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A TIME-VARYING SHARED FRAILTY MODEL WITH
APPLICATION TO INFECTIOUS DISEASES1

BY DOYO G. ENKI, ANGELA NOUFAILY AND C. PADDY FARRINGTON

Open University

We propose a new parametric time-varying shared frailty model to rep-
resent changes over time in population heterogeneity, for use with bivariate
current status data. The model uses a power transformation of a time-invariant
frailty U , and is particularly convenient when U is a member of the gener-
alized gamma family. This model avoids some shortcomings of a previously
suggested time-varying frailty model, notably time-dependent support. We
describe some key properties of the model, including its relative frailty vari-
ance function in different settings and how the model can be fitted to data.
We describe several applications to shared frailty modeling of bivariate cur-
rent status data on infectious diseases, in which the frailty represents age-
dependent heterogeneity in contact rates or susceptibility to infection.

1. Introduction. A standard way of representing individual heterogeneity in
the hazard rate of an event of interest is through the multiplicative frailty model

λ(t,U) = Uλ0(t),

where U is a positive random variable, the frailty, λ(t,U) is the hazard at time t

of an individual with frailty U , and λ0(t) is a baseline hazard common to all in-
dividuals in the population [Aalen, Borgan and Gjessing (2008), Duchateau and
Janssen (2008), Wienke (2011)]. The degree of heterogeneity of the population is
then characterized by the variance of U .

In certain circumstances, one may be interested in how the heterogeneity of the
population might vary over time as a result of changes in individuals’ frailties.
Such variation might occur in medical applications, for example, resulting from
changes in individuals’ health or behavior. The motivation for this work, revisited
later in the paper, stems from the need to incorporate unmeasured heterogeneity
in contact rates between individuals when estimating hazards of infection from
samples of serological data. Such heterogeneities are likely to evolve with age,
owing to changes in behavior.

In a single sample of data, it is not possible mathematically to disentangle the
baseline survivor function from the frailty distribution. For this reason, we specifi-
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cally restrict attention to shared frailty models, in which this particular identifiabil-
ity problem does not occur. This setting is very natural for our intended application
to serological survey data, which arise very commonly in practice and are often the
main primary source of data for infectious disease modeling. Since serum samples
taken from a collection of individuals are usually tested for several different infec-
tions, the data are typically multivariate and a shared frailty framework arises very
naturally. New identifiability issues ensue, however, which will be discussed later
in the paper.

For simplicity of presentation, the model and its properties are described first in
a univariate context. Incorporating time variation in the population heterogeneity
suggests the more general frailty model

λ(t,U) = U(t)λ0(t),

where U(t) is a positive random variable of mean 1 describing how an individual’s
frailty evolves over time. To clarify the issues, suppose that the event of interest is
nonterminal. At time t , the population includes people who have experienced the
event and people who have not had the event (the survivors). The unconditional
variance of U(t) at time t , var{U(t)}, describes the heterogeneity of the frailty
U(t) at time t in the entire population. The unconditional heterogeneity is distinct
from the heterogeneity of U(t) in the population of survivors, described by the
conditional variance var{U(t)|T > t}.

The relative change over time in the heterogeneity of the survivor population
involves both the change in the frailty variance and also the selection effect of
survival to time t . This is quantified by the relative frailty variance [Farrington,
Unkel and Anaya-Izquierdo (2012)],

RFV∗(t) = var{U(t)|T > t}
[E{U(t)|T > t}]2 .

In a shared frailty model, an empirical estimate of RFV∗(t) or a related quantity
may be obtained, which can guide the choice of U(t) [Farrington et al. (2013),
Unkel and Farrington (2012)]. A natural and flexible framework for representing
time-varying frailties is to take U(t) to be a dynamically evolving stochastic pro-
cess, such as a multiplicative Wiener process or a Levy process [Aalen, Borgan
and Gjessing (2008)]. However, the undoubted attractiveness of this framework
is tempered by the complexity of the models involved and, more prosaically, by
inherent problems of identifiability when only a single observation is available on
each individual, as is often the case in applications.

These considerations led to the development of a simpler class of time-varying
frailty models of the form

U(t) = w(t,U1, . . . ,Uk),

where w(·) is a deterministic function of unit mean and U1, . . . ,Uk are indepen-
dent time-invariant frailties. In these models, the time-invariant frailties are mod-
ulated over time, the modulation occurring in the same way for all individuals in
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the population. This model will be appropriate when the evolution of individual
frailties is to some extent governed by common factors, or at least when interest
resides in such an average trajectory. This class of models includes, for example,
piecewise constant frailty models [Paik, Tsai and Ottman (1994)], for which

w(t,U1, . . . ,Uk) =
k∑

i=1

UiIAi
(t) =

k∏
i=1

U
IAi

(t)

i ,

where IA(t) is 1 if t ∈ A and 0 otherwise, and the Ai partition the positive half-
line. Further simplification comes from restricting these models to the additive or
multiplicative forms

w(t,U1, . . . ,Uk) =
k∑

i=1

piw(t,Ui),

w(t,U1, . . . ,Uk) =
k∏

i=1

w(t,Ui),

where the w(t,Ui) have unit mean and p1 + · · · + pk = 1. In particular, models
with

w(t,U) = 1 + (U − 1)h(t),

where 0 ≤ h(t) ≤ 1 were introduced in Farrington et al. (2013). A detailed discus-
sion of their application to infectious disease data may be found in Unkel et al.
(2014).

A shortcoming of this model is that the range of U(t) is time-dependent, namely,

1 − h(t) < U(t) < ∞,

this restriction being required to maintain U(t) > 0. Restricting the range in this
way is artificial and unsatisfactory. Note also that there is no obvious family of
distributions of U on (0,∞) which is closed under the transformation 1 + (U −
1)h(t) (for given t).

In this paper, we propose a new family of time-varying frailty models which
overcomes these shortcomings. In the next section we introduce the new model.
In Section 3 we study the unconditional variance of U(t) and its relative frailty
variance function, and discuss identifiability issues arising in this type of model.
In Section 4 we describe how to fit a shared frailty model with this time-varying
frailty U(t) to current status data. The performance of the methods are studied
by simulation in Section 5. Then in Section 6 we apply these methods to two
serological survey data sets.
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2. A new family of time-varying frailty models. Our proposal is to replace
the linear (in U ) transformation w(t,U) = 1 + (U − 1)h(t) by a power transfor-
mation, in which

w(t,U) = Uh(t) = eh(t) log(U),

where U > 0, h(t) > 0 and h(0) = 1. Note that the range of U(t) = w(t,U) is
(0,∞) whatever the choice of h(t). Furthermore, if U belongs to the generalized
gamma family with parameters θ, k,β > 0 and density

f (u) = β

θkβ�(k)
ukβ−1e−(u/θ)β , u > 0,

where �(k) is the gamma function, then U(t) is a generalized gamma with param-
eters θt , k, βt > 0 and density

ft (u) = βt

θt
kβt �(k)

ukβt−1e−(u/θt )
βt

, u > 0,

where θt = θh(t) and βt = β/h(t). Note that θ0 = θ and β0 = β . This is the param-
eterization of the generalized gamma used by Noufaily and Jones (2013).

The generalized gamma family includes the gamma (for β = 1), the Weibull (for
k = 1) and, as a limiting case for k → ∞, the lognormal densities. The generalized
gamma distribution has been used as a frailty density by Balakrishnan and Peng
(2006). The function h(t) can be used to denote a smooth transition from one
member of the family to another: for example, h(t) = e−ρt + (1 − e−ρt )β , with
ρ > 0, denotes a transition toward a gamma density as t → ∞. Further properties
of the family are described in Cox et al. (2007).

More general models may then be built up multiplicatively from such building
blocks, with

U(t) = w(t,U1, . . . ,Uk) =
k∏

i=1

U
hi(t)
i = exp

{
h1(t) log(U1)+· · ·+hk(t) log(Uk)

}
.

Thus,

log
{
U(t)

} =
k∑

i=1

hi(t) log(Ui).

In general, such models do not belong to the generalized gamma family, with one
exception: if the Ui(t) are lognormal, then so is U(t). Note that models involving
several function hi(t) may present identifiability problems and should be used
sparingly. An application-driven example is given in Section 6.2.

3. Representing time-varying heterogeneity. The frailty U(t) is used to
represent individual heterogeneity in factors impinging upon the event hazard at
time t , the degree of heterogeneity being quantified by its variance. Both uncondi-
tional and conditional variances are of interest, with different interpretations.
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3.1. Unconditional variance. The moments of U(t) = Uh(t) are

E
{
U(t)r

} = θt
r �(k + r/βt )

�(k)
.

The squared coefficient of variation of U(t) is

CV
{
U(t)

} = �(k + 2/βt )�(k)

�(k + 1/βt )
2 − 1.

The derivative of CV{U(t)} with respect to t is

CV′{U(t)
} = 2

β0
h′(t)

{
1 + CV

{
U(t)

}}{
ψ(k + 2/βt ) − ψ(k + 1/βt )

}
,

where ψ(x) is the digamma function. Since ψ(x) is increasing on R
+, h(t) and

CV{U(t)} have the same turning points; if h(t) is monotone decreasing to zero,
then so is CV{U(t)}.

When the event of interest is not terminal, and mortality can be ignored, the
squared coefficient of variation CV{U(t)} describes the degree of heterogeneity
in the population at time t . The variation in heterogeneity is thus described in
qualitative terms by the function h(t).

In applications, it is convenient to ensure that U(t) has unit mean, which makes
it easier to specify a model for the baseline hazard. Accordingly, we shall normal-
ize U(t) so that it has unit mean, by dividing Uh(t) by its mean and redefining
U(t) as follows:

U(t) = �(k)

θt�(k + 1/βt )
Uh(t).

The (squared) coefficient of variation is unaffected by this normalization. It may
also be desirable to set E(U) = 1. This is readily achieved by setting

θ = �(k)

�(k + 1/β)
,

thus reducing the number of parameters to be estimated.

3.2. Relative frailty variance: Time invariant case. When h(t) = 1 and the
event is not terminal, the heterogeneity in the population does not vary with t ,
unless U is also associated with mortality in the population. However, the hetero-
geneity within the subpopulation who have not experienced the event (the event
survivors) will vary, owing to selection effects. This is described by the relative
frailty variance, or the conditional squared coefficient of variation

RFV∗(t) = var{U |T > t}
{E(U |T > t)}2 .

This can be scaled so that it does not depend on the baseline hazard; this scaled
version is denoted RFV(s). In shared frailty models, RFV(s) is closely related to
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the cross-ratio function [Oakes (1989)], which can be used to guide the choice
of U .

The generalized gamma is a special case of the extended generalized gamma
and inverse Gaussian (Egg) family of distributions, discussed in Farrington, Unkel
and Anaya-Izquierdo (2012). Specifically, the Egg family of densities is

f (u;α,β, θ, λ) = 1

I ∗(α,β, θ, λ)

(
u

θ

)α−1

e−λ(u/θ)e−(u/θ)β , u > 0,

where α,β, θ, λ > 0 and

I ∗(α,β, θ, λ) =
∫ ∞

0

(
u

θ

)α−1

e−λ(u/θ)e−(u/θ)β du.

Hence, the generalized gamma is a member of the Egg family with λ = 0 and
α = kβ . Its scaled relative frailty variance function is therefore

RFV(s) = I ∗(kβ + 2, β,1, sθ)I ∗(kβ,β,1, sθ)

I ∗(kβ + 1, β,1, sθ)2 − 1.

This tends to the limit (kβ)−1 as s → ∞. It is monotone decreasing for 0 < β <

1, monotone increasing for β > 1, and constant when β = 1 (in which case the
density reduces to the gamma).

3.3. Relative frailty variance: Time-varying case. When h(t) is not identi-
cally 1, the heterogeneity in event survivors can also be summarized by the relative
frailty variance RFV∗(t), now defined as

RFV∗(t) = var{U(t)|T > t}
[E{U(t)|T > t}]2 .

However, because there are two time scales involved, namely, that at which events
arise and that at which h(t) changes, this can no longer be re-expressed in a way
that does not depend on the baseline hazard.

For arbitrary U and h(t), no explicit expressions for RFV∗(t) are available. Let

Ij (t) =
∫ ∞

0
U(t)j exp

{
−

∫ t

0
U(s)λ0(s)ds

}
f (u)du,

where f is the density of u. Then the relative frailty variance is

RFV∗(t) = I2(t)I1(t)

I1(t)2 − 1.

This can be evaluated numerically. Figure 1 shows several plots of RFV∗(t)
for U(t) = Uh(t)/E{Uh(t)} with E(U) = 1, for different values of k and β and
contrasting choices of h(t) and baseline hazard. The baseline hazards are all cho-
sen to have roughly the same integrated hazard over the range of t displayed. The
plots show that RFV∗(t) is not greatly influenced by the baseline hazard, which
depends primarily on h(t) and the parameters k and β . RFV∗(t) can be estimated
empirically in shared frailty models, and so can be used for inference about U(t).
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FIG. 1. Relative frailty variance function RFV∗(t) for time-varying generalized gamma frailty
Uh(t) with E(U) = 1 and h(t) = exp(−ρt2). Parameter values are k = 0.5 and, top to bottom in
each panel, β = 0.8,1,1.25. Left panels: h(t) decreasing (ρ = 0.0001). Right panels: h(t) increas-
ing (ρ = −0.0001). Top panels: hazard constant, λ(t) = e−3.34. Middle panels: hazard increasing,
λ(t) = exp(−4.5 + t/25). Bottom panels: hazard decreasing, λ(t) = exp(−2.5 − t/25).

3.4. Identifiability issues. In a shared time-invariant frailty model, it is possi-
ble to separate the baseline hazard functions from the frailty. The function RFV(s)

is then equivalent to the cross-ratio function [Oakes (1989)]. With bivariate right-
censored data, a plot of RFV(s) can thus be obtained directly. For current status
data, the related association measure φ, which tracks the cross-ratio function, can
be obtained [Unkel and Farrington (2012)]. Briefly, φ is derived at each sampling
time t from the association parameter for the Clayton copula relating the empirical
marginal and joint survivor functions at time t .

When a time-varying frailty U(t) is introduced, it remains possible to separate
the baseline hazard from the frailty, as above, using RFV∗(t) or the related mea-
sure φ. However, it is not possible to distinguish between time-variation in U(t)

from selection effects reflecting the choice of frailty distributions, and the direct
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connection with the cross-ratio function is lost. To clarify the issue, suppose that
the variance of U is small, then U(t) [not normalized, but parameterized so that
E(U) = 1] can be approximated linearly to the first order as

U(t) � 1 + (U − 1)h(t),

which thus approximates the time-varying frailty model described in Farrington,
Unkel and Anaya-Izquierdo (2012). Let RFV∗(t) denote the relative frailty vari-
ance of U(t) and RFV∗

0(t) the relative frailty variance of U . Also, let μc(t) =
E[U |T > t] be the mean of U in survivors at time t . Direct calculation then yields

RFV∗(t) � RFV∗
0(t)

[
h(t)

h(t) + μc(t)−1(1 − h(t))

]2

.

Note that this expression differs from equation (23) of Farrington, Unkel and
Anaya-Izquierdo (2012), which contains an error. As noted there, the variation
has two components: a selection effect stemming from RFV∗

0(t) and a component
governed largely, but not exclusively, by h(t). For example, if h(t) tends to zero,
so will this term.

Thus, if RFV∗(t) is observed to change over time, it is not usually possible
to identify whether this is due to changing heterogeneity, as represented by a non-
constant h(t), or a selection effect, represented by a nonconstant RFV∗

0(t), or both,
without recourse to external information: the two effects are confounded. This is
unfortunate because distinguishing between selection effects and evolving hetero-
geneity can be important in some applications.

Nevertheless, it is possible, and useful, to fit and contrast the two models corre-
sponding to the most extreme scenarios: gamma U [which has constant RFV∗

0(t)]
with time-varying h(t), on the one hand, and nongamma U [which has noncon-
stant RFV∗

0(t)] with no time variation, namely, h(t) = 1. For the first option, the
shape of the association plot (whether the empirical cross-ratio function or the
empirical plot of φ) can be used to suggest suitable parameterizations of h(t). In
practical applications, including those described below, it is often found that the
selection effects of available parametric frailty models cannot alone reproduce the
observed patterns. In some circumstances, this is due to theoretical restrictions on
the shapes of RFV(s) [Farrington, Unkel and Anaya-Izquierdo (2012)]. More gen-
erally, this suggests either that the available models for time-invariant frailties are
insufficiently flexible or that time-variation in heterogeneity is the more plausible
explanation.

4. Fitting the model to data. Throughout, we shall use

U(t) = Uh(t)

E{Uh(t)} ,
so that E{U(t)} = 1. Furthermore, we shall take E(U) = 1, so that the density
of U involves just the two parameters k and β . Write μ(t) = E{Uh(t)}.
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4.1. Evaluating the survivor function. Fitting the model to data requires the
population survivor function (i.e., the probability of remaining event-free) to be
evaluated. This is

S(t) = E
{
S(t |U = u)

} =
∫ ∞

0
exp

(
−

∫ t

0
uh(s) λ0(s)

μ(s)
ds

)
f (u)du.

In order to avoid evaluating the double integral, an approximate approach is
used. Suppose that time is measured in discrete units of length δ, in such a way
that every time point at which an observation is made is a multiple of δ. The func-
tions λ0(t) and h(t), and hence μ(t), may be approximated by step functions with
steps at the points mδ, m = 1,2, . . . , taking the values λ(mδ), h(mδ) and μ(mδ),
respectively, on the interval ((m − 1)δ,mδ]. Then, for t = jδ,

∫ t

0
uh(s) λ0(s)

μ(s)
ds � δ

j∑
i=1

uh(iδ) λ0(iδ)

μ(iδ)
.

The remaining outer integral over u can then be evaluated numerically; we have
used the integrate function in R, version 2.14.0 [R Development Core Team
(2012)]. Convergence problems may arise when h(t) is increasing; accordingly,
we constrained h(t) to be decreasing (or unity) as required in our applications.

In the next section, we will consider a two-component frailty model of the form

U(t) = Uh(t)V ,

where V is gamma with mean 1 and variance 1/k2, and density g(v). Thus,

S(t) =
∫ ∞

0

∫ ∞
0

{
exp

(
−

∫ t

0
uh(s)v

λ0(s)

μ(s)
ds

)}
f (u)g(v)dudv

=
∫ ∞

0

[∫ ∞
0

{
exp

(
−v

∫ t

0
uh(s) λ0(s)

μ(s)
ds

)}
g(v)dv

]
f (u)du.

For t = jδ, consider the expression in the square bracket and write

I (t, u) =
∫ t

0
uh(s) λ0(s)

μ(s)
ds

� δ

j∑
i=1

uh(jδ) λ0(jδ)

μ(jδ)
.

Then, using the Laplace transform for a gamma random variable, we obtain
∫ ∞

0
e−vI (t,u)g(v)dv =

[
k2

k2 + I (t, u)

]k2

and, hence,

S(t) =
∫ ∞

0

[
k2

k2 + I (t, u)

]k2

f (u)du.

This last expression can be integrated numerically.
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4.2. Shared frailty model for current status data. The parameters of the
frailty distribution(s) and the function h(t) are readily estimated from a shared
frailty model for multivariate survival data [Aalen, Borgan and Gjessing (2008),
Duchateau and Janssen (2008), Wienke (2011)]. We restrict attention to the bivari-
ate frailty model linking two hazard functions with a common frailty:

λ1(t |U,V, . . .) = U(t)λ01(t), λ2(t |U,V, . . .) = U(t)λ02(t).

We consider estimation based on bivariate current status data, commonly avail-
able from serological surveys of infectious diseases. At time t we have a 4-tuple
nijt (i, j = 0,1), where n00t denotes the number of individuals experiencing nei-
ther event by age t , n10t the number of individuals experiencing event 1 but not
event 2 by time t , and so on. Let Sij (t) denote the corresponding probabilities, for
example, S00(t) is the probability that an individual of age t has not experienced
either event by time t . Then

S00(t) = E
{

exp
(
−

∫ t

0
U(s)

[
λ01(s) + λ02(s)

]
ds

)}
,

S01(t) = E
{

exp
(
−

∫ t

0
U(s)λ01(s)ds

)}
− S00(t),

S10(t) = E
{

exp
(
−

∫ t

0
U(s)λ02(s)ds

)}
− S00(t),

S11(t) = 1 − S00(t) − S01(t) − S10(t).

These probabilities are evaluated by discretizing the functions h(t), λ01(t) and
λ02(t) as described above. Let γ denote the vector of parameters describing f (u),
h(t), λ01(t) and λ02(t). The multinomial log-likelihood kernel is then

Loglik(γ ) = ∑
t

1∑
i,j=0

nijt log
(
Sij (t)

)
.

This was optimized using function nlm in R, version 2.14.0 [R Development
Core Team (2012)]. Approximate confidence intervals were obtained using the
profile likelihood method. Goodness of fit was assessed using the deviance, and
models were compared using the AIC.

5. Simulations. We checked the performance of the procedures suggested for
current status data in a small simulation study. The parameter choices for the sim-
ulations broadly reflect the patterns observed in the data to be analyzed in the next
section, namely, declining relative frailty variances.

We assumed constant baseline hazards λ01(t) = λ02(t) = 0.05, and obtained the
survivor functions Sij (t), i, j = 0,1, for two scenarios: (a) U gamma with mean 1
and variance k−1 with exponentially declining heterogeneity h(t) = exp(−ρt2),
and (b) U generalized gamma with mean 1 and parameters k,β , and constant
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TABLE 1
Simulation results for gamma frailty with declining heterogeneity

Bias(ρ̂) RMSE(ρ̂) Bias(k̂) RMSE(k̂)

n = 200
k = 1 ρ = 0.01 0.0007 0.0045 0.0311 0.2959

ρ = 0.002 0.0000 0.0003 0.0031 0.1045
k = 0.2 ρ = 0.01 0.0001 0.0011 0.0011 0.0228

ρ = 0.002 0.0000 0.0001 0.0004 0.0114

n = 50
k = 1 ρ = 0.01 0.0036 0.0143 0.0906 0.6470

ρ = 0.002 0.0000 0.0007 0.0178 0.2218
k = 0.2 ρ = 0.01 0.0004 0.0022 0.0004 0.0448

ρ = 0.002 0.0000 0.0002 0.0024 0.0229

heterogeneity (ρ = 0). For scenario (b), the model was parameterized using β and
α = kβ , to reduce correlations between the parameter estimates. We generated
4-nomial samples of size n = 200 and n = 50 at each year t = 1, . . . ,50. The
procedure was run N = 400 times for each parameter combination. The results for
scenario (a) are shown in Table 1, and those for scenario (b) in Table 2.

When n = 200, the estimated bias in ρ and k, and in β and γ , is small, seldom
exceeding 5% of the true parameter value. The estimated root mean squared er-
rors (RMSE) are larger, reflecting the lack of information available from current
status data. When n = 50, the biases and RMSE values are greater, owing to the
sparseness of the data at young ages and the consequent lack of information on ρ

and β . The RMSE values suggest that, in scenario (a), larger values of ρ, corre-
sponding to rapid drops in heterogeneity, are more difficult to estimate, whereas in

TABLE 2
Simulation results for generalized gamma frailty with constant heterogeneity

Bias(β̂) RMSE(β̂) Bias(α̂) RMSE(α̂)

n = 200
k = 1 β = 0.7 0.0064 0.1983 0.0402 0.1524

β = 0.4 0.0214 0.1269 0.0291 0.1647
k = 0.2 β = 0.7 0.0310 0.2381 0.0042 0.0227

β = 0.4 0.0087 0.1199 0.0021 0.0129

n = 50
k = 1 β = 0.7 0.1887 0.9342 0.1456 0.5433

β = 0.4 0.1172 0.3673 0.0797 0.4713
k = 0.2 β = 0.7 0.3541 1.1469 0.0116 0.0722

β = 0.4 0.0633 0.3813 0.0022 0.0196
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TABLE 3
Simulation results for misspecified gamma frailty model

ρ Bias(ρ̂) RMSE(ρ̂)

0.01 0.0030 0.0044
0.002 0.0006 0.0006
0 0.0001 0.0001

scenario (b), β becomes more difficult to estimate as it approaches 1, that is, as the
distribution of U becomes closer to the gamma. In all cases, the baseline hazard
parameters are estimated with little bias (not shown).

We obtained asymptotic standard errors for the parameter estimates from a nu-
merical estimate of the Hessian matrix. The means of these standard errors were
generally less than the standard deviations of the simulated parameter estimates,
and Wald confidence intervals had coverage probabilities lower than the nominal
values (results not shown). The discrepancy was most marked for the parameters
relating to the frailty (ρ, k, β , α). We conclude that asymptotic standard errors may
be unreliable in samples of moderate size, and recommend that interval estimates
be obtained by bootstrapping or profile likelihood.

We also undertook a further simulation to investigate the robustness of infer-
ences about ρ to misspecification of the frailty distribution. Thus, we generated
data (400 replicates with n = 200 at each year) from a generalized gamma frailty
with β = 0.5 and k = 2, with U(t) of unit mean. We fitted the same gamma
model as for Table 1 to these simulated data. The results are shown in Table 3.
As expected, the bias for ρ̂ is worse than in Table 1 (for n = 200), though only
marginally so, and the RMSE values are little affected. We conclude that the meth-
ods are reasonably robust to mild misspecification of the frailty within the gener-
alized gamma family.

6. Applications. We illustrate the methods with applications to two contrast-
ing data sets, each involving a pair of infections. The data are serological survey
data from the UK and are described in detail in Farrington et al. (2013) and Unkel
et al. (2014). Each individual of age t is tested by two laboratory assays to de-
termine whether he or she has been infected or not at some time prior to t . The
data are thus paired current status data and are observed at calendar years of age
t = 1,2, . . . ,M . Each paired sample contributes a likelihood term as described in
the previous subsection. In some instances, only one of the test results is avail-
able. In this case, the likelihood contributions are obtained from the corresponding
marginal probabilities. We fit different models for U(t) according to whether the
two infections share a mode of transmission.
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FIG. 2. Seroprevalence of Parvovirus B19 (left panel) and Cytomegalovirus (right panel) infec-
tions with age (years). The lines show the fitted values obtained from the model with shared frailty
U(t) ∝ Uh(t) with gamma U and exponentially declining h(t).

6.1. Parvovirus B19 and Cytomegalovirus infections. Parvovirus B19 is trans-
mitted via droplets via the respiratory route, whereas Cytomegalovirus is transmit-
ted by oral ingestion of contaminated secretions. Thus, the route of transmission
is different for the two infections. In childhood, transmission via these two routes
is likely to be confounded, owing to the closeness of contacts between young chil-
dren. Heterogeneity of contacts in early childhood—for example, owing to varia-
tion in nursery attendance—is likely, therefore, to induce an association between
the infections. This is unlikely to persist into adulthood, since the infections are
transmitted differently.

Figure 2 shows the observed proportions with a positive test result, or seropreva-
lences, by age, and Figure 3 shows the association between the two infections in
each pair, with a LOESS curve to represent the trend. The measure of association
used here, denoted φ, is described in Unkel and Farrington (2012). It tracks the rel-
ative frailty variance RFV∗(t) and hence the cross-ratio function, neither of which
can be obtained directly from current status data.

The association plot suggests that there is a high degree of heterogeneity at
early ages, which declines rapidly with age. As expected, there is evidence of het-
erogeneity at young ages, possibly due to heterogeneity of contacts. An alternative
explanation, at young ages, could be variation in development of the immune sys-
tem. The decline in heterogeneity may be related to the homogenizing influence of
school attendance and other learned behaviors.

The LOESS curve in Figure 3 suggests that the time-varying frailty model
U(t) ∝ Uh(t) with h(t) = exp(−ρt2) might be an appropriate choice; the con-
stant of proportionality is the normalizing factor to ensure that U(t) has unit mean
for all t . We chose U to be a unit mean gamma random variable with variance k−1

(but also tried a generalized gamma). We also fitted the selection model, accord-
ing to which the decline in the strength of association is due entirely to selection
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FIG. 3. Association between Parvovirus B19 and Cytomegalovirus by age (years). The dots rep-
resent the empirical values of the association parameter φ̂ (with area inversely proportional to the
empirical variance of φ̂). The full line is a LOESS curve. The curved dashed line shows the fitted
values obtained from the model with shared frailty U(t) ∝ Uh(t) with gamma U and exponentially
declining h(t). The curved dotted line shows the fitted values obtained from the model with time-in-
variant generalized gamma frailty U . The horizontal dashed line represents no association.

effects. In this model, U is represented by a unit mean generalized gamma random
variable with parameters k and β , but there is no time-varying effect, so ρ = 0. In
each case the baseline hazards were modeled using piecewise constant functions.

The results are in Table 4. The best fit is achieved by the time-varying frailty
model with gamma U . Unsurprisingly, in view of the identifiability issues dis-
cussed earlier, a generalized gamma U gave no improvement over the gamma for
this model, though this lack of improvement does suggest that the model for h(t)

is not grossly misspecified. The selection model gave a moderately worse fit to the
data. The fitted association curves φ̂ for the two models are shown in Figure 3, and
show that the selection model does not adequately represent the association. Also
included in Table 4 is a simple gamma shared frailty model, for which the fit is less
good. The results for this model (as in the next example) differ slightly from those

TABLE 4
Fit to Parvovirus B19 and Cytomegalovirus infection data

Model −Loglik Deviance df p-value AIC

Gamma with trend 4352.07 231.76 206 0.105 8732.14
Gen. Gamma, no trend 4357.35 242.32 206 0.042 8742.70
Gamma, no trend 4359.04 245.70 207 0.034 8744.09
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FIG. 4. Seroprevalence of Helicobacter pylori (left panel) and Toxoplasma (right panel) infec-
tions with age (years). The lines show the fitted values obtained from the model with shared frailty
U(t) ∝ Uh(t)V with gamma U and V and exponentially declining h(t).

of Unkel et al. (2014), as different age groups were used. We conclude that the best
fitting model is the time-varying frailty model; the observed and fitted seropreva-
lences are shown in Figure 2. The parameters of this fitted frailty model, with 95%
profile likelihood confidence intervals, are as follows: k1 = 0.168 (0.0630,0.775),
ρ = 0.134 (0.0272,0.645).

6.2. Helicobacter pylori and Toxoplasma infection. Helicobacter pylori and
Toxoplasma infection are both transmitted by the oral route via ingestion of con-
taminated matter. Because the infections share a common route of transmission,
we might expect that heterogeneities in adult behavior will be reflected in a persis-
tent association between the infections.

Figure 4 shows the marginal seroprevalences for the two pairs, and Figure 5 the
association plots. As for Parvovirus B19 and Cytomegalovirus, there is substantial
heterogeneity at young ages, declining with increasing age. However, the decline
is now not to zero: as expected, there remains a small but persistent association
in adulthood. This is most likely due to heterogeneity in contacts via the common
transmission route, owing to differences in eating habits, hygiene and environmen-
tal factors.

We thus propose a time-varying model for the frailty U(t) involving two com-
ponents. The first component is the “childhood” component Uh(t) with h(t) =
exp(−ρt2), representing heterogeneities in childhood as before. The second com-
ponent V represents adult heterogeneity in behavior associated with transmission
by the common route. Thus, V might represent variation in exposure to the inges-
tion of contaminated matter. We assume that U and V are independent random
variables, both of unit mean. The frailty model is thus

U(t) ∝ U exp(−ρt2)V ,
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FIG. 5. Association between Helicobacter pylori and Toxoplasma by age (years). The dots rep-
resent the empirical values of the association parameter φ̂ (with area inversely proportional to the
empirical variance of φ̂). The full line is a LOESS curve. The curved dashed line shows the fitted
values obtained from the model with shared frailty U(t) ∝ Uh(t)V with gamma U and V and expo-
nentially declining h(t). The curved dotted line shows the fitted values obtained from the model with
time-invariant generalized gamma frailty U . The horizontal dashed line represents no association.

the constant of proportionality being the normalizing factor to ensure U(t) has
expectation 1. We assume that both U and V are gamma with variances k−1

1 and
k−1

2 , respectively; we also allowed U to be generalized gamma. We also fitted
a selection model in which U(t) = U is generalized gamma with parameters k1
and β , but with ρ = 0.

The results are in Table 5. As for the previous example, for the time-varying
frailty model, allowing a generalized gamma U gave virtually no improvement
over a gamma U . The time-varying frailty model gave only a marginally better
fit than the selection model with constant generalized gamma frailty. However,
the observed associations φ in Figure 5 are much more faithfully reproduced by
the time-varying frailty model than by the selection model. Both models fit better
than the simple gamma shared frailty model. We thus select the two-component
time-varying frailty model as the best one; its fit to the serological data in Figure 4
is good. The parameters of this model, with 95% profile likelihood confidence
intervals, are as follows: k1 = 0.0572 (0.0215,0.275), k2 = 3.29 (1.87,9.98), and
ρ = 0.0911 (0.0502,0.183).

7. Final remarks. We have presented a simple time-varying frailty model in
which time-invariant frailties are modulated over time by a deterministic function.
The major limitation of this kind of approach is that all individuals are assumed to
share the same trajectories over time. Thus, it is likely to be applicable only when
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TABLE 5
Fit to Helicobacter pylori and Toxoplasma infection data

Model −Loglik Deviance df p-value AIC

Gamma/Gamma with trend 4229.26 399.95 364 0.094 8496.52
Gen. Gamma, no trend 4230.86 403.15 365 0.082 8497.72
Gamma, no trend 4235.09 411.62 366 0.050 8504.18

variation in heterogeneity is driven by a mechanism common to all individuals,
such as ageing.

The present model uses a power function of the (time-invariant) frailty, rather
than a linear function as previously suggested. Arguably, the new model is more
natural and avoids some limitations of the linear model, notably time-dependent
support. However, this benefit comes at the cost of analytical tractability, which
we overcame by a combination of discretization and numerical integration. Nev-
ertheless, the new model fits naturally within a broad class of generalized gamma
time-varying frailty models, from which some analytical results may be exploited.

We focused attention on frailties within the generalized gamma family, owing
to its mathematical tractability and its appropriateness for our application. This
family is reasonably flexible in that it allows for both monotone increasing and
decreasing (and constant) relative frailty variance functions. However, in some
applications, other types of time trends might be required.

The new model does not provide any resolution of the central conundrum of
time-varying frailty models, namely, how to distinguish between a selection effect
and genuine temporal variation in heterogeneity. However, it provides some new
tools to explore these contrasting interpretations in a shared frailty context. The
applications to serological survey data reinforce the value of plotting the empirical
and fitted values of the association measure φ. Such plots enable a more sensitive
assessment of model fit than is possible by marginal observed and expected plots
or single numerical summaries of goodness of fit.
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