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Abstract

Although a considerable body of matenal exists concerning the colouring of graphs, there
is much less on overlap colourings. In this thesis, we investigate the colouring of certain
families of graphs. These are the cycle graphs (C,), the wheel graphs (I#,), the generalized
Petersen graphs (P(p, q)) and the complete graphs (X,). There are several results on
equable colourings (that is, colourings in which all colours occur with equal frequency),
but the principal parameters y¢ ¥,.1 and y/{x] are not based on this assumption.

The principal result of Chapter 2 (Theorem 2.1) 1s that for any positive integer p:

ra(Cp) = max{2r -, 2r- ) + [ 52 ]}

This generalizes a theorem of Saul Stahl [23] that for the graph C,,

r—1

xr(C'%’*-l)':’-"’*l*[ 2 ] =xr(C*a‘+1)=2r+|--;;-|-,

(in which *[...]’ stands for ‘the integer part of °...”).

In Chapter 3 we find a set of five expressions (Theorem 3.6) for the value of , 1(Hap2)
depending on the value of 4.

Chapter 4 discusses overlap colourings and homomorphisms, and introduces a class of
graphs which we name bangles.

Chapter 5 is concerned with generalized Petersen graphs. We introduce a simple system of
symbols to find colourings, and include a study of the fractional chromatic numbers.
Chapter 6 is mainly concerned with the relation between the colouring of complete graphs
and the parameters of Design Theory and with codes.

Chapter 7 discusses the representation of the fractional parameters of overlap colourings
graphically, making use of a diagram that we call a ‘chromatic polygon’.

Chapter 8 is concerned with overlap colourings and statistical applications.

Glossary

For ease of reference, we list here the usage of some symbols and expressions.

11



n the number of vertices,

r the number of colours at each vertex;

N the total number of colours used in the graph (the ‘palette’);

f the frequency of occurrence of each colour, if constant. If the frequency is
not constant, then we distinguish the frequencies by numerical suffices, f1, /> ...;

x~(G) the least number of colours required to construct an r-fold colouring;

2/G) =1lim (Z ’g.G)) the fractional chromatic number of G;

X rAi(G) the number of colours required to colour a graph G with r colours per

vertex so that the number of colours common to any pair of adjacent vertices 1s 4.

xAx1(G) = inf (X "’x;(G) ), in which r is a multiple of the denominator of x.

There are annexes giving examples of colourings at the end of relevant chapters.
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Introduction

Graph colouring theory has of recent years produced several interesting variants.

We recall that the objective of the traditional theory is to find the minimum number of
colours required to colour the vertices of a given graph so that adjacent vertices receive

distinct colours. The subject of this thesis is one of the vanants; we are required to attach

r colours to each vertex so that any two adjacent vertices share X colours. (Once again,
and 1n all the variants discussed below, the objective is to find the minimum number of
colours required in order to achieve this.) Though this problem has not received much
direct attention, we shall see that it impinges on some aspects of the design of statistical

experiments.

Other well-known variants of graph colouring theory are as follows.

Edge and Total Colourings

The “elements’ of a graph comprise 1ts vertices and edges, and also its faces if it is
embedded on a surface. An edge, vertex-edge, face-edge, vertex-face, or vertex-face-edge
colouring of a graph 1s a colouring of the relevant elements, usually subject to the
condition that any two adjacent or incident elements must receive distinct colours. There
is a large literature on edge colourings, see for example [8]; and on vertex-edge colourings
(usually described as fotal colourings); see for example [28]. The other types mentioned
have attracted less attention; see for example [26] on edge-face total colourings and [14]
on vertex-edge-face colourings. It would clearly be possible to study ‘overlap’ variants of
these. This does not appear to have been done, and this thesis does not study such

colourings. Thus we shall not mention total colourings further.



Defective Colourings

Defective colourings were introduced by Cowen, Cowen and Woodall [6]. In this variant,
the requirement that no two adjacent vertices share a colour 1s relaxed. Instead, each is
permitted to be adjacent to at most a certain number (or sometimes a certain proportion)
of similarly coloured vertices; or alternatively the total number of same-colour adjacencies
in the graph is limited.

There 1s a certain similarity between the concepts of overlap and defective colourings in
that both allow colour overlaps; but it is not easy to see deeper connections, and we have
not pursued possible connections in this thesis.

Circular Colourings

In a circular colouring of a graph G, the colours themselves are arranged at equal distances
round a circle and two adjacent vertices of G are required to have colours that are at least
a certain distance apart. Equivalently, each colour occupies a certain colour interval. This
gives rise to the concept of circular, or star, chromatic number (see [12], [19], [24], [29]).
There does not seem to be a general connection between circular and overlap colourings;
however, in the particular case when the graph to be coloured is a cycle, a considerable
link between these types of colourings emerges because it is frequently possible to
minimize the number of colours required for an overlap colouring, by using circular
intervals as the colour sets. Many of the colourings used in Chapter 2 are of this form.
Equable Colourings

The concept of equitable vertex-colourings, in which colours have frequencies within 1 of
each other, has been studied extensively in the literature (see [5], [15] for example). This
thesis sometimes uses the more stringent concept of equable colouring, in which all
colours occur with equal frequency. As will be seen in Chapter 6, equable colourings of

complete graphs are of particular relevance, since they correspond to BIBDs.




Multicolourings

In 1975, Hilton, Rado and Scott [10] introduced the concept of a multicolouring of a graph
G (or, more generally, a hypergraph); in particular, an r-fold colouring allocates a set of »
colours to each vertex of G with the requirement that the colour sets at adjacent vertices
must be disjoint. Scott’s PhD thesis [21] contains an extensive treatment of the basic
properties of multicolourings, and in particular calculates all multichromatic numbers of

all powers of cycles. The principal interest of [10], however, was in the behaviour of the

xr(G)

ratio “—— for large r (where y,.(G) represents the least number of colours required in

total to construct an r-fold colouring). They proved (a) an attainment theorem and (b) a

periodicity theorem as follows:

@ i (252 =ipt(£52),

and this limit (the fractional chromatic number of G, now denoted by y(G)) is attained

for some r;

(b)  for some positive integer g, the sequence {x,(G) - ryAG) : r > g} is periodic.

The concept of an overlap colouring leads directly from that of a multicolouring; the latter
1s simply an overlap colouring with the overlap parameter set to 0. Indeed, this is the
historical genesis of overlap colouring theory; the paper by Johnson and Holroyd [11] that
introduced overlap colourings explicitly generalized the proof methods in [10], as we shall
now explain. An important aspect of [10] is their observation that if we replace the
problem of allocating exactly r colours to each vertex by that of allocating at least r
colours to each vertex (agatn with the constraint that adjacent vertices are allocated
disjoint sets) then the problem of finding y, (for a given ) may be reformulated in terms of
integer programming, and the problem of finding yis a closely related linear program,

which is generally easier to solve than an integer program.



Subsequently, Stahl [23] investigated y, for various graphs, in particular the cycles and the
Kneser graphs [the Kneser graph Kn(p, g)(where p > 2q) 1s the graph whose vertices are
the p-subsets of a fixed g-set, two such vertices being adjacent if and only if (as sets) they
are disjoint], establishing a number of general theorems and (importantly for this thesis) a

complete specification of y,(C,) for all , n. The result [5, Theorems 5, 6] is as follows:

2ACop) =2, 1Cop) =2r+[5 | = [ 25X | (11)

ThllS, Xf(CZP) — 2, Xf(CZ;H-I) = 2 + -,}- (1.2)

In 1996, Johnson and Holroyd [11] generalized the multicolouring idea, introducing the
concept of an overlap colouring of a graph G. In the notation of this thesis, an

[r, A}-overlap colouring of G allocates the colour set S, to vertex v; (0 < i < |(G)| - 1),
such that |S;| = 7(0 < i< |V(G)] - 1) and IS; N Sjl = A for each pair i, j such that v, 1s
adjacent to v, They were able to extend the methods of [10] and prove versions of the
attainment and periodicity theorems, and other general properties of [r, A]-overlap
colourings, but proved no precise results for any classes of graphs.

The method of [10] has since been generalized in various directions. Scheinerman and
Ullman (1997)[20] give a full account of the process of describing several graph

parameters in terms of integer programs, which have linear counterparts that allow for the

parameters to be ‘fractionalized’.

There have been considerable advances concerning fractional chromatic numbers of
graphs, but neither the overlap chromatic number nor its fractional analogue, a version of
which was defined 1n [11], appears to have been further studied (though, as has been
mentioned, some work in the theory of statistical designs is relevant, see Chapter 8). The
intention of this thesis 1s to start the systematic study of those parameters.

This thesis discusses the overlap colouring of certain classes of graph, namely the cycle

graphs C,, the wheel graphs W7, the Petersen and generalized Petersen (GenPet) graphs



(p, ) and the complete graphs K,. More precisely, it tackles the problem of finding the
minimum number of colours needed for an [r, 4] colouring of a given graph.

Cycle graph C, A set of n vertices v, Vi, ..., Vi1, In Which vi 1s adjacent to v;, and vy is
adjacent to v,1. We present tables of colour frequencies for some smaller graphs.

Wheel graph W, A cycle graph C,., the ‘rim’, each vertex (v, ..., V»2) of which is joined
to a further single vertex, the ‘hub’ (4). This topic is included more particularly because
the vertices of these graphs, unlike those of the other three types, are not all similar in
situation, the hub having what we may call “privileged’ status.

Petersen and generalized Petersen (‘GenPet’ graphs P(p. g) Petersen and GenPet graphs
consist of two cycles of p vertices, p =5 in the ‘classical’ Petersen graph, and p > 5 in
GenPet graphs. One cycle, v, v, ... , V1, 1S conveniently displayed as the outer cycle, the
remaining p vertices being displayed as an inner cycle, wo, wy, ... , w,, €ach w; being
adjacent to vertex v; of the outer cycle and to the inner vertices wy., and wi, the suffices
being modulo p.

Complete graphs X, A set of n vertices in which each vertex is adjacent to each other
vertex. We show an equivalence between methods of colouring such graphs and the results
of Design Theory, and present tables of the same form as, and corresponding precisely
with, the tables in the CRC Handbook of Combinatorial Design [16]. We adduce a number
of simple algorithms for displaying actual colourings.

List Colourings

In a list colouring problem, there 1s a list of available colours given for each vertex of a
eraph G, and the problem may allocate different lists to different vertices. The list
chromatic number of G 1s then the least / such that the graph can be properly coloured for
any allocation of lists, so long as there are at least / colours in each.

The concept does not extend in a simple way to colourings with overlaps, since it would be

easy to provide lists for each vertex such that overlap was impossible between certain pairs



of adjacent vertices. Thus, it would be necessary to re-state the problem so that there was a
list of given length (say /) at each vertex, and the lists overlapped by (say) m at any pair of
adjacent vertices. Then, for given r, A, one could ask for the minimum (/, m) such that an
[, A] colouring could be constructed for any set of vertex lists of length at least /,
overlapping by at least m at each pair of adjacent vertices. This seems to be an interesting
area of study, though we do not consider it further in this thesis.

Overlap Colourings and Homomorphisms

In Chapter 4 we consider the place of overlap colourings in the classification of graphs.
We note that classifying graphs by overlap chromatic properties is at least as fine a
classification as by multichromatic properties, and investigate whether it is equivalent to
classifying graphs by their cores - the smallest subgraphs to which they have a
homomorphism. We show that this is not so; graphs with the same chromatic properties
can have non-isomorphic cores.

Overlap Colourings and Codes

If the set of colours used for an overlap colouring is identified with the set of positions in a
binary string, then the colour set at each vertex may be regarded as a binary codeword. The
set of such codewords 1s then a constant-weight binary code, since each codeword
contains the same number of 1s. We refer in particular to [1] and [22]. This connection is
explored in Chapter 5.

The Chromatic Polygon

The set of all values x,,4(G) for all relevant 7, A is conveniently displayed in a device we
refer to as the chromatic polygon of G. In Chapter 7 we describe the chromatic polygons of

the cycles, wheels and complete graphs and also give some general properties of these

polygons.



Overlap Colourings and Statistics

The well-known BIBDs (balanced incomplete block designs) correspond, as we shall see
in Chapter 6, to overlap colourings of complete graphs. However, the statistical literature
also explores other types of designs, relevant (inter alia) to: experiments in which the
ditferent treatments need to be compared with all but one treatment factors held constant;
experiments in which the ‘closeness’ of the treatment factors is relevant. These give rise to
the requirement for designs that correspond to overlap colourings of Cartesian products of

direct graphs, cycles and so on. The final chapter of this thesis explores this connection.



Chapter 1: General Results
1.1  Basic Definitions
For general graph-theoretic terminology, we refer to [8]; in particular, note that all

our graphs are finite and simple.

Let u be a vertex-colouring of a graph G. We use the following symbols:

n(G) the order of G, 1.e., the number of vertices;

r(G,u1) the number of colours at each vertex;

A(G,u) the number of colours common to any pair of adjacent vertices;

N (G,u) the total number of colours used by u;

f(G,u) the frequency of occurrence of each colour in g, if the same for each.
The last four are the integer parameters of u. Usually, the context allows us to drop the
arguments G and u without confusion. We frequently refer to a colouring of a graph with »
vertices with the above parameters as an [r, A, N] colouring. In Chapter 6 all five
parameters are often given, in the order [n, r, A, N, f]. The set of all colours used is often

called the palette.
An overlap colouring of a graph G 1s an assignment of sets of colours to the vertices of G
such that each vertex receives the same number of colours and each adjacent pair of

vertices shares the same number of colours.

The overlap chromatic number of G with parameters » and A is written as ¥,.1(G), and 1s
the least N for which an [r, 4, N] colouring exists. This is a generalization of the concept of
multichromatic number, x, as defined by Stahl [23]. When only the parameters r, A are
specified, we shall refer to an [r, 1] colouring.

In particular contexts, the palette 1s frequently [N] = {1, 2, ... , N}, or an algebraic structure
such as the cyclic group of order N, denoted by Zy. Thus, an [r, 4, N] colouring of a graph

G is a function y from the vertices of G to the r-subsets of the palette S, such that

lu(v) N u(w)| = A whenever v and w are adjacent vertices. It is sometimes helpful to add a

8



little more structure and envisage the colours at a vertex as arranged in an order, the site of
a given colour in the vertex being its position in the row; 1t 1s convenient to refer to the
appearance of a particular colour at a particular site as an occurrence. Note that, since we
have sets rather than multisets of colours, no colour can occur more than once at any
vertex. It 1s convenient ‘shorthand’ to refer to an [r, 4] colouring of the graph G as
‘Glr,AY .

Examples of overlap colourings of the cycle graph Cs:

[3, 1] colouring of Cs (i e Cs[3, 1]) [3, 2] colouring of Cs
Colours Colours
1 23 405 1 23 435
Vertices Vertices
Vo X X X Vo X X X
Vi X XX Vi X X X
1 %) X X X Vs X X X
V3 X X X V3 X X X
V4 X XX V4 X X X

The two colourings above are cyclic, in the following sense: a colouring u of C, (with
vertices labelled vy, ...,v»-1) 1S cyclic if the palette is a cyclic group Zy and there are a
subset S of Zy and a constant d € Zy such that

puw)=58+id (i=0,...,n-1) for some n.
In the above examples, § = {1, 2, 3} in both cases and d = 2, 1, respectively. This concept
extends naturally to colourings of the generalized Petersen graph P(p, q); here there are
distinct palettes for the outer and inner vertex cycles.
We describe the colouring of a graph G as equable if the frequency f of each of its
constituent colours 1s the same. If G has a non-equable colouring, we sometimes denote
the frequencies with which the colours occur by f; (i € {1, 2, ...}); the number of colours

occurring with frequency f; 1s denoted by ;.




When giving colourings explicitly, we normally represent the colour sets of vertices as
rows and vertex sets of colours as columns, as in the examples above, but it is occasionally

convenient to transpose rows and columns.

1.2  Fundamental Properties of Overlap Colourings

We begin with a fundamental property of the overlap colourings of any non-trivial graph.

Proposition 1.1 Let 4 be any overlap colouring of any non-null graph; then

Nz22r-4.
Proof Consider any two adjacent vertices, v and w. Now v has r colours, A of which occur
In w. A further r — A colours are necessary in w to limit the overlap to A. The total number
of colours required is then 27— 4, and at least this number of colours will be required, that
1s to say, N>2r—A. _
Our next result is almost as straightforward to prove from first principles; but it is worth
going via the concept of a homomorphism. Given two graphs G and H, a homomorphism

from G to H is a function 6 : V(G) - V(H) such that 6(v) is adjacent to §(w) whenever v is

adjacent to w.

Proposition 1.2 Let0< A < r. If there is a homomorphism from G to H, then

xri(G) < xra(H).
Proof Let 8 be a homomorphism from G to H and u an [r, A] colouring of H; then y o @ is

an [r, A] colouring of G. -

Proposition 1.3 If G 1s any bipartite graph, then y,.(G) =2r-A.

10



Proof Clearly y,.1(K2) = 2r—A; we colour one vertex with {1, ... , 7} and the other with
{r-A+1, ..., 2r—A}. Moreover, there 1s a homomorphism 6 : G » X defined by

6(v) = v,or v, depending on the partite set to which v belongs. B

An overlap colouring is frivial 1f 1t 1s an equable colouring with f =1 or n.

The total number of occurrences in an equable colouring may be expressed in two ways,
etther as the total number of colours (N) multiplied by the (constant) frequency (), or as
the number of vertices (#) multiplied by the number of colours at each (7); since these are
equal, we have

Nf = nr.

Proposition 1.4 Let u be any non-trivial equable overlap colouring of a

non-null graph; then:
(i) N and » have a common factor;
(ii) unless N = n, N and r have a common factor;
(ii1) if n and r are prime, then r <N =p.

Proof Since fis an integer, % 1s an integer. If N and » have no common factor, then N

divides ». But it 1s impossible to colour the graph if N < r. Then either N=r, in which case
each vertex has all the colours, which is trivial, or N> r. So N and » have a common
factor, and, unless N = n, N and r also have a common factor. Moreover, since N> 1, if n
is prime, N is an integer multiple of n (including the possibility N = n). If, in addition, r is
prime, then either

(i) N = nr, again trivial (but the only colouring when 4 =0), or

(ii) N = n, thatis, 7 <N = n. In this case, since both » and r are primes, r < n— 1 (with the

unique and trivial exception when n=3 and r = 2). n

11



Corollary 1.5 Let 1 be a non-trivial equable overlap colouring of a non-null graph, and

suppose that » and » are prime. Then A > 2r—n; 1n particular, if »> a ,then 4> 0.

Proof By Propositions 1.1 and 1.4 (i), n>2r- A4, thatis, A >2r—n. u

In the particular case where a graph has a universal vertex (that 1s, a vertex that is adjacent
to all the other vertices), this places a surprisingly strong restriction on the possibility for
equable colourings, which we shall use in Chapters 3 and 6.

Proposition 1.6 Let n(G) = n, and suppose that G has a universal vertex; then for any
equable colouring we have

_____nr?
N= (n=1DA+r

Proof Letyu be an equable [r, ] colouring of G, with colour frequency f. Let the colours at
the universal vertex be 1, ..., r. The colour 1 also occurs on f- 1 other vertices of G;
similarly for colours 2, ..., 7. Thus there are in total (- 1) pairs (s, s.) where s, is an
‘other vertex’ sharing a colour with a site on the universal vertex s,. These pairs must

account for the A(n — 1) colour overlaps between the universal site and the other sites. Thus
f-1)=An-1). (1)

Since u is equable, Nf = nr, so that f= %

Substituting in (1) An-1=r % - 1),

which, after rearrangement, gives

2

___nr
N= (n—-DA+r

1.3  Relationships Between Overlap Colourings of a Graph
Complementary Colourings We define the complementary colouring of a colouring i to

be the colouring 1 in which each vertex v receives exactly those colours that it does not

12



receive in 4. It follows from elementary set theory that the parameters of 4 are

[N-r, N-2r+ 1, N-M], where Mis the number of colours that occur at every vertex in
the original colouring.

Juxtapositions of Colourings Suppose that i, ..., un are overlap colourings of a graph
G, with parameters (n, r;, A;, N)) (i =1, ..., m) and with disjoint palettes. The juxtaposition

Zil u1s the overlap colouring in which each vertex receives all the colours from the

corresponding vertices of each of the colourings u;. If we denote the juxtaposition by 6,

then clearly

Y(G,9)=);-?’f;
A(G,H) =§Ai .
N@G,0)=ZN;.

Moreover, if each u; is equable with frequency £, then 8 is equable with frequency /.

Relationships Between Colourings of Related Graphs

Given an overlap colouring z of a graph H, we can often construct a colouring of a related
graph G by finding a homomorphism @ : G —» H and using the construction in the proof of
Proposition 1.2; that 1s, # o 6 1s an overlap colouring of G with the same parameters [r, 4].
In particular, in Chapter 2 we shall make extensive use of homomorphisms from Cag41 10
C2p+1 (Where g > p). However, these are not the only interesting homomorphisms, even
between cycles.

For any integers p > 3, ¢ > 2, we may define a homomorphism 8 : C., » C, by “wrapping’
Cp, ¢ times round Cp via the homomorphism 8(vap45) = v (Where 0 < b < p). This process
may be alternatively imagined as chaining c copies of C, together after cutting a link of
each ‘chain’ constituting a p-cycle, so as to produce a path, then joining the ends of the
path so produced. The result 1s to repeat the pattern of an overlap colouring of C,, ¢ times

to produce an overlap colouring of C,,.

13



In a similar way, we may use an overlap colounng of the generalized Petersen graph
P(p, q) and a homomorphism @ : P(cp,q) - P(p,q) to obtain an overlap colouring of
P(cp,q). Analogously with the case for cycles, the homomorphism 1s defined by:

O(vapss) = Vb, B(Wapes) = ws (Where 0 < b <p).
Again, the process may be imagined as the chaining of ¢ copies of P(p, q) to form P(cp, q).
We show (Annex 1.1) the result of chaining two copies of P(7, 3) to form P(14, 3). In this
case six edges of each copy of P(p, q) are ‘severed’ and then reconnected in the chaining

process, although the way in which the two vertex sets are mapped to P(cp, g) 1s quite

transparent.

1.4

Fractional Parameters

Many graph parameters can be ‘fractionalized’. An excellent general account of this topic
is given by Scheinerman and Ullman [20]; we shall consider the fractional versions only of
chromatic number and overlap chromatic number.

One might intuitively expect that to colour a graph with  colours per vertex would always
require r times as many colours as one per vertex (that is, one might expect

xr0(G) = rx(G)). This, however, 1s not so; to take a very simple example, x(Cs) =3, but
we need only five colours for a 2-tuple colouring of Cs, so0 y20(Cs) < 2x(Cs).

For low values of 7, y,(G) can vary rather erratically (particularly if G has low symmetry).
xr(G)

However, as mentioned 1n the Introduction, lim “—— always exists; moreover, the

F—+Q0

sequence {y(G)—-ryAG)} eventually settles down and becomes periodic.

Johnson and Holroyd [11] generalized these results to overlap colourings. This thesis
examines in detail the ‘fractional’ version of overlap chromatic numbers of the classes of
graphs: cycles, wheels, GenPets and complete graphs.

We now define the rational parameters for any overlap colouring u of a graph G, as

follows:

14



AG,
o(G.) = s

NG,
G =Gy

(As for integer parameters, we drop the arguments G and 2 where allowed by the context.)
The choice of symbols x, y relates to the graphical representation that we describe in
Chapter 7.

An [r, 4] colouring u of G is said to be efficient if N(G,u) = y-4(G); that is, if it is of

maximum efficiency over all such colourings of G, where the efficiency of u is defined as

r(G,u1) ]
{) = NG.0) = WG.n)

There are various possible definitions of a ‘fractional analogue’ of the overlap chromatic
number; the one we shall use is as follows:

For each rational number x € [0, 1], we consider the behaviour of ¥, .(G) for large r

(where r is a multiple of the denominator of x). We denote inf £ r’r;.(G) by xAxI(G); by

[10, Theorem 4], this value is attained for some value of r.

In terms of the fractional parameters x and y, ¥ {x](G) may thus be described as the

minimum value of y over all [r,xr] colourings of G.

15
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Chapter 2: Cycle Graphs C,

The Overlap Chromatic Numbers of Cycle Graphs
Since Cy, 1s bipartite, Proposition 1.2 immediately gives y,1(C,) = 2r — A. The case for odd
cycles is less trivial; the principal result of this chapter is:

Theorem 2.1 For any positive integer p,

xra(Cape1) = max{2r— A 2(r-2)+ [r; 4 ]} .
When colouring a cycle using N colours, we use the set {1, ... , N} as the palette,
considering these numbers modulo N, that i1s, as the cyclic group Zy. The colour set So at
vertex vo 1s always {1, ..., r}; each colour set S is usually an interval {x+1, ..., x+r}
modulo N, although we occasionally find 1t necessary to work modulo N for the first part

of the cycle and modulo N -1 for the remainder.

Scott [21], Theorem 8, proves the equivalent of our

xro(C 2p+l) <2r+ I--E--L

and subsequently shows this as a special case of his Theorem 10:

for p>3,xx(C3) < [ ki

o]
g+l

and proves equality in his Theorem 13.

Colouring Methods
We begin with two general methods.
Method 1 This produces a cyclic colouring with S= {1,2,...,r} andd=r-A.
So, for i=0, ..., n=2, the overlap is strictly between the last A colours of v; and the first 4
colours of vui; thu;,
Si={ir-D+1, .,ir-A)+r} =8y + i(r — A).

This may be divided into two vanants:

17



Method 1(a) The pattern continues from v, to vy, that is, the overlap 1s strictly
between the last A colours of v, and the first A colours of .

Method 1(b) We still require |[S,-1 N So| = 4, but the overlap 1s not of the above
form. For example, the [3,2] colouring of C; with colour sets {1, 2, 3}, {2, 3, 4}, {3, 4, 1}
uses Method 1(b).
Proposition 2.2 An n-cycle (etther as a graph C, or as a subgraph of some graph) has a
Method 1(a) colouring with parameters [r, A, N] (where N> 2r- A) if and only if
n(r— A) =0 (mod N) or, equivalently, NV divides n(r — A).
Proof The colour sets at vi, vis1 (i =0, ... ,n—2) clearly overlap by A colours; we need to
verify the conditions under which this is true of the colour sets at vo and v,.;. This is so if
and only if the last colour of v, 1s the Ath colour of vq; that is,

r+(n-1{r-A)=A.

This 1s clearly equivalent to
n(r—A4)=0(mod N). _

If this requirement 1s not satisfied, then there is no Method 1(a) [r, 4] colouring.
Corollary 2.3 If A =r -1 and there 1s a Method 1(a) colouring then N divides » and so
N=n.

Moreover,

n=N22r-A=r+l,

so a colouring with N = n1s possible if r < n-1.

A Method 1 colouring is not necessarily equable; an example is Cs :

[ r, A, N]1=[5,7, 1, 15].

1 713 410
2 814 5 11
3 915 6 12
4101 713
511 2 8 14
6 12 3 915
713 410 1



Since nr =35 and N = 15, there is no integer value of f'such that Nf = nr. The colours 1, 4,

7. 10, 13 occur three times, the remainder twice.

Method 2 In this method, we colour Ca,41 (Where g > p) as follows. The first
2p + 1 vertices, vo, ..., V2p, are coloured as in Method 1, and then the colour sets alternate,

so that u(vape1) = u(vap-1), u(vaps2) =), ..., 4(vag) = u(vp). (Alternatively, let @ be

the homomorphism from Cy441 to Cypy1 defined by

B(V,') =V; (0 <i< Zp),
=vy1 (i=2p+1, 2p+3, ...,29-1)
—vs, (i=2p+2, 2p+4, ..., 29).

Then let u = g o 8 (Where u 1s the Method 1 colouring of Cap.1).

Proposition 2.4 If g > p, then ¥, 1(Cag+1) < Xr2(Capi1).

Proof Let ug be any colouring of C;p With ¥,1(Cape1) colours, and use Method 2. W

We may conveniently include within Method 2 the case 4 =0, for example, the colouring
of Cs[1,0]: 1,2, 3, 2, 3.

In order to determine the conditions under which Method 1 is valid, we introduce the
following lemma.

Lemma 2.5 Let/N=2r-/andletS,, Tbe the following intervals of Zy:
So={1,..,r},T=8+t Then|SoN7]=Aifandonlyifr-A<t<r.

Proof Any two intervals of Zy of length  must overlap by at least 1.
Ift<r—A,thenSoNT={t+1,...,r} and [SoN Tl =r—¢> A unless t = r - 4, in which case
SoN 7= 4.

Ifr-A<t<rlett=r-A+k Notethat k< 4.

ThenT = {r—-A+k+1,...,2r-A}U{1,...,k}, and so

SoNT={r-A+k+1,...,r3U{L,..,k},s0|SoNT|=(L=k)+ k=]
19



Ift=r,thenSoNT={1,..,A}and|SoNTl = A

Ift>r,thenSoNT={1,..,A+t=r}and|SoN T} > A _

Proposition 2.6 (1) x,4(C3)<3(r—4) (0<A1< %);
(i) xra(C3)<2r-4 (55420

Moreover, the Method 1 of colouring is valid.

Proof (1) IfO<A< -5-, then the following Method 1 colouring 1s valid:

So {l,...r},Si={r-4+1,..,1,..,2r- A};
S2={2(r-A)+1,...,3(r=-A),1,...,A}.

Observation Hf0 <A< %, then we may produce a colouring in which

1So NS1)=[S1NS2| =4, and |S2 N So| = 1+ 1, using one fewer colours, by setting
Sy= (20-)+1,..3(¢=-A~1,..1, . A+1}.

() If -5- < A <r, then colouring the vertices using Method 1 gives So and $; as

above,and S: = {2(r- ) +1,...,2r-2,1,..,r-1}.
Observation Inthis case, unless r = 1= 1, we may produce a colouring in which
ISo NS1]=[S1NS2]= 4 and |[S2 N So| = 4 - 1, using one extra colour, by
setting S2 = 2(r-A)+1,..,2r-A+1,1, . ,r-i-1}. u
These observations will be used in Chapter 3.
We now move to the proof of Theorem 2.1. This requires separate arguments to
show that the expression in the theorem is a lower, and that it is an upper, bound.

Stahl [23, Theorem 6] gave a lower-bound proof for non-overlap colourings of Czp:

2ro(Copu1) 2 2r+ 1)+ L),
or equivalently,
2r9(Cop) 227+ | 5 |.

Our lower-bound proof generalizes that of Stahl. His crucial step involves obtaining a

lower bound on |[So N S2,} by means of lower bounds on |Sy N Sy

20




for each i, then equating this to A, showing that, for fixed » and p and a wide range of

values of 4, we can colour C5,.with the required palette size using Method 1 or Method 2.

Proposition 2.7 ¥,1(Cop1) 220~ ) +| T35 |

Proof If2r-A22(r-A)+ [r; A -], then the proposition follows from Proposttion 1.1.

Assume, then, that 2r— A <2(r—A)+ '—’ ;_', 4 -I, and suppose that u 1s an [r, A] colouring of

Cypi using N = 2r— A + s colours.
Fori=0, ..., 2p, let S; be the set of colours at v..
Consider So N S2. Now, Sp and S; must each contain r — A elements disjoint from S), and
there are only r — 1 + s such elements available.
Hence, ISoNS2|Z22(r—A)—(Fr—A+8)=r—(A+5)
Similarly, 1S2 NS4} = r— (4 +5), and, more generally
1S2: N S22 7= (A+5),i=0, ..., p-1.
Now, in general, 1f 4, B and C are sets of size r with AN B|>r—-¢; and |[BN (|27 - €2,
then at most g; + &2 of the elements of C can fail to be elements of 4, and so
IANCl2r-(e; +¢&2);
thus 1So N S2,| 2 r—p(A+5).

But v, and v,, are adjacent, and so 1So N S2P| =l

Then A2r—p(A+s),
r—4 _
and so $2 7 .

Since s and N are integers, and N=2r— A +s,

it follows that N22(r-A)+ [r;l]

as required. When 4 =0, this gives N> 2r+ I%-l, equivalent to the expression found by

Stahl. R
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Our upper-bound proof differs considerably from that of Stahl. Our proof does bear a

general similanty to that of Scott, although our approaches differ in detail.

Proposition 2.8 Let p21. Theny,:(Copn) <2r-

ISA<0

Moreover, p 1 p

Proof Le o 1 < _-3 and consider colouring C,,+1 using Method 1.

Then v, and v;, have the colour sets So = {1, ... , 7}and S;, = So + 2p(r — 4) (mod(2r - 4)).

Now,

20(r=-AD)=(p-D2r-2)+2r-(@+ 14
hence S;, =So + ¢, where t =2r-(p+ 1)A.

< A, then 2r - (p+ 1A < r, and since % > A, we have

Since 72

r
p+1
2r-(p+ DA=Qr-pl)—-Aizr-A

Thus, by Lemma 2.5, the Method 1 colouring is valid.

_"'_ TS A < r, then the Method 1 colouring is valid for Cs, for some g < p,

and therefore a Method 2 colourning is valid for C,,.1. _
Next, we proceed to the general upper bound argument, including cases where Methods 1
and 2 do not suftice.

I}

Proposition 2.9 y1(C2p+1) < max{Zr -4,2(r-2)+ |'r—

Proof

1 A 1s an integer, it follows that 2r— 1> 2(r - 1) + [

Case1: A

pT
r—ﬂ.

ifand only if 2r—42 2(r-—it)+

.
p+1

p+1°

Case2: A< p+ T We now show that if A < 5——1—, then xr1(Copi1) S 2(r-A) + [

In this case, let N = 2(r-l)+|-r"’1-|
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r—l'l

Letr—-A=ap-y, where0_<_y<p.Thus[ =q.

3

Then

pN=2p(r- ) +p| 554 | = 2p(r- D)+ (= D +y=@p+ 1)r- D +.

We now divide the sites of each vertex; the first » — A sites are the initial sites, and the
remaining /A sites are the overlap sites. (Thus, the overlap sites of each vertex are those
whose colours overlap with those of the following vertex of the cycle.)

Now, the number of initial sites 1S 2p+ 1)(r-A)=pN-y=(@p-yIN+y(N-1).

We now colour the initial sites by consecutively allocating colours, using (p - y) cycles
with the colours 1, ... , &, followed by y cycles using the colours 1, ... , N— 1. Finally, the
overlap sites of each vertex are the first A colours of the succeeding vertex, and we have
constructed a Method 1 colouring (except that we have cycled through 1, ... , N for part of
the process and through 1, ... , N—1 for the remainder).

This process clearly allocates r colours to each vertex, and gives an overlap of at least A
between adjacent vertices. We need now to verify that the only overlaps between adjacent

vertices are between the overlap sites of v; and the initial sites of v.;. Note that our

r
p+1

assumption 4 < implies N > 2r - 4, and thus N—1 > 2r - A. Then, even when cycling

through the colours 1, ... , N- 1, there are no overlaps between the initial sites of adjacent

vertices. Thus,

_ _ r—2A

xr,ASmax{Zr A, 2(r 2)+|- 7 -|} n
Proof of Theorem 2.1

The theorem now follows from Propositions 2.7 and 2.9. B

Annex 2.1 deals with minimum palette sizes of certain colourings of the cycle graphs
Cs, Cs, ... , Cu. In particular, for 1<r<9and0<i<r-1, the table gives minimum

palette sizes for equable colourings (where they exist) in red, along with the corresponding
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value of fin blue. Where either an equable colouring does not exist or there is no equable

colouring with x,1(C,) colours, the value of y{C,) is given in violet.

Primitives and Juxtapositions
In Chapter 4 we explore the properties of a wider class of graphs than cycles and show that
they nevertheless have the same overlap chromatic numbers as their smallest subgraphs
that are odd cycles. In order to do this, 1t is useful to show that any efficient colouring of
Cap+1can be expressed as a juxtaposition of [, 4] colourings with » <p and A < 1. We call
such juxtapositions additive colourings.
Let 1 <r<p,0<A<1. We denote by nfr,0] the efficient [r,0] colouring of C,,; with
2r+1 colours, by Method 1 if r = p and by Method 2 if » < p; and by z[r+1, 1] the
complement of zn[r,0] (which by Chapter 1 is indeed an [r + 1, 1] colouring, since no
colour occurs at every vertex). Finally, we denote by =[1, 1] the colouring that allocates
the same colour at each vertex. These will be called the primitive colourings.

Since juxtapositions are defined only for colourings with disjoint palettes, when we define
juxtapositions of primitive colourings we always translate the palettes of the primitives so
that their palettes are disjoint. For example, z{r,0]+nx[r+1,1] will refer to the
juxtaposition of

n[r,0] (using palette {1, 2, ..., 2r + 1})

with n[r+ 1, 1] (using the translated palette {2r+2,2r + 2, ..., 4r + 2}).

Theorem 2.10 Let r— A =np+i(where 1 <i < p). The following [, A] colouring z of Czp1

is efficient:
If A <1, (50 that 2,a(Caput) = 27— ) +| Z52 |), then
4 = af1,0]+ (n— Dr[p,0] + Anfp+1,1];
if A>n, thenp=nli+1,1]+(A-n-1a[1,1}+nalp+1,1] (so that

Xra(Copi1) =2r— A).
24



Proof Case 1: If A <n, then the palette size of z[i, 0] + (n - A)n[p, 0]+ nrfp+ 1, ]

r—A

152i+14+(m—=-A)2p+ 1D+ A2p+ D) =2(nmp+)+n+1= 2(r—A)+|- D ] as required.

Case 2: If A > n, then the palette sizeof nfi+ 1,11+ (A —n- D=z[l,1]+nn[p+ 1}
is 2i+14+(A—n-1D+n2p+1)=2mp+)+A=2(r-DN+1=2r-4 as required.
|

Annex 2.2 shows primitive (emboldened) and additive colourings of a range of cycle
graphs. We arrange them as in Annex 2.3 in blocks O, (4,7 > 0) as follows.
The rows of 0., are indexed by 4 and the columns by 7, where the block 0O, contains the
[np+ i+ A, 2] colourings ( 1 < i< p); we denote by 0,,,(i) the ith element of the block.
In row 0, the block Qo has the primitive colounings Q¢ o(i) = #n[i,0] (i=1, ..., p).
In row 1, the block Q19 has the primitive colourings O, 0(i) = #[i+1,1] (i=1, ..., p).
Now let 7 be some primitive colouring. We use the notation Q;,+ 7 to represent the set
of colourings Qi,())+7 (1 < i < p). The remaining blocks of colourings are now
constructed iteratively from Qoo and 0, and the primitives zn[1, 1], z[p,0] and n[p+1,1]
as follows.
In row 0, we set Qon = Qop-1+7[p,0] (n> 1), so that

Qon = Qoo +na[p,0] (n>1).
In column 0, we set Q10 = Q10+ 7f1,1] (4 =2), so that

Oi0=010+@A-Dx[1,1] (A122).
When A,n>0,we set Qin = Qk-121+7[p+1,1]. Thus,
if < n,then Q1n = Qop-a+Anlp+1,1]1 = Qoo+ (n—)xn[p,0]+ Az[p+1,1];
if A > n,then Qa5 = Qino+na[p+1,11= 010 +(A-n-Dxr[1,1]+nz]p+1,1].

In Annex 2.3 we show part of the table for Cy and a general table.
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Annex 2.1

Equa ble and Non-Equable Colourings of C,
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Annex 2.2
Primitive and Additive Colourings of C,,+
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Ne = number of colours in an equable colouring  Nn = number of colours in a non-equable colouring

Primitives are emboldened
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Chapter 3: Wheel Graphs W,

A wheel graph W, consists of a cycle graph C,; which we shall for convenience call the
rim, each vertex of which 1s adjacent to a further single vertex, which we shall call the
hub. We label the nm vertices vo, vy, ..., Va2, as in Chapter 2, and the hub vertex 4.

Since W, 1s a subgraph of X, there 1s an equable [r, 4] colouring of /¥, if there exists an
equable [r, A] colouring of X,

Equable colourings

Since the hub vertex 1s a universal vertex, we have the following restriction on equable

colourings of wheels.

Proposition 3.1 If there exists an equable [r, 4] colouring of the wheel graph 17,

2

___nr
then N= (n=DA+r
Proof This is an immediate consequence of Proposition 1.6. =

In the remainder of this chapter, we do not assume equability. We discuss separately Wagn

and W2q+2-
General Colourings

Proposition 3.2 For any wheel graph W, .4,

Xra(Wag1) =max{2r-2,3(-2)}.
Proof Any component tniangle consisting of two adjacent rim vertices and the hub
is a C; graph, which can be minimally coloured as such. Moreover, if the colour sets at the
vertices vo, v1, h are A, B, C respectively, then the remaining rim vertices of any Wzg can
be coloured alternately with 4 and B, as in Method 2 of Chapter 2.
We have seen that for Copiy, N= max{Zr- 2,2(r= )+ Z—E—’-l--l}

In the particular case of Cs, p =1, so that
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Yra(Wapi) = N=max{2r-2,2(¢r- ) +[r- 21} =max{2r-1,3¢-2)}. ®
We then consider colouring the graph W,... Since an even wheel has an odd number of
rim vertices, we cannot argue as above. Let

1 be an [r, A] colouring of an even wheel graph W5,.2;

S be the set of all colours used;

H = u(h) be the set of colours at the hub;

6 be the colouring of C;,+1 using ; that is, the hub component of the colouring of

Wap+a.,

o the colourning of Cs,+ using S~ H, that 1s, the rim component of that colouring;
so that u' = 8+ w, where y' is the restriction of u to Cy,..
Thus, f and w use 4 and r— A colours per rim vertex, respectively. Individually, these are
not necessarily constant-overlap colourings, although between adjacent vertices the sum of
the overlaps 1s always A. (However, as we shall see, we need only consider cases where 0
and w each take just two consecutive overlap values.)
Since the number of colours in @ is fixed as 7, in order to find y,1(Wsp42) We need to
minimize the number of colours in w. Proposition 3.3 (below) shows that we minimize the
number of colours required by maximizing the mean or minimum overlap. In order to
maximize the overlaps in w, we need correspondingly to minimize the overlaps in 6.
The proof of Proposition 3.3 falls into two parts, the first of which is analogous to that of
Proposition 2.7, and the second of which corresponds to Proposition 2.9.
Consider colouring the cycle Cy,+1 with R colours per vertex, but with overlap A; between
vertices vyand vy (j =0, 1, ..., 2p—1) and overlap A,, between vertices v2, and v,. We call
this an [R, (Ao, ..., A2p)] or, for short, an [R, A] colouring. Denote the minimum of the A;
by Amin and the mean of the A; by A. Whereas in the case of constant overlap we showed

that N> 2R - A, 1t 1s clear that, in the case of variable overlap, N> 2R — A gin.
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2p+ IR - A)
-

Proposition 3.3 XRA(C2pi1) 2 max{2R - Apin, [

Proof Letu be an [R, (Ao, ..., Azy)] colouring of Copey uSINg N=2R = Apin + 5
colours.
Fori=0,1, ..., 2p, let §; be the set of colours at v,.
Consider So N Sa; So contains R— Ap elements disjoint from S;, and S; contains R— A
disjoint from S, and there are only R — Amin + 5 sSuch elements available.
Then |SoNS2l2(R-A0)+(R-A1)—R-Amin+5)=R-(Ao+A1+5)+ Amn.
Similarly, fori=1, ..., p-1,
1S2: N Sa2is2l 2 R—= (A2 + Azis1 + 5) + A
Thus, arguing as in Chapter 2,
1SoNS25| = R—(Ao+ A1+ e.. + Azt +p8) + pPAmin
But 1SoN S2,| = Asp.
Then Ay 2R—=(ANo+ A1 +...+ Ayt +ps) + pAre;

ps2R=(Ao+...+ Axp) + pAnin;

s> ..R:Qf)_-l-_l.)_j\__l_Am.
Since N=2R-Apin +5,

R-@p+DA  _Qp+DR-B)

NZZR—Am+ D + Npijp = 7

and, since N is an Integer,

N> [ Qz_t%(_&:&]

Moreover, since N 2 2R — Apin, We have

N2 max{ZR-Amin, (Qﬁi%@” u

t al ] (p + l)f
We now proceed to evaluate y,i(Wap.2). The range 2p +l < A< 2+ 1 is the most

difficult to evaluate; we deal with the other possible values of A first
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Proposition 3.4 (Case 1)

3r—4).+|-"'},2)‘-| (Osls pf_z)

(1)
3(r—A) (p:-Z SAL 2;:_1)

Cp+1)r
P

Xra(Wape2) =

Proof If A =0, then the nm vertices require ¥, 0(Cop) = l- 1 colours, all distinct

from the hub colours; thus

Xro(Wop2) =7+ [(Zp ; l)r'l =3r+ l-ﬁ'-l

Now let 0 < A< -i-f-:_—l- Thenr> I‘(Zp ; DA 1 and so, by Theorem 2.1, Cy,+1 has a [4, 0]

colouring using at most » colours; that 1s, the hub component § may be chosen to be a
[4,0]

colouring. Then the rim component w is a [r — 4, 4] colouring of C,,.1, and requires

max{Z(r ~A) -4, I-in-l)(g_——*—&ul-l } = max{2r -~ 34, [W] } colours.

Thus, (counting the colours of § also) we have

Yra(Waps2) S max{3( - ), 3r- 42+ [ 524 ],

Moreover, if 8 were chosen to have overlaps, then the mean and minimum
overlaps of w would be reduced, and by Proposition 3.3 the number of colours required by

@ would be at least as great. Thus

Xra(Waps2) = max{B(r—A),3,-_4A+ l-r-})ﬂ. ]}

3r—4l+[r}2l-l (Oslspiz)

- _
_ r pr
=4 [P+25}“52p+1)
Proposition 3.5 (Case 2)
_ (p+Dr
XFJ(WZP"'Z)“ZI'_A ( 2p+ 1 SAST’) (2)
Proof In this case, we find the number of overlaps required by the hub component;

we note that since the im component has »— A colours per vertex and thus a maximum
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overlap of r- A, the minimum possible overlap for the hub component 1s 24 —r. This 1s
possible when the number of colours available for the hub component (namely ) i1s

enough for a [4,24 —r] colouring; by Theorem 2.1, this requires

r max{2l -(2A-1), [W] } - max{r, I-w-l }’

(p+ 1D

and this is true in the range 2+ 1 < A<r, this makes the rim component @ an

[r— A,r— A] colouring, requiring just r — 4 colours. Since w cannot possibly use fewer than
r — A colours, we have shown that, for this range of A,
XrilWap2) =r+(r—-2)=2r-4 B

. +1 . ..
In order to deal with the range -j-fjj-i- <A< (gp n 1’ , we require the following lemma,

which allows us to deal with all possibilities except those with » = 2 and with p = 1; these
peculiarities are considered last.

| pr_
Lemma3.6 Letr23,p22,L= |_2p+1_|and12 2p+1’then

@ L2y (3)

(i) 2(r—-A)-L2= [Qﬂi'_l_)%_:&:_l'_),'l (4)

Proof (1) Note that

pr _r _@-Vr
2p+1

> 1 whenever p>2 and r > 3, except for the cases

(p,r)=(2, 3),(2,4), (3, 3). Thus, (3) holds except possibly for these three instances; but 1t
is straightforward to check that (3) does in fact hold in those instances.
(ii)  From (3) we obtain

(p+Dr
(p+1)L2 P+l

pr
2p+1°

it follows that r—- 4 < (‘gp++l {r and hence

Since A 2

+DL2r-4

Qp(r-)+@+ DL > Qp+1)r-A);
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Cp(r=A)-pL>22p+ 1)r—i-L);
2p+ D(r-1-1L)

2(r-A)-L2 7 :
and since 2(r— A) - L 1is an integer, (4) follows. n
Proposition 3.7 (Case 3)
pr (p+ Dr
Let P41 <A< 7+ 1 andp>2,r>3.
pr
Then x,-;(WzPJ,;)=3r-2l—l2p+ 1 J (5)

Proof Let the hub component be a A-colouring of C,,+; using the hub colours 1, ..., r,

with overlap A. By Proposition 3.3, r > max{2l ~ Amin, [W] }; thus

- r r
Amin224A-rand A2 A- 2;_'_ T LetL = [2;+ 1 J Now, the rim component o must have

mean overlap at most ; :_ 7 and maximum overlap at most A~ (2A~r)=r-A. Let Nbe

the number of colours required by w. The first of these inequalities implies that

p—— — p?'
NZmax{Z(r—).)-l_zﬁil J,[_____(2p+l)(rp A Zwl)]}

e[ 220D}

r
Yra(Wops2) 2r+2(r-A)—L=3r-2- [2;+1 J

But, by Lemma 3.6,

2Ar-)-L> [Qf;*..l_)(é'_:_@_:{')_'l

and so by Theorem 2.1 (since these quantities are integers) there is a constant-overlap

[r— A, L] colouring @ using 2(r - 2) - L colours. The result follows. =

_ : e _ pr (p+ 1
Finally, we tackle the “peculianties’. We note first that if » < 2 and L S A< 5 1

then the only possibility i1s r=2, 4 = 1.
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Proposition 3.8 (Case 4)

x2,1(W2pe2) = 5, for all p. (6)
Proof Let the hub component have the colours 1, 2 at the hub and colour 1 at each nm
vertex. Then the nm component can be a [1, 0] colouring of Cype1 using ¥(Copsr1) =3
colours. Hence, y2,1(W2p+2) £ 3.
To show the lower bound, note that the above colouring is (apart from a rearrangement of
colours) the only [2, 1] colouring of W5, where the hub component 8 has constant
overlap. Thus, if there 1s a colouring using four colours, then the hub component & must
have variable overlap. Suppose that & has this property; then we may assume that an odd
number of nim vertices take the colour 1 and an even number take the colour 2. Consider
the edges of (541 1n cyclic order; the colour must change an even number of times, hence
@ has an odd number of overlaps of size 1 and an even number of overlaps of size 0.
However, the same must be true of the rim component  (since our assumption of four
colours in total implies that e uses just two colours). This would imply that the combined
colouring has an even number of overlaps of size 1 on the rim edges, contradicting the

requirement that it is a [2, 1] colouring. Thus & must use more than two colours. M

(p+ 1r
2p+1°

Finally, still keeping the assumption 5 P _ i< we tackle the wheel with p =1

p+1
(that is, the graph Wy = K4) and r > 3. This is the only case where (in some circumstances)

the hub and rim components must necessarily have variable overlap in order to achieve the

bound. We establish exactly which these are.

Proposition 3.9 (Case 5)  Let %- <A< -231, and r > 3. Then
Xra (W) =3r=24~| £ | (7)

Moreover, in order to obtain a colouring with y, (W) colours, it is necessary to use

variable—overlap components when 7= 3L +2 and A = L + 1: for all other values,

35



constant—overlap components are sufiicient.

Proof Let 6 be a A —colouring of C; using the hub colours 1, ..., r, with overlap A.

By Proposition 3.3, r > max{24 — Anin, |-3(l - K.I} thus Agin 22A—r and A2 A - -3'-'-

Let L= I_-g-_l Arguing as in the proof of Proposition 3.7, the (r — A)-colouring @ requires at
least 2(r — 1) — L colours. Thus
Yra(Ws)23r-24-L.
We establish the circumstances under which variable-overlap components are required.
To do this, weletr=3L+q, whereq=0,lor2,and A=L+k where 1 <k<L ifg=2,
otherwise 1 <k<L-1.
Subcase Sa r=3L.

Here, the hub component has mean overlap at least A — g—- = k. Thus the nm component @

has mean overlap at most 4 - k= L. Then we must choose @ to have constant overlap L.

Then Nw) 2 {max2(r- A)-L,3(r-1-L)}
=max{2(r-A)-L,2(r-A)+r-A-3L}
=max{2(r-A)-L,2(r-)-L-k}=2(r-2)-L

Thus, y,1(W4) = 3r-2A - L, and variable-overlap components are not required.

Subcase 5b r=3L+1.

The hub component here has mean overlap at least A — -’3'- = k- %-, so  has mean overlap

at most L + %— If we can choose exactly this mean overlap (so that @ has two overlaps of

size L and one of size L + 1), then
N(w) 2 max{2(r-2)-L,2(r-A)+r 4-3L-1}
=max{(2r-A)-L,2(r-)~L-k}=Qr-1)-L
Alternatively, if we choose the hub and rim components to have constant overlaps k and L
respectively, then denote this im component by v. Then

N(V) = max{2(r—2)~-L,3(r- A-L)}
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=max{2(r-A)-L,2(r—A)+r-A-3L}
=max{2(r-A)-L,2(r-A)-L-k+1}
=2(r-A)— L, as before.

Thus, y,1(Was) = 3r— 24— L, and again variable-overlap components are not required.

Subcase 5S¢ r=3L+2.

The hub component here has mean overlap at least A - -g— = k- —32-, so w has mean overlap

at most L + %— If we can choose exactly this mean overlap (so that now w has two overlaps

of size L + 1 and one of size L), then
Nw)2max{2(r-A)-L,2(r-A)+r-1-3L-2}
=max{2(r—A)-L,2(r-A)-L-k}=2(r-A)-L.
Again, if we choose the hub and rim components to have constant overlaps k and L
respectively, then denote this im component by v. We obain
NW)=max{2(r—-A)~-L,3(r—A-L}
=max{2(r—-A)-L,2(r—A)+r-A-3L}
=max{2(r—A)-L,2(r—-2)-L-k+2}.
If k > 2, then as before, this choice requires the same number of colours as the
variable-overlap component w.
However, if £ = 1, then the constant-overlap choice forces one extra colour. Thus, in this
case, we need to check that the vanable-overlap colourings do exist.
Note that the hub component 1s required to have two overlaps of size 0 and one of size 1.
Since r > 3, part (i) of Proposition 2.6 applies; hence by the observation, the hub
component can be chosen to have these overlap sizes, using 34 - 1 = colours. Then the

rim component requires two overlaps of size L + 1 and one of size L. Since

L+1>1L '2" A _ L+ ':IZ" part (1) of Proposition 2.6 applies, hence by the observation , the
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hub component can be chosen to have these overlap sizes, using

2r=AD-(L+D+1=2(r-1)- l_ J colours. This completes the proof. =

Theorem 3.10 The value of y,1(W2p42) requires five expressions, depending on the

values of A and ~.

(1) Forr=2 and A4 = 1, we have y2,1(W2542) = 5. In all other cases:

(ii) IfOsAsp_'_z,thenx,,;(sz,q) 3r-— 4,1+I-?'}2,1";
ooy s r
(111) p-T-Z <A< 2; | , then xra(Waps2) = 3(r— A);

_ S /4 (p+1)r pr |
(lV) if 2P +1 <AL 2p+1 ’ heanJ(W2ﬁ2)=3r_2l_l2p+lJ:

(p+ 1)r

2p+1°

(v) iz then y,1(Wapa) = 2r — A.

(Note that if p = 1, Case (111) does not occur.)
Annex 3.1 gives, for some values of [, 4], the minimum number of colours required for

Ws, Ws, Wio and Wha.
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Annex 3.1

Wheel Colourings
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Chapter 4: Overlap Colourings and Homomorphisms

In this chapter we investigate the place of overlap chromatic numbers in the classification
of graphs.

Letr>1, 0<A<r. Wehave seen (Proposition 1.2) that if there is a homomorphism
from a graph G to a graph H, then x,1(G) < x-.(H). Moreover, if also H is isomorphic to
a subgraph of G, then x,.1(G) 2 xr1(H), and so ¥,1(G) = y,.1(H). The core of a graph G is
the smallest subgraph C of G such that there is a homomorphism from G to C; this is
unique up to isomorphism (see [9]), and by the above remarks has the same overlap
chromatic numbers as G. Thus, classifying graphs by their cores is certainly at least as
fine a classification as by their overlap chromatic numbers. We shall now show that
graphs with different cores can have the same overlap chromatic numbers (so that

classifying by the former 1s strictly finer than by the latter). We say that G and H have the
same multichromatic profile if x,0(G) = x,0(H) (r > 1) and the same overlap profile if
1ri(G)=xra() (r21,0<4A<0).

Theorem 4.1 Let G be a graph with the same multichromatic profile as C 2p+1, and
containing Cap+1 as a subgraph. Then G also has the same overlap profile as Czp+1.

Proof. Letr>1, 0<A<r. Since Cyp is a subgraph of G, y,1(G) = xr.1(Cop+1); we shall
now construct an [r, 4]-colouring of G using y, 1(Cap.1) colours.

Let n be such that np+i=r—A where 1 <i< p; then 0,.,() (see page 25) is an efficient
[r, A]-colouring of C2p+1. By the proof of Theorem 2.10, if A > n , then

Qi) =n[i+1,1]+(A—n-1Dz[l,1]+na[p+1,1]. Since G has the same
multichromatic profile as C3,.1, G must have an [, 0] colouring 6[i, 0] using 2i + 1
colours and a [p, 0] colouring 8[p, 0] using 2p + 1 colours. The complement ¢ of &[i,0] 1s
an [i + 1, 1] colouring of G using 2i + 1 colours, and the complement w of O[p,0]1s a
[p+ 1, 1] colouring of G using 2p + 1 colours. The colouring n{1, 1] is available for any

graph,
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using one colour. Thus, the colouring

p+(A-n-Dxn[l,1]+ny
of G uses the same palette as 01,(?), and thus y,1(G) < xri(C2p+1) as required.
If n> A, then Q41,(i) = n[i,0] + (n— A)=[p, 0] + A[p+ 1, 1], and a similar argument again
shows that ¥,1(G) < xr1(C2p+1) . Thus G has the same overlap profile as Cz541. N
Corollary 4.2 Let G be a graph with ¥,(G) = 2p + 1, and containing C;,,; as a
subgraph. Then G has the same overlap profile as Cy,.;.
Proof Theorem 2 of [23] states that if G has an edge, then y,(G) = ¥»-1(G) foralln> 1.
Now since G contains an odd cycle, x1(G) 2 3. Since also y,(G) = 2p + 1, it follows that
14,(G) =29+ 1 (1 £ q < p). Hence G has the same multichromatic profile as C;,+1, and the

result follows from Theorem 4.1. |

Bangles

We now consider a class of graphs which we term bangles. These are a sub-class of the
class of series-parallel graphs, whose chromatic properties (particularly their circular
chromatic numbers) have been studied (see, for example, Pan and Zhu [19]).

Informally, a bangle 1s an odd cycle of odd cycles, ‘welded’ together at points as far apart
as possible on each cycle. More formally, the bangle B(2g + 1, 2p + 1) is formed from
2g + 1 copies of the cycle C,py as follows. The copies of the cycle are denoted by

Ci2, C23, ... ,Cags1,1; @ vertex of Cagq11 15 identified with a vertex of Cy, to form a ‘weld
vertex’ W ; a vertex of Cy; at distance p from W) on Cy; is similarly identified with a
vertex of Cz; to form a weld vertex W2; and the welding process continues cyclically, so
that I¥,,,1 welds C2g2¢01W1th C24411. (We say that two vertices are at distance pina

graph if the shortest path connecting them has p edges.) Thus, for example, the bangle

B(3, 7) may be drawn as follows.
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C23

Figure 1
Proposition 4.3 Letp>2. Then there 1s no homomorphism from B(3, 2p + 1) to Cap41.
Proof Let us allocate colour i to vertex v;of Cs,11 (0 < i <2p). Then, a homomorphism
from B(3, 2p + 1) to C5p41 may be regarded as a [1, 0] colouring of B(3, 2p + 1) using
palette {0, 1, ..., 2p} such that the colours occur cyclically, in clockwise or anticlockwise
order, on each of Cy;, C23 and C31. We may assume without loss of generality that the
weld W, is coloured 0 and the cycle C;; 1s coloured clockwise; thus W5 is coloured p + 1.
Now if Cy; is coloured clockwise, then 3 takes the colour 1, while if C»3 is coloured
anticlockwise, then 3 takes the colour 0. In neither case can the colouring of C31 be
completed cyclically.
Thus, no homomorphism 1s possible. B
Thus, the core of B(3, 2p + 1) 1s not Ca,4;. Nevertheless, we shall now show the
following.
Theorem 4.4 Forany g 21, p2>2, the bangle B(2g + 1, 2p + 1) has the same overlap

profile as the cycle Capn.

Before we prove this theorem, we require the following lemma.
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Lemma 4.5 Let u be the cyclic [p, 0] colouring of C,,+; and let vertices v, w be at
distance p.

(1) Ifp=2a-1, thenlu(v)Nuw)=a-1;

(11) Ifp=2a, then [u(v)Nuw)|=a.
Proof We may assume without loss of generality that v = v, and w = v,, since the colour
sets at any other pair of vertices separated by p edges are related to those at v and v, by

adding some constant modulo (2p + 1). Thus we may assume

o) ={1,2,..,p}; pu)=wp+1,p+2,..,2p},
uva}=2p+1,2p+2, ..,p-1}; u@3)={p,p+1,..,2p-1},
and so on, so that
uvy)={2p+2-j,...,2p+ 1L, 1,.,p=j} 1 <j<p),
pvyn)={p+1-j,...2p-j} (1<j<p).
Thus, if p=2a-1, then u(vo) = {1,2,...,2a—-1} and
UWp) =)= {p-a+2,..,p,...2p-a+1} = {a+1,....3a- 1},
giving pG)Np@W)i=a-1;
if p = 2a, then uvo)=1{1,2,...,2a} and
pvp) =pu(va)=1{3a+2,..,4a+1,1,..,a},

giving @) Nuw) =a. _

Proof of Theorem 4.4

Note first that we need only show the result for g = 1, since if B(3, 2p + 1) has an

[r, A}-overlap colouring using x.:(C2p+1) colours, then we may colour the first three weld
vertices Wi, W2 and W3 of B(2g + 1, 2p + 1) as for B(3, 2p + 1) and then colour subsequent
weld vertices by alternating between the colourings of W, and ¥ (that is, there is a
homomorphism from B(2¢+1,2p+1)toB(3,2p+1)).

Denote B(3, 2p + 1) just by B. We shall now construct a [P, 0] colouring ¢ of B using
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2p + 1 colours, thus showing that y,0(B) = 2p +1. The resuit then follows from

Corollary 4.2. l

To do this, we need to define a rotation sense 1n each cycle. As in Figure 2, below, we
shall consider the longer paths between the weld points to be drawn round the outside of a
drawing of B, and the cycles to be as in Figure 2, with I at the top. We colour the
vertices of Cja clockwise starting from ¥, so that (W) = {1, ..., p}, the next vertex has
the colour set {p+1,...,2p}, etc. There are two cases to consider, depending on the size of

the cycle modulo 4. Thus, we now express B as B(3,4a—1)or as B(3,4a+ 1)

(a=1).
123 456
476
712
135 457 567
267 236 234 345
367 245
145 671
23>0 235
146

Figure 2: B(3, 7)[3, 0]
We take B(3, 7)[3, 0] (Figure 2) as a detailed example. We colour C;; with the standard
cyclic colouring, proceeding clockwise; the colours of W, are 123, and those of ¥, 671.
Since W; and W- overlap by one colour, 1, the colours of 3 must be 145 so as to overlap
each of W, and W, by exactly one colour.
To find suitable colours for Cs;, we would like to reflect in the axis of symmetry through
W, and allocate to each vertex of C; the colours of the corresponding vertex of Ci..

However, this would give the wrong colour set to ;. Thus, after the reflection, we need
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to permute the colours so that {6, 7, 1} becomes {1, 4, 5}. One way to do this 1s to apply
the permutation

1= (23)(46)(57);
although not the simplest possibility, it is consistent with a systematic approach which we
shall describe later.
We then apply a similar process to the vertices of Czs, relecting in the axis of symmetry
and applying a suitable permutation to bring {1, 2, 3} to {1, 4, 5}, in this case

72 = (24)35)(67).

A similar argument leads to the colouring of B(3, 9)[4, 0] (Figure 3):

1 = (13)(24)(56)(79) 712 = (12)(35)(46)(79)
1234
5689 5678
1347 5789 9123
2569 4567
3478@ 3789 8912
4789 1356 2789
1256 3456

3489 1278

1257 3469
Figure 3: B(3, 9)[4, 0]
We form the complements of the above:

The complement of B(3, 7){3, 0] is B(3, 7)[4, 1], and also has the permutations:

1 = (23X46)(57), m2 = (24)(35)(67).
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4567

5123

1236

2674 3456

4513 7451 5671 6712

1452 3671

2367 2345

6145 6714
3237

Figure 4: B(3, 7)[4, 1)

The complement of B(3, 9)[4, 0] is B(3, 9)[5, 1], which also has the permutations:

71 = (13)(24)(56)(79) 72 = (12)(35)(46)(79)
56789
25689 45678
78134 89123
12569 34567
78934 78912
71256 34569

34689 78125

Figure 5: B(3, 9)[5, 1]
These examples are typical;, we generalize as follows.
B(3, 7)[3, 0] is an example of the general B(3,4a - 1)[2a - 1,0]. We generalize the

colouring of the latter as follows, beginning with C),:
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vo (1€ W) 1,2,...,a-1,a2a-1

Vi 2a,2a+1,...,4a-2
V2 4a - 1, 1, ooy 2a-2
V4 461—2, ...... > 2a-3

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

v (1€ W3) 3aq,...,4a-1, 1,..,a~-1.
The overlap between /), and W2 1s thus 1, 2, ..., a— 1. We then colour I¥;
1,2,...,a-1,2a, ..., 3a—1. This overlaps by the correct number of colours with #; and

Wa, and one possible choice of permutations is

11 =(l..a-1)a..2a- )Q2a3a)Qa+13a+1)..Ga-14a-1)
72 =(l..a-1)(3a..4a-1)a2a)a+12a+1)..Qa-13a-1)

W1, W, and W; are all coloured using 4a - 1 colours; all colours are used.

B(3, 9)[4, 0] 1s an example of the general B(3, 4a + 1)[2a, 0]. We colour the latter:

Vo (Wl) 1, 2, vers 2a

Vi 2a+1, .., 4a

Vi 4a+1,1,..,2a-1
V3 2a,...,4a-1

Vs 2a-1,...,4a-2

llllllllllllllllllllllllllllllllllllllllllll

Vaa+1 (W2) a+1l,..,2a,2a+1,... 3a
We set W3 l,..,a,2a+1,..,3a. This gives a possible set of permutations:

mi=(la+1)2a+2)...(a2a)2a+13a)(3a+14a+1)
n2=(a+12a+1)a+22a+2)..(2a 3a)1 a)(3a+14a+1)

W, W2 and W; are all coloured from 4a + 1 colours, without using colours

3a+1,..,4a+ 1. N
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Chapter S: ‘Petersen’ Graphs P(p, q)

We follow Watkins [27] in using the term ‘generalized Petersen graph’ (sometimes
abbreviated to ‘GenPet’) to refer to graphs (denoted by P(p, g)) which may be drawn with
an outer cycle of p vertices v; (i=0, ... , p— 1), each joined to an inner vertex w;, w; being
joined by an edge to Wi.gmoap) We use the term ‘Petersen graphs® loosely to include

generalized Petersen graphs in whichp > 5.

Following [27], we need consider only graphs in which 1 <g< %’ since P(p, p—q) 18

isomorphic to P(p, q). If p1s even, g = '-g- produces a degenerate graph in which each inner

vertex is joined to its opposite, and we do not consider these.

As we shall show, there 1s a rather small class of GenPets whose overlap parameters can be
fully described using Corollary 4.2 (this class includes the Petersen graph itself). In the
main, however, the overlap parameters of these graphs seem to be difficult to find. We do,
however, describe a systematic approach to the fractional chromatic numbers of GenPets;
in particular, Theorem 5.8 expresses YA P(p, q)) in terms of the sizes of certain maximal
independent vertex sets of P(p, q).

The proof of this result involves showing that a colouring of P(p, q) with y AP(p, 9))
colours can always be constructed either as an equable colouring or as a juxtaposition of
two equable colourings.

We begin the chapter with an extended description of equable colourings of GenPets, by
devices that we call p-plets.

5.1 Constructing equable colourings of GenPets

We can sometimes find an equable colouring of P(p, ¢) where there is no equable
colouring of the outer cycle, that is, where there is no equable colouring of C,. A simple
example of this is provided by P(5, 2)[5, 2]. There is no equable Cs [5, 2] colouring, by

Corollary 1.5 of Chapter 1, so that we cannot colour the outer vertices with a cycle of
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single frequency. We can, however, colour them using Cs [3, 2] and Cs [2, 0], whose
frequencies are 3 and 2 respectively. We then colour the inner vertices with the same
colours but with the frequencies reversed, producing a colouring in which N=10and /=5
(we note that an equable colouring 1s not necessarily efficient; the graph in question can be
coloured more efficiently but not equably using only 8 colours).

Colours

12345678 910

Vertices

O Vo X X X X X

U Vi X X X X X

T Vi X X X X X
E V3 X X X X X

R V4 X X X X X
I Wo X X X X X

N W) X X X X X
N W1 X X X X X
E ws X X X X X
R Wy X X X X X

Essentially, this is a juxtaposition of two cyclic colourings x 1 + 2, where u; cycles
through the colours 1, 2, 3,4, 5, withd =1, and u5 cycles through the colours 6, 7, 8, 9,
10, with d =2. (However, x4 and z22 are not true overlap colourings as they do not give
constant numbers of colours to the vertices.) Note that, on renumbering the second colour
set 6+—6,8—7 10—8, 7—9 9 10,

we produce an isomorphic colouring in which both cycles have d = 1.

Colours

1 234567 8 910
Vertices
O Vo X X X X X
U Vi X X X X X
T Vs XX X X X
E V3 X X X X X
R V4 X X X X X
1 Wo X X X X X
N W) X X X X X
N W2 X X X X X
E W3 X X X X X
R Wy X X X X X



It might appear that an equable colouring of (P(p, ¢)) necessarily requires more colours
than an equable colouring of C, with the same parameters r, 4, but this is not always so. A
counter-example 1s P(§, 2)[3, 0], which has an equable colouring with N = 10, whereas an
equable colouring of Cs requires N = 15.

Attempts at finding colourings can be made using actual drawings of graphs, but these
occupy much space. We assign colours more compactly by representing vertex-pairs (VP)
of outer and inner vertices with sets of p symbols (‘p-plets’), each p-plet having the same
number of colours assigned, as follows. In a given p-plet, let colour sets Sy, 7o be assigned
to vertices vo, wo, respectively. Then we assign the colour set Sp + 7 (modulo p) to vertex v,
and colour set 7o + j (modulo p) to vertex wy, forj =1, ... , p—1. This ensures that each
vertex receives the same number of colours, and that no vertex receives the same colour

twice. We assign colours using symbols with the following meanings:

® colour assigned to outer vertex only;
N colour assigned to inner vertex only;
* colour assigned to both outer and inner vertices;

D colour not assigned to either type of vertex.
The second colouring on the previous page is then expressed  eeomm  émO@L
The cyclic structure of a p-plet means that each p-plet has constant frequency (counting 1
for each @ and M and two for each @), and so is equable. The number of p-plets will
depend on r and A. In total, we need 4 occurrences of . The outer vertex will then require
r— 2 occurrences of @ and the 1nner vertex r— 4 occurrences of ®. The number of p-plets
must be great enough to accommodate |®| + [8] + |m] symbols. In any one p-plet, the

number of overlaps need not be constant, nor outer and inner overlaps be equal, but the

total number of each over all p-plets must be A.
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A simple example makes the method plain. Consider colouring P(5, 2) [6, 1]. One colour
in each VP, the overlap colour, 1s provided by the single ¢; in addition, each of the pair
will have a further five colours, so that we have eleven symbols to include. Then we need
at least three 5-plets. With the 4 counting as two, we need to place four colours in each of
the three S-plets, with exactly one overlap among the ® and one overlap among the M. One
example is the following:
" Iul ] Im oomm] meion
In this example, the outer and inner overlaps occur in the second and first 5-plets

respectively; there 1s, then, no further overlap in the third.

Colours
1 2345 678 910 1112 13 14 15
Vertices

O Vo X X X X X X
U Vi X X X X X X
T V2 X X X X X X
E V3 X X X X X X
R Vs X X X X X X
I Wo X X X X X X
N W X X X X X X
N W2 X X X X X X
E W3 X X X X X X
R Wy X X X X X X

This colouring is a juxtaposition u; +u2 +u3, each u; being described by a single 5-plet
representing a cyclic colouring arrangement. (In this case, each 5-plet allocates two
colours per vertex, but 4 and i separately do not have the property of constant overlap.)

A colouring that can be constructed in the above way is a p-plet colouring. Such
colourings may be characterized as follows. A colour class is the set of vertices that
receive a particular colour; then, in a p-plet colouring, each rotational image of any colour
class is a colour class. The use of the symbols listed above can greatly reduce the effort
required to establish that a given P(p, q) [r, A] has no equable p-plet colouring. As an
example, consider P(5, 2) [9, 7]; this is large enough to require considerable trial-and-error

on an actual diagram.
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Weneed 7 ¢ + 2 @ + 2 1, Since there are 11 symbols, we need at least 3 5-plets, and 1n
order to distribute 18 colours (recalling that 7 ¢ counts as 14 colours) equably we need 3,
6, 9 or 18 5-plets. We can eliminate at once:

18 with 1 colour each (because of the ¢);

9 with 2 colours each (too few overlaps between outer vertices and between
inners);

6 with 3 colours each (at least one VP will have at least 2 4).
This leaves only 3 with 6 each. Only two arrangements are possible. One will have 3 ¢,
onc2 ¢ +2 e, and the third 2 ¢ + 2 m. The other arrangement has one 6-plet with 3 &,
and the other two each 2 ¢ + 1 @ + 1 m_]n either case, the maximum number of possible
outer overlaps is then 6, as 1s the maximum number of inner overlaps, showing that there is
no equable p-plet colournng.
Some graphs which have a p-plet colouring may have a more economical non-p-plet
colouring; a small example 1s P(6, 2) 3, 2]. The p-plet method gives a colouring using 12
colours. Trial-and-error on the diagram produces a colouring with only 4 colours. It is

worth, for the record, listing the colouring:

Colours

1 2 3 4
Vertices
OVo X X X
le X X X
T v X X X
EV3 X X X
RV4 X X X
Vs X X X
I wg X X X
NW] X X X
N w; X X X
E ws X X X
R w; X X X
Ws X X X

Note that, though equable, this colouring does not possess the cyclicity property of p-plet

colourings.
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New Colourings from Old

Complements

The colouring obtained by complementing a p-plet colouring is again a p-plet colouring,
obtained by exchanging e with ® and ¢ with 0. As in Chapter 1, we have the relations:
Ny =N; n =n, ri=N-r; Ai=N=-2r+A,

which hold provided that there is no colour that appears at every vertex.
For example, from the colouring of P(35, 2) with [, A] =[4, 1], in which N = 10, we can
obtain the colouring with [r, 4] =[6, 3].

Chaining
We may use the homomorphism construction referred to as ‘wrapping’ or ‘chaining’ in
Chapter 1 to obtain a colouring of P(ap, ¢) from a copies of a colouring of P(p, ). Annex
1.1 illustrates the construction of the graph P(14, 3) from two copies of P(7, 3), and it is
straightforward to check that 1f each copy is given an [r, 1] colouring, then the inserted
edges (coloured green in the figure) have overlap 4, so that we obtain an [r, 1] colouring of

P(14, 3).

GenPet Automorphisms

The graph P(p, q) has p-fold rotation symmetry, however, the colourings of P(p, g) that

arise from a given colouring u differ only trivially from y itself.
There are, however, bijections of some GenPets that produce non-trivial new drawings:

(i) If p+2q, then a colounng of P(p, q) produces a colouring of P(p, q - p) by the
bijection v;+ vpy, Wi~ wp (corresponding to reflecting the drawing about an axis

through vo and wo).
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(i1) If p and g are coprime, then the inner vertices lie on a p-cycle, and we may
redraw the coloured graph with the inner and outer p-cycles interchanged, to produce a
colouring of a drawing of P(p, s), where sq = 1 (mod p). That 1s to say, we use the bijection
Vi Wsi, Wit Vi,

(iii) If both of the conditions p # 2q and p, ¢ coprime apply, then we may obtain a
fourth drawing of P(p, p-s), by composition. This corresponds to the fourth bijection of
the Klein group, v; = w_sj, Wi - v_g;.

We note that these group elements are not always distinct; for example, there are cases
where s = q.
5.2 Using p-plet colourings
Thecase A=r-1
Before proceeding to the determination of the fractional chromatic numbers, we show that
the p-plet construction enables us to say, for a range of values of », which of the graphs
P(p, 2) have an equable [r, 7 — 1] colouring.
Proposition 5.1 The graph P(p, 2) has a [(p~ 1), (p - 2)] colouring with
N=p, f=2(0p-1)
Proof We colour a single p-plet withp—-2 ¢, one ® and onc W

A W 4 ]}
There are p — 2 outer overlaps and p — 2 inner overlaps. Each colour occurs p - 1 times
each in outer and inner rings. |
Proposition 5.2 The graph P(p, 2) has a [(p - 2), (p - 3)] colouring with
N=p [f=2p-2)
Proof We colour a single p-plet withp—3 4, one ®, one ® and one O:

¢ 6 .. oom[]

There are p - 3 outer overlaps and p -3 inner overlaps. Each colour occurs p -2

times each in outer and inner rings. .
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Proposition 5.3 The graph P(p, 2) has a [(p - 3), (p - 4)] colouring with
N=p, f=2(p-3), where p +6.

Proof We colour a single p-plet with p—4 @, one @, one B and two O:

¢¢ .. o0n[]
There are p — 4 outer overlaps and p — 4 1nner overlaps. Each colour occurs p - 3 times
each in outer and inner nngs. R
Proposition 5.4 The graph P(p, 2), has no equable [r, r — 1] colouring for r > p.
Proof To colour P(p,2) with [p, p—1] weneed p—1 @, one ® and one m.

This will entail using more than one p-plet, which will break the sequence

6 .. 6o

and reduce 4, so that the colouring 1s impossible. 4 fortiori, a colouring with > p is

impossible.

The Fractional Chromatic Numbers of Generalized Petersen Graphs

In this section we work towards a general theorem that gives the fractional chromatic
number of a GenPet in terms of the properties of its maximal independent vertex sets
(MIVSs). Thus, we now consider colourings with 1 = 0. We continue to work with p-plets;
however, since 4 =0, the p-plets have no ¢ symbol.

We need to translate a p-plet symbol P; into a description of the corresponding MIVS, M.

The symbol P, gives the colour sets So, To, which describe the vy and w, rows of a
particular ‘block’ of the colouring matrix (such as, for example, the block describing

colours 11 to 15 on page 42). In order to find the corresponding M, one must read the first

column of the block. A rule 1s needed to describe the MIVSs in terms of the p-plet

symbols. In general, if the jth colour of the p-plet is in the colour set S, then the

(p - j + 1th outer vertex, vp.1, 1s 1n the MIVS (counting modulo p), with a similar rule for

To and the inner vertices.
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Proposition 5.5 Suppose that, for i =1, 2, P(p, q) has an MIVS, M, corresponding to a
p-plet P, with a; ® and b, m (that 1s, @; vertices 1n the outer cycle and b, vertices in the inner

cycle), where a; < b and a; > b,. Then

p(bl —a)+a —bz)
bias — bra, '

XAP@,q)) <
Proof Each p-plet P, produces a non-overlap colouring, where each outer vertex receives
a, colours and each inner vertex receives b, colours. Thus, the colouring corresponding to
b, - a; copies of the p-plet P2 and a2 — b2 copies of P, has
(b1 —ar)az + (a2 - b2)ay = baz - baay = (by —a1)bz + (a2 - b2)b,
colours at each vertex.

We have produced an [r, 0] colouring using N colours, where r = b;a; - b,a; and

N=p(bl -ai +az—b2). Thus,

p(bl —-dad)t+aj —bz)
blaz—bzal

x[(P(P.q) <

, as required. n

Let us say that an [r, 4] colouring using N colours has efficiency (see Chapter 1, p 15)

£ = -]—,’&- Thus, to find ¥ {P(p,q)), we need to find a colouring of minimum —g and thus of

maximum efficiency. The next proposition considers any [r, 0] colouring of P(p, g), not
necessarily equable and not necessarily cyclic, and produces from it a p-plet colouring with
the same efficiency.

Proposition 5.6 Let u be any [r, 0] colouring of P(p, ) using N colours and let u; be the
colouring achieved by rotating the colours of u by i positions (i=0, ..., p—1).

Then p = o + ... +Up-1 is a p-plet colouring with the same efficiency as 4.

Proof Consider any particular colour of uo; its occurrence in the vertex set can be
described by a p-plet P involving O, @ and ®. With its corresponding colours in g1, ... fip-1,
it gives rise to the cyclic colouring described by P. Thus, p is a sum of p-plet colourings
and is a p-plet colouring. Clearly, p is a [pr, 0] colouring using pN colours, and so has the

same efficiency as 4. N
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Proposition 5.7 There exists a most efficient colouring that is also a p-plet colouring
formed either by just one p-plet or by a combination of just two p-plets as in

Proposition 3.5.

Proof By Proposition 5.6, we may find yAP(p, q)) by searching for the most efficient
p-plet colouring. Consider such a colouring, formed as above by the p-plets
Py, ... , Py, where the p-plet P, corresponds to an independent vertex set with a; outer and 5;

inner vertices.

: _ _ k
Suppose that we take ¢; copies of each P; (i =1, ..., k). The resulting colouring has Z‘i cia;

k
colours per vertex on the outer vertices and ‘§1 ¢;b; on the inner vertices. Thus, we require

k k 3 : .- : r __r
;Z.l cia; = El ¢;b; (= r) and we wish to maximise the efficiency N=5%e
(Zciai,Zciby) .

If we plot the points (a;, ;) on the xy plane, then the point T yo IS In the convex

hull H of the (a;, b;), and has X c;a; = X ¢;b; if and only if it lies on the line y = x.
Therefore, we maximise the efficiency (hence minimising the estimate of y (P(p, ))) by

finding the intersection of the boundary of H with the line y = x. This must occur either at

a point (ay,a;) or on the line segment between two points (a;, b)), (a;,b)).
We must finally consider how the most eflicient single p-plet or pair of p-plets may be
identified.

The GenPet P(p, g) may have many MIVSs, but from the foregoing analysis, the only
relevant information is the numbers of outer and inner vertices. Thus, let 4 = {(a;, )} be
the set of all pairs (a;, b;) corresponding to the outer and inner vertices of MIVSs.

If a; < a; and b; < b;, at least one of the inequalities being strict, then (a;, 4,) will not
contribute to a ‘most efficient’ colouring, as it does not lie on the boundary of H.

Therefore, we need consider only the set 4" of ‘winners’, a winner being a member (a, b)

of A such that, for all i, eithera2a;orb2b;.
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Then 4’ canbe ordered as 4' = {(a1,61),(a2,b2),...,(ax, bi)}, where the g; are in

increasing order and the b; are in decreasing order.

Theorem 5.8
Casel Ifai<bi, (i=1,...,k), then x(P(p,q)) = 4=

Case2 Ifb;<ay, (i=1,.. k), then yAP(p,q)) = f;-;

|

P
di;

Case 3 Otherwise, if a; = b; for some i, then y {P(p, q)) = 'ff';

p(b;—-a;+aj—bj) }

b,-aj- bja,-

Case 4 Otherwise, xA(P(p,q)) = min{

the minimum being taken over all pairs such that a; < b;, a; > b;.

Proof

Case 1 Ifa; < b; (i=1,... k), then no sum of colourings corresponding to MIVSs will
produce a colouring with equal numbers of outer and inner colours. We must instead take
a non-maximal IVS with equal such numbers. We therefore choose the p-plet
corresponding to an IVS with a; outer and a; inner vertices.

Cases 2 and 3 follow similarly, and Case 4 follows from Proposition 4.5. n

We note that Case 2 does occur. If p = 3g, then the inner vertices occur in triangles and

by = g- Thus, y(P(p,q)) = 3, as we expect from the existence of triangles.

Precise Values of y.for ¢=2
P(p,2) We consider first GenPet graphs in which ¢ =2. We can colour four consecutive

vertex pairs (VPs) emme, but, in order to avoid adjacent vertices having identical colours

b

we colour any five consecutive VPs emmeD, and no five consecutive VPs can contain

more than four independent vertices. Moreover, for P(6, 2), ..., P(9, 2), a p-plet must

contain at least two 0. Then we have:
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P(5,2) Thisis Case 3; yAP(5,2)) = ,14Q = % Clearly, by using the homomorphism from

P(5m, 2) to P(5, 2) resulting from ‘chaining’as described in Section 5.1, we obtain
x/AP(5m,2)) = -%-, where m is any positive integer. Moreover, the colouring of P(5, 2) is a

[2, 0] colouring, and thus (for any m) x2(P(5m,2)) =x2(Cs) =35, so that by Corollary 4.2,
P(5m, 2) has the same overlap profile as Cs.

P(6, 2) This is Case 3. We colour it emmeDI0, since the 6th VP has both outer and inner
vertices adjacent to other vertices. It 1s convenient to entitle it P(5 + 1, 2).

P(7,2) Thisis Case 4. We colour it emmele] emmeOImO. (P(5 +2,2))

P(8,2) Thisis Case 3. We colourit emmelemO. (P(5 + 3, 2))

P(9, 2) Thisis Case 4. We colour it enmelleme] emmeemm[l. (P(5+4,2))

Each of the above colourings may be augmented by inserting the sequence emme, since it
is compatible at each end. Colourings of P(Sm, 2), P(Sm + 1, 2) and P(5m + 3, 2) are thus
all Case 3, while P(Sm + 2, 2), P(5Sm + 4, 2) are all Case 4. These colourings consist of

p-plets each with the number of O compatible with the fact that no five consecutive

symbols can avoid O. That is to say, a maximum IVS always has l--’g--l O symbols.

To determine yA(G) in each case, we start from the colouring of the least p and increase

a(G) by 2 for each additional 5-plet.

G IV(G)) a(G) 1AG)
P(5m, 2): 10m, 4m %
P(Sm+1,2)* 10m+2 4m 5r§’-nl-1
P(5m+2,2) 10m+4 dm+ 1 20?;2":;1
P(Sm+3,2) 10m+6 4m+ 2 _%%1_;;1‘1
P(5m+4,2) 10m+38 4m+ 3 %’%’8‘
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*Form=1, P(Sm+ 1, 2) contains two triangles of inner vertices, corresponding to the
fact that yAP(6,2)) =x1(P(6,2)) = 3. By Corollary 4.2, P(6, 2) has the same overlap

| pI‘Oﬁ]C as Cs.

Upper Bounds on y/for¢g=3,4,5

P(p, 3) We note first that for all m, s, y AP(2m,2s + 1)) = 2. Thus, all these GenPets are
bipartite.
We distinguish three categories of P(p, 3) with p odd, corresponding to p=1, 3, 5 (mod 6).
In each case we construct two p-plets, with a; < b, and a; > b, respectively, in order to
apply Proposition 5.5.
(i) These have a < b, that is, |®] < |m], and are built of a sequence of 6-plets EmmeI® with
endings:
P(6m+ 1,3): mnmelJe  mumede 0O |w|=3m, |o|=2m;
P(6m+3,3). mumeJe _ mume]le Dol |m|=3m, |e|=2m+1;
P(6m+5,3). mumelle  mmume[le mmle[] [m|=3m+2, |e|=2m+1.

(ii) These have |®|> [u.

P(6m+1,3) |@|=3m-1, |®=3m,
P(6m+3,3) |[w|=3m, |[®/=3m+1];
P(6m+5,3) m|=3m+1, |8|=3m+2,

(m+1)(6m+1)

Then by Proposition 5.5, x/(P(6m+1,3)) < 3m2t om

6m m o

(m+1)6m+5)

x/(P(6m+35,3)) < 3 +dmid

and, generalizing, fora € [1,5}

yAP(6m+a,3)) < —BF Dbm+a)

3m2+(a—1)m+i‘§l'
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We conjecture that these bounds are correct.
We note that, for each a €[1,3,5], im (x(P(10m+aq,3)) =2
We note also that the smallest odd cycle in P(6m + 3, 3) 1s of length 2m + 1, and hence the

inequality is an equality:

Proposition5.9  x/(P(6m+3,3)) =<2+L n

It would be tempting to conclude that P(6m + 3, 3) has the same overlap profile as Com1;
but since the colouring construction does not give an m-fold colouring but rather a
(3m?)-fold colouring, we cannot draw this conclusion. We do, however, conjecture that the
overlap profiles are the same.

P(p.5) We consider colourings of P(p, 5) before those of P(p, 4) because the latter
present problems that have not occurred in P(p, 2) or P(p, 3). Once again, we construct
two p-plets in each case, with a < b and a > b respectively.

We consider only odd values of p, since y{P(2m, 5) = 2 for all m.

(i) Each colouring in which [m} > |e]1s based on a sequence of m - 1 10-plets:

emnmeme[lonm cach with Sm and 4e, and with a final

11-plet emmEenmeJo[1]
13-plet emEamemeJe 00
15-plet oEEEeoEe[JemJede
17-plet TN Uel] (=] Uul]
or 19-plet eummomeJomenmeleJoIm

(ii) Each colouring in which [w] <|e| consists of an alternation emem ... ememe1e0(; a
colouring for 10m + a VPs consists of 5(m—1)+3 mand 5(m-1)+5 e
We represent the maximum independent vertex set in which [H| > |®] by M, and that in

which || < |@| by M,.
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Using these, we construct the table:

1 M,
-.-U-.D--EI--D-
_

There is a general pattern to be described for P(10m +a,5) (a=1, 3, 7, 9). (We
discuss P(10m + 5, 5) separately.) In the MIVS, we note that |m| - |®] =m -1, and in the
alternative IVS (‘AIVS’), |®| — [m|=

Thus, the denominator of Y (P(p, 5)) = (m — 1)(|®| in AIVS) + 2(|e} in MIVS), and

the numerator is (a + 1)p. Then,

XAP(10m+1,5)) < %}Q
xAP(10m+3,5)) < _(!1;_;_21)4_?_;9’;__”:“13)
2AP(0m+7,5)) s G XOm+T)
m+1)10m+9)
and, gencrally, XAP(10m+9,5)) <~ —
yAP(10m+a,5)) < .5(_2.;_'%&%__”14-1;_2
P(10m+5.5)

When m = 1, |®| > |m]. The inner vertices lie on triangles, and y(P(15,5)) =3
When m =2, |e| = || in M, and |®] > |m| in M. (Case 2). Then

xAPQ5,5)) < 7§ 5

2m<+ 1
e

When m > 2, yAP(10m+5,5)) <

We note that foralla€[1,3,5,7,9], im (xAP(10m + a,5)) =2.

Again, we conjecture that these bounds are correct. We also conjecture that P(10m + 5, 5)
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shares the overlap profile of Com:.

P(p. 4)

Unlike the three colourings for g =2, 3 or 5, there appears to be no general pattern of
colouring for g = 4.

The minimal graph is P(9, 4). Where two alternative colourings are required to give |m| =
|®|, we label the colouring in which [m| > |e] (a), and that in which |m| <|e| (b).

There is a basic 8-plet, which would constitute a degenerate graph, but which can be
prefixed to other colour colourings. We label memmeme( (2) and memeJeJe (b).

There is also one more version in which |m| = |e|: mmemee.

P(9.4) EEENe[le[Je (a) mmeme[Je[]e (b) x/(P(9,4)) 5.1775.‘
P! 10, 4! 11 0] [Jml]e Xj(P(].O,4)) < _14_9_.
P(11, 4) memmemeIN(]e (2) wemmemeJe[le (b) y(P(11,4)) < %2_
P(12.4) susmeJeJe0e(] 2AP(12,4)) <3.
(memmemeJeIe0)* Available for chaining as a (b)
P(13, 4) memmemeImeme[](c) RemeImemeJee (d)
XAP(13,4) <32,
P(14.4) mmeme[lme[Ime[INe (a) mEmeme[Imeme[JeOe (b)
1AP(14,4)) < 3
P(15.4) EEeme[memEe[Je[]e 2AP(15,4)) S_]gS__
P(16,4) Nemmoene[INenNeNe[] (3) Nemmeme[INene[Jele (h)
YAP(16,4)) < 55.
P(17, 4) memmemeImenmeJe[le 1AP(17,4)) < __1_71
P(18, 4) memmeoneImemmenmele[] (c)
menmeneimemeJelele (d) y{P(18,4)) S%.
P(19, 4) meommemememmeme[]eo[Je 2AP(19,4)) < _1_89_
20,4)  P(10,4)+P(10,4) X(PQ0,4)) <=
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We can use these, by juxtaposing and chatning, to give values of y {P(p, 4)). for p > 20.

These values are not necessarily minimal. For example, chaining three copies of P(10, 4)

suggests ¥AP(30,4)) = %%, whereas we find a colouring in which M; has 13m + 12e and

M, has 7m + 15, giving the slightly more economical value %—%’-

Annex 5.2 is a table of values of y{P(p, ¢)) for values of (p, ¢) from (5, 2) to (30, 14).



Annex 5.1

Parameters N, f for Minimal Possible Equable Colourings of Petersen and
Generalized Petersen Graphs for Given p, ¢, r, A.
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Annex 5.2
Table of Values of x{P(p, ¢))
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Chapter 6: Complete Graphs K,

Finding precise values for all overlap chromatic numbers for all complete graphs appears
to be an intractable problem, since such a determination would solve many existence
problems in design theory. Constructions for balanced incomplete block designs (BIBDs),
however, translate into constructions for equable overlap colourings of complete graphs.
An argument in this chapter shows that, when such a colouring of a complete graph is
equable, then this actually gives the exact overlap number; moreover, juxtapositions of
such colourings give upper bounds for overlap chromatic numbers. The chapter concludes

by referring to a body of work on constant-weight codes that translates into lower and

upper bounds for these overlap numbers.

6.1 BIBDs and exact determinations of overlap chromatic numbers

The CRC Handbook of Combinatorial Designs [16] page 25 gives this definition:

‘A balanced incomplete block design (BIBD) ia a pair (V, B) where Visav-setand Bisa
collection of b k-subsets of V (blocks) such that each element of Vis contained in exactly 7
blocks and any 2-subset of ¥ is contained in exactly 4 blocks. The numbers v, b, 7, k, A are
parameters of the BIBD.’

We now describe an equivalence between BIBDs and equable overlap colourings of
complete graphs.

Proposition 6.1 There is an equivalence between equable overlap colourings u of the
complete graph K,, with parameters [n, r, 4, N, f], and BIBDs D with parameters

[v, b, r, k, 2], obtained by interpreting the vertex set of X, as the set of varieties of D and
the colour set as the set of blocks of D (so that the block corresponding to the colour ¢ is

the set of vertices v such that ¢ € u(v)). Thus, overlap parameters correspond to BIBD

parameters if we re-order the latteras v, r, 4, 5, k).
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Proof Let u be such a colouring of X,. Thus u describes an incidence structure between
V(K,) and the colour set [N], which may be interpreted as a design

D = (V, B) in which V= V(K,) and B = [N], each block ¢ consisting of the set of vertices
having ¢ as one of their colours. Then, the number r of colours at each vertex is the
number of blocks to which each variety belongs and is the replication of D while £ (the
number of times each colour 1s used in the colouring) corresponds to the size k of each
block. Finally, A represents, for each pair (v, w) of vertices of X, the number of colours
present at v and w and hence (in D) the number of blocks contsining each pair of varieties.

Conversely, every balanced block design D may be derived from an overlap colouring in

this way. N

It is clear that y,0(K») = rnand x,,(X») = r; we shall refer to the [r, 0] and [r, 7] colourings
of any complete graph as frivial.

In discussing a specific K, we represent the colouring as [n, 7, 4, A, f]. (This does not
imply that there is only one colouring with these parameters.) As we shall now show, if »,
r, and A are given, N and fare uniquely determined, and it is often sufficient to give a

colouring as [n, r, 4]

Proposition 6.2 For any equable colouring of a complete graph, X,

=-Di+r (1)

Proof This follows from Proposition 1.6, since a complete graph has universal vertices.
u

By substituting N = -'lf’-'- in (1), we arnve at the further expression:

p=B=Ditr

(2)
from which we may immediately denve A(n - 1) = r(f- 1), corresponding to a well-known
expression for BIBDs, (see [16], page 25). -

It is convenient to refer to the following “glossary’:
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T

K, Parameters n r A N f

Design Theory Parameters v r A b k

In view of this equivalence between equable graph colourings and BIBDs, we add to our
list of expressions the equivalent of Fisher’s Inequality:

In a BIBD, b > v ([16], page 26), which becomes N > n.
A BIBD in which b = v is said to be symmetric ([16] page 26); by analogy, we shall say
that a colouring of K, with N = n 1s symmetric.
Two or more colourings of X, can be juxtaposed as in Chapter 1. If the colourings in the
juxtaposition all have the same frequency /, then the juxtaposition is equable. We now
show that for given [, r, 4], a juxtaposition using colourings with different frequencies
requires more colours than than an equable colouring if it exists. (For example, there is an
equable colouring of Kis: [15, 14, 4, 42, 5] and a non-equable [14, 4] colouring obtained by
juxtaposing the two equable colourings [15, 7, 1, 35, 3] and [15, 7, 3, 15, 7], which

requires 50 colours in comparison with the 42 required by the equable colouring.)

Proposition 6.3 For givenr, 4, an equable colouring of complete graph X, is more
economical than a juxtaposition of equable colourings of X, with different frequencies.
Proof Dividing expression (1) by r, we may express the formula for N in an

equable colouring [n,r, 4, N,f] colouring u of X, as
N__ n
T =441

Let %‘ = x(Knt) = X; 2 = (Kn,11) = (as in page14), then y = '(;;:f’-);-;-l-
and the rational parameters (x, y) for any equable colouring of X,, lie on a hyperbola whose

sense is convex downwards.

Now, fori=1, ..., g let 4, be an equable colouring [, 7, 4;, N, fi] of K, and let M = %,u;

i=1

be the juxtaposition of the u; (where not all the f; are equal).
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Suppose that M s also an [r, 4] colouning; thatis,r=ri+..+rgjand A=A, +... + A,. Let

N] +...+Nq rly] +...+rqu
Y=},(KH:M= rl+...+rq = rl+...+rq *

Thus (X, Y) is a convex linear combination of the (x;, y;) and must thus lie within the
hyperbola and therefore above the point (x, y); thatis, Ny +... + N, > N. N

Corollary 6.4 If there is an equable colouring [n,r, 4, N, f] of K,,, then

2

xra(Kn) = ‘(;:'gl‘rﬁ;—,'

Proof Letu be this colouring, and suppose that there is a non-equable [r, 4] colouring 8 of
K., using Q colours. Suppose these colours take distinct frequencies £, ..., £,. For each

i=1, ..., qlet 8 be the colouring that uses the colours of  that have frequency f;. Thus, 8
is the juxtaposition of the §;. These colourings may not individually have constant r or A,
and thus may not be true overlap colourings, but their juxtaposition is 8. Moreover, if @,
is the juxtaposition of the images of 8; under all permutations of the vertices, then each ®;
is a true overlap colouring, with frequency f.. Let M be the juxtaposition of all permutation
images of u; then M is an equable [n!r,n!1] colouring of K, requiring n!N colours, while
the juxtaposition © of the ©; requires n!Q colours. By the proposition, 0 > N.

Thus, =xra(Kn). =

The Handbook of Combinatorial Designs has a table ([16], pages 36-58) of BIBD
parameters, whose first five columns are the parameters v, b, r, k, 4 and whose sixth
column indicates a lower bound for the number of BIBDs with these parameters. Thus,
whenever this number is non-zero, Corollary 6.4 allows the conclusion that y,(X,) = b.
Limitations arising from Prime Parameters

We now consider some limitations on N that arise if one or more of the parameters of a
colouring is prime. Propositions 6.5 - 6.7 concem the parameters of colourings that are

assumed to be equable and non-tnvial.
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Proposition 6.5 The parameters nand N have a common factor. Thus, if n 1s prime then

N is a multiple of n.

Proof We note that -UNE- = f 1s an integer and that N > r. Thus, N = r would give a trivial

colouring. Therefore N > r, and so N and » have a common factor. B

Proposition 6.6 If one of n— 1, r is prime, then it divides the other.

Proof We make use of the relation A(n— 1) = r(f- 1).

-1 .
n—1prime Since A= rfzf_ 1), and f—1<n-1, it follows that (n— 1) divides r.

Mn-1) .
r prime SinceA<randf-1= (nr ),1t follows that r divides (n—-1). N

Proposition 6.7 If n, r are both pnme, then the colouring is symmetric

and n = &4 + ¢ + 1, for some integer c.
Proof Since nis prime, N = an, by Proposition 6.5 above, so that r = af
Since r is prime, and fis an integer, either a =7, f = 1, which gives the trivial [r, 0]
colouring, ora=1. Then N = n; the colouring is symmetric.
Substituting in (1), and multiplying out,

r=(n-DiA+r,sor(r-1)=A(n-1).

Since A <r,n-~1isamultiple of 7,sayn—1=cr,and r -1 = cA.

So r=citlandn-1=cr, andn=cA+c+1.

For given n and r, we can determine an upper bound of equable colourings.

Since N2n>f, N>/, itfollowsthat1<f< /nr. Also, ,1,_.:_’52_2"_'.1.1)._

If n -1 is prime, then, since f<n, (n—1) divides .

If n -1 is not prime, then, if we reduce ~ _’: 7 to its lowest terms, f—1 must be a multiple of

the new denominator. Some examples make this clear:
(a) n=10,r=9. 1<f<9. Since f divides 90,1=2,3,5.60r9.
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A= 9«;1) =f-1; then A=1,2,4,50r8.

There are at most five parameter sets.

(b) n=10,r=6. 1<f<7. Sincef divides 60, /=2, 3,4, 5 or 6;

l:@:zg'g:'l—)'; thenf=4,l=2.

There is only one parameter set.

Colouring Constructions

The above results do not describe the constructions of the BIBDs (or equivalently, equable
colourings of complete graphs) that give rise to these parameters. The constructions which
follow, most of which are based on well-known constructions for BIBDs, are, however, of

some interest in their own right, and we now describe these; we give appropriate

references.

A process which we call colour section can be applied to known symmetric colourings (in
which n = N and, consequently, r =f). It consists of deleting all vertices in which a given
colour occurs, thus reducing n by r and N by 1, keeping r and A unchanged. As for the

effect on frequency,

fef = (n-lr)l+r_ (n—r-—;l)ﬂ.+r _2

Thus, in general, the parameters of the second colouring are:

n=n-r,r'=r,A'=4, N=N-1,f=f-A
A similar process, which we call colour intersection, can also be applied to symmetric
colourings. It consists of deleting all vertices in which a given colour does not appear, and
then deleting that colour from each of the remaining vertices, producing the derivative. In
this case,

n=rr=r-1;1=2-1, N=N-1,f=f
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These constructions correspond respectively to what in [17] are called variety section and
intersection, and the resulting colourings correspond to the residual and derived designs as
described on page 25 of [16].

The definition of complement of a colouring in Chapter 1 corresponds to the definition of
complement on page 26 of [16]. This may be the same as the original, or different, and has

n=nr'=N-r.A'=N-=-2r+..

Constructions and Overlap Parameters

A number of constructions follow standard patterns, and we now discuss these, where
possible with algorithms that enable us to find feasible colourings. There are in many cases
alternative colourings and alternative algorithms, but, since our intention is to find feasible

colourings, we have in general limited ourselves to one algorithm.

(1n this chapter, for compactness, we represent vertices in columns and colours in rows.)

Proposition 6.8 Yra(Kn) = ( g) whenever r = (g - D,l = (z B 2), 1 <a<n, (where

("__'f"lz is interpreted as 0).

Proof This follows from Corollary 6.4 by using the BIBD whose blocks consist of all
a-sets of {1, ..., n}. m
Corollary 6.9

(@) xr12(Kn)=n-
Construction We assign N = n colours to each vertex and delete a distinct colour

from each.

®  xea&)=(%)

Construction A recursive algonithm for this is

Ky 11 Ks: 112 Ka: F1 24 e
233 2335
4566
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Proposition 6.10 Let s be a pnme power, 1 <i<dand

GRS Gt ) N Gl Y. ' (s1 - 1).. (s - 1)
FET G-I D= T FI=D.G-1)

(s™! - 1)(s? - 1)...(s%*1 = 1)
= 1) =1). (-1) °

(b) ifn=sd, then Xr,A(Kn)"—"Sd_if.

(@) ifn=s+s1+..+1,then y,2(Ky)=

Proof This follows from Corollary 6.4 by using the BIBDs of Propositions 2.36 and 2.37
([16], pp 705, 706). These consist, respectively, of the i-dimensional subspaces of the
d-dimensional projective geometry and of the d-dimensional affine geometry, on the
Galois field of order s. B
Choosing i = 1, d = 2 gives the following corollary:
Corollary 6.11 If s is a pnme power, then:

(a) Xs+;.l Kauss) =82 +5+1,

b))  xse1(Ks2)=s(s+1).

Construction An example of (a) 1s Kj3, s = 3:

! 2 3 4 5 6 7 8 9 10 1 12 13
1 1 1 1 2 2 2 3 3 3 4 4 4
2 5§ 8 11 5 6 7T S 6 71 S5 6 1
3 6 9 12 8 9 10 10 8 9 9 10 8
4 7 10 13 11 12 13 12 13 11 13 11 12

The complement is [$* + s +1, %, 5* - 5, 8 + 5 +1, 5?), also symmetric.
The residual is [s2 s +1, 1, s+, 5]. -

Construction An example of (b)1s Ky, 5=3

1 2 3 4 5 6 7 8 9
1 1 1 2 2 2 3 3 3
4 7 10 4 D 6 4 5 6
S 8 11 7 8 0 8 0 7
6 9 12 10 11 12 12 10 11

_—ﬂ_———.—-
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sP —1 2 sP -1
=1 , SP, sP%(s~1), =1

sPl—1 P21 sP—5s
s-1?* s-1°s-1°

The complement has parameters [ sP]

The residual has parameters ~ [sP, sP2]

sPl—1 sPl_g P25 sP—s sP2-1]

The denvative has parameters [ =1 > s-1 ° 5-1 *s—1° 321 ] &
Proposition 6.12 Let n=4t+ 3 be a pnme power. Then

X210, 4(Kae3) =41+ 3
Proof This follows from Corollary 6.4 by using the BIBD of Corollary 2.1.7 in

[2, p 43], which asserts the existence of a symmetric (4¢+ 3,2¢+ 1,¢) design. N
Construction We assign all non-zero squares modulo » to one vertex of our graph, and

then cycle through the remaining n — 1 vertices to give a colouring for X

-1 n-=3 ~1
[n’ 2_2_!-’ E}T__: n’ n2 ]

A simple example is K7. The non-zero squares modulo 7 are 1, 2, 4, and we colour X7:

12343560 o, withour wvo_ v vo vi vi vs g
1234560 conventionn. 0 1 2 3 4 5 6
2345601 1 2 3 4 5 6 0
4560123 3 4 5 6 0 1 2

If we consider the n — 1 non-zero integers modulo », we note that

(n - m) =nm* (mod m);, thusr= n'z'l.

This gives a colouring with parameters [n, 3 4

The parameters of the colouring of the complement are [n, nt+l ntl n, BL ] _

The parameters of the colounng of the residual are [ R R ]

Proposition 6.13 Letn=4t+ 3. Then
Y4432041(Karna) = 8t + 6.

Proof The proof follows that of Corollary 6.3.5 of [2, p 139].
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Let i be the colouring of K43 of Proposition 6.1.2. First take a juxtaposition of two copies
of 12 (using disjoint colour sets Sy, S2). Next, adjoin a new vertex and allocate to it the
colour set S2. Finally, to each of the original vertices add one colour from S; distinct from
those already present at that vertex. The result is an equable colouring with the required
parameters. |

Construction The following example 1s of y73(K3) :

Vertex Voo VI Y2 V3 V4 Vs Vg Vg
0 1 2 3 4 5 6 7

1 2 3 4 5 6 0 3

3 4 5 6 0 | 2 9

7 8 9 10 11 12 13 10

8 9 10 11 12 13 7 11

10 11 12 13 7 8 9 12

6 0 1 2 3 4 5 13

This is a colouring with parameters [4¢+4,4¢+3,2¢+ 1, 8¢+ 6, 2¢ + 2]. The colouring is

self-complementary.
A further procedure for finding colourings consists of colouring » vertices with  colours at
each, with no overlap, and taking the complement. As a simple example, with

n=4, r=2, we can devise a colouring with 6 colourings at each vertex, with overlap 4.

Generally: n'=n,r'=nr—=r,A'=n-2r,N =nr,f =n-1.

Relations Between Colourings of Complete Graphs and Codes

A binary code of length N is a set of strings of N Os and 1s. The connection with colourings
is that if {1, ..., N} is a palette of colours, then the 1s in any particular string

(a codeword) identify a subset of the palette, which can be thought of as a set of colours
allocated to a vertex of a graph. The Hamming distance of two codewords u, v, denoted by
d(u, v), is the number of places among the N where they differ. Consider an [r, A] overlap

colouring of X, with a palette of NV colours. Each vertex is now associated with a codeword
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having r 1s and (N - r) Os, and the colouring 1s a code of length N, constant weight » and
size n;, moreover, the Hamming distance of any two codewords 1s 2(r — 4) .

We exhibit a relation between the parameters of some overlap colourings and code
bounds. The definitions and terms that we use to describe constant-weight codes are those
used by [1], which we quote:

‘An (n, d, w) constant-weight binary code is a set of binary vectors of length », such that
each vector contains w ones and n— w zeros, and any two vectors differ in at least d

positions.’

The distance d of two codewords u and v implies that there are 6 = -g- codeword positions

in which u has 1 and v has 0, and a further ¢ = -g' positions in which u has 0 and v has 1.

Thus, the number of positions in which both have 1 is w - 4. The weight w of a
constant-weight binary code thus corresponds to the number of colours r at a vertex of the
related complete graph, and (w —9) to the overlap 4.

Constant-weight codes of minimum Hamming distance have been studied, and tables exist
giving bounds for A(N, d, ), the largest size of a binary code of length N, minimum
distance d and constant weight w. In 1990, [4] produced lower bounds for d < 14, N <28
(with certain values indicated as exact values); in 2000, [1] produced similar tables giving
upper and lower bounds; and in 2006 [16] extended the results to d < 14, N < 63. The
connection between these bounds and bounds on y, :(K},) is as follows.

The existence of a code of length N, minimum distance d = 25 , weight w and size » is not
immediately informative, since the code may not have constant distance. However, the
non-existence of such a code implies that there is no [w, w —d] colouring of X, with palette
size N, so that yw.ws(Kn) > N. Thatis, A(N,20,w) < nimplies y,,-5(X,) > N. Conversely,
if Yww-s(Kn) < N, then a code of length N, weight w and size » and distance (hence

minimum distance) 29 exists, and so A(N, 20, w) 2 n. Therefore an upper bound of -1 on
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A(N, 25, w) implies a lower bound of N + 1 on y,,.-5(X,), and conversely an upper bound
of N on y.w.»s(Kn) implies a lower bound of n on A(N, 20, w).
We display, as an example, an extract from Table IV on page 2393 of [1]. We change the

‘n’ in that table to ‘N°, our equivalent.

Table 1
Values of A(N, 10, w)

|

|

| W=
N 66 | 7 | 8 | 9 | 10 | 11 | 12 [ 13 [ 14

o @ [0 & |66 |l 0|6 [ ¢

12 || 2 ) | M il oo lololda
B 2 | @l ol ool ol ololola
4l 2 | 2 | ol ol olololonlada
5] 3 | 3 | & 1l a1l olol ol o
6l 3 | 4 | 4 | @131l lolol o
17 3 [ s 1 6 I ® 1 G|l ol ol @
B8 4 | 6 | 9 | 10 | @ | ©& | @ @ | a
19 | 4 8 | 12 | 19 | (19 | (12 | ® | @ | @
2 || 5 10 | 17 | 20 | 38 | oy [ an | o) | 5
21 | 7 [ 13 | 21 | 27-35 | 38-42 |(38-42)[27-35) (21) | (13)

Here, since d= 10, 6 = 5, and we have added to the table as printed the value of (w - ).
We have completed this table 1 accordance with equations 35, 37 and 38 of Theorem 8,

page 2378 of [1]. The tables in [1] tabulate A(N, d, w) = A(N, 25, w) only when N> d+2

and —‘21 <w< % If N < d+2, then clearly A(N, d, w) < 2, and it is straightforward to

determine these values. The entries which complete the table are bracketed.

Consider an entry in Table 1; say, the entry 3 in the row N = 16 and the column w=6.
This asserts that there is a set of 3 codewords of length 16 having constant weight 6, with
minimum distance 10 between any pair; and this is the largest such set. Now, the colour
sets of a [6, 1] colouring of K} using 16 colours would provide a set of 4 such codewords,

contradicting the table; thus, this entry asserts that ¢,1(K4) > 16. Similarly, y¢.,(Ks) > 17,

and the table provides the information that y¢;(X3) > 18.
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Next, consider y¢.1(Ks); the entry in the row for N = 20 asserts that y¢1(Ks) > 20, and so
we conclude that y¢1(K¢) = 21. Thus, each lower bound on an overlap parameter is given
by the Jeast value of N whose row entry is at least equal to the order of the complete graph

whose parameter is to be bounded.

Table 2
Lower and Upper Bounds for some y,.1(K»)

Y
61 | (721 | (83 | [9,4] _

| 1515 | 1515 | 1515 | 1515
| 1818 | 1616 | 1616 | 1617
20 20 1717
21 21 17 18

21 19 - 1818
18 18

18 18 18

20 -
20 -

—
O
I

In Table 2, we display lower bounds of some y, :(X?), derived from Table 1 and some
upper bounds found by trial; the actual colourings for the latter are shown below. Where
both lower and upper bounds are known, the lower are on the left and the upper on the
right. Emboldened entries are of equable colourings. Other single entries are from Table 1.
In order to relate the two tables, we note that the first occurrence of w in Table 1 becomes
n in Table 2. The quantity w — o corresponds to our 4.

Inserting entries in the [7, 2] column proved difficult, though we have found colourings in
agreement for the first three entries (see below). We speculate that this problem may be

related to the fact that there are no equable colourings for any X, [7, 2], as shown by the

table in [10].

We shall now verify the upper bounds by giving lists of explicit colourings.
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[r,A]=16,1]

K; - Ky K K K4

1 1 2 1 12 4 11247 112 4 711 1 12 4 711 16
2 3 3 2 33 5 23358 23352812 2335 81217
4 5 6 4 56 6 4 5 66 9 4 56 6 913 4 56 6 9 13 18
7 8 9 7 8 910 7 8 91010 7 89101014 7 89 1010 14 19

101112 11121314 1112131415 111213141515 11 1213141515 20
131415 15161718 1617181920 161718192021 16 1718192021 21

[r,A]1=1[7,2]

K K4 K
1 13 1 1335 113 51
2 2 4 2 2 46 2 2 4 6 7
3 8 8 3 8 810 3 8 81012
4 99 4 9 911 4 9 91114
51013 5 101313 5 10131315
6 1114 6 11 14 14 6 111414 16
7 1215 7 121516 7 12151617
[r,A]=[8,3]
K3 K4 Ks
11 4 1146 11461
2 25 2 257 2 25 7 4
336 3 3 6 8 3 3687
4 99 4 9 911 4 9 9119
5 1010 5 101012 > 101012 12
6 1111 6 111113 6 11111315
7 1214 7121414 7 1214 14 16
8 1315 8 131516 8 13151617
Ko

1 11233425

2 255 46 6 7

3467 87 8 8

9 9101010 11 9 9

0

1014111213 131112
1115141614 151213
1216151716 1617 14
1

|
2
3
4
5
6
7
8 1317181818 171815
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[r,A]=[9,4]

K; | @ Ks
1 15 11 51 1 1 51 3
2 2 6 2 2 6 2 2 2 6 2 4
3 3 7 3 3 7 8 3 378 5
4 4 8 4 4 8 9 4 4 8 9 6
51010 510 1010 5 10101012
6 1111 6 11 1112 6 11111214
7 1212 7 12 1215 7 12121515
8 1313 8 13 1316 8 13131616
9 1415 914 1517 0 141517 17

The [6, 1] colourings of X, (3 < n < 6) have each been found by juxtaposing an equable
[n -1, 1] colouring with a [7 - n,0] colounng (italicized). They could also have been
arrived at by deleting 7 — n columns from the equable [6, 1] colouring of X7 in the list.
For the tables set out in [1], wherever a corresponding equable colouring exists, the

number of colours required corresponds to the entry in their table. We list these:

Table 1 K,[3, 1]
Table II K6[5! 2]
Table III Kq[6, 2]*; Ks[7, 3], Kiof6, 2] * see Table I

Table IV Ko[8, 3], Kuo[9, 4]
Table V Ki[7, 1], Ko[8, 3]; Kus[8, 2].
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Chapter 7: Graphical Representation
Our use in this chapter of the capitalized form ‘Graph’ is specifically to refer to a plot in
the (x, y) plane, with x and y as abscissa and ordinate.
It is convenient, both practically and theoretically, to display the fractional parameters of
the overlap colourings of a graph G graphically, by displaying the region in the (x, y) plane
corresponding to the possible parameters (x, y) of any colouring of G.

Let u,, ..., ux beany sequence of overlap colourings of G, such that each y; has integer

parameters r;, A;, N; and hence fractional parameters (x;, y;) = (f.“i , % ) Then the

juxtaposition u = ?ﬂ; has integer parameters r = Zilr,-,l = };Af,N = z.: N;, and thus fractional

i Z ri(xi,yi)

Z)ui ZNI
—‘“(Zr;x:,zriy:) "'""_"'“"""" . That 1s, (x, y)isa

parameters (x,)y) = [—;-—, —7

convex linear combination of the (x;, yi). Therefore, the region containing the possible
fractional parameters is a convex set 1n the (x, y) plane. Since (as in [11]) the

[r, A]-colourings of G may be characterised as the feasible solutions of an integer
programming problem, this convex set 1s the linear image of a convex polytope, and is
therefore a polygon. We call this polygon the chromatic polygon CP(G) of G. (To be
precise, the rational pairs (x, y) in CP(G) are the possible parameter pairs of colourings of
G.)
General properties of CP(G) for any graph G
We first find the upper boundary of CP(G) by means of the following lemma.
Lemma 7.1 Let G be any connected graph. Then the maximum number of colours that can
be used in any [r, A}-colouring of G 1s r +(n— 1)(r — A) = nr— (n— 1)A.
Proof Order the vertices vy, ... , such that vertex v; (i > 1) is adjacent to at least one vertex

v, (j < i). Now colour the vertices in order. We must allocate r colours to vertex vy each

subsequent vertex can be allocated at most 7 — 4 new colours. Thus, at most

r+(n—-1Xr—- 1) = nr—(n—1)A colours can be used. This number can be achieved by
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allocating a set of A colours common to all vertices, then adding disjoint sets of r—- A
further colours to each vertex. n

Since a disconnected graph can be coloured by allocating disjoint sets of colours to distinct
components, we have the following corollary.

Corollary 7.2 Let G be any graph with ¥ components. Then the maximum number of
colours in an [r, A]-colouring of G 1s kr + (n— k)r — A) = nr— (n- k). .
Proposition 7.3 The upper boundary of CP(G) for any graph G with n vertices and &
components is the line y=k+ (n— k)1 =x) = n—(n-k)x (0 <x < 1), while the lower
boundary is the Graph of y = ¥ Ax}(G) (0 £ x < 1).

Proof The description of the upper boundary follows from Corollary 7.2, while that of the
lower boundary follows from the definition of y {x](G) given in Chapter 1.

Corollary 7.4 Let G be any non-null graph. There are no points of CP(G) below the line
x+y=2.

Proof Since y,1(G) 2 2r- A, by Proposition 1.1, the result is immediate.
Complementation in the Chromatic Polygon

A colour used in a colouring is universal if it occurs on every vertex, and a colouring is
universal-free if it has no such colours. We rec;all from Chapter 1 that the complementary
colouring of a colouring u is the colouring in which each vertex receives exactly those

colours that it did not receive 1n u.

If u is universal-free, the parameters of u® are [N=r,N~2r+ A,N], and so 1 has

~ xX+y-—2
fractional parameters *N—N%_L;.t)‘, "NA_/_‘;) = (""‘}','%/_T‘, }"_yj—l"J Every juxtaposition of

universal-free colourings also has this property, and so there is a subpolygon SP(G) of
CP(G) that corresponds to all the universal-free overlap colourings.

Proposition 7.5 SP(G) is invaniant under the transformation

o )d(x+y—2 y )
2 y-1 2y=-1,
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Proof The operation of complementation maps the set of universal-free colourings onto
itself, and the effect of this operation on the fractional parameters is exactlyz. W

Corollary 7.6 The point (0, 2), which occurs only if G 1s bipartite, is self-complementary.
Proof Substitutingin4, (0,2)— (2525220 2)- (0,2), .

Corollary 7.7 Any point on the y-axis 1s mapped to a pointonthe line L, x +y=2. &

Proof For any point on the y-axis, (0 ) (%_2: , N —7 J» Which lies on L.

Corollary 7.8 Any point on L, with the exception of (1, 1), is mapped to a point on the
y-axis.

Proof For any point on L (except (1, 1)),

A A _ A
2-4)w (25EEr=2 220 ) (L0 2ty

This is a point on the y-axis, except for the trivial case r = 4, giving an indeterminate
eXpression. _
Chromatic Polygons of Cycle Graphs, Wheels and Complete Graphs

Since the cycle graphs, wheels and complete graphs are connected, Proposition 7.3 implies
that the upper boundary of CP(G) for any of these graphs is the Graph of

y =n-(n-1)x (0 <x < 1) while the lower boundaries are given by the Graph of y {x](G)
for each of these types.

Theorem 7.9 (i) xAx](Cyp)=2-x(0<x<1).

1 1
Q+5)1-x) 0£x<
G) Cp)={ - Pl
2-X <x<1

p+1

Proof Part (i) follows from Proposition 1.3, since Cy, is bipartite, while Part (ii) follows

from Theorem 2.1 (since (2 + %—)(1 -x)22-xwhen0<x< p-}- 7 ) and

(2+-’1-)(1 -.uc)SZ—Jc*u'vhenp_}_1 <x<1) -
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- 2
Th m7.10 (1 xJ(W =
corem 210 ) 2@ =1 1
1 -2x 1
3—-4x+ FZ 05xsp+2
1 p
y (=) p+2 ¥ 11
(i) xAxN(W2ps2) = 3y P p p+1
T El A1 S pr1
p+1
2-x D1 <x<1
These follow from Proposition 3.2 and Theorem 3.10, respectively. _

Annex 7.1 displays the chromatic polygons of the wheel graphs Wi, Ws, Ws and Who.

Common Points of CP(K,) and CP(Kx+1)

Lemma 7.11 For every vertex v, of CP(K,), (x,y) = (a 1 n ) (ae]l,...,n)).

Proof Corollary 6.4 shows that the point (x,y) = f.“, ],\.[ ) lies on the hyperbola

y = -G——l-);——i- for an equable colouring of K, and strictly above this hyperbola for a

non-equable colouring. The only possible values of f for an equable colouring of X,, are the

integers 1, ..., m, moreover, by Proposition 6.8, for eacha =1, ..., n there is an equable

z“‘ i and & = = 7 (as may be seen either from the

colouring of K, with f = a, and with % 4
comparison with design theory on page 41 or from the fact that here,

_,1_(::';’ G N Q)
| 7'_

| n—1
(::l (a—l

I

).

Thus, every vertex of CP(K,) must lie on the hyperbola y = -(—’-1-__—-1”;—_;-1- and the values

a=1, ..., ncorrespond precisely to these vertices. =

Corollary 7.12 For all n, veri€x va, of CP(X,) lies onthe line x + y =2,

: n-— n
Proof The vertex vp 1S 1 -1/ n

Theorem 7.13 Every vertex of CP(K,1) lies on an edge of CP(X,).

Proof Denote the n vertices of CP(X,) by vi (1€ (0, n)), ..., v, (i€ (1, 1)).
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Then v, of CP(X,) 1s the point (z: { : -g-); ve+1 Of CP(K,) 1s the point (nf T L )

a+1
y- L 0
The equation of the edge vova is therefore -_-,z_—-—q-i',-,-l— = -a:-—l—!-’—:-—la——,
a a+l Bl " n-1
which simplifies to a(a+1)y=2an-n(n- 1)x.
Now, vertex v..; of CP(K,1) 1s the point %, g i % )
Substituting x = 4 in B, we have:
a(a+1)y=2an-a(n-1),1ey= Zi i , and, since -ﬁf%- < % < n-a- T>
vertex v+ of CP(Kr) lies on edge v,va of CP(X). N

Annex 7.2 shows the above for CP(K3) - CP(K7).
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Annex 7.1
Chromatic Polygons of Wheel Graphs

0 0.2 0.4 0.6 0.8

Chromatic polygons of even wheel graphs Wj to W), coloured:
W, Black

W Red
Wy Green
Wi Blue
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Annex 7.2
Common Points of Chromatic Polygons of K,, and KX,,.,

Chromatic polygons of complete graphs K to K7, lower edges only (for clarity),
coloured:

Black
Red
Gold
Green
Blue
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Chapter 8: Overlap Colourings and Statistical Applications

This chapter shows that certain designs for statistical experiments turn out, on

examination, to be overlap colourings of graphs other than complete graphs.

As we saw in Chapter 6, overlap colourings of complete graphs correspond closely with
BIBDs; in an equable overlap colouring of X, if we interpret the vertex set as a set of
varieties and the palette of colours as a set of blocks, then we arrive at a BIBD; the set of
vertices having a given colour is regarded as a block of the design.

Now BIBDs in the design of expenments are used in order to allocate experiments in a
situation where it is impracticable for every experiment to be performed on every
available subject. Typically (see [18]) one may have v varieties of wheat and b physically
different sites, so that ideally every vanety should be grown at every site, but this may be
economically prohibitiﬁ (or, indeed the sites may not be large enough). A BIBD would
then allocate varieties to sites in such a way that each wheat variety is grown at the same
number r of sites, each pair of varieties being grown together at the same number A of
sites. The required layout is then a BIBD, corresponding to an [r, ] colouring of X,,.
However, there are many types of experimental design that are more subtle than the
above. Bailey [3] defines orthogonal block structures, in which a set of experimental plots
is subjected to two or more orthogonal uniform partitions. That is, If P is the set of all the
plots and @, ..., O, the set of partitions, then each partition is into subsets of P of equal
size, and the subsets of P arising from applying simultaneously any two partitions Q,, O,
are again of equal size. (For example, the plots may be laid out in a rectangular array, so
that they are partitioned into rows of equal size and also into columns of equal size),
Designs arising from such partitions are known as nested block, or split-block, designs.
Donald Preece (personal communication) has given a simple such example, iﬁ which
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18 plots are divided into 9 blocks of size 2, laid out in a square array, so that there are two
types of blocks of 6 plots, corresponding to rows and columns. In Preece’s example
(below), varieties 4, B, C are allocated to the plots in such a way that each row, and each
column, forms a BIBD with parameters (3, 3, 2, 2, 1) and hence a [2, 1] colouring of X

with N =3.

The design as a whole, then, corresponds to a colouring of all 9 blocks of size 2, in which
any two blocks in the same row overlap by 1 as do any two blocks in the same column.
That is, it is a [2, 1] colouring of the Cartesian product K3 O K3. where (see [13]) the
Cartesian product G O H of two graphs G and H has the usual Cartesian product
V(G) x V(H) as the vertex set, where (vi, wi) 1s adjacent to (v, w2) if and only if either

v, = v, and w, 1s adjacent to w, or

w) = w; and v, 1s adjacent to v..
Bailey [3] gives several examples of split-block designs, but usually the ‘component’
designs are (0, 1)-designs, that is, each overlap is either 1 or 2. Below, we give an example

of a split-block design in which there is an overlap of 1 between any two blocks in the

same row and also between any two blocks in the same column.

This then is a [3, 1] colouring of K3 O K7 withN=7.

Note that N = max{y3.1(K3), x3.1(K7)}. This exemplifies the following general property.

Theorem 8.1 Let G=K® 0DKX® O...0K™ be a Cartesian product of complete graphs,

where each X® has ordermiand ny <nm; < ... <n, =n. Then Xri(G) = xr(Kn).



Proof Foreachi=1,..., mletusidentify V(K?) with the elements 0,1, ...,7n; - 1 of the

cyclic group of order n. Let f be the following function from {G) to V(K.,):
ﬂZl, ...,Zm) = 21 Zi

(with addition modulo n). If (3, ..., ym) and (z,, ..., zw) are adjacent in G, then y; + z; for
exactly one value of 7, and so f{y1, ...,ym) #AZ21,...,Zm) . Thus fy1,...,ym) and f(z1,...,Zm)
are adjacent. Hence, f1s a a homomorphism from G to X, and the result follows from

Proposition 1.2 (since G contains X, as a subgraph). R

In terms of split-block designs, this theorem states that the number of varieties in a
split-block design is the largest number of varieties in the BIBDs corresponding to the
individual partitions.

However, not all experimental designs need be based on complete graphs in this way. We
may be particularly interested in comparisons involving ‘neighbouring” blocks in some
sense (that is, the blocks in each partition may form a graph other than a complete graph),
so that the corresponding split-plot design may correspond to a Cartesian product of
graphs other than complete graphs. For example, if the blocks have a cyclic adjacency
structure, then a split-plot design corresponding to a Cartesian product of cycles may be
appropriate.

It is an open question whether Theorem 8.1 generalizes to arbitrary Cartesian products of

graphs, but it does generalize to products of cycles, as we now show.

Theorem 8.2 Let G = C O C™ be a Cartesian product of cycles, where each

C® has order n,, and if any », is odd then C™) = Cy,,, , the smallest odd cycle. Then
xra(G) = £ra(C™).

Proof If all the n, are even, then G is bipartite and y,:(G) = 2r - 4 by

Proposition 1.3.
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Otherwise, for each i =1, ..., m, identify V{C") with the elements 0, 1, ..., n—-1.
We define the following roll functions:

roll;: {0, 1, veeg i — 1} - Zzp.l.] (f = 1, varg n):

0, zeven
1, zodd

If n; 1s even, then roll(z) = {

Iftm=2p+1,thenroll{z)=2z(z=1, 2, ..., 2p)
If n,=2(p+s)+ 1 (where s> 0),

0, z=0,2,..2s
thenroll{z)= 4 1, z=1,3,..,2s+1

z2—2s, z=25+2,25+3,...,2(p +5)
Next, we define the function ROLL: Z,, X Zy, X ... X Zyp41 = Zypi1 , as follows:
Letz= (2, 2, ..., Z»); then

ROLL(z) = Zrolli(z)

As in the proof of Theorem 8.1, if (1, ..., ym) and (zy, ..., z»,) are adjacent in G, then

f0r, ..., ym) and f(zy, ..., Zm) are adjacent. Thus, fis a homomorphism from G to Cyp41, and

the result follows as in Theorem 8.1.
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Conclusion
This thesis adds to the literature on variants of graph colouring theory, by introducing the
parameter y,.1(G) (the number of colours required to colour each vertex of G with r

colours with an overlap of 4 between adjacent vertices), and also the fractional version,

1Ax1(G), being the least value attained over all » by A r't;.(G) (for0<x<1).

After some fundamentals concerning these parameters, they are investigated for a number
of classes of graphs. Brief consideration is given to their relations to more well-known
graph-theoretic parameters; and the fractional parameters are shown to be expressible in
terms of the ‘chromatic polygon’. The work of the thesis is related to design theory, codes
and statistical designs.

Fundamentals

Chapter 1 defines the basic concepts and gives some fundamental properties. In particular,
vr2(G) 2 2r - A for any non-null graph, the bound being attained for bipartite graphs

(page 10); and when a graph has a vertex that is adjacent to all the others, then any equable

2

[r, 1] colouring (that is, all colours occurring equally often) uses exactly —25——
(n=-DA+r

colours (page 12).

Overlap parameters

Chapters 2, 3, 5 and 6 deal with cycles, wheels, generalized Petersen graphs and complete
graphs, respectively. All the overlap parameters of cycles and wheels are obtained (see
pages 17, 29 and 38), as are the fractional (non-overlap) chromatic numbers of the
generalized Petersen graphs (see page 58 for a general result). Partial results are obtained
concerning the complete graphs; the most significant of these (page 70) gives the correct
overlap chromatic number provided there 1s an equable colouring (and hence gives

x/x1(Ka),0 < x < 1,as 1s shown in Chapter 7).
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Relation with other graph parameters

Chapter 2 shows that for every relevant r, 4, p there is an [r, 4] colouring of C,,+ (using
xra(C2p41) colours) that 1s a juxtaposition of a small number of primitive colourings
(page 24). This leads to the work of Chapter 4, which investigates the place of overlap
chromatic numbers in the classification of graphs. The core of a graph G is the smallest
subgraph to which G has a homomorphism, and has the same overlap profile as G; thus,
classification by cores is at least as fine as classification by their overlap profiles.

It is shown (page 40) that any graph with the same multichromatic profile as an odd cycle
also has the same overlap profile as that cycle. This leads to the result (page 42) that the
bangle B(2q + 1, 2p + 1) also has the same overlap profile as C,,... However, there is no
homomorphism from B(3, 2p + 1) to Cz2,.1, and so classification by core is strictly finer
than by overlap profile.

Classification by overlap profile 1s clearly at least as fine as by multichromatic profile.
However, the result quoted above (page 40) shows that in the case of graphs with the
multichromatic profile of an odd cycle, the classifications are the same.

The chromatic polygon

Chapter 7 discusses the general properties of the chromatic polygon of a graph G, namely
the plane polygon within which the point (—';.1-, -¥) must lie for any {r, ] colouring of G
using N colours (pages 82 - 84). Precise descriptions are given of the chromatic polygons
of the cycles, wheels and complete graphs.

Relevance to design (including statistical design) theory and coding theory

The complete graphs considered in Chapter 6 are closely connected both with BIBDs and
with constant-weight codes, and the chapter explores these connections, showing in
particular that upper bounds on lengths of constant-weight codes yield lower bounds on

overlap chromatic numbers of complete graphs, and conversely, upper bounds on the

overlap parameters for complete graphs imply lower bounds for lengths of constant-weight
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codes. (See pages 77, 78.) The chapter concludes (page 79) with a table illustrating lower
and upper bounds for some overlap parameters of some complete graphs.

Finally, Chapter 8 broadens the discussion of the relationship between overlap colourings
and BIBDs, by considering more general experimental designs - in particular, those in
which the experimental sites are partitioned in ways that seem to ask for the overlap

parameters of Cartesian products of complete graphs and of cycles,
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