MIs recovered from mouse expression profiles along with the Gamma

pdf.

connection are 14,461,095 (Fig. 5.6).

The structure of the mouse network is very similar to the human network: it has an
exponential degree distribution consisting of a large number of genes with very few
connections, and very few genes with a large number of connections (hubs) reported

in Table 5.3.

Degree of connection and gene expression

Also for the mouse network, the number of connections of a gene increases. so does
its average expression level as reported in Figure 5.7.

[n order to relate gene degree to the average expression level of a gene, we pro-
ceeded as follows: since GEPs are normalized within experiments, and not compara-
ble across experiments, we could not use the whole dataset to estimate the average
expression of each gene. To this end, we used 247 mouse expression profiles from
Array Express [88] measuring expression of genes across normal tissues. GEPs were

normalized together by applying MAS5 algorithm. Genes average expression levels
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Probeset ID  Unigene ID Gene Symbol Connections
1433070_at — 5830433M15Rik 8031
1443066 _at — — 7130
1443681 _at Mm.189222 Al595406 6822
1422426_at — — 6789
1460421_at  Mm.450554 Zfp133 6750
1433161 _at - 1700008 N17Rik 6721
1437940._at Mm.22879 Apbal 6653
1454428 _at — 4930467D19Rik 6582
1419802_.at  AMm.249115 Ccdcl2

1445183 _s_at — D7Ertd523e 6388
1454316.at — 5830426 C09Rik 6357
1431762_at Mm.274255 Htra3 6329
1441838.at Mm.280913 Erccl 6276
1432949._at e 5330421 F21Rik 6253
1459088 _at — C79557 6169
1453953 _at — 9130015A21Rik 6066
1425858 _at Mm. 196580 Ube2m 5974
1430795_at — 5830407F19Rik 5960
1433189 _at - 4933433N18Rik 5953
1453626 _at — 3930402G23Rik 5943
1437778_at Mm.436700 Rbm15b 5930
1446335.at — — 5925
1442462_at NMim.459149 — 5918

1450619 x_at —— — 5913
1433245_at — 6720475M21Rik 5876
1446650_at — — 5856
1429957 _at Min.30967 Krtap26-1 5855
1445935 _at Mm.380510 — 5832
1425946_at  Mm.458189 Gstm7 5831
1453903.at  Mm.250432 4930503B20Rik 5813
1447246_at Mm.122885 — 5772
1430919_at  Mm.444732 4930525F21Rik 5730
1439124_at  Mm.152120 Wdr91 5712
1431455_.at  Mm.158563 Tmem30c 5702
1430429.at  Mm.28864 Pgsl 5696
1433221 _at — 2610311E24Rik 5680
1459696_at  Mm.216590 Fry 5635
1459206_at. — — 5624
1421726_at  Mm.197568 Ap4bl 5594
1433400_at — 5033405D04Rik 5592

Table 5.3: Mouse hub genes. Top 40 most connected mouse genes.
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Figure 5.7: Relation between gene connection degree (z-axis) versus gene expression
level (y-axis) in mouse. Genes were grouped in equally sampled (1000 genes each in
mouse) quantiles and the average gene connection degrees computed (z-axis). The
log average expression level of the genes falling into each quantile is reported in the
y-axis.

were then compared with gene connection degrees, i.e. the number of connections
of a gene. Genes were first divided into equally sampled quantiles (1000 each in
mouse) then the average expression levels and the average gene connection degrees
were computed. Due to the high degree variance in some of the quantiles, we decided

to keep only those mouse quantiles where the connection degree standard deviation

was less 50.

As for the human network, we observed that the intrinsic protein disorder [70] of the
protein product of a mouse gene significantly decrcases (P = 0.009) as its connec-
tion degree increases, as shown in Figure 5.8. Protein disorder, defined as the length
of the unstructured part of a protein, is an important determinant of gene dosage
sensitivity [113)].

In order to relate gene degree to the average protein disorder of a gene, we used

GlobPlot [70] to compute the protein disorder for each gene. We thus obtained a



5.4 The modular structure of the human and mouse networks 86

120 r —
o |==fittin i
g |7 - :
(o]
R2)
(]
c
2
o
Q.
&)
‘B
£ | y=-15%+11E+02 .
...E- ™ °
- Correlation = -0.45
P = 0.009 ..

90 N N X " A L P ) 1

1 60 250 850 2500

Gene Interaction Degree (log)

Figure 5.8: Relation between the number of connection associated to a gene (z-axis)
and the its dosage sensitivity (or Intrinsic Protein Disorder, y-axis) in mouse

protein disorder score for 17,498 mouse genes (33,289 probes).

5.4 The modular structure of the human and mouse

networks

A cell is able to regulate its complex behaviour thanks to groups of genes which
perform different, but coordinated, functions to carry out a specific task. We asked
whether we could find such functional modules within the inferred networks, which
could reveal how the cell transcriptome is organized. We searched the network for
modules, which are defined as “communities” and “rich-clubs” in network theory. A
community is a group of genes highly inter-connected to each other, but with few
connections to genes outside the group. A “rich-club” can be defined as a “commu-
nity of comnmunities”, i.e. a group of closely inter-connected communities.

In order to identify communities, we represented the human network as a matrix,

as shown in Figure 5.9A where the human adjacency matrix is reported. Each entry
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Figure 5.9: Modular structure of the human network. Adjacency matrix of the net-
work before (A) and after (B) the hierarchical clustering procedure used to identify
communities. Each dot represents a connection among two genes, that is a matrix
entry, whose MI is greater than the significance threshold. (A) Genes are sorted
according to their chromosomal location. Numbers on the 2 and y axes indicate
chromosomes. (B) Genes are sorted according the community they belong to. Square
dimensions are proportional to the number of genes in each community. The inset
shows an enlargement of an area of the adjacency matrix where single dots are
visible.
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Figure 5.10: Modular structure of the mouse network. Adjacency matrix of the net-
work before (A) and after (B) the hierarchical clustering procedure used to identify
communities. Each dot represents a connection among two genes, that is a matrix
entry, whose MI is greater than the significance threshold. (A) Genes are sorted
according to their chromosomal location. Numbers on the z and y axes indicate
chromosomes. (B) Genes are sorted according the community they belong to. Square
dimensions are proportional to the number of genes in each community.

m;; of the matrix was set to 1, or 0, depending whether, or not, the MI between gene

i (in the "

row) and gene j (in the j™ column) was significant. We observed that
genes lying within the same chromosome (squares in Fig. 5.9A) tend to be connected
to each other more often than what would be expected by chance.

In order to identify communities from the adjacency matrix, we applied a classic
hierarchical clustering algorithin with the average linkage distance on the matrix
describing the network using as a distance the “Jaccard” metric. This is defined as
the ratio between the number of common interactions between two genes (i.e. two
rows or two columns being the matrix simmetric) divided by the total number of
interactions. The clustering procedure is outlined in Section 5.4.1. The dendrogram,
produced by the average linkage algorithm, was cut in order to maximize the number
of clusters with more than 4 nodes (Fig. 5.11A,B). At the end of this procedure, we

identified 393 communities in the human network and 865 communities in the mouse

network. Figure 5.9 and Figure 5.10 show the matrixes representing the human and
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Figure 5.11: Communities validation through Gene Ontology analysis. Linkage step
versus number of human (A) and mouse (B) communities with at least 4 nodes.
Human (C) and Mouse (D) Communities were sorted according to their cardinalities.
Each blue dot represents a community whose genes are enriched for a GO term
whereas red dots express communities were no enrichment have been found.

mouse networks before (A) and after (B) the hierarchical clustering procedure (see

Supplementary Table 2 for the list of communities). Communities appear as dark

squares, with genes belonging to the same community grouped together, giving a
striking check-board pattern.

We then checked whether communities were enriched for genes sharing a common
biological function. To this end we applied Gene Ontology Enrichment Analysis on
the list of genes in each community. GOEA is a commonly used technique that allows
the identification of statistically over-represented Gene Ontology terms in a set of
genes. Suppose to have a set of N genes, m of which are annotated as associated
to a Gene Ontology term of interest. Suppose to draw a subset of n genes from
the complete list of N genes, then the probability of obtaining A genes all sharing

the same Gene Ontology term of interest follows an hypergeometric probability
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distribution: .
(%) ok
(%)

from this, we can compute the cumulative distribution and hence the significance,

Pr(X =k)= (5.1)

or p-value, of the draw; i.e. the probability of having at least k genes sharing the
same GO term of interest. Figure 5.11C,D show the result of the analysis where the
percentage of positive predictions (y-axis) are related to the number of communities
analysed (z-axis). Communities are ranked in descending order according to their
cardinalities.

We assessed that 36% of the human communities are enriched for a specific

biological function by Gene Ontology analysis (Supplementary Table 3). This per-

centage increases up to 47%, when considering only communities composed by more
than 10 genes. We also found that 6 out of 393 communities of the network are
significantly enriched for disease-genes (P < 0.05, Gene Set Enrichment Analysis):
community number 1, 11, 22, 40, 54 and 96. The most significant community, num-
ber 40, is composed by genes whose protein products localize to the lysosome, and
is highly enriched for disease-genes involved in lysosomal storage disorders. Other
examples include community 11, whose genes are related to cell adhesion and ez-
tracellular matriz organization, and include disease-genes causing developmental or
cardiovascular defects; community 22, related to the immune system and includ-
ing genes causing related disorders; community 54, composed by genes involved in
ozygen transport and enriched for genes involved in hematological disorders. These
“disease communities” could contain other yet unknown disease-related genes, and
could be helpful in identifying candidate genes in disease-related loci.

We observed that communities interact with each other; for example community
1, enriched for transmembrane receptor activity (P = 2.01 x 107%°) interacts with
community 3, enriched for eztracellular region (P = 7.33 x 10=%, Fig. 5.9B, arrow),

but not to community 2 involved in RNA processing.
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5.4.1 Hierarchical clustering procedure to identify network

communities

Hierarchical clustering methods [66] aim to group data items into a hierarchical set
of clusters. organized in a tree structure, according to a specific distance function.

In order to apply one of these methods, it is necessary that all the distances
between the items to be clustered are known, therefore a distance matrix must be
calculated before the clustering procedure can be applied.

The hierarchical clustering algorithin starts with each item considered as a sep-
arate cluster. At each step, according to the distance matrix, the pair of closest
clusters is merged into a new single cluster. The distance matrix is then updated
by computing the distances between the new cluster and the others. This process
iterates until all the items belong to a single cluster. It requires N — 1 steps where
N is the number of the data items.

There are many possible distance functions that can be used in hierarchical
clustering algorithms. We have adopted the unweighted average distance (UPMGA)
[103]: the distance between any two clusters C; and Cj is taken to be the average of

all distances between pairs of items p in C; and ¢ in Cj:

1
|C:1C51 ZPEC.,qECJ- d(pv q)

To constructs the distance matrix starting from the network adjacency matrix
we have used the Jaccard similarity coefficient. For two rows of the matrix, it is
defined as the cardinality of their intersection divided by the cardinality of their

union:
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Parallel Implementation of the hierarchical clustering algorithm

The parallel algorithm distributes the gene adjacency matrix among the computing
processes. Each process gets N/p rows of the adjacency matrix where p is the number
of processes available and N is the total number of probes. Therefore each process
stores a submatrix of the distance matrix with size N/p x N.

As the distance matrix is symmetric, only the elements corresponding to the
upper triangular half are calculated applying the Jaccard similarity coefficient to
the rows of the adjacency matrix taken pairwise.

During the clustering process, the cluster index constantly changes: the singleton
clusters are numbered from 1 to N, while each newly-formed cluster is assigned the
index N + I, where I is the index of the iterative step (1< T < N —1).

At each iterative step I, each process finds the minimum of the distances locally.
The global minimum distance of the closest clusters is found through an all-reduce
operation and its indices are broadcasted to all processes. The computational time
complexity is then reduced to O(nClusters;?/p), instead of O(nClusters;?), where
nClusters,, varying from N to 1, is the number of the clusters at step I. Therefore,
the overall computational time complexity for this part of the algorithm is O(g—:).

Each process updates the distances of the newly-formed cluster from the clusters
that it stores. If the new cluster is obtained by merging the clusters : and 7, then
the new distances to be calculated are stored in the column and row i while the
row and column j, from now on, will be excluded from the search for the minimum
distance. Thus, each process just updates the portion of the column i (N/p elements)
that it owns. The row i is instead updated through a gatherv operation in which all
processes send its portion of the column ¢ (N/p elements) to the root process that
owns the row i (Figure 5.12). Therefore, the overall computational time complexity
for this part of the algorithm is O(L";). The parallel algorithm is summarized in

Figure 5.13 and was implemented in C using the MPI standard..
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Figure 5.12: Distance matrix update example with p = 4 processes.

{compute distances of local clusters}
for i =1 to l} do
for j=1toi—1do
local D(i, 3) < d(z, 7)
end for
end for
fori=1to N—-1do
{find local minimum distance}
(h, k) «— min(local D)
{all-reduce to find the global minimum}
(H, K, min_rank) «— Allreduce(local D(h, k), MIN)
{broadcast of the indices of the global minimum}
if my_rank = min_rank then
Beast(H, K)
end if
{compute the distances of the new cluster}
forj=1to % do
local D(j, H) «— (Iist(C'”,C,\-)
end for
local D(H.,:) — Gatherv(local D(0, H), %’)
end for

Figure 5.13: Parallel hierarchical clustering algorithm
5.4.2 Communities of communities: “Rich-clubs”

In order to better elucidate community function and interactions among them, we

defined the Interaction Strength (IS) between two communities as the number of
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connections occurring among genes belonging to the two different communities, di-
vided by the expected number of connections. The IS is equal to 0 if no connections
exist among genes belonging to the two different communities.

Formally, considering two communities A and B, we define nsp as the number
of edges in the human or mouse network across the K4 genes in community A and

K g genes in community B, then the Interaction Strength (1S4p) is

NAB

ISap = log(m)

(5.2)

where f is the average frequency of edges across all the genes in the human or mouse
network.

We then constructed a community-wise network by creating an adjacency ma-
trix whose element in row ¢ and column j is the IS;; between community i and
community j, if the 1.5;; > 0.

We the used this community-wise adjacency matrix to identify rich-clubs, i.e.
communities of communities. We computed the IS between all the pairs of 393
communities for a total of 77,028. Only 5,074 pairs of communities had an IS greater
than 0. Similarly to the gene-wise network, also the community-wise network can be
represented as a matrix. We can therefore apply a clustering procedure to group the
communities into sets of highly interconnected communities (“rich-clubs”) [42]. To
this end, we applied a novel message-passing clustering algorithm [42] which is able
to return the number of clusters without any user-speficied parameter, using as inter-
community distances the I Ss. We thus obtained 58 human and 227 mouse clusters of
communities, i.e. rich-clubs (as defined in network theory). The process was iterated
by considering the ISs among the new formed clusters (rich-clubs). Figure 5.14
report the human network of rich-clubs along with four magnifications. Figure 5.15

For a complete list of genes within each community refer to Supplementary Table 2.
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Figure 5.14: Community-wise human network. Each node is a community. A color
and a number identify each rich-club (i.e. a group of highly interconnected communi-
ties). The width of each edge reflects the IS between communities. “Exemplars™ are
indicated by triangles. Examples of rich-clubs: (A) communities of genes involved in
house-keeping functions: gene expression (rich-club 197), translation (rich-club 246),
RNA processing (rich-club 2) and cell cycle (rich-club 7); (B) communities involved
in the extracellular matriz maintenance, and cell mobility; (C) communities involved
in immune response; (D) communities involved in intracellular trafficking.
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Figure 5.15: Community-wise mouse network. Each node is a community. A color
and a number identify each rich-club (i.e. a group of highly interconnected commu-
nities). The width of each edge reflects the IS between communities and rich-clubs.
“Exemplars” are indicated by triangles. The node of the network are identified with

an integer number (see Supplementary Table 2).
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Figure 5.16: Percentage of mouse-conserved human connections. Connections are
sorted according to their MI value. The peak of the curve is at 28%, and the genes
involved in those conserved interactions are highly enriched for cell cycle P = 1.0 x
T

5.5 Connections tend to be conserved across species

To understand whether, and to what extent, connections among genes are conserved
across human and mouse species, we first removed from the human network those
genes without an ortholog in mouse, resulting in a “reduced” network of 11,318
genes. We then found that 218,700 connections (12%) were conserved in mouse as
shown in Figure 5.16.

This percentage is in line with previous studies. In yeast, it has been reported
that between 10% [95] and 30% [86] of protein-protein interactions occurring during
the cell cycle of Saccharomyces pombe (fission yeast) and Saccharomyces cerevisiae
(budding yeast) are conserved; another cross-species (fly and yeast) protein interac-
tion study [8] resulted in a ratio of conservation ranging from 6% to 15%; in [93],
the authors report a database of protein-protein interactions occurring among tran-
scription factors in human and mouse, where the percentage of effective conserved

» . . - v L ey Y . .
interactions is about 16% (the estimated range is 34%-64% when taking into account
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Gene ontology = = S p-value
cell cycle 2 7 142 147 x 1077
proteasome 4 2 483 8.96x 107216
oxidative phosphorylation 4 2 483 896 x 10216
ribosome 9 2 113 1.79x107%
immune system 8 8 114 202x10°1%
signal transduction 19 33 33 285x107%
lipid metabolism 120 51 7 1.61x10713

Table 5.4: List of conserved modules along with the human and mouse communities
IDs, number of orthologous genes and the p-value associated to the Enrichment

analysis.

the False Positive Rate of the experimental technique). A recent genome-wide analy-
sis [4] integrating heterogeneous sets of experimental data (including 338 expression
profiles in human and 1048 in mouse) showed a conservation of 15% of interactions
between the two mammalian species.

We investigated whether communities found in the human network were con-
served as communities in the mouse network. A human community was deemed to
be conserved in mouse, if there was at least one mouse community composed by a
significant fraction of genes orthologous to genes in the human community. Ninety-
two out of 389 human communities (24%) were enriched in one, or more, mouse

communities (Supplementary Table 5). We only considered those human communi-

ties with at least one mouse orthologous gene. It appears that the conservation at
the community level (24%) is higher than conservation at the gene-gene level (12%)
suggesting that many circuits embedded within the networks were conserved during
evolution. Our results are in agreement with previous studies on the conservation of
protein complexes across species [99]. Example of conserved communities are listed
in Table 5.4: as expected many of the basic cellular processes are conserved [106].

We observed that human community 4 and the conserved mouse community 2
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are significantly enriched for genes involved in proteasome (human p = 7.25 x 10722,
mouse p = 7.83 x 107%) but also for genes involved in ozidative phosphorylation
(human p = 1.36 x 10755, mouse p = 9.16 x 107!2). Therefore, genes belonging
to these different pathways are co-regulated, and this co-regulation is conserved
across species. Proteasome-dependent protein degradation represents one of the most
expensive processes in term of energy; oxidative phosphorylation is a metabolic
pathway that uses energy released by the oxidation of nutrients to produce ATP.

Therefore it would make sense for these two pathways to be coupled.

5.6 Discussions and conclusions

In this chapter we have shown that massive and heterogeneous gene expression
datasets can indeed be exploited to yield biologically relevant information on gene
regulation at transcriptional level. We have identified groups of genes that tend to be
highly “co-expressed” (communities) and that share a common biological function.

We observed that genes that are connected, i.e. co-expressed, in human tend to
be also co-expressed in mouse, more than what is expected by chance; however this
is not the general trend, since only 12% of connections are conserved. Albeit this
estimate may be lower than the real one, due to false negatives and orthologous
gene mis-assignments, our results are confirmed by other large-scale experimental
studies in human and mouse [93, 4], and this percentage would drastically increase
if we would consider both that only a subset of genes are orthologous, and that the
threshold we selected imposes an upper bound. Our observation adds weight to the
hypothesis that regulation of gene expression may be very different between species,
even if they share a similar proteome.

The gene network structure is typical of complex network with the presence of
hub genes with a large number of connections. Our finding suggests that hub genes

are highly expressed and may have been selected to be less dosage sensitive, i.e. not
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pathological when their expression is increased, as confirmed by their tendency to
have a lower protein disorder.

We identified biologically relevant functional modules within the network, thus
providing a modular view of the wiring diagram of a cell, going from genes to com-

munities, and from communities to rich-clubs.



Chapter 6

Transcriptome organisation and

gene function

The final goal of an inference process applied to biological dataset is to gain new
insights on the biological mechanisms of the cells. These insights include identifi-
cation of physical interactions among proteins (P-P interactions), prediction of the
biological function of a genes, and so on. In this Chapter we experimentally vali-
dated a set of physical interactions predicted by connections in the human network,
and we propose a new approach called “guilty-by-association”, able to predict the
biological processes of genes, or its cellular localization of the protein products.
Moreover, we investigated the relationship between three-dimensional organisation

of the chromatin in the nucleus and gene expression.
6.1 Biological validation of Protein-Protein inter-

actions

Genome-wide inference validation was a difficult process to accomplish due to the

lack of a golden standard network of interactions among genes. As outlined in 5.3.1
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Figure 6.1: Subnetworks obtained by collecting the top 1000 connections with the
highest MI within the network. Subnetwork (A) contains genes that codify for the
ribosomal protein complez. Subnetwork (B) is enriched for genes involved in the
spindle checkpoint, for clarity only a subset of interactions are shown. Subnetworks
C) is enriched for metallothionein genes, a family of low molecular weight, heavy
metal binding proteins. Interestingly these genes are all present as a cluster on chr
16q13. Subnetwork (D) contains major histocompatibility complex proteins.

we built a golden standard (GoS) interaction network by merging different sources of
interaction databases. Results are reported in Figure 5.3 and show that the inference
performance reaches a maximum of 90% of correct predictions. The ROC curve
highlight how the higher the MIs the more we can trust our predictions.

We investigated the identity of the top one thousand connections with the highest

MI in the network (Fig. 6.1A and Supplementary Table 4). Forty percent of these

connections, involving a total of 302 genes, were confirmed by the GoS interactome.
An additional 13% of the connections were predicted among genes in the same gene-

family, which, therefore, may well be functionally related, although not physically
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Protein Protein

NUSAP1 RRM2
NUSAPI ZWINT
NUSAP1 ASPM
NUSAP1 KIF2C
NUSAP1 BUBIB
NUSAP!1 KIAA0101
ZWINT RRM2
ZWINT ASPM
ZWINT BUBI1B
ZWINT KIF2C
ZWINT KIAAQ101

O N = N = R e e e WO NN W~ I strong signal
COOONNNOD—~OOO O~ wh ww w | weak signal
B CORD s 0O DD O A N TR B WO O - S ko w| negative
WWWDPRDOWDAWNARWDH O DWD O S A total

RRM2 KIF2C

RRM2 KIAA0101

RRM2 ASPM

RRM2 BUB1B

KIF2C ASPM

KIF2C BUBI1B

KIF2C KIAA0101

KIAA0101 BUBIB

ASPM KIAAO101

ASPM BUBI1B

negative control 7T 2 21 30
positive control 15 0 0 15
positive weak control 6 9 0 15

Table 6.1: Biological validation of Protein-Protein interactions. Protein-protein in-
teractions that have been tested via Yeast two Hybrid assays. In bold we report the
pairs of proteins that were known to interact from literature.

interacting.

In order to test the predictive ability of the network, we focused on the subnet-
work (B) in Figure 6.1 consisting of 12 genes most of which (CENPF, NUSAPI,
KIF2C, BUBIB, ASPM, ZWINT, and CCNB2) involved in mitotic spindle check-
point, chromosome motility, and mitotic progression (59, 74, 92, 109].

According to the GoS interactome, three protein-protein interactions were known
to occur among the genes in subnetwork (B), therefore we decided to verify whether
the predicted connections, could be yet undiscovered protein-protein interactions.

We selected only the subset of 7 genes (NUSAP1, KIF2C, BUB1B, ASPM, ZWINT,
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KIAA0101, and RRM2), which according to our network formed a tight cluster of
genes all connected to each other. We performed a series of yeast two hybrid (Y2H)
assays to test a total of 21 connections (i.e. all the possible interactions among 7
proteins). According to the Y2H assay, 20 of these were positive. Since Y2H are
known to be prone to false positive detections, we also experimentally estimated the
precision (true positives over true positives plus false positives) of the Y2H assay
by using appropriate positive and negative controls (SI). The estimated precision
resulted to be equal to 77%, hence, at least 15 (= 77% of 20) of the experimentally
identified interactions should be true positive predictions. This means that we can
predict new p-p interactions with a precision of 75% (15 out of 21, Fig. 6.1, see Table

6.1 for the results of all the assays).

6.1.1 Yeast-two-Hybrid assays

The Yeast two Hybrid (Y2H) kit “ProQuest Two-Hybrid System” (Invitrogen) in-
cluded the S. cerevisiae MAV 203 strain (MATa, leu2-3.112, trp1-901, his3A200,
ade2-101, gal4A, gal80A, SPAL10::URA3, GAL1::lacZ, HISSUAS GAL1::HIS3@QLYS2,
canlR, cyh2R), the bait vector pDEST32 and the prey vector pDEST22. The “Ul-
timate ORF” (Invitrogen) of the genes of interest were used to generate prey and
bait plasmids using the GateWay technology and protein-protein interaction assays

were performed according to manufacturer instructions.

6.2 Chromatin structure and gene expression

The three-dimensional structure of chromosomes in the nucleus brings into close
spatial proximity loci that are far apart in terms of genomic distance [69]. However,
little is known about the relationship between chromatin spatial structure and gene
expression.

We investigated whether genes that are connected to each other according to
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our network, were also physically close to each other at the chromatin level, in the
cell nucleus. We used a recent comprehensive mapping of chromosomal loci physical
interactions using an innovative “Hi-C” chromatin capture technology [69)].

The physical interaction map was measured in 2 human cell lines (GM06690 and
K562) [69]. Authors provide an intra-chromosomic {69] contact probability matrix
at 100 Kilobases resolution, and a genome wide contact probability matrix at 1
Megabases resolution.

This map of physical interactions can be represented as a matrix (M,), where
each entry m;; reports the probability of the i* Mb of the genome to be in physical
contact with the j* Mb, according to “Hi-C” experimental results. Figure 6.4B is
a graphical representation of this map for chromosome 19. In [69] authors observe
that genes in the same chromosome that are close each to other in terms of genomic
distance have an high probability to be physically in contact. By using the infor-
mation of the connections among the genes that is stored in the inferred human
network, we computed a “connection tendency” and compared it with the linear
genomic distance.

Figure 6.2 shows the result of the analysis. Plots are associated to chromosome
and are color coded according with the length of the chromosomes. Specifically, for
each normilised chromosomal distance (y-axis), the number of connections among
the genes that are within that distance is computed. This value is then divided by
the expected number of connections (given the network) and the log2 is computed
and reported in the z-axis. This quantity is referred to as the “connection tendency”.
The analysis shows that genes that are close each to other in terms of linear genomic
distance, have an higher tendency to being connected in the network with respect
to genes that are far apart. The analysis reported in Figure 6.2 is similar to the one
performed in [69] where in place of connection tendency among genes they consider
physical contact probability.

Communities in our network can be considered as functional modules consisting
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Figure 6.2: Connection tendency and genomic distance. “Tendency” (y-axis) of the
human genes within a certain genomic distance to be connected according to our
network. We computed a connection tendency as the number of connections among
genes below a given genomic distance, divided by the expected number of connections
for the same number of genes, independently of their distance. We color coded each
chromosome. from red (shorter chromosomes) to blue (longer chromosomes). We see
that the closer two genes are in terms of genomic distance, (z-axis, log-scale), the
higher their tendency to be connected.
of genes whose expression is coordinated, and that carry out specific biological func-
tions as observed in Section 5.4. We asked whether these gene modules could have
a ‘physical counterpart’ in the cell. We therefore further investigated the correspon-
dences between physical contact probability and connection tendency.

In [69], authors defined a correlation matrix C, in which element (i, j) is the

. - th . 1. e »

Pearson correlation between the i row and j™ column of M. This C), matrix ex-
hibits a strong ‘plaid-pattern’ as shown in Figure 6.4B. C, is the correlation matrix
that illustrates the correlation (range from 1 (blue) to +1 (red) in Fig. 6.4) between
the intrachromosomal interaction profiles of every pair of 1 Mb loci along a chromo-
some (chromosome 19 in Fig. 6.4). The plaid pattern indicates the presence of two
compartments within the chromosome. The computation of the correlation between
each pair of chromosome loci is justified by the fact that if two loci are nearby in
space, they reasonably will share neighbours and have correlated interaction profiles.

The analysis reported in Figure 6.3 was performed computing the contact corre-
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Figure 6.3: Intra-community physical contact (y-axis) expressed in terms of average
contact correlation is plotted for each of the 393 communities (z-axis) identified in
Section 5.4, and compared to the expected random correlation.
lation mean (from matrix C,) among the chromosomal regions associated to each of
the community found with the analysis presented in Section 5.4. To associate chro-
mosomal regions to communities, we simple take all the chromosomal regions that
contain at least a gene of the community. Then, for each community we averaged the
correlations among the associated chromosomal regions (blue spots in Fig. 6.3). For
cach community we also checked for the random correlation by shuffling the labels
of the genes in the community, while keeping the size of the community (red spots
indicate random mean, while red bars indicate standard deviation over 100 trials).
In order to compare the physical contact probabilities of the chromosomal regions
(C},) to the human network, we first derived a “connection tendency matrix™ (M..)
at 1 Mb resolution from the human network adjacency matrix. In the M, matrix
the element in position (7, j) reports the connection tendency between genes in the
i Mb and genes in the j Mb. To generate the M. matrix, we first subdivided the
adjacency matrix by grouping together probes referring to genes which where within
1 Mb distance between each other, we then computed the IS (Eq. 5.2) genome-wide

between the 1 Mb regions, with K, equal to the number of genes in the A region
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Chromosome 19 (1 Megabase resolution)
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Figure 6.4: Genes that are co-expressed tend to be physically close at the 3D chro-
matin level. (A) Connection tendency matrix of chromosome 19. Grey stripes high-
licht regions with no probes designed for the microarray model HG-U133A. A red
color indicates two different 1 Mb loci whose genes are strongly connected to each
other. (B) Physical contact matrix of chromosome 19. Grey stripes highlights chro-
mosomal regions where centromeres are located, plus unalignable regions. A red color
indicates two different 1 Mb loci that are ])ll_\'.\'i("dll‘\' close to each at the chromatin

level. Physically close regions may also contain genes that are not co-expressed and
vice-versa: n‘giun (l) in (.-\ ) has an opposite tendency with respect to the corre-
sponding region (I) in (B). This means that regions that are not in physical contact
may contain genes rhnt are (wm\xpl'vss(wl, The opposite can also be true, for example
region (II) shows that loci physically interacting with each other do not necessarily

contain genes that are ('u—vxpn‘sswl.
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(of 1 Mb), Kp the number of genes in the B region (of 1 Mb), nsp the number of
interactions between genes in region A and genes in region B, and f the average
frequency of interactions across all the genes in the human network. We then derived
a correlation matrix C, as shown in Figure 6.4A, where the element in position (z, )
is the Pearson correlation between the i** row and 7% column of the M, matrix.

Chromosome-wise analysis and genome wide analysis was accomplished by com-
puting the 2-dimensional Pearson correlation coefficient (PCC) between the C, ma-
trix, describing the physical contact probability, and the C, matrix, describing the
interaction probabilities among the genes in the human network. We computed the
p-values following classic statistical theory for PCC. The p-values were then cor-
rected following a Bonferroni False Discovery Rate (FDR) procedure to control the
percent of false predictions in the set of predictions. We deemed as significant those
PCC with an FDR < 0.05.

In both matrices (Fig. 6.4A,B), there is a clear “plaid pattern” highlighting
chromosomal regions whose genes are strongly connected to each other (red in Fig.
6.4A) and regions which are physically close to each other at the chromatin level (red
in Fig. 6.4B). These regions have a striking overlap (correlation = 0.4, P = 7.3 x
107123} especially the p-arm of chromosome 19 (upper left square in both matrices),
revealing that genes that are physically close to each other at the chromatin level
tend to be “co-expressed” (i.e. have a significant MI}), and vice-versa.

By extending this analysis to all of the chromosomes, we found a significant
overlap (correlation significance: P < 0.01) for all but three chromosomes (9, 20 and

21).
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species K N N.int K CORRECT PERC | CLASS
17174 16750 13123 7626 58% BP

human | 18141 16646 13687 6601 48% MF
18020 17561 14400 10247 1% CcC
19011 24848 11379 6682 59% BP

mouse | 22774 24796 13407 6789 51% MF
21975 24942 13338 10375 78% CcC

Table 6.2: GOEA: guilty-by-associations study. The CLASS column reports the per-
centage of correct predictions; probeset-GO term correct association by looking at
the probeset neighborhoods. K: probesets associated to one or more GO term; N:
probesets whose neighborhood is associated to one or more GO term; K_int_N: in-
tersection between K and N; K_int_N_correct: probesets associated to one or more
GO term that is enriched in its neighborhood.

6.3 Prediction of gene function and protein local-
isation

We exploited the information embedded in the human and mouse networks to iden-
tify gene function, or protein subcellular localisation, via a guilty-by-association anal-
ysis. It consists in assigning a function to a gene (or a localisation to the encoded
protein) by checking whether there is a shared function among the genes connected
to it (or a shared localisation of their protein products). In what follows, we term
“gene neighbours” the set of genes connected to a given gene of interest according
to the predicted networks of connections.

We performed a Gene Ontology Enrichment Analysis (GOEA) on the set of
gene neighbours for each gene, in both the human and mouse networks! (see Sec.
6.3.1). We then selected, as a test set, the subset of 18,141 human and 22,774 mouse
transcripts for which the function/localisation was known according to their Gene
Ontology classification. In table 6.2 we report the percentage of correct predictions,
for each of the three GO classes (Biological Process, Molecular Function and Cellular

Localisation), ranging from 48% to 78%.

"http://netview.tigem.it
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6.3.1 Computational methods

Gene Ontology Enrichment Analysis (GOEA) is a commonly used technique that
allows the identification of statistically over-represented Gene Ontology terms in
a set of genes. Suppose to have a set of N genes, m of which are annotated as
associated to a Gene Ontology term of interest. Suppose we draw a subset of n
genes from the complete list of N genes, then the probability of obtaining k genes
all sharing the same Gene Ontology term of interest follows an hypergeometric
probability distribution, that is possible to compute applying the formula presented
in Section 5.4. From this, we can compute the cumulative distribution and hence the
significance. or p-value, of the draw; i.e. the probability of having at lcast k genes
sharing the same GO term of interest.

In order to predict gene function and/or localisation from the human and mouse
networks, we proceeded as follows: for each probe (i.e. gene) of the human or mouse
network, we selected the probes predicted to be connected with it in the network
(i.e. the gene’s neighbours). For probes with more than 500 neighbors, only the top
ranked 500 ones with the highest MI were retained; for nodes with less than 50
neighbors, we included also the gene’s second neighbours (i.e. the neighbours of the
neighbours) up to a maximum of 500.

Multiple probes may refer to the same gene and thus be highly co-expressed. To
avoid biases in the GOEA computation, we removed from the neighbours, the probes
associated to the same gene. GOEA was then performed on this subset of neighbours
for each of the probe in the human network. In the testing phase, a prediction was
claimed to be correct if the GO term that was enriched within a neighbourhood was

also the one associated to the probe itself according to the GO database [6].
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A

Figure 6.5: Biological validation of predicted mitochondrion protein localisations.
NSUN4 (A) and UQCC (B) have been modified in order to be expressed together
with a red-fluorescent protein. Green fluorescence localises mitochondrion. Yellow
spot are given by the combination of red and green showing the mitochondrion
localisation of the :-xpl‘:‘.\\iull of the [)1'()It‘ill we are lL‘.\'IiIl}_’,.

6.3.2 Biological validation of gene expression localisation
(e} o

[o test experimentally a subset of new protein localisation predictions, we selected
6 genes, whose protein products were predicted to be localised in mitochondria by
the guilty-by-association analysis (Sec. 6.3.1), but that, to our knowledge, were not
vet reported in the literature. We fused the corresponding cDNA to the N-terminal
of a stabilised green fluorescent protein (EGFP), and transfected HeLa cells with
these constructs.

We found that 2 genes, NSUN4 (NOP2/Sun domain family, member 4) and
UQCC (ubiquinol-cytochrome ¢ reductase complex chaperone, CBP3 homolog (yeast))
localised in mitochondria as shown in Figure 6.5); confirming that at least 33% of
our predictions are correct. For comparison, had 6 genes been selected at random,
the probabiltiy that 2 of them had protein products localised to mitochondria would

(

have been less that 0.3%. hence two-order of magnitudes lower.
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Experimental methods

Cell culture and transfection for protein mitochodrial localisation assays.
HeLa cells were maintained at 37°C in a 5% CO2-humidified incubator, and cultured
in DMEM (GIBCO BRL) supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Invitrogen) and 1% antibiotic-antimycotic solution (GIBCO BRL).
50000 cells were transfected in a 24-well with 0.3ug of DNA using TransIT-LT1
Transfection Reagent following the standard protocol suggested by the manufac-
turer. After 16h cells were treated with a red MitoTracker (Invitrogen) for 30 min-
utes, in order to specifically bind the mitochondria, and then were fixed with 4%
paraformaldehyde for 10 minutes. Cells were observed using the confocal microscope
ZEISS LSM 710.

Bacterial strain, Plasmids and Molecular Cloning. Plasmid construction
and molecular cloning were performed in the cloning host cell E.coli DH5a (Invit-
rogen) following standard protocols. For each gene of interest the coding sequence
was amplified from a total preparation of cDNA obtained by RT-PCR of a murine
RNA.

The amplification was carried out using the primers listed in Table 6.3. Each
coding sequence was then cloned into the EcoRI/Bglll sites (except for Fam73b
that was cloned into EcoRI/BamHI sites) of pEGFP-N3 vector at the N terminal of
the EGFP, thus resulting in a fusion protein. All clones were confirmed by sequencing

analysis.

6.4 Elucidating the function of the granulin pre-
cursor ‘disease-gene’

We next asked whether the guilty-by-association approach could be helpful in elu-

cidating the function of genes involved in genetic diseases. Since we were interested
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Gene | Sequence

9530058B02Rik | F (5-CAGGAATTCACCATGTACACTATCACCAAG -3’)
9530058B02Rik | R (5-CGGAGATCTGGAACAGTTGGTGATTTTAGC-3")
2010012005Rik | F (5-TTAGAATTCATGATGGCGACTGGGACGC-3’)
2010012005Rik | R (5-GCGAGATCTCTTCAGTAAGTGACTCAACTG-3’)
2810405K02Rik | F (5-GTCGAATTCATTATGAATGTGGTGGACCTTGGT-3)
2810405K02Rik | R (5-GCCAGATCTCCTCCCACACACCTCTTCA-3)
2010012005Rik | F (5-GCGGAATTCAGGTGATGGCGACTGGGAC-3’)
2010012005Rik | R (5-GTTAGATCTCTTCAGTAAGTGACTCAACTGGTC-3’)
Nsund | F (5-CTAGAATTCACCATGGTGTTTATCACATCAATAGA-3’)
Nsund | F (5-CTAGAATTCACCATGGCTGCGCCCGTCTTAA-3)
Nsun4 | R (5-CGCAGATCTTGGCAGCCTATGCAGTTTGC-3’)
Uqee | F (5-GCGGAATTCAGTATGGCGTTGCTGGTGCGAG-3)
Ugee | F (5-GCGGAATTCAAGATGGGATTCACTGGACCTTTG-3’)
Uqce | R (5-CGAAGATCTAAGGCCCTCATCATTGTAAGTA-3)
Ccbll | F (5-GCCGAATTCACCATGTCCAAACAGCTGCAGGC-3')
Ccbll | R (5-CGCAGATCTGGCTTGGGGCTCTCCTTTC-3")

Table 6.3: Genes tested for mitochondrial localisation. Genes predicted to be signifi-
cantly associates to mitochondria by the guilty-by-association analysis. The sequence
column reports the primers used to test the mitochondrial localisation. Names in
italics indicate an alternative isoform of the protein. F and R state for Forward and
Reverse, respectively.

in lysosomal function and lysosomal disorders, we used our guilty-by-association
analysis to identify human disease genes which may have a yet undiscovered role in
lysosome function and organization.

To this end, we ranked in descending order of their p-values all of the genes
predicted to be lysosomal, or associated with lysosome organization, by our guilty-
by-association analysis (http://netview.tigem.it). The top ranked genes included
both lysosomal enzymes and other genes involved lysosomal function and are listed
in Table 6.4 and Table 6.5. Among these, at position one, NPC2 (Niemann-Pick
disease, type C2) disease-gene, known to be an intralysosomal gene [116]; at position
two, we found another disease-gene GRN. Both genes are members of community
40, which is enriched both the presence of disease genes and for lysosomal genes,
described in Section 5.4.

Despite recent extensive studies, the role of GRN is far from being understood

and, to our knowledge, it has not been directly linked to lysosomal function in the

literature. GRN is a highly conserved gene bearing multiple copies of the cysteine-
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P-value Probeset 1D Gene Symbol Gene Info

7.89x 10~ %1 200701.at NPC2 Niemann-Pick disease, type C2
1.88x1073¢ 211284 s.at  GRN granulin

2.41x1073%  200743.s.at TPP1 tripeptidyl peptidase I

7.74x1073%  212663.at FKBP15 FK506 binding protein 15, 133kDa
3.76x10732  201212.at LGMN legumain

7.10x 10" 3! 201494 _at PRCP prolylcarboxypeptidase (angiotensinase C)
B.76x 10731 218217.at SCPEP1 serine carboxypeptidase 1
5.99x1073%  202944.at NAGA N-acetylgalactosaminidase, alpha
8.99x 1030 217118.s_at C220RF9 chromosome 22 open reading frame 9
9.02x10"3¢ 204204 at SLC31A2 solute carrier family 31, member 2
2.31x 10" 29 200871.s.at PSAP prosaposin

9.49x10°2° 201944.at HEXB hexosaminidase B (beta polypeptide)
2.73x10°2%  35820.at GM2A GM2 ganglioside activator
3.67x10"2%  200839.s.at CTSB cathepsin B

7.20x10 2% 202295s.at CTSH cathepsin H

7.29% 10”28 202838.at FUCAI1 fucosidase, alpha-L- 1, tissue
8.89x1072% 200748 at FTH1 ferritin, heavy polypeptide 1

5.39x 10727  202545.at PRKCD protein kinase C, delta

700x10”27 202087 _s.at CTSL1 cathepsin L1

8.61x107 %7 208704 x.at APLP2 amyloid beta (A4} precursor-like protein 2

Table 6.4: Top 20 genes significantly associated to Lysosome (cellular component
gene ontology class) resulting from the application of the guilty-by-association anal-
ysis, sorted according to the associated p-values.

P-value Probeset ID  Gene Symbol __ Gene Info

1.58x 1009 200661 at CTSA cathepsin A

7.17x10~9%  200742.s.at TPP1 tripeptidyl peptidase I

3.20x10~93 207809 s.at ATP6AP1 ATPase, H+ transporting, lysosomal accessory protein 1
3.48x107%%  211284.s.at  GRN granulin

2.10x107%4  202545.at PRKCD protein kinase C, delta

2.25x10° 04 201050.at PLD3 phospholipase D family, member 3

2.90x107%%  200766.at CTSD cathepsin D

3.73x10~ %% 217118 8.at C220RF9 chromosome 22 open reading frame 9

3.74x107%¢  219952.s.at  MCOLNI1 mucolipin 1

4.58x10704 202812_at GAA glucosidase, alpha;

2.54x1079%  208926_at NEU1 sialidase 1 (lysosomal sialidase)

3.54x10793 205090.s.at NAGPA N-acetylglucosamine-l-phosphodiester alpha-N-acetylgiucosaminidase
3.81x107%%  200649.at NUCB1 nucleobindin 1

4.56x10~03 218282.at EDEM2 ER degradation enhancer, mannosidase alpha-like 2
4.56x10° 93  219020_at HS1BP3 HCLS1 binding protein 3

4.56x107°%  203045.at NINJ1 ninjurin 1

4.56x10~93 201494 _at PRCP prolylcarboxypeptidase (angiotensinase C)
4.56x10703 212647 _at RRAS related RAS viral (r-ras) oncogene homolog
4.56x10°9%  218217.at SCPEP1 serine carboxypeptidase 1

4.56x107°3 203167 _at TIMP?2 TIMP metallopeptidase inhibitor 2

Table 6.5: Top 20 genes significantly associated to Lysosome organisation (biolog-
ical process gene ontology class) resulting from the application of the guilty-by-
association analysis, sorted according to the associated p-values.
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rich granulin motifs. Proteolytic cleavage of the precursor protein by extracellular
proteases, such as elastase, gives rise to smaller peptide fragments termed granulins,
or epithelins, which have been linked to a range of biological functions including
cell division, survival, and migration [37]. Mutations in GRN cause frontotemporal
lobar degeneration with ubiquitin-immunoreactive neuronal inclusions (FTLD-U)
[7, 27]. Of note, mutations in NPC2 results in a wide spectrum of clinical phenotypes
including a form of frontal lobe atrophy [64].

To investigate whether GRN was indeed related to lysosomal function, we first
evaluated GRN expression levels following sucrose treatment, a known inducer of
lysosomal biogenesis [62, 52]. A strong increase in the number of lysosomes was de-
tected upon sucrose supplementation to the culture medium, as expected (Data not
shown). Following sucrose treatment, in Figure 6.6A, we observed a 2-fold increase
over baseline in GRN mRNA levels, along with a 3-fold increase in Cathepsin D
(CTSD), a lysosomal enzyme used as positive control (Figure 6.6A).

The transcription factor EB (TFEB) has been recently identified as the tran-
scription factor controlling most of the known lysosomal genes via direct binding to
their proximal promoter [96], therefore we next asked whether GRN may indeed be
regulated by this transcription factor. We first identified, by bioinformatics analysis,
two TFEB binding sites upstream of the GRN coding sequence (see section 6.4.2).
We then over-expressed TFEB in human cell lines and detected a 3-fold increase in
GRN mRNA levels, along with a 3-fold increase in CTSD, a known target of TFEB,
used as a positive control (Figure 6.6B).

We next over-expressed GRN to observe if this had any effect on lysosomes; as
shown in Figure 6.6C, the number of lysosomes significantly increased (P = 0.01),
compared to a mock control, or over-expression of EGFP, as assessed by immuno-
fluorescence against LAMP2. The effect of increased lysosomes was observed on the
great majority of cells. Therefore, we hypothesised that GRN-transfected cells could

secrete a factor inducing lysosome biogenesis in neighbouring cells. This hypothesis



L

6.1 Elucidating the function of the granulin precursor ‘disease-gene’ 1157

>
O

s Mock

W +SucCrose 100

2

10N ¢

80

60

40

20

LAMP2 fluorescence level (a.u.)

s Mock D
m+TFEB

o
o

@
o

E

D
=

Helative

n
L=

LAMP2 fluorescence level (a.u.)
FeN
o

o

Ficure 6.6: GRN is involved in lysosomal biogenesis and function. (A) GRN and
CTSD increase in expression level following sucrose treatment, as measured by re-
altime PCR. (B) Expression level of GRN and of CTSD increase following TFEB
over-expression. (C) Immuno-fluorescence with antibody anti-LAMP2, used as a
lysosomal marker, of transfected HEK293 cells over-expressing GRN, or EGFP,
against a mock control. All values represent niean fluorescence intensity =+s.e.m;
GRN overexpression (P = 0.003) and sucrose treatment (P = 0.01) significantly
increase the Auorescence compared to mock control. (D) Immuno-fluorescence with
antibody anti-LAMP2 in wt HEK293 grown in medium collected from GRN over-
expressing cells shows a significant increase in fluorescence (P = 0.008) compared

to medium collected from EGFP over-expressing cells.
was supported by a previous study indicating that GRN is uptaken by a mannose 6P-
phospate receptor mechanism [65]. To test this hypothesis, we collected the medium

from transfected cells over-expressing GRN, and used it to grow untreated cells;

this resulted in a consistent increase (P = 0.003) in lysosome number compared to
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control, as evident in Figure 6.6D.

6.4.1 Experimental material

HeLa or HEK293 cells were cultured in DMEM supplemented with 10% FBS and
treated for 96 hours in the presence of sucrose to a final concentration of 100mM with
daily changes of medium. For immunofluorescence cells grown on glass coverlips were
fixed with methanol for 10 minutes, washed with PBS, treated with 50 mM NH,Cl
for 15 minutes, and permeabilized with PBS 0.1% Triton, blocked in blocking buffer
(0.5% BSA, 50mM NH,C], 0.001% Triton in PBS pH 7.4), and incubated overnight
at 4°C with anti-LAMP2 antibody Santa Cruz and for one hour with Alexa-594
(Invitrogen).

HEK293 cells were maintained at 37°C in a 5% CO2-humidified incubator, and
cultured in DMEM (GIBCO BRL) supplemented with 10% heat-inactivated fetal
bovine serum (FBS) (Invitrogen), 1% L-glutammine and 1% antibiotic/antimycotic
solution (GIBCO BRL). 500,000 cells were trasfected with 4ug of DNA expressing
the transcriptional factor EB (TFEB) using lipofectamine trasfection reagent (In-
vitrogen) following the standard protocol suggested by the manufacturer. After 48
hours from trasfection cells were collected, the mRNA extracted and the levels of
Granulin and Catepsin D (CTSD) were evaluated by Real-Time PCR (Roche). The
amplification was performed using the following primers for GAPDH, “Fw: GAAG-
GTGAAGGTCGGAGTC” and “Rev: GAAGATGGTGATGGGATTTC”, for GRN,
“Fw: TCCAGAGTAAGTGCCTCTCCA” and “Rev: TCACCTCCATGTCACATTTCA”,
and for CTSD, “Fw: AACTGCTGGACATCGCTTGCT” and “Rev: CATTCTTC-
ACGTAGGTGCTGGA”.

Medium was concentrated on filters (Vivaspin Sartorius Stedim) and loaded on
10% SDS-PAGE. Transfer membranes were incubated with anti human granulin

antibody (Invitrogen) at 1:50 dilution.
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6.4.2 Identification of Binding sites in Granulin promoter
region

We used the Position Weight Matrix of the Transcription Factor EB and run MATCH
[63] to find its binding sites across -1000 +1000 base pairs flanking the UTR region
of GRN. We found two binding sites on chromosome 17, plus strain, with loca-
tion 42,422,444 to 42,422,457 and chromosome 17, plus strain, location 42,422 460
42,422 473 (Genome Browser, Human assembly Feb. 2009).

6.5 Gene signature analysis

The human network can be used as a ‘consensus’ network to analyse gene signa-
tures. A gene signature is a list of genes able to identify a specific condition (i.e.
disease state, drug response, etc.). Genes part of a signature are the end point of a
regulatory cascade. The identification of the primary genes, such as Transcription
Factors (TFs), that control the genes in the signature via the regulatory cascade can
help in identifying the “master regulators”, involved in the process of interest (24].

The Gene Signature Analysis is basically a Gene Set Enrichment Analysis and
consists in computing the statistical significance of the intersection of two sets of
objects. In this case, we check how significant the group of genes in the gene signature

of interest are represented within the neighbours of each TF of the human network.

6.5.1 A case study

As an example of the use of the network, we analysed the genes part of the mes-
enchymal gene expression signature (MGES) found to be over-expressed in poor
prognosis group of glioma patients [89]. In [24], a high-grade glioma (HGG) specific
gene network was inferred from 176 expression profiles of HGG samples derived from

patients. This condition-specific network was then used to infer the TFs responsible
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Common number of neighbours p-value Gene Symbol
8 35 1.33x10~ 11 MAFF
10 93 9.17x10~ 11 AEBP1
7 43 3.39x 1009 FOSL2
5 12 3.48x 10799 FOSL1
7 53 1.55x 10798 ELF4
7 71 1.23x1097 TFE3
7 86 4.66x10797 JUNB
10 229 5.45%x10~97 IRF1
6 55 5.54%x 1097 RELB
6 65 1.51x10-96 CEBPB
5 73 5.05% 109 TNXA
4 40 6.71x 1005 BHLHB2
5 96 1.86x10~% RELA
3 26 3.80x10-%4 CEBPD
10 595 1.62x10~93 PRRX1
4 96 1.93x107%3 BTG2
3 56 3.59x 1003 NFKB1
2 18 4.30x107%  LOC161527
3 65 5.46%10~93 SMAD3
4 136 6.69x 1003 IRF7
9 23 6.98x 10793 RARA
4 142 7.77x10~03 SPI1
4 152 9.82x 1003 STAT3
3 85 1.14x107%2  PYCARD
9 31 1.25x107%2  CREBS3LI
2 40 2.02x10~92 FOSB
3 113 2.43x10702 JUND
) 46 2.63x 10792 SNF1LK
2 48 2.85x 10792 HMOX1
3 131 3.54x 10702 MYD88
9 61 4.41x10792 ATF3

Table 6.6: Transcription Factors that are enriched of gene in the mesenchymal gene
expression signature. MGES accounts 122 probes. Genes are ranked in ascending

order according with their p-values.

for the mesenchymal transformation of brain tumors. Such “master regulators” were

the TFs that, according to the HGG-specific transcriptional network, regulated a

significant number of genes in the MGES signature.

We identified 31 TFs listed in Table 6.6 that according to our network had a

significant number of connections to the genes in the signature. Eighteen TFs, out

of these 31, were identified also in [24] (significance of p = 7.3 x 10716). The two key

genes, C/EBPS and STATS3, codifying for TFs necessary in human glioma cells for

mesenchymal transformation [24] were correctly included among the 31 TFs.
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We further tested whether the genes in the MGES signature were over-represented
within some of the 393 human communities identified within the network. Com-
munity 11 and 46 were found to be significantly enriched (p = 7.90 x 107!® and
p = 1.09 x 1072, respectively) for genes in the MGES signature. Community 11 is
composed by genes involved in phosphate transport (p = 5.35 x 10738), and whose
expression is localised into the proteinaceous extracellular matriz (p = 1.70 x 10~%9);
whereas community 46 includes genes involved in actin filament-based process (p =

1.50 x 107%), and expressed into the cytoskeleton (p = 6.23 x 10719).

6.6 Discussions and conclusions

We demonstrated that genes connected within functional modules in the human
network tend to have a ‘physical counterpart’ in the three-dimensional conformation
of the chromatin inside the nucleus. We observed a striking similarity between genes
that appear to be connected, and, therefore, are co-expressed, and their physical
proximity at the three-dimensional chromatin level. This suggests that regulation
of coordinated gene expression is “hard-wired” in the physical arrangement of the
chromatin within the nucleus.

We have shown, and experimentally validated, different examples of how the net-
work can be queried to predict the the localisation of genes’protein product, to iden-
tify new protein-protein interactions and to explore the function of a disease-gene.

Upregulation of GRN by known inducers of lysosomal biogenesis and func-
tion, together with the increase in the number of lysosomes following GRN over-
expression, or treatment with medium from over-expressing cells, clearly supports a
role of GRN in lysosome biology that has been unrecognized until now. This find-
ing is also supported by previous evidence indicating that GRN colocalises with
lysosome-associated CD68 antigen in activated macrophages and microglia [81] and

is overexpressed in the cerebral cortex of MPSIIIB and MPSI mice [85].
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Moreover, GRN has been shown to bind the mannose 6-phosphate receptor [65].
Interestingly, lysosomal dysfunction has been proposed to play a role in other neu-
rodegenerative diseases including Alzheimer’s disease [25] sharing clinical similari-
ties with FTLD-U. In these disorders it has been proposed that lysosomal hydrolytic
enzymes contribute to cell death through lysosomal destabilization and enzyme leak-
age into the cytoplasm as indicated by models of experimental brain ischemia injury
resulting in cytosolic acidification and rupture/permeabilization of lysosomes [117].
Interestingly, one of the first recognized function of GRN has been in wound healing
[51] and release of lysosomal enzymes appears to play an important role in healing
(61, 78].

The Gene Signature Analysis we proposed in Section 6.5, shows that it may be
not always necessary to usc a diseases-specific network to analyse a disease-specific
gene signature, but using a “consensus” network, we could correctly identify the

“master regulators” involved in the observed gene signature.



Chapter 7

Conclusions and future directions

Despite the common belief that massive and heterogeneous gene expression profiles
would be too noisy to be used for inference, in this thesis work we have demonstrated
the biological reliability of the human and mouse gene regulatory networks we in-
ferred. The inferred networks were compared with known protein-protein and other
types of intcractions collected from literature. We also experimentally confirmed
different types of predictions (protein-protein, gene function and gene localisation).
Moreover, we discovered topological properties of the inferred networks, such as:
degree distribution, small protein disorder associated to hubs, modularity structure
of the networks and the presence of co-expressed groups of genes that localise in
spatially close chromosomal loci. However, the heterogeneity of the data could bias
the analysis toward the most representative biological condition. The availability of
a more precise annotation of expression data will facilitate the use of this as well as
of similar procedures.

The results of this work can also be explored online'. The online tool provides
both the access to the inferred connections of the human and mouse networks, and to
a set of gene function predictions obtained by analysing the topology of the network

with the “guilty-by-association” approach presented in Chapter 6.

Thttp://netview.tigem.it
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The computational core of our information-theoretic approach is the mutual in-
formation (MI). The MI measures the statistical dependence between two variables,
in general, and two genes in the particular case of gene network inference. The algo-
rithm reported in Chapter 4 is able to compute the point estimate of the MI for each
pair of genes in the mammals species we considered. The point estimate however
doces not allow to estimate the confidence interval for the MI. Here, we propose a
statistical model that theoretically could be used to obtain the confidence interval

for the MI associated to a pair of genes.

7.1 Estimation of MI via a hierarchical statistical

model

Suppose to have K experiments. Each experiment is a collection of hybridisations,
hence a collection of gene expression levels. Suppose to discretise the expression
levels in a pre-determined number of classes C, by following the discretisation pro-
cedure reported in Section 4.2.1. For a pair of genes, or variables in general, for each
experiment we have a vector of counts that explains how coherently the expression
levels vary together along the set of hybridisations. We remind the these counts
or outcomes were directly used in Chapter 4 to compute the MI between pairs of
genes. In that case, we assumed that the marginals and joint probability could be
well approximated by the frequencies of the outcomes. Here the vectors of counts
are not used directly, but they are assumed to follow an independent multinomial

distribution across the experiments k = 1, ..., K,

n; ~ Mult(My, Ox) (7.1)

where M is the number of hybridisations. The number of outcomes that may be

observed is equal to C2. The parameters 0 are unknown and they are assumed to
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be independent samples from a Dirichlet distribution,
8:. ~ Dirichlet(a). (7.2)

We shall also assign a noninformative hyperprior distribution to reflect our ignorance

about the unknown hyperparameters

J
a -~ HGamma (aj | a,b). (7.3)
j=1
where J is the number of dimension of the parameter vector a, as well as, 8 and
n,. The hierarchical model just described was presented in [45], using as conjugate
distributions the Binomial (instead of the Multinomial) and the Beta (instead of the

Dirichlet).

7.1.1 Joint, conditional and marginal posterior distributions

We can first perform the three steps for determining the analytic form of the pos-
terior distribution of a and @s parameter vectors. The joint posterior distribution,

pla, 01, ...,0k | ny, ...,ng), of all parameters is

R

p(a)p(ela “eey 01( I a)p(nl’ - K | ola sevy 6K1 a) (74)
x  p(a)[IK, [Dirichlet(6x | @)Mult(ny | My, 6;)] (7.5)

aJI

= p(a) Hle |:-—J—JT(%J'2 HJ 1 k] —‘7215—1—1-] Onkd]

= pla) [T, {——H—— AN | "kf*"j‘l}, (7.6)

with ¢, = —Jﬂk';k—, Notice that (7.5) follows (7.4) because ny is independent from
j=1 3

a given 6, for k=1,... K.
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Given a, all the 0;’s have independent posterior densities given by

p(6k | a, i) x H 9"'”“” ~ Dirichlet(a + ng), (7.7)
j=1

and the joint density is

K
p(6y,... 0k | @y, ..., ng) X H ['He"kﬁ"f‘l] (7.8)

From (7.6), integrating over the 8’s, we can determine the marginal posterior dis-

tribution of ex

pla | ny,...,ng) x (7.9)
K N7 o) o" +a;—1
ox pla) fh:x[ i F(aj fek J 10 k] “ de}
1“(2] 1 ,)HJ 1 Tingj+oj) Y(Z] 1 hkjtag) nkJ+(x]

‘40,  (7.10)

— A TIK
pla) ¢ nk-l n? L Tlay) r(:J | kg ag) 6 nJ T(ngj+o; )I—IJ 1

where the last factor of Equation 7.10 integrates to 1 for kK = 1,..., K given that
Jop(0|a)dd=1;c" = H,’::l c,. The posterior distribution of the hyper-parameters

becomes

[(nJ+nk]) (@j+rij=1)-.(a;+1)]
X ple) [T 1[6:J OJ+1”I;-)( EARPESYARE) B (5 Sppoy (7.11)
-1 (o]
= p(a)H s osh, (7.12)
[ J= la’]Mk

where Equation 7.11 follows the Equation 7.12 by applying a well known property

of the Gamma function that states that ['(z + 1) = 2 - I'(2).
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7.1.2 Algorithm for estimation of the MI

The posterior distribution of the hyper-paramenter vector a embeds the information
concerning the joint probability distribution of two genes or variables. Given the
posterior distribution of the a vector of hyper-parameters, we may use it to draw
samples a, these in turn can be seen as Dirichlet parameters and used to draw the
probability vectors in order to compute the MI between the pair of genes. These

steps are formalised in Algorithm 1. Algorithm 1 allows to simulate the probability

Algorithm 1 SIMULATION(n)
Require: p(a|n,...,ng).

1: M =1001 =100
2: form=1to M do
3 a™ ~ p(a|ni,..,ng)
4: fori=1to I do
5
6
7

0% ~ Dirichlet(a!™)
mit = MI(9)

end for_,

f(m) — Zh;} mi*

9: end for
10: MI(0 | ny, ... ng))

vectors and can be used to compute the MI of two variables (genes in this context).
By performing the steps several times, we can estimate the distribution of the MI
between two variables. Note that by performing the steps reported in Chapter 4,
we can only compute the point estimate of the MI between two genes, with no
information regarding the robustness of the estimation. Algorithm 1 instead, would
end up with a distribution of MI values between two genes. From this distribution we
could then estimate the average MI between the two genes, as well as, the confidence

interval of our estimation.
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7.2 The Dirichlet-multinomial /Polya distribution

In a real scenario like the one explored in Chapter 5, the dimensionality of the
problem in terms of number of genes (gene pairs), is of the order of 10,000 (hundreds
of millions). The parallel algorithm proposed in Chapter 4 was run on a cluster of
100 processors, and required 4 and 8 hours to reverse-engineer the human and mouse
networks, respectively. If we had implemented the code listed in Algorithm 1, we
would have had an unacceptable computational time (10,000 times larger). The
Algorithm 1 can therefore be applied only when the number of genes is “small”.
The Dirichlet-multinomial distribution is a compound distribution where 8 is
drawn from a Dirichlet and then a sample of discrete outcome n is drawn from a
multinomial with a probability vector 8. This model is essentially a “Polya” urn
scheme, so the Dirichlet-multinomial is also called the Polya distribution [79]. Let

n; be the number of times the outcome was equal to i, i. e.

ny =Y d(z; —9).

J

Then the resulting distribution over 7, the vector of outcomes, is

p(n| a)

/9 p(n | 0)p(8 | a)do

KON, [(n; + o)
N F(Zini+ai)H INCHE

This distribution is also parameterised by a, which can be estimated from a training

set of count vectors: D = {n,,...,nk}. The likelihood is

p(D| «)

It

Hp(nk | @)

k

D00 17 Do+ )
- I,c](r(nk+2iai>n T(a,) ) (119

k
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There arc many different ways to estimate the parameter vector a, that maximises
the likelihood in Equation 7.13. It is possible also possible to estimate the Polya
mean and precision separately. By rewriting the likelihood in terms of the leave-one-
out likelihood, a simple convergent fixed-point iteration to estimate the parameters

is
Z -
new k nei—1404

i - aiz N s
k nk—1+zi [«H

until the desired convergence is reached. Other ways for estimating the Polya pa-

(07

rameters can be found in [79].

The estimated parameter vector a embeds the knowledge of the distribution of
the variables, or genes, considered. This value of a can be used to performe only
step 4 to 6 of Algorithm 1. The resulting distribution can then be used to compute
the MI between the pair of genes and give a measure of the robustness of the MI
computed. Moreover, the parameter vector & may be used as prior knowledge for

future inferences, when more data come available.



Appendix A

Parameters setting for the
reverse-engineering algorithm

presented in Chapter 3

NIR
Connectivity

For small gene networks of order 10: 5

For medium gene networks of order 100:
TopD 5
Reest-K 10

Clustering (Hierarchal)

No of Clusters
For small gene networks of order 10: 3
For medium gene networks of order 100: 10

For big gene networks of order 1000: 100
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ARACNe
DPI: 0.15
BANJO
searcherChoice: SimAnneal
initialTemperature 1000
coolingFactor 0.9
reannealing Temperature 500
maxAcceptedNetworkBeforeCooling 1000
maxProposedNetwork BeforeCooling 10000
minAcceptedNetworkBeforeReannealing 200
proposerChoice: RandomLocalMove
evaluatorChoice: default
deciderChoice: default
discretizationPolicy: Q3
minMarkovLag (for dynamical data) : 1
maxMarkovLag (for dynamical data): 1
maxMarkovLag (for dynamical data): 1
maxMarkovLag (for static data): 0
dbnMandatoryldentityLags: 1



132

equivalentSampleSize:

maxParentCount:

maxTime
10 Genes
100 Genes

minNetworkBeforeChecking:

1.0

60 Seconds
600 Seconds

1000




Appendix B

Pseudo-code: parallel
implementation of

reverse-engineering algorithm
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{discretize local data expression profiles}
fori=1to % do
localE dis(i,:) « discretize(local E(i,:)
forj=1toi—-1do
{compute mutual information for each pair of local probes}
local M I(i, j) — computeMI(local E_dis(i,:), local E_dis(j,:))
end for
end for
fori=1to £ do
{Pj( mod p) sends its local discretized data expression profiles to Pjt4)( mod p) }
Send(local E_dis, my rank + t)
{Pj+i)( mod p) Teceives discretized data expression profiles from P;)( mod p) }
E_recv — Recv(my_rank — 1)
{compute mutual information for all the pairs of probes where the first is the
local probe while the second is the received probe}
for j =1to ¥ do
fork=1toj—1do
local MI(j, k) « computeM I(localE _dis(j,:), E_recv(k,:))
end for
end for
end for

Figure B.1: Parallel mutual information algorithm
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Appendix C

Matlab codes

Listing C.1: Simulation of weighted adjacency matrix representing gene regulatory

networks

function simulNet(nGenes, sparsity , Ntgts, Nregs)
giobal A %% A will contain the adjacency mairicz representing

9% the gene regulatory network (output)

%% nGenes: number of genes in the network

%% sparsity: average number of connection for each gene
S%E Ntgts: number of non transcription factor genes
9% Nregs: number of transcription factor genes
NonzeroFrac = sparsity: %%% Density of network

z = norminv(l~NonzeroFrac/2.0,1); %%% threshold

UR = randn(Ntgts ,Nregs); %% generate a random matriz (will
9% be the up—right part of the final

9%%% matriz) from normal distribution

UR = UR.+{abs(UR)>z); %%% keep only those values for which
W% the probability to be in the net
%% is greater than the threshold

LR = randn(Nregs); 9% these lines of code allow to
UL = ~eye(Ntgts); 9%%% build a net in which some parts
LL = zeros(Nregs, Ntgts); %% of it are not randomized (these
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%%% represent , respectively, the low—
9%%% right , the upper—left and the low
9%%% left part of the end matriz)

>
It

[UL UR ; LL LR]}; 9%%% the final net is assembled

%%% from the parts created above

>
1

LR.*(LR>z) — eye(Nregs): %%% keep only those values
9%%% greater than the threshold
9%%% and add negative values
%%% on the diagonal of it

end

Listing C.2: Simulation of static (steady-state) gene expressions level given a network
topology expressed by the adjacency matrix output of the code reported in Listing

C.1

function simulStaticExpr(nGenes, N, Ntgts, Nregs, policy)

global A Xss P %%% these variables represent, respectively,
9%%% the input net, the matriz of simulated

%% experiments and the applied perturbation

%% Output

%% Xss: matriz of simulated gene erpression levels
%% P: perturbation matriz, perturbations applied
%% to the adjacency matriz, A, in order to
b7 generate the gene ezpression levels

%% Ntgts: number of Non transcription factor genes

%% Nregs: number of Transcription factor genes
%% N: number of Ezperiments
if policy == ’global’

%% global perturbation policy

%%% Create a random perturbation matrizc
%% from uniformly distributed values
P = [zeros(Ntgts ,N);rand(Nregs,N)];

end
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if policy =— ’local’
%% local perturbation policy
%% Create a diagonal perturbation matriz
P = eye(nGenes,nGenes)];

end

Xss = inv(A)«(-P): %%% Noise free data

return

Listing C.3: Generate and add Gaussian noise to the gene expression levels generated

with the code in Listing C.2

function simulStaticExprNoisey(noiseLevel)

%% Input
9% noiselLevel: percentage of noise to add given the ezpression

9% level (mean of the Gaussian distribution)

global Xss nXss %%% these variables will contain, respectively,
%% simulated gene exzpressionlevels (input)

%% and the noisy gene ezpression levels

%% level of the external noise

sX = noiseLevel;

%% Noisy data points: the noise value 18
%% extracted from a normal distribution
9% and then added to the input expressions
nXss = sXsrandn(size(Xss))+Xss;

return

Listing C.4: Computes the Positive Predicted Value (PPV) and the Sensitivity given
two adjacency matrix. One is the adjacency matrix representing the gene network as
produced by the code in Listing C.1. The second is the adjacency matrix as obtained
by the application of the reverse-engineering algorithms (Chapters 3 and 4) on the

gene expression levels generated using the code in Listings C.2 and C.3

function [connections_predicted ,ppv,sensitivity] = ppv_sensitivity_mod (AA,

original_A)
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%%% Code for computing the Positive Predicted Value (PPV) and the
W% Sesitivity of the inference process of the reverse—engineering
%%% algorithms, which infer gene regulatory networks given gene

%% gene ezpression profiles (and perturbations)

9% Input

%% AA: adjacency malriz representing the gene regulatory

9% network as inferred by the reverse—engineering algorithms
9%

%%% original AA : weighted adjacency matric representing the real gene
IR regulatory network to infer

%% Output

V%% connections_predicted: number of connection predicted by the algorithm
%%% ppv: positive predicted wvalue, ratio between the number of correct
TR predictions and the total number of predictions

9%

%%% sensitivity: coverage of the real gene network, ratio between the
%% number correct predictions and the total number of
%% connections in the real network (original .AA)
connections_predicted = nnz(AA);

true_positives = nnz((AA+(original A "=0))==2);
false_positives = nnz(((original_A "=0)-AA)==-1);

false_negatives = nnz((AA-(original A "=0))==-1);

ppv = true_positives/{true.positives + false_positives);

sensitivity = true_positives /(true_positives + false_negatives);

Listing C.5: Gene Ontology Enrichment Analysis, computation of the enrichment

(p-value) of a Gene Ontology term in a set of genes

function [p.vals, idxs} = computeGOEnrichment (genes ,mat)

%% Input

W% genes: set of genes

%% mat: gene ontology terms associated to all the gene of the
95% mammalian system considered (human or mouse)

%% Output
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%% p_vals: list of enrichment score (p—values) of the gene

%% ontology terms associated to the genes in input
%
%% idzxs : Gene Ontology codes associates to the GO terms

% number of genes in the mammalian system with a given GO term

m.vet = sum(mat) ;

% number of times a GO term is associated to
% a gene of the set of genes in input

k_.vet = sum(mat(genes .:));

idxs = find(k.vet); % indezes of non null elements

N = nnz(sum(mat,2)): % # of genes in the mammalia system

t.vet = sum(mat,2) =0;

n = nnz{t.vet(genes)); % number of genes of the mammalian system

k.vet = full(k.vet(idxs)); m.vet = full(m.vet(idxs));

% compute the cumulative hypergeometric distribution
% as sum of the hypergeometric probabilities
p.vals =[];
for kk=1:numel(k.vet)
p-vals (kk)= sum(hygepdf(k.vet (kk) :min(m._vet (kk).n), N, m.vet(kk), n));

end

Listing C.6: Discretises a vector of real values (gene expression levels) into a pre-

determined numbers of integer values (or bins)

function A_dis = discretizer (A,C)

%% Input

WK A: vector containing real values

W%k C: number of discretised states

%% Output

%% A.dis: vector containing the discretised values

%get the number of rows and columns of A

[n,m] = size(A);
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% create a boundary array
perc = 0:1/C:1;

perc = perc(2:C);

% find the bounds of the intervals where to discreise the values of A

bnd = quantile(reshape(A.1,n*m), perc);

% collect the date into bins
A_dis = A<bnd(1);
for i=2:C-1
A_dis = A._dis + is(A<bnd(i) & A>=bnd(i-1));
end

A_dis = A_dis + Cs(A>=bnd(C-1));

Listing C.7: Computes the Mutual Information given a pair of discretised vectors

obtained by the application of the code in Listing C.6

function MI2 = computeMI(A.B.nbins)

%% Input
%% A,B: vectors containing discretised values

%% nbins: mnumber of discritised states

%% Output
%% MI2 Mutual Information beteen vector A and B

% compute the frequencies of the outcomes

p = findStatistics (A’ ,B’,nbins);

% compute the Mutual Inforamtion

MI2 = computePairMI(p,nbins);

%% compute the frequencies of the outcomes

function p = findStatistics (A,B, nbins)

% account for two pair of genes
vet = [A B};
for h=1:nbins
for k=1:nbins
%account for a pair of values

p(h,k) = sum(ismember(vet ,[h k], rows’});
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end

end

p=p/sum(sum(p)); %frequencies from counts

%% compute Mutual Information giveh

function MI2 = computePairMI(p)

t.p = sum(p,2):

a = -sum(t.p.*xlog2(t_p+(t_p==0))):

t.p = sum(p.1);

o
I

—sum(t._p.+log2(t.p+(t_-p==0)));

ab = —sum(sum(p.xlog2(p+(p==0))));:

Mi2 = a+b-ab:

the parameter wvector pi
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