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Abstract 

Although a considerable body of material exists concerning the colouring of graphs, there 

is much less on overlap colourings. In this thesis, we investigate the colouring of certain 

families of graphs. These are the cycle graphs (C. ), the wheel graphs (W. ), the generalized 

Petersen graphs (P(p, q)) and the complete graphs (Q. There are several results on 

equable colourings (that is, colouringS in which all colours occur with equal frequency), 

but the principal parameters xf z,, A and xAx] are not based on this assumption. 

The principal result of Chapter 2 (Theorem 2.1) is that for any positive integerp: 

max 
[2r 

- A, 2(r - A) +[rpA 

This generalizes a theorem of Saul Stahl [23] that for the graph C,,, 

x, (C. -ý, -i) - 2r +1+ fr -11 ý-- X, (C,, r+i) - 2r + 
[I 

p 

(in which stands for 'the integer part of I ... 1). 

In Chapter 3 we find a set of five expressions (Theorem 3.6) for the value of X,, A(; V4,2) 

depending on the value of A. 

Chapter 4 discusses overlap colourings and homomorphisms, and introduces a class of 

graphs which we name bangles. 

Chapter 5 is concerned with generalized Petersen graphs-We introduce a simple system of 

symbols to find colouringS, and include a study of the fractional chromatic numbers. 0 

Chapter 6 is mainly concerned with the relation between the colouring of complete graphs 

and the parameters of Design Theory and with codes. 

Chapter 7 discusses the repkesentation of the fractional parameters of overlap colourings 

graphically, maldng use of a diagram that we call a 'chromatic polygon'. 

Chapter 8 is concerned with overlap colourings; and statistical applications. 

Glossary 

For ease of reference, we list here the usage of some symbols and expressions. 
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n the nwnber of vertices; 

r the number of colours at each vertex; 

N the total number of colours used in the graph (the 'palette'); 

the frequency of occurrence of each colour, if constant. If the frequency is 

not constant, then we distinguish the frequencies by numerical suffices, f, f2 
...; 

X, (G) the least number of colours required to construct an r-fold colouring; 

XJ(G) _ lim x, -(G) (r) 
the fractional chromatic number of G; 

X,,,, (G) the number of colours required to colour a graph G with r colours per 

vertex so that the number of colours common to any pair of adjacent vertices is A. 

xjfx](G) =,, inf X,,,, (G) 
, in which r is a multiple -of thedenorninatorof x. 

.. 

(r 

There are annexes giving examples of colourings at the end of relevant chapters. 
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Introduction 

Graph colouring theory has of recent years produced several interesting variants. 

We recall that the objective of the traditional theory is to find the minimum number of 

colours required to colour the vertices of a given graph so that adjacent vertices receive 

distinct colours. The subject of this thesis is one of the variants; we are required to attach 

r colours to each vertex so that any two adjacent vertices share 
E 

colours. (Once again, 

and in all the variants discussed below, the objective is to find the minimum number of 

colours required in order to achieve this. ) Though this problem has not received much 

direct attention, we shall see that it impinges on some aspects of the design of statistical 

experiments. 

Other well-known variants of graph colouring theory are as follows. 

Edge and Total Colourings 

The 'elements' of a graph comprise its vertices and edges, and also its faces if it is 

embedded on a surface. An edge, vertex-edge, face-edge, vertex-face, or vertex-face-edge 

colouring of a graph is a colouring of the relevant elements, usually subject to the 

condition that any two adjacent or incident elements must receive distinct colours. There 

is a large literature on edge colourings, see for example [8]; and on vertex-edge colourings, 

(usually described as total colourings); see for example [28]. The other types mentioned 

have attracted less attention; see for example [26] on edge-face total colourings and [14] 

on vertex-edge-face colourings. It would clearly be possible to study 'overlap' variants of 

these. This does not appear to have been done, and this thesis does not study such 

colourings. Thus we shall not mention total colourings further. 



Defective Colourings 

Defective colourings were introduced by Cowen, Cowen and Woodall [6]. In this variant, 

the requirement that no two adjacent vertices share a colour is relaxed. Instead, each is 

permitted to be adjacent to at most a certain number (or sometimes a certain proportion) 

of similarly coloured vertices; or alternatively the total number of same-colour adjacencies 

in the graph is limited. 

There is a certain similarity between the concepts of overlap and defective colourings in 

that both allow colour overlaps; but it is not easy to see deeper connections, and we have 

not pursued possible connections in this thesis. 

Circular Colourings 

In a circular colouring of a graph G, the colours themselves are arranged at equal distances 

round a circle and two adjacent vertices of G are required to have colours that are at least 

a certain distance apart. Equivalently, each colour occupies a certain colour interval. This 

gives rise to the concept of circular, or star, chromatic number (see [12], [19], [24], [29]). 

There does not seem to be a general connection between circular and overlap colourings; 

however, in the particular case when the graph to be coloured is a cycle, a considerable 

link between these types of colourings emerges because it is frequently possible to 

minimize the number of colours required for an overlap colouring, by using circular 

intervals as the colour sets. Many of the colourings used in Chapter 2 are of this form. 

Equable Colourings 

The concept of equitahle vertex-colourings, in which colours have frequencies within 1 of 

each other, has been studied extensively in the literature (see [5], [ 15] for example). This 

thesis sometimes uses the more stringent concept of equable colouring, in which all 

colours occur with equal frequency. As will be seen in Chapter 6, equable colourings of 

complete graphs are of particular relevance, since they correspond to BMDs. 
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Multicolourings 

In 1975, Hilton, Rado, and Scott [10] introduced the concept of a multicolouring of a graph 

G (or, more generally, a hypergraph); in particular, an r-fold colouring allocates a set of r 

colours to each vertex of G with the requirement that the colour sets at adjacent vertices 

must be disjoint. Scott's PhD thesis [2 1] contains an extensive treatment of the basic 

properties of multicolourings, and in particular calculates all multichromatic numbers of 

all powers of cycles. The principal interest of [10], however, was in the behaviour of the 

ratio 
Xr(G) for large r (where. Zr(G) represents the least number of colours required in r 

total to construct an r-fold colouring). They proved (a) an attainment theorem and (b) a 

periodicity theorem as follows: 

lim (X,, (G)) 
=in' 

(X, (G)) 
r-+<)O rPýrJ, 

and this limit (thefractional chromatic number of G, now denoted by Xj(G)) is attained 

for some ro; 

(b) for some positive integer q, the sequence (X, (G) - rxj(G) :r> q) is periodic. 

The concept of an overlap colouring leads directly from that of a multicolouring; the latter 

is simply an overlap colouring with the overlap parameter set to 0. Indeed, this is the 

historical genesis of overlap colouring theory; the paper by Johnson and Holroyd [I II that 

introduced overlap colourings; explicitly generalized the proof methods in [10], as we shall 

now explain- An important aspect of [10] is their observation that if we replace the 

problem of allocating exactly r colours to each vertex by that of allocating at least r 

colours to each vertex (again with the constraint that adjacent vertices are allocated 

disjoint sets) then the problem of finding X, (for a given r) may be reformulated in terms of 

integerprogramming, and the problem of finding Xf is a closely related finearprogram, 

which is generally easier to solve than an integer program. 
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Subsequently, Stahl [23] investigated X, for various graphs, in particular the cycles and the 

Kneser graphs [the Kneser graph Kn(p, #where p> 2q) is the graph whose vertices are 

the p-subsets of a fixed q-set, two such vertices being adjacent if and only if (as sets) they 

are disjoint], establishing a number of general theorems and (importantly for this thesis) a 

complete specification of X,. (C, ) for all r, n. The result [5, Theorems 5,6] is as follows: 

X,, (C2p) = 2r; X,. (C2pl) = 2r + 
[L (2p + I)r 
pp 

Thus, xj(C2p) = 2; Xf(C2pl) =2+1 p 

In 1996, Johnson and Holroyd [ 11 ] generalized the multicolouring idea, introducing the 

concept of an overlap colouring of a graph G. In the notation of this thesis, an 

[r, A]-overlap colouring of G allocates the colour set Si to vertex vi (0: 9 i:! 'ý I V(G) 

such that IS, I= r(o:! g i-:! g I V(G) I- 1) andIsinsil =A for each pair Q such that vi is 

adjacent to vj. They were able to extend the methods of [10] and prove versions of the 

attainment and periodicity theorems, and other general properties of [r, A] -overlap 

colourings, but proved no precise results for any classes of graphs, 

The method of [10] has since been generalized in various directions. Scheinerman and 

Ullman (1997)[20] give a full account of the process of describing several graph 

parameters in terms of integer programs, which have linear counterparts that allow for the 

parameters to be 'fractionalized'. 

There have been considerable advances concerning fractional chromatic numbers of 

graphs, but neither the overlap chromatic number nor its fractional analogue, a version of 

which was defmed in [11], appears to have been further studied (though, as has been 

mentioned, some work in the theory of statistical designs is relevant, see Chapter 8). The 

intention of this thesis is to start the systematic study of those parameters. 

This thesis discusses the overlap colouring of certain classes of graph, namely the cycle 

graphs C, the wheel graphs W., the Petersen and generalized Petersen (GenPet) graphs 
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(p, q) and the complete graphs K,,. More precisely, it tackles the problem of finding the 

minimum number of colours needed for an [r, A] colouring of a given graph. 

Cycle UVh C. A set of n vertices vo, vi, ... , v,,, in which vi, l is adjacent to vi, and vo is 

adjacent to v,, -,. We present tables of colour frequencies for some smaller graphs. 

Wheel Uaph W,, A cycle graph C,,.,, the 'rim', each vertex (vo, ... , v, 2) of which is joined 

to a finther single vertex, the 'hub' (h). This topic is included more particularly because 

the vertices of these graphs, unlike those of the other three t), pes, are not all similar in 

situation, the hub having what we may call 'privileged' status. 

Petersen and Reneralized Petersen ('GenPet' UMhs P(p. qj Petersen and GenPet graphs 

consist of two cycles ofp vertices, p=5 in the 'classical' Petersen graph, and p>5 in 

GenPet graphs. One cycle, vo, V1, ... , Vp. 1, is COnVeniently displayed as the outer cycle, the 

remaining p vertices being displayed as an inner cycle, wo, wi, ... , w,,.,, each w, being 

adjacent to vertex v, of the outer cycle and to the inner vertices w,,, and w,,, the suffices U 

being modulo p. 

Complete graphs K. A set of n vertices in which each vertex is adjacent to each other 

vertex We show an equivalence between methods of colouring such graphs and the results 

of Design Theory, and present tables of the same form as, and corresponding precisely 

with, the tables in the CRC Handbook of Combinatorial Design [ 16]. We adduce a number 

of simple algorithms for displaying actual colourings. 

List Colourings 

In a list colouring problem, there is a list of available colours given for each vertex of a 

graph G, and the problem may allocate different lists to different vertices. The list 

chromatic number of G is then the least I such that the graph can be properly coloured for 

any allocation of lists, so long as there are at least 1 colours in each. 

The concept does not extend in a simple waY to colourings with overlaps, since it would be 

easy to provide lists for each vertex such that overlap was impossible between certain pairs 



of adjacent vertices. Thus, it would be necessary to re-state the problem so that there was a 

list of given length (say 0 at each vertex, and the lists overlapped by (say) m at any pair of 

adjacent vertices. Then, for given r, A, one could ask for the minimum (1, m) such that an I -i 

[r, A] colouring could be constructed for any set of vertex lists of length at least 1, 

overlapping by at least m at each pair of adjacent vertices, This seems to be an interesting 

area of study, though we do not consider it ftirther in this thesis. 

Overlap Colourings and Homomorphisms 

In Chapter 4 we consider the place of overlap colourings in the classification of graphs. 

We note that classifying graphs by overlap chromatic properties is at least as fine a 

classification as by multichromatic properties, and investigate whether it is equivalent to 

classifying graphs by their cores - the smallest subgraphs to which they have a 

homomorphism. We show that this is not so; graphs with the same chromatic properties 

can have non-isomorphic cores. 

Overlap Colourings and Codes 

If the set of colours used for an overlap colouring is identified with the set of positions in a 

binary string, then the colour set at each vertex may be regarded as a binary codeword. The 

set of such codewords is then a constant-weight binary code, since each codeword 

contains the same number of ls. We refer in particular to [1] and [22]. This connection is 

explored in Chapter 5. 

The Chromatic Polygon 

The set of all values X, ýA(G) for all relevant r, A is conveniently displayed in a device we 

refer to as the chromatic polygon of G. In Chapter 7 we describe the chromatic polygons of 

the cycles, wheels and complete graphs and also give some general properties of these 

polygons. 
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Overlap Colourings and Statistics 

The well-known BIBDs (balanced incomplete block designs) correspond, as we shall see 

in Chapter 6, to overlap colourings of complete graphs. However, the statistical literature 

also explores other types of designs, relevant (inter alia) to: experiments in which the 

different treatments need to be compared with all but one treatment factors held constant; 

experiments in which the 'closeness' of the treatment factors is relevant. These give rise to 

the requirement for designs that correspond to overlap colourings, of Cartesian products of 

direct graphs, cycles and so on. The final chapter of this thesis explores this connection. 
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Chapter 1: General Results 

1.1 Basic Definitions 

For general graph-theoretic terminology, we refer to [8]; in particular, note that all 

our graphs are finite and simple. 

Let 1z be a vertex-colouring of a graph G. We use the following symbols: 

n(G) the order of G, i. e., the number of vertices; 

rýG, u) the number of colours at each vertex; 

A(G, p) the number of colours common to any pair of adjacent vertices; 

N (Gp) the total number of colours used by p; 

f(G,, u) the frequency of occurrence of each colour in p, if the same for each. 

The last four are the integerparameters ofju. Usually, the context allows us to drop the 

arguments G and /. i without confusion. We frequently refer to a colouring of a graph with n 

vertices with the above parameters as an [r, A, NI colouring. In Chapter 6 all five 

parameters are often given, in the order [n, r, A, Nj]. The set of all colours used is often 

called the palette. 

An overlap colouring of a graph G is an assigrunent of sets of colours to the vertices of G 

such that each vertex receives the same number of colours and each adjacent pair of 

vertices shares the same number of colours. 

The overlap chromatic number of G with parameters r and A is written asX,, A(G), and is 

the least N for which an [r, A, NI colouring exists. This is a generalization of the concept of 

multichromatic number, x, as defined by Stahl [23]. When only the parameters r, A are 

specified, we shall refer to an [r, A] colouring. 

In particular contexts, the palette is frequently [N] = (1,2, N}, or an algebraic structure 

such as the cyclic group of order N, denoted by ZN. Thus, an [r, A, N] colouring of a graph 

G is a function y ftom the vertices of G to the r-subsets, of the palette S, such that 

I, P(v) nm(w)l =A whenever v and w are adjacent vertices. It is sometimes helpful to add a 
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little more structure and envisage the colours at a vertex as arranged in an order, the site of 

a given colour in the vertex being its position in the row; it is convenient to refer to the 

appearance of a particular colour at a particular site as an occurrence. Note that, since we 

have sets rather than multisets, of colours, no colour can occur more than once at any 

vertex. It is convenient 'shorthand' to refer to an [r, A] colouring of the graph G as 

'G[r, A]'. 

Examples of overlap colourings of the cycle graph C5: 

[3,1] colouring of C5 (i e C5[3,1]) [3,2] colouring of C5 

Colours Colours 
1234512345 

Vertices Vertices 
vo xxx vo xxx 
VI xxx VI xxx 
V2 xxx V2 xxx 

V3 xxx V3 xxx 

V4 xxx V4 xxx 

The two colourings above are cyclic, in the following sense: a colouringy of G (with 

vertices labelled vo, ..., v, j) is cyclic if the palette is a cyclic group ZNand there are a 

subset S of Zv and a constant de ZN such that 

p(vi)=S+id (i=O, 
-. -, n-I)forsomen. 

In the above examples, S={1,2,3) in both cases and d=2,1, respectively. This concept 

extends naturally to colourings of the generalized Petersen graph P(p, q); here there are 

distinct palettes for the outer and inner vertex cycles. 

We describe the colouring of a graph G as equable if the frequencyfof each of its 

constituent colours is the same. If G has a non-equable colouring, we sometimes denote 

the frequencies with which the colours occur byf, (i E{1,2,... )); the number of colours 

occurring with frequencyf, is denoted by N, 
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When giving colourings explicitly, we normally represent the colour sets of vertices as 

rows and vertex sets of colours as columns, as in the examples above, but it is occasionally 

convenient to transpose rows and columns. 

1.2 Fundamental Properties of Overlap Colourings 

We begin with a fundamental property of the overlap colourings of any non-trivial grapk 

Proposition 1.1 Letu be any overlap colouring of any non-null graph; then 

Ný! 2r- 1. 

Proof Consider any two adjacent vertices, v and w. Now v has r colours, A of which occur 

in w. A fin-ther r-), colours are necessary in w to limit the overlap to A. The total number 

of colours required is then 2r - A, and at least this number of colours will be required, that 

is to say, N ý: 2r -A. 0 

Our next result is almost as straightforward to prove from first principles; but it is worth 

going via the concept of a homomorphism. Given two graphs G and H, a homomorphism 

from G to H is a function 0: V(G) -,. V(R) such that 0(y) is adjacent to O(w) whenever v is 

adjacent to w. 

Proposition 1.2 Let 0: 5 A :5r. If there is a homomorphism. from G to H, then 

X,., A(G): 5 X,., I(H). 

Proof Let 0 be a homomorphism from G to H and p an [r, A] colouring of H, theny o6 is 

an [r, A] colouring of G. 

Proposition 1.3 If G is any bipartite graph, then XrA(G) = 2r - A. 

m 
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Proof Clearly X,, z(K2) = 2r - A; we colour one vertex with 11, ... , r) and the other with 

fr -A + 1, ... , 2r - A). Moreover, there is a homomorphism 0: G --). K2 defined by 

0(y) =vI or V2 depending on the partite set to which v belongs. 0 

An overlap colouring is trivial if it is an equable colouring withf =I or n. 

The total number of occurrences in an equable colouring may be expressed in two ways, 

either as the total number of colours (M multiplied by the (constant) frequency (fi, or as 

the number of vertices (n) multiplied by the number of colours at each (r); since these are 

equal, we have 

Nf = nr. 

Proposition 1.4 Let p be any non-trivial equable overlap colouring of a 

non-null graph, then: 

(i) N and n have a common factor, 

(ii) unless N=n, N and r have a common factor, 

(iii) if n and r are prime, then r<N=n. 

r Proof Sincefis an integer, Ar- is an integer. If N and n have no common factor, then N N 

divides r. But it is impossible to colour the graph if N<r. Then either N=r, in which case 

each vertex has all the colours, which is trivial, or N>r. So N and n have a common 

factor, and, unless N=n, N and r also have a common factor. Moreover, since N> 1, if n 

is prime, N is an integer multiple of n (including the possibility N= n). If, in addition, r is 

prime, then either 

(i) N= nr, again trivial (but the only colouring when A= 0), or 

(ii) N=n, that is, r<N=n. In this case, since both n and r are primes, r<n-I (with the 

unique and trivial exception when n=3 and r= 2). m 
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Corollary 1.5 Let# be a non-trivial equable overlap colouring of a non-null graph, and 

suppose that n and r are prime. Then A ý! 2r - n; in particular, if r> -11 , then A>0. 2 

Proof By Propositions 1.1 and 1.4 (iii), n ; -> 
2r - A; that is, A ý-- 2r - n. 0 

In the particular case where a graph has a universal vertex (that is, a vertex that is adjacent 

to all the other vertices), this places a surprisingly strong restriction on the possibility for 

equable colourings, which we shall use in Chapters 3 and 6. 

Proposition 1.6 Let n(G) = n, and suppose that G has a universal vertex; then for any 

equable colouring we have 

nr2 
(n- I)A+r' 

Proof Lety be an equable [r, A] colouring of G, with colour frequencyf. Let the colours at 

the universal vertex be 1, ..., r. The colour I also occurs onf- I other vertices of G; 

similarly for colours 2, ..., r. Thus there are in total r(f- 1) pairs (s, Q where s,, is an 

'other vertex' sharing a colour with a site on the universal vertex s.. These pairs must 

account for the A(n - 1) colour overlaps between the universal site and the other sites. Thus 

r(f- 1) = A(n - 1). (1) 

Since# is equable, Nf = nr, so thatf= nr 
N* 

(nr Substituting in (1) A(n - 1) = rý-, 1), 

which, after rearrangement, gives 

Iv- 

13 Relationships Between Overlap Colourings of a Graph 

Complementary Colourings We define the complementary colouring of a colouring y to 

be the colouring It c in which each vertex v receives exactly those colours that it does not 
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receive in it. It follows from elementary set theory that the parameters ofli C are 

[N- r, N- 2r +2, N- M, where M is the number of colours that occur at every vertex in 

the original colouring. 

Juxtapositions of Colourings Suppose that y 1, ... , y. are overlap colourings of a graph 

G, with parameters (n, ri, Ii, Q (i = 1, ..., m) and with disjoint palettes. Thejuxtaposition 

I, ujis the overlap colouring in which each vertex receives all the colours from the 
i 

corresponding vertices of each of the colouringspi. If we denote the juxtaposition by 0, 

then clearly 

r(G, 0) 
A(G, 0) =Z Ai ; 

9 
IV(G, 6) = 7, Nj . i 

Moreover, if eachp i is equable with frequencyf, then 0 is equable with frequencyf 

Relationships Between Colourings of Related Graphs 

Given an overlap colouringp of a graph H, we can often construct a colouring of a related 

graph G by finding a homomorphism 0: G-H and using the construction in the proof of 

Proposition 1.2; that is, It o0 is an overlap colouring of G with the same parameters [r, A] - 

In particular, in Chapter 2 we shall make extensive use of homomorphisms from C2q+i to 

C2,, p.,, (where q >p). However, these are not the only interesting homomorphisms, even 

between cycles. 

For any integers p ýý 3, c ýt 2, we may define a homomorphism 0: Ccp - Cp by 'wraPPing' 

c times round Cp via the homomorphism O(v,, pb) = vj, (where 0:! g b <p). This process 

may be alternatively imagined as chaining c copies of C. together after cutting a link of 

each 'chain' constituting ap-cycle, so as to produce a path, thenjoining the ends of the 

path so produced. The result is to repeat the pattem of an overlap colouring of Cp, c times 

to produce an overlap colouring of Cp. 
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In a similar way, we may use an overlap colouring of the generalized Petersen graph 

P(p, q) and a homomorphism 0: P(cp, q) - P(p, q) to obtain an overlap colouring of 

P(cp, q). Analogously with the case for cycles, the homomorphism is defined by: 

O(Vap4) = Vb, O(Wap4) = Wb (where 0: 5 b <p). 

Again, the process may be imagined as the chaining of c copies of P(p, q) to form P(cp, q). 

We show (Annex 1.1) the result of chaining two copies of P(7,3) to form P(I 4,3). In this 

case six edges of each copy of P(p, q) are 'severed' and then reconnected in the chaining 

process, although the way in which the two vertex sets are mapped to P(cp, q) is quite 

transparent. 

1.4 Fractional Parameters 

Many graph parameters can be 'fractionalized'. An excellent general account of this topic 

is given by Scheinerman and Ullman [20]; we shall consider the fractional versions only of 

chromatic number and overlap chromatic number. 

One might intuitively expect that to colour a graph with r colours per vertex would always 

require r times as many colours as one per vertex (that is, one might expect 

X,., o(G) = r. Z(G)). This, however, is not so; to take a very simple example,. Z(C5) = 3, but 

we need only five colours for a 2-tuple colouring of C5, SO X2,0(C5) < 2X(C-5). 

For low values of r, Xr(G) can vary rather erratically (particularly if G has low symmetry). 

However, as mentioned in the Introduction, lim. Xr(G) 
always exists; moreover, the 

rý00 r 

sequence fXr(O rXj(&)) eventually settles down and becomes periodic. 

Johnson and Holroyd [I II generalized these results to overlap colourings. This thesis 

examines in detail the 'fractional' version of overlap chromatic numbers of the classes of 

graphs: cycles, wheels, GenPets, and complete graphs. 

We now define the rationalparameters for any overlap colouringp of a graph G, as 

follows: 
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x(G, p) = 
A(G,, u) 
r(G, ju) 

AG,, u) = 
N(G,, u) 
r(G,, u) 

(As for integer parameters, we drop the arguments G and y where allowed by the context. ) 

The choice of symbols x, y relates to the graphical representation that we describe in 

Chapter 7. 

An [r, A] colouring p of G is said to be efficient if N(Gy) = X,.,, (G); that is, if it is of 

maximum efficiency over all such colourings of G, where the efficiency ofp is defined as 

r(Gy) I 
N(G, y) - y<G,, u) 

There are various possible definitions of a 'fractional analogue' of the overlap chromatic 

number; the one we shall use is as follows: 

For each rational number xE [0,1], we consider the behaviour of Y,,, (G) for large r 

(where r is a multiple of the denominator of x). We denote inf X,.,,, (G) 
by Xjfx](G); by rýOD r 

[10, Theorem 4], this value is attained for some value of r. 

In terms of the fractional parameters x and y, xj[x](G) may thus be described as the 

minimum value ofy over all [rxr] colourings of G. 
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Chapter 2: Cycle Graphs C. 

The Overlap Chromatic Numbers of Cycle Graphs 

Since C2pis bipartite, Proposition 1.2 immediately gives X,,, I(C,, ) = 2r - A. The case for odd 

cycles is less trivial; the principal result of this chapter is: 

Theorem 2.1 For any positive integerp, 

Xr, A(C2p+l) = maxf2r- A, 2(r- A)+ [rp- ' 11 
. 

When colouring a cycle using N colours, we use the set (1, 
... , N) as the palette, 

considering these numbers modulo N, that is, as the cyclic group ZN. The colour set So at 

-vertex vo is always 11, 
..., r); each colour set Si is usually an interval {x + 1, ... ,x+ r) 

modulo N, although we occasionally find it necessary to work modulo A' for the first part 

of the cycle and modulo N- I for the remainder. 

Scott [2 1 ], Theorem 8, proves the equivalent of our 

X,, o(C2p+l):: g 2r+ 
I r, 

p 
and subsequently shows this as a special case of his Theorem 10: 

[, 
np 

_p + +1 jj] 

forpý: 3, X,, (Cp 
-s- p 

and proves equality in his Theorem 13. 

Colouring Methods 

We begin with two general methods. 

Method I This produces a cyclic colouring with S=(1,2, ... , r) and d=r-A. 

So, for i=0, ... ,n ---ý 2, the overlap is strictly between the last A colours of v, and the first A 

colours of vff 1; thus, 

Si ý ti(r-), )+ 1, ..., i(r-A)+rl =So+ i(r-A). 

This may be divided into two variants: 
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Methodl(a) The pattern continues from vj to vo, that is, the overlap is strictly 

between the last A colours of v,, and the firstZ colours of vo. 

Method I (b) We still requireisj n soi= A, but the overlap is not of the above 

form. For example, the [3,2] colouring Of C3 with colour sets {1,2,3), (2,3,4), 13,4,1) 

uses Method I (b). 

Proposition 2.2 An n-cycle (either as a graph C. or as a subgraph of some graph) has a 

Method 1 (a) colouring with parameters [r, A, N] (where N ý: 2r - A) if and only if 

n(r - A) =- 0 (mod A) or, equivalently, N divides n(r - A). 

Proof The colour sets at vi, vii (i= 0,..., n-2) clearly overlap by A colours; we needto 

verify the conditions under which this is true of the colour sets at vo and v,,. This is so if 

and only if the last colour of v, j is the Ath colour of vo; that is, 

r+(n- 1)(r- A)= 2. 

This is clearly equivalent to 
n(r - 1) -= 0 (mod. N). 0 

If this requirement is not satisfied, then there is no Method I (a) [r, A] colouring. 

Corollary 23 If 2=r- I and there is a Method l(a)colouring then Ndividesn and so 

N=n. 

Moreover, 

n =N; -> 
2r-A= r+ 1, 

so a colouring with N=n is possible if r: ý n- 

A Method I colouring is not necessarily equable; an example is C5: 

[4 r, A, )V] = [5,7,1,15]. 

1 7 13 4 10 
2 8 14 5 11 
3 9 15 6 12 
4 10 1 7 13 
5 11 2 8 14 
6 12 3 9 15 
7 13 4 10 1 

0 
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Since nr =35 and N= 15, there is no integer value offsuch that Nf = nr. The colours 1,4, 

7,10,13 occur three times, the remainder twice. 

Method 2 In this method, we colour C2q+I (where q> p) as follows. The first 

2p +I vertices, vo,..., v2p, are coIoured as in Method 1, and then the colour sets alternate, 

so thatU(V2p+I): --P(V2, -I), /. I(V2p+2) -=p(v2p), ... , ji(v2q) =p(v2p). (Altematively, let 0 be 

the homomorphism from C2q+l to C2p+l defined by 

O(vi) = vi (0 :gi: 9 2p), 

=--V2p--i (i=2p+1,2p+3,..., 2q-1) 

= V2p (i = 2p + 2,2p + 4, 
..., 

2q). 

Then letp =poo0 (where p0 is the Method I colouring of C2p., j). 

Proposition 2.4 If q ý! p, then XrI(C2q+l): 5 XrA(C2p+l). 

Proof LetliobeanycolouringofC2,,., with X,,, A(C2, p,,, ) colours, and use Method 2.0 

We may conveniently include within Method 2 the case A=0, for example, the colouring 

of C5 [ 1,0]: 1,2,3,2,3. 

In order to detennine the conditions under which Method I is valid, we introduce the 

following lemma. 

Lemma2.5 Let N= 2r-A and let, %, The the following intervals of ZN: 

So = (1,... , r), 
T= So + t. Theniso n7l =A if and only if r-A --5 t: 5 r. 

Proof Any two intervals of ZN of length r must overlap by at least A. 

If t:! ý r -A, thenso nT= (t+ 1,... r) andiso n 71= r-t> A unless t= r-4 in which case 

iso n 71 = t. 

If r-, Z<t < r, let t=r- A+ k. Note that k< A. 

Then T= (r- A+ k+1,..., 2r- A) U {I,... k), and so 

so nT= fr-A+k+ U(I,... k), so iso n7i= (1-k)+k= A. 
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If t=r, thenso nT = (I,... A) andiso n 71 = A. 
If t>r, thenso nT= A+t-rl andiso n Yl > A. 0 

r Proposition 2.6 (i) XrZ(C3) < 3(r -A) (0:! g A: 5 f); 

(ii) XrA(C3)--ý2r-A (L: gA: gr). 2 

Moreover, the Method I of colouring is valid, 

Proof (i) If 0: 5 A:,, r, then the following Method I colouring is valid: 2 

So ( 1, 
..., r), 

S, r -I + r,..., 2r - 1); 

S2= {2(r- A)+ 1,..., 3(r- A), A). 

Observation If 0<A< -11, then we may produce a colouring in which 2 

isonsii= is, ns2i = A, and is2nsoi=i+l, using one fewer colours, by setting 

S2 ý (2(r- A)+ 1,..., 3(r- A- A+ 1). 

r If -y: 5 ).:: g r, then colouring the vertices using Method I gives So and Si as 

above, and S2= {2(r -2) + 2r - A, r -1). 

Observation In this case, unless r=I=1, we may produce a colouring in which 

isonsii= is, ns2i =I and lS2nsoi=A-1, using one extra colour, by 

setting S2 = [2(r-). )+ 1,..., 2r- A+ 1, A- 11.0 

These observations will be used in Chapter 3. 

We now move to the proof of Theorem 2.1. This requires separate arguments to 

show that the expression in the theorem is a lower, and that it is an upper, bound. 

Stahl [23, Theorem 6] gave a l0wer-bound proof for non-overlap colourings of Cz,.,: 

Xrp(C2p, j) ý: (2r + 1) +Lrp 

or equivalently, 
X,. o(C2p+l) ý: 2r + 

rr, I 
p 

Our lower-bound proof generalizes that of Stahl. His crucial step involves obtaining a 

lower bound oniso nS2pI by means of lower bounds on jS2, ns2(j., j)j 
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for each i, then equating this to A, showing that, for fixed r and p and a wide range of 

values of A, we can colour C2p., with the required palette size using Method I or Method 2. 

Proposition2.7 X,, j(C2pj); ->2(r-A)+ 
Irpli. 

Proof If 2r-, X ý: 2(r-A) + 
[Y 11 then the proposition follows from Proposition 1.1. 

Assume, then, that 2r-A < 2(r-A)+ [rp' 1, 
and suppose thata is an [r, A] colouring of 

C: zp., using N= 2r -A+s colours. 

For i=0, ... , 2p, let S, be the set of colours at v, 

Considerso nS2. Now, So and S2 must each contain r-A elements disjoint from Si, and 

there are only r-A+s such elements available. 

Hence, iso ns2i ý! 2(r- A) - (r- A +s) = r- (A+ s) 

Similarly, is2ns4 i ý: r- (I + s), and, more generally 

is2ins2(i�)i2ýr- (A+ s), i=o, 
..., p- i. 

Now, in general, ifA, B and C are sets of size r withonBI ýý. r- el and iBnCj; 
->r-C23, 

then at most ei+C2of the elements of C can fail to be elements ofA, and so 

iAnC1 >- r- (ei + -C2)2 

thus isons2, i ý: r -p(A + s). 

But vo and v2pare adjacent and so iso n sý, i = i. 
Then A2: r-p(A+s), 

and so S; -> 
r- 
p 

Since s and N are integers, and N= 2r -A+s, 

r-A it follows that N; 
-> 

2(r-A)+ [ 
7-1 

as required. When A=0, this gives N; 
-> 

2r + [pE- 1, 
equivalent to the expression found by 

Stahl. 0 
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Our upper-bound proof differs considerably from that of Stahl. Our proof does bear a 

general similarity to that of Scott, although our approaches differ in detail. 

r Proposition 2.8 Let p; >- 1. Then X, ýA(Cýp,, ): 5,2r- A r). 

r, r and Method 2 is valid otherwise. Moreover, Method I is valid if :! g A<T T -+1 p 

Proof Let r ,, A: 5 L, and consider colouring C2,,,, using Method 1. 
p+l -p 

Then vo and v2p have the colour sets So= {1,... r)andS2p =So+ 2p(r- A) (mod(2r- A)). 

Now, 

2p(r - A) = (p - IX2r- A) + 2r - (p + 1)2; 

hence S2, =&+t, where t= 2r- (p + I)A. 

Since r :,,, A, then 2r - (p + 1)A:! g r, and since L>A, we have 
P+l p- 

2r - (p + I)A = (2r -pA) - A; 
-> r-A. 

Thus, by Lemma 2.5, the Method I colouring is valid. 

If r r, then the Method I colouring is valid for C2,,.,, for some q<p, P+I 

and therefore a Method 2 colouring is valid for C: ý,,. 0 

Next we proceed to the general upper bound argument including cases where Methods 1 

and 2 do not suffice. 

Proposition 2.9 X,, z(C2p+i):! ý maxl2r - A, 2(r - A) +[r p- 
' 11. 

Proof 

Case 1: '1 ,r. Since 2r -A is an integer, it follows that 2r -Aý: 2(r - A) +[r-AI P+l P 

(r It _A)+ 
rý A 

'. 
r if and only if 2r -A2: 2 P, and this is equivalent to A ý' P+ 

Thus, by proposition 2.8, the result follows for Ar 
P+l 

Case 2: Z.,, r. We now show that if Z. r then X,, z(C2p-, j): 5 2(r - A) + 
fr-Al 

P+I P+1 P 

In this case, let N= 2(r - A) + 
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Let r- A= ap-y, where O<y<p. Thus [r pAI =a. 

Then 

pN= 2p(r- 1)+p[r p 
21 

=2p(r-2)+(r-2)+y= (2p+ 1)(r-2)+y. 

We now divide the sites of each vertex; the first r-A sites are the initial sites, and the 

remaining A sites are the overlap sites. (Thus, the overlap sites of each vertex are those 

whose colours overlap with those of the following vertex of the cycle. ) 

Now, the number of initial sites is (2p+ 1)(r-), ) =pN-y= (p-Y)N+AN- D. 

We now colour the initial sites by consecutively allocating colours, using (p - y) cycles 

with the colours 1, ... , N, followed by y cycles using the colours 1, 
... , 

N- 1. Finally, the 

overlap sites of each vertex are the first A colours of the succeeding vertex, and we have 

constructed a Method I colouring (except that we have cycled through 1, 
... ,N 

for part of 

the process and through 1, ... , N- I for the remainder). 

This process clearly allocates r colours to each vertex, and gives an overlap of at least A 

between adjacent vertices. We need now to verify that the only overlaps between adjacent 

vertices are between the overlap sites of vi and the initial sites of vjj. Note that our 

assumption I<r implies N> 2r-),, and thus N- I ý: 2r-A. Then, even when cycling P+1 

through the colours; 1, ... , N- 1, there are no overlaps between the initial sites of adjacent 

vertices. Thus, 

X,,, i --! ý m, -ml2r- A, 2(r- A)+ [rp-' 11 0 

Proof of Theorem 2.1 

The theorem now follows from Propositions 2.7 and 2.9.0 

Annex 2.1 deals with minimum palette sizes of certain colourings of the cycle graphs 

C3, C5, ... , C, 1. In particular, for 1 :9r :59 and 0: 9 A: 5 r-1, the table gives minimum 

palette sizes for equable colourings, (where they exist) in red, along with the corresponding 
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value offin blue. Where either an equable colouring does not exist or there is no equable 

colouring with X,.,, (C,, ) colours, the value ofXj(C,, ) is given in violet. 

Primitives and Juxtapositions 

In Chapter 4 we explore the properties of a wider class of graphs than cycles and show that 

they nevertheless have the same overlap chromatic numbers as their smallest subgraphs 

that are odd cycles. In order to do this, it is useful to show that any efficient colouring of 

C2p., Ican be expressed as a juxtaposition of [r, A] colourings with r: gp and A: ý, ' 1. We call 

such juxtapositions additive colourings. 

Let 1 :9r: 9 p, 0:: 9 A: 9 I- We denote by 7r[r, 0] the efficient [r, 0] colouring of C2p+i with 

2r +1 colours, by Method 1 if r=p and by Method 2 if r<p; and by 7r[r + 1,1] the 

complement of 7r[rO] (which by Chapter I is indeed an [r + 1,1] colouring, since no 

colour occurs at every vertex). Finally, we denote by 7r[l, 1] the colouring that allocates 

the same colour at each vertex. These will be called theprimitive colourings. 

Since juxtapositions are defined only for colourings with disjoint palettes, when we define 

juxtapositions of primitive colourings we always translate the palettes of the primitives SO 

that their palettes are disjoint For example, 7rlr, 01+7E[r+l, ll will refer to the 

juxtaposition of 

7r[r, 0] (using palette (1,2,..., 2r + 1}) 

with a[r + 1,1] (using the translated palette f2r + 2,2r + 2,..., 4r + 2)). 

Theorem 2.10 Let r-A = np+ j (where I: g i:! gp). The following [r A] colouringu of C2 .1 p 

is efficient: 

If A:: ý n, (so that X,., z(C2pi) = 2(r - A) +[ rp then 

jU = 7r[1,01 +(n- I)n[p, 01 +A7r[p+ 1,1]; 

ifl>n, thenlz=7r[i+1,11+(A-n-1); r[1,1]+n7r[p+1,1] (sothat 

X,., I(C2, p, l) = 2r - A). 
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rroof Case 1: If A:! g n, then the palette size of 7r[i, 0] + (n - A)7r[p, 0] + n7r[p + 1, J] 

is 2i+1+(n-A)(2p+1)+A(2p+1)=2(np+z)+n+1 =2(r-1)+frp- 
A I, 

as required. 

Case2: IN>n, then the palette size of 7r[i+ 1,1] + (2 -n- 1)7r[l, 1] +n7rLv+ 1] 

is 2i+l+(A-n-l)+n(2p+l)=2(np+i)+A=2(r-A)+A=2r-4 as required. 

m 

Annex 2.2 shows primitive (emboldened) and additive colourings of a range of cycle 

graphs. We arrange them as in Annex 2.3 in blocks Q jn (A, n 2- 0) as follows. 

The rows of Qzn are indexed by A and the columns by n, where the block Qjfl contains the 

[np+i+ A, I]colourings( 1: 5i: 5p); we denote by Qz,,, (i) the ith element of the block. 

In row 0, the block Qo, o has the pfimitive colourings Qo, o(i) = n[i, 0] (i = 1, ..., p). 

In row 1, the block Qjo has the primitive colourings QjoQ) = 7r[i+ 1,1] (i = 1,..., p)- 

Now let 7r be some primitive colouring. We use the notation QA,, + 7r to represent the set 

of colourings Q. I,, (i)+; r (I :! ý i :9 p). The remaining blocks of colourings are now 

constructed iteratively from Qoo and Q1.0 and the primitives a[l, 1], 7r[p, 0] and 7r[p + 1,1] 

as follows. 

In row 0, we set Qo,,, = Qo,, -, +; r[p, 0] (n ý: 1), so that 

Qo,,, = Qo. o + n; r[p, 0] (n ; -> 1). 

IncolumnO, wesetQ;. o=Ql-,, o+7r[l, l] (A; >2), sothat 

(Aý! 2). 

When A, n>0, we set Q. Ln = Qk-in-i + 7rLp + 1,1]. Thus, 

if ),: g n, then Qz,,, = Qo,, i +). 7r[p+ 1,1] = Qoo+(n-A)7r[p, o]+A7r[p+1,1]; 

if A> n, then Qtp = Qi-..,,, o+n7r[p+ 1,11 = Qi, o+ (A -n- 1)7r[l, 1]+n7r[p+ 1,1]. 

In Annex 2.3 we show part of the table for C9 and a general table. 

25 



Annex 2.1 
Equable and Non-Equable Colourings of C,, 

C3 C5 C6 C7 C8 C9 CIO - C11- 

r N N f A, A 
-I- 

N", 
_L 

f N X __/ T X" 0 1 3 7 1 1 4 3 53 ý_ 11 1 3 
2 0 2 1 3 

- __ 
2 5 

_ 
4 3 5 1 5 2 5 

2 1 2 2 3 4 T7 
2 "s _41 -4 6 4 3, 2 

3 0 3 3 4 3 5 3 7 
3 6 3 3 3 

- - 
4 3 6 

3 2 1 1 4 1 4 3 4 3 4 -1 3 4 6 4 11 3 4 
4 0 1 1 flý 2 3 1 2 10 N 4 _ ý _4 5 11 4 
4 1 2 8 1 2 7 4 '7 _4 -7 

f 

4 -4 7 1 4 7 11 4 7 
4 2 11) 2 6 4 4 'i 4 6) 6 1 1 4 6 
4 3 4 4 S 4 4 5 4 i 4 5 
5 0 1i II 1 13 1 It 3 1 12 4 14, 3 12 i 

-3 
11) 4 

5 2 3 8 8 x 5 5 9 1 (1 5 8 11 5 
5 3 7 7 7 5 7 5 7 lit 1; 7 11 5 7 
5 4 0 6 5 6 -75 -o lo 5 r, 6 
6 0 1 18 11 1 2 1 3 1-1 3 

- 
1 4 1 3 14 1 3 14 

6 1 is 13 3 11 1 3 1 2 1 -4 11 1 3 1 I 1 5 11 11 6 
6 2 12 1 3 1., 3 10 14 3 10 1 4 1-0 -1", 3 10 11) 6 11 6 1 
6 3 2 1 3 4 14 3 1) 1 4 -6 6 11 6 
6 4 9 lit 3 8 1. ) 3 x 11 T 

_ 
8 6 6 8 11) 6 8 11 6 9 

6 5 7 7 7 6 -6 -7 6 7 11) 6 7 1 6 7 
7 0 1 1 19 I'l 3 1 17 14 4 1 3 16 11 5 77 1 16 

7 1 19 1 1j 3 13 14 11 4 _13 1 3 14 11 5 13 14 
7 2 15 13, 1.1 3 12 12 I'll 4 1-2 1 3 12 11 5 12 12 
7 3 12 11 1 i1 3 11 1 14 4 11 i 3 11 11 5 11 11 7 
7 4 11) 1 14 .3 10 1 4 10 1 3 10 lo 7 11 7 10 
7 5 1 7 
7 61 1 X 81 x 8 S 7 71 8 1 71 8 11 7 9 
8 01 ., 4 1 1 2 1 3 X 2 P) 1 4 1X 4 11. 5 4 18 
8 11 1 1 2 19 1 3 1i 17 1 4 15 1 ,, 4 1 5 1. ý 4 10 
8 2 19 2 15 1 3 14 1-1 4 4 14 1X 4 14 5 14 4 14 
8 3 15 2 11 1 3 11 14 4 13 1 13 4 13 1 5 13 4 13 
8 4 1, 2 2 1-1 1 4 1 4 12 4 12 1 6 1 5 12 4 12 
8 5 11 11 4 11 1.1 4 11 

- 
1 4 11 1 6 11 11 11 8 

8 61 1 10 1 4 4 10 14 4 1 0 11) 4 10 6 10 W 8 11 8 1 
8 71 1 1) 
9 0 1 l I 1 3 1x 4 3 21 1 5 3 20 
9 1 24 20 IS 3 17 . 11 3 1') 1X 4 17 3 18 1 x, 5 17 3 19 
9 2 21 19 1X 3 16 3 17 1 4 1 r, 3 1 (1 1 5 1 (1 3 16 
9 3 19 1ý 3 3 1s 21 3 15 1 x, 4 15 -77 3 1'i 1 61 3 15 
9 4 1 ý 3 14 

_ _ 
1X 

- 
3 14 1 

-3 14 1 4 14 3 14 1 6 14 3 14 
9 5 1 3 T I's 3 11 3 11 1X 

ý4 

1 3 13 1 6 11 3 1 
9 6 12 1 3 1 1 3 12 1 3 12 1 6 3 12 1 6 12 3 1. ) 

6 11 11 
9 81 1 10 10 1 91 11 9 1 
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Annex 2.2 
Primitive and Additive Colourings of C2,,,,, 

C, cl C7 cp cil cu cis C17 C19 

r A l Ne I Nn Ne A Ne Nn Ne Nn Ne Nn Ne Nn Ne Nn Ne Nn Ne Nn 

1 0 3 3 3 3 3 3 3 3 3 
2 0 6 5 5 5 5 5 5 5 5 
2 1 3 3 3 3 3 3 3 3 3 
3 0 9 8 7 7 7 7 7 7 7 
3 1 6 5 5 5 5 5 5 5 5 
3 2 1 4 4 4 4 4 4 4 4 4 
4 0 1 12 10 1 1 10 19 

- 
9 9 9 9 9 

4 1 9 8 7 7 7 7 7 7 7 
4 2 6 6 6 6 6 6 6 6 6 
4 3 5 5 5 5 5 5 5 5 5 
5 0 15 13 12 12 11 11 11 11 11 
5 1 12 10 10 9 1 9 9 9 9 9 
5 2 9 8 8 8 8 9 a 1 8 8 
5 3 7 

- - 
7 7 7 7 7 7 7 7 

5 4 T 6 6 6 6 6 6 6 6 
6 o 18 15 14 14 14 13 13 13 13 

.6 
1 1 1 15 13 12 12 11 it it 11 11 

6 2 1 1 12 10 1 10 1 10 10 10 10 to 10 
6 3 19 1 9 1 9 9 - 9 9 9 9 9 
6 4 1 18 8 8 8 8 8 8 8 8 
6 51 1 7 7 7 

-- 
7 7 7 7 7 7 

7 0 21 18 17 16 16 16 15 15 15 
7 1 is is 14 14 14 13 13 13 13 
7 2 15 13 1 12 12 12 1 12 12 12 12 
7 3 12 11 1 11 11 11 it 11 11 11 
71 41 1 10 10 1 

- 
10 10 10 10 10 10 10 

7 51 1 9 91 9 9 9 9 9 9 9 
7 61 1 8 81 8 8 8 8 8 8 9 
9 0 24 20 1 19 18 is 18 18 17 17 
8 1 21 18 1 17 16 16 16 15 is 15 

-8 
2 18 15 14 14 14 R 14 14 14 

8 3 15 13 13 13 13 13 13 13- 13 
8 41 12 12 12 12 12 12 12 12 12 
8 5 1 11 11 11 11 11 11 11 

-8 
6 to to 10 10 to 10 10 10 10 

8 7 9 9 91 91 9 9 9 9 9 
9 0 27 23 21 21 20 20 20 20 19 
9 
9 

1 
2 

24 
21 

20 
18 

19 
17 

is 
16 

18 
16 

18 
16 

18 
16 

17 
16 

17 
16 

9 3 is 15 15 15 is 15 15 15 15 
9 4 15 14 14 14 14 14 14 14 14 
9" 51 1 13 13 13 1 13 13 13 1 13 13 13 

-9 

6 
71 
81 

" 
1 
1 

12 
11 
01 - 

12 
11 

-fol 

12 
11 
10 

12 
11 
10 

12 
11 
10 

12 
11 
10 

Ne = number of colours in an equable colouring Nn = number of colours in a non-equable colouring 

Primitives are emboldened 
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Chapter 3: Wheel Graphs W. 

A wheel graph W,, consists of a cycle graph Cj which we shall for convenience call the 

rim, each vertex of which is adjacent to a ftuther single vertex, which we shall call the 

hub. We label the rim vertices vo, vl,..., v, 2, as in Chapter 2, and the hub vertex h. 

Since W. is a subgraph of K, there is an equable [r, A] colouring of W. if there exists an 

equable [r, 1] colouring of K,,. 

Equable colourings 

Since the hub vertex is a universal vertex, we have the following restriction on equable 

colourings of wheels. 

Proposition 3.1 If there exists an equable [r, A] colouring of the wheel graph W., 

then N= nrl 
(n- I)A+r* 

Proof This is an immediate consequence of Proposition 1.6. 

In the remainder of this chapter, we do not assume equability. We discuss separately W2qi 

and W2.,,,. 2. 

General Colourings 

Proposition 3.2 For any wheel graph W2q.,,, 

X,, iffiq, l) =max{2r-A, 3(r-A)J. 

Proof Any component triangle consisting of two adjacent rim vertices and the hub 

is a C3graph, which can be minimally coloured as such. Moreover, if the colour sets at the 

vertices vo, vi, h are A, B, C respectively, then the remaining rim vertices of any W2qi can 

be coloured alternately with A and B, as in Method 2 of Chapter 2. 

We have seen that for C: z,. i, N=maxJ2r-A, 2(r-A)+FrP-AJJ. 

In the particular case of C3, p = 1, so that 
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X,., z(W2p+l)=N=Max{2r-A, 2(r-A)+Fr-Al)=max{2r-A, 3(r-A))- E 

We then consider colouring the graph W2p, 2. Since an even wheel has an odd number of 

rim vertices, we cannot argue as above. Let 

,u 
be an [r, A] colouring of an even wheel graph W2,,. 

2; 

S be the set of all colours used; 

H=y (h) be the set of colours at the hub; 

0 be the colouring of 
C2pl 

using H, that is, the hub component of the colouring of 

W2p+2.9 

o) the colouring of C2p+l using S-H, that is, the rim component of that colouring; 

so that p' =0+ co, whereu' is the restriction ofU to C2p+l. 

Thus, 0 and (o use A and r-A colours per rim vertex, respectively. Individually, these are 

not necessarily constant-overlap colourings, although between adjacent vertices the sum of 

the overlaps is always A. (However, as we shall see, we need only consider cases where 0 

and o-) each take just two consecutive overlap values. ) 

Since the number of colours in 0 is fixed as r, in order to find XrA(W2p+2) we need to 

minimize the number of colours, in co. Proposition 3.3 (below) shows that we minimize the 

number of colours required by maximizing the mean or minimwn overlap. In order to 

maximize the overlaps in co, we need correspondingly to minimize the overlaps in 0. 

The proof of Proposition 3.3 falls into two parts, the first of which is analogous to that of 

Proposition 2.7, and the second of which corresponds to Proposition 2.9. 

Consider colouring the cycle C2,,, with R colours per vertex, but with overlap Aj between 

vertices vj and v: ý, i Y=0.1, 
..., 

2p - 1) and overlap A2p between vertices vý, and vo. We call 

this an [P, (Ao, 
..., 

A2p)] or, for short; an [R, A] colouring. Denote the minimum of the Aj 

by A,,, i. and the mean of the Aj by 1 Whereas in the case of constant overlap we showed 

that Nýt 2R - A. it is clear that, in the case of variable overlap, N; 
-> 

2R - A, ý, - 
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Proposition 3.3 XRA(C2p+l) ý! max 2R -A 
(2p + 1XR - Tý) 

P 

Proof Lety be an [R, (Ao, 
..., A2p)] colouring of C2p+i using N= 2R - A., ý, +s 

colours. 
For i=0,1, ..., 2p, let S, be the set of colours at vi. 

Considersons2; So contains R- Ao elements disjoint from SI, and S2contains R-AI 

disjoint from SI, and there are only R-A., ý, +s such elements available. 

Then iso ns212: (R-Ao)+(R-Aj)-(R-Anj, +s) =R-(Ao +A, +s)+Ank. 

Similarly, for i=1, ..., p-1, 

ls2InS2i+2 1; 
-> 

R- (A2i + A2j+j + s) + Amin. 

Thus, arguing as in Chapter 2, 

Isons2pi ý: R-(Ao+Ai . ....... + A2p-l +ps) +pAi,,. 

But Isons2p I= A2p. 

Then A2, p ý: R- (Ao +AI+... + A2p. -I +ps) +pAni,,; 

ps ý: R- (Ao +... + A2p) +pA,,, i,,; 

R-(2p+I)A 
+ Amin. p 

Since N=2R-Amin+s, 

Ný. M-Amj, + 
R-(2p+I)A 

, Aj,, = 
(2p + 1)(R - A) 

pp 

and- since Nis an integer, 

Nýt 
[ (2p + 1)(R - 

p 

Moreover, since N ý: 2R - A., j., we have 

N; 
-> max 2R - Ami,, 

(2p + 1)(R - X) 
0 

II 

We now proceed to evaluate X,., i(W2p,. 2). The range ' pr 
<A< 

(p + I)r is the most 2p+ I 2p+ I 

difficult to evaluate; we deal with the other possible values of A first, 
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Proposition 3.4 (Case 1) 

3r-4, k+ 
(o 

:! g A :! g T -+r, p 
Xr, A(W2p+2) 

3(r - A) pr G- 
+r 2 2p+ 1) 

Proof If A=0, then the rim vertices require X,,, O(C2p+l) 
(2p + I)r 

colours, all distinct pI 

from the hub colours; thus 

, 
X,, O(W2p. 2)=, + _2p+l)r 3, + r Ip lp 

pr (2p + I)l Now let 0<1: 5 TP -+I . Then r ýý 
Ip 11 

and so, by Theorem 2.1, C2,,., has a [A, 0] 

colouring using at most r colours; that is, the hub component 0 may be chosen to be a 

[, x, 

colouring. Then the rim component o) is a [r - 1, A] colouring of C%,, ý.,, and requires 

(2p 1)((r - A) - A) 1)(r - 2A) ]I 
maxj2(r - A) - A, [+pII= 

maxl2r - 31J (2p +p 
colours. 

Thus, (counting the colours of 0 also) we have 

, 
X,, Z(W2p+2):! ý maxl3(r - A), 3r - 41 +r- 2A 

p 

Moreover, if 0 were chosen to have overlaps, then the mean and minimum 

overlaps of a) would be reduced, and by Proposition 3.3 the number of colours required by 

w would be at least as great Thus 

Xr, A(W2p+2) maxf3(r- A), 3r-4A+ [r- 21 
p 

3r-4A+ rr-22 1 
p 

3(r- A) 
p+2) 

>a 
g A! g pr ) 

(F-+r2 
2p+ 1, 

Proposition 3.5 (Case 2) 

Xr, z(W2p+2) = 2r -A 
((p+ I)r 

(2) ý 2p +I :ý): 5 r). 

Proof In this case, we find the number of overlaps required by the hub component; 

we note that since the rim component has r -A colours per vertex and thus a maximum 
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overlap of r-A, the minimum possible overlap for the hub component is 2A - r. This is 

possible when the number of colours available for the hub component (namely r) is 

enough for a [A, 2A - r] colouring; by Theorem 2.1, this requires 

r 2: maxl2A - (2A - r), 
[ (2p + 1)(r - A) ]I= 

maxjr, 
[ (2p + 1)(r - 1) 

pp 
11, 

and this is true in the range 
(p I)r 

< A: 5 r; this makes the rim component co an 2p+ I 

[r- A, r- A] colouring, requiringjustr- A colours. Since (o cannot possibly use fewer than 

r-A colours, we have shown that, for this range of J, 

r+ (r - A) = 2r - A. m 

pr_ (p + I)r In order to deal with the range 2p+I <A< 2p+ I, we require the following lemma, 

which allows us to deal with all possibilities except those with r=2 and with p=1; these 

peculiarities are considered last. 

Lemma3.6 Letr; 
-0, pý: 2, L=[ Pr jandl'a pr 

; then 2p+ I 2p+ I 

(i) (3) 

(2p + 1)(r -A- L) 
p ---I. 

Proof (i) Note that 

Pr 
-r -(P-')" I whenever p; -> 

2 and r; -> 
3, except for the cases 2p+ I 2p+ I- 2p+ I ýý 

(p, r) = (2,3), (2,4), (3,3). Thus, (3) holds except possibly for these three instances; but it 

is straightforward to check that (3) does in fact hold in those instances. 

(ii) From (3) we obtain 

(17 (p + I)r 
2p+1 

Since A 2. - 
pr it follows that r-A< 

(p + I)r 
and hence 2p +- 2p+ 1 

(p+1)Lýr-) 

(2p(r - A) + (p + I)L '? - 
(2p +I Xr - A); 
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(2p(r - A) -pL 2: (2p + lXr -A- L); 

2(r-A)-L2: 
(2p+ 1)(r- A -L) 

p 

and since 2(r - 1) -L is an integer, (4) follows. 0 

Proposition 3.7 (Case 3) 

pr (p + I)r Let 
P+i << P+i andpýý2, rý! 3. 

Then XrI(W2p+2)=3r-2A- 
pr (5) 

[2p+ 
I 

j- 

Proof Let the hub component be a A-colouring of C2,,,, using the hub colours 1, ..., r, 

with overlap A. By Proposition 3.3, r ý! max 2A - A., ý,, 
(2p + 1)(A - thus P 

Amý,; >-21-randAý: A- Pr LetL= Now, the rim component o) must have 2p+ VI- 

mean overlap at most 
Pr 

I and maximum overlap at most A- (2A - r) =r-A. Let N be 2p + 

the number of colours required by co. The first of these inequalities implies that 

[ pr ], [(2p+l)(r-A--Ipp, -, '*, )Il N2: maxi 2(r- 2) - 2p+ Ip 

(2p + 1)(r -A maxl2(r - A) - L, 
Ipm A) I- 

rl. Thus, 

Xr, A(W2p+2)ý: r+2(r-A)-L=3r-21-[ pr J. 
2p+ I 

Buý by Lemma 3.6, 

2(r- A) -L I 
F(2p+ 1)(r -'I -L) IpI 

and so by Theorem 2.1 (since these quantities are integers) there is a constant-overlap 

[r - A, L] colouring o) using 2(r - A) -L colours. The result follows. 0 

Finally, we tackle the 'peculiarities'. We note first that if r: 5 2 and Pr <A< 
(P + 1)r 

2p +I 2p+1 

then the only possibility is r=2, A 
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Proposition 3.8 (Case 4) 

X2,1(W2p+2) = 5, for all (6) 

Proof Let the hub component have the colours 1,2 at the hub and colour 1 at each rim 

vertex. Then the rim component can be a[1,0] colouring of C2,,, using X(C2, p.,, 
) =3 

colours. Hence, X2.1(W2p4-2), e 5. 

To show the lower bound, note that the above colouring is (apart from a rearrangement of 

colours) the only [2,1] colouring0f W2,,. 
p+2where the hub component 0 has constant 

overlap. Thus, if there is a colouring using four colours, then the hub component 0 must 

have variable overlap. Suppose that 0 has this property; then we may assume that an odd 

number of rim vertices take the colour I and an even number take the colour 2. Consider 

the edges of C2,,., in cyclic order; the colour must change an even number of times, hence 

0 has an odd number of overlaps of size I and an even number of overlaps of size 0. 

However, the same must be true of the rim component w (since our assumption of four 

colours in total implies that o) uses just two colours). This would imply that the combined 

colouring has an even number of overlaps of size I on the rim edges, contradicting the 

requirement that it is a [2,1] colouring. Thus (o must use more than two colours. E 

pr (p + I)r Finally, still keeping the assumption T- P+1 <A<. 2p+ 1, we tackle the wheel withp =I 

(that is, the graph W4 =Q and r ý: I This is the only case where (in some circumstances) 

the hub and rim components must necessarily have variable overlap in order to achieve the 

bound. We establish exactly which these are. 

Proposition 3.9 (Case 5) Let L<A< 2r, 
and r; -> 

3. Then 33 

x, ýI(W4) = 3r -'2A - 
13r 1. (7) 

Moreover, in order to obtain a colouring with X, ýA(W4) colours, it is necessary to use 

variable-overlap components when r= 3L +2 and A=L+1; for all other values, 
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constant-overlap components are sufficient. 

Proof Let 0 be aA -colouring of C3 using the hub colours 1, ..., r, with overlap A. 

By Proposition 3.3, rý: rnax(V-A., i., 
[3(A-Týjj tllusAni. 2!: 2A-r and; Ký! A- -jr- 3 

Let L= Lfl- Arguing as in the proof of Proposition 3.7, the (r - I)-colouring (o requires at 

least 2(r - 2) -L colours. Thus 

Xr,, (W4) ý! t 3r- 2A-L. 

We establish the circumstances under which variable-overlap components are required. 

To do this, we let r=3L+q, where q=0, I or 2, and A= L+k where 1:! gk: gL if q=2, 

otherwise 1: 5 k: 5 L-1. 

Subcase 5a r= 3L. 

Here, the hub component has mean overlap at least A-L=k. Thus the rim component a) 3 

has mean overlap at most A-k=L- Then we must choose o) to have constant overlap L. 

Then N(q))ý: {max2(r- A) -L, 3(r- A -L)) 

= mu{2(r- A) -L, 2(r- A)+ r- A- 3LI 

=max{2(r-1)-L, 2(r- A) -L-k) =2(r- A) -L 

Thus, Xr. I(W4) = 3r - 2A - L, and variable-overlap components are not required. 

Subcase 5b r=U+1. 

The hub component here has mean overlap at least A-r=k- -L, so co has mean overlap 33 

at most L+ -L. If we can choose exactl this mean overlap (so that co has two overlaps of 3y 

size L and one of size L+ 1), then 

N(a)); 
-> max{2(r - A) - L, 2(r - A) +rA-U-I) 

=max{(2r-A)-L, 2(r-l)-L-kl =(2r-A)-L 

Alternatively, if we choose the hub and rim components to have constant overlaps k and L 

respectively, then denote this rim component by v. Then 

N(v) = max(2(r- A) -L, 3(r- A -L)) 
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= max(2(r- A) -L, 2(r- A)+ r- A- 3L) 

= max{2(r- A) -L, 2(r- A) -L-k+ 1) 

= 2(r - A) - L, as before. 

Thus, X,, z(W4) = 3r - 2A - L, and again variable-overlap components are not required. 

Subcase 5c r= 3L + 2. 

The hub component here has mean overlap at least A- -ý- =k- -1, so CO has mean overlap 33 

at most L+2. If we can choose exactly this mean overlap (so that now co has two overlaps 3 

of size L+I and one of size L), then 

N(o-)) ý: max[2(r- A) -L, 2(r -A) +r- A- 3L - 21 

=max[2(r-A)-L, 2(r-l)-L-kl =2(r-A)-L. 

Again, if we choose the hub and rim components to have constant overlaps k and L 

respectively, then denote this rim component by v. We obain 

N(v) = max(2(r- A) -L, 3(r- A -L) 

= maxf2(r-1)-L, 2(r- A)+ r- A- 3L) 

= max[2(r- ý)-L, 2(r- A) -L-k+21. 

If k ý: 2, then as before, this choice requires the same number of colours as the 

variable-overlap component co. 

However, if k=1, then the constant-overlap choice forces one extra colour. Thus, in this 

case, we need to check that the variable-overlap colourings do exist. 

Note that the hub component is required to have two overlaps of size 0 and one of size 1. 

Since r; -> 
3, part (i) of Proposition 2.6 applies; hence by the observation, the hub 

component can be chosen to have these overlap sizes, using 32 -I=r colours. Then the 

rim component requires two overlaps of size L+I and one of size L. Since 

L+I>r-L+ -I-, part (ii) of proposition 2.6 applies, hence by the observation, the 22 

37 



hub component can be chosen to have these overlap sizes, using 

2(r- A) -(L+1)+1 =2(r- A) - 
1-3r- 1 

colours. This completes the proof N 

Theorem 3.10 The value of X,, A(W2p., 2) requires five expressions, depending on the 

values of A and r. 

(i) For r=2 and A=1, we have XZI(Wýp+2) = 5. In all other cases: 

(ii) If 0: 5 A:, r, then XrI(W2p, 2) = 3r - 4A + p+2 
[' 1; 

p 

(iii) if r pr then X,, A(W2, +2) = 3(r- A); 
p+2 2p+ I 

OV) if Pr 
:! ý 1: 5 

(p + I)r, thenXrAW2p+2)=3r-21-[ pr 1; 
2p+ I 2p+1 2p+ 1 

(y) if A; 
-> 

(p + I)r, then X,, I(W2p+2) = 2r - A. 2p+ I 

(Note that ifp = 1, Case (iii) does not occur. ) 

Annex 3.1 gives, for some values of [r, A], the minimum number of colours required for 

W. 
J, v, 

Wg, Wjo and W12. 
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Annex 3.1 

Wheel Colourings 

W6 WA wl 
0 

W12 

N N N N 

[1,0] 4 4 4 4 
[2,01 _ 7 7 7 7 
[2,11 4 4 4 4 
[3,01 11 __ 10 lo lo 
[3,1] 6 6 6 
[3,2] 4 4 4 4 
[4,01 14 1-4 13 13 
(4,11 9 9 9 9 
[4,2] 7 7 7 7 

_[4,3] 
5 5 5 5 

[5,01 
_ 

Ll 8 17 17 -1 16 
[5,1 13 12 12 12 
[5,2] 9 9 9 9 

___[5,3] 
7 7 7 7 

[5,41 _ 6 6 6 6 

_[6,0] 
21 20 20 20 

__L6,11 
16 15 15 

[6,21 12 12 12 12 
[6,31 10 10 10 10 
[6,4] 8 8 8 8 
r6,51 7 7 7 7 
[7,0] 25 24 23 23 
(7,11 20 19 19 18 
[7,21 15 15 

_[7,31 
T 12 12 12 

_[7,41 
11 10 10 10 

[7,51 9 9 9 9 
[7,6] 8 8 8 8 

____-[8,01 
28 27 26 26 

[8,11 23 22 22 22 

-[8,21 
18 18 

[8,31 15 15 15 15 
[8,41 13 13 13 13 
8,51 11 11 11 11 

18,61 10 10 10 10 
18,71 9 
19,01 30 30 29 

- 
9,11 27 26 

- 
25 25 

[9,21 21 21 21 

-19,31 
18 

- - 
18 is 18 

_L9, p 41 
9,51 

[9,61 
[9,71 
[9,81 

T 6 
14 

_ 12 
JE 
10 10 

I 
14 
12 

10 

15 
13 

IS 

12 

10 10 10 

- 
_ 

- 
_15 13 

12 

El 0 39 



Chapter 4: Overlap Colourings and Homomorphisms 

In this chapter we investigate the place of overlap chromatic numbers in the classification 

of graphs. 

Let r; >- 1,0: 5 A: 5 r. We have seen (Proposition 1.2) that if there is a homomorphism 

from a graph G to a graph H, then X, ýI(G) < Moreover, if also His isomorphicto 

a subgraph of G, then X,., I(G) ý-- X,, z(R), and so X,, I(G) = X,, A(H). The core of a graph G is 

the smallest subgraph C of G such that there is a homomorphism. from G to C, this is 

unique up to isomorphism (see [9]), and by the above remarks has the same overlap 

chromatic numbers as G. Thus, classifying graphs by their cores is certainly at least as 

fine a classification as by their overlap chromatic numbers. We shall now show that 

graphs with different cores can have the same overlap chromatic numbers (so that 

classifying by the former is strictly finer than by the latter). We say that G and H have the 

same multichromaticprofile ifX,, o(G) = X,, o(H) (r ý! 1) and the same overlapprofile if 

X,, j(G)=X,, i(H) (r; 
-0,0: ýA: 96. 

Theorem 4.1 Let G be a graph with the same multichromatic profile as C2p,,, and 

containing C2p,., as a subgraph. Then G also has the same overlap profile as Cýp,,. 

'I P+ Proof. Let r; -> 
1,0:! 9 A: 5 r. Since C2pj is a subgraph of G, Xr,, (G) 2ý Xr (C2 1); we shall 

now construct an [r, A]-colouring of G using X,,,, (C2p+, ) colours. 

Let n be such that np +i=r-A where 1 :! 9 i:: 5p; then QZ, (i) (see page 25) is an efficient 

[r,. Il-colouringofC2p+i. Bythe proof of Theorem 2.10, if A> n, then 

Since Ghas the same 

multichromatic profile as Cýpj, G must have an P, 01 colouring O[i, 0] using 2i +I 

colours and a [p, 0] colouring 0[p, 0] using 2p +I colours. The complement q) of O[i, 0] is 

an [i + 1,1] colouring of G using 2i +I colours, and the complement V of O[p, 0] is a 

[P + 1,11 colouring of G using 2p +I colours. The colouring 7r[1,1] is available for any 

graph, 
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using one colour. Thus, the colouring 

p+ (I -n- 1)7r[l, 1] + nV 

of G uses the same palette as Q;,,, (i), and thus X,., I(G): 5 X,., I(C2, p,,, ) as required. 

If ný! A, then Qz,,, (i)= 7r[iO]+(n-A)7r[pO] +Afp+ 1,1], and a similar argument again 

shows that X, ýI(G):! g X,,, I(C2,,,, ). Thus G has the same overlap profile as C2p,,. 0 

Corollary 4.2 Let G be a graph with Xp(G) = 2p + 1, and containing C2p.,, as a 

subgraph. Then G has the same overlap profile as C2, 
p,,,. 

Proof Theorem 2 of [23] states that if G has an edge, thenX,, (G) ý: X, I(G) for all n>1. 

Now since G contains an odd cycle, XI(G); -> 
3. Since also Xp(G) = 2p+ 1, it follows that 

Xq(G) = 2q +I (1 :5q-. 5 p). Hence G has the same multichrornafic profile as C2p,,, and the 

result follows from Theorem 4.1. 

Bangles 

m 

We now consider a class of graphs which we term bangles. These are a sub-class of the 

class of series-parallel graphs, whose chromatic properties (particularly their circular 

chromatic numbers) have been studied (see, for example, Pan and Zhu [ 19]). 

Informally, a bangle is an odd cycle of odd cycles, 'welded' together at points as far apart 

as possible on each cycle. More formally, the bangle B(2q + 1,2p + 1) is formed from 

2q +I copies of the cycle C2,., as follows. The copies of the cycle are denoted by 

C12s C23 
P ... , 

C2q,,,,; a vertex of C2, +,,, is identified with a vertex of C12 to form a 'weld 

vertex' W, ;a vertex Of C12 at distancep from W, on C12 is similarly identified with a 

vertex Of C23 to form a weld vertex W2; and the welding process continues cyclically, so 

that W2, +i Welds C2q, 2q+l With C2q+l, l - 
(We say that two vertices are at distance p in a 

graph if the shortest path connecting them hasp edges. ) Thus, for example, the bangle 

B(3,7) may be drawn as follows. 
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Proposition 43 Letp ý! 2. Then there is no homomorphism from B(3,2p + 1) to C2pl. 

Proof Let us allocate colour i to vertex viof C2pj (0:! g i:! ý, 2p). Then, a homomorphism 

from B(3,2p + 1) to C: z,,, may be regarded as a[1,0] colouring of B(3,2p + 1) using 

palette (0,1, ..., 2p) such that the colours occur cyclically, in clockwise or anticlockwise 

order, on each of C12, C23 and C31. We may assume without loss of generality that the 

weld W, is coloured 0 and the cycle C12 is coloured clockwise; thus W2 is colouredp + 1. 

Now if C23 is coloured clockwise, then W3 takes the colour 1, while if C23 is coloured 

anticlockwise, then W3 takes the colour 0. In neither case can the colouring Of C3, be 

completed cyclically. 

Thus, no homomorphism is possible. 0 

Thus, the core of B(3,2p + 1) is not C2p.,,. Nevertheless, we shall now show the 

following. 

Tbeorem 4.4 For any q; -> 
1, p; -> 

2, the bangle B(2q + 1,2p + 1) has the same overlap 

profile as the cycle C2p+i - 

Before we prove this theorem, we require the fOllowing lemma. 
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Lemma 4.5 Letp be the cyclic [p, 0] colouring of C2pj and let vertices v, w be at 

distancep. 

(i) lfp = 2a - 1, thenp(v) niimi= a- 1; 

(ii) Ifp = 2a, thenp(v) nu(w)i= a. 

Proof We may assume without loss of generality that v= vo and w= vp, since the colour 

sets at any other pair of vertices separated byp edges are related to those at vo and vp by 

adding some constant modulo (2p + 1). Thus we may assume 

ju 
(vo) =(1,2, ..., pl; , u(v 1) = {p + 1, p+2,..., 2p), 

JI(V2)-"ý(2P+1,2p+2,..., p-1j; JU(V3)={P, P+I,..., 2p-l), 

and so on, so that 

p(v2j)= (2p+2-j,..., 2p+ 1,1,..., p-j) (1:! gj<p), 

, u(v; i,, )= {p+ I -j,..., 2p-j) (I: gj<p). 

Thus, ifp = 2a - 1, theny (vo) = (I, 2,..., 2a -II and 

, u(vp)=. u(v2,1)= (p- a+ 2,..., p,..., 2p- a+ 11 ={a+ 1,..., 3a- 1), 

giving 

ifp = 2a, then 

giving 

Proof of Theorem 4.4 

ý (v) nu (w)i=a- 1; 

p (vo) =(1,2,..., 2a) and 

p(vp)=I. i(v2,, )= (3a+ 2,..., 4a+ 1, a), 

xv) niimi= a. m 

Note first that we need only show the result for q=1, since if B(3,2p + 1) has an 

[r, A]-ovcrlap colouring using Xrz(C2p.,, ) colOurs, then we may colour the first three weld 

vertices WI, W2 and W3 of B(2q + 1,2p + 1) as for B(3,2p + 1) and then colour subsequent 

weld vertices by alternating between the colourings of W2 and W3 (that is, there is a 

homomorphism from B(2q + 1,2p + 1) to B(3,2p + 1) ). 

Denote B(3,2p + I) just by B. We shall now construct a [p, 0] colouring ý of B using 
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2p +I colours, thus showing that Xpo (B) = 2p + 1. The result then follows from 

Corollary 4.2.0 

To do this, we need to define a rotation sense in each cycle. As in Figure 2, below, we 

shall consider the longer paths between the weld points to be drawn round the outside of a 

drawing of B, and the cycles to be as in Figure 2, with W, at the top. We colour the 

vertices of C12 clockwise starting from W1, so that AWI) =(1,..., p), the next vertex has 

the colour set {p + I, -, 2p), etc. There are two cases to consider, depending on the size of 

the cycle modulo 4. Thus, we now express B as B(3,4a - 1) or as B(3,4a + 1) 

(aý1). 

123 
dal 456 

135 f( 457 e b, 567 

476 

367 245 

267 0 )10236 234 6, ? 345 

145 

712 

671 

237 0---, ---w 235 

146 

Figure 2: B(3,7)[3,0] 

We take B(3,7)[3,0] (Figure 2) as a detailed example. We colour C12 With the Starkdard 

cyclic colouring, proceeding clockwise; the colours of W, are 123, and those of W2 67 1. 

,2 overlap by one colour, 1, the colours of W3must be 145 so as to overlap Since W, and W 

each of W, and W2by exactly one colour. 

To find suitable colours for C31, we would like to reflect in the axis of symmetry through 

W, and allocate to each vertex of C3, the colours of the corresponding vertex0f C12. 

However, this would give the wrong colour set to W3. Thus, after the reflection, we need 
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to permute the colours so that {6,7,1 } becomes { 1,4,5). One way to do this is to apply 

the permutation 

7r, = (23)(46)(57); 

although not the simplest possibility, it is consistent with a systematic approach which we 

shall describe later. 

We then apply a similar process to the vertices of C23, relecting in the axis of symmetry 

and applying a suitable permutation to bring (1,2,3) to (1,4,5), in this case 

7r2 = (24X35)(67). 

A similar argument leads to the colouring of B(3,9)[4,0] (Figure 3): 

7r (13X24)(56X79) 7r2 = (12)(35)(46)(79) 

1234 

-_____L6 78 5689 

1347 e' 5789 )0 0 6789 'qý 9 12 3 

2569 ý1246 
2345 4567 

34786 7891 lý # 3789 ý 8912 

\W 4789 1356 2789 
-0-- 1256 -\ -w 

ý(3456 

3489 1278 

1257 3469 

Figure 3: B(3,9)[4,0] 

We form the complements of the above: 

The complcment of B(3,7)[3,0] is B(3,7) [4,1 ], and also has the permutations: 

7r I= (23X46X57), 7r2 = (24)(35)(67). 
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4567 
5 123 7123 

26749 1236 1234 3456 

45 1311 7451 5671 6712 

1452 3671 
2367 0 2345 

61450--, 6714 
5237 

Figure 4: B(3,7)[4,1) 

The complement of B(3,9)[4,0] is B(3,9)[5,1], which also has the permutations: 

7r I =(I 3)(24)(56)(79) 7r2 = (12)(35)(46)(79) 

56789 

7 ý14 

234 25689 1234 

ýl 9 1234 

2345 45678 

78134 67891 89123 
57893 

12569 12456 23456 34567 

12356 13456 
78934 0 -0-- 78912 

24789 

12 56-, -3 4569 

34689 78125 

Figure 5: B(3,9)[5,1 ] 

These examples are typical; we generalize as follows. 

B(3,7)[3,0] is an example of the general B(3,4a - 1)[2a - 1,0]. We generalize the 

colouring of the latter as follows, beginning with C12: 
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vo (i e WI) 1,2,..., a-1, a, 2a -I 
VI 2a, 2a + 1, ..., 4a -2 
V2 4a- 1,2a-2 
V4 4a-2 . ....... 

2a-3 

................................................... 

v2, (ie W2) 3a,..., 4a - 1, a-1. 

The overlap between W, and W2is thus 1,2, ..., a-1. We then colour W3 

1,2,..., a-1,2a, ..., 3a - 1. This overlaps by the correct number of colours with W, and 

W- Ir., and one possible choice of permutations is 

7r, = (I ... a- 1)(a... 2a - 1)(2a 3a)(2a +1 3a + 1) 
... 

(3a- I 4a- 1) 
7r2 = (I ... a- 1)(3a 

... 
4a - 1)(a 2a)(a +I 2a + 1) 

... (2a- 1 3a- 1) 

W1, W2and W3are all coloured using 4a -I colours; all colours are used. 

B(3,9)[4,0] is an example of the general B(3,4a + 1)[2a, 0]. We colour the latter: 

vo (WI) 1,2,..., 2a 
VI 2a + 1, 

..., 
4a 

V2 4a+ 1,1,..., 2a- I 
V3 2a,..., 4a -I 
VS 2a - 4a -2 
............................................... 
V2a+l (W2) a+ 2a, 2a + 3a 

We set W3 1, ..., a, 2a + 1, ..., 3a. This gives a possible set of permutations: 

7r, =(I a+ 1)(2 a+ 2) ...... (a 2a)(2a +I 3a)(3a +I 4a + 1) 
7r2 = (a +I 2a + 1)(a +2 2a + 2)... (2a 3aXi a)(3a +1 4a + 1) 

W1, W2and W3are all coloured from 4a +I colours, without using colours 

3a + 1, ..., 4a + 1. 0 
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Chapter 5: 'Petersen' Graphs P(p, q) 

We follow Watkins [27] in using the term 'generalized Petersen graph' (sometimes 

abbreviated to 'GenPet') to refer to graphs (denoted by P(p, q)) which may be drawn with 

an outer cycle ofp vertices v, (i=0,... p- 1), each joined to an inner vertex wi, wi being 

joined by an edge to wi., (.. d, ). We use the tenn 'Petersen graphs' loosely to include 

generalized Petersen graphs in whichp > 5. 

Following [27], we need consider only graphs in which I<q<E, since P(p, p- q) is 2 

isomorphic to P(p, q). Ifp is even, q=E produces a degenerate graph in which each inner 2 

vertex is joined to its opposite, and we do not consider these. 

As we shall show, there is a rather small class of GenPets whose overlap parameters can be 

fully described using Corollary 4.2 (this class includes the Petersen graph itself). In the 

main, however, the overlap parameters of these graphs seem to be difficult to find. We do, 

however, describe a systematic approach to theftactional chromatic numbers of GenPets; 

in particular, Theorem S. 8 expresses Xj(P(p, q)) in terms of the sizes of certain maximal 

independent vertex sets of P(p, q). 

The proof of this result involves showing that a colouring of P(p, q) with Xj(P(p, q)) 

colours can always be constructed either as an equable colouring or as a juxtaposition of 

two equable colourings. 

We begin the chapter with an extended description of equable colourings of GenPets, by 

devices that we call p-plets. 

5.1 Constructing equable colourings of GenPets 

We can sometimes find an equable cOlOuring of P(p, q) where there is no equable 

colouring of the outer cycle, that is, where there is no equable colouring of C.. A simple 

example of this is provided by P(5,2)[5,2]. There is no equable Cs [5,2] colouring, by 

Corollary 1.5 of Chapter 1, so that we cannot colour the outer vertices with a cycle of 
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single frequency. We can, however, colour them using C5 [3,2] and C5 [2,0], whose 

frequencies are 3 and 2 respectively. We then colour the inner vertices with the same 

colours, but with the frequencies reversed, producing a colouring in which N= 10 andf= 5 

(we note that an equable colouring is not necessarily efficient-, the graph in question can be 

coloured more efficiently but not equably using only 8 colours). 

Colours 

123456789 10 
Vertices 

0 vo xxxxx 
U V, xxxxx 
T V2 xxxxx 

E V3 xxxxx 
R V4 xxxxx 

I wo xxxxx 

N W, xxxxx 
N W2 xxxxx 

E W3 xxxxx 

R W4 xxxxx 

Essentially, this is ajuxtaposition of two cyclic colouringsp I +/. 12,, wherea I cycles 

through the colours 1,2,3,4,5, with d=1. andU 2 cycles through the colours 6,7,8,9, 

10, with d=2. (However, ju 1 and/12are not true overlap colourings as they do not give 

constant numbers of colours to the vertices. ) Note that, on renumbering the second colour 

set 6 1. -+ 6,8 ý-+ 7,10 ý--* 8,7 ý-* 9,9 F-+ 10 , 

we produce an isomorphic colouring in which both cycles have d=1. 

Colours 
123456789 10 

Vertices 
0 vo 
U V, 
T V2 

E V3 

R V4 

I 
N 
N 
E 
R 

WO 

WI 

W2 

W3 

W4 

xxxxx 
xxxxx 

xxxxx 
xxxxx 
xxxxx 

xxxxx 
xxxxx 
xxxxx 

xxxxx 
xxxxx 
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It might appear that an equable colouring of (P(p, q)) necessarily requires more colours 

than an equable colouring of C, with the same parameters r, 1, but this is not always so. A 

counter-example is P(5,2)[3,0], which has an equable colouring with N= 10, whereas an 

equable colouring of C5 requires N= 15. 

Attempts at finding colourings can be made using actual drawings of graphs, but these 

occupy much space. We assign colours; more compactly by representing vertex-pairs (VP) 

of outer and inner vertices with sets of p symbols (p-plets), each p-plet having the same 

number of colours assigned, as follows. In a given p-plet, let colour sets So, To be assigned 

to vertices vo, wo, respectively. Then we assign the colour set So +j (modulo p) to vertex vj 

and colour set To+j(modulop)tovertex-wj, forj= 1, ... p-1. This ensures that each 

vertex receives the same number of colours, and that no vertex receives the same colour 

twice. We assign colours using symbols with the following meanings: 

0 colour assigned to outer vertex only; 

m colour assigned to inner vertex only; 

colour assigned to both outer and inner vertices; 

13 colour not assigned to either t3W of vertex. 

The second colouring on the previous page is then expressed 666ME *m[3*13. 

The cyclic structure of a p-plet means that each p-plet has constant frequency (counting I 

for each 9 and m and two for each *), and so is equable. The nwnber of p-plets will 

depend on r and A. In total, we need A occurrences of *. The outer vertex will then require 

r-A occurrences of 0 and the inner vertex r-A occurrences of m. The number ofp-plets 

must be great enough to accommodate 1+1 + 191 + INI symbols. In any one p-plet, the 

number of overlaps need not be constant, nor outer and inner overlaps be equal, but the 

total number of each over all p-plets must be ;.. 
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A simple example makes the method plain. Consider colouring P(5,2) [6,1 ]. One colour 

in each VP, the overlap colour, is provided by the single *; in addition, each of the pair 

will have a finther five colours, so that we have eleven symbols to include. Then we need 

at least three 5-plets. With the * counting as two, we need to place four colours in each of 

the three 5-plets, with exactly one overlap among the 0 and one overlap among the 0. One 

example is the following: 

*00013 GOMMO 001: 300 

In this example, the outer and inner overlaps occur in the second and first 5-plets 

respectively; there is, then, no further overlap in the third. 

Colours 
12 3 4 5 6 789 10 11 12 13 14 15 

Vertices 
0 vo x x x x x x 
u VI x x xx x x 
T V2 x x xx x x 

E V3 x x xx x x 

R V4 x x x x x x 

I wo x x xx x x 

N wl x x xx xx 
N W2 x x x x x x 

E W3 x x x x x x 

R W4 x x xx x x 

This colouring is a juxtaposition it I +/12+P3, eachpi being described by a single 5-plet 

representing a cyclic coIouring arrangement (In this case, each 5-plet allocates two 

colours, per vertex, butp 1 and P2 separately do not have the property of constant overlap. ) 

A colouring that can be constructed in the above way is a p-plet colouring. Such 

colourings may be characterized as follows. A colour cLass is the set of vertices that 

receive a particular colour, then, in ap-plet colouring, each rotational image of any colour 

class is a colour class. The use of the symbols listed above can greatly reduce the effort 

required to establish that a given P(p, q) [r, A] has no equable p-plet colouring. As an 

example, consider P(5,2) [9,7]; this is large enough to require considerable trial-and-error 

on an actual diagrarn. 
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We need 7++29+2a. Since there are II symbols, we need at least 3 5-plets, and in 

order to distribute 18 colours (recalling that 7* counts as 14 colours) equably we need 3, 

6,9 or 18 5-plets. We can eliminate at once: 

18 with 1 colour each (because of the *); 

9 with 2 colours each (too few overlaps between outer vertices and between 

inners); 

6 with 3 colours each (at least one VP will have at least 2 *). 

This leaves only 3 with 6 each. Only two affangements are possible. One will have 3 *, 

one 2++20, and the third 2*+2M. The other arrangement has one 6-plet with 3 *, 

and the other two each 2*+10+ 10. In either case, the maximum number of possible 

outer overlaps is then 6, as is the ma)dmum number of inner overlaps, showing that there is 

no equable p-plet colouring. 

Some graphs which have a p-plet colouring may have a more economical non-p-plet 

colouring; a small example is P(6,2) [3,2]. The p-plet method gives a colouring using 12 

colours. Trial-and-error on the diagram produces a colouring with only 4 colours. It is 

worth, for the record, listing the colouring: 

Colours 
1234 

Vertices 
0 vo xxx 
U V, xxx 
T V2 xxx 

E V3 xxx 

R V4 xxx 

vs xxx 

I wo x x x 
N wi x x x 
N w2 x x x 
E W3 x x x 

R W4 x x x 

WS x x x 

Note that, though equable, this colouring does not possess the cyclicity property ofp-plet 

colourings. 
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New Colourings from Old 

Complements 

The colouring obtained by complementing ap-plet colouring is again ap-plet colouring, 

obtained by exchanging * with E and * with 1: 1. As in Chapter 1, we have the relations: 

N, = N" ni = n; ri =N-r; Ai =N-2r+A, 

which hold provided that there is no colour that appears at every vertex. 

For example, from the colouring of P(S, 2) with [r, A] = [4,1], in which M= 10, we can 

obtain the colouring with [r, A] = [6,3]. 

Chainine 

We may use the homomorphism. construction referred to as 'wrapping' or 'chaining' in 

Chapter I to obtain a colouring of P(ap, q) from a copies of a colouring of P(p, q). Annex 

1.1 illustrates the construction of the graph P(l 4,3) from two copies of P(7,3), and it is 

straightfom-ard to check that if each copy is given an [r, A] colouring, then the inserted 

edges (coloured green in the figure) have overlap A, so that we obtain an [r, A] colouring of 

P(14,3). 

GenPet Automorphisms 

The graph P(p, q) has p-fold rotation symmetry; however, the colourings of P(p, q) that 

arise from a given colouringp differ only trivially from p itself 

There are, however, bijections of some Gen. Pets that produce non-trivial new drawings: 

(i) Ifp * 2q, then a colouring of P(p, q) produces a colouring of P(p, q -p) by the 

bijection v, -+ v,,. i, wt -1- wp. -i (corresponding to reflecting the drawing about an axis 

throush vo and wo). 
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(ii) If p and q are coprime, then the inner vertices lie on a p-cycle, and we may 

redraw the coloured graph with the inner and outer p-cycles interchanged, to produce a 

colouring of a drawing of P(p, s), where sq =- 1 (modp). That is to say, we use the bijection. 

Vi I-* Wsi, Wl " Vqi. 

(iii) If both of the conditions p# 2q and p, q coprime apply, then we may obtain a 

fourth drawing of P(p, p- s), by composition. This corresponds to the fourth bij ection of 

the Klein group, vi ý+ wi, wi 1-+ v-qi. 

We note that these group elements are not always distinct; for example, there are cases 

where s= 

5.2 Usingp-plet colourings 

The case I=r -I 

Before proceeding to the determination of the fractional chromatic numbers, we show that 

thep-plet construction enables us to say, for a range of values of r, which of the graphs 

P(p, 2) have an equable [r, r- I] colouring. 

Proposition 5.1 The graph P(p, 2) has a [(p - 1), (p - 2)] colouring with 

N=p, f = 2(p- I). 

Proof We coloura singlep-pletwithp-2 *, one* and ones 

** +00. 

There arep-2 outer overlaps andp-2 inner overlaps. Each colour occursp- I times 

each in outer and inner rings. 0 

Proposition 5.2 The graph P(p, 2) has a [(p - 2), (p - 3)] colouring with 

N-p, f - 2(p-2). 

Proof We colour a singlep-pletwithp-3 *, one*, ones and one [3: 

** *0013. 

There are p-3 outer overlaps andp -3 inner Overlaps. Each colour occurs p-2 

times each in outer and inner rings. N 

54 



Proposition 5.3 The graph P(p, 2) has a [(p - 3), (p - 4)] colouring with 

N=p, f = 2(p-3), wherep* 6. 

Proof Wecolourasinglep-pletwithp-4 *, one *, one m andtwo[3: 

** 0*13013. 

There are p-4 outer overlaps and p-4 inner overlaps. Each colour occurs p-3 times 

each in outer and inner rings. m 

Proposition5.4 The graph P(p, 2), has no equable [r, r- 1] colouring for r; ->p. 

Proof To colour P(p, 2) with [p, p- I] we need p-I*, one * and one m. 

This will entail using more than one p-plet, which will break the sequence 

and reduce 1, so that the colouring is impossible. Afortiori, a colouring with r>p is 

impossible. 0 

The Fractional Chromatic Numbers of Generalized Petersen Graphs 

in this section we work towards a general theorem that gives the fmctional chromatic 

number of a GenPet in terms of the properties of its maximal independent vertex sets 

(MIVSs). Thus, we now consider colourings with A=0. We continue to work withp-plets; 

however, since A=0, thep-plets have no * symbol. 

We need to translate ap-plet symbol Pi into a description of the corresponding MIVS, M, 

The symbol P, gives the colour sets So, To, which describe the vo and wo rows of a 

particular 'block' of the colouring matrix (such as, for example, the block describing 

colours, II to 15 on page 42). In order to fmd the corresponding Mj, one must read the first 

column of the block. A rule is needed to describe the NffVSs in terms of the p-plet 

symbols. In general, if thejth colour of the p-plet is in the colour set So, then the 

(p -j + I)th outer vertex, vpj+i. is in the N"S (counting modulo p), with a similar rule for 

To and the inner vertices. 
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Proposition 5.5 Suppose that, for i=1,2, P(p, q) has an MVS, Mj, corresponding to a 

p-plet P, vAth at 9 and hi m (that is, a, vertices in the outer cycle and b, vertices in the inner 

cycle), where a, < bi and a2 > b2. Then 

XI(P(p, q)) :5 
p(bi -a, +a2-b2) 

bia2-b2al 

Proof Each p-plet A produces a non-overlap colouring, where each outer vertex receives 

a, colours and each inner vertex receives b, colours. Thus, the colouring corresponding to 

b, - a, copies of thep-pletP2 and a2-b2 copies of P, has 

(bi -al)a2+(a2-b2)al =bla2-b2al =(b, -al)b2+(a2- b2)bl 

colours at each vertex. 

We have produced an [r, 0] colouring using N colours, where r=b1 a2 -b 2a 1 and 

N=p(b, -al +a2-b2). ThUS, 

XAP(p, q)) :5 
p(b I-a, + a2 - b2) 

, as required. b ja2 - b2al 

Let us say that an [r, A] colouring using N colours has efji'ciency (see Chapter 1, p 15) 

c= -L. Thus, to find yj(P(p, q)), we need to find a colouring of minimum E 
and thus of Nr 

maximum efficiency. The next proposition considcrs any [r, 0] Colouring of P(p, q), not 

necessarily equable and not necessarily cyclic, and produces from it ap-plet colouring with 

the swne efficiency. 

Proposition 5.6 Letu be any [r, 0] colouring of P(p, q) using N colours and letp i be the 

colouring achieved by rotating the colours Up by i positions (i = 0, ... ,p- 1). 

Then p=po+---+. U, -i is a p-plet colouring with the same efficiency as. U. 

Proof Consider any particular colour ofpo; its occurrence in the vertex set can be 

described by ap-pletP involving [3, sand m. With its corresponding colours ing PP-1, 

it gives rise to the cyclic colouring described by P. Thus, p is a sum ofp-plet colourings 

and is a p-plet colouring. Clearly, p is a [pr, 0] colouring using PN colours, and so has the 

same efficiency as it. m 
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Proposition 5.7 There exists a most efficient colouring that is also ap-plet colouring 

formed either byjust onep-plet or by a combination ofjust two p-plets as in 

Proposition 5.5. 

Proof By Proposition 5.6, we may fmdXj(P(p, q)) by searching for the most efficient 

p-plet colouring. Consider such a colouring, formed as above by the p-plets 

PI, ... , 
PA, where the p-plet P, corresponds to an independent vertex set with aj outer and bi 

inner vertices. 

Suppose that we take c, copies of each P, Q k). The resulting colouring has Ek cjaj jI 
k 

colours per vertex on the outer vertices and cibi on the inner vertices. Thus, we require 

kkrr 
E ciai =E cibi (= r) and we wish to maximise the efficiency --- jI k-i NPE Ci 

If we plot the points (ai, bj) on the xy plane, then the point 
(E ciai, I cibi) is in the convex EC, 

hull H of the (ai, bi), and has 7, cjaj =I cibi if and only if it lies on the line y=x. 

Therefore, we maximise the efficiency (hence minimising the estimate ofXj(P(p, q))) by 

firiding the intersection of the boundary of H with the line y=x. This must occur either at 

a point (aj, a, ) or on the line segment between two points (ai, bj), (aj, by). E 

We must finally consider how the most efficient single p-plet or pair ofp-plets may be 

identified. 

The GenPet P(p, q) may have many NHVSs, but from the foregoing analysis, the only 

relevant information is the numbers of outer and inner vertices. Thus, let 
.4= ffai, bj)) be 

the set of all pairs (a,, bi) corresponding to the outer and inner vertices of JAWSs. 

If aj: 5 aj and bi 
--g 

by, at least one of the inequalities being strict, then (ai, bi) will not 

contribute to a 'most efflicient' colouring, as it does not lie on the boundary of H. 

Therefore, we need consider only the set A' Of 'winners', a winner being a member (a, b) 

of A such that, for all j, either a ý: aj or b 2: bi. 
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ThenA' can be ordered as A'= ((al, b I), (a2, b2), -..,, (ak, bk)), where the a, are in 

increasing order and the b, are in decreasing order. 

Theorem 5.8 

Case I If aj < bi, (i = 1,... 
, 
k), then Xj(P(p, q)) =P ak; 

Case 2 If bj< aj, (i = 1,... 
, 
k), then Xj(P(p, q)) =P- biv 

Case 3 Otherwise, if al = bi for some i, then. Zj(P(p, q)) 
P 

- aj b,, 

p(bi - aj + aj - by) 
Case 4 Otherwise, yj(P(D, q)) = mini biaj - bjai 

11 

the minimum being taken over all pairs such that aj < bi, aj > bj. 

Proof 

Case I If aj < bi Q=1,... , 
k), then no sum of colourings corresponding to WVSs will 

produce a colouring with equal numbers of outer and inner colours. We must instead take 

a non-maximal IVS with equal such numbers. We therefore choose the p-plet 

corresponding to an IVS with ak outer and ak inner vertices. 

Cases 2 and 3 follow similarly, and Case 4 follows from Proposition 4.5. 

We note that Case 2 does occur. Ifp = 3q, then the inner vertices occur in triangles and 

bi=E Thus, yj(P(p, q)) = 3, as we expect from the existence of triangles 3* 

.- -_q=2 Precise Values Qf ýf fQr 

2) We consider first GenPet graphs in which q=2. We can colour four consecutive 

vertex pairs (VPS) *one, but in order to avoid adjacent vertices having identical colours, 

we colour any f-Ive consecutive VPs 000013, and no five consecutive VPs can contain 

more than four independent vertices. Moreover, for P(6,2), 
..., P(9,2), ap-plet must 

contain at least two 13. Then we have: 
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10 5 P(5,2) This is Case 3; vj(P(5,2)) T f. Clearly, by using the homomorphism from 

P(5m, 2) to P(5,2) resulting from 'chaining'as described in Section 5.1, we obtain 

5 
Xj(P(5m, 2)) = y, where m is any positive integer. Moreover, the colouring of P(5,2) is a 

[2,0] colouring, and thus (for any m) X2(P(5m, 2)) ý X2(C5) = 5, so that by Corollary 4.2, 

P(5m, 2) has the same overlap profile as C5. 

P(6,2) This is Case 3. We colour it 90001313, since the 6th VP has both outer and inner 

vertices adjacent to other vertices. It is convenient to entitle it P(5 + 1,2). 

P(7,2) This is Case 4. We colour it emneaor3 ONNOON13. (P(5 + 2,2)) 

P(8,2) This is Case 3. We colour it 00001: 10 N 13. (P(5 + 3,2)) 

P(9,2) This is Case 4. We colour it emmooomeo ONNOMONED. (P(5 + 4,2)) 

Each of the above colourings may be augmented by inserting the sequence *000, since it 

is compatible at each end. Colourings of P(5m, 2), P(5m + 1,2) and P(5m + 3,2) are thus 

all Case 3, while P(5m + 2,2), P(5m + 4,2) are all Case 4. These colourings consist of 

p-plets each with the number of 13 compatible with the fact that no five consecutive 

symbols can avoid 13. That is to say, a maximum IVS always has IP5 1 13 symbols. 

To determine Xj(G) in each case, we start from the colouring of the least p and increase 

a(G) by 2 for each additional 5-plet. 

G IV(G)l a(G) XAG) 

P(5m, 2): lom, 4m 5 
2 

p(5m + 1,2)* 10m +2 4m 5m+ 1 
2m 

Pom + 2,2) 10m +4 4m+ I 10m+4 
4m+l 

P(5m + 3,2) 10m +6 4m+2 5m+3 
2m+l 

P(5m + 4,2) 10m +8 4m+3 10m+8 
4m+3 
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* For m=1, P(Sm + 1,2) contains two triangles of inner vertices, corresponding to the 

fact that Xj(P(6,2)) =YI (P(6,2)) = 3. By Corollary 4.2, P(6,2) has the same overlap 

profile as C3. 

UpperBoundsony forg=3.4.5 

P(p,.. 31 We note first that for all m, s, Xj(P(2m, 2s + 1)) = 2. Thus, all these GenPets are 

bipartite. 

We distinguish three categories ofP(p, 3) with p odd, corresponding top -= 1,3,5 (mod 6). 

In each case we construct two p-plets, vAth a, < b, and a2 > b2 respectively, in order to 

apply Proposition 5.5. 

(i) These have a<b, that is, 101 < INI, and are built of a sequence of 6-plets mmm*139 with 

endings: 

P(6m+1,3): mmmol3*... mmmoc3* E3 101 = 3m, 161 = 2m; 

P(6m+3,3): annerie ... ungel: lib E]e[: ] 131 = 3m, jel = 2m + 

P(6m+5,3): MEN9130 ... MEM41130 MEMOD 101=3m+2, lel=2m+l. 

(ii) Thcsc havc 191 > Jul: 

E*E* ............ 00090013 

P(6m+1,3) lml=3m-1,101=3m; 

P(6m+3,3) lml=3m, 101=3m+l; 

P(6m+5,3) lml=3m+l, 1*1=3m+2. 

Then by Proposition 5.5, Xj(P(6m + 1,3)) :5 
(m + 1)(6m + 1) 

3M2+2m 

2(6m+3) 2m+ 1. yj(P(6m + 3,3)) :: 9 6m -m, 

Xj(P(6m + 5,3 
(m + 1)(6m + 5). )) :9 3M2+4m+2 

and, generalizing, for a r= [ 1,51 

MP(6m + a, 3)) :9 
(m + 1)(6m + a) 

3M2 +(a- I)M+ -1 2 
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We con . ecture that these bounds are correct. 9 

We note that, for each a F- [1,3,5], lim (Xj(P(IOm + a, 3)) =2 M-#00 

We note also that the smallest odd cycle in P(6m + 3,3) is of length 2m + 1, and hence the 

inequality is an equality: 

2m+l 
]Proposition 5.9 Xj(P(6m + 3,3)) =m 0 

It would be tempting to conclude that P(6m + 3,3) has the same overlap profile as C2,,,; 

but since the colouring construction does not give an m-fold colouring but rather a 

(3n? )-fold colouring, we cannot draw this conclusion. We do, however, conjecture that the 

overlap profiles are the same. 

P(P. 5) We consider colourings of P(p, 5) before those of P(p, 4) because the latter 

present problems that have not occurred in P(p, 2) or P(p, 3). Once again, we construct 

two p-plets in each case, with a<b and a>b respectively. 

We consider only odd values ofp, since Xj(P(2m, 5) =2 for all m. 

(i) Each colouring in which 101 > 191 is based on a sequence of m-I 10-plets: 

onsmomenem, each with Sm and 4o, and with a final 

I I-plet ONEMON01: 301: 30 

13-plet 00000001: 1013130[3 

15-plet OMEN* 0 013001301: 1013 

17-plet *MEMO SGOOSCIONOM on 

or 19-plet 

(ii) Each colouring in which Iml < lel consists of an alternation *men ... omemolneloo; a 

colouring for 10m +a VPs consists of 5(m - 1) +3E and 5(m - 1) +50 

We represent the maximum independent vertex set in which 101 ýt 101 by M, and that in 

which IMI: s 101 by A. 
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Using these, we construct the table: 

I 1 1 21 
p 101 101 101 

lom+ 1 5M-1 4m 5m-2 5m 
10m+3 5m 4m+ 1 5m- 1 5m+ 1 
lom+5 5m 1 4m+2 5m 5m+2- 
10m+7 1 5m+2 I 4m+3 5m+ 1 5m+3 
IOM +9 1 5m+ 31 4m+4 5m+2 5m+4_ 

There is a general pattern to be described for P(I Om + a, 5) (a = 1,3,7,9). (We 

discuss P(lOm + 5,5) separately. ) In the MIVS, we note that Iml - 1*1 =m-1, and in the 

altemative IVS ('AIVS'ý lei - Iml = 2. 

Thus, the denominator ofXj(P(p, 5)) = (m - 1)(101 in AIVS) + 2(1 *1 in T&VS), and 

the numerator is (a + I)p. Then, 

(P (10 1, 
(m + 1)(I Om + 1) 

m(5m + 3) 

(m + 1)(1 Om + 3) 
Xj(P(10m+3,5)) : ýý 5M2+4m+l 

(m+l) 10m+7) 
yj(P(10m+7,5)): g 5M2+6m+3 

(m IXIOM+9) 
MP(10m+9,5)) 5M+2+7m+4 

and, generally, 

MPO Om + a, 5)) :: 9 
(m + 1)(10m+a) 
5M2 +. et5 a-I * 2 M+ 2 

PO Om + 5.5) 

When m=1,1*1 > Iml. The inner vertices lie on triangles, and Xj(P(15,5)) =3 

When m=2, jol = 101 in M, and jol > Iml in M2. (Case 2). Then 

Xj(P(25,5)) . 5; 
25 
lo* 

2m+ I When m>2, Xj(P(I Om + 5,5)) :9m 

We note that for all a c: [ 1,3,5,7,9], 1 im (Xj(P(I Om + a, 5)) = 2. M-10 

Again, we conjecture that these bounds are correct. We also conjecture that P(lOm + 5,5) 
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shares the overlap profile of C2,.. j. 

E(R-Al 

Unlike the three colourings for q=2,3 or 5, there appears to be no general pattern of 

colouring for q=4. 

The minimal graph is P(9,4). Where two alternative colourings are required to give in I= 

jol, we label the colouring in which Iml > jol (a), and that in which Iml < jol (b). 

There is a basic 8-plet, which would constitute a degenerate graph, but which can be 

prefixed to other colour colourings. We label RONEGNOE3 (a) and memoncno (b). 

There is also one more version in which Iml = lei: moome[loo. 

P(9.4) mummeoooe (a) ON006130130 (b) Xj(P(9,4)) : 5, -L8 7 

P(I 0.4) MOMMON013013 Xj(P(10,4)) :5 
jo 
4 

P(I 1.4) MONE90000139 (a) MONNON613*00 (b) Xj(P(11,4)) :5 
22 
9 

P(I 2.4) MEMO 00 0001390 Xj(P(l 2,4)) :! g 3. 

(m 00m000 13 013 013)*Available for chaining as a (b) 

P(13.4) 

P(14.4) 

P(15.4) 

P(16.4) 

P(I 7.4) 

P(I 8.4) 

P(19.4) 

SOMMOMOMMOM013 

omen eC3moE3meE3mo 

NESHOMMOMM0130130 

MOMOUNGS6130130 (d) 

Xj(P(13,4)) 
39 
16 

EMOMOOMOR0130130 (b) 
Xj(P(14,4)) 

28 
ll* 

Xj(P(15,4)) 
15 
6 

momnomo[3000000013 (a) m*mm*m9E3memo[3*E3* 

00 0000 00 MON09130130 

MOMMOSOMMOMMON61390 (c) 

MOMOOMOC30000130130130 

mommemoOmommemooome 

f(20.4) P(I 0,4) + P(I 0,4) 
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. Zj((P(16,4)) 
48 
20' 

Xj(P(17,4)) 
17 
7 

Xj(P(I 8,4 :5 
54 
22* 

Xj(P(19,4)) :5 
19 
8 

Xj(P(20,4)) :5 
20 
8 



We can use these, byjuxtaposing and chaining, to give values of Xj(P(p, 4)). forp>20. 

These values are not necessarily minimal. For example, chaining three copies of P(10,4) 

suggests Xj(P(30,4)) = 
10, 

whereas we find a colouring in which M, has 13m + 120 and 12 

M2has 7M + 15 0, giving the slightly more economical value 
270 
ill' 

Annex 5.2 is a table of values of XI(P(p, q)) for values of (p, q) from (5,2) to (30,14). 
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Annex 5.1 

Parameters Nj for Minimal Possible Equable Colourings of Petersen and 
Generalized Petersen Graphs for Given p, q, r, 1. 

P(5,2) I P(6,2) P(7,2) P(7,3) P( 2) 1 P(8,3) P(9,2) P(9,3) P(9,4) 
r A N If IN f N f 

,N 
f N f N f N f M If N L 

1 0 3 2 3 4 7 2 7 2 4 4 2 8 3 6 3 6 3 _ 6 
2 0 5 4 6 4 7 4 7 4 8 4 4 8 6 6 6 6 6 6 
2 1 5 4 3 8 7 4 7 4 4 8 4 8 3 12 3 12 3 12 
3 0 10 3 9 4 14 13 14 3 18 6 6 8 9 6 9 6 9 6 
3 1 5 6 6 6 7 6 7 6 8 6 6 8 9 6 9 6 9 6 

2 5 6 14 9 7 6 7 6 8 6 4 12 9 6 6 9 9 6 
4 0 10 4 12 4 14 4 14 4 16 4 _ 8 8 12 16 12 6 12 6 
4 11 10 4 12 4 14 4 14 4 8 8 8 8 -9 8 9 18 9 8 
4 12 10 4 6 18 7 8 7 8 18 8 8 8 6 12 6 12 6 12 
4 3 5 8 6 

,9 
7 8 7 8 x x 8 8 x x 9 8 9 8 

5 0 25 2 15 4 14 5 14 5 - 16 5 - 10 - 8 15 6 -15 6 15 6 
5 1 25 2 12 5 14 5 14 5 16 5 10 18 15 6 9 10 18 5 
5 2 10 5 12 5 14 5 14 5 16 5 8 10 9 lo 9 lo 9 lo 
5 3 10 5 12 5 7 10 7 10 8 10 8 10 9 10 9 10 9 -10 
5 4 X X 16 10 7 

. 
10 7 10 8 10 8 10 1x X- 9 10 x x 

6 0 15 4 18 4 21 4 21 4 16 6 12 8 18 6 18 6 18 6 
6 1 15 4 18 4 21 4 21 4 24 4_ 12 8 19 s 18 6 18 6 
6 2 10 6 12 6 , 14 6 14 6 16 6 -12 8 18 6 18 6 18 6 
6 3 10 6 9 8 14 6 14 6 12 8 1 8 9 12 9 12 12 9 
6 4 10 6 8 9 14 6 14 6 16 6 12 8 9 12 9 1 12 12 9 
6 5 X IX X X 7 12 7 12 8 12 8 12 9 12 X X 9 1 12 
7 0 35 2 21 4 49 2 49 2 28 4 14 8 21 6 21 6 21 6 
7 1 35 2 21 4 49 2 49 2 16 74 14 8 18 7 18 7 18 7 
7 2 35 2 21 4 49 2 49 2 16 7 14 8 18 _ 7 18 7 18 7 
7 3 X X 12 7 14 7 14 7 16 7 14 8 18 7 18 7 18 7 
7 4 10 7 12 7 14 7 14 7 16 7 14 8 18 7 19 7 18 7 
7 5 10 7 X X X X X X R X -x x 9 14 9 14 1 9 14 
7 6 XI XI X X XI X 

--- 
X X 18 

- 
14 8 14 91 14 9 14 1 9 14 

8 0 20 41 24 41 28 1 4 28 4 1 6 -8 16 - 8-- -24 - T- 61 24 61 24 6 
8 1 20 41 24 4 28 2 28 2 16 8 16 8 18 8 18 8 18 _ 8 
9 2 20 4 24 4 14 8 28 2 16 8 

_16 
8 18 8 18 8 18 8 

8 3 20 4 24 4 14 8 14 8 16 8 16 8 1-8 8 18 1 8 18 8 
8 4 20 4 12 8 28 2_ 28 , 2 16 8 16 8 12 12 12 1 12 12 12 
8 5 x x 12 8 14 8 14 8 16 8 16 8 18 8 18- 8 18 8 
8 6 10 8 12 81 14 1 8 14 8 16 8 16 8 x x is 8 12 12 
9 7 XI XI X XI XI X X X X X X -x 9 16 9 16 9 16 
9 0 45 21 27 4 42 1 3 42 3 24 6 18 8 27 6 27 6 27 6 
9 3 30 3 27 4 21 1 6 21 6 241 6 18 8 2-7 -6 27 6 27 6 
9 2 30 3 27 4 21 1 6 21 6 24 -6 1-8 -8 27 6 27 6 27 6 
9 3 15 6 Is 6 21 1 6_ 21 6 24 6 16 9 18 9 18 9 18 9 
9 4 15 6 18 6 21 6 21 6 24 

- 
6 16 -9 is 9 18 91 18 9 

9 5 Is 6 18 6 21 61 21 6 
- 

2 4 
- 

-6 1-6 -9 1-8 9 18 91 is 9 
9 6 15 6 12 

- 
9 21 6 21 6 1 

- 
2 4 -6 1-6 -9 1-8 9 18 9 1& 9 

9 7 X X X X X X X X T X X X X X x x x x X 9 8 x x x x x x x x x x x X X --5F- x x x x 
10 0 50 2 30 f 4 35 1 4 35 4 40 4 20 8 36 5 36 5 36 5 
10 1 30 2 30 4 35 4 35 4_ 40 4 20 -8 30 5 36 5 36 5 
10 2 25 4 24 5 35 4 35 4 40 

- 
4 20 8 36 5 18 10 36 5 

10 3 23 4 24 5 35 4_ 35 4_ 20 8 20 8 36 5 36 5 36 5 
10 4 20 5 24 5. 35 4_ 

- 
35 4, 20 2 8 16 

- 
10 18 10 18 10 18 10 

10 5. 20 5 15 8 35 
. 

4 35 4 20 
- 

8 16 
- 

1-0 1-8 -10 1& 10 18 10 
10 6 20 , 5 15 9 10 14 10 IT 1 6 

- 
10 

- 
1 6 

- 
10 -18 - --lo 18 10 18 10 

10 7 20 5 15 8 10 14 10 14 T6 1 0 1 6 10 18 10 18 10 
10 8 x X1 12 10 10 14 10 14 16 10 16 10 -x -x 1 

x 
10 9 x xI xI X x XI X X XI xI x 

-1 
-xl- I -x -x 
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Annex 5.2 

Table of Values of XXP(p, q)) 
. . .... 9 f 16 T1f ji b 4 5"' 16 1 1*8 19 

5 

6 3 

7 

s 2 3 
- 9 IF 3 7 

_ - 
7 

I 0 T 2 T 
' 11 = 

4 
= 

9 9 4 
12 - 2 3 2 9 

, - 13 = 
- 

" 
- 13 L_ 3 L- 

3 7(. T6 5 5 

1 14 
i 

IL 
II 2 2i 

-8 II 
2 = 

II 

_ _ - - T a 3 
2 2 

- 
6 

_ 
7 T 

16 2 T 2 !1 2 - - 
3 20 13 1 

17 -L4 11 j7 U 2 -1 17 34 
- - 13 22 7 7 22 T 1 3 

- - - - 1 8 Tg 2 a 2 3 2 " 2 
'- - 

7 7 7 
19 = = n 19 76 38 39 

- - 15 33 8 r r3 75 Ts T3 
: 20 .1 2 -U 2 z(, 2 2 2 
1 2 

_ 
4 8 2 

_ _ _ ý = = 63 
- 

42 - 
T = - - 

8 9 F 76 T7 TT 

- 
I 

22 44 2 11 2 . 
14 2 7 Z, - 2 9- 

- - - - - 23 = = = 
H 

= = :_ 67y 
__ 

H 
9 41 

_ 
9 29 18 19 41 279 19 9 

24 48 2 4M 2 Z4 1 2 3 2 2 19 19 10 
25 2_0 ID 

2 56 lo 2 21 56 
26 = 2 2 26 

- 
2 26 2 

5 21 T I 
27 . 

24 Z7 27 N1 3 Ill- 54 
j. 21 

7 
12 11 33 26 12 12 W, 

29 71 2 2_8 2 2 2 

- 
1, 

_ 
11 , 12 I 

2 9 =1 M ?; / 
- 

A 

- 
23 56 T8 78 28 56 W 

30 2 2 2 2 3 2 

31 '52 ýL24 24 
_L_ 

717 
- 
186 --TT- 

12 85 25 54 54 93 23 93 85 - - - 12 F 3 2 2 2 2 2 2 2 2 
ý__ _ - __ _ _ _ 3 3 = rýT 3 _M 

_ 
1.1 15 

- 
58 

ý5 1 
-8 2 2 2 2 2 2 2 27 

35 a 2101 2 
2 97 2 W7 

- 2 
3 6 IM 2 2 2 2 2 3 __2 _ _2 2 14 

7 37 E 259 149 MT - - 
29 120 97 

r__ _ 
TT 

38 : 2 2 2 2 2 2 2 
- - 

15 15 
-- - 

1 1 1 1 1 1 1 2 
3 9 7g 

_ 
TV 
_ - 

_ _ 
3 1 18 70 7 0 

_ - 31 
40 2 2 2 2 2 

- 
2 
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Chapter 6: Complete Graphs K. 

Finding precise values for all overlap chromatic numbers for all complete graphs appears 

to be an intractable problem, since such a determination would solve many existence 

problems in design theory. Constructions for balanced incomplete block designs (BEBDs), 

however, translate into constructions for equable overlap colourings of complete graphs. 

An argument in this chapter shows that when such a colouring of a complete graph is 

equable, then this actually gives the exact overlap number; moreover, juxtapositions of 

such colourings give upper bounds for overlap chromatic numbers. The chapter concludes 

by referring to a body of work on constant-weight codes that translates into lower and 

upper bounds for these overlap numbers. 

6.1 BIBDs and exact determinations of overlap chromatic numbers 

Ile CRCHandbook ofCombinatorial Designs [16] page 25 gives this definition: 

"A balanced incomplete block design (BEBD) ia a pair (V, B) where V is a v-set and B is a 

collection of b k-subsets of V(blocks) such that each element of Vis contained in exactly r 

blocks and any 2-subset of Vis contained in exactly A blocks. The numbers v, b, r, k, A are 

parameters of the BIBD. ' 

We now describe an equivalence between BEBI)s and equable overlap colourings of 

complete graphs. 

Proposition 6.1 There is an equivalence between equable overlap colourings y of the 

complete graph K., with parameters [n, r, A, NA, and BIBDs D with parameters 

[v, b, r, k, A], obtained by interpreting the vertex set of K. as the set of varieties of D and 

the colour set as the set of blocks of D (so that the block corresponding to the colour c is 

the set of vertices v such that cEp (v)). Thus, overlap parameters correspond to BIBD 

parameters if we re-order the latter as v, r, I, b, k). 
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Proof Let p be such a colouring of K,,. Thusp describes an incidence structure between 

V(K,, ) and the colour set [N], which may be interpreted as a design 

(V, B) in which V= KQ and B= [N], each block c consisting of the set of vertices 

having c as one of their colours. Then, the number r of colours at each vertex is the 

number of blocks to which each variety belongs and is the replication of D while f (the 

number of times each colour is used in the colouring) corresponds to the size k of each 

block. Finally, I represents, for each pair (v, w) of vertices of K, the number of colours 

present at v and w and hence (in D) the number of blocks contsining each pair of varieties. 

Conversely, every balanced block design D may be derived from an overlap colouring in 

this way. 0 

It is clear that X,, o(K,, ) = rn andX,, (K., ) = r; we shall refer to the [r, 0] and [r, r] colourings 

of any complete graph as trivial. 

In discussing a specific K., we represent the colouring as [n, r, A, N, J]. (This does not 

imply that there is only one colouring with these parameters. ) As we shall now show, if n, 

r, and A are given, N andfare uniquely determined, and it is often sufficient to give a 

colouring as [p4 r. A] 
- 

Proposition 6.2 For any equable colouring of a complete graph, K,,, 

nrl 
(n- I)A+r* (1) 

Proof This follows from Proposition 1.6, since a complete graph has universal vertices. 
0 

By substituting N= Arr in (1), we arrive at the finther expression: f 

(n- I)A+r 
r 

from which we may immediately derive A(n - 1) = r(f- 1), corresponding to a well-known 

expression for BD3Ds, (see [ 16], page 25). m 

It is convenient to refer to the following eglossaryl: 
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Parameters nrAN 

heoa Parameters v Desigm Trb 

In view of this equivalence between equable graph colourings and BIBDs, we add to our 

list of expressions the equivalent of Fisher's Inequality: 

In a BIBD, b 2: v ([16], page 26), which becomes N2: n. 

A BEBD in which b=v is said to be symmetric ([ 16] page 26); by analogy, we shall say 

that a colouring of K. with N= n is symmetric. 

Two or more colourings of K. can be juxtaposed as in Chapter I- If the colourings in the 

juxtaposition all have the same frequencyf, then the juxtaposition is equable. We now 

show that for given [n, r, A], a juxtaposition using colourings with different frequencies 

requires more colours than than an equable colouring if it exists. (For example, there is an 

equable colouring of Ki5: [15,14,4,42,5] and a non-equable [14,41 colouring obtained by 

juxtaposing the two equable colourings [15,7,1,35,3] and [15,7,3,15,7], which 

requires 50 colours in comparison with the 42 required by the equable colouring. ) 

Proposition 6.3 For given r, 4 an equable colouring of complete graph K,, is more 

economical than a juxtaposition of equable colourings of K,, with different frequencies. 

Proof Dividing expression (1) by r, we may express the formula for N in an 

equable colouring [n, r, AN,, A colouringy of K,, as 

N 

E= Let x(K,,,, u) = X; r y(K., ju) =y (as in page 14), then y r (n- I)x+ 1, 
and the rational parameters (x, y) for any equable cOlOuring of K. lie on a hyperbola whose 

sense is convex downwards. 

Now, for i= 1,..., qletul bean equable colouring[n, rjIj, N,, fi] of K,, and let M= ipi 
i=1 

be the juxtaposition of they i (where not all thef, are equal). 
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Suppose that Mis also an [r, A) colouring; that is, r= ri +... + r,, and A= 21 +... + A,,. Let 

21 + ... 
+ Aq rix, +... + rx, 

(= X(Kn, ýU)) Xý X(Kn, M - ri T... Tr, - ri +... T-rq and 

N, +... +)Vq r ly I +... + rqYq 

rl+... +rq - rl+... +rq 

TIus (X, 1) is a convex linear combination of the (xi, yi) and must thus lie within the 

hyperbola and therefore above the point (x, y); that is, M, +... + Nq > N. 0 

Corollary 6.4 If there is an equable colouring [n, rA, NA of K, then 

Xr. A(K, ) = -C nr 2 
n n- 1)1+r 

Proof Letu be this colouring, and suppose that there is a non-equable [r, A] colouring 0 of 

K., using Q colours. Suppose these colours, take distinct frequenciesfi, 
. .., 

fl. For each 

i=1, ..., q let Oj be the colouring that uses the colours of 0 that have frequencyfi. Thus, 0 

is thejuxtaposition of the 01. These colourings may not individually have constant r or A, 

and thus may not be true overlap colourings, but their juxtaposition is 0. Moreover, if 0, 

is the juxtaposition of the images of 01 under all permutations of the vertices, then each (9i 

is a true overlap colouring, with frequencyfi. Let Mbe the juxtaposition of all permutation 

images ofy; then Mis an equable [n! rn! A] colouring of K,, requiring MN colours, while 

the juxtaposition 0 of the E)i requires n! Q colours. By the proposition, Q>N. 

Thus, 

The Handbook ofCombinatorial Designs has a table ([16], pages 36-58) of BIBD 

parameters, whose first five columns are the parameters v, b, r. k, A and whose sixth 

column indicates a lower bound for the number of BEBDs with these parameters. Thus, 

whenever this number is non-zero, Corollary 6.4 allows the conclusion that X,., Z(K, ) = b. 

Limitations arising from Prime Parameters 

We now consider some limitations on Nthat arise if one or more of the parameters of a 

colouring is prime. Propositions 6.5 - 6.7 concern the parameters of colourings that are 

assumed to be equable and non-trivial. 
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Proposition 6.5 The parameters n and N have a common factor. Thus, if n is prime then 

Nis a multiple of n. 

Proof We note that -INIr- =f is an integer and that N ; -> r. 
Thus, N=r would give a trivial 

colouring. Therefore N>r, and so N and n have a common factor. 0 

Proposition 6.6 If one of n-1, r is prime, then it divides the other. 

Proof We make use of the relationA(n - 1) = r(f- 1). 

n-I prime Since A r(f- 1), 
andf- I<n-1, it follows that (n - 1) divides r. n-I 

A(n - 1) 
r prime Since A<r andf- Iýr, it follows that r divides (n - 1). 

Proposition 6.7 If rk r are both prime, then the colouring is symmetric 

and n= c2). +c+1, for some integer c. 

Proof Since n is prime, N= an, byProposition 6.5 above, so that r= af 

Since r is prime, andfis an integer, either a=r, f=1, which gives the trivial [r, 0] 

colouring, or a=I. Then N=n; the colouring is symmetric. 

Substituting in (1), and multiplying out, 

il = (n - I)A + r, so r(r - 1) =A(n - 1). 

Since A<r, n -I is a multiple of r, say n-I= cr, and r -1 = cA. 

So r=cA+ I andn- I =cr, andn=c7l+c+ 1. m 

For given n and r, we can determine an upper bound of equable colourings. 

Since N; -> n >f, N>f, it follows that I <f< Fnr-. Also, r(f- 1) 
n-I 

If n -1 is prime, then, sincef< n, (n -1) divides r. 

If n -1 is not prime, then, if we reduce nrI to its lowest terms, f-1 must be a multiple of 

the new denominator. Some examples make this clear. 

(a) n= 10, r=9.1 <f -: 5 9. Sincef divides 90, f= 2,3,5,6 or 9. 
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9(f- 1) 
=f- 1; then A=1,2,4,5 or 8. 9 

There are at most five parameter sets. 

n= 10, r=6.1 <f:! ý 7. Sincef divides 60, f= 2,3,4,5 or 6; 

6(f- 1) 2(f- 1) 
thenf= 4, A=2. 93 

There is only one parameter set 

Colouring Constructions 

The above results do not describe the constructions of the B]IBDs (or equivalently, equable 

colourings of complete graphs) that give rise to these parameters. The constructions which 

follow, most of which are based on well-known constructions for BIBDs, are, however, of 

some interest in their own right, and we now describe these; we give appropriate 

references. 

A process which we call colour section can be applied to known syrmnetric colourings (in 

which n=N and, consequently, r =J). It consists of deleting all vertices in which a given 

colour occurs, thus reducing n by r and N by 1, keeping r and A unchanged. As for the 

effect on frequency, 

1, 
(n-1)A+r (n-r-1). Z-i-r 

2 

Thus, in general, the parameters of the second colouring are: 

nl=n-r, rl=r, A'= A, Y=]V- I, f =f- A. 

A similar process, which we call colour intersection, can also be applied to symmetric 

colourings. It consists of deleting all vertices in which a given colour does not appear, and 

then deleting that colour from each of the remaining vertices, producing the derivative. In 

this case, 

n'=r; rl=r-1; A'= A-1; jV=N-1; f 

72 



These constructions correspond respectively to what in [ 17] are called variety section and 

intersection, and the resulting colourings correspond to the residual and derived designs as 

described on page 25 of [16]. 

The definition of complement of a colouring in Chapter 1 corresponds to the definition of 

complement on page 26 of [16]. This may be the same as the original, or different, and has 

nl=n; r'=N-r; A= N-2r+A. 

Constructions and Overlap Parameters 

A number of constructions follow standard patterns, and we now discuss these, where 

possible with algorithms that enable us to find feasible colourings. There are in many cases 

alternative colourings and alternative algorithms, but, since our intention is to find feasible 

colourings, we have in general limited ourselves to one algOrlihm. 

(In this chapter, for compactness, we represent vertices in columns and colours in rows. ) 

Proposition 6.8 X,, I(K. ) (n) whenever r= 
(n- 1)'A 

= 
(n - 2)'l 

:: 9 a:! g n, (where a a-l a-2 

n-2 is interpreted as 0). 
-1 

) 

Proof This follows from Corollary 6.4 by using the BIBD whose blocks consist of all 

a-sets of n). 

Corollary 6.9 

Xn-lo-2(Kn) 

Construction We assignN =n colours to each vertex and delete a distinct colour 

from each. 

(n) 
k2J 

Construction A recursive algorithm for this is 

K2: 1 I K3: 1 12 K4: 1 1 2 4 ............................. 2332 3 3 5 
4 5 6 6 

m 
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Proposition 6.10 Let s be a prime power, 1 :5i: 5 d and 

t-d- 1)(Sd-I - 1) 
... 

(S&4+1 - 1) (Sd-I _ 1) d-i+l 
ks- (s 

(S' - 1)(31-1 - 1)... (S - 1) (Si-i - 1)... (S- 

ifn=sd+s"--l +... + 1, then X,, I(K,, )= 
(sd+l - i)(sd - i)... (Sd-i+l - 1). 

(sl+l - 1)(st - 1) 
... 

(S-1) , 

(b) if n= sd, then x,, i(K,, ) = sd--ir. 

Proof This follows from Corollary 6.4 by using the BIBDs of Propositions 2.36 and 2.37 

([ 16], pp 705,706). These consist, respectively, of the i-dimensional subspaces of the 

d-dimensional projective geometry and of the d-dimensional affine geometry, on the 

Galois field of order s. m 

Choosing i=1, d=2 gives the following corollary 

CorolIary 6.11 If s is a prime power, therE 

(a) S2 +S+I, 

XS+I, I(KS2) --: S(S + 

Construction An example of (a) is K13, s=3: 

2 3 4 5 6 7 
-8 9 10 11 12 13 

1 1 1 2 2 2 3 3 3 4 4 4 
2 5 8 11 5 6 7 5 6 7 5 6 7 
3 6 9 12 8 9 10 10 8 9 9 10 8 
4 7 10 13 11 12 13 12 13 11 13 11 12 

The complement is [s2 +s+1, s2, s2 - s, s2 +s+1, sý], also symmetric. 

The residual is [s, s+1,1, S; + 3, S]. 0 

Construction An example of (b) is Kq, s=3 

3 4 5 6 7 8 9 
1 2 2 2 3 3 3 
10 4 5 6 4 5 6 
11 7 8 9 8 9 7 
12 10 11 12 12 10 11 

Construction We can generalize to higher dimensions, giving the feasible parameter sets 

. 
Lp Sp-I Sp-2 SP SP-1 

S-1 S-1 S-1 S 
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The complement has parameters [ sp -1, Sp, Sp-2 (S Sp- I 

S-I , SPI 

The residual has parameters [SP-1, SP-' SP-' 
S 

SP - S, 
Sp-2]. ý --I 

S-1 , S-1 

P Wýl W-S I "ýS eýs iýl The derivative has parameters S-I , S-I I S-I , S-1 , S-I 

Proposition 6.12 Let n=Q+3 be a prime power. Then 

X21+1, z(K41+3)=4t+3 

0 

Proof This follows from Corollary 6.4 by using the BEBD of Corollary 2.1.7 in 

[2, p 43], which asserts the existence of a symmetric (4t + 3,2t + 1, t) design. 0 

Construction We assign all non-zero squares modulo n to one vertex of our graph, and 

then cycle through the remaining n-I vertices to give a colouring for K.: 

n2n43n, 

A simple example is K7. The non-zero squares modulo 7 are 1,2,4, and we colour K7: 

1 2 3 4560 or, with our vo y, v, v, v4 v, v, 
1 2 3 4560 convention: 0123456 
2 3 4 56011234560 
4 5 6 01233456012 

If we consider the n-I non-zero integers modulo n, we note that 

(n - mý a n? (mod m); thus r=n2 

This gives a colouring with parameters [n, n2l, n 
4 

3, 
n, n2 

The parameters of the colouring of the complement are [n, n+ I, n+1, n, n+ 
242 

The parameters of the colouring of the residual are 
[n+In-n-3 n+l 1 

2'22 n-l, -4 J. 

0 

Proposition 6.13 Let n= 4t + 3. Then 

X41+3,7j+l (K4t+4) 
= 8t + 6. 

Proof ne proof follows that of Corollary 6.3.5 of [2, p 139). 
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Let p be the colouring of K4,.. 3of Proposition 6.1.2. First take a juxtaposition of two copies 

ofp (using disjoint colour sets SI, S2). Next, adjoin a new vertex and allocate to it the 

colour set S2. Finally, to each of the original vertices add one colour from S, distinct from 

those already present at that vertex. The result is an equable colouring with the required 

parameters. 

Construction The following example is OfX7,3(K8): 

Vertex Vo Vi V2 V3 V4 V5 V6 V7 

0 1 2 3 4 5 6 7 
1 2 3 4 5 6 0 8 
3 4 5 6 0 1 2 9 
7 8 9 10 11 12 13 10 
8 9 10 11 12 13 7 11 

10 11 12 13 7 8 9 12 
6 0 1 2 3 4 5 13 

0 

This is a colouring with parmneters [4t + 4,4t + 3,2t + 1,8t + 6,2t + 2]. The colouring is 

self-complementary. 0 

A further procedure for finding colourings consists of colouring n vertices with r colours at 

each, with no overlap, and taking the complement. As a simple example, with 

n=4, r=2, we can devise a colouring with 6 cOlOurings at each vertex, with overlap 4. 

Generally: nf=n; rr=nr-r, A'= n-2r, Y=nr; f =n-1. 

Relations Between Colourings of Complete Graphs and Codes 

A binary code oflength Nis a set of strings of NOs and Is. The connection with colourings 

is that if ( 1, ..., 
N) is a palette of colours, then the Is in any particular string 

(a codeword) identify a subset of the palette, which can be thought of as a set of colours 

allocated to a vertex of a graph. The Hamming distance of two codewords u, v, denoted by 

d(u, v), is the number of places among the N where they differ. Consider an [r, A] overlap 

colouring of K. with a palette ofNcolours. Each vertex is now associated with a codeword 
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having r Is and (N- r) Os, and the colouring is a code of length N, constant weight r and 

size n; moreover, the Hamming distance of any two codewords is 2(r - 1) 
. 

We exhibit a relation between the parameters of some overlap colourings and code 

bounds. The definitions and terms that we use to describe constant-weight codes are those 

used by [I], which we quote: 

'An (n, d, w) constant-weight binary code is a set of binary vectors of length n, such that 

each vector contains w ones and n-w zeros, and any two vectors differ in at least d 

positions. ' 

The distance d of two, codewords u and v implies that there are 6= -4 codeword positions 2 

in which u has I and v has 0, and a further 6= -ý! 2 positions in which u has 0 and v has 1. 

Thus, the number of positions in which both have 1 is w-6. The weight w of a 

constant-weight binary code thus corresponds to the number of colours, r at a vertex of the 

related complete graph, and (w - 6) to the overlap A. 

Constant-weight codes of minimum Hamming distance have been studied, and tables exist 

giving bounds for A(N, d, w), the largest size of a binary code of length N, minimum 

distance d and constant weight w. In 1990, [4] produced lower bounds for d: ý 14, N:! ý 28 

(with certain values indicated as exact values); in 2000, [11 produced similar tables giving 

upper and lower bounds; and in 2006 [16] extended the results to d: 5 14, N: 5 63. The 

connection between these bounds and bounds on X,,. z(K,, ) is as follows. 

The existence of a code of length N, minimum distance d= 26 , weight w and size n is not 

immediately informative, since the code may not have constant distance. However, the 

non-existence of such a code implies that there is no [w, w- 61 colouring of K" with palette 

size N, so that X,. 4(Kn) > N. That is, A(N, 2b, w) <n implies Xw,, 6(K,, ) > N.. Conversely, 

ifX., w4(K,, ): 5 N, then a code of length N, weight w and size n and distance (hence 

minimum distance) 26 exists, and so A (N, 26, w) ý: n. Therefore an upper bound of n-I on 
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A(N, 26, w) implies a lower bound of N+ Ion and conversely an upper bound 

ofNonX,,,.,, -. j(K,, ) implies a lower bound of non A(N, 26, w). 

We display, as an example, an extract from Table IV on page 2393 of [1]. We change the 

V in that table to W, our equivalent. 

Table 1 

Values of ACN, 10. w) 

w 
(w - 5) 

N 6 7 8 9 10 11 12 13 14 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

12 2 (2) (1) (1) (1) (1) (1) (1) (1) 
13 2 (2) (2) (1) (1) (1) (1) (1) (1) 
14 2 2 (2) (2) (1) (1) (1) (1) (1) 
15 3 3 (3) (3) (3) (1) (1) (1) (1) 
16 3 4 4 (4) (3) (3) (1) (1) (1) 
17 3 5 6 (6) (5) 

-(3) 
(3) (1) (1) 

18 4 6 9 10 (9) (6) (4) (3) (1) 
19 4 8 12 19 (19) (12) (8) (4) (3) 
20 5 10 17 20 38 (20) (17) (10) _ (5) 
21 7 13 21 27-35 3842 (38 -42) (27- 35) (21) 

Here, since d= 10, &=5, and we have added to the table as printed the value of (w - 6). 

We have completed this table in accordance with equations 35,37 and 38 of Theorem 8, 

page 2378 of [1]. The tables in [1] tabulate A(Ndw)=A(N, 2b, w) only when Mýtd+2 

and .4<w:! ý H. If N: gd+2, then clearlyA(Ndw)!,, 2, and it is straightforward to 22 

determine these values. The entries which complete the table are bracketed. 

Consider an entry in Table 1; say, the entry 3 in the row N= 16 and the column w=6- 

This asserts that there is a set of 3 codewords of length 16 having constant weight 6, with 

minimum distance 10 between any pair, and this is the largest such set. Now, the colour 

sets of a [6,1] colouring of K4using 16 colours would provide a set of 4 such codewords, 

conmadicting the table; thus, this entry asserts that X6.1 (K4) > 16. Similarly, X6.1 (K4) > 17, 

and the table provides the information that AI(K4)ý: 18. 
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Next, consider X6,1 (K6); the entry in the row for N= 20 asserts that X6,1 (K6) > 20, and so 

we conclude that X6.1 (K6) ý: 2 1. Thus, each lower bound on an overlap parameter is given 

by the least value of N whose row entry is at least equal to the order of the complete graph 

whose parameter is to be bounded. 

Table 2 

Lower and llppgr Bounds for soMe v,,, A(K, 

n [6,11 [7,21 [8,31 [9,41 
3 15 15 15 15 15 15 15 15 
4 18 18 16 16 16 16 1617 
5 20 20 17 17 17 17 1717 
6 21 21 18 - 1718 1718 
7 21 19 - 1818 1818 
8 19 - 1818 1818 
9 20 - 1818 
10 20 - 18 

In Table 2, we display lower bounds of some x,, t(K. ), derived from Table 1 and some 

upper bounds found by trial; the actual colourings for the latter are shown below. Where 

both lower and upper bounds are known, the lower are on the left and the upper on the 

right. Emboldened entries are of equable colourings. Other single entries are from Table 1. 

In order to relate the Mv tables, we note that the first occurrence of w in Table 1 becomes 

n in Table 2. The quantity w-6 coffesponds to our A. 

Inserting entries in the [7,2] column proved difficult, though we have found colourings in 

agreement for the first three entries (see below). We speculate that this problem may be 

related to the fact that there are no equable colourings for any K,, [7,2], as shown by the 

table in [10]. 

We shall now verify the upper bounds by giving lists of explicit colourings. 
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[r, A] = [6,1] 

K3 K4 Ks K6 K7 

112 1 124 11247 11 247 11 1 1 247 11 16 
233 2 335 23358 23 358 12 2 3 358 12 17 
456 4 566 45669 45 669 13 4 5 669 13 18 
789 7 89 10 789 10 10 78 9 10 10 14 7 8 9 10 10 14 19 
101112 11 12 13 14 1112 13 14 15 11 12 13 14 15 15 11 12 13 14 15 15 20 
131415 15 16 17 18 16 17 18 19 20 16 17 18 19 20 21 16 17 18 19 20 21 21 

A] [7,2] 

K3 K4 K5 
13 113 5 11 3 5 1 

2 24 224 6 22 4 6 7 
3 88 388 10 38 8 10 12 
4 99 499 11 49 9 11 14 
5 1013 5 1013 13 5 10 13 13 15 
6 1114 6 1114 14 6 11 14 14 16 
7 1215 7 1215 16 7 12 15 16 17 

A] [8,3] 

K3 K4 Ks 

1 14 114 6 11 4 6 1 
2 25 225 7 22 5 7 4 
3 36 336 8 33 6 8 7 
4 99 499 11 49 9 11 9 
5 1010 5 1010 12 5 10 10 12 12 
6 1111 6 1111 13 6 11 11 13 15 
7 1214 7 1214 14 7 12 14 14 16 
8 1315 8 1315 16 8 13 15 16 17 

Kg 

II1123345 
222554667 
334678788 
49 9101010 11 99 
5 1014111213 1311 12 
6 1115141614 151213 
7 1216151716 161714 
8 1317181818 171815 
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[r, A] = [9,4] 

Ky K4 K5 

1 5 1 1 51 1 15 13 
2 2 6 2 2 62 2 26 24 
3 3 7 3 3 78 3 37 85 
4 4 8 4 4 89 4 48 96 
5 10 10 5 10 1010 5 1010 1012 
6 11 11 6 11 1112 6 11 11 1214 
7 12 12 7 12 1215 7 1212 15 15 
8 13 13 8 13 1316 8 1313 1616 
9 14 15 9 14 1517 9 1415 1717 

The [6,1] colourings of K. (3: 5 n:! g 6) have each been found by juxtaposing an equable 

[n - 1,11 colouring with a [7 - n, 0] colouring (italicized. ). They could also have been 

arrived at by deleting 7-n columns from the equable [6,11 colouring of K7in the list. 

For the tables set out in [1], wherever a corresponding equable colouring exists, the 

number of colours required corresponds to the entry in their table. We list these: 

Table I K7[3,1] 

Table H K6[5,21 

Table III K7[6,2]*; Ks[7,3]; Kjo[6,2] see Table 1. 

Table IV Kg[8,3]; Kjo[9,4] 

Table V K8[7,1]; Kg[8,3]; K13[8,2]. 
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Chapter 7: Graphical Representation 

Our use in this chapter of the capitalized form 'Graph' is specifically to refer to a plot in 

the (x, y) plane, with x and y as abscissa and ordinate. 

It is convenient, both practically and theoretically, to display the fractional parameters of 

the overlap colourings of a graph G graphically, by displaying the region in the (x, y) plane 

corresponding to the possible parameters (x, y) of any colouring of G. 

Let, P], ... jUk be any sequence of overlap colourings of G, such that each pj has integer 

parameters ri, Aj, Nj and hence fractional parameters (xi, yj) =( ýýi Then the ri , Tj 

juxtaposifion, u has integer parameters r= Yri, A= I Aj, N= INj, and thus fractional 
iii 

parameters (xy) =ýI 
(ýrjxj, Y,, rjyj . That is, (x, y) is a 

(ir-" 

-rrI)=r 

convex linear combination of the (xi, yt). Therefore, the region containing the possible 

fractional parameters is a convex set in the (x, y) plane. Since (as in [11 ]) the 

[r, A]-colourings of G may be characterised as the feasible solutions of an integer 

programming problem, this convex set is the linear image of a convex polytope, and is 

therefore a polygon. We call this polygon the chromatic polygon CP(G) of G. (To be 

precise, the rational pairs (r, y) in CP(G) are the possible parameter pairs of colourings of 

G. ) 

General properties of CP(G) for any graph G 

We first find the upper boundary of CP(G) by means Of the following lemma. 

Lemma 7.1 Let G be any connected graph. Then the maximum number of colours that can 

be used in any [r, A]-colouring of G is r+ (n - 1)(r - A) = nr - (n - I)A. 

Proof Order the vertices vo, ... , such that vertex v, (i ýý. 1) is adjacent to at least one vertex 

vj (i < J). Now colour the vertices in order. We must allocate r colours to vertex vo; each 

subsequent vertex can be allocated at most r-A new colours. Thus, at most 

r+ (n - lXr -, I) = nr - (n - I)A colours, can be used. This number can be achieved by 
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allocating a set of A colours common to all vertices, then adding disjoint sets of r-A 

further colours to each vertex. 0 

Since a disconnected graph can be coloured by allocating disjoint sets of colours to distinct 

components, we have the following corollary. 

Corollary 7.2 Let G be any graph with k components. Then the maximum number of 

colours in an [r, A]-colouring of G is kr + (n - k)(r -2) = nr - (n - k)A. m 

Proposition 7.3 The upper boundary of CP(G) for any graph G with n vertices and k 

components is the liney=k+(n-k)(I -x) =n-(n-k)x (O: gx:: g 1), while the lower 

boundary is the Graph ofy = Xffx](G) (0: 9 x: 9 1). 

Proof The description of the upper boundary follows from Corollary 7.2, while that of the 

lower boundary follows from the definition of Xjfx](G) given in Chapter 1. 

Corollary 7.4 Let G be any non-null graph. There are no points of CP(G) below the line 

x+y=2. 

Proof Since X, ýI(G); -> 
2r- A, by Proposition 1.1, the result is immediate. 

Complementation in the Chromatic Polygon 

A colour used in a colouring is universal if it occurs on every vertex, and a colouring is 

universal-ftee if it has no such colours. We recall from Chapter I that the complementary 

colouring of a colouringy is the colouring in which each vertex receives exactly those 

colours that it did not receive in p. 

If, u is universal-free, the parameters of; zc are [IV-rN-2r+ A, IV], and so #c has 

-()V-2r+l 
x+y-2 y fractional parameters Nr rJ Y-1 

3, Y-I Every juxtaposition of 

universal-free colourings also has this property, and so there is a subpolygon SP(G) of 

CP(G) that corresponds to all the universal-free overlap colourings. 

Proposition 7.5 SP(G) is invariant under the transformation 

rx+y-2 y 
T(X, Y) --+ (-y7l- , Y- i 
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Proof The operation of complementation maps the set of universal-free colourings onto 

itself, and the effect of this operation on the fractional parameters is exactly r. 0 

Corollary 7.6 The point (0,2), which occurs only if G is bipartite, is self-complementary. 

(0+2-2+9.1 Proof Substituting inA, (0,2) . -+ ýI, 1)= (022). 0 

Corollary 7.7 Any point on the 1-axis is mapped to a point on the line L, x+y=2. N 

N (N- 2r N Proof For any point on the y-axis, 
(0, 

F) "-+ ý-N--r I N- r), which lies on L. 

Coroflary 7.8 Any point on L, with the exception of (1,1), is mapped to a point on the 

y-axis. 

Proof For any point on L (except (1,1)), 

r). _. 
(2--1+1-2 2Mfl= rr UL12 

- -1 1-1,1 -A rr 

This is a point on they-axis, except for the trivial case r=2, giving an indeterminate 

expressiom m 

Chromatic Polygons of Cycle Graphs, Wheels and Complete Graphs 

Since the cycle graphs, wheels and complete graphs are connected, Proposition 7.3 implies 

that the upper boundary of CP(G) for any of these graphs is the Graph of 

y=n- (n - I)x (0: 9 x: 5 1) while the lower boundaries are given by the Graph of xjfx](G) 

for each of these types. 

Theorem 7.9 (i) XAx](C2p) =2-x (0: 5 x: 5 1). 

(2 + -L)(I - x) 0 ý-- X: 5 1 
(ii) MXI(CýP+I) 

p P+l 
2-x X:! ý 

Proof Part (i) follows from Proposition 1.3, since C2, is bipartite, while Part (ii) follows 

from Theorem 2.1 (since (2+-plxl -x) ý!: 2-x when 0 ý-, x:: 5 I 
and P+I) 

(2 + -L I- x): 5 2-x when 
1 

:: 5 x: 5 px P+l a 
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3(l -x) 0: ý x:: 9 1 

Theorem 7.10 (i) Xjfx](W2p+l) 2-x 12 
2 :5x:: ý 1 

3 -4x+ 
1 -2x 0: g xg1 p p+2 

3(1 -x) 
1 

:9X: 9 p 
p+2 2p+ 1 

(ii) ZAXI(W2p+2) ý' 
3-2x- Pp-.! g X: 9 

P+l 
2p+ 1 2p+ 1 2p+ 1 

2-x p+I <X:! g 1 2p+ 1 

These follow from Proposition 3.2 and Theorem 3.10, respectively. 0 

Annex 7.1 displays the chromatic polygons of the wheel graphs W4, W6, W8 and Mo. 

Common Points of CP(K. ) and CP(K. +i) 

(a-I n Lemma 7.11 For every vertex v. of CP(K,, ), (x, y) = ýn- 1, ii) (a r= 

A 
Proof Corollary 6.4 shows that the point (X, Y) F, 

) lies on the hyperbola 

Y= n for an equable colouring of K,, and strictly above this hyperbola for a (n- I)x+ I 

non-equable colouring. The only possible values off for an equable colouring; of K. are the 

integers 1, ..., n; moreover, by Proposition 6.8, for each a=1, ..., n there is an equable 

r and (as may be seen either from the colouring of K. withf = a, and with -2ý =a-I n-I ra 

comparison with design theory on page 41 or from the fact that here, 

ý2 22-) 

and 
JT n' 

(n-i )r n-I 
a-I a-I 

Thus, every vertex of CP(K. ) must lie on the hyperbola y=n and the values (n I)x +I 

a=1, ... ,n correspond precisely to these vertices. 0 

Corollary 7.12 For all n, vertex v., of CP(K. ) lies on the line x+y=2. 

(n-2 n Proof The vertex v,, i is the point ý-; W--I W- 1). 0 

Theorem 7.13 Every vertex of CP(K.. i) lies on an edge of CP(K,, ). 

Proof Denote the n vertices of CP(K. ) by v, (i e (0, n)), ..., v. (i e (1, 
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Then v. of CP(K. ) is the point 
(a- 1,. n ; v,,, of CP(Q is the point 

(Ta 
I, 

n 
n-1 a) - a+l). 

Y- n X- a 
a+l n-I The equation of the edge v,, v.., is therefore nn a-I a U- a+ -ý --l -n- 

which simplifies to a(a + I)y = 2an - n(n - 1ýx. 

(a n+l Now, vertex vl of CP(K.. i) is the Point nla+l)' 

Substituting x=-! ý! in A we have: n 

n+l a-I Aa a(a+l)y=2an-a(n-1), iey= 
a+l , and, since n-I <n< n-11 

vertex v.,, of CP(K.,, ) lies on edge v. v,,,, of CP(K,, ). 

Annex 7.2 shows the above for CP(K3) - CP(K7). 

0 
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Annex 7.1 

Chromatic Polygons of Wheel Graphs 

3. 

Chromatic polygons of even wheel graphs W4 to Wio, coloured: 
W4 Black 
W6 Red 

wx Green 

W1 Blue 
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Annex 7.2 

Common Points of Chromatic Polygons of K,, and K. 
-I 

7 

6 

5 

4 

3 

2 

Chromatic polygons of complete graphs K3 to K7, lower edges only (for clarity), 
coloured: 

Ki Black 
K4 Red 

Ks Gold 

K6 Green 

K7 Blue 
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Chapter 8: Overlap Colourings and Statistical Applications 

This chapter shows that certain designs for statistical experiments turn out, on 

examination, to be overlap colourings of graphs other than complete graphs. 

As we saw in Chapter 6, overlap colourings of complete graphs correspond closely with 

BIBDs; in an equable overlap colouring of K, if we interpret the vertex set as a set of 

varieties and the palette of colours as a set of blocks, then we arrive at a BIBD; the set of 

vertices having a given colour is regarded as a block of the design. 

Now BBBDs in the design of experiments are used in order to allocate experiments in a 

situation where it is impracticable for every experiment to be performed on every 

available subject Typically (see [ 18]) one may have v varieties of wheat and h physically 

different sites, so that ideally every variety should be grown at every site, but this may be 

economically prohibitive (or, indeed the sites may not be large enough). A BIBD would 

then allocate varieties to sites in such a way that each wheat variety is grown at the same 

number r of sites, each pair of varieties being grown together at the same number A of 

sites. The required layout is then a BE3D, corresponding to an [r, A] colouring, of K,. 

However, there are many t)Ws of experimental design that are more subtle than the 

above. Bailey [3] defines orthogonal block structures, in which a set of experimental plots 

is subjected to two or more orthogonal uniform partitions. That is, If P is the set of all the 

plots and Ql,..., Qq the set of partitions, then each partition is into subsets of P of equal 

size, and the subsets of P arising from applying simultaneously any two partitions Q,, QU 

are again of equal size. (For example, the plots may be laid out in a rectangular array, so 

that they are partitioned into rows of equal size and also into columns of equal size). 

Designs arising from such partitions are known as nested block, or split-block, designs. 

Donald Preece (personal communication) has given a simple such example, in which 
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18 plots are divided into 9 blocks of size 2, laid out in a square array, so that there are two 

types of blocks of 6 plots, corresponding to rows and columns. In Preece's example 

(below), varieties A, B, C are allocated to the plots in such a way that each row, and each 

column, forms a BEBD with parameters (3,3,2,2,1) and hence a [2,1] colouring of K3 

with N=3. 

AB BCC. A 
BC CAIA B 
C. 4.4 BIB C 

The design as a whole, then, corresponds to a colouring of all 9 blocks of size 2, in which 

any two blocks in the same row overlap by 1 as do any two blocks in the same column. 

That is, it is a [2,1] colouring of the Cartesian product K3 0 K3 - where (see [13]) the 

Cartesian product G El Hof two graphs G and H has the usual Cartesian product 

V(G) x V(H) as the vertex set where (vi, wl) is adjacent to (v2, w2) if and only if either 

v, = v2and w, is adjacent to w2 or 

w, = w2and v, is adjacent to v2. 

Bailey [3] gives several examples of split-block designs, but usually the 'component' 

designs are (0, I)-designs, that is, each overlap is either I or 2. Below, we give an example 

of a split-block design in which there is an overlap of I between any two blocks in the 

same row and also between any two blocks in the same column. 

124 2 35 346 1 457 1561 1672 713 
235 _ 346 457_1 561 1 672 1713 124 
346 457J 561 1 672 1 713 1 124 235 

This then is a [3,1] colouring of K3 c3K7 with N=7. 

Note that N= max(X3,1(K3), X3.1(K7)). This exemplifies the following general property. 

Theorem 8.1 Let G= V) 13 V) 13 ... [3 KN be a Cartesian product of complete graphs, 

where each K(IO has order n, and nj :! g n2:! g 
---: 

9 n. = n. Then Xri(G) = X,, I(K,, ). 
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Proof For each i=1, ..., m let us identify V(, K()) with the elements 0, nj -I of the 

cyclic group of order n. Letf be the following function from V(G) to V(K,, ): 

m 
ftzi, 

..., Z. ) = Y, zi i-i 

(with addition modulo n). If (yl,..., y. ) and (zi, ..., z. ) are adjacent in G, thenyi *z, for 

exactly one value of i, and soAy ,..., y. ) *-Az z. ). Thusk ,..., y. ) andAz z,, ) 

are adjacent. Hence, fis aa homomorphism from G to K., and the result follows from 

Proposition 1.2 (since G contains K. as a subgraph). 0 

In terms of split-block designs, this theorem states that the number of varieties in a 

split-block design is the largest number of varieties in the BD3Ds corresponding to the 

individual partitions. 

However, not all experimental designs need be based on complete graphs in this way. We 

may be particularly interested in comparisons involving 'neighbouring' blocks in some 

sense (that is, the blocks in each partition may form a graph other than a complete graph), 

so that the corresponding split-plot design may correspond to a Cartesian product of 

graphs other than complete graphs. For example, if the blocks have a cyclic adjacency 

structure, then a split-plot design corresponding to a Cartesian product of cycles may be 

appropriate. 

It is an open question whether Theorem 8.1 generalizes to arbit-ary Cartesian products of 

graphs, but it does generalize to products of cycles, as we now show. 

Theorem 8.2 Let G= CO) 13 01m) be a Cartesian product of cycles, where each 

CM has order ni, and if any n, is odd then C(m) = C2ý,,, , the smallest odd cycle. Then 

XrA(C(M)). 

rroof If all the n, are even, then G is bipartite and X,, A(G) = 2r -A by 

Proposition 1.3. 
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Otherwise, for each i=1, ..., m, identify V(01)) with the elements 0,1, ..., n-1. 

We define the following rollfunctions: 

rolli: {0,1,..., ni-1)-Z2p+i(i=I,..., n): 

If nj is even then roll4z) 
0, z even I, 
1, z odd j 

If n, = 2p + 1, then roU4z) =z (z = 1,2,..., 2p) 

If nj = 2(p + s) +I (where s> 0), 

0, z=0,2,..., 2s 
then rolliýz) 1, z=1,3,..., 2s +II 

z-2s, z=2s+2,2s+3,..., 2(p+s) 

Next, we define the function ROLL: Z,,, x Z,, x... x Z2p, j -* Zý, j , as follows: 

Let z= (zi, z2, ..., z. ); then 

m 
ROLL(z) =E rolli(zi) iI 

As in the proof of Theorem 8.1, if (yl, ..., y. ) and (zi, ..., z. ) are adjacent in G, then 

y. ) and f(zl,..., z. ) are adjacent. Thus, fis a homornorphism from G to C2p. 1, and 

the result follows as in Theorem 8.1. 0 
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Conclusion 

This thesis adds to the literature on variants of graph colouring theory, by introducing the 

parameter X,,, (G) (the number of colours required to colour each vertex of G with r 

colours with an overlap of I between adjacent vertices), and also the fractional version, 

x,,, (G) 
Xf[x](G), being the least value attained over all r by r (for 0 :5x: 5 1). 

After some fundamentals concerning these parameters, they are investigated for a number 

of classes of graphs. Brief consideration is given to their relations to more well-known 

graph-theoretic parameters; and the fractional parameters are shown to be expressible in 

terms of the 'chromatic polygon'. The work of the thesis is related to design theory, codes 

and statistical designs. 

Fundamentals 

Chapter I defines the basic concepts and gives some fundamental properties. In particular, 

, X,. I(G); -> 
2r -A for any non-null graph, the bound being attained for bipartite graphs 

(page 10); and when a graph has a vertex that is adjacent to all the others, then any equable 

A] colouring (that is, all colours, occurring equally often) uses exactly nr2 
(n- 1)A+r 

colours (page 12). 

Overlap parameters 

Chapters 2,3,5 and 6 deal with cycles, wheels, generalized Petersen graphs and complete 

graphs, respectively. All the overlap parameters of cycles and wheels are obtained (see 

pages 17,29 and 3 8), as are the fractional (non-overlap) chromatic numbers of the 

generalized Petersen graphs (see page 58 for a general result). Partial results are obtained 

concerning the complete graphs; the most significant of these (page 70) gives the correct 

overlap chromatic number provided there is an equable colouring (and hence gives 

Mx] (K. ), 0 :5x: 5 1, as is shown in Chapter 7). 
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Relation with other graph parameters 

Chapter 2 shows that for every relevant r, ;., p there is an [r, A] colouring of C2pl (using 

X,, I(C2,., ) colours) that is ajuxtaposition of a small number ofprimitive colourings 

(page 24). This leads to the Nvork- of Chapter 4, which investigates the place of overlap 

chromatic numbers in the classification of graphs. The core of a graph G is the smallest 

subgraph to which G has a homomorphism, and has the same overlap profile as G; thus, 

classification by cores is at least as fine as classification by their overlap profiles. 

It is shown (page 40) that any graph with the same multichromatic profile as an odd cycle 

also has the same overlap profile as that cycle. This leads to the result (page 42) that the 

bangle B(2q + 1,2p + 1) also has the same overlap profile as C2p+i. However, there is no 

homomorphism from B(3,2p + 1) to C2,.,, and so classification by core is strictly finer 

than by overlap profile. 

Classification by overlap profile is clearly at least as fine as by multichromatic profile. 

However, the result quoted above (page 40) shows that in the case of graphs with the 

multichromatic profile of an odd cycle, the classifications are the same. 

Ae chromatic pofton 

Chapter 7 discusses the general properties of the chromatic polygon of a graph G, namely 

A 
the plane polygon within which the point 

(2r4 ýM ,r) must lie for any [r, A] colouring of G 

using N colours (pages 82 - 84). Precise descriptions are given of the chromatic polygons 

of the c)-cles, wheels and complete graphs. 

Relevance to design (including statistical design) theory and coding theory 

The complete graphs considered in Chapter 6 are closely connected both with BIBDs and 

with constant-wcight codes, and the chapter explores these connections, showing in 

particular that upper bounds on lengths of constant-wcight codes yield lower bounds on 

overlap chromatic numbers of complete graphs, and conversely, upper bounds on the 

overlap parameters for complete graphs imply lower bounds for lengths of constant-weight 
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codes. (See pages 77,78. ) The chapter concludes (page 79) with a table illustrating lower 

and upper bounds for some overlap parameters of some complete graphs. 

Finally, Chapter 8 broadens the discussion of the relationship between overlap colourings 

and BEBDs, by considering more general experimental designs - in particular, those in 

which the experimental sites are partitioned in ways that seem to ask for the overlap 

parameters of Cartesian products of complete graphs and of cycles, 
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