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Abstract 

The main aim of this thesis was to infer mammalian gene regulatory networks from 

tens of thousands gene expression profiles via a new "reverse-engineering" approach. 

Human arid Mouse gene regulatory networks were both inferred and the results col- 

lected in a database that represents part of the non-written material that will sup- 

port. the thesis (http: //rretview. tigem. it). Each gene regulatory network consists of a 

set of gene pairs (connections) and a score based on Mutual Information, which states 

their statistical dependence. The inferred connections are organized into a network 

that allows exploration of the global features of gene regulation in a mammalian cell. 

We collected a massive and heterogeneous dataset of 22,255 gene expression profiles 

from a variety of human samples and experimental conditions. We developed a new 

mutual-information (MI) reverse-engineering approach able to quantify the extent 

to which the mRNA levels of two genes are related to each other across such a com- 

plex dataset. The resulting network consists of 4,817,629 connections among 22,255 

transcripts. The inferred connections were compared against known protein-protein 

and other regulatory interactions to assess their biological significance. We experi- 

mentally identified a subset of predicted protein-protein interactions not previously 

described in the literature. We discovered regulatory modules within the network, 

consisting of genes strongly connected to each other, which carry out specific biolog- 

ical functions. We found that these connected genes tend to be in physical proximity 

at the chromatin level in the nucleus. We show that the network can be used to pre- 

dict the biological function and subcellular localization of a protein, and to elucidate 
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the function of a disease-gene. Specifically we discovered that the gene granulin pre- 

cursor (GRN), whose mutations cause frontotemporal lobar degeneration, is involved 

in lysosome function. We have developed an online tool (http: //netview. tigem. it) for 

querying and exploring the gene regulatory network. 



Chapter 1 

Introduction 

The study of individual gene, and protein function, has been largely the main focus 

of traditional biology, known as "reductionist" approach. The advent of new tech- 

nologies, particularly high-throughput technologies, have considerable changed the 

traditional approach. Nowadays, researchers aim at integrating different sources of 

information in order to understand the function of a gene as part of a larger network 

of regulations and interactions. 

The common belief that, by identifying one gene responsible for a genetic disease, 

this would lead quickly to a full understanding of the pathogenesis of the disease, 

is now known to be wrong. For example proteins have multiple domains (function 

units) with different "potential" function. So, mutations in one gene would certainly 

have more than one consequence. This has been confirmed in many species, from 

baker's yeast to human. So, it is almost impossible to understand the pathogenesis 

of one disease just by analyzing the function/structure of one gene or its protein 

product, but the surrounding "gene regulatory network" must also be considered. 

Modern biology often follows the "Holism"1 idea, which states that all the prop- 

erties of a given system cannot be determined by its components parts alone. The 

general principle of holism was concisely summarized by Aristotle in the Meta- 

'Greek word meaning all, whole, entire, total 



8 

physics: "The whole is more than the sum of its parts". Under this paradigm the 

"systems biology" area of research was born. Systems biology aims to study a biolog- 

ical system as a whole rather than study its components. The main challenge is the 

identification of "gene regulatory networks" by transforming high-throughput 

datasets into biological insights. 

The flow of genetic information has been described as the central dogma of 

molecular biology. The first step is the synthesis of RNA using a DNA-dependent 

RNA polymerase described as transcription schematised with red (DNA) and blue 

(RNA) blocks in Figure I. I. The second step is the polypeptide synthesis and is 

referred as translation and schematised with blue blocks (RNA) and circles (pro- 

teins) in Figure 1.1. At the level of proteins, among the others, we observe two 

types of physical interactions: protein-protein interactions, where proteins form a 

protein complex, and protein-DNA interactions, where "Transcription Factor" pro- 

teins bind to the target sequences usually in the immediate vicinity of a gene, and 

guide the activation of the polymerase that subsequently transcribes the gene. The 

transcribed gene is referred to as the target of the transcription factor. The process 

just described is obviously a rough description of the complex regulatory mecha- 

nism occurring in a cell. However, for the purposes of the following work, this is a 

sufficient abstraction of this complex mechanism that is also schematised in Figure 

1.1. 

In a topological sense, a network is a set of nodes and a set of directed or 

undirected edges between the nodes. Biological networks exist at various levels as 

shown in Figure 1.1 

" Transcription regulatory networks: Genes are the nodes and edges represent 

transcription regulation between a transcription factor and a target gene. A 

gene serves as the source of a direct regulatory edge to a target gene by pro- 

ducing a RNA or protein molecule that functions as a transcriptional activator 
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the chromatin allows chromosome regions that are far apart to be spatially close to 

each other. 

The aim of this thesis is to develop a reverse-engineering algorithm able to infer 

gene regulatory networks by analysing massive gene expression profiles from high- 

troughput technologies. The gene regulatory networks so obtained will elucidate 

transcriptome organisation, gene function and gene regulation in mammalian sys- 

terns. The data analysed in this study were downloaded for a public repository for 

gene expression profiles. The idea is to reverse-engineering mammalians gene net- 

works from a collection of heterogeneous data, hence from different tissues and, in 

general, different biological conditions that are not uniformly distributed. 

The thesis is organized as follows: In Chapter 2, we introduce in more details gene 

regulatory networks and described various mathematical models used for reverse- 

engineering the gene regulatory network. In Chapter 3, we performe a comparative 

study among different approaches to reverse- engineering using ready-to-use software 

fom each class of models described in Chapter 2. We tested these approaches on ex- 

perimental data sets as well as on in-silico datasets. In Chapter 4, we described 

a novel approach to reverse-engineering gene regulatory networks using massive 

datasets of gene expression profiles from human and mouse species. In Chapter 5, we 

validate the inferred networks by comparing our results with known protein-protein, 

and other types, of interactions collected from literature. Moreover, we show how to 

make use of the topology of the gene network to predict gene function. In Chapter 

6, we experimentally validate sonne of the new predictions of the reverse-engineering 

algorithm in terms of new protein-protein interactions and gene function prediction. 

In Chapter 7, we conclude the thesis highlighting the limitation of the proposed 

approach and introduced a new statistical model able to generalise the proposed 

reverse-engineering approach. 

The work described in this thesis has been presented in the following publications, 

[9,23,47,571, and is part of the following manuscripts submitted and in preparation, 
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(22,15,14]. 



Chapter 2 

Introduction to 

reverse-engineering 

Reverse-engineering techniques have principally focused on decoding the mechanisms 

of transcription control, the first step in gene expression. This is because DNA mi- 

croarray technology has enabled researchers to efficiently measure the concentration 

of all RNA transcripts in a cell, making such data abundant. Measuring peptide, 

protein and metabolite regulators of gene expression is generally more difficult, and 

such data are not often available. But with improved technologies for protein and 

metabolite measurement, reverse-engineering techniques may be extended also to 

these kind of data. 

Reverse-engineering techniques can be divided in two main classes: "physical" 

and "influence" approaches. A physical approach seeks to identify the transcription 

factors (TF) that regulate gene transcription, and the DNA motifs to which the 

factors bind. In other words, it seeks to identify true physical interactions between 

regulatory proteins and their target promoters. An advantage of this strategy is that 

it can reduce the dimensionality of the reverse-engineering problem by restricting 

possible regulators to TFs. The second strategy, which we call the "influence" ap- 

proach, seeks to identify regulatory influences between RNA transcripts. In other 
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words, it looks for transcripts that act as "inputs", whose concentration changes 

can explain the changes in "output" transcripts. Each transcript may act as both 

an input and an output. The input transcripts can be considered the regulators of 

transcription. By construction, such a model does not generally describe physical 

interactions between molecules since transcription is rarely controlled directly by 

RNA (and never by messenger RNA, which is the type of RNA predominantly mea- 

sured by DNA rnicroarrays). Thus, in general, the regulator transcripts may exert 

their effect indirectly through the action of proteins, metabolites and effects on the 

cellular environment (Fig. 2.1). Nevertheless, in some cases, the regulator transcripts 

may encode the TFs that directly regulate transcription. In such cases, the influence 

model may accurately reflect a physical interaction. An advantage of the influence 

strategy is that the model can implicitly capture regulatory rnechanisrns at the pro- 

tein and metabolite level that are not experimentally measured. That is, it is not 

restricted to describing only transcription factor/DNA interactions. 

A functional interaction between two genes in a gene network does not rreces- 

sarily imply a physical interaction, but can also refer to an indirect regulation via 

proteins, metabolites and ncRNA that have not been measured directly (Figure 2.1). 

We must mention that the concept of influence interaction is not well defined and 

strongly depend on the mathematical formalism the gene network is approximated 

with. Therefore in what follows we will refer to functional interactions by the term 

"connection", whereas the term "interaction" will be used only when a physical 

interaction between the DNA, RNA or protein products of the genes is occurring. 

The identification of gene regulatory networks is crucial for understanding path- 

ways and functions that take place within a cell. Gene regulatory networks can be 

inferred by analysing the transcriptional response of a population of cells in multi- 

ple experimental conditions. High-throughput technologies such as microarray and 

more recently next generation sequencing allow us to measure quantitatively the ex- 

pression levels of the genes under specific experimental conditions. The capability to 



14 

external influences 

cell membrane -mpg 

V7 proteins 

RNA transcripts 
.171 

RNAP RNAP RNAP 

DNA 

genes 

RNA transcripts 

Figttrc 2.1: Bi1 I(atl to tvv()rk. are rr ttlatetl at uuiuy levels. (A) Sliow an example 
uctWWOrk where ti-alt'( rilttiuit factors (1>ltte atul gre<'u Shapes) iufueitt e the expression 

()l (lilfcwtut tr<ut, ( ril)t, (l, ru«-tt litics). Otte l, ruteitt i: a tlwtitl, r(tuc-huiuicl nietdl)olite 
transporter. The utetztholite it imports (brown triangle) 1 iutls one of the tran5crip- 
ti((n factor-s enabling it to bind D\A and initiate transcription. (B) A gene network 
ttuxiel pof the real network in (A). Because the model is inferred from measurenuettts 
of ii-alis rillt; it describes transcripts <l; (lirect1V ütllneucittg tlte lcx-el of each 
other. evert tlwugli thee- do not physically interact. 



15 

"obtain" the fingerprint of a cell at a specific time and condition, together with the 

large number of expression data now available allow to use methods from engineer- 

ing, mathematics and statistics to explore arid analyse gene expression data. In the 

following chapter, we present different approaches to infer or "reverse-engineer" gene 

regulatory networks from gene expression profiles measured by microarray technol- 

ogy. 

Assume that one is interested in analysing the response of a cell under certain 

conditions. for example when the expression of some of its genes is modified (or 

perturbed) by an external agent (i. e. drug, heat shock). The genes that are directly 

or indirectly regulated by the perturbed genes will then likely change their expression 

too. From an engineering point of view, knowledge of how genes' expression change 

following the perturbation experiment. allow us to identify the network of regulatory 

interactions occurring among them. This identification process takes different names 

depending on the field of application. such as: system identification and reverse- 

engineering. 

We refer to a gene network as the collections of gene-gene influences captured 

from expression data. A gene network is not just a static list of edges (connections 

between genes) but it contains information about the topological organisation of its 

nodes (genes). For example, a community in a network of genes identifies a group of 

genes that are highly connected among each other and poorly connected with genes 

outside the group. Communities of genes can be used to detect the modularity of 

the ce11. where groups of genes cooperate to accomplish a specific function. 

In what follows we will describe reverse-engineering algorithms to infer gene- 

gene influence interactions (connections). A description of other methods based on 

the physical approach and more details on computational aspects can be found in 

[54,5,41,90,38,13,107]. 
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2.1 Microarray technology and microarray data 

repositories 

A DNA microarray (DNA chip) is a collection of small DNA oligomers on a solid 

surface of approximately 1 cm2 (chip). DNA oligomers on the chip are organized in 

approximately 250,000 "spots" (depending on the chip model), and each spot, called 

probe, contains millions of copy of the same DNA sequence. Microarrays are used 

to simultaneously measure the expression of thousands of genes starting from total 

RNA extracted from a population of cells. 

Total RNA is converted into cDNA through reverse transcriptase and marked 

with a fluorescent marker. cDNA is then placed on the microarray chip and the com- 

plementarity between two fragments allows the hybridization of a cDNA sequence 

to the corresponding DNA '-spot". The number of hybridized probes in a spot is 

directly related to the expression level of the gene represented by the spot. Gene 

expression levels are quantified through fluorescence analysis, the higher the num- 

ber of hybridized copy of a probe the higher the fluorescence level measured that is 

associated to that spot. 

There exist many types of microarray all based on the same principles: the two 

color microarrays are used to measure both the gene expression levels of treated 

cells and gene expression levels of the control cells on the same chip; other types of 

microarray can be used to measure single nucleotide polymorphism, fusion genes, 

alternative splicing, and so on. Here, we concentrate on DNA single color microarray. 

Hereon we use the term hybridization and gene expression profile (GEP) to refer to 

the set of gene expression levels collected on a single microarray chip. Moreover, we 

refer to a set of hybridizations with the term experiment. 

The fluorescence levels that are collected from a microarray hybridization are 

called raw data. The hybridizations in the same experiment are usually "normal- 



2.2 Reverse-engineering approaches 17 

ized". The normalization process is a data pre-processing step where the measure- 

ment noise is removed, the background fluorescence is subtracted and the average 

fluorescence level among the spots associated to the same probe is computed. The 

process yields a set of comparable gene expression profiles. We refer to a set of 

normalized CEPs (or experiment) with the term processed GEPs. 

There exist two major GEPs repositories: Gene Expression Omnibus (GEO [351) 

arid Array Express. Array Express [87] is a public repository of gene expression 

profiles described in literature. GEPs are logically organized into experiments. An 

experiment is a collection of GEPs (usually performed in a single laboratory) to- 

gether with their NIETADATA to trace information such as the applied experimental 

protocol, type of samples (cell types or tissues), arid all the other information re- 

quired by the MIAME standard [20]. Recently, data from CEO have been curated 

(METADATA curation) and imported into Array Express in order to be MIAME 

compliant (data in CEO are riot). Most of the experiments in Array Express come 

with the processed GEPs. Here, we downloaded and analyzed processed GEPs from 

Array Express repository. 

2.2 Reverse-engineering approaches 

2.2.1 Bayesian networks 

Definition 2.1 A Bayesian Network (BN) is a directed acyclic graph (DAG) G= 

(V, A) together with a set of local probability distributions P. The vertices V cor- 

responds to variables, and the arcs or edges A represent probabilistic dependency 

between the variables. An arc from variable X to variable Y states a probabilistic 

dependence between the two variables, i. e. the state of Y depends on the state of X. 

In this case. X is called a parent of Y. A node with no parents is unconditional. P 

contains the local probability distributions of each node X conditioned on its parents. 
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A Bayesian Network provides a graphical representation of probabilistic relation- 

ships among a set of random variables Xi, with i=1... n. An example of Bayesian 

network is provided in Fig. 2.2. A variable in a Bayesian network can be either 

discrete or continuous. Bayesian networks can handle incomplete data sets and the 

statistical nature of the formalism provides a framework to account for noisy data 

typical of biological experiments. 

Owing to its advantages, researchers have devoted considerable attention in re- 

cent years to the use of Bayesian network approaches for reverse-engineering gene 

networks [43,80,97,34,119,98,50,120,100,102]. 

A Bayesian network describes the relationship between variables at both quali- 

tative and quantitative level. At a qualitative level, the relationships between vari- 

ables X, are simply dependence and conditional independence. These relations are 

encoded in the structure of a directed graph, G, to achieve a compact and inter- 

pretable representation. Vertices of the graph correspond to variables and directed 

edges between vertices represent dependencies between variables. 

At a quantitative level, relations between variables are described by a family of 

joint probability distributions P(X1, 
... , 

X,,, ) that are consistent with the indepen- 

dence assertions embedded in the graph C and have the form: 

N 

P(Xl, 
.... 

XN) = 
fl P(Xi = xi I Xi = xi, ... , 

Xj+p = xi+n) (2.1) 
2=1 

where the p+1 genes on which the probability is conditioned are called the parents 

of gene i and represent its regulators, and the joint probability density is expressed 

as a product of conditional probabilities by applying the chain rule of probabilities 

and independence. This rule is based on Bayes'theorem: 

P(A, B) = P(B I A)P(A) = P(A I B)P(B) (2.2) 
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BAYESIAN NETWORKS INFORMATION THEORETIC ORDINARY DIFFERENTIAL EQUATIONS 

P, AIIB C 0. E1_Pi AIIB. CI MI(A, H)=O dA/dt=01A +02B +03C 
MI(A, B)>O 

or more generally 0< MI(A, D) < MIMI(A. B). MI(BD)} dA/dt=((A, B. C) 
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Figure 2.2: Systematic overview of the theory underlying different approaches to 
reverse-engineering gene regulatory networks. Bayesian networks: A is conditionally 
independent from D and E given B and C: Information-Theoretic networks: Mu- 
tual information is 0 for statistically independent variables, and Data Processing 
Inequality helps pruning the network: Ordinary Differential Equations: Deteriniuis- 
tic approach where the rate of transcription of gene A is a function (f) of the level 

of its direct causal regulators. 

Note that the JPD (joint probabilty distribution) can be decomposed as the 

product of conditional probabilities as in Eq. 2.1 only if the Mwkov assumption 

holds, i. e. each variable Xi is independent of its icon-descendants, given its parents 

in the directed acyclic graph G. A schematic overview of the theory underlying 

Bayesian networks is given in Figure 2.2. 

The Markov assumption allows to write tue conditional probability distribution 

only conditioºniiig on the parents iiode. For example in Fig. 2.2 node A is independent 

frone all the others nodes given its parent B and C. The same does not hold if we 

consider the Alarkov blanket of node A, that states that node A is independent from 

all the others nodes given its parent, its children and its children's other parents 

(node H in Figure). 

The joint probability distribution, P(A,... , 
H), for the Bayesian network in 

Figure 2.2 i-, given by 

1'(D)P(E)P(H)P(B I D)P(C I E)P(A I B, C)P(F I A, H)P(C A) (2.3) 
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In order to reverse engineer a Bayesian network model of a gene network, we 

must find two sets of parameters: the conditional probability functions relating the 

state of the regulators to the state of the transcripts and the directed acyclic graph 

G (i. e. the regulators of each transcript) that "best" describes the gene expression 

data D. where D is assumed to be a steady-state data set. 

The model-learning algorithm usually assumes a specific form of the conditional 

probability function. Any function can be used, including Boolean and linear func- 

tions. But there will he a tradeoff between model realism and model simplicity. More 

realistic models will have more parameters, which will require more experimental 

data and greater computational effort to solve. 

The network structure is usually determined using a heuristic search such as 

greedy-hill climbing approach, stochastic methods or simulated annealing (which do 

riot guarantee convergence to the global optimal solution). Heuristics approaches are 

used because trying out all possible combinations of interactions among genes is a 

NP-hard problem. For each network structure G visited in the search, the algorithm 

learns the maximum likelihood parameters for the conditional probability functions. 

It then computes a score that evaluates each graph G (i. e. a possible network topol- 

ogy) with respect to the gene expression data D. The score can be defined using 

Bayes'rule: 

P(G I D) = 
P(D I G)P(G) 

(2.4) 
P(D) 

where P(G) can either contain some a priori knowledge on network structure, if 

available, or can be a constant non-informative prior, and P(D I G) is a function, to 

be chosen by the algorithm, that evaluates the probability that the data D has been 

generated by the graph G. The most popular scores are the Bayesian Information 

Criteria (BIC) and the Bayesian Dirichlet equivalence (BDe). Both scores incorpo- 

rate a penalty for complexity to guard against over fitting of data. The BDe score 

is based on the full Bayesian posterior probability P(G I D) and has an inherent 
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penalty for complexity since it computes the marginal likelihood P(D I G) by inte- 

grating the probability of the data over all possible parameters assigned to G. The 

BIC score is an asymptotic approximation to the BDe score that uses an explicitly 

penalized estimate to the likelihood. One then selects the highest-scoring network 

as the correct network. 

In Bayesian networks, the learning problem is usually underdetermined and sev- 

oral high scoring networks are found. To address this problem, one can use model 

averaging or bootstrapping to select the most probable regulatory connection and 

to obtain confidence estimates for the connection. For example, if a particular inter- 

action between two transcripts repeatedly occurs in high-scoring models, one gains 

confidence that this edge is a true dependency. Alternatively, one can augment an 

incomplete data set with prior information to help select the most likely model 

structure. 

The main limitation of Bayesian networks is that they assume that the network 

structure is acyclic (i. e. no feedback loops). Dynamic Bayesian networks [119,34, 

801 overcome this limitation and can be used to infer cyclic phenomena such as 

feedback loops that are prevalent in biological systems. Dynamic Bayesian networks, 

an extension of Bayesian networks, are able to infer interactions from a dataset D 

consisting of time-series data rather than steady-state data. 

A word of caution: Bayesian networks model probabilistic dependencies among 

variables and not causality, i. e. the parents of a node are not necessarily also the 

direct causes of its behaviour. However, we can interpret the edges as a causal links 

if we assume that the Causal Markov Condition holds. This can be stated simply 

as: a variable X is independent of every other variable (except the targets of X) 

conditional on all its direct causes. It is not known whether this assumption is a 

good approximation of what happens in real biological networks. 

For more information and a detailed study of Bayesian networks for gene network 

inference we refer the reader to [43]. 
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Association networks connect pairs of transcripts that exhibit high statistical simi- 

larity (i. e. statistical dependence) in their responses in all experiments in the dataset. 

To measure similarity, algorithms often use Pearson correlation, which assumes linear 

dependence between two variables, or mutual information, which makes no assump- 

tions about the form of the dependence. If no assumptions are made, association 

networks are undirected. Algorithms in this class of model add a connection be- 

tween all transcripts pairs with expression profiles that exceed a given threshold 

of similarity. This step, however, does not distinguish between direct and indirect 

relations. To address this problem, a pruning process can be undertaken to remove 

connections that are better explained by a more direct path through the graph. 

Correlation 

Association networks based on correlations often use Pearson correlation coefficient 

between pair of transcript X and Y to compute similarity. This is computed as: 

Txy _ 

Ei 11(xi 
- x) (yi 

- y) 
(2.5) 

Li 
rl (xi 

- x)2 
_nl 

(yi 
- 9)2 

de la Fuente et al [30] used Pearson correlation or Spearman rank correlation to 

connect all similar transcripts. To prune the network i. e. to remove redundant con- 

nections, they used partial correlation coefficients. Partial correlation measures the 

correlation between two variables after subtracting the correlation between each 

variable and one or more additional variables. 

Mutual Information 

Consider a discrete variable X with C possible states, x1 ,-.. , xc each with its cor- 

responding probability p(xi). The average amount of information gained from a 
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measurement that specifies one particular value x2 is given by entropy H(X) and is 

computed as: 
c 

H(X) p(xi) log(p(xz)) (2.6) 

The entropy H(X) has the following properties: 

9 If an outcome of the measurement is completely determined by xi i. e. the 

probability p(xi) is one and all other probabilities p(xj) with ij are zero, 

then H(X) = 0. 

" For equiprobable events the entropy H(X) is maximum and is given by: 

p(ry) =- --p H(X) = log(C) 

" Entropy remains unchanged when impossible events are added. 

. If the logarithm to base C is used, the entropy is normalized i. e. 

U<H(X)<1 

The joint entropy H(X, Y) of two discrete variables X and Y, with Y assuming 

values in the set {y,... 
, yC}, is given by: 

CC 

H(X, Y) =-Z 
Zp(xi, yj)log(p(xi, yj)) (2.7) 

Z-i j_1 

p(x;, y; ) denotes the joint probability that X is in state xi and Y in state y;. If the 

variables X and Y are statistically independent the joint probability factorises and 
the joint entropy H(X, Y) becomes: 

H(X, Y) = H(X) + H(Y) (2.8) 
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The mutual information MI (X, Y) or MIXy between variables X and Y is 

defined as: 

MI(X, Y) = H(X) + H(Y) - H(X, Y) >0 (2.9) 

Two of the main strategies to estimate MI are: 

1. Histogram technique: Consider a collection of N simultaneous measurements of 

two continuous variables X and Y. First, the range of values of each variable 

is calculated and then that range is divided into M sub-ranges. The data 

are thus partitioned into M discrete bins ai and ki denotes the number of 

measurement of X that lie within bin az. Probabilities p(ay) are approximated 

by the corresponding relative frequencies of occurrence: 

p(ai) - 
ki 

N 

and the MI (X, Y) between two datasets X and Y may be expressed as: 

MI (X, Y) = logN +1 kzjlogi' (2.10) N ki k3 

k23 denotes the number of measurements where X lies in ai and Y in b j. 

2. Kernel Density Estimation: With a generalized kernel function K(X), the 

kernel density estimator j (X) is given by: 

N_ 

. 
f(X) = Nh 

K 
(X 

h 
xx) (2.11) 

2_1 

The parameter h is called smoothing parameter or window width and the 

kernel function K(X) is required to be a normalized probability density. For 
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Gaussian kernel, density estimate then reads: 

1N (X - x; )2 
X=11 ex (2.12) P) 

Nh 2-, 
z=; 

p 2h2 

For two-dimensional Gaussian kernel estimate is written as: 

N/2 )2 
j (X, Y) =1 exp I_ 

(X - x2) (Y - yZ (2.13) 
27rA'11.2 2h2 \J i=t 

Appropriate value of h depends on the unknown density being estimate. Monte 

Carlo simulations can be used to obtain optimal value of h [12]. 

We refer reader to [105] for more details on MI and its estimation. 

There are many algorithms which have successfully applied the association net- 

work based on MI [21,12,39] and shown its application in biological systems. 

Relevance Network: Butte et al [21] showed the application of relevance net- 

work on 2467 genes in Saccharoryces cerevisiae. They estimated the MI pair-wise 

from 79 measurements using the histogram technique. Each transcript in network 

was thus completely connected to every other transcript with calculated mutual in- 

formation. To prune the network, they chose a threshold mutual information (TMI), 

which was based on estimating average MI after permuting the data n times and 

selecting the maximum MI. They selected an edge if its MI was higher than TMI. 

ARACNe: Basso et al [12] showed the application of ARACNe on 7907 genes 

in Human B cells. The MI between each pair of genes was estimated using ker- 

nel density estimation. To select the smoothing parameter they used Monte Carlo 

simulation. The algorithm created an initial graph by connecting all transcript pairs 

with a mutual information value above a p-value computed again using Monte Carlo 

simulation. Final pruning of the network was done using data processing inequal- 

ity (DPI) principle that asserts that if both (x, y) and (y, z) are directly interact- 

ing and (x, z) is indirectly interacting through y, then MI(x, z) < MI(x, y) and 
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MI(x, z) < MI(y, z). ARACNe is more detailed in Chapter 3 in section 3.1.2. 

CLR: Faith et al [391 inferred the network of 4345 genes from 445 expression 

data in Escherichia coli using CLR which is an extension of relevance network. For 

pruning the network, CLR calculated the statistical likelihood of each MI value 

within its network context by computing the distribution of MI scores for all possi- 

ble regulators of gene i and distribution of MI scores for all possible targets of gene i. 

The definition of MI requires each data point, i. e. each experiment, to be statistically 

itidependerrt from the others. Thus information-theoretic approaches, as described 

here, can deal with steady-state gene expression data set, or with time-series data as 

long as the sampling time is long enough to assume that each point is independent. 

Edges in networks derived by information-theoretic approaches represent statisti- 

cal dependences among gene expression profiles. As in the case of Bayesian network, 

the edge does not represent a direct causal interaction between two genes, but only 

a statistical dependency. 

Theoretically, the nºain difference between MI and Pearson correlation coefficient 

is that MI can quantify also nonlinear dependencies between variables. Moreover, 

Pearson correlation cannot imply that two variables are statistically independent. 

In practical application, however, MI and Pearson correlation may yield almost 

identical results [105]. 

In addition MI can be extended to more than two variables, whereas Pearson 

Correlation is limited to two variables. 

2.2.3 Ordinary differential equations (ODEs) 

Reverse-engineering algorithms based on ordinary differential equations (ODEs) [17, 

44,112,118,111,108] relate changes in gene transcript concentration to each other 

and to an external perturbation. By external perturbation we mean an experimental 
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treatment that can alter the transcription rate of some of the genes in the cell. An 

example of perturbation is the treatment with a chemical compound (i. e. a drug), or 

a genetic perturbation involving over-expression or down-regulation of one or more 

genes. 

This is a deterministic approach not based on estimation of conditional prob- 

abilities, unlike Bayesian networks and association network approaches. A set of 

ordinary differential equations, one for each gene, describes the gene regulation as a 

function of other genes: 

xi(t) = fi(x1,..., XN, u, Oi) (2.14) 

where Oi is a set of parameters describing interactions among genes (the edges of 

the graph), i=1... N, xi(t) is the concentration of transcript i measured at time t, 

th, (t) is the rate of transcription of transcript i, N is the number of genes, and u is an 

external perturbation to the system. Since ODEs are deterministic, the interactions 

among genes (et) represent causal interactions, and not statistical dependencies as 

the other methods. 

An algorithm usually presupposes the form of the influence functions fi and 

nonlinear functions can lead to exponential rise in the unknown parameters to be 

estimated. Researchers have studied various functions, including sigmoidal functions 

[114], linear [32,44,26] and non-linear [48] functions. 

Reverse-engineering a network using ODEs means choosing a functional form 

for f; and then estimating the unknown parameters O for each i from the gene 

expression data D using some optimization technique. 

The easiest form that this function can assume is the linear form where Equation 

2.14 becomes: 

Wzi xi +pi (2.15) 

where w; j represents the influence of transcript j on transcript i and pi is an exter- 

nally applied perturbation to the level of transcript i. Linear functions have proven 
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to be the most versatile in the analysis of experimental data sets [32,44]. In part, 

this is due to the simplifying power of linear functions; they dramatically reduce 

the number of parameters needed to describe the influence function and avoid prob- 

lems with overfitting. Thus, the amount of data required to solve a linear model is 

much less than that required by more complex nonlinear models. This advantage 

is crucial in light of the high cost of experimental data and the high dimensional- 

ity of the systems. On the other hand, linear functions do not show a rich variety 

of dynamic behaviour. They only have one isolated stationary state in which the 

temporal change of transcript vanishes, once reaching this state the concentrations 

of the network components remain constant. Furthermore, the linear model places 

a strong constraint on the nature of regulatory interactions in the cell. Therefore, 

oscillations or multistationarity, which are both important properties of true bi- 

ological networks, and are nonlinear phenomena, cannot be captured with linear 

models. Also, higher noise in the microarray data limits their application to make 

only qualitative statements and not quantitative statements about the underlying 

network. 

ODE-based approaches can be applied to both steady state and time-series ex- 

pression profiles. The advantage of ODE approaches is that once the parameters, 

O for all i are known, Equations 2.14 and 2.15 can be used to make predictions on 

the behaviour of the network to different conditions (i. e. gene knock-out, treatment 

with an external agent, etc. ) [33]. 

2.2.4 Other Approaches 

Clustering 

Clustering, although not properly a network inference algorithm, is the current 

method of choice to visualize and analyze gene expression data. Clustering is based 

on the idea of grouping genes with similar expression profiles into clusters [36]. 
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Clusters typically contain genes that function within related pathways or biological 

processes. It is therefore possible to assign functions to previously uncharacterized 

genes based on the functions of other genes in the same cluster. 

Boolean Networks 

Boolean networks [i. 2,68,53,58] offer a binary, discrete-time description of a 

system. This model assumes that each gene is in two possible states, expressed or 

not expressed. Interactions among genes are modeled through Boolean logic func- 

tions. These models are quite simple and can be easily applied but the underlying 

assumption seems very unrealistic, in particular, modeling genes as discrete entities 

assuming one of only two states. Also the amount of data needed to infer the network 

increases as 2", where n is the number of genes. 



Chapter 3 

Comparison of 

Reverse-engineering algorithms 

In this chapter we test and compare different reverse-engineering algorithms. Each 

algorithm is based on a different mathematical or statistical model. The input data 

to the algorithms are the gene expression profiles and, in some cases, details on the 

performed perturbation experiments. The output is a gene regulatory network where 

each node is a gene and each edge expresses the influence of one gene on the other. 

Part of the work described in this chapter has been published in [9]. 

Generally speaking the identification of a system involves three main entities 

[73], 

1. A collection of experimental data. 

These are usually expression data, which are generated through microarray 

hybridisation experiments. The data contain the information that allow the 

identification, or reverse-engineering, of the system that generated them. Gene 

expression profiles obtained by microarrays are often referred to as observa- 

tions. 

2. A set of candidate models. 
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<t('(Orditig to lio v well they ezl>Iaiii the observations. 

3. A ývt of rules that zillmvs to accept or reject a c"aI1(Iiclate model. 

The set of ruules is applied over the Set of candidate models. The rules are usu- 

rille exl)re'. 'se I iii tcriiis of' an ('valuation function (or objective function) used 

to ( lie(k tlhc a( l1iacv of the it mIcls iii fitting the experiIiieiitaI observations. 
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tu check for tllc "1ýuucliiýýss Of fit" of the ä10(1(l tu the experimental observations. 
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Figure 3.2: Flow chart to choose the most suitable network inference algorithms ac- 
cording to the prof)lein to he addressed. (*): check for independence of time points 
(see text for details): (B\): Bavesian Networks: (DBN): Dynamic Bayesian Net- 
works. 

3.1 Gene network inference algorithms 

Hercoir we indicate with . r, the set of gene expression measurements of gene i; with 

D. the set of all the expressions of all the genes', and with aij a connection between 

genes i and J. representing a functional or physical interaction between the two 

genes' products (inRNA or protein). 

The choice of the algorithm to reverse-engineer a gene network depends of the 

type of data available (time-series or steady state). The choice of the algorithm also 

determines the type of network that is possible to infer (directed or undirected, 

weighted or not. cyclic or acyclic). An overview of current softwares along with their 

range of applicability is reported in Figure 3.2 and in Table 3.1, respectively. 

3.1.1 BANJO 

it I3avesi<ui iict«-ork iii(a11s to search for the directed a. cvclic 

graph, C. that best describes the iiifiueUcc relationships hidden into the data, D, 

as detailed in Section 2.2.1. Figure 3.3 reports the steps followed 1)), the Banjo [119] 
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Software Data type 
BANJO S/D 

www. cs. duke. edu/-amink/software/banjo 

ARACNe S/D 
http: / /anidec-I)ioinfo. cu-genoine. org/html/aracneregistration. html 

NIR 
http: //diberiiardo. tigeiii. it 

S 

Hierarchical Clustering S/D 
http: //bonsai. irns. u-tokyo. ac. jp/ rndehoon/software/cluster/ 

Table 3.1: Features of the network inference algorithms reviewed. S: steady-state; 
D: dynamic time-series. 

inference process. 

The "searcher" is the core of the Banjo algorithm. The first step, Proposer, 

consists of selecting a graph structure, GTough, to be evaluated according to the 

data. The strategies currently implemented in Banjo are the simulated annealing 

and the hill climbing. 

The graph trough is then scanned for cycles, Cycle Checker, and the acyclic 

graph G generated. The two possible strategies to visit the graph and remove the 

cycles are the Breadth First Search and Depth First Search. 

The acyclic graph G is then evaluated, Evaluator, according to a scoring func- 

Lion. Banjo implements a Bayesian score, defined as the logarithm of the probability 

of the proposed graph model given the data, 

BayesianScore(C) = argmaxc {logp(G I D)} (3.1) 

= argmaxG {log p(G) + log p(D I G) - log p(D) } 

a argmaxG {logp(D I G)} (3.2) 

where Eq. 3.2 is proportiional to Eq. 3.1 under the hypothesis of equiprobability 

both over the graph models and over the different data configurations. 

The Decider decides, possibly stochastically, whether to accept the proposed 
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Figure 3.3: Core BANJO Objects 

34 

I1(tvV(ik (a the 11('v- current uetwork) and best scored networks airy' tlicii reported. 

3.1.2 ARACNe 

ARAC'\e (A1oritliiii for the Reconstruction of Accurate Cellular Networla) [12,76] 

lýcýloii s to tli family of association networks for ideiitifving transcriptional iiiterm 

tions hem-cell gelle pro(ilicts. Relevance networks algorith its, first 1>ruposeýi iri [21] 

(see also [39]). are described in Section 2.2.2. 

u to cotiiputatioual core of ARACNe consists iii the eValliatioit of pairvvise Mu tu al 

Information in Equation 2.9 between each pair of genes of interest. Tlw eoiliputN- 

tiou of Equation 2.9 requires, Ilie knowledge of the iiiarg; iiial mid johlt probability 

(listlihittiOiis of the two genes X and V that have to he e5tiiiiMe<1 from the expre5 

Sion profile. hi 116! various tiiet lio<is ttse(l to cstiiiixt e probability distributions, f, roiii 

oh, c'rvatiOii, arc discussed. 

AIIAC\r' implements it Gaitssiziii hcýrücl estimator first report (, (I ill [1O-1] tliutt cl(, - 

fiiw, it fiiuctiOni 
,f 

iii teriiis of a Gaii,, ýsiarr kernel function known a lierrrcl Estimator 
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and estimate the MI between each pair of genes by using the 2.12 as estimation of the 

marginal distribution and the 2.13 as joint probability distribution. This approach 

has a straightforward graphic explanation; it consists in drawing M "bumps", one 

for each observation, with mean x and a priori fixed height. A classical Gaussian 

shaped plot is than obtained by summing up the bumps. 

We remind that MI (X, Y) =0 if and only if X and Y are statistically inde- 

pendent. In experimental setting, the estimated MI never equals zero. Under this 

scenario the recovered gene network would be full connected (each gene is connected 

to all the other genes of the network). To remove redundant, hence false predicted 

connections among genes, ARACNe implements a bootstrap strategy that allows to 

compute a random MI given the number of observations. This approach allows to 

set a threshold that discriminates between statistically dependent and independent 

pairs of genes, given the data. 

The threshold over the MIs allows to remove most of the false positives predicted 

interactions. Biological networks are very sparse and usually the pruning strategy 

just, described is not sufficient. There are cases where. for example, a coinrnon regu- 

lator of two genes forces the two regulated genes to have an high MI. Consider the 

network scheme in Figure 2.2, gene B and C will have an high MI score even though 

they are not directly connected. The information "flows" between B and C through 

A, hence there is a common shared information (i. e. MI) between B and C, but the 

interaction is not direct. 

The false predicted connections should be kept only when the interest is on 
the functional relationship between the genes. In this case the recovered network 

will preserve the connections between the genes whose expression profiles coherently 

change across a set of hybridisations. ARACNe implements a pruning strategy based 

on the concept of "Data Processing Inequality" (DPI), in order to remove indirect 

interactions. 
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Definition 3.1 The data processing inequality in information theory states that 

given three random variables X, Y and Z which form a Markov chain in the or- 

der X -4 Y --> Z, then the mutual information between X and Y is greater than or 

equal to the mutual information between X and Z. That is MI(X; Y) >, MI(X; Z). 

The ARACNe implementation of the DPI scans all the full connected triplets of genes 

in the network and removes the recovered connection with lowest MI (according to 

a certain tolerance). 

The main limitation of the ARACNe algorithm is that it requires a set of corn- 

parable gene expression profiles, i. e. all the expressions it uses to reverse-engineer a 

gene network must be normalised together. This constitutes a problem in presence 

of an heterogeneous set of data (different tissues, different laboratories and so on). 

In Chapter 4 we propose a new reverse-engineering algorithm that overcomes this 

limitation and thus can be applied to massive and heterogeneous dataset. 

3.1.3 NIR 

ODE-based algorithms have been developed (Network Identification by multiple Re- 

gression, N IR) that use a series of steady state gene expression profiles to reconstruct 

gene regulatory networks [44]. 

The network is described as a system of linear ordinary differential equations [28] 

representing the rate of synthesis of a transcript as a function of the concentrations 

of every other transcript in a cell and the external perturbation: 

N 

xi(tk) =E aijxj(tk) + biu(tk), (3.3) 
j=1 

where i=1... N; k=1... M, N is the number of genes, M is the number of time- 

points, Xi(tk) is the concentration of transcript i measured at time tk; xi(tk) is the 

rate of change of concentration of gene i at time tk, i. e. the first derivative of the 
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mRNA concentration of gene i measured at time tk; a2j represents the influence of 

gene j on gene i; bi represents the effect of the external perturbation on xi and u(tk) 

represents the external perturbation at time tk. 

In the case of steady-state data, ji(tk) =0 and Eq. 3.3 for gene i becomes 

independent of time and can be simplified and rewritten in the form of a linear 

regression: 

E aijxj = -biu (3.4) 
j=1 

The NIR algorithm [44] computes the edges ai j from steady-state gene expres- 

sion data using Eq. (3.4). NIR needs as input: the gene expression profiles following 

each perturbation experiment (xj), knowledge of which genes have been directly 

perturbed in each perturbation experiment (biu) and optionally, the standard de- 

viation of replicate measurements. NIR is based on a network sparsity assumption, 

i. e. a maximum number of ingoing edges per gene (maximum number of regulators 

per gene), which can be chosen by the user. The output is in matrix format where 

each element is the edge azj. The inference algorithm reduces to solving Eq. (3.4) for 

the unknown parameters atij, i. e. a classic linear regression problem. 

Other algorithms based on ODEs have been proposed in literature [17,111,32, 

108]. 

The NIR parallel version and its implementation 

Equation 3.4 can be rewritten using vector notation: 

aT x -- -blut, i=1, ... N. (3.5) 

Let us suppose that we have conducted M experiments such that we know the genes 

directly perturbed (ui(k), k=1, 
... , 

M) as well as the expression profiles following 

the experiments (transcript concentration levels from rnicroarray data x(k), k= 
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1, ... , M). We can then solve the equation (3.5) for the unknown parameters azj, 

and thus obtain the ingoing edges for each gene. 

NIR applies the multiple linear regression method to estimate the unknown 

model parameters (a2j). It relies on the assumptions that the data x are realiza- 

tions of a normally distributed random variable with known variances and the per- 

turbations, u, are perfectly known. Generally, the response y may be related to k 

regressors and the model 

Y=ß0 +iixi+32x2+... +3kXk, (3.6) 

is termed a multiple linear regression with k regressors. 

Having M experiments (response observation points) at our disposal, then the 

model becomes: 
k 

yz = Of) +E ojxij, i=1... M. (3.7) 
j=1 

The response (y) is given by the experimental perturbation values u2 E il"M, the 

regression variable values (X) are given by the concentrations of the gene transcripts 

and the regression variable parameters are given by the components of the vector 

ai, so that, in matrix form, the model becomes: 

-uT = aT X, i=l ... N, (3.8) 

with XE RN"M. In NIR, the regression analysis aims to best-fit the data by esti- 

mating the parameters of the model. 

NIR estimates the parameters of the regression variables for each gene, using 

the least squares method. These are the values for which the first derivative of the 

residual sum square function is zero: 

d= -TIiXT 
(XXT)-l' (3.9) 



3.1.3 NIR 39 

under the assumption that the regressors are linearly independent. 

Biological networks are sparse [83], thus NIR adopts the sparsity assumption that 

imposes an upper bound on the number of ingoing edges per gene (i. e. maximum 

number of regulators per gene), restk < N, which can be chosen by the user. 

For each gene the restk parameters that result in the smallest mean square 

deviation identify the restk ingoing edges for that gene. The weight of the identified 

edges is given by the value of the estimated parameters. The choice of restk affects 

either the sensitivity to measurement errors or the execution time. A low value 

of restk induces an increase in the solution sensitivity to measurement errors. A 

high value prohibitively increases the computational time needed to identify the 

regulatory network due to the high number of the regressor combinations to be 

included in the model. This number is equal to the number of combinations without 

repetitions of N objects taken restk at a time: 

DN, restk = 
N! 

(3.10) 
restk! (N - restk)! 

This is polynomial of degree restk in the number of genes. The exhaustive approach 

which evaluates the regression for each combination is not feasible for gene networks 

larger than 100 genes (with 100 genes and restk = 10 the number of combinations 

is of the order of 1013), thus NIR uses the following heuristic approach. 

For each gene i: 

" At the first step NIR computes (3.9) N times by considering the regression 

variables one at time; the topd variables for which the sum of the squared 
deviations is minimized are selected as possible ingoing edges for the gene. 

. At the second step NIR computes (3.9) by considering the remaining N-1 

variables jointly with each of the first toed selected ones, that is t (2N- 
2 
toed-i) 

(Gauss formula) pairs of variables; the topd pairs of variables for which the 
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sum of the squared deviations is minimized are selected as possible pairs of 

ingoirrg edges for the gene. 

" At step k+1 NIR computes (3.9) by considering the remaining N-k variables 

jointly with each of the topd sets of k variables selected at the previous step, 

that is tpd(2N- 2 -toed+3) sets of k variables are considered; the topd sets of 

k+1 variables for which the sum of the squared deviations is minimized are 

selected as possible sets of k+1 ingoing edges for the gene. 

" The process ends when the number of regression variables selected reaches 

rest,; the set of rest- variables for which the sum of the squared deviations 

is minimized identifies the set of parameters ai corresponding to the input 

regulations affecting expression profile of gene i. 

The final output is an adjacency matrix, where each element is the edge aid, that 

encodes the directed graph. The number of times (3.9) is calculated for each gene 

is O(restk " topd " N), so the overall number of times (3.9) is calculated is O(restk " 

topd " N2). The computational complexity of (3.9) at step k+1, for the submatrix 

of X whose rows correspond to a set of k variables (0 <k< restk - 1), is O(k2N). 

The overall computational complexity is therefore O(topd(restk " N)3). 

The NIR algorithm can be easily parallelized to handle large problems in a compu- 

tationally efficient manner by distributing the overall computational burden among 

different processors to reduce the total execution time. In order to address the high 

computational cost issue of the NIR algorithm we have applied some specific imple- 

mentation optimizations along with parallel programming techniques. 

The computational core of the NIR algorithm is the equation (3.9) where X 

is a submatrix of the gene expression matrix composed only of k rows (with k= 

1,2,..., restk). From the matrix-matrix product definition applied to the submatrix 
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X (v_, v_), with v= [il,... 
, 
ik] vector of k indices, it follows that: 

X(E, v)(X(v, v))T = 

Therefore for each step of the algorithm, we don't compute any matrix-matrix prod- 

uct operation X(v_, 1 : N)(X(v_, 1: N))T. On the contrary the product XXT is 

computed once and for all at the beginning of the program. At each step k, our 

implementation just selects the symmetric submatrix of XXT whose row and col- 

umn indices correspond to the k possible ingoing edges for the gene. Let S be this 

submatrix of dimension k stored in packed format. 

In each experiment only one gene is perturbed. This implies that for each gene 

i the perturbation vector ui is equal to (0, 
... , 

0,1,0, 
... , 0) and then the product 

U , XT reduces to the i-th row of XT. Denote this row by r. 

S is positive definite so we can apply the Cholesky factorization to the matrix 

S in order to compute äi as solution of the system of equations Säi = -r, thus 

avoiding the matrix inversion. We rely on the LAPACK routine DPPSV to solve this 

system of equations with a computational complexity of 0(k3). 

By avoiding the matrix product in (3.9), the parallel algorithm complexity is de- 

creased by one order of magnitude: at the generic step the computational complexity 

is O(k3), the overall computational complexity is therefore O(topd " restk4 " N2) 

The parallelization is implemented by assigning different genes to different com- 

puting processes: each process takes care of N/p genes where p is the number of 

processes available. The computing steps described in the previous section can be 

performed independently for each gene so each process can compute the results for 

its genes independently without communication. The parallel algorithm has been 

implemented in C using the MPI standard. 

This work is partly described in [47]. 
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3.2 In-silico and experimental data 

Due to the lack of knowledge of all the real interactions between genes in a real bi- 

ological network, it is very challenging to test gene regulatory network inference al- 

gorithins. Moreover, the availability and the heterogeneity of biological experiments 

do not always allow to reverse-engineer a network of interest. For these reasons we 

adopted a simulative environment to run the algorithms, test and compare their 

performances. 

3.2.1 Generation of `In silico' data 

An in-silico gene regulatory network consists of a set of nodes that represent the 

genes and a set of edges that represent the interactions between the genes. There 

exist many implementations of network simulators such as [101,29,110] able to 

generate networks whose topology reflects the topology of a biological network (i. e. 

scale-free and small-world effect, [3; 11,83]) with different mathematical models for 

simulating gene expression data. 

To simulate gene expression data and gene regulations in the form of a net- 

work, we used linear ODES relating the changes in gene transcript concentration 

to each other and to the external perturbations (refer to sec. 2.2.3). Linear ODES 

can simulate gene networks as directed signed graphs with realistic dynamics and 

generate both steady-state and time-series gene expression profiles. Linear ODES 

are generic, since any non-linear process can be approximated to a linear process, as 

long as the system is not far from equilibrium, whereas non-linear processes are all 

different from each other. There are many other choices possible [19] but we valued 

the capability of linear ODEs of quickly generating many random networks with 

realistic behaviour and the availability of a general mathematical theory. The code 

is available in Appendix C. 
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In-silico networks 
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The comparative analysis was performed by generating three different sets of 20 

networks each, with different network dimensions (10,100 and 1000) and different 

average in-degree (2 and 10). To generate each network, we first created a random 

network using MATLAB© command rss that needs as input the order of the model, 

N, the number of input and output of the system, u and y respectively. The rss 

command generates stable continuous-time state-space models, 

x=Ax+Bu 

y=C: x+Du 

where x represents the state vector; y is the output vector; u is the input vector; 

A is the state transition matrix which defines the dynamics of the system; B is the 

input coefficient matrix: C is the output coefficient matrix; D is the feedthrough (or 

feedforward) matrix. The rss command generates A (N x N), B (N x 1), C (N x 

N), D (N x 1) which alltogether define the state-space models [72]. 

The algorithm implemented in the rss command, generates a network of size 

N. It randomly chooses the number of complex and real eigen-values for matrix A 

(complex eigen-values always exist in pairs, eigen-value and its complex conjugate). 

For real part of eigen-values, negative random numbers generated from normal dis- 

tribution are taken and for imaginary part positive random numbers (again from 

normal distribution). These eigen-values are placed on the diagonal of a zero matrix, 

Z, of order NxN. If the eigen-value pair is complex, then the real and imaginary 

part of the eigen-values and its complex conjugate are placed on block diagonal of 

Z. Another matrix, T, of size NxN is generated randomly from normal distribu- 

tion and is then orthogonalised. Finally A is computed as T-1ZT. B is generated 

randomly using normal distribution. 
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Once we generated the state-space model, we set B and C equal to the identity 

matrix and D equal to a zero matrix so that the output of the system equals its 

states. Here A represents the network which is a full rank matrix with eigen-values 

whose real part are less than 0 to ensure the stability of the dynamical system [72] 

(i. e. all the gene mRNAs reach an equilibrium between their transcription rate and 

degradation rate after a given time period). For each row of A, we then randomly 

selected K elements (including the diagonal), and set the other elements to zero (to 

make the network sparse). We then checked the stability of this new network by 

computing its eigen-values, and if A was not stable, we then selected a different set 

of K elements in each row until we got a stable network A. 

We used the above-described method to generate networks of size 10 and 100. But 

to generate network of 1000 genes, we used a different approach. We first generated 

the network of 100 genes in the same way as described above. We then expanded the 

network of 100 genes to obtain a network of 1000 genes. To do this, we replicated each 

row in A, 10 times, adding to each element noise of mean 0 and standard deviation 

equal to 10% of the absolute value of the corresponding element of the original row 

in A. While replicating, we removed the diagonal element from the original row 

and moved it to the diagonal position of the row where it was replicated. It means 

that each gene has self feedback loop. All the remaining elements in the expanded 

1000x1000 matrix were filled with zeros. This is done to simulate clusters of genes 

that are co-regulated. In the final network of 1000 genes, each gene was controlled 

only by the original 100 genes in A, and by self feedback, and not from the other 

genes in the same cluster. We then checked the stability of A by computing its eigen- 

values that should be negative [72]. If matrix A were not stable, we then repeated 

the above steps with different random noise until we got a stable network A. In 

this way, we generated a sparse network in which 100 genes are the main regulators 

controlling most of the remaining genes in the network, or in network theory words, 

they act as hubs. Remaining genes are on the network periphery and they do not 
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control any genes but themselves. 

In-silico gene expression data 

For each network, we simulated steady state and time-series expression data. 

" Steady State in which the measurement is taken once the system reaches the 

steady state after a perturbation. 

" Time Series in which measurement is taken at M different time points fol- 

lowing a perturbation. 

Matrix B contains the information of which gene(s) is (are) perturbed in the net- 

work. B has all its elements equal to 0 except for the gene(s) that is (are) perturbed. 

For all datasets, M was chosen equal to 10,100 and 1000 experiments. 

We simulated microarray resulting from two kinds of perturbations, P 

I. Global perturbation: all the genes are perturbed simultaneously in each per- 

turbation experiment. We randomly generated the perturbation matrix P of 

size NxM with values generated from Gaussian distribution with mean µ=0 

and standard-deviation a=1. Global perturbations simulate environmental 

perturbations to the cell state, such as increase of temperature, drug treatment 

and so on. 

2. Local perturbation: in each experiment a single different gene is perturbed. We 

selected P equal to the identity matrix representing single gene perturbation 

in each experiment. In local perturbation, a maximum of M=N experiments 

can be obtained. Local perturbations simulate, for example, single gene over- 

expression or knockdown. 
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Steady State 

To simulate the data, we used Eq. 3.4. In compact form it is written as: 

AX = -BU (3.12) 

or 

AX = -P (3.13) 

where P is equal to BU. Data matrix X is obtained by taking the inverse of A and 

left multiplying it with the perturbation matrix: 

X= -A-1P (3.14) 

Time-series data 

Time-series simulated microarray data are generated by perturbing 10% of the genes 

simultaneously in the network. The genes to be perturbed are chosen randomly and 

this information is stored in B. U (1 x M) contains the information about what kind 

of perturbation is applied. In our simulations we applied a constant step perturbation 

of amplitude equal to 1. Once matrix A (N x N) and B (N x 1) were generated, 

we simulated the gene expression profile dataset X= [X (t1), 
... ,X 

(tM)] of equally 

sampled time points which was obtained using Isim command in MATLAB© by 

solving: 

X= AX + BU (3.15) 

lsim command simulates the time response of the state space model to the given 

input signal U and gives an output at the sampling time specified. Initial condition 

for all genes is set to 0. Time tM was chosen equal to 4 times the inverse of the real 

part of the smallest eigen-value of A [72]. This ensures that at time t, M all the genes 

are close to their steady state value. 
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y 
J 

Q Cell/Organism E-ý üý Genes 4 True network 
A Human B cells S 254 7907 [12] 26 MYC targets [12] 
B S. cerevisiae S 300 6312 [55] 844 TF-gene interactions [67] 
C Human B cells S 254 23 [12] 11 MYC targets+11 non-targets [12] 
D S. cerevisiae S 300 90 [55] subset of TF-gene interactions [67] 
E E. coli S 9 9 [44] 9 gene network [44] 
F E. coli T 6 9 9 gene network [44] 
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Table 3.2: Experimental datasets used as examples. S: steady-state; T: time-series. 

Noise in the data 

Biological data are noisy. In a real scenario, the inference of a regulatory network 

is performed on noisy expression profiles. To conform the simulated data to real 

expressions we added noise to any generated gene expression. The noise follows a 

Gaussian distribution with zero mean and standard deviation proportional to the 

level of the expression simulated [44), 

Xn=X+a. I XiOY (3.16} 

where X,,, is the noisy data, IXI represents the absolute values of the elements of X, 

0 refers to element wise product of two matrices, Y is a matrix of same size as X 

and is obtained from Gaussian distribution with mean i=0 and standard-deviation 

or =1 (in the simulations a=0.1,10% of noise). 

3.2.2 Experimental data 

We selected three different organisms collecting six dataset of gene expression pro- 

files. Table 3.2 lists the organisms selected along with the details of the dataset. 

The dataset differ in the number of genes that ranges from tens to thousands. 

This scenario helps in testing the algorithms in different real experimental settings. 

The largest dataset, in terms of number of genes, is the B-cell dataset (A and C). 
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As the reference "true network" we used 11 known targets of MYC and 11 that are 

not targets of MYC [12], to test the predictive performance of different algorithms, 

on dataset C. For dataset A we used a list of 26 known targets of MYC. 

Saccharomyces cerevisiae (dataset B and D) is a well studied organism and many 

biological confirmed interactions are already catalogued. As the reference "true net- 

work" we used 844 TF-target (transcription factor - target) confirmed interactions 

obtained from Chromatin immunoprecipitatin (ChIP) experiments [67]. As in the 

case of human B-cells, we also selected a subset of genes to test algorithms on a 

system of smaller dimension (dataset D). 

The Escherichia coli dataset contains the expressions of the genes that are in- 

volved in the SOS DNA repair pathway of this organism [44]. The steady state 

expressions, were obtained by over-expressing different genes with an arabinose- 

controlled episomal expression plasrnid. Cells were grown under constant physiolog- 

ical conditions to their steady state (-5.5 hours after the addition of arabinose) and 

change in expression relative to unperturbed cells was measured. In time-series ex- 

pressions cells were induced with Norfloxacin drug and total RNA was extracted at 

the following time points: 0,12,24,36,48 and 60 minutes from the drug treatment 

(triplicate'). 

IRMA: In vivo assesment of Reverse-engineering and Modeling Approaches. 

We also tested these reverse-engineering algorithms on a synthetic network (Fig. 3.4) 

built in Saccharomyces cerevisiae [23]. Five well-known genes were chosen in order to 

obtain a network containing different kinds of interactions, so that it can model both 

transcriptional and protein-protein interactions, positive and negative feedbacks and 

it can be turned on and off by changing growing conditions. In order to isolate the 

synthetic network from the cellular environment non-essential and non-redundant 

genes were selected and endogenous ones were deleted. The coding sequence of each 
'http: //gardnerlab. bu. edu 
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gene was assembled with a non-self specific promoter in order to create the desired 

transcriptional interactions between the network's species, and each cassette was 

integrated by homologous recombination within the locus of another gene obtaining 

its simultaneous deletion. Thus, the system was built in such a way that the chosen 

promoters are regulated only by the transcription factors of the network and not 

by external gene products. The following genes have been chosen for the synthetic 

network: 

9 As activators and repressors encoding genes: CBFl, GAL4, SWI5, GAL80 and 

ASH1. 

. As promoter genes: HO, MET16, GAL1-10 and ASH1. 

These activators and repressors regulate each other with the desired network topol- 

ogy, shown in figure 3.4. 

Ga14 activates GAL10 promoter only in the presence of galactose that releases 

the inhibitor Ga180 from Gal4; in contrast when cells are cultured in glucose Ga180 

binds to Ga14 activation domain and thus inhibits GAL10 transcription. 

The resulting synthetic network is a `switchable' isolated system which can be 

easily turned on and off by changing the medium (galactose or glucose). Its behavior 

can be altered only by perturbing the expression of the network genes. This makes 

such a network a good model to test the performance of different modeling and 

inference strategy. 

3.2.3 Assessing the performance of algorithms 

Suppose to have two graphs with the same set of nodes, how can we define a distance 

between them? Such a distance could then be used to compare the algorithm perfor- 

mances by setting one of the graph as the true gene network while the other would 

be the predicted network. We have chosen two parameters to test and compare the 
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Figure 3.4: Structure of the synthetic network. The genes are all tton-essential. Each 

red box shows the promoter (pr). each blue one the codiit sequence of the gene and 
each green ones the Tag. Solid green lines represent regulation (arrow: upregulatiott. 
minus sigh: inhibition): dashed black lines represent translation. Ellipses represent 
protein products. The HO open reading frame was deleted by integrating the CBF1- 
GFP cassette clowiistrearn to HO ettclogeuous promoter. SHE1. C[F1 and SW15 
loci were deletecl by integration of \IET1Gpr-GAL4. CALL-IOprS\V15-\MYC9 ýtttcl 
ASHIprGALSO-: 3xFlag. respectively. The cleletiott of SHE?. CBF1 and SWI5 loci 
has been clone from 200-500 hp upstreruii of the start site to the Stop of each gene. 
The triple HA tag has been integrated before the Stop codon of ASH1 bette. 
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predictions: one is the Positive predicted values (PPV), that measures the percent- 

age of correct predicted interactions; the other is the Sensitivity that measures how 

much of the real network is covered by the predictions. The two parameters are 

computed from the True Positives, False Positives and False Negatives predictions 

as PPV = TP/(TP + FP) and Sensitivity = TP/(TP + FN). 

We also consider as random the performance of an algorithm that randomly 

connect genes assuming a uniform probability distribution over the set of possible 

edges. 

Some algorithms infer the network just as an undirected graph, and others as 

a directed and/or signed graph, thus, in order to facilitate comparison among al- 

gorithrns, we computed PPV and Sensitivity by first transforming the real network 

(signed directed graph) and the inferred network (when directed arid/or signed) in 

an undirected graph (labeled " in the table). 

If the algorithm infers a directed graph and/or a signed directed graph, we also 

compared PPV and Sensitivity in this case (labeled d and s in the table, respectively). 

While computing PPV and Sensitivity we did not include self-feedback loops (diag- 

onal elements of the adjacency matrix) since all the genes in the simulated networks 

have self-feedback loops and this could be an advantage for some algorithms as NIR 

that always recover a network with self-feedbacks. 

To transform the signed network to directed network in matrix form, we took 

the absolute value of the numbers in the weighted adjacency matrix. To transform 

directed network into undirected network, we symmetrize the matrix and than we 

select only the values in the upper triangule. While computing PPV and Sensitivity 

for undirected network, we considered only the upper triangular matrix, i. e. only 

the upper half of the matrix, A, to avoid counting the connections twice. 

To check if the algorithm has performed significantly better than random. we 

computed the p-value using a Binomial distribution to estimate the probability 

of getting the correct number of edges using a probability of success equal to the 



3.3 Results: `in silico' evaluation 52 

random probability. 

Dialogue for Reverse Engineering Assessment and Methods: testing per- 

formances 

The Dialogue for Reverse Engineering Assessment and Methods (DREAM') [91] is 

an annual meeting to compare and discuss new reverse-engineering methodologies. 

It is possible to run an algorithm on biological or simulated dataset, which are 

provided by the organisers. There are different challenges and one of these consists 

in reverse-engineering gene regulatory networks from gene expression profiles. 

The algorithm performances are compared by applying two scoring metrics: the 

Area Under the ROC curve (AUROC), which summarizes the tradeoff between the 

true positive prediction ratio and the false positive prediction ratio; and the Area 

Under the Precision Recall curve (AUPR) that summarizes the PPV-Sensitivity 

tradeoff. The predicted edges, sorted according to their significance. may only con- 

tain a subset of the true edges. The remaining (null predicted) true edges are then 

ranked randomly, and this procedure gives rise to a p-value associated to both the 

AUROC (PAUROC) and the AUPR (PAUPR) scores. The p-values (one for each net- 

work), for each metric, are then evaluated together by taking their geometric means. 

The final score is computed as -1 log10 (PAUROC X PAUPR) [91]. 

3.3 Results: `in silico' evaluation 

All of the algorithms were run on all the datasets using default parameters (Ap- 

pendix A). BANJO was not run on the 1000 genes dataset since it was crashing due 

to memory limitations, whereas NIR needed an excessively long computation time. 

The parallel version of NIR [47] overcomes this limitation, as described in Section 

3.1.3. Results of the comparison are described in Table 3.3,3.4 and 3.5. 

'http: //compbio. mit. edu/recombsat/ 
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Datasets 
ARACNe 
PPV/Se 

BANJO 
PPV/Se 

NIR 
PPV/Se 

Clustering 
PPV/Se 

Random 
PPV 

10x10 0.43"/0.43°` 0.41"/0.52°` 0.60"/0.53" 0.36"/0.34°` 0.36" 
0.25d/0.28d 0.49d/0.42d 0.20d 

0.198/0.068 0.478/0.40" 0.10" 

10x100 0.63"/0.65" 0.97`/0.09" 0.72"/0.88" 0.40"/0.38" 0.36" 
0.78d/0.07d 0.69d/0.88`ß 0.20d 

0.805/0.06" 0.698/0.88` 0.103 

10Ox10 0.21"/0.12" 0.20u/0.04" 0.26"/0.04" 0.20u/0.12" 0.19" 
0.10d/0.02d 0.19d/0.03d 0.10d 
0.078/0.018 0.17"/0.024 0.053 

100x100 0.291/0.241 0.71u/0.00u 0.721/0.631 0.2411/0.14" 0.19" 

0.484/0.004 0.70d/0.62d 0.104 
0.743/0.003 0.703/0.62' 0.058 

10Ox1000 0.57u/0.44u 0.99u/0.05u 0.93"/0.84u 0.27u/0.17U 0.19` 
0.65d/0.03d 0.92d/0.84`ß 0.104 
0.663/0.039 0.921/0.849 0.053 

1000x1000 0.04"/0.23" - - 0.06"/0.03" 0.02` 

Table 3.3: Results of the application of network inference algorithms on the simulated 
Global perturbation. PPV: Positive Predicted Value; Se: Sensitivity. In bold the 

algorithms that perform significantly better than random, using as a random model 
a Binomial distribution. 
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Datasets 
ARACNe BANJO 
PPV/Se PPV/Se 

10x10 0.53u/0.61" 0.41"/0.50" 
0.25d/0.18`ß 
0.153/0.055 

NIR 
PPV/Se 

0.63"/0.96" 
0.57d/0.93d 
0.5 73/0.93s 

Clustering Random 
PPV/Se PPV 

10Ox100 0.56u/0.28u 0.71u/0.00u 
0.42d/0.00d 
0.60s/0.00s 

1000x1000 0.66'/0.65u - 

0.204 
0.109 

0.97"/0.87` 0.29"/0.18" 0.19 ` 
0.96d/0.86d 0. jod 
0.965/0.868 0.053 

0.91u/o. 82u(*) o. 2ou/o. 1ou 0.02u 
0.96d/o. 86d(*) O. Olu 

Table 3.4: Results of the application of network inference algorithms on the sim- 
ulated Local perturbation. PPV: Positive Predicted Value; Se: Sensitivity. In bold 
the algorithms that perform significantly better than random, using as a random 
model a Binomial distribution. (*) Results obtained running the parallel version of 
NIR [47) 

Algorithm performances are higher when applied on local perturbations data 

(one gene perturbed at time), with respect to global perturbation data (multiple 

genes perturbed). Multiple perturbation data should carry more information with 

respect to single perturbation data due to the higher number of genes perturbed. 

However, results show that algorithms are able to recover better a signal from single 

perturbation data. Also the number of expression profiles is an important parameter. 

When we try to recover a network by using very few hybridisation with respect to 

the number of genes, due to the weakness of the signal, performances are very low 

independently from the algorithm applied (only NIR is slightly better than random). 

Despite the dataset configuration BANJO's sensitivity (or network coverage) is 

always very low with a very high PPV, meaning that despite the very few predicted 

connections these are indeed correct. For the remaining algorithms, performances 

improve when using local perturbation data (Table 3.4). 

Performance is again random for the time-series ̀ dynamic' dataset (Table 3.5), 

except for BANJO albeit with a very low Sensitivity. In this case, we ran ARACNe 

as well, although the time-points cannot be assumed independent from each other. 
BANJO has been shown to work on dynamic data but needs a very high number of 
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ARACNe BANJO NIR Clustering Random 
Datasets 

PPV/Se PPV/Se PPV/Se PPV/Se PPV 

10x10 0.35'/0.84" 0.36"/0.34u - 0.34"/0.35' 0.36" 
0.244 /0.224 0.20d 

0.398 /0.01' 0.10-1 

1Ox100 0.362`/0.96" 0.38"/0.45' - 0.33"/0.34" 0.36" 
0.23` /0.29`1 0.20d 

0.20'/0.13' 0.109 

10Ox10 0.19"/0.63" 0.18"/0.05` - 0.19"/0.27" 0.19" 
0.10d/0.03d 0.104 
0.038 /0.00" 0.05' 

10Ox100 0.19"/0.84°` 0.11"/0.03" - 0.19"/0.31" 0.19' 
0.11`ß/0.03d 0.10d 
0.06'/0.013 0.053 

10Ox1000 0.19"/0.87" 0.20"/0.03" - 0.19"°'/0.32` 0.19" 
0.11d/0.02d 0.10d 
0.063/0.01' 0.059 

1000x1000 0.02u/0.96u - - 0.02"/0.37' 0.02" 

Table 3.5: Results of the appli cation of net work inference algorit hms on the simu- 
lated Time Series data. PPV: Positive Pred icted Value; Se: Sensi tivity. In bold the 
algorithms that perform signifi cantly better than random, using as a random model 
a Binomial distribution. 
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number of procs time (secs) 

1 98896 
10 9725 
20 4798 
40 2406 
60 1643 
80 1259 
100 969 

Table 3.6: Total execution times in seconds 

experiments (time-points) as compared to the number of genes [119]. 

3.3.1 Application of parallel NIR 

In order to measure the result accuracy we ran the program, by using the local 

steady-state `in-silico' data discussed in Section 3.2.1, on 20 different networks count- 

ing 1000 genes, with 10 as average in-degree per gene. 

The program has been executed on 100 processors of an HP XC6000 Cluster with 

Itanium 2 biprocessors nodes and a Quadrics ELAN 4 network. On average it took 

984 seconds to generate the results for each gene network. The program recovered 

most of the true interactions as shown in the Table 3.4. 

Parameters were: restk = 11, topd = 50. As shown in Table 3.4, NIR per- 

formances were better than the one of ARACNe, even in the case of 1000 gene 

networks. 

Moreover we ran the program on a 2500 gene network. We set the same values for 

the parameters restk and topd as before. It took around 12,450 seconds to generate 

the results and we obtained the following values for PPV and Sensitivity: 0.26d, 

0.27" and 0.10d, 0.11u (random PPV: 0.008u and 0.0043), respectively. In order to 

measure the parallel efficiency we run the program for the same 1000 gene network 

on different number of processors. The execution times are shown in Table 3.6. 



3.4 Results: Experimental evaluation 57 

Datasets ARACNe 
PPV/Se 

BANJO NIR 
PPV/Se PPV/Se 

Clustering 
PPV/Se 

Random 
PPV 

A 0.14"/0.35°` -- 0.02"/1.00°` 0.00" 

B 0.00"/0.01" -- 0.00"/0.21' 0.00" 

C 0.78'/0.64" 0.60'/0.27` - 0.45"/0.91" 0.48" 

D 0.07°`/0.17` 0.17"/0.02" - 0.11"/0.44" 0.02' 

E 0.69u/0.34u 0.78"/0.44' 0.80"/0.88u 0.8u/0.63u 0.71" 
0.67d/0.24d 0.74d/0.67d 0.63d 
0.508/0.028 0.598/0.538 0.323 

F 0.75"/0.37` 0.73'/0.69" - 0.90"/0.59" 0.71" 
0.6ld/0.391 0.63d 
0.00"/0.00" 0.329 

Table 3.7: Results of the application of network infe rence algorith ms on the ex- 
perimental datasets. PPV: Positive Predicted Value; Se: Sensitivity. In bold the 
algorithms that perform significantly better than random, using as a random model 
a Binomial distribution. Details concerning the datas ets analysed are reported in 
Table 3.2. 

3.4 Results: Experimental evaluation 

The algorithms have been tested on real expression data collected from litera- 

ture. The details of the data are reported in Table 3.2. The results of the reverse- 

engineering is reported in Table 3.7. We were unable to run all the algorithms on all 

the dataset because of the limitations outlined in Section 3.3. However, we should 

point out that these results could not be suitable for algorithm comparison pur- 

poses due to the limited dataset dimensions and to the limited knowledge of the real 

biological networks. 

Due to the dimensions of the dataset, ARACNe was the only software able to 

infer the network from dataset A and B. Dataset E and F are very small and come 

from dense biological networks forcing the random performance to be very high. 

NIR can only be applied on dataset E, because all the other datasets were missing 

the information regarding the target of the perturbation. 
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3.4.1 Reverse Engineering the IRMA network 

In order to reverse-engineer the IRMA network, we used gene expressions collected 

after having grown IRMA on two different medium, one containing glucose (switch- 

off) and one containing galactose (switch-on). To generate steady-state data we 

perturbed this network of 5 genes by over-expressing each gene in a separate exper- 

iment (one gene at time). To over-express the genes, we expressed them under the 

control of a strong constitutive GPD promoter. 

Time-series data were collected by growing IRMA cells both in glucose (switch- 

off) and galactose (switch-on). Measurements were taken every 20 minutes by using 

real time PCR over the transcript of the 5 genes. 

Application of the Banjo algorithm 

In order to reverse-engineer IRMA we applied Banjo to the "switch on" and "switch 

off' time-series data. Banjo recovers the Dynamic Bayesian Network that better 

describes the observed data. In order to estimate the joint probability distribution 

(see Section 2.2.1) of all the variables in the network, Banjo first discretizes the data 

using a quantile discretization procedure. The Proposer/Sercher strategies were set 

to random local move and simulated annealing, respectively. The amount of time 

Banjo uses to explore the Bayesian Network space was set to one minute. All the 

other parameters such as reannealing Temperature, coolingFactor, and so on, were 

left with their default values. Of course the parameter values were not arbitrary 

chosen; those values were selected as the best values (in terms of network inference 

accuracy) in [9]. As well as for time-series observations, Banjo is able to infer the 

Directed Acyclic Bayesian Network on steady state observations. We applied Banjo 

on both "Glucose steady-state", "Galactose steady-state" dataset and to the switch 

on and switch off time-series. Results are reported in Figure 3.5. 
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Figure 3.5: Reverse vtigineei iiig IRMA from experimental data using the Bayesian 
Network approach. (A-B) Inferred network using Banjo for the switch on and switch 
off time-series. Gray lines: inferred interactions that are not present in the true net- 
work. PPV (Positive Predictive Value = ýTp+Fpý) and Se (Sensitivity = (TZN)) 
values for an unsigned directed graph. The random PPV is equal to 0.40. (C-D) In- 
ferred network using the Banjo for the steady-state experimental data from network 
gene overxpression in cells grown in galactose or glucose medium, respectively. 
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Figur' 3.6: IReverse-eiigiueeriug IRMA from experimental data using the 
Information-Theoretic approach. (A-B) Inferred network using ARACNE for the 
steady-state experimental data from network gene overxpression in cells grown in 
galactose or glucose medium, respectively. Grey lines: inferred interactions that are 
not present in the true network. PPV (Positive Predictive Value = (TI 

Fp) ) and Se 
(Sensitivity = (Tp 

FN) ) for an unsigned undirected graph. The random PPV for 

the unsigned undirected graph is equal to 0.70 (7/10). 

Application of the ARACNE algorithm 

In order to reverse-engineer IRMA we applied ARACNE on both *'Glucose steady- 

state". "Galactose steady-state" datasets, and concatenated thew to obtain a larger 

one. Whereas. the lack of the statistical independence assumption for time-series 

data did not allow to run ARACNE on dataset containing time-series experimental 

data. All the parameter were set to their default values. For instance, Kernel width 

and Number of bins are automatically detected by the software; no threshold and p- 

value among both : AMI values and MI P-value were used, respectively; DPI tolerance 

to remove false positive connections was left to its default value, 0.15. 

Application of the NIR algorithm 

\Iß 111 solves equation (3.4) to obtain the network matrix A from gene expression 

data. We considered a fixed number of regressors for each gene (k = 2). i. e. we assume 

that each gene can be regulated by a inaxiinuni of 2 other genes. The regressor set 

Irue Network 
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In our case, N is the number of possible edges in the network; M is the number of 

true edges, n is the number of predicted edges. Then we computed as random PPV: 

_ 
TPrand E [x] 

_M PP[ý, aýd TP + FP nN 

3.5 Discussion and Conclusion 

We analysed and compared the performances of different reverse-engineering algo- 

rithms on both in-silico and experimental expression data. In particular, concerning 

the simulated expression data, we used two classes of perturbations that we defined 

as "local" and "global". As outlined in the result section, for the local perturba- 

tion (Table 3.3) and the global perturbation (Table 3.4), there is a difference in the 

amount of information that is possible to recover following the two types of pertur- 

bations. Algorithms perform better when only a small subset of genes (possibly only 

one gene) is perturbed at a time. 

Results on in-silico data are in line with respect to the results on experimental 
data. Since BANJO requires the estimation of a probability density function it 

can only be applied when many experiments are available. Moreover, BANJO is 

very precise but its sensitivity is very low. ARACNe performs generally better than 

BANJO, and even though it is not generally correct, it can also be applied to time- 

series dataset. ARACNe computes pair-wise "distances", and this allows it to run on 

larger dataset with respect to the other algorithms that relate a given gene to many 

others. NIR performs well also when the amount of data is small, it can be applied 

on steady-state data and performs well both on local and on global perturbations. 
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4.1 Introduction 

Tens of thousands of protein-protein, protein-DNA and protein-RNA interactions 

have been experimentally identified in mammalian organisms [60,115]. However, 

they constitute only a small part of the complex network of regulatory interactions 

occurring in a cell. Due to the time required to experimentally identify specific 

interactions, efforts have been made to infer gene regulatory networks directly from 

gene expression profiles, using a variety of "reverse-engineering" algorithms [24,9, 

10,12,31]. Among the plethora of different approaches to reverse-engineering, the 

most successful, and generally applicable, are those based on information-theoretic 

approaches [9]. The network among genes is reconstructed by considering pairs of 

genes arid checking whether the two genes in each pair are co-expressed across the 

experimental dataset. Co-expression can be measured either by correlation, or by 

a more robust measure, called mutual information (MI). As described in Chapter 

2, a gene-gene "connection", thus inferred, is not necessarily a physical interaction 

between the protein (or RNA) products of the two genes, but can also imply a 

functional, but indirect, regulation. 

Reverse-engineering becomes much more powerful as the number of gene expres- 

sion profiles used to infer the network increases as shown in Chapter 3.5 [9,75]. 

However, the requirement of using homogeneous gene expression profiles (i. e. from 

a specific cell type, tissue or condition) typically limits their number to the order 

of hundreds. Indeed, it is common belief that reverse-engineering a gene network 

by combining gene expression profiles from heterogeneous samples will generate too 

much noise, thus hampering the detection of biologically relevant signals. Our start- 

ing hypothesis was that, despite the extreme heterogeneity of gene expression profiles 

coming from different cell types, tissues, and conditions, it is indeed possible to infer 

a meaningful "consensus" gene regulatory network. 

In this chapter we describe a new reverse-engineering algorithm able to use het- 
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erogeneous and massive sets of gene expression profiles to infer a gene network. 

4.2 A new algorithm for reverse-engineering 

4.2.1 Normalisation of Gene Expression Profiles 

Gene expression profiles (GEPs) are usually organized in experiments. GEPs within 

experiments are normalized together using standard techniques described in 2.2.4. 

This procedure yields GEPs that are normalized within each experiment, but that 

are not normalized across experiments. This means that the expression level of 

a gene in two different experiments, although with the same absolute value, can 

refer to two different levels of expression. Normalised GEPs cannot therefore be 

merged across experiments. One way to obtain a single set of comparable GEPs 

from different experiment is to consider them as part of the same experiment, hence 

considering raw expression data for each GEP, and then normalise them all at once. 

Since standard normalization techniques are both difficult to apply to large datasets 

and could yield incorrect results due the assumptions underlying these techniques, 

we decided to proceed differently. 

In order to derive numerically comparable measures of gene expression for dif- 

ferent experiments, we discretized normalised CEPs within each experiment via 

quantile discretization [71]. This method is based on equal frequency binning. Here, 

the expression values of all arrays within an experiment are discretized into a pre- 

determined number of bins (three). The three bins, with equal number of values, 

are determined using the three quantiles of the normalized expression values as cut 

points. Each expression value is then replaced by an integer value corresponding to 

the bin it falls into. 

The choice of the number of bins may affect the subsequent results of the reverse- 

engineering analysis, however as shown in Section 5.3 this is not the case in our 
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settings. 

4.2.2 Mutual Information 

As described in Chapters 2 and 3, mutual information (MI) is a pseudo distance be- 

tween probability distributions; it measures the amount of information two random 

variables share. We decided to use a MI reverse-engineering approach due to the 

good advantages of this approach over the others reverse-engineering approaches as 

detailed in Chapter 3. 

Genes can be seen as random variables and their profiles as a random process. 

Once gene expression profiles are properly discretized into bins, it is possible to 

compute MI for each couple of genes by merging all the discretised data together. 

Specifically, for each pair of probes, we considered two discrete random variables 

IE 11, 
..., 

3} and JE 11, 
..., 3} respectively describing the discretised state of the 

two genes. In this context MI can be defined as: 

33 Tzj 

MI2j _ iris log (4.1) 
i-1 =1 

7i+l+j 

where lrjj represents the joint probability P(I = i, J= j) and Tri+ _ Ej 7Tij and 

7r +j = Ei lrij are respectively their marginal probabilities P(I = i) and P(J = j). 

Let n2j be the counts of the outcomes of pair (I = i, J= j) in the discretized sample 

set, then the frequency 7rß :=n gives rise to a probability matrix II = (--) of 

dimension 3x3, where n is the number of experiments where both I and J appear. 

These values can be used as an estimate of the unknown true joint probabilities 

matrix II = (irz? ). This leads to a point estimate of MI equal to 

MIZi _En? ' log n2'n (4.2) 
n n2+n+j 23 
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Parallel implementation of the MI 

the computational complexity- of our algorithiii is o(N2 " Ii) where N is the num- 

ber of genes (or probes in the case of uiicroarrays) and K is the total number of 

expression profiles. Typically. both the uttnii)er of genes measured and the ntniiher 

of available GEPs in public repositories are in the order of 101. Due to the high 

computational cost. we decided to implement it parallel version of the algorithm to 

reduce computational titre. The parallel algorithm distributes the gene expression 

profiles auuoig sevicerall conýpntiri pi. )(Cs. rs. Fach process gets N/p probes where 

p is the masher of processes available and N is the total number of proles. The 

processors are named P1) to Pj, 
_i and logically organized in a topological ring where 

i follows 
,j 

if i>j and P(I follows P j, _ i. 
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step process Pj receives probes from process P(j_i)mod(p). The algorithm completes in 

LZj communication steps. The parallel algorithm has been implemented in C using 

the MPI standard. The code is available in Appendix B. The algorithm has been 

executed on 105 processors of an HP XC6000 Cluster with Itanium 2 biprocessors 

nodes and a Quadrics ELAN 4 network. 

4.2.3 Biological interpretation of the Mutual Information 

In information theory the MI of two random variables, X and Y, measures the 

amount of information they share, that is the quantity on information (expresses irr 

bits) we know about variable X by only observing Y. In this this work the MI is 

computed for each pair of genes from their expression profiles. A zero value of the 

MI in this context would mean that if we only observe the expression of gene X we 

are not able to predict the expression of gene Y to any extent. Whereas, an high 

value of the MI would mean that it is sufficient to observe one of the two genes to 

assess the expression behavior of the other. 

By definition an high value of the MI means that the distributions of the two 

variables, genes expression values for instance, are statistically dependent. Meaning 

that their expressions are coherently changing across the observations. By assum- 

ing that co-expressed genes are involved in related processes or that their protein 

products form a protein complex, the MI would allow to associate new processes or 

interactors to genes or proteins for which this information is unknown. 

4.3 Application to simulated data 

4.3.1 Simulated Dataset 

We applied our reverse engineering algoritlrrn on simulated in-silico gene expression 

data described in Chapter 3 [9]. Specifically, the in-silico dataset we used consists 
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of 20 networks of 10,100 and 1000 genes. For each network, we used a set of 100 

expression profiles generated by perturbing one gene at the time (local perturbation) 

and a the set of 1000 gene expression profiles obtained via global perturbation, as 

reported in Section 3.2.1. 

Moreover, in order to make this in-silico dataset comparable to real gene ex- 

pression profiles coming from different experiments, and therefore with values not 

comparable across experiments, we proceeded as follows. For each gene network, we 

subdivided each set of the 1000 in-silico expression profiles into 10 different subsets 

of 100 expression profiles each. We then added a constant value to each of the sub- 

sets to simulate heterogeneity in the data. This dataset was mainly used to test the 

efficacy of the quantile discretization (see 4.2.1 for details). We refer to this simu- 

lated dataset as Dataset A. 

A second set of simulated expression profiles (using a continuous differential equa- 

tion model) were used to test and compare this reverse-engineering algorithm with 

other available algorithms. This set of simulated expression profiles is part of the 

fourth challenge of the third edition of the Dialogue for Reverse Engineering Assess- 

ment and Methods (DREAM) [91]. In this set, data are generated from 5 networks 

of genes (sub-networks of biologically validated gene networks, 2 for E. Coli and 3 

for S. Cerevisiae). Regulation dynamics were assumed to follow a thermodynamic 

model. Gaussian noise was added to the generated expression profiles. 

Each network consists of 100 genes. Two sets of 101 expression profiles were 

generated for each network. The jth expression profile is simulated by deleting a 

copy of the jth from the gene network (heterozygous mutant); the 101th expression 

profile corresponds to the response of the wild type (original) network. In a second 

version of this dataset, expression profiles are simulated by removing both the copies 

of a gene (homozygote null mutant). We refer to these datasets as Dataset B and C. 
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Figure 4.2: Gene network inference performances on Dataset A. 

4.3.2 Performance on simulated data and comparison with 

state-of-the-art reverse-engineering algorithms 

As described in Chapters 2 and 3, information theoretic approaches to reverse- 

engineering gene regulatory network have been first applied more than a decade 

ago [21]. The very first practical application came with ARACNe [77], successfully 

applied to infer the regulatory network in human B-Cells [12]. Our approach differs 

from ARACNe in the way of computing the MI: ARACNe uses the continuos version 

of the formula described in Section 2.2.2 and in Section 3.1.2, where the distribution 

function is obtained by fitting a gaussian distribution over the set of expression 

values; our method applies the discrete version of the Equation 4.1. 

We applied ARACNe [77] on Dataset A. Since ARACNe needs a single normilised 

dataset to run properly, and since each network in Dataset A consists of 10 different 

expression subsets, we first applied ARACNe on each subset and then considered 

the union of the gene networks thus inferred in further analyses. On Dataset A, 

we also applied the new MI reverse-engineering approach described previously. We 

observed that the average precision of our approach across the 20 networks (True 
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Positives/ (True Positive plus False Positive)) is 47%, whereas ARACNe reaches a 

precison of 21%. For comparison, when ARACNE is run on all the 1000 irr-silico ex- 

pression profiles together, its precision is 66% [9]. This means that ARACNE is very 

good at inferring gene networks but only if gene expression profiles are coming from 

homogeneous samples, where standard normalization procedures can be applied. 

Both the approaches were also applied on Datasets B and C. The set of algorithm 

predictions are compared by applying two scoring metrics: the Area Under the ROC 

curve (AUROC) that summarizes the tradeoff between the true positive prediction 

ratio and the false positive prediction ratio; whereas, the Area Under the Preci- 

sion Recall curve (AUPR) that summarizes the Precision-Recall tradeoff. The edges 

predicted, sorted according to their weights, may only contain a subset of the true 

edges. The remaining (null predicted) true edges are then ranked randomly, and 

this procedure gives rise to a p-value associated to both the AUROC (PAUROC) and 

the AUPR (PAUPR) scores. The 5 p-values (one for each network), for each met- 

ric, are then evaluated together by taking their geometric means. The final score is 

computed as -11091() logt() (PAUROC X PAUPR) [91]" 

Score Overall PAUROC Overall PAUPR Pos 
ARACNe 7.38 

our method 5.49 
0.26 
0.40 

8.93 x 10-11 
8.93 x 10-11 

10 
11 

Table 4.1: The performances of the two theoretical-information based algorithms 
were compared on a set of simulated expression profiles (Dataset B and C) [911. We 
report the averaged performances obtained by analysing the heterozygous mutants 
and homozygote null mutant generated expression profiles. The "Pos" column con- 
tain the position of the two algorithms when compared with the performances of 
the other teams that participated at the DREAM3 (challenge 4). 

Results are reported in Table 4.1. Given that the real synthetic network is di 

rected and the inferred network has no directionality, and due to the symmetric 

nature of the mutual information, we forced the real network to be undirected be- 

fore checking the algorithm performances. 
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It can be seen that even when expression profiles are optimal, that is data are 

not heterogeneous as in the case of simulated Datasets B and C, the two algorithm 

perform similarly and would rank among the top 10 in the DREAM competition. 

4.4 Discussions and conclusions 

Gene expression profiles are widely used to infer gene regulatory networks. The 

amount of biological data produced during the last decade was followed by a prolif- 

eration of reverse-engineering algorithm that make use of these data. 

In Chapter 3, algorithms, under different assumption of network models, were 

tested and compared. Those algorithm can only be applied when the GEPs are 

comparable, that is, they are part of the same experiment, thus strongly limiting 

the number of expression profiles that can be analysed. Here, we presented a novel 

algorithm able to use expression profiles, even when they are not comparable. 



Chapter 5 

Reverse-engineering of human and 

mouse regulatory networks 
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In this Chapter we describe the application of the new reverse-engineering approach 

presented in Chapter 4. The algorithm was run on two very large datasets of GEPs 

from human and mouse species. We show the reliability of the results by comparing 

the inferred gene networks with literature validated sets of inferred regulatory inter- 

actions. After the validation of the method we studied the properties concerning the 

topology of the recovered network and we show how these results are in line with 

previous findings. Moreover, we applied a community finding algorithm on the gene 

networks to discover groups of genes that are highly connected to each other and 

participate to the same biological function. 

We show that the resulting networks can be used to discover protein-protein 

interactions, biological function and subcellular localisation of a protein, and to 

elucidate the function of a disease-gene. 

5.2 Human and Mouse gene expression profiles 

We collected 20,255 GEPs from 591 different experiments performed on a variety 

of human tissues, cell types, and conditions from the public microarray repository 

Array Express. A total of 22,283 different transcripts were measured, corresponding 

to the number of probes of the Affymetrix HG-U133A chip. From the same reposi- 

tory, we collected 8,895 GEPs from 614 experiment performed on a variety of mouse 

tissues, cell types, and conditions. Our aim was to exploit this massive datasets 

to yield consensus gene regulatory networks among the 22,283 human transcripts, 

and 45,101 mouse transcripts, using the reverse-engineering approach described in 

Chapter 4. 
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Figure 3.1: CoiiiparisoiI of the algorithm performance when cliaiigiiig the number of 
hins. Simulated networks of size 100 generated in [9] were used for the comparison. 
Data used in panel A are related to the inference from locally perturbed GEPs (100 
data points). Whereas. in panel B were used simulated GEPs related to the global 
perturbation (1000 data points). 

5.3 Application of the reverse-engineering algo- 

rithm 

The algorithm presented ill Section 4.2 was applied to the set of GEPs presented 

in the previous section. The algorithm was applied to the set of GEPs frone 11t1111m1 

and mouse separately. The alhorithul produced a \II value for each pair of probes 

in each of the two species. AII is always greater or equal to zero. MI equals zero only 

wllell the expressions of two probes are statistical independent. It is rare to find al 

pair of probes whose MI is exactly zero. Probes almost always share at signal, even 

though imperceptil)le, due to pre-proccs: ill and to finite silitiple ; iZe, which prevent 

coluputatioll of the exact \II value. 

One of the algoritinn parameters to he chosen is the number of cliscretisatiou 

states (or bills) the expression (lilt? l have to be cliscretised into. It is possible to chose 

it arbitrarily according to data availability. However. the c11Rllge in this parameter 

clot; Ilot cotlsiýlerýlhlý aftectS the results iss sllowil ill Figure 5. I. Since the results 

are not cllaul ill significant lv. alit It lie colnput at iollaal complexity of Ow al"orit Inn 



5.3 Application of the reverse-engineering algorithm 76 

inference process depends on the number of bins we decided to use three as a good 

balance between these factors. 

The number of probes in HG-U133A is 22,283. This means that the number of 

indirected pairs of probes is 248,254,903. The number of probes in Mouse430A2 is 

45,101, resulting in a number of indirected pairs of probes equal to 1,017,027,550. 

The reverse-engineering algorithm produced two completely connected undirected 

networks. The assumption of biological independence among most pairs of genes im- 

ply the statistical independence of their expression profiles. Under this assumption, 

we adopted a null hypothesis that allowed us to select a threshold over the MIs. 

This threshold was used to discriminate statistically significant gene-gene connec- 

tions. Under the null hypothesis of independence, the distribution of the MI follows 

approximately a Gamma distribution [46,56]. 

We therefore fitted a Gamma distribution to the values of the MI across all the 

probes' pairs in human or mouse, using Maximum Likelihood estimation [49] are 

shown in Figures 5.2 and 5.6. We thus could assign a p-value to the MI of each 

gene pair and retained only those MI with a p-value < 0.01. This correspond to a 

threshold for MI equal to 0.04 for human and 0.025 for mouse. 

We could have further pruned the networks by using one of the recently proposed 

schemes, such as the CLEAR method [40] and the Data Processing Inequality (DPI) 

method introduced by [77] and described in Section 3.1.2, but we decided against 

it, since we wanted to keep as many interactions as possible to have a broader 

overview of gene function and regulation. We were not interested in identifying 

`direct' interactions as done in [12], but we focused on the identification of "co- 

expressed" genes, i. e. both direct and indirect interactions. 
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ID Source Probewise Probes Genewise UnigenelDs 
I Cipher+TissueSpecific 270,937 13,525 80,828 7,766 
2 Reactome 113,867 3,303 32,821 1,759 

1&2 1&2 350,116 13,911 102,112 7,980 

Table 5.1: Details of the Golden Standard Interactome. Number of interactions in the 
interaction databases used to build the Golden Standard, along with the cardiriality 
of their intersection. 

Cipher [115] is a tool to predict disease-genes on the bases of a computational 

framework that integrates human protein-protein interactions, disease phenotype 

similarities, and known gerne-phonotype associations. Authors provide a protein in- 

teraction network assembled from the HPDR, BIND, MINT arid OPHID protein- 

protein interaction databases. It accounts for 40,649 interactions,. 

Tissue Specific Protein Interactions [18] is a global human interaction network 

obtained by integrating data from 21 different sources to define a network of a total 

of 67,200 physical interactions'. 

Genes in the GoS network are identified with human UNIGENE IDs. On the 

other hand, microarray model HG-U133A identifies genes with probe IDs. In order 

to perform the comparison of the human interactome against the GoS network, 

we first mapped HG-U133A probes to 14,340 UNIGENE IDs using the annotation 

file provided by Affymetrix. Each gene-gene connection may correspond to multiple 

probe-wise connections because each gene can be associated to multiple probes. We 

therefore assigned to each gene-gene connection a MI value equal to the maximum 

MI among the corresponding probes-wise connections. The probe-oriented network 

was thus reduced to a gene-oriented one and made compatible with the GoS network. 

Figure 5.3 shows the percentage of human predicted connections that were con- 

firmed by the GoS interactome. Connections are ordered according to their MI, from 

the highest to the lowest. The network reaches a maximum of 90% of correct predic- 

tions, with an average precision of 32%. The percentage of correct connections, had 

these been randomly guessed, would have been equal to 0.0028%. The GoS interac- 

tome includes only a subset of the interactions occurring in a cell. Moreover, a high 
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Figure 5.4: Relation between human gene connection degree (x-axis) versus gene 
expression level (y-axis). Genes were grouped in equally sampled (500 genes each) 
quartiles and the average gene connection degrees computed (x-axis). The log aver- 
age expression level of the genes falling into each quartile is reported in the y-axis. 

We observed that, as the number of connections of a gene increases, so does its 

average expression level as reported in Figure 5.4. 

In order to relate gene degree to the average expression level of a gene, we pro- 

ceeded as follow: since GEPs are normalized within experiments, and not corripara- 

ble across experiments, we could not use the whole dataset to estimate the average 

expression of each gene. To this end, we used 618 human gene expression profiles 

from Array Express [88] measuring expression across a variety of normal tissues. 

GEPs were normalised together by applying the Affymetrix MAS5 algorithm. Av- 

erage gene expression levels were then compared with gene connection degrees, i. e. 

the number of connections of a gene. Genes were first divided into equally sampled 

quantiles (500 each in human) then the average expression levels and the average 

gene connection degrees were computed. Due to the high degree variance irr some of 

the quantiles, we decided to keep only those human quantiles where the connection 



5.3.1 Human network 81 

Probeset ID Unigene ID Gene Symbol Connections 

220531_at Hs. 710464 FL. 114126 5733 
215366_at Hs. 585343 SNX13 5449 

207969_x_at Hs. 169222 ACRV 1 5364 
216292_at Hs. 677419 - 5326 

216900-s_at Hs. 10734 CHRNA4 5267 
207140_at Hs. 37009 ALPI 5262 
207685_at Hs. 533022 CRYBB3 5156 
210923_at Hs. 104637 SLC1A7 5105 
216739_at Hs. 589088 - 5010 
1494_f_at Hs. 439056 CYP2A6 5002 
214558_at Hs. 123034 GPR12 4989 
215511_at Hs. 475018 TCF20 4979 
215557_at Hs. 658129 - 4973 
214923_at Hs. 712567 ATP6V1D 4957 
220222_at C8orf39 4919 
32540-at Hs. 655661 PPP3CC 4918 

211788-s_at Hs. 644635 TREX2 4870 
206878_at Hs. 113227 DAO 4858 
216440_at Hs. 658200 ERC1 4840 

216159-s_at Hs. 654267 4798 
208486_at Hs. 380681 DRD5 4778 
34846-at Hs. 351887 CAMK2B 4720 
215479_at Hs. 663736 - 4720 
221466_a. t Hs. 673854 P2RY4 4715 

207991 _c_at Hs. 169222 ACRV 1 4698 
220671_at Hs. 639842 CCRN4L 4697 
220826_at Hs. 677183 C21orf77 4670 

202485-s_at Hs. 25674 MBD2 4653 
216437_at Hs. 677301 - 4638 
221199_at Hs. 302025 GFRA4 4636 
207960_at - - 4592 
215246_at Hs. 642978 LARP7 4590 
210271_at Hs. 322431 NEUROD2 4578 
216116_at Hs. 655006 NCKIPSD 4575 
221378_at Hs. 248204 CER1 4570 
206256_at Hs. 2246 CPN1 4566 
211314_at Hs. 591169 CACNAIG 4563 
221460_at Hs. 258574 OR2CI 4559 
217293_at - 4542 
220082_at Hs. 192927 PPP1R14D 4529 

Table 5.2: Human hub genes. Top 40 most connected human genes. 
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Figure 5.5: Relation between the number of connections associated to a gene (x-axis) 

and its dosage sensitivity (or Intrinsic Protein Disorder, y-axis) in human. 

degree standard deviation was less 30. 

On the contrary, the intrinsic protein disorder [70] of the protein product of a human 

gene significantly decreases (P = 0.009) as its connection degree increases, as shown 

in Figure 5.5. Protein disorder, defined as the length of the unstructured part of a 

protein, is an important determinant of gene dosage sensitivity [113]. 

In order to relate gene degree to the average protein disorder of a gene, we 

proceeded as before, but this time we used GlobPlot [70] to compute the protein 

disorder for each gene. We thus obtained a protein disorder score for 12,494 human 

genes (19,860 probes). 

5.3.2 Mouse network 

We repeated the same procedure described in Section 5.3.1 to infer the mouse net- 

work. The number of probes in Mouse430A-2 is 45,101. This means that the number 

of indirected pairs of probes are 1,017,027,550. However, the number of significant 
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Probeset ID Unigene ID Gene Symbol Connections 

1433070_at - 5830433M15Rik 8031 
1443066_at - 7130 
1443681 

-at 
N1ni. 189222 A1595406 6822 

1422426_at -- - 6789 
1460421_ät Mm. 450554 Zfp133 6750 
1433161_at 1700008N17Rik 6721 
1437940_at N1111.22879 Apbal 6653 
1454428_at -- 4930467D19Rik 6582 
1419802_at Mm. 249115 Ccdcl2 

1445183-s_at - D7Ertd523e 6388 
1454316_at 5830426C09Rik 6357 
1431762_at Min. 274255 Htra3 6329 
1441838_at Mm. 280913 Erccl 6276 
1432949_at - 5330421F21Rik 6253 
1459088_at - C79557 6169 
1453953_at 9130015A21Rik 6066 
1425858_at Mrn. 196580 Ube2rn 5974 
1430795_at 5830407F19Rik 5960 
1433189_at -- 4933433N18Rik 5953 
1453626_at 3930402G 23Rik 5943 

1437778_at Mm. 436700 Rbrnl5b 5930 
1446335_at 5925 
1442462_at Mlrn. 459149 5918 

1450619_x_at - - 5913 
1433245_at - 6720475M21Rik 5876 
1446650_at - - 5856 
1429957_at AIm. 30967 Krtap26-1 5855 
1445935_at M1nr. 380510 5832 
1425946_at Mm. 458189 Gstm7 5831 
1453903_at Mm. 250432 4930503B20Rik 5813 
1447246_at Mm. 122885 5772 
1430919_at N1rn. 444732 4930525F21Rik 5730 
1439124_at Mm. 152120 Wdr9l 5712 
1431455_at Mrn. 158563 Tmem30c 5702 
1430429_at Mm. 28864 Pgsl 5696 
1433221_at -- 2610311E24Rik 5680 
1459696_at Mrn. 216590 Fry 5635 
1459206_at - - 5624 
1421726_at Mm. 197568 Ap4bl 5594 
1433400_at -- 5033405D04Rik 5592 

Table 5.3: Mouse hub genes. Top 40 most connected mouse genes. 
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Figure 5.7: Relation between gene connection degree (x-axis) versus gene expression 
level (y-axis) in mouse. Genes were grouped in equally sampled (1000 genes each in 

mouse) quaiitiles and the average gene connection degrees computed (x-axis). The 
log average expression level of the genes falling into each quantile is reported in the 

y-axis. 

were then compared with gene connection degrees, i. e. the number of connections 

of a gene. Genes were first divided into equally sampled quantiles (1000 each in 

mouse) then the average expression levels and the average gene connection degrees 

were computed. Due to the high degree variance in some of the quantiles, we decided 

to keep only those mouse quantiles where the connection degree standard deviation 

was less 50. 

As for the human network, we observed that the intrinsic protein disorder [70] of the 

protein product of a mouse gene significantly decreases (P = 0.009) as its connec- 

tion degree increases, as shown in Figure 5.8. Protein disorder, defined as the length 

of the unstructured part of a protein, is an important determinant of gene dosage 

sensitivity [113]. 

In order to relate gene degree to the average protein disorder of a gene, we used 

GlobPlot [701 to compute the protein disorder for each gene. We thus obtained a 
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Figure 5.8: Relation between the number of connection associated to a gene (x-axis) 

and the its dosage sensitivity (or Intrinsic Protein Disorder, y-axis) in mouse 

protein disorder score for 17,498 mouse genes (33,289 probes). 

5.4 The modular structure of the human and mouse 

networks 

A cell is able to regulate its complex behaviour thanks to groups of genes which 

perform different, but coordinated, functions to carry out a specific task. We asked 

whether we could find such functional modules within the inferred networks, which 

could reveal how the cell transcriptome is organized. We searched the network for 

modules, which are defined as "communities" and "rich-clubs" in network theory. A 

community is a group of genes highly inter-connected to each other, but with few 

connections to genes outside the group. A "rich-club"' can be defined as a "commu- 

nity of communities", i. e. a group of closely inter-connected communities. 

In order to identify communities, we represented the human network as a matrix, 

as shown in Figure 5.9A where the human adjacency matrix is reported. Each entry 
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distribution: 
m N-m 

-k 
ý 

(5.1) Pr(X = k) 
(Ni 
(n 

from this, we can compute the cumulative distribution and hence the significance, 

or p-value, of the draw; i. e. the probability of having at least k genes sharing the 

same GO term of interest. Figure 5.11C, D show the result of the analysis where the 

percentage of positive predictions (y-axis) are related to the number of communities 

analysed (i-axis). Communities are ranked in descending order according to their 

cardinalities. 

We assessed that 369c' of the human communities are enriched for a specific 

biological function by Gene Ontology analysis (Supplementary Table 3). This per- 

centage increases up to 47%, when considering only communities composed by more 

than 10 genes. We also found that 6 out of 393 communities of the network are 

significantly enriched for disease-genes (P < 0.05, Gene Set Enrichment Analysis): 

community number 1,11.22,40,54 and 96. The most significant community, num- 

ber 40, is composed by genes whose protein products localize to the lysosome, and 

is highly enriched for disease-genes involved in lysosomal storage disorders. Other 

examples include community 11, whose genes are related to cell adhesion and ex- 

tracellular matrix organization, and include disease-genes causing developmental or 

cardiovascular defects; community 22, related to the immune system and includ- 

ing genes causing related disorders; community 54, composed by genes involved in 

oxygen transport and enriched for genes involved in hematological disorders. These 

"disease communities" could contain other yet unknown disease-related genes, and 

could be helpful in identifying candidate genes in disease-related loci. 

We observed that communities interact with each other; for example community 

1, enriched for transmembrane receptor activity (P = 2.01 x 10-35) interacts with 

community 3, enriched for extracellular region (P = 7.33 x 10-06, Fig. 5.9B, arrow), 

but not to community 2 involved in RNA processing. 
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5.4.1 Hierarchical clustering procedure to identify network 

communities 

Hierarchical clustering methods [66] aim to group data items into a hierarchical set 

of clusters. organized in a tree structure, according to a specific distance function. 

In order to apply one of these methods, it is necessary that all the distances 

between the items to be clustered are known, therefore a distance matrix must be 

calculated before the clustering procedure can be applied. 

The hierarchical clustering algorithm starts with each item considered as a sep- 

arate cluster. At each step, according to the distance matrix, the pair of closest 

clusters is merged into a new single cluster. The distance matrix is then updated 

by computing the distances between the new cluster and the others. This process 

iterates until all the items belong to a single cluster. It requires N-1 steps where 

N is the number of the data items. 

There are many possible distance functions that can be used in hierarchical 

clustering algorithms. We have adopted the unweighted average distance (UPMGA) 

[103]: the distance between any two clusters CZ and Cj is taken to be the average of 

all distances between pairs of items p in Ci and q in CC: 

IC. 1 lCil 
I 

pEC;, 9EC, 
d (p, q). 

To constructs the distance matrix starting from the network adjacency matrix 

we have used the Jaccard similarity coefficient. For two rows of the matrix, it is 

defined as the cardinality of their intersection divided by the cardinality of their 

union: 

d(p, 4) - I$JgV 
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Parallel Implementation of the hierarchical clustering algorithm 

The parallel algorithm distributes the gene adjacency matrix among the computing 

processes. Each process gets N/p rows of the adjacency matrix where p is the number 

of processes available and N is the total number of probes. Therefore each process 

stores a subrnatrix of the distance matrix with size N/p x N. 

As the distance matrix is symmetric, only the elements corresponding to the 

upper triangular half are calculated applying the Jaccard similarity coefficient to 

the rows of the adjacency matrix taken pairwise. 

During the clustering process, the cluster index constantly changes: the singleton 

clusters are numbered from 1 to N, while each newly-formed cluster is assigned the 

index N+I, where I is the index of the iterative step (1 <I<N- 1). 

At each iterative step I. each process finds the minimum of the distances locally. 

The global minimum distance of the closest clusters is found through an all-reduce 

operation and its indices are broadcasted to all processes. The computational time 

complexity is then reduced to O(nClusters12/p), instead of O(nClusters12), where 

nClustersj, varying from N to 1, is the number of the clusters at step I. Therefore, 

the overall computational time complexity for this part of the algorithm is O(2ý 

Each process updates the distances of the newly-formed cluster from the clusters 

that it stores. If the new cluster is obtained by merging the clusters i and j, then 

the new distances to be calculated are stored in the column and row i while the 

row and column j, from now on, will be excluded from the search for the minimum 

distance. Thus, each process just updates the portion of the column i (N/p elements) 

that it owns. The row i is instead updated through a gather-v operation in which all 

processes send its portion of the column i (N/p elements) to the root process that 

owns the row i (Figure 5.12). Therefore, the overall computational time complexity 

for this part of the algorithm is 0('2). The parallel algorithm is summarized in 

Figure 5.13 and was implemented in C using the MPI standard.. 
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connections occurring among genes belonging to the two different communities, di- 

vided by the expected number of connections. The IS is equal to 0 if no connections 

exist among genes belonging to the two different communities. 

Formally, considering two communities A and B, we define nAB as the number 

of edges in the human or mouse network across the KA genes in community A and 

KB genes in community B, then the Interaction Strength (ISAB) is 

ISAB = log(KA x KB 
xf 

(5.2) 

where f is the average frequency of edges across all the genes in the human or mouse 

network. 

We then constructed a community-wise network by creating an adjacency ma- 

trix whose element in row i and column j is the I SZj between community i and 

community j, if the IST, > 0. 

We the used this community-wise adjacency matrix to identify rich-clubs, i. e. 

communities of communities. We computed the IS between all the pairs of 393 

communities for a total of 77,028. Only 5,074 pairs of communities had an IS greater 

than 0. Similarly to the gene-wise network, also the community-wise network can be 

represented as a matrix. We can therefore apply a clustering procedure to group the 

communities into sets of highly interconnected communities ("rich-clubs") [421. To 

this end, we applied a novel message-passing clustering algorithm [42] which is able 

to return the number of clusters without any user-speficied parameter, using as inter- 

community distances the ISs. We thus obtained 58 human and 227 mouse clusters of 

communities, i. e. rich-clubs (as defined in network theory). The process was iterated 

by considering the ISs among the new formed clusters (rich-clubs). Figure 5.14 

report the human network of rich-clubs along with four magnifications. Figure 5.15 

For a complete list of genes within each community refer to Supplementary Table 2. 
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Figure 5.15: Community-wise mouse network. Each node is a community. A color 
and a number identify each rich-club (i. e. a group of highly interconnected commu- 
nities). The width of each edge reflects the IS between communities and rich-clubs. 
'`Exemplars" are indicated by triangles. The node of the network are identified with 
an integer number (see Supplementary Table 2). 
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guru;: 1nuüau ml(I species, we first reuiuv(1(l f )Ill tlic liniii8ii network tliuse 

gem's without an ortholog in mouse. resultiüg in a "rediicecl" network of 11.318 

genes. We then found that 2t8.700 connections, (12`% ) were conserved in iuouse as 

shown in Figure . 5.16. 

This percentage is in line witli previous Stu<lies. In Yeast, it has heen reported 

that I)etWvc'eii 10`% [95J and X30% [86] of protein-protein interaetioiis ucctu'ritig (luring 

the cell cycle of Sacch. aro,, o ces pombe (fission yeast) mid Saccharo, nijces ccrevisi, ae 
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flue authors report a database of protein-protein interactions occurring among traii- 
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interactions is about 16`/ (the estiniat"l range is 3lX-612 when taking into account 
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O 
bA 

Gene ontology -ý o p-value 

cell cycle 2 7 142 1.47 x 10- 
proteasome 4 2 483 8.96 x 10-216 
oxidative phosphorylation 4 2 483 8.96 x 10-216 
ribosome 9 2 113 1.79 x 10-43 
immune system 8 8 114 2.02 x 10-129 
signal transduction 19 33 33 2.85 x 10-14 
lipid metabolism 120 51 7 1.61 x 10-13 

Table 5.4: List of conserved modules along with the human and mouse communities 
IDs, number of orthologous genes and the p-value associated to the Enrichment 

analysis. 

the False Positive Rate of the experimental technique). A recent genome-wide analy- 

sis [4] integrating heterogeneous sets of experimental data (including 338 expression 

profiles in human and 1048 in mouse) showed a conservation of 15% of interactions 

between the two mammalian species. 

We investigated whether communities found in the human network were con- 

served as communities in the mouse network. A human community was deemed to 

be conserved in mouse, if there was at least one mouse community composed by a 

significant fraction of genes orthologous to genes in the human community. Ninety- 

two out of 389 human communities (24%) were enriched in one, or more, mouse 

communities (Supplementary Table 5). We only considered those human communi- 

ties with at least one mouse orthologous gene. It appears that the conservation at 

the community level (24%) is higher than conservation at the gene-gene level (12%) 

suggesting that many circuits embedded within the networks were conserved during 

evolution. Our results are in agreement with previous studies on the conservation of 

protein complexes across species [99]. Example of conserved communities are listed 

in Table 5.4: as expected many of the basic cellular processes are conserved [106]. 

We observed that human community 4 and the conserved mouse community 2 
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are significantly enriched for genes involved in proteasome (human p=7.25 x 10-22, 

mouse p=7.83 x 10-08) but also for genes involved in oxidative phosphorylation 

(human p=1.36 x 10-55, mouse p=9.16 x 10-12). Therefore, genes belonging 

to these different pathways are co-regulated, and this co-regulation is conserved 

across species. Proteasome-dependent protein degradation represents one of the most 

expensive processes in term of energy; oxidative phosphorylation is a metabolic 

pathway that uses energy released by the oxidation of nutrients to produce ATP. 

Therefore it would make sense for these two pathways to be coupled. 

5.6 Discussions and conclusions 

In this chapter we have shown that massive and heterogeneous gene expression 

datasets can indeed be exploited to yield biologically relevant information on gene 

regulation at transcriptional level. We have identified groups of genes that tend to be 

highly "co-expressed" (communities) and that share a common biological function. 

We observed that genes that are connected, i. e. co-expressed, in human tend to 

be also co-expressed in mouse, more than what is expected by chance; however this 

is not the general trend, since only 12% of connections are conserved. Albeit this 

estimate may be lower than the real one, due to false negatives and orthologous 

gene mis-assignments, our results are confirmed by other large-scale experimental 

studies in human and mouse [93,4], and this percentage would drastically increase 

if we would consider both that only a subset of genes are orthologous, and that the 

threshold we selected imposes an upper bound. Our observation adds weight to the 

hypothesis that regulation of gene expression may be very different between species, 

even if they share a similar proteome. 

The gene network structure is typical of complex network with the presence of 
hub genes with a large number of connections. Our finding suggests that hub genes 

are highly expressed and may have been selected to be less dosage sensitive, i. e. not 
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pathological when their expression is increased, as confirmed by their tendency to 

have a lower protein disorder. 

We identified biologically relevant functional modules within the network, thus 

providing a modular view of the wiring diagram of a cell, going from genes to com- 

munities, and from communities to rich-clubs. 



Chapter 6 

Transcriptome organisation and 

gene function 

The final goal of an inference process applied to biological dataset is to gain new 

insights on the biological mechanisms of the cells. These insights include identifi- 

cation of physical interactions among proteins (P-P interactions), prediction of the 

biological function of a genes, and so on. In this Chapter we experimentally vali- 

dated a set of physical interactions predicted by connections in the human network, 

and we propose a new approach called "guilty-by-association", able to predict the 

biological processes of genes, or its cellular localization of the protein products. 

Moreover, we investigated the relationship between three-dimensional organisation 

of the chromatin in the nucleus and gene expression. 

6.1 Biological validation of Protein-Protein inter- 

actions 

Genome-wide inference validation was a difficult process to accomplish due to the 

lack of a golden standard network of interactions among genes. As outlined in 5.3.1 
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Figure 6.1: Subnetworks obtained by collecting the top 1000 connections with the 
highest III within the network. Subnetwork (A) contains genes that codify for the 
ribosornal protein complex. Subnetwork (B) is enriched for genes involved in the 
spindle checkpoint, for clarity only a subset of interactions are shown. Subnetworks 
(C) is enriched for metallothionein genes, a family of low molecular weight, heavy 
metal binding proteins. Interestingly these genes are all present as a cluster on chr 
16g13. Subnetwork (D) contains major histocompatibili. ty complex proteins. 

we built a golden standard (GoS) interaction network by merging different sources of 

interaction databases. Results are reported in Figure 5.3 and show that the inference 

performance reaches a maximum of 90% of correct predictions. The ROC curve 

highlight how the higher the M11s the more we can trust our predictions. 

We investigated the identity of the top one thousand connections with the highest 

Nil in the network (Fig. 6.1A and Supplementary Table 4). Forty percent of these 

connections, involving a total of 302 genes, were confirmed by the GoS interactome. 

An additional 13% of the connections were predicted among genes irr the same gene- 

family, which, therefore, may well be functionally related, although not physically 



6.1 Biological validation of Protein-Protein interactions 103 

Protein Protein 

bo 

ti 

ýa 
ý 

y 
3 a 

y 

NUSAPI RRM2 1 2 3 6 
NUSAPI ZWINT 1 3 2 6 
NUSAPI ASPM 3 3 0 6 
NUSAPI KIF2C 2 3 1 6 
NUSAP1 BUB1B 2 4 0 6 
NUSAP1 KIAA0101 0 3 0 3 
ZWINT RRM2 2 1 3 6 
ZWINT ASPM 3 0 3 6 
ZWINT BUB1B 2 0 4 6 
ZWINT KIF2C 1 0 2 3 
MINT KIAAO101 1 0 5 6 
RRM2 KIF2C 1 1 4 6 
RRM2 KIAA0101 1 0 2 3 
RRM2 ASPM 2 0 4 6 
RRM2 BUB1B 1 2 0 3 
KIF2C ASPM 2 2 2 6 
KIF2C BUB1B 1 2 3 6 
KIF2C KIAA0101 2 0 4 6 
KIAA0101 BUB1B 1 0 2 3 
ASPM KIAAO101 0 0 3 3 
ASPM BUB1B 1 0 2 3 

negative control 72 21 30 
positive control 15 00 15 
positive weak control 690 15 

Table 6.1: Biological validation of Protein-Protein interactions. Protein-protein in- 
teractions that have been tested via Yeast two Hybrid assays. In bold we report the 
pairs of proteins that were known to interact from literature. 

interacting. 

In order to test the predictive ability of the network, we focused on the subnet- 

work (B) in Figure 6.1 consisting of 12 genes most of which (CENPF, NUSAP1, 

KIF2C, BUB1B, ASPM, ZWINT, and CCNB2) involved in mitotic spindle check- 

point, chromosome motility, and mitotic progression [59,74,92,1091. 

According to the CoS interactome, three protein-protein interactions were known 

to occur among the genes in subnetwork (B), therefore we decided to verify whether 

the predicted connections, could be yet undiscovered protein-protein interactions. 

We selected only the subset of 7 genes (NUSAP1, KIF2C, BUB1B, ASPM, ZWINT, 
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KIAA0101, and RRM2), which according to our network formed a tight cluster of 

genes all connected to each other. We performed a series of yeast two hybrid (Y2H) 

assays to test a total of 21 connections (i. e. all the possible interactions among 7 

proteins). According to the Y2H assay, 20 of these were positive. Since Y2H are 

known to be prone to false positive detections, we also experimentally estimated the 

precision (true positives over true positives plus false positives) of the Y2H assay 

by using appropriate positive and negative controls (SI). The estimated precision 

resulted to be equal to 77%, hence, at least 15 (= 77% of 20) of the experimentally 

identified interactions should be true positive predictions. This means that we can 

predict new p-p interactions with a precision of 75% (15 out of 21, Fig. 6.1, see Table 

6.1 for the results of all the assays). 

6.1.1 Yeast-two-Hybrid assays 

The Yeast two Hybrid (Y2H) kit "ProQuest Two-Hybrid System" (Invitrogen) in- 

cluded the S. cerevisiae MAV 203 strain (MATa, leu2-3.112, trpl-901, his3A200, 

ade2-101, ga14A, ga180A, SPAL10:: URA3, GAL1:: lacZ, HIS3UAS GALI:: HIS3@LYS2, 

can1R, cyh2R), the bait vector pDEST32 and the prey vector pDEST22. The "Ul- 

timate ORF" (Invitrogen) of the genes of interest were used to generate prey and 

bait plasmids using the GateWay technology and protein-protein interaction assays 

were performed according to manufacturer instructions. 

6.2 Chromatin structure and gene expression 

The three-dimensional structure of chromosomes in the nucleus brings into close 

spatial proximity loci that are far apart in terms of genomic distance [69]. However, 

little is known about the relationship between chromatin spatial structure and gene 

expression. 

We investigated whether genes that are connected to each other according to 
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our network, were also physically close to each other at the chromatin level, in the 

cell nucleus. We used a recent comprehensive mapping of chromosomal loci physical 

interactions using an innovative "Hi-C" chromatin capture technology [69]. 

The physical interaction map was measured in 2 human cell lines (GM06690 and 

K562) [69]. Authors provide an intra-chromosomic [69] contact probability matrix 

at 100 Kilobases resolution, and a genome wide contact probability matrix at 1 

Megabases resolution. 

This map of physical interactions can be represented as a matrix (Mr), where 

each entry m; 3 reports the probability of the ith Mb of the genome to be in physical 

contact with the jth Mb, according to "Hi-C" experimental results. Figure 6.4B is 

a graphical representation of this map for chromosome 19. In [69] authors observe 

that genes in the same chromosome that are close each to other in terms of genomic 

distance have an high probability to be physically in contact. By using the infor- 

mation of the connections among the genes that is stored in the inferred human 

network, we computed a "connection tendency" and compared it with the linear 

genornic distance. 

Figure 6.2 shows the result of the analysis. Plots are associated to chromosome 

and are color coded according with the length of the chromosomes. Specifically, for 

each normilised chromosomal distance (y-axis), the number of connections among 

the genes that are within that distance is computed. This value is then divided by 

the expected number of connections (given the network) and the log2 is computed 

and reported in the x-axis. This quantity is referred to as the "connection tendency" . 
The analysis shows that genes that are close each to other in terms of linear genomic 

distance, have an higher tendency to being connected in the network with respect 

to genes that are far apart. The analysis reported in Figure 6.2 is similar to the one 

performed in [69] where in place of connection tendency among genes they consider 

physical contact probability. 

Communities in our network can be considered as functional modules consisting 
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Figure 6.2: C)uIIection tendency aI1(1 geuoulic (listauce. "Teiidei cy" (y-axis) of the 
11Iii112111 geiles within a (wain getumllc (listatice to be 

('oRIIecte(1 according to our 

network. We coIill)Ilte(1 a conilectioll teIU1eI1CV as the Ill1lliber of ('o1111ect1olis mnolig 

gnus below a given geuonlic (listallce. (lip i(le(1 by the expected IlllInl. )er of connectiotls 
for the saht' uulnber of genes. iu(lepeuclelltly of their clistallce. We color coded each 
chromosome. frone red (shorter (llrotuosonles) to blue (longer chro111osollles). M, see 
that the closer two genes are in terllls of geiiolllic (iistallce. (. x-axis. log scale). the 
higher their teu(leIi(v to he collllecte(i. 

of gerneti yV11 »e (-yl)re: sioýn i' (uur(lülitte(l. and. that carry out , I)e(ifi(" I)ioh) ical fniic- 

tioIIS as ohser"e(i in Section _i. 4. We asked whetliei. these geile IIlo(litles could have 

it - pliysicail co[lit erl)art' in the (Al, NO therefore further ilVestigatecl the correspou- 

(levees 1 'twee1i i livsical contact probability and couiieetion teiicleuev-. 

Iii [69]. authors (le fined it ("(, rrelat loll tuatriX C, in Which element (i. J) is the 

Pearson correlation between the i" row and j'1, ('olntntt of This C,, utatrix ex- 

hibits a strong 'plaid-pattern' its shown in Figure 6.4B. C,, is the correlation matrix 

that illustrates the correlation (range from 1 (blue) to +l (red) in Fig. 6.4) between 

the intra<llromoso1lial interaction profiles of everv pair of I \[l) loci along a (. 111,01110- 

sonic (chromosome 1J in Fig. 6.4). The phti<1 pattern indicates the presence of two 

cotuparttitcttts within the (hrotuosotne. The ('otuptttxtiott of the correlation between 

each pair of clirunuosotne lm -i is justified by the fact that if two loci are nearby in 

space. they rea.. uuably will , hare ttei)ltbunrs and have correlated lilt eractiutt profiles. 

I'lºc analysis reported in Figure G.: 3 Was performed c"(nuj)utiug the contact col-re- 
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FiL 11I ' 0.3: liltca-cOuituutiitV phvsic? 1l contact (y-axis) expressed iii terms of average 
contact correlation is plotted for each of the 393 communities (. r-axis) ideiitif cdl iii 
Section 5. -4. and compared to the expected random correlation. 

[ation mean (front matrix C,, ) among the chrotttosoiual regions associated to each of 

the community found with the analysis presented in Section 3.4. To associate chro- 

ntosotual regions to coitililt it, it ies. we simple take all the chromosomal regions that 

contain at least a gene of the couirnuttity. Then, for each cotttniunitvv we averaged the 

correlations among the associated chromosomal regions (blue spots in Fig. 6.3). For 

('; ccli < ooniunrtiity we also c°liecked for the randoiu correlation by sinifflitig the labels 

of the neues in the contitiunity. while keeping the size of the community (red spots 

indicate rancloiii meats. while red hairs indicate standard deviation over too trials). 

In order to compare the physical contact probahilities of the clirotttosotttal regions 

(C',, ) toi the human network. we first derived aý utiurctiott trnclcný v itiatrix' (al«) 

at 1 \I) resolution from the ltuiuant network adjacency matrix. In the 
. 
11, matrix 

the cleilleilt in position (1., 1) reports the connection týttclcucy between genes in the 

1th \lb and genes in the j`h NO To generate the JH, muattrix. we first sitlulivided the 

adjacency matrix by grouping together probes referring to genes which where within 

I \11) distance between each other, we then conuhutccl the IS (Eq. 3.2) gel loll ie-wide 

between the 1 \11) regions. with A equal to the uttuiber of genes iii the .1 region 
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Figur' G. -1: Genes that are co-expressed tend to 1e physically close at the 3D chro- 

matin level. (A) Connection tendency nicitrix of chromosome 19. Grew stripes Iii-11- 

light regions with no probes (Iesi tic(. l for the tiiicroarray tuocleI HG-U133A. A reel 

culot iuclicate; twO (liffelvilt 1 \lb 1()ci whose geiles are strou lv- couticcte(l to each 
other. (B) Physical contact matrix of chromosome N. Grey stripes lugltli lets cliro- 
iuosouial regions where ccntrouieres are located. plus iuialiguahle regions.. reel color 
iiulicatc5 t«-u clitfereiit I \11) loci that are physically close to each at tlic cliroiuatiii 
level. PlivsicallY close regions iuziv also contain ; cues that are not co-expressed and 
vice-versa: region (I) in (A) has an opposite tciictciicv with respect to the corre- 
; ý>onýliii region (I) in (B). This cleans that regions that are not in plivsicaI contact 
ui0V cotitaiii genes that are co-expressed. The opposite call also he true, for exalliple 
region (II) shows that loci pliVsicallV üiteractitig with each otlieu (10 not necessarily 
contain "one" that are ("0-expressed. 
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(of 1 Mb), KB the number of genes in the B region (of 1 Mb), nAB the number of 

interactions between genes in region A and genes in region B, and f the average 

frequency of interactions across all the genes in the human network. We then derived 

a correlation matrix C, as shown in Figure 6.4A, where the element in position (i, j) 

is the Pearson correlation between the it4 row and j(h column of the MM matrix. 

Chromosome-wise analysis and genome wide analysis was accomplished by com- 

puting the 2-dimensional Pearson correlation coefficient (PCC) between the Cp ma- 

trix, describing the physical contact probability, and the CC matrix, describing the 

interaction probabilities among the genes in the human network. We computed the 

p-values following classic statistical theory for PCC. The p-values were then cor- 

rected following a Bonferroni False Discovery Rate (FDR) procedure to control the 

percent of false predictions in the set of predictions. We deemed as significant those 

PCC with an FDR < 0.05. 

In both matrices (Fig. 6.4A, B), there is a clear "plaid pattern" highlighting 

chromosomal regions whose genes are strongly connected to each other (red in Fig. 

6.4A) and regions which are physically close to each other at the chromatin level (red 

in Fig. 6.4B). These regions have a striking overlap (correlation = 0.4, P=7.3 x 

10-123) especially the p-arm of chromosome 19 (upper left square in both matrices), 

revealing that genes that are physically close to each other at the chromatin level 

tend to be "co-expressed" (i. e. have a significant MI), and vice-versa. 

By extending this analysis to all of the chromosomes, we found a significant 

overlap (correlation significance: P<0.01) for all but three chromosomes (9,20 and 

21). 
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species K N N_irit_K CORRECT PERC I CLASS 
17174 16750 13123 7626 58% BP 

human 18141 16646 13687 6601 48% MF 
18020 17561 14400 10247 71% CC 

19011 24848 11379 6682 59% BP 
mouse 22774 24796 13407 6789 51% MF 

21975 24942 13338 10375 78% CC 

Table 6.2: GOEA: guilty-by-associations study. The CLASS column reports the per- 
centage of correct predictions; probeset-GO term correct association by looking at 
the probesec neighborhoods. K: probesets associated to one or more GO term; N: 

probesets whose neighborhood is associated to one or more GO term; K_int_N: in- 
tersection between K and N; Ksnt_N_correct: probesets associated to one or more 
GO term that is enriched in its neighborhood. 

6.3 Prediction of gene function and protein local- 

isation 

We exploited the information embedded in the human and mouse networks to iden- 

tify gene function, or protein subcellular localisation, via a guilty-by-association anal- 

ysis. It consists in assigning a function to a gene (or a localisation to the encoded 

protein) by checking whether there is a shared function among the genes connected 

to it (or a shared localisation of their protein products). In what follows, we term 

"gene neighbours" the set of genes connected to a given gene of interest according 

to the predicted networks of connections. 

We performed a Gene Ontology Enrichment Analysis (GOEA) on the set of 

gene neighbours for each gene, in both the human and mouse networks' (see Sec. 

6.3.1). We then selected, as a test set, the subset of 18,141 human and 22,774 mouse 

transcripts for which the function/localisation was known according to their Gene 

Ontology classification. In table 6.2 we report the percentage of correct predictions, 

for each of the three GO classes (Biological Process, Molecular Function and Cellular 

Localisation), ranging from 48% to 78%. 

'http: //netview. tigem. it 
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6.3.1 Computational methods 

Gene Ontology Enrichment Analysis (GOEA) is a commonly used technique that 

allows the identification of statistically over-represented Gene Ontology terms in 

a set of genes. Suppose to have a set of N genes, m of which are annotated as 

associated to a Gene Ontology term of interest. Suppose we draw a subset of n 

genes from the complete list of N genes, then the probability of obtaining k genes 

all sharing the same Gene Ontology term of interest follows an hypergeometric 

probability distribution, that is possible to compute applying the formula presented 

in Section 5.4. From this, we can compute the cumulative distribution and hence the 

significance. or p-value, of the draw; i. e. the probability of having at least k genes 

sharing the same GO term of interest. 

In order to predict gene function and/or localisation from the human and mouse 

networks, we proceeded as follows: for each probe (i. e. gene) of the human or mouse 

network, we selected the probes predicted to be connected with it in the network 

(i. e. the gene's neighbours). For probes with more than 500 neighbors, only the top 

ranked 500 ones with the highest MI were retained; for nodes with less than 50 

neighbors, we included also the gene's second neighbours (i. e. the neighbours of the 

neighbours) up to a maximum of 500. 

Multiple probes may refer to the same gene and thus be highly co-expressed. To 

avoid biases in the GOEA computation, we removed from the neighbours, the probes 

associated to the same gene. GOEA was then performed on this subset of neighbours 

for each of the probe in the human network. In the testing phase, a prediction was 

claimed to be correct if the GO term that was enriched within a neighbourhood was 

also the one associated to the probe itself according to the GO database [6]. 
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6.3.2 Biological validation of gene expression localisation 
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have been lass that 0.: 3`iß . 
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Experimental methods 

Cell culture and transfection for protein mitochodrial localisation assays. 

HeLa cells were maintained at 37°C in a 5% C02-humidified incubator, and cultured 

in DMEM (GIBCO BRL) supplemented with 10% heat-inactivated fetal bovine 

serum (FBS) (Invitrogen) and 1% antibiotic-antirnycotic solution (GIBCO BRL). 

50000 cells were transfected in a 24-well with 0.3µg of DNA using TransIT-LT1 

Transfection Reagent following the standard protocol suggested by the manufac- 

turer. After 16h cells were treated with a red MitoTracker (Invitrogen) for 30 min- 

utes, in order to specifically bind the mitochondria. and then were fixed with 4% 

paraformaldehyde for 10 minutes. Cells were observed using the confocal microscope 

ZEISS LSM 710. 

Bacterial strain, Plasmids and Molecular Cloning. Plasinid construction 

and molecular cloning were performed in the cloning host cell E. coli DH5a (Invit- 

rogen) following standard protocols. For each gene of interest the coding sequence 

was amplified from a total preparation of cDNA obtained by RT-PCR of a murine 

RNA. 

The amplification was carried out using the primers listed in Table 6.3. Each 

coding sequence was then cloned into the EcoRI/BgIII sites (except for Fam73b 

that was cloned into EcoRI/BamHI sites) of pEGFP-N3 vector at the N terminal of 

the EGFP, thus resulting in a fusion protein. All clones were confirmed by sequencing 

analysis. 

6.4 Elucidating the function of the granulin pre- 

cursor `disease-gene' 

We next asked whether the guilty-by-association approach could be helpful in elu- 

cidating the function of genes involved in genetic diseases. Since we were interested 
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Gene I Sequence 
9530058BO2Rik F (5'-CAGGAATTCACCATGTACACTATCACCAAG -3') 
9530058BO2Rik R (5'-CGGAGATCTGGAACAGTTGGTGATTTTAGC-3') 
2010012005Rik F (5'-TTAGAATTCATGATGGCGACTGGGACGC-3') 
2010012005Rik R (5'-GCGAGATCTCTTCAGTAAGTGACTCAACTG-3') 
2810405KO2Rik F (5'-GTCGAATTCATTATGAATGTGGTGGACCTTGGT-3') 
2810405KO2Rik R (5'-GCCAGATCTCCTCCCACACACCTCTTCA-3') 
2010012005Rik F (5'-GCGGAATTCAGGTGATGGCGACTGGGAC-3') 
2010012005Rik R (5'-GTTAGATCTCTTCAGTAAGTGACTCAACTGGTC-3') 

Nsun4 F (5'-CTAGAATTCACCATGGTGTTTATCACATCAATAGA-3') 
Nsun4 F (5'-CTAGAATTCACCATGGCTGCGCCCGTCTTAA-3') 
Nsun4 R (5'-CGCAGATCTTGGCAGCCTATGCAGTTTGC-3') 
Uqcc F (5'-GCGGAATTCAGTATGGCGTTGCTGGTGCGAG-3') 
Uqcc F (5'-GCGGAATTCAAGATGGGATTCACTGGACCTTTG-3') 
Uqcc R (5'-CGAAGATCTAAGGCCCTCATCATTGTAAGTA-3') 

Ccbll F (5'-GCCGAATTCACCATGTCCAAACAGCTGCAGGC-3') 
Ccbll R (5'-CGCAGATCTGGCTTGGGGCTCTCCTTTC-3') 

114 

Table 6.3: Genes tested for mitochondrial localisation. Genes predicted to be signifi- 
cantly associates to mitochondria by the guilty-by-association analysis. The sequence 
column reports the primers used to test the rnitochoridrial localisation. Names in 
italics indicate an alternative isoform of the protein. F and R state for Forward and 
Reverse, respectively. 

in lysosomal function and lysosomal disorders, we used our guilty-by-association 

analysis to identify human disease genes which may have a yet undiscovered role in 

lysosorne function and organization. 

To this end, we ranked in descending order of their p-values all of the genes 

predicted to be lysosomal, or associated with lysosome organization, by our guilty- 

by-association analysis (http: //iietview. tigern. it). The top ranked genes included 

both lysosomal enzymes and other genes involved lysosomal function and are listed 

in Table 6.4 and Table 6.5. Among these, at position one, NPC2 (Niemann-Pick 

disease, type C2) disease-gene, known to be an intralysosomal gene [116]; at position 

two, we found another disease-gene GRN. Both genes are members of community 

40, which is enriched both the presence of disease genes and for lysosomal genes, 

described in Section 5.4. 

Despite recent extensive studies, the role of GRN is far from being understood 

and, to our knowledge, it has not been directly linked to lysosomal function in the 

literature. GRN is a highly conserved gene bearing multiple copies of the cysteine- 
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P-value Proheset ID Gene Symbol Gene Info 

10-41 200701_at NPC2 Niemann-Pick disease, type C2 

1.88x 10.36 211284-, 
-. 

t GRN granulin 
2.41 x 10-34 200743sat TPP1 tripeptidyl peptidase I 
7.74x 10-33 212663at FKBP15 FK506 binding protein 15,133kDa 

3.76x 10-32 201212_at LGMN legumain 
7.10x 10- 31 201494_at PRCP prolylcarboxypeptidase (angiotensinase C) 

8.76x 10-31 218217_at SCPEPI serine carboxypeptidase 1 

5.99x 10-30 202944_at NAGA N-acetylgalactosaminidase, alpha 
8.99x10-a0 217118s_at C220RF9 chromosome 22 open reading frame 9 

9.02x 10-30 204204_at SLC31A2 solute carrier family 31, member 2 

2.31x10-29 20087Ls_at PSAP prosaposin 
9.49x 10-29 201944_at HEXB hexosaminidase B (beta polypeptide) 
2.73x 10-28 35820_at Gh12A GM2 ganglioside activator 
3.67x10-28 200839 -at CTSB cathepsin B 

7.29x 10 28 202295_c. t CTSH cathepsin H 

7.29x10-28 202838_at FUCA1 fucosidase, alpha-L- 1, tissue 
8.89x10-28 200748_s_at FTH1 ferritin, heavy polypeptide 1 
5.39x 10-27 202545at PRKCD protein kinase C, delta 

7,00w 10-Z7 202087 s_at CTSL1 cathepsin L1 

1.61 x 30" 27 208704_x_at APLP2 amyloid beta (A4) precursor-like protein 2 

Table 6.4: Top 20 genes significantly associated to Lysosome (cellular component 
gene ontology class) resulting from the application of the guilty-by-association anal- 
ysis, sorted according to the associated p-values. 

P-value Probesec ID Gene Symbol Gene Info 

1.58x10- 200661_at CTSA cathepsin A 

7.17x10-06 200742_c-at TPP1 tripeptidyl peptidase I 

3.20x10-O5 207809_s_at ATP6API ATPase, H+ transporting, lysosomal accessory protein 1 

3.48x10-°5 211284s_at GRN granulin 
2.10x10-04 202545_at PRKCD protein kinase C, delta 

2.25x 10" 04 201050_at PLD3 phospholipase D family, member 3 

2.90x10-04 200766_at CTSD cathepsin D 

3.73x10-°4 217118__at C220RF9 chromosome 22 open reading frame 9 

3.74x10-04 219952 --at MCOLN1 mucolipin 1 

4.58x10-04 202812_at GAA glucosidase, alpha; 
2.54x10-O3 208926at NEU1 sialidase 1 (lysosomal sialidase) 
3.54x10-03 205090__at NAG PA N-acetylglucosamine-l-phosphodiester alpha-N-acetylglucosaminidase 
3.81 . 10-03 200649_at NUCB1 nucleobindin 1 
4.56x10-03 218282_at EDEM2 ER degradation enhancer, mannosidase alpha-like 2 

4.56x10-03 219020_at HSIBP3 HCLS1 binding protein 3 

4.56x10-03 203045_at NINJ1 ninjurin 1 

4.56x10-03 201494at PRCP prolylcarboxypeptidase (angiotensinase C) 

4.56x10-03 212647_at RRAS related RAS viral (r-ras) oncogene homolog 

4.56x1003 218217_at SCPEPI serine carboxypeptidase I 

4.56x10-°3 203167_at TIMP2 TIMP metallopeptidase inhibitor 2 

Table 6.5: Top 20 genes significantly associated to Lysosome organisation (biolog- 
ical process gene ontology class) resulting from the application of the guilty-by- 
association analysis, sorted according to the associated p-values. 
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rich granulin motifs. Proteolytic cleavage of the precursor protein by extracellular 

proteases, such as elastase, gives rise to smaller peptide fragments termed granulins, 

or epithelins, which have been linked to a range of biological functions including 

cell division, survival, and migration [37]. Mutations in GRN cause frontotemporal 

lobar degeneration with ubiquitin-immunoreactive neuronal inclusions (FTLD-U) 

[7,27]. Of note, mutations in NPC2 results in a wide spectrum of clinical phenotypes 

including a form of frontal lobe atrophy [64]. 

To investigate whether GRN was indeed related to lysosomal function, we first 

evaluated GRN expression levels following sucrose treatment, a known inducer of 

lysosomal biogenesis [62,52]. A strong increase in the number of lysosomes was de- 

tected upon sucrose supplementation to the culture medium, as expected (Data not 

shown). Following sucrose treatment, in Figure 6.6A, we observed a 2-fold increase 

over baseline in GRN mRNA levels, along with a 3-fold increase in Cathepsin D 

(CTSD), a lysosornal enzyme used as positive control (Figure 6.6A). 

The transcription factor EB (TFEB) has been recently identified as the tran- 

scription factor controlling most of the known lysosomal genes via direct binding to 

their proximal promoter [96], therefore we next asked whether GRN may indeed be 

regulated by this transcription factor. We first identified, by bioinformatics analysis, 

two TFEB binding sites upstream of the GRN coding sequence (see section 6.4.2). 

We then over-expressed TFEB in human cell lines and detected a 3-fold increase in 

GRN rnRNA levels, along with a 3-fold increase in CTSD, a known target of TFEB, 

used as a positive control (Figure 6.6B). 

We next over-expressed GRN to observe if this had any effect on lysosomes; as 

shown in Figure 6.6C. the number of lysosomes significantly increased (P = 0.01), 

compared to a mock control, or over-expression of EGFP, as assessed by immuno- 

fluorescence against LAMP2. The effect of increased lysosornes was observed on the 

great majority of cells. Therefore, we hypothesised that GRN-transfected cells could 

secrete a factor inducing lysosorne biogenesis in neighbouring cells. This hypothesis 
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control, as evident in Figure 6.6D. 

6.4.1 Experimental material 

HeLa or HEK293 cells were cultured in DMEM supplemented with 10% FBS and 

treated for 96 hours in the presence of sucrose to a final concentration of 100mM with 

daily changes of medium. For immunofluorescence cells grown on glass coverlips were 

fixed with methanol for 10 minutes, washed with PBS, treated with 50 mM NH4C1 

for 15 minutes, and permeabilized with PBS 0.1% Triton, blocked in blocking buffer 

(0.5% BSA, 50mM NH4C1,0.001% Triton in PBS pH 7.4), and incubated overnight 

at 4°C with anti-LAMP2 antibody Santa Cruz and for one hour with Alexa-594 

(Invitrogen). 

HEK293 cells were maintained at 37°C in a 5% C02-humidified incubator, and 

cultured in DMEM (GIBCO BRL) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS) (Invitrogen), 1% L-glutammine and 1% antibiotic/antimycotic 

solution (GIBCO BRL). 500,000 cells were trasfected with 4µg of DNA expressing 

the transcriptional factor EB (TFEB) using lipofectamine trasfection reagent (In- 

vitrogen) following the standard protocol suggested by the manufacturer. After 48 

hours from trasfection cells were collected, the mRNA extracted and the levels of 

Granulin and Catepsin D (CTSD) were evaluated by Real-Time PCR (Roche). The 

amplification was performed using the following primers for GAPDH, "Fw: GAAG- 

GTGAAGGTCGGAGTC" and "Rev: GAAGATGGTGATGGGATTTC", for GRN, 

"Fw: TCCAGAGTAAGTGCCTCTCCA" and "Rev: TCACCTCCATGTCACATTTCA", 

and for CTSD, "Fw: AACTGCTGGACATCGCTTGCT" and "Rev: CATTCTTC- 

ACGTAGGTGCTGGA". 

Medium was concentrated on filters (Vivaspin Sartorius Stedim) and loaded on 

10% SDS-PAGE. Transfer membranes were incubated with anti human granulin 

antibody (Invitrogen) at 1: 50 dilution. 
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6.4.2 Identification of Binding sites in Granulin promoter 

region 

We used the Position Weight Matrix of the Transcription Factor EB and run MATCH 

[63] to find its binding sites across -1000 +1000 base pairs flanking the UTR region 

of GRN. We found two binding sites on chromosome 17, plus strain, with loca- 

tion 42,422,444 to 42,422,457 and chromosome 17, plus strain, location 42,422,460 

42,422,473 (Genome Browser, Human assembly Feb. 2009). 

6.5 Gene signature analysis 

The human network can be used as a `consensus' network to analyse gene signa- 

tures. A gene signature is a list of genes able to identify a specific condition (i. e. 

disease state, drug response, etc. ). Genes part of a signature are the end point of a 

regulatory cascade. The identification of the primary genes, such as Transcription 

Factors (TFs), that control the genes in the signature via the regulatory cascade can 

help in identifying the "master regulators", involved in the process of interest [241. 

The Gene Signature Analysis is basically a Gene Set Enrichment Analysis and 

consists in computing the statistical significance of the intersection of two sets of 

objects. In this case, we check how significant the group of genes in the gene signature 

of interest are represented within the neighbours of each TF of the human network. 

6.5.1 A case study 

As an example of the use of the network, we analysed the genes part of the mes- 

enchymal gene expression signature (MGES) found to be over-expressed in poor 

prognosis group of glioma patients [89]. In [24], a high-grade glioma (HGG) specific 

gene network was inferred from 176 expression profiles of HGG samples derived from 

patients. This condition-specific network was then used to infer the TFs responsible 



6.5.1 A case study 120 

Common number of neighbours p-value Gene Symbol 
8 35 1.33 x 10 MAFF 
10 93 9.17x 10-11 AEBP1 
7 43 3.39 x 10-09 FOSL2 
5 12 3.48x10-Q9 FOSL1 
7 53 1.55x 10-08 ELF4 
7 71 1.23x 10-07 TFE3 
7 86 4.66x 10-07 JUNB 
10 229 5.45x10-07 IRFI 
6 55 5.54x 10-07 RELB 
6 65 1.51 x 10-06 CEBPB 
5 73 5.05 x 10-05 TNXA 
4 40 6.71 x 10-05 BHLHB2 
5 96 1.86x 10-04 RELA 
3 26 3.80x 10-04 CEBPD 
10 595 1.62 x 10-03 PRRX1 
4 96 1.93x10-03 BTG2 
3 56 3.59x10-03 NFKBI 
2 18 4.30x10-03 LOC161527 
3 65 5.46x 10-03 SMAD3 
4 136 6.69 x 10-03 IRF7 
2 23 6.98x10-03 RARA 
4 142 7.77 x 10-03 SPI1 
4 152 9.82x10-03 STAT3 
3 85 1.14x10-°2 PYCARD 
2 31 1.25x10-02 CREB3L1 
2 40 2.02 x 10-02 FOSB 
3 113 2.43x10-02 JUND 
2 46 2.63x10-02 SNFILK 
2 48 2.85x10-02 HMOX1 
3 131 3.54x10-02 MYD88 
2 61 4.41 x 10-02 ATF3 

Table 6.6: Transcription Factors that are enriched of gene in the mesenchymal gene 
expression signature. MGES accounts 122 probes. Genes are ranked in ascending 
order according with their p-values. 

for the mesenchymal transformation of brain tumors. Such "master regulators" were 

the TFs that, according to the HGG-specific transcriptional network, regulated a 

significant number of genes in the MGES signature. 

We identified 31 TFs listed in Table 6.6 that according to our network had a 

significant number of connections to the genes in the signature. Eighteen TFs, out 

of these 31, were identified also in [24] (significance of p=7.3 x 10-16). The two key 

genes, C/EBPß and STAT3, codifying for TFs necessary in human glioma cells for 

mesenchymal transformation [24] were correctly included among the 31 TFs. 
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We further tested whether the genes in the MGES signature were over-represented 

within some of the 393 human communities identified within the network. Com- 

munity 11 and 46 were found to be significantly enriched (p = 7.90 x 10-16 and 

p=1.09 x 10-12, respectively) for genes in the MGES signature. Community 11 is 

composed by genes involved in phosphate transport (p = 5.35 x 10-'), and whose 

expression is localised into the proteinaceous extracellular matrix (p = 1.70 x 10-99); 

whereas community 46 includes genes involved in actin filament-based process (p = 

1.50 x 10-°c), and expressed into the cytoskeleton (p = 6.23 x 10-10) 

6.6 Discussions and conclusions 

We demonstrated that genes connected within functional modules in the human 

network tend to have a'physical counterpart' in the three-dimensional conformation 

of the chromatin inside the nucleus. We observed a striking similarity between genes 

that appear to be connected, and, therefore, are co-expressed, and their physical 

proximity at the three-dimensional chromatin level. This suggests that regulation 

of coordinated gene expression is "hard-wired" in the physical arrangement of the 

chromatin within the nucleus. 

We have shown, and experimentally validated, different examples of how the net- 

work can be queried to predict the the localisation of genes'protein product, to iden- 

tify new protein-protein interactions and to explore the function of a disease-gene. 

Upregulation of GRN by known inducers of lysosomal biogenesis and func- 

tion, together with the increase in the number of lysosomes following GRN over- 

expression, or treatment with medium from over-expressing cells, clearly supports a 

role of GRN in lysosome biology that has been unrecognized until now. This find- 

ing is also supported by previous evidence indicating that GRN colocalises with 

lysosome-associated CD68 antigen in activated macrophages and rnicroglia [81) and 

is overexpressed in the cerebral cortex of MPSIIIB and MPSI mice [85]. 
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Moreover, GRN has been shown to bind the mannose 6-phosphate receptor [65]. 

Interestingly, lysosomal dysfunction has been proposed to play a role in other neu- 

rodegenerative diseases including Alzheimer's disease [25] sharing clinical similari- 

ties with FTLD-U. In these disorders it has been proposed that lysosomal hydrolytic 

enzymes contribute to cell death through lysosomal destabilization and enzyme leak- 

age into the cytoplasm as indicated by models of experimental brain ischemia injury 

resulting in cytosolic acidification and rupture/permeabilization of lysosomes [117]. 

Interestingly, one of the first recognized function of GRN has been in wound healing 

[51] and release of lysosornal enzymes appears to play an important role in healing 

[61,78]. 

The Gene Signature Analysis we proposed in Section 6.5, shows that it may be 

not always necessary to use a diseases-specific network to analyse a disease-specific 

gene signature, but using a "consensus" network, we could correctly identify the 

"master regulators" involved in the observed gene signature. 



Chapter 7 

Conclusions and future directions 

Despite the common belief that massive and heterogeneous gene expression profiles 

would be too noisy to be used for inference, in this thesis work we have demonstrated 

the biological reliability of the human and mouse gene regulatory networks we in- 

ferred. The inferred networks were compared with known protein-protein and other 

types of interactions collected from literature. We also experimentally confirmed 

different types of predictions (protein-protein, gene function and gene localisation). 

Moreover, we discovered topological properties of the inferred networks, such as: 

degree distribution, small protein disorder associated to hubs, modularity structure 

of the networks and the presence of co-expressed groups of genes that localise in 

spatially close chromosomal loci. However, the heterogeneity of the data could bias 

the analysis toward the most representative biological condition. The availability of 

a more precise annotation of expression data will facilitate the use of this as well as 

of similar procedures. 

The results of this work can also be explored online'. The online tool provides 
both the access to the inferred connections of the human and mouse networks, and to 

a set of gene function predictions obtained by analysing the topology of the network 

with the "guilty-by-association" approach presented in Chapter 6. 

1 http: //netview. tigem. it 
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The computational core of our information-theoretic approach is the mutual in- 

formation (MI). The MI measures the statistical dependence between two variables, 

in general, and two genes in the particular case of gene network inference. The algo- 

rithm reported in Chapter 4 is able to compute the point estimate of the MI for each 

pair of genes in the mammals species we considered. The point estimate however 

does not allow to estimate the confidence interval for the MI. Here, we propose a 

statistical model that theoretically could be used to obtain the confidence interval 

for the MI associated to a pair of genes. 

7.1 Estimation of MI via a hierarchical statistical 

model 

Suppose to have K experiments. Each experiment is a collection of hybridisations, 

hence a collection of gene expression levels. Suppose to discretise the expression 

levels in a pre-determined number of classes C, by following the discretisation pro- 

cedure reported in Section 4.2.1. For a pair of genes, or variables in general, for each 

experiment we have a vector of counts that explains how coherently the expression 

levels vary together along the set of hybridisations. We remind the these counts 

or outcomes were directly used in Chapter 4 to compute the MI between pairs of 

genes. In that case, we assumed that the marginals and joint probability could be 

well approximated by the frequencies of the outcomes. Here the vectors of counts 

are not used directly, but they are assumed to follow an independent multinomial 

distribution across the experiments k=1, ..., 
K, 

nk - Mult(Mk, Ok) (7.1) 

where Mk is the number of hybridisations. The number of outcomes that may be 

observed is equal to C2. The parameters Ok are unknown and they are assumed to 
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be independent samples from a Dirichlet distribution, 

9k - Dirichlet(a). (7.2) 

We shall also assign a noninformative hyperprior distribution to reflect our ignorance 

about the unknown hyperparameters 

i 
a- fl Gamma (aj I a, b) . (7.3) 

j=1 

where J is the number of dimension of the parameter vector a, as well as, 9k and 

nk. The hierarchical model just described was presented in [45], using as conjugate 

distributions the Binomial (instead of the Multinornial) and the Beta (instead of the 

Dirichlet). 

7.1.1 Joint, conditional and marginal posterior distributions 

We can first perform the three steps for determining the analytic form of the pos- 

terior distribution of a and Oks parameter vectors. The joint posterior distribution, 

p(a)Oi, ..., OK I nl,..., nK), of all parameters is 

a p(a)P(ei, ... )OK 
I a)p(ni, ..., nK 1 01, 

..., 
9K, a) (7.4) 

a p(a) H1 [Dirichlet(Ok I a)Mult(nk I Mk, 6k)] (7.5) 

aK 
r(E'-I c; ) J «-1 ý7'7 J enkj p( ) ýk=1 llý=1 O kJ n; 

_1 Tik;! _ +j=1 k'ý 

I 

K r(_ 
_ 

a; ) 
Cl k 

nk; +O; -1 
= p(a) ýk=i 

n ck ' IIj=1 Oki (7.6) 

with c'k = rlý 
Notice that (7.5) follows (7.4) because nk is independent from 

a given 6k, for k=1, 
..., 

K. 
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Given a, all the 0k's have independent posterior densities given by 

P(Ok I a, nk) a Bkj'+«'-1 ^, Dirichlet(a + nk), (7.7) 
j=1 

and the joint density is 

KJ 

p(el,..., ex I a, nl,..., nx) a Bnk7ký+a, -1 (7.8) 

k=1 Lj=1 

From (7.6), integrating over the 8's, we can determine the marginal posterior dis- 

tribution of a 

p(a 1 ni,..., nK) a (7.9) 

h[ E«f" f ýi nk; +ý; OC P(a) f=1 
nß_1 Fýai) Bk 7=1 

ekj deb 

"ý K r( Ilýi k3 
f 

r(Fjr_3nkj}°j)ý7 
r 6nkjtni 

1 ý7.10ý 
- P(a)"ý IIk=i 

nj i r(ni) r(ýi_I nkr+nj) 
Bk [[ý 

1i (nki}ai) 11j=1 ki 
dBk 

where the last factor of Equation 7.10 integrates to 1 for k=1, 
..., 

K given that 

fe p(B I a)d8 = 1; c" = JK 
1 c'lk. The posterior distribution of the hyper-parameters 

becomes 

1 (Rj+nkj). (aj+nk, -1)... (uj +l) 
(7.11) 

11 

ýj 
a P(a) ý7K 

l1k=1 
a7+h1k F_'ß_ a +Iý1 1 .. 

Ja tl 
T1 J k- =1 J 

rij 

Act) 
K1 lajLk, 

(7.12) 

k=1 
[Eý_1' ] 

Mk 

where Equation 7.11 follows the Equation 7.12 by applying a well known property 

of the Gamma function that states that r(z + 1) =z" r(z). 
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7.1.2 Algorithm for estimation of the MI 

The posterior distribution of the hyper-paramenter vector a embeds the information 

concerning the joint probability distribution of two genes or variables. Given the 

posterior distribution of the a vector of hyper-parameters, we may use it to draw 

samples a, these in turn can be seen as Dirichlet parameters and used to draw the 

probability vectors in order to compute the MI between the pair of genes. These 

steps are formalised in Algorithm 1. Algorithm 1 allows to simulate the probability 

Algorithm 1 SIMULATION(n) 
Require: p(a I nl,..., nK). 

1: M=1001=100 
2: for m=1 to Al do 
3: a(-) ,,, p(a I ni,..., nh) 
4: fori=ltoIdo 
5: 80) - Dirichlet(a(m)) 
6: mil = MI(OW) 
7: end for 
8: 

f (M) 
_ 

Eh= 
l Mth 

9: end for 
10: MI(O I ni,..., nK)) 

vectors and can be used to compute the MI of two variables (genes in this context). 

By performing the steps several times, we can estimate the distribution of the MI 

between two variables. Note that by performing the steps reported in Chapter 4, 

we can only compute the point estimate of the MI between two genes, with no 

information regarding the robustness of the estimation. Algorithm 1 instead, would 

end up with a distribution of MI values between two genes. From this distribution we 

could then estimate the average MI between the two genes, as well as, the confidence 

interval of our estimation. 



7.2 The Dirichlet-multinomial/Polya distribution 128 

7.2 The Dirichlet-multinomial/Polya distribution 

In a real scenario like the one explored in Chapter 5, the dimensionality of the 

problem in terms of number of genes (gene pairs), is of the order of 10,000 (hundreds 

of millions). The parallel algorithm proposed in Chapter 4 was run on a cluster of 

100 processors, and required 4 and 8 hours to reverse-engineer the human and mouse 

networks, respectively. If we had implemented the code listed in Algorithm 1, we 

would have had an unacceptable computational time (10,000 times larger). The 

Algorithm 1 can therefore be applied only when the number of genes is "small". 

The Dirichlet-rnultinomial distribution is a compound distribution where 6 is 

drawn from a Dirichlet and then a sample of discrete outcome n is drawn from a 

multinomial with a probability vector 6. This model is essentially a "Polya" urn 

scheme, so the Dirichlet-multinomial is also called the Polya distribution [791. Let 

n, be the number of times the outcome was equal to i, i. e. 

ni = ö(xj - i). 
7 

Then the resulting distribution over n, the vector of outcomes, is 

p(n I a) = 
j(n I e)p(O I a)dO 

r(Ei ai) 11 r(ni + ai) 

r(Eini+ai) i F(ati) 

This distribution is also parameterised by a, which can be estimated from a training 

set of count vectors: D= {n1, 
..., nK}. The likelihood is 

p(D I a) _ flp(nk I a) 
k 

r(E, ai) r(nki + ai) (7.13) _ 
TT 

ik r(nk + >t ai) F(a2) 
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There arc many different ways to estimate the parameter vector a, that maximises 

the likelihood in Equation 7.13. It is possible also possible to estimate the Polya 

mean and precision separately. By rewriting the likelihood in terms of the leave-one- 

out likelihood, a simple convergent fixed-point iteration to estimate the parameters 

is 
nki 

new =ak 
nki-l+ai 

Zx nk Ek 
nk-l+ý-i ai 

until the desired convergence is reached. Other ways for estimating the Polya pa- 

raineters can be found in [79]. 

The estimated parameter vector a embeds the knowledge of the distribution of 

the variables, or genes, considered. This value of a can be used to perforrne only 

step 4 to 6 of Algorithm 1. The resulting distribution can then be used to compute 

the MI between the pair of genes and give a measure of the robustness of the MI 

computed. Moreover, the parameter vector a may be used as prior knowledge for 

future inferences, when more data come available. 



Appendix A 

Parameters setting for the 

reverse-engineering algorithm 

presented in Chapter 3 

NIR 

Connectivity 

For small gene networks of order 10: 5 

For medium gene networks of order 100: 

TopD 5 

Reest-K 10 

Clustering (Hierarchal) 

No of Clusters 

For small gene networks of order 10: 3 

For medium gene networks of order 100: 10 

For big gene networks of order 1000: 100 
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ARACNe 

DPI: 0.15 

BANJO 

searcherChoice: SirnAnneal 

initialTemperature 1000 

coolingFactor 0.9 

reannealingTemperature 500 

rnaxAcceptedNetworkBeforeCooling 1000 

inaxProposedNetworkBeforeCooling 10000 

ininAcceptedNetworkBeforeReannealing 200 

proposerChoice: RandomLocalMove 

evaluatorChoice: default 

deciderChoice: default 

discretizationPolicy: Q3 

ininMarkovLag (for dynamical data) : 1 

maxMarkovLag (for dynamical data): 1 

maxMarkovLag (for dynamical data): 1 

rrºaxMarkovLag (for static data): 0 

dbnMandatoryldentityLags: 1 



132 

equivalentSampleSize: 1.0 

iiiaxParentCount: 5 

inaxTime 

10 Genes 60 Seconds 

100 Genes 600 Seconds 

minNetworkBeforeChecking: 1000 



Appendix B 

Pseudo-code: parallel 

implementation of 

reverse-engineering algorithm 
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{discretize local data expression profiles} 
for? '= Ito ý'do 

p localE_dis(i, :) f- discretize(localE(i, :) 
for j=Itoi-1do 

{compute mutual information for each pair of local probes} 
localllII(i, j) , computeMI(localE_dis(i, : ), localE_dis(j, : )) 

end for 

end for 
for i=1to2do 

{Pj( 
mod p) sends its local discretized data expression profiles to P(j+i)( mod p)} Send(localE_dis, my-rank + 1) 

{P(j+ti)(mod 
p) receives discretized data expression profiles from P(j)(mod p) 

} 
E_recv - Recv(my_rank - i) 
{compute mutual information for all the pairs of probes where the first is the 
local probe while the second is the received probe} 
for j=1top do 

fork=1toj-Ido 
localMI(j, k) -- coynputeMI(localE_dis(j, : ), E_recv(k, : )) 

end for 
end for 

end for 

Figure B. 1: Parallel mutual information algorithm 
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Mat lab codes 

Listing C. 1: Simulation of weighted adjacency matrix representing gene regulatory 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

networks 
function simulNet(nGenes, sparsity . 

Ntgts, Nregs) 

global A °Mo% A will contain the adjacency matricx representing 

Wo% the gene regulatory network (output) 

W6% nGenes: number of genes in the network 

W6% sparsity: average number of connection for each gene 

9X% Ntgts: number of non transcription factor genes 

9% Nregs: number of transcription factor genes 

NonzeroFrac = sparsity ;° o% Density of network 

z= norminv(1- N onzeroFrac /2,0,1); 9% threshold 

UR. = randn(Ntgts , 
Nregs) ; 'IM generate a random matrix (will 

5b96 be the up-right part of the final 

°b% matrix) from normal distribution 

UR. = UR..  (abs(Z1ß)>z); WX keep only those values for which 

9X% the probability to be in the net 

%ý'o% is greater than the threshold 

LR = randn(Nregs); W% these lines of code allow to 

UL = -eye( Ntgts) ; 99% build a net in which some parts 

LL = zeros(Nregs, Ntgts); W% of it are not randomized (these 
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25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

Wo% represent , respectively , 
the low- 

M% right, the upper-left and the low 

%Pýo% left part of the end matrix) 

A= [UL UR ; LL LR]; W6% the final net is assembled 

% from the parts created above 

A= LR.. (LItz) - eye(Nregs): W6% keep only those values 

9% greater than the threshold 

VIM and add negative values 

Wo% on the diagonal of it 

end 

Listing C. 2: Simulation of static (steady-state) gene expressions level given a network 

topology expressed by the adjacency matrix output of the code reported in Listing 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

C. 1 
function simulStaticExpr (nGenes , N, Ntgts, Nregs, policy) 

global A Xss P W6% these variables represent , respectively 

01% the input net , the matrix of simulated 

Wo% experiments and the applied perturbation 

%"% Output 
% Xss: matrix of simulated gene expression levels 

/OX% P: perturbation matrix, perturbations applied 

W% to the adjacency matrix , 
A, in order to 

WO% generate the gene expression levels 

W% Ntgts: number of Non transcription factor genes 

9X% Nregs: number of Transcription factor genes 

WXN: number of Experiments 

if policy = 'global' 

4X% global perturbation policy 

W% Create a random perturbation matrix 

°rEä? 6% from uniformly distributed values 

P= [aeros(Ntgts, N); rand (Nregs, N)1; 

end 



137 

25 if policy = 'local' 

26 M% local perturbation policy 

27 9% Create a diagonal perturbation matrix 

28 P= eye (nGenes . nGenes) ]; 

29 end 

30 

31 Xss = inv(A)s(-P); Wo% Noise free data 

32 

33 return 

Listing C. 3: Generate and add Gaussian noise to the gene expression levels generated 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Wl1,11 Ale UVUG 111 L156111r, v. G 

function simulStaticExprNoisey(noiseLevel) 

W% Input 

Wo% noiseLevel: percentage of noise to add given the expression 

°o% level (mean of the Gaussian distribution) 

global Xss nXss M% these variables will contain, respectively 

%8/0% simulated gene expressionlevels (input) 

5% and the noisy gene expression levels 

i% level of the external noise 

sX = noiseLevel; 

Wo% Noisy data points: the noise value is 

W% extracted from a normal distribution 

9K% and than added to the input expressions 

nXss = sX*randn(size(Xss))+Xss; 

return 

Listing C. 4: Computes the Positive Predicted Value (PPV) and the Sensitivity given 

two adjacency matrix. One is the adjacency matrix representing the gene network as 

produced by the code in Listing C. 1. The second is the adjacency matrix as obtained 

by the application of the reverse-engineering algorithms (Chapters 3 and 4) on the 

gene expression levels generated using the code in Listings C. 2 and C. 3 

I function Iconnections_predicted ppv, sensitivity] = ppv_sensitivity_mod(AA, 

original-A) 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

°ol°ý% Code for computing the Positive Predicted Value (PPV) and the 

W6% Sesitivity of the inference process of the reverse-engineering 

Wo% algorithms , which infer gene regulatory networks given gene 

W6% gene expression profiles (and perturbations) 

99o% Input 

Wo% AA: adjacency matrix representing the gene regulatory 

W0% network as inferred by the reverse-engineering algorithms 

r&/O% original_AA: weighted adjacency matrix representing the real gene 

WO% regulatory network to infer 

We% Output 

WO % connections-predicted: number of connection predicted by the algorithm 

W% ppv: positive predicted value, ratio between the number of correct 

%°696 predictions and the total number of predictions 

W% sensitivity coverage of the real gene network, ratio between the 

%9o% number correct predictions and the total number of 

rWO% connections in the real network (original-AA) 

connections_predicted = nnz(AA); 

true-positives nnz((AA+(original-A-=O))==2); 

false-positives nrxz(((original-A-=O)-AA)==-1); 

false-negatives = nnz((AA-(original_A-=0))==-1); 

ppv = true _positives/(true-pos itives + false 
-positives); 

sensitivity = true-positives /(true-positives + false-negatives ); 

Listing C. 5: Gene Ontology Enrichment Analysis, computation of the enrichment 

1 

2 

3 

4 

5 

6 

7 

8 

value) of a Gene Ontoloev term in a set of 
function I p_vals , idxs ]= computeGOEnrichment (genes 

, mat) 

WX Input 
W6% genes: set of genes 

9% mat: gene ontology terms associated to all the gene of the 

9K% mammalian system considered (human or mouse) 

99% Output 
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9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

9% p_vals: list of enrichment score (p-values) of the gene 

ontology terms associated to the genes in input 

99910 

W0% idxs Gene Ontology codes associates to the GO terms 

% number of genes in the mammalian system with a given GO term 

m_vet = sum(mat); 

number of times a GO term is associated to 

%a gene of the set of genes in input 

k_vet = sum(mat(genes .; ) ); 

idxs = find (k_vet) ;% indexes of non null elements 

N= nnz(sum(mat, 2)) ;%# of genes in the mammalia system 

t_vet =sum(mat2)-=0; 

n= nnz( t_vet (genes)) ;% number of genes of the mammalian system 

k_vet = full (k-vet (idxs)); m_vet = ful I (m_vet (idxs)) ; 

% compute the cumulative hypergeometric distribution 

% as sum of the hypergeometric probabilities 

p_vaIs=(); 

for kk=l: numel(k_vet ) 

p_vals(kk)= sum( hygepdf(k_vet(kk): min(m_vet(kk), n) 7 N, m_vet(kk), n)); 

end 

Listing C. 6: Discretises a vector of real values (gene expression levels) into a pre- 

determined numbers of integer values (or bins 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

function A_dis = discretizer(A, C) 

W% Input 

9K% A: vector containing real values 

965% C: number of discretised states 

91M Output 

9 66%0 Adis: vector containing the discretised values 

%get the number of rows and columns of A 

[n, m] = size(A); 
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13 % create a boundary array 

14 perc = 0: 1/C: 1; 

15 perc = perc(2: C); 

16 

17 % find the bounds of the intervals where to discreise the values of A 

18 bnd = quantile(reshape(A, 1, n*m), perc); 

19 

20 % collect the data into bins 

21 Adis = A<bnd(I 

22 for i =2: C-1 

23 Adis = Adis + i*(A<bnd(i) & A>=bnd(i-1)); 

24 end 

25 Adis = Adis +C*(A>=bnd(C-1)); 

Listing C. 7: Computes the Mutual Information given a pair of discretised vectors 

obtained by the )lication of the code in Listing C. 6 

1 function M12 = computeMl(A, B. nbins) 

2 

3 %8/0% Input 

4 %rlýo% A, B: vectors containing discreti. sed values 

5 %Xo% nbins: number of discritised states 

6 

7 %%% Output 

8 W% M12 Mutual Information beteen vector A and B 

9 

10 % compute the frequencies of the outcomes 

11 p= findStatistics(A', B', nbins) 

12 

13 % compute the Mutual Inforamtion 

14 MI2 = computePairMI (p, nbins) 

15 

16 

17 9l$6 compute the frequencies of the outcomes 

18 function p= findStatistics(A, B, nbins) 

19 

20 % account for two pair of genes 

21 vet = [A B]; 

22 for h=l: nbins 

23 for k=l: nbins 

24 %account for a pair of values 

25 p(h, k) = sum(ismember(vet , (h, k] , 'rows')) 
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26 end 

27 end 

28 

29 p=p/sum(sum(p)) ; %frequencies from counts 

30 

31 

32 Wo compute Mutual Information giveh the parameter vector pi 

33 function M12 = computePairrlI(p) 

34 

35 t-P= sum (P, 2) 

36 a= -sum( t-p. *Iog2(t-p±(t-p==O)) 

37 

38 t-P = ß(P"1); 

39 b= -sum(t-p.. 1og2(t-p+(t-p==O))); 

40 

41 ab = -sum(sum(p. * logt (p--(p==0)))) ; 

42 

43 N112 = a+b-ab : 
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