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Abstract 

This research investigates the development of a low-cost multi-view umpiring 

framework, as an alternative to the current expensive systems that are almost 

exclusively restricted to elite professional sports. Table tennis has been selected as the 

testbed because, while automating the process is challenging, it has many different 

complex match elements including the service, return and rallies, which are governed 

by a strict set of regulations. The focus is mainly on the rally element rather than the 

whole match. Ball detection and tracking in video frames are undertaken to determine 

reliably the ball position relative to key reference objects like the table surface and 

net, and the ball’s flight path is used to determine the rally’s status.  

While a low-cost option has benefits, it is technically challenging due to the 

limited number of cameras and generally low video resolution used. This thesis 

presents a portable multi-view umpiring framework that identifies each state change 

in a rally. It makes three significant contributions to knowledge: i) a reliable ball 

detection strategy that accurately detects the location of the ball in low-resolution 

sequences; ii) a novel framework for ball tracking using a multi-view system, and iii) 

a new state-machine based evaluation system for analysing table tennis rallies. 

In a series of ten different test scenarios, the system achieved an average of 

94% system detection rate and 100% accurate decisions. A test sequence of duration 

1 s can be processed in 8 s, leading to a delay of only 7 s, which is considered 

acceptable for practical purposes. This solution has the potential to reform the way 

matches are umpired, providing objectivity in resolving disputed decisions. It affords 

an economic technology for amateur players, while the multi-view facility is 

extendible to other relevant ball-based sports. Finally, the ball flight path analysis 

mechanism can be a valuable training tool for skills development. 
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Chapter 1 

Introduction 

1.1 Overview 

In the past decades, the application of computer vision which can extract 

high-level understanding from digital images or videos has grown dramatically. 

Due to its rich potential in many different application areas, it has been utilized 

in pattern recognition, medical imaging, military affairs, security surveillance, 

three-dimensional (3D) reconstruction and robotic applications. The 

development of computer vision has made it feasible to detect and track a target 

object. Many sports are increasingly considering this technology for verification 

purposes in key umpiring decisions because one of the main controversies 

surrounding sport is an incorrect decision made by match officials (Fowler, 

2012).  

To assist a human umpire in making a more accurate decision, there has 

recently been a growing trend to employ vision-based systems for reviewing 

problematic refereeing decisions at professional sporting events like the 

Wimbledon Tennis Championships and English Premier League. Likewise, 

researchers are exploring computer vision technologies in developing game 

highlight detection algorithms and virtual replay systems. Examples include 

determining whether a target object is inside or outside of the playground’s 

boundary such as Hawkeye (Hawk-Eye Innovations, 2018; Owens et al., 2003), 
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the close-up of a player after a goal (C. O. Conaire et al., 2009) or showing the 

trajectory of the ball on a virtual court by rendering the graphics (McIlroy, 2008), 

and detecting predefined events of goals in soccer (Chen and Zhang, 2006). This 

technology not only supports human umpires but also provides a proof of their 

decision making and reduces the chance of errors. 

Despite offering significant advantages, existing systems have still 

struggled to meet ever-growing demands in terms of high deployment costs, 

complex installation and current limited functionality. Moreover, they do not 

reach to the level of automatically umpiring the whole match. A coach or a 

domain expert is required to help players to focus on and interpret critical 

elements of recorded movement patterns (Bacic et al., 2017). As a human umpire 

may not always be present on site in self-training, the desire for automated 

analysis of sporting activities is still increasing (Mukai et al., 2011). 

Consequently, a cost-effective, easy-to-operate umpiring system is an attractive 

alternative option, with such technology potentially supporting lower-tier and 

amateur sporting communities.  

However, selecting a type of sport for academic experimentation involves 

consideration of many factors and it is quite ambitious to develop a system which 

can umpire different types of matches. Therefore, table tennis has been selected 

as the testbed-sport because while automating the umpiring process is 

challenging, it has many different complex match elements including the service, 

return and rallies, which are governed by a strict set of rules. Compared with other 

sports such as tennis or football, table tennis is an indoor game which does not 

need a wide area for setting up the lab environment. While offering ease of 
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installation, it is a very challenging sport to umpire in terms of the number, size 

and speed of the objects and the required observations and regulations to be 

upheld. A table tennis ball is small (approximately 4 cm in diameter, 2.7 grams 

in weight) and blurs due to its speed (around 112.5 kilometres per hour (Table 

Tennis Master, 2017)). This provides a motivation to conduct this research. 

1.2 Table Tennis Umpiring  

Table tennis is a very fast-moving Olympic sport with millions of players 

worldwide. It is governed by the worldwide International Table Tennis 

Federation (ITTF) and the official rules are specified in the ITTF handbook 

(International Table Tennis Federation, 2018; Delano and L.F. (n.d.), 2018). It 

has many different complex match elements including the service, return, and 

rallies. Firstly, it is necessary to describe the usage of table tennis’s terms. While 

not describing everything, this chapter provides some of the key terms to be used 

which include: 

 A rally is a series of returns between the server and receiver. 

  The service in table tennis is the starting point for every rally. 

 The server is the player due to strike the ball first in a rally. 

 The receiver is the player due to strike the ball second and provides a 

return in a rally. 

 A fault occurs when a player fails to continue the rally. 

  A point is won if the opponent makes a fault. 

  A rally is completed where the result is scored. 

 A game is a leg of a match consisting of a series of rallies. 
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 The table or playing surface is 274 cm long, 152.5 cm wide, and 76 cm 

high. It is uniformly matte coloured and divided into two by a net of height 

15.25 cm as shown in figure 1.1.  

 

Figure 1.1: The official dimensions of table tennis table (ITTF, 2018, n.d.) 

The full table tennis rules are very comprehensive. For the purpose of 

simplicity, the main table tennis rules considered by this thesis are summarised 

as below based on the rules from ITTF (International Table Tennis Federation, 

2018). At the beginning of the play, service shall start with the ball resting freely 

on the open palm of the server’s stationary free hand. The server shall then project 

the ball near vertically upwards, without imparting spin, so that it rises at least 16 

cm after leaving the palm of the free hand and then falls without touching 

anything before being struck. The receiver shall then make a return and thereafter 

server and receiver alternately shall each make a return. The ball, having been 

served or returned, shall be struck so that it touches the opponent’s court, either 

directly or after touching the net assembly. From the start of service until it is 

struck, the ball shall be above the level of the playing surface and behind the 



5 
 

server's end line, and it shall not be hidden from the receiver by the server or by 

anything they wear or carry. However, if the ball touches the net and does not 

bounce on the opponent’s side of the table, the server loses the point. Moreover, 

various faulty conditions can occur when a player obstructs the ball such as if the 

ball passes over the player court or beyond his or her end line without touching 

his or her court, after being struck by an opponent. It is the responsibility of the 

umpire to check whether the play complies with the requirements of the Laws. 

However, some of the judgments described by the table tennis rules are very 

difficult for a human being to make and are a constant cause of debate and 

argument. To this end, a purposely built computer vision system could help 

evaluate these difficult observations. 

1.3 Research Aim and Focus 

To investigate the feasibility of an automatic umpiring system, the aim of 

this research is to develop a framework which can be used for umpiring tennis 

table rallies. The focus is on developing techniques and implementing algorithms 

rather than building a complete system. To make the system accessible by 

amateur players, the system is aimed to be low-cost, portable and simple to install. 

Figure 1.2 presents the proposed framework as a block diagram. It is composed 

of 7 main sequential processes (blocks) which are; 

1. Video Capturing 

2. Stereo/Multi-View Forming 

3. Calibration 

4. Ball Detection 
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5. Multi-View Tracking 

6. Umpiring Rallies 

7. Umpiring Match 

Each individual block and its function are summarised below. 

Video Capturing (Block 1): The block diagram starts with a Two-Dimensional 

(2D) video capturing process by acquiring data from real-world scenes in which 

the view of the play is captured with multiple cameras (shown as C1 .... Cn).  

Stereo/Multi-View Forming (Block 2):  The intention of capturing a scene with 

more than one camera is one camera alone cannot give depth information of an 

object. In an umpiring system, the 3D locations of objects of interest are essential 

information. In this research, the ball is the target object to detect, and the net 

pole and table edges are assigned as reference points/lines to make a location 

comparison.  

Calibration (Block 3):  The camera pair that is employed to detect the 3D 

location of the objects should be placed at the same height and well aligned. A 

small misalignment could lead to a large error in their 3D locations. To reduce 

this, a calibration process is required for reducing distortions and correcting 

misalignments between cameras.  

Ball Detection (Block 4):  Image segmentation, object detecting and tracking, 

and 3D position derivation are involved in this process. As the table tennis ball 

size is small and often travels at high speed, its features such as colour, shape, 

and size are all distorted and no longer apparent. This makes the ball detection 
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task difficult and therefore it is necessary to develop a robust mechanism to 

achieve reliable detection.  

Multi-view Tracking (Block 5): Although 3D information can be derived from 

either stereo or multiple cameras, if the view can be captured with more cameras, 

it could reduce the risk of occlusion and provide a better chance in detection. 

However, it requires a strategy to track the ball among multiple cameras. Since 

multiple cameras will provide more data to analyse, it would also increase the 

system computation load. One way to solve this problem is to develop the system 

with multi-agent technology because agents can make many observations in 

parallel and can distribute the workload across the system. Each agent can work 

on their own task, act autonomously and make decisions based on the 

implemented rules. In this way, the complex umpiring process can be broken 

down into simpler components and the system could be more maintainable, 

adaptable, extendable and reusable while maintaining the integrity. Therefore, a 

multi-agent method is proposed in this research instead of developing with a 

conventional programming method.  

Umpiring Rallies (Block 6):  This process analyses the 3D joint trajectory. This 

includes detecting features such as travelling direction of the ball, its current 

position, and the rate of change of velocity and acceleration. Based on these 

features, the system can identify the current state of a rally; for example, whether 

the travelling ball is crossing over the net, bouncing on the table surface or over 

the table end line. Since the condition of the rally can be in exactly one of a finite 

number of states at any given time, the finite state machine (FSM) model could 
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be a possible solution for umpiring rallies. According to the standardised table 

tennis rules, the FSM can evaluate whether the rally is in the correct state or a 

fault.  

Umpiring Match (Block 7):  The ultimate goal of an automatic umpiring system 

is to umpire the whole match.  This includes determining when a rally starts and 

completes, score the matches according to the rules and determine the winner. 

Scoring a match is difficult because there are strict rules governing who serves, 

when to change server, when to swap sides, the maximum time a game can take 

and so on. Moreover, determining the start of a rally is also challenging because 

many players have different pre-service actions, such as bouncing the ball on their 

bats, table or the floor. Furthermore, the system must be able to distinguish 

whether the match is being played or being stopped. However, it has been found 

that developing a fully automatic umpiring system is a very complex task and 

there is a limited time for this research.  Therefore, every table tennis rule will 

not be implemented in this research and block 7 is regarded as beyond the scope 

of this thesis but can be future extensible work. Based on these considerations, 

the key experimental assumptions are made as follows: 

- Assume the table and net position are fixed. 

- During a rally, if the ball position is out of the view of all the cameras 

for more than 1 second, it is considered as a fault. 

The focus of this thesis is especially on the rally element rather than the whole 

match. Thus, ball detection and tracking in video frames are undertaken to 

reliably determine its position relative to key reference objects such as the table 
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surface and net, and the ball’s flight path is used to determine the rally’s status. 

In the following figure 1.2, the blocks 1 to 6 will be covered in this research and 

the block 7 is for future research. The detailed processes of blocks 1 to 3 can be 

found in Chapter 3. The contribution chapters 4, 5 and 6 present the detailed 

implementation of yellow blocks 4, 5 and 6. The future work Chapter 7 represents 

green block 7.  

 

Figure 1.2: Multi-View Table Tennis Umpiring Framework 

1.4 Research Challenges 

While table tennis has a myriad of diverse rules governing the legality of 

a rally, there are many technical challenges in developing a low-cost automatic 

umpiring system. Some of the key issues to be addressed include: 

 Tracking a table tennis ball alone is a difficult task due to its small size.  

 The ball often travels at high speed and it is one of the fastest moving sports 

in the world (Rusdorf et al., 2007). The effect on the captured image of the 

ball is shape distortion, allied with object blurring and colour deviation caused 
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by the light level change between frames in a fast video sequence, and 

occlusion by the players or their bats.  

 While a low-cost option has benefits, it is technically challenging due to the 

limited number of cameras and generally low video resolutions used. 

 Umpiring a complete rally is a very complex task and requires a lot of 

decisions and the demand for timely and accurate observations of rallies 

imposed by the table tennis rules (International Table Tennis Federation, 

2018) is very high. To achieve that, the analysis must be processed very 

quickly, and produce reliable judgments rapidly and consistently. 

 Some rallies are very difficult to judge, such as; whether the ball touches the 

net, hits the edge of the playing surface, which is legal, or the side of the table, 

which is a foul. This kind of judgment is very challenging even for a 

professionally trained umpire (Wong and Dooley, 2010). 

 Determining a fault in a rally is also challenging because many conditions can 

occur such as a fault due to double bounce, a fault due to a return not bouncing 

on the right side of the table, and a fault due to the ball hitting the floor. 

The availability of advanced computer vision technologies and artificial 

intelligent (AI) tools which can aid in developing algorithms more efficiently 

motivates this challenging research. Exploring these useful technologies and 

developing a strategic methodology, the challenge of how to effectively identify 

the state of a rally which can be helpful for match umpiring, was the main 

motivation behind this research. This provided the context for the overarching 
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thesis research question and related objectives which are distilled in the next 

section.  

1.5 Key Research Questions and Objectives  

From the above discussion, the main research question was framed: 

How can table tennis rallies be automatically umpired?  

While the goal is to umpire table tennis rallies, one important activity of such 

system is to accurately and rapidly track the location of the ball during a match 

because the result of the ball location plays a crucial role in analysing rallies and 

can seriously impact the decision making. Moreover, only after the ball locations 

in consecutive frames are detected can the trajectories of rallies be constructed, 

and the legality of the rally determined. Therefore, it is necessary to develop an 

efficient ball detection algorithm and critically synthesise a tracking system. 

After that, an umpiring system can be developed for checking a large number of 

events happening in rallies against the rules. Examples of events are whether the 

ball is served behind the end line of the table or bounces on the correct ends of 

the table. The system must be able to check these events and provide a decision 

rapidly. Consequently, the following set of three research objectives was framed 

to underpin the above overarching question:  

1. To develop and critically evaluate an efficient ball detection 

algorithm. 

Justification: To umpire a match automatically, one critical requirement is to 

detect the ball’s 3D position and compare it with the positions of other objects 

such as the table and net. Although the ball is small and often travels at high 
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speed, the proposed system is aimed to be low-cost, produce the result in real-

time with high detection rate, be portable in implementation and accessible not 

only to professional umpires but also amateur players. Therefore, it is necessary 

to develop a new ball detecting algorithm. 

2. To develop and critically synthesise a multi-view ball tracking 

system. 

Justification:  If multiple cameras each capture a specific portion of the view, it 

can produce higher resolution, reduce occlusion and improve detection. As each 

individual camera does not have to cover the entire table, the cameras can be 

placed closer to the objects of interest (e.g. ball and table) so that better depth 

resolution can be achieved when deriving their 3D positions, and the apparent 

sizes of the objects are also larger in the views.  Furthermore, depth information 

can also be derived from multi-view data. Tracking the ball in the rallies by 

analysing the visual and depth information enables the detected ball to be 

projected into a 3D space. However, determining a ball’s complete trajectory 

based on combining the results from multiple cameras increases computation 

load, due to synchronising and processing data from multiple cameras. Therefore, 

a new multi-view ball tracking strategy needs to be investigated. 

3. To develop an automatic umpiring system for critically evaluating a 

table tennis rally. 

Justification: After constructing a complete ball’s trajectory, the system needs to 

critically analyse table tennis rallies by detecting various features of ball’s 

trajectory, identify the different state of rallies, and determine the legality of play 

according to the rules. This involves the development of a finite state machine 
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and multi-agent umpiring system for handling a dedicated task and evaluating it 

autonomously. This is followed by rigorous testing with recorded and live videos 

of real matches, to identify the limitations and explore possible improvements. 

1.6 Contributions 

To fulfil the aforementioned objectives, this thesis presents a new 

portable, multi-view umpiring framework that identifies each state change in a 

rally, including the service start and the point when a fault occurs. It makes three 

original significant contributions to knowledge:  

1. A reliable ball detection strategy that accurately detects the location of the 

ball in low-resolution sequences. 

2. An extendable novel framework for ball tracking using a multi-view 

system.  

3. A new state-machine based evaluation system for analysing table tennis 

rallies.  

Although this project focuses on table tennis match umpiring, the methodologies 

contributed and technologies developed could be adopted in video analysis of 

other sports such as cricket, football, tennis, soccer, baseball, basketball, and 

volleyball. They are also applicable in video content retrieval and in 3D vision in 

inventory control when checking for ball shaped objects. Since this research aims 

to develop an affordable system by employing low-cost stereo vision equipment, 

the proposed system can be used not only by professional but also amateur 

players. Moreover, it has the potential to reform the way matches are umpired, 

providing helpful information in resolving disputed decisions. Finally, the ball 
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flight path analysis mechanism can be a valuable training tool for skills 

development. 

1.7 Thesis Structure 

The rest of thesis is organised as follows: 

 Chapter 2 presents an intensive survey of state-of-the-art object detection and 

tracking techniques with a special focus on table tennis ball tracking. It also 

discusses the benefits and drawbacks of different methods which are being 

used and critically reviews each method and comments on why some 

techniques are suitable or unsuitable for this research and explain what they 

have done or what they have not done effectively, leaving a gap to fill.  The 

critique in Chapter 2 helps to identify the most suitable research methodology. 

 Chapter 3 focuses on the research methodology adopted in this thesis 

including building a testbed, experimenting with test sequences and 

evaluating the results. It also discusses the choice of development platform, 

the new framework’s validation procedures and the key performance metrics 

applied to critically assess the comparative performance of all new algorithms 

and the proposed system. 

 Chapter 4 details the first contribution, which is the development of a stereo-

view ball detection strategy that accurately detects the location of a ball in 

low-resolution sequences. The algorithm performance is critically evaluated 

with real match scenes sequences from The Open University table tennis 

database (OUTTDB). Work from this chapter has been published in (Myint 

et al., 2015). 
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 Chapter 5 presents the second contribution which extends the stereo-view ball 

detection algorithm to be a multi-view ball tracking system. This provides 

continuous tracking and is efficient in computation. The system was tested 

with complete table tennis rallies, and the results of experiments show that 

accurate and rapid tracking can be achieved even under challenging 

conditions, including occlusion and colour merging. It can continuously track 

the ball with only a small occasional deviation. The proposed design of the 

multi-camera set up also enables the system to be cost-effective, portable and 

suitable for umpiring purposes. Work from this chapter has been published in 

(Myint, Hnin, 2016) 

 Chapter 6 describes the novel multi-view table tennis umpiring framework. It 

develops a new multi-agent state-machine based evaluation system for 

analysing table tennis rallies. The system can identify different states of 

situations where a point is awarded, such as whether the ball is over the server 

end-line, bounces on the server side of the table or crosses over the net. 

Moreover, the system has an ability to declare when a fault occurs (extracted 

from the Table Tennis Rules (International Table Tennis Federation, 2018)) 

such as a fault due to double bounce, a fault due to a return not bouncing on 

the right side of the table, or a fault due to the ball drop under table and hitting 

the floor etc. The proposed system is applied to a variety of complex table 

tennis rallies. 

 Chapter 7 discusses some potential research directions which can exploit the 

methods and algorithms developed in the research. This can be future research 
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work which considers some possible enhancements and extensions to the 

framework presented. 

 Chapter 8 presents some conclusions on the key findings and original 

contributions described in this thesis. 

 

1.8 Summary 

 This chapter began with an overview of computer vision technologies 

applied in object detecting and tracking. It was followed by explaining the 

potential of automatic systems for virtual replay and umpiring various sports. It 

went through some examples not only demonstrated in research but also in 

commercial achievement. Subsequently, it formulated the three principal 

research objectives addressed in this thesis and possible techniques to address the 

challenges based on evidence. A concise overview of the main research question, 

related objectives, the methodology to fulfil the aim, contributions made, and 

thesis structure have been provided. The next chapter presents a comprehensive 

literature survey of object tracking and their associated technologies for 

developing an automatic table tennis match umpiring system.  



Chapter 2 

A Survey of the Literature 

2.1 Introduction 

 Over the last decade, vision-based detection technologies have gained 

immense attention across academia-industries such as public surveillance, 

intelligent transportation, industrial control, military purposes, security, 

automatic tracking system and many other numerous applications.  Due to its 

usefulness and increasing demand for automated detection system, object 

detection and tracking became one of dominating research areas. As researchers 

have been making efforts to enable optimal tracking results, many developments 

have been done in this field. Besides the proliferation of high-powered computers 

and inexpensive video cameras, the availability of AI tools which can aid in 

developing algorithms more efficiently also support the rapid growth of advanced 

computer vision technologies.  

However, the complexities of real-time constraints and expected 

functional characteristics often raise questions over existing algorithms and their 

efficacy. Although various methods have their strengths, they also have their 

limitations, and this motivates towards developing a more effective solution. 

Despite this, the existing algorithms do not always fit with individual’s 

requirement and are not directly applicable to the intended application. Thus, it 
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is necessary to review the current methods, and critically analyse the benefits and 

drawbacks of different techniques to explore their extensibility.  

 This literature survey aims to understand the state-of-the-art development 

of automatic sport umpiring and to identify the most suitable object detection and 

tracking techniques, which are crucial to the success of this project. Since this 

research is mainly focused on tracking a table tennis ball for umpiring purposes, 

the first part of this chapter gives an intensive survey of object detection and 

tracking literature with a special focus on a fast-moving ball and similar objects. 

In the second part, an overview of what computer vision technologies have been 

employed in various sports, the current trend of virtual replay systems not only 

in research accomplishment but also in commercial achievement is presented. 

The third part of this chapter gives the revision of the state-of-the-art research 

work regarding technology in table tennis.  The last section of this chapter 

discusses the challenges that are frequently faced in object detection and tracking 

research and provides possible solutions.  
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2.2 The Process of Object Tracking 

 According to an intensive survey (Hawk-Eye Innovations, 2018; Anuj 

and Krishna, 2017; Balaji and Karthikeyan, 2017; Shih, 2017; Fan et al., 2016; 

Reddy et al., 2015; Parekh et al., 2007; Yilmaz et al., 2006; Wang and 

Parameswaran, 2004), almost every tracking system requires a sequence of 

processes called object Segmentation-Detection-Tracking mechanism. Based 

on this, the following sections 2.2.1 to 2.2.3 will be organised as below to 

introduce the process of these essential mechanisms:  

 Segmentation: the process of partitioning an image to achieve a focus 

area to analyse. 

 Detection:  the process of examining instances of targeted objects. 

 Tracking: the process of locating or estimating positions of moving an 

object over time. 

Since the aim is to build an automatic umpiring system, accurately and rapidly 

determining the location of the ball during a match is one important goal. This is 

because the result of ball location plays a crucial role in analysing rallies and can 

seriously impact the decision making. Therefore, it is necessary to review a 

variety of detecting and tracking methods and explore possible extensions.  

2.2.1 Segmentation 

The aim of image segmentation is to get rid of unnecessary parts and try 

to narrow down the detected area. The process includes partitioning the image 

into perceptually smaller regions which are called Regions of Interest (ROI). 

Every segmentation algorithm addresses two problems, the criteria for a right 
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partition and the method for achieving efficient partitioning (Yilmaz et al., 2006). 

Among a large number of different approaches, the most widely reported 

segmentation methods are Colour Thresholding, Background Subtraction and 

Frame Differencing, and Edge Detection. 

2.2.1.1 Colour Thresholding Methods 

 Colour Thresholding (CT) is widely used to segment image into 

background and object. Low computational cost algorithms making good use of 

colour thresholding whenever appropriate. Some researchers (Fitriana et al., 

2016; Qazi et al., 2015; Bao et al., 2012; Chen et al., 2010, 2011; Wong and 

Dooley, 2010; Arenas et al., 2009) employ colour thresholding-based 

segmentation methods to extract a candidate ball from each video frame. In 

colour thresholding, pixels that have values within a threshold range are 

considered to be from the object if the ball has of a uniform colour such as white 

or orange. However, selecting the right threshold value is challenging. The 

threshold value could be different for different videos, and even within the same 

video. No exact value may correctly identify all changes between different 

frames. Although this method is simple, the result of CT is very sensitive to the 

threshold setting, and it is also difficult to set the threshold appropriately. If a 

threshold value is too low, it will identify shot changes that do not exist. If a 

threshold value is too high, it will miss some shot changes. To this end, Wong 

and Dooley (Wong and Dooley, 2010) proposed a two-pass CT method, that 

uses a strong (rough) threshold in the first pass to identify the locations of the 

candidate object which is a ball, and a slight (tolerant) threshold on the second 
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pass applying only to the regions defined in the first pass to recover the missing 

pixels filtered in the first pass. While satisfactory results were achieved, it only 

covered the service part of the rallies, where the ball is not traveling at high speed. 

Likewise, Zhang (Zhang et al., 2010) proposed a dilation based method known 

as the growth of sampled points to recover the distorted ball shape. Although their 

methods achieved some improvements, the performance of CT is generally poor 

when the ball is colour merging against a complex background. Furthermore, the 

images of the extracted objects are often distorted due to the light intensity of the 

environment which is usually uneven, and this means the colour of the object in 

the image varies.  

2.2.1.2 Background Subtraction Methods  

 An alternative method is Background Subtraction (BS) which works by 

segmenting the current frame into background and foreground regions. The 

background can be assumed as any static or periodically moving parts of a scene 

which remain under certain conditions. Any significant changes in an image 

region from the background model signifies a moving object. In BS, building a 

representation of the scene is called background modelling and then deviations 

from that model for each incoming frame are called foreground regions. Which 

means any pixel which does not fit the background model can be assigned as 

foreground and the rest will be background. A background model can be created 

by a small number of initial frames, or the other way around is to select a sample 

of background. Once learned, it can be used for making a comparison against the 

current frame. The background model can also be computed once only, or it can 
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be incrementally updated according to the continuous frames. Recently, an 

artificial neural network-based model (Maddalena and Petrosino, 2013) has 

been proposed for automatically adapting the model of background, moving 

foreground, and stationary foreground. One of the early approaches of BS 

technique for automatically extracting tennis court lines and detecting the 

location of the tennis player can be found in Sudhir’s paper (Sudhir et al., 1998). 

In their methods, a model of the tennis court is developed by using a priori 

knowledge of camera geometry, dimensions and connectivity of a tennis court. 

Thereafter, the model is used for developing a colour-based court line detection 

algorithm and motion-based player tracking algorithm. The most widely used BS 

techniques are the Median Filter (Cutler and Davis, 1998), the Particle Filter 

(Nummiaro et al., 2003) and Gaussian Mixture Models (Zivkovic, 2004).  

 If the object is identical in the whole frame, a well-developed model of 

the background followed by the object segmenting algorithm may be useful. 

However, the performance of pixel-level subtraction mostly degrades in outdoor 

scenes due to shadows, reflectance and repetitive object motion (Tong-yao, 

2011). BS approaches can be easily affected by noise factors, such as moving 

crowds, cluttered background, and luminance changes. Recently, Lu, Yang and 

Zhao (Lu and Yang, 2017; Zhao et al., 2017) proposed BS methods that have the 

capabilities of modelling the changing illumination, noise, and the periodic 

motion of the background regions. However, their methods require reconstructing 

the lost region with one more technique such as inpainting to recover several 

holes inside the segmented object. That makes computational overhead and will 

not suit for real-time application.  
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 One of the limitations of BS is the requirement of stationary cameras. 

Although much effort (Zhao et al., 2017; Yadav et al., 2014; Tong-yao, 2011; 

Bayona et al., 2010; Zivkovic, 2004; Toyama et al., 1999) have been made in 

some enhancements to BS techniques, camera motion usually distorts the 

background models. To solve this, Wu (Wu et al., 2017) proposed an adaptive 

background thresholding scheme with a freely moving camera such as a hand-

held camera or professional pan–tilt–zoom (PTZ) camera. However, it has been 

shown that among their different types of tested sequences, segmenting football 

players from YouTube live soccer video sequence performs worse than the others 

as a target segmented object is a very small size in the video. Therefore, their 

technique may not be suitable for tracking a table tennis ball, which is much 

smaller than a player.  Moreover, background modelling is computationally 

expensive due to the need to cope with the expansion of the scale, translation, 

rotation, and deformation (Chakroun et al., 2011).  

 

2.2.1.3 Frame Differencing Methods  

 Instead of modelling, the simplest way to segment the background can be 

achieved by frame differencing based on its motion if the target object has a 

nature of moving. In frame differencing, the existence of a moving object is 

segmented by the difference between two consecutive frames. In this way, the 

whole part is obtained as background and the differential part is obtained as 

candidate objects to be analysed further. As the calculation made is easy and 

simple for implementation, frame differencing algorithms are widely applied in 
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object detecting and tracking with low complexity (Abdelli and Choi, 2017; 

Srivastav et al., 2017; Tanaka and Miura, 2017; Sengar and Mukhopadhyay, 

2016; Yilmaz et al., 2006).  

 While this method is simple and useful, it will work only if the 

surrounding area of the ball remains unchanged and the ball is in motion across 

consecutive frames. When there are multiple motions or no motion between two 

or several successive frames, poor segmentation results are achieved. If the object 

features are not much different between consecutive frames, it usually provides 

incomplete object regions and spillage into several regions. To solve this, Zhang 

(Zhang et al., 2010) proposed the growth of sampled points method which is 

aimed to recover pixels lost unintentionally during the adjacent frame 

differencing. Although their experimental results suggested promising detection 

results, pixels belonging to the background could sometimes be incorrectly 

classified as belonging to the detected object (ball) and that could make the 

detected object’s size inaccurate. 

2.2.1.4 Edge Detection Methods 

 An alternative method for image segmentation is edge detection, which 

includes segmenting the image by locating the sharp edges which are 

discontinuous. These discontinuities bring changes in pixels intensities which 

define the boundaries of objects and can extract a set of curved line segments 

termed edges. In this method, object segmentation is achieved by evolving a 

closed contour to the object’s boundary, such that the contour tightly encloses the 

object region. Example of edge detection algorithms include Canny (Canny, 
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1986), Laplacian (Chen et al., 2012), Prewitt (Seif et al., 2010), Sobel (Ma et al., 

2010), Robert (Chaple et al., 2015) and Fuzzy Logic methods (Chacon-Murguia 

et al., 2017; Ziółko et al., 2017). Although edge detection methods are effective 

in defining the boundaries of objects, one limitation across the most literature is 

the over segmentation problem. This can frequently happen when a number of 

edges go across two overlapping or merging objects. Another important issue is 

selecting the right contour representation which can be computationally 

expensive for large images in terms of processing and memory requirements 

(Chaple et al., 2015; Singh and Singh, 2015). The following Table 2.1 presents a 

comparative study of object segmentation methods. 

Table 2.1: Comparative study of Object Segmentation Methods 

Methods Merits Weakness References 

CT Simple and 

widely used, low 

computational 

cost 

Very sensitive to the 

threshold setting. Difficult 

to set the exact threshold. 

Segmented results are 

often distorted when the 

ball is against a complex 

background, under uneven 

lighting or colour merging 

with nearby objects.  

(Fitriana et al., 

2016; Qazi et al., 

2015; Bao et al., 

2012; Chen et al., 

2010, 2011; Wong 

and Dooley, 2010; 

Zhang et al., 2010; 

Arenas et al., 2009) 

BS by 

Modelling 

Perform well for 

static background 

 

Computationally 

expensive due to the need 

to cope with the expansion 

(Wu et al., 2017; 

Zhao et al., 2017; 

Yadav et al., 2014; 
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of scale, translation, 

rotation, and deformation. 

Easily affected by noise 

factors, such as moving 

crowds, cluttered 

background and 

luminance changes. 

Camera motion distorts 

the background model 

Tong-yao, 2011; 

Bayona et al., 2010; 

Zivkovic, 2004; 

Toyama et al., 

1999) 

BS by 

Frame 

Differencing  

Simple 

implementation, 

Low complexity, 

Low memory 

requirement, 

Computationally 

efficient 

Provides incomplete 

object if the object 

features are not much 

different between 

consecutive frames. Poor 

segmentation when 

multiple motions or no 

motion  

(Abdelli and Choi, 

2017; Srivastav et 

al., 2017; Tanaka 

and Miura, 2017; 

Sengar and 

Mukhopadhyay, 

2016; Yilmaz et al., 

2006) 

Edge 

Detection 

An effective way 

to define object’s 

boundaries for 

further analyse 

Over-segmentation and 

difficult to select the right 

contour representation 

when objects are merging. 

Computation expensive 

for large images in terms 

of processing and memory 

requirements. 

(Chacon-Murguia 

et al., 2017; Ziółko 

et al., 2017; Chaple 

et al., 2015; Singh 

and Singh, 2015; 

Chen et al., 2012; 

Ma et al., 2010; 

Seif et al., 2010; 

Canny, 1986) 
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2.2.2 Detection 

 The foundation for tracking requires optimal detection solutions, and the 

result of object detection is vital in every tracking application. The effectiveness 

of the object detection algorithms can be complicated due to: loss of information, 

noise in images, complex object motion, nonrigid or articulated nature of objects, 

partial and full object occlusions, complex object shapes, scene illumination 

changes, and real-time processing requirements. A conventional approach for 

object detection is to use information in a single frame. However, some object 

detection methods make use of the temporal information computed from a 

sequence of frames to reduce the number of false detections (Fan et al., 2016). In 

object detection, there are three most widely reported methods which are Feature 

Detection, Motion Detection and Supervised Learning. However, it has been 

found that some researchers (Crabb et al. 2008; Katalenic et al. 2009; X. Chen et 

al. 2011; Lee et al. 2012; Q. Huang et al. 2012; Sun and Lam 2013) chose to 

incorporate all of these methods into their approaches and employ as 

Combination Methods. 

2.2.2.1 Feature Detection Methods 

Most of the literature attempts to exploit the appearance features of 

objects such as colour, shape, size, and texture for object detection. Selecting the 

right features plays a critical role in detection. In general, the most desirable 

property of a visual feature is its uniqueness so that the objects can be easily 

distinguished in the feature space (Singh et al., 2013). For high accuracy and real-

time object detection, features should be discriminative, robust, and easy to 
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compute (Lee et al., 2012). Feature selection can be made automatically or 

manually by the user depending on the application domain. Detection algorithms 

that have predefined colours or shapes are simple enough to be executed even on 

low-cost embedded computers in real-time (Katalenic et al., 2009).  

Colour-based Detection is a common method used for object detecting 

and tracking as it is simple to implement and inexpensive to process. A video 

frame is composed of a set of dots known as pixels and the colour of each pixel 

is represented by a set of values from a colour space (Brezeale and Cook, 2008). 

Many colour spaces exist for representing the pixel colours in a frame. Two of 

the most popular are the Red-Green-Blue (RGB) and Hue-Saturation-Value 

(HSV) colour spaces. The original RGB colour may not provide optimal 

processing as it does not directly represent the influence of light intensity. It is 

almost always better to use a colour space in which an axis is aligned with 

brightness, such as HSV (Bradski and Kaehler, 2008a). The distribution of 

colours in a video frame is often represented using a colour histogram, that is, a 

count of how many pixels in the frame exist for each possible colour (Brezeale 

and Cook, 2008). Colour histograms are stable object features in the presence 

of changes in scales and shapes (Swain and Ballard, 1991). These are often used 

for comparing two frames with the assumption that similar frames will have 

similar counts even though object motion or camera motion will mean that they 

do not match on a per-pixel basis. If the target detected object is only a few 

percent of the size of the frame, applying Colour Histogram together with Sliding 

Window (SW) techniques to every possible window is a time-consuming process 

(Lee et al., 2012). The crudeness of the colour histogram also means that frames 
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with similar colour distributions will appear similar regardless of the actual 

content. Despite its popularity, most colour bands are sensitive to illumination 

variation. As the object may be perceived to have different colours under different 

lighting conditions, the performance can be degraded where lighting is uneven. 

For the case of different parts of an object can be illuminated by various light 

sources at the same time, Linderoth  (Linderoth et al., 2013) proposed a Colour 

Classifier by estimating the illumination spectrum and accounting for its effect 

on the perceived colour. However, their proposed solution is computationally 

intensive due to it requiring a large number of training data sets per light source. 

Then the detector can handle any combination of light sources for a large range 

of illumination intensities.  

Shape-based Detection: While colour is used as a feature, shape-based 

representations such as object edges are also used as features. Algorithms that 

detect the boundary of the objects usually use edges as the representative feature. 

Object boundaries usually generate strong changes in image intensities. Edge 

detection is used to identify these changes (Singh et al., 2013) and contour 

representation defines the boundary of an object. The region inside the contour is 

called the Silhouette of the object. Circle fitting algorithms such as Hough 

transform techniques (Kim and Kim, 2017; Hossein-Khani et al., 2011) are used 

for detecting the silhouette boundary in edge detection. A useful property of 

edges is that they are less sensitive to illumination changes compared to colour 

features. The most popular edge detection approach is the Canny Edge detector 

(Canny, 1986) due to its simplicity and accuracy. However, its performance will 
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be degraded when the target object is merging with a complex background, and 

it is difficult to detect the edges. 

Texture-based Detection: Like edge features, the texture-based 

technique also can measure the intensity variation of a surface such as smoothness 

and regularity. There are various texture descriptors: Grey-Level Co-occurrence 

Matrices (GLCM’s) (Haralick et al., 1973) (a 2D histogram which shows the 

co-occurrences of intensities in a specified direction and distance), Wavelets 

(Mallat, 1989) (orthogonal bank of filters), and Steerable Pyramids (Greenspan 

et al., 1994). While the texture features are less sensitive to illumination changes 

compared to colour, they require more processing steps to generate the 

descriptors (Gao et al., 2016; Kolkur and Kalbande, 2016). 

Audio-based Detection: Whereas many of the Visual-based approaches 

use features intended to represent cinematic principles, many of the audio-based 

features are also chosen to approximate the object perception by sound. Audio 

features can lead to three layers of understanding (Brezeale and Cook, 2008): 

low-level acoustics, such as the average frequency for a frame, midlevel sound 

objects, such as the audio signature of the sound when a ball makes while 

bouncing, and high-level scene classes, such as background music playing in 

certain types of video scenes. As audio clips are also typically shorter in length 

and smaller in file size than video clips, they require fewer computational 

resources to capture and process than visual features (Huang et al., 2012; Zhang 

et al., 2006). However, audio-based detection can only detect some specific 

events such as when a ball bounces on the table or when a player strikes the ball. 
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2.2.2.2 Motion Detection Methods 

While motion is widely used for image segmentation, this technique also 

applies in object detection. Motion within a video is primarily of two types: 

movement on the part of the objects being filmed, and movement due to camera 

actions (still, pan, zoom, and other). Optical flow and Frame Differencing 

Methods are commonly used in motion-based detection and tracking 

applications, but frame differencing methods have lower computational 

requirements than the optical flow methods (Brezeale and Cook, 2008). 

Optical flow is an estimation of motion in a sequence of images 

calculated from the velocities of pixel brightness patterns due to object motion or 

camera motion (Brezeale and Cook, 2008). The optical flow provides accurate 

object detection over other methods like feature detection and many more. The 

optical does not provide in motion trajectory instead it gives the information 

about object direction and movement in the form of vectors (Kale et al., 2015). 

Applying optical flow to an image gives flow vectors of the points corresponding 

to the movement (Oklobdzija, 2001). It is a dense field of displacement or motion 

vectors which defines the translation of each pixel in a region. This could be due 

to object motion or camera motion. Camera motion is mostly detected by using 

an optical flow method and is costly to calculate (Brezeale and Cook, 2008). 

Although optical flow methods are sometimes used for the detection of ball 

position (Mukai et al., 2011), this method requires iteratively processes such as a 

brute force search and post-processing (Agarwal et al., 2016). 

Frame Differencing means detecting object motion by comparing pixels 

between consecutive frames. Frame differencing reduces the number of false 
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detections by enforcing object detection in the regions where the motion occurs. 

Measuring motion using frame differencing produced results similar to those that 

measured motion using optical flow, yet frame differencing is more 

straightforward to implement and less computationally expensive (Abdelli and 

Choi, 2017; Srivastav et al., 2017; Tanaka and Miura, 2017; Sengar and 

Mukhopadhyay, 2016).  

2.2.2.3 Supervised Learning Methods 

Object detection can be performed by learning different object views 

automatically from a set of examples by means of a supervised learning 

mechanism such as Adaptive Boosting (Zhang et al., 2017), Decision Trees (Bu 

et al., 2009), Support Vector Machines  (Zheng et al., 2012; Huang et al., 2006), 

Gaussian Mixture Model (Huang et al., 2012) and Neural Networks based ball 

detection (Wong, 2008). Although these methods are popular for their robust 

classification, learning of different object views waives the requirement of storing 

a complete set of templates. Given a set of learning examples, supervised learning 

methods generate a function that maps inputs to desired outputs. However, 

supervised learning methods usually require a large collection of samples 

(training sets) from each object class which causes computational overhead. 

Additionally, this collection requires substantial human effort (physical 

initialization) in labelling and the necessity of training is a time-consuming 

process.  
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2.2.2.4 Combination Methods 

While relying on only one feature is not enough for robust object detection 

due to noise such as colour merging or shape distortion, detection procedures can 

be improved by incorporating a variety of features. Although colour, shape, and 

area are commonly employed in the object detection process (Chen et al., 2011), 

some researchers (Sun and Lam, 2013; Huang et al., 2012; Lee et al., 2012; Chen 

et al., 2011; Katalenic et al., 2009; Crabb et al., 2008) chose to incorporate a 

variety of visual, audio and text features into their approaches. According to their 

experimental results, they can improve the detecting performance and overcome 

the weaknesses of each. Complementary to this, Table 2.2 presents a comparative 

study of object detection methods and their techniques which is obtained by based 

on their type of methods, and requirement of training and manual initialization. 

Table 2.2: Comparative study of Object Detection Methods 

Methods Merits Weakness References 

Feature 

Detection 

Colour: Simple, 

Obvious feature, 

widely used 

 

Colour: Suffer when 

images are under different 

illumination conditions. 

Colour histograms: not 

suitable for a small object. 

Sliding Window (SW) 

Technique: Computational 

complexity.  

Colour Classifier: Time-

consuming 

(Fitriana et al., 2016; 

Linderoth et al., 

2013; Lee et al., 

2012; Hsin et al., 

2011; Katalenic et al., 

2009; Brezeale and 

Cook, 2008; Swain 

and Ballard, 1991) 
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Shape: Less 

sensitive to 

illuminating 

changes 

Shape: its performance 

will degrade when the 

target object is merging 

with a complex 

background and difficult to 

detect the edges 

(Kim and Kim, 2017; 

Xiao and Yilmaz, 

2016; Cui et al., 

2010, 2013; Hossein-

Khani et al., 2011; 

Ishii et al., 2011; Leo 

et al., 2008; Canny, 

1986) 

Texture: Less 

sensitive to 

illuminating 

changes 

Texture: it requires more 

processing step to generate 

the descriptors 

(Gao et al., 2016; 

Kolkur and 

Kalbande, 2016; 

Sheu et al., 2010; 

Greenspan et al., 

1994; Mallat, 1989; 

Haralick et al., 1973) 

Audio: it 

requires fewer 

computational 

resources to 

obtain and 

process than 

visual features. 

Audio: can detect only 

some specific events 

(Huang et al., 2012; 

Brezeale and Cook, 

2008; Zhang et al., 

2006) 

Motion 

Detection 

Optical flow: 

widely used to 

detect the object 

motion 

Costly to calculate, 

requires iteratively process 

such as brute force search 

and post-processing 

(Agarwal et al., 2016; 

Mukai et al., 2011; 

Brezeale and Cook, 

2008; Oklobdzija, 

2001) 
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Frame 

Differencing: 

does not require 

predefined 

pattern 

templates, Low 

complexity 

Struggles to identify a non-

moving object, degrade the 

performance when multiple 

motions or no motion 

(Abdelli and Choi, 

2017; Srivastav et al., 

2017; Tanaka and 

Miura, 2017; Sengar 

and Mukhopadhyay, 

2016; Yilmaz et al., 

2006) 

Supervised 

Learning 

Powerful and 

Robust methods 

E.g., Neural 

Networks, 

Adaptive 

Boosting, 

Decision Trees, 

Support Vector 

Machines and 

Bayesian 

networks, 

Gaussian 

Mixture Model. 

High memory requirement, 

computationally expensive, 

requires substantial human 

effort such as manual 

labelling. 

(Zhang et al., 2017; 

Zheng et al., 2012; 

Bu et al., 2009; 

Wong, 2008; Huang 

et al., 2006) 

Combination 

Methods 

Improve 

detection 

performance, to 

overcome the 

weaknesses of 

each method 

Need a careful selection of 

essential features as 

involving too many 

features will complex the 

method (Overfitting)  

(Sun and Lam, 2013; 

Huang et al., 2012; 

Lee et al., 2012; 

Chen et al., 2011; 

Katalenic et al., 2009; 

Crabb et al., 2008) 
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2.2.3 Tracking 

Object tracking is the next step following object detection. Object 

locations in every frame are obtained by means of object detection algorithms, 

and then the tracker predicts the location of an object over time by using regional 

information obtained from previous frames. In short, tracking can be defined as 

estimating the trajectory of an object in every frame of the video. Although 

numerous approaches have been proposed in object tracking, they can be divided 

into three broad categories: methods using primitive geometric models (Kernel-

based Tracking), methods using contour evolution (Silhouette-based 

Tracking) and methods establishing point correspondence (Point-based 

Tracking). These algorithms differ regarding the appearance representation 

(single view or multi-view) used, the number of objects tracked, and the method 

used to estimate the object motion.  

2.2.3.1 Kernel Tracking 

Kernel tracking is typically performed by computing the motion of the 

object, which is represented by a primitive object region, from one frame to the 

next. Mean Shift Tracker (Comaniciu and Meer, 2002), Support Vector 

Machine (Zheng et al., 2012; Huang et al., 2006), and Layer based tracking 

(Zhou et al., 2013, 2015) are parts of Kernel Tracking. These techniques involve 

representation of an object, object features, shape, and appearance of an object. 

For example, the kernel can be a rectangular template or an elliptical shape. 

However, the objects may appear different from different views, and if the object 

view changes dramatically during tracking, the appearance model may no longer 
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be valid, and the object track might be lost. For example, the popular mean shift 

tracking algorithm assumes that the target object has to separate sufficiently from 

the background, but this assumption is not always true, especially when tracking 

is carried out in dynamic environments such as in sport videos (Teachabarikiti et 

al., 2010). Moreover, Kernel tracking algorithms are iterative methods and their 

computational overhead and time consumption are not suitable for real-time 

tracking.  

2.2.3.2 Silhouettes Tracking 

Silhouette tracking is widely used for detecting and tracking complex 

nonrigid shapes (Xiao and Yilmaz, 2016; Leo et al., 2008). It is performed by 

estimating the object region in each frame with the help of an object model 

obtained by the previous frames. It uses the information encoded inside the object 

region used to represent the model. Silhouette tracking is usually carried out by 

BS. Once the object silhouettes are extracted, matching is performed by some 

distance measurement computing techniques such as Euclidean Distance 

(Dokmanic et al., 2015) between the object models associated with each 

silhouette. Object models are usually in the form of Density Functions (colour 

or edge histograms), Silhouette Boundary (closed or open object contour), 

Object Edges or a combination of these models. This means some algorithms 

only use information about the silhouette boundary for tracking, while others use 

the entire region inside the silhouette. The advantage of silhouette tracking is their 

flexibility to handle a large variety of object shapes. For the objects whose shapes 
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can be stable as rectangles or ellipses in every frame, Contour Matching and 

Shape Matching methods are widely used for Silhouette Tracking.  

2.2.3.3 Point-based Tracking 

The main difference between silhouette tracking and point based tracking 

is the way the object representations and the models are used. In particular, 

silhouette tracking uses the complete object region while point based tracking 

uses points. In addition, silhouette matching makes use of an object’s appearance 

features, whereas point matching uses only position-based features. In Point 

based tracking, tracking can be formulated as the correspondence of detected 

objects represented by points across consecutive frames. For tracking objects, 

which appear very small in an image, point representation is usually appropriate. 

Motion models have been widely used in points based tracking (Maksai 

et al., 2016; Seo and Wuest, 2016; Ratnayake and Amer, 2015; Takahashi et al., 

2015) because of their relative simplicity and low computational cost. It is a 

technique used to track and detect the travelling direction of objects. It conducts 

the tracking by taking a statistical measurement that uses the state space approach 

to model the object properties such as position, velocity, and acceleration. The 

mathematical equation of object trajectories is normally assumed as straight lines 

for short periods and its position is predicted by using velocity vectors of previous 

images. Measurements usually consist of the object position in the image, which 

is obtained by detection mechanisms.   

Kalman filter (KF) and Particle filter (PF) are commonly used in point 

based tracking algorithms (Pan and Niemeyer, 2017; Takahashi et al., 2016; 
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Wang et al., 2016; Kim and Kim, 2009; Pinho et al., 2006). A Kalman filter which 

is also known as linear quadratic estimation (LQE) is used to estimate the state 

of a linear system where the state is assumed to be distributed by a Gaussian 

noise (R. E. Kalman, 2001). Kalman filtering is composed of two steps, 

prediction, and correction. The prediction step uses the State Model to predict 

the new state of the object’s position and speed. When the case of the detected 

object is non-linear, Extended KF (Yilmaz et al., 2006) plays the role of 

detection and tracking.  One limitation of the KF is the assumption that the state 

variables are normally distributed (Gaussian). Thus, the KF will give poor 

estimations of state variables that do not follow a Gaussian distribution (Yilmaz 

et al., 2006). However, its implementation with other features and classifiers can 

make a better solution (Anuj and Krishna, 2017).  

To summarise, the tracker using KF is useful in detecting moving object 

in similar background, but it is not able to track low-resolution objects, and it 

cannot track objects with variation in speed of movement (Kale et al., 2015). 

Kernel base tracking and Silhouette-based tracking require detection only 

when the object first appears on the screen whereas point-based tracking involves 

detection in every frame. Table 2.3 presents a qualitative comparison of tracking 

methods. 
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Table 2.3: Comparative study of Object Tracking Methods 

Methods Merits Weakness References 

Kernel 

Tracking 

Powerful and Robust 

methods such as 

Mean Shift 

Tracker, Support 

Vector Machine and 

Layer based 

tracking are parts of 

Kernel Tracking. 

Iterative methods, its 

computational 

overhead and time 

consumption are not 

suitable for real-time 

tracking.  

(Zhou et al., 2013, 

2015; Zheng et al., 

2012; Teachabarikiti et 

al., 2010; Huang et al., 

2006; Comaniciu and 

Meer, 2002) 

Silhouette 

Tracking 

Widely used for 

complex nonrigid 

shapes, flexibility to 

handle a large 

variety of object 

shapes 

Suffer when images 

are merging with 

complicated 

background and 

cannot extract their 

shape / contour. 

(Kim and Kim, 2017; 

Xiao and Yilmaz, 

2016; Hossein-Khani et 

al., 2011; Leo et al., 

2008) 

Point-based 

Tracking 

Simplicity and low 

computational cost. 

For tracking objects, 

which appear very 

small in an image, 

point representation 

is usually 

appropriate. 

Poor estimation and 

require reinitialization 

techniques when the 

object do not follow 

its distribution or has 

abrupt directional 

change.  

(Pan and Niemeyer, 

2017; Seo and Wuest, 

2016; Wang et al., 

2016; Ratnayake and 

Amer, 2015; Takahashi 

et al., 2015; Kim and 

Kim, 2009; Pinho et al., 

2006) 
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2.3 Overview of technologies applied in various 

sports 

Technologies have been applied in many sports events for decades 

(Wong, 2008) as the development of high-speed digital cameras and video 

processing has attracted people’s attention in sports video analysis. Even though 

computer vision based analysis of sport videos has been addressed by many 

authors (Maddalena & Petrosino, 2013); Tamaki et al., 2012; Chen et al., 2011; 

McIlroy, 2008; Owens et al., 2003),  it is still a hot topic within the multimedia 

video analysis community (Hawk-Eye Innovations, 2018; BBC, 2018; Kim and 

Kim, 2017; Shahjalal et al., 2017; Arenas et al., 2009) as sport is an evergreen 

field and attracts big spending each year (Shih, 2017). This section reviews 

current computer vision technologies applications in various sports video 

analyses and discusses the research issues of the field and the potential 

applications. Examples include computer-assisted referee such as Goal-line and 

Hawk-eye systems (Hawk-Eye, 2018; Tsang, 2013; Bal and Dureja, 2012; Owens 

et al., 2003).  

2.3.1 Cricket  

In Cricket, a vision based technology, called A-Eye, which automates the 

role of the third umpire has been proposed and implemented in (Mahmood et al., 

2011). The Graphical User Interface (GUI) of A-Eye is as shown below in 

figure 2.1. 
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Figure 2.1: Artificial-Eye GUI (Mahmood et al., 2011) 

A-Eye technology can be utilised during play by installing a (hidden) camera that 

is located on the surface of the ground (zero height) and facing the wicket. A-Eye 

was implemented as a desktop application in the C-Sharp (#) programming 

language. It was adopted as a three-tier approach, i.e., the client tier, the middle 

tier and the back-end tier. The architecture of A-Eye will be described in figure 

(2.2) as below.  
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Figure 2.2: Architecture of A-Eye (Mahmood et al., 2011) 

To effectively apply image processing techniques, there are two types of image 

conversion. The first is to convert the incoming frame into a binary format, i.e., 

into black and white, and the second is to transform into a discrete number of 

shades of grey, i.e., into the greyscale mode. In A-Eye, the input video frames 

were firstly converted to grey scale because a greyscale image supports more 

accurate detection of objects as compared to a black-and-white image (Gonzalez 
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and Woods, 2002). Then Hough Transform was used for detecting the crease 

marker. The Motion Detection Algorithm (MDA) which was based on a simple 

comparison of the pixels across consecutive frames was used for detecting four 

objects in motion, i.e., the player, the bat, the ball, and the wicket. Once it 

identified the motion regions in a frame, a technique known as blob was used for 

counting to determine the number of detected objects. A set of 30 run-out 

personally filmed videos in 2D was used for experimentation. The Umpire 

decision module of A-Eye was used for calculating a rating for the performance 

of the field umpires. The performance of A-Eye was validated by comparing it 

with the performance of the third umpire. The results have been proved that it has 

a potential to minimize decision errors made by third umpires and was able to 

estimate a rating for the field umpires. 

2.3.2 Football 

A robot referee intended to be used in the RoboCup humanoid league for 

robot soccer was proposed in Arenas’s work (Arenas et al., 2009). Their idea is 

implemented using a service robot that moves along one of the field sides, uses 

its own cameras to analyse the game, and communicates its decisions to the 

human spectators using speech, and to the robot players using wireless 

communication. The robot uses a video-based game analysis toolbox that is able 

to analyse the actions at up to 20 fps. This toolbox includes robots, ball, 

landmarks, and lines detection and tracking, as well as refereeing decision 

making.  
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In their detection system, all the objects of interest for the soccer game 

(field carpet, field and goal lines, goals, beacons, robot players, ball) are detected 

using Colour Segmentation and some simple Rules. To detect the robots at 

different scales, a Multi-Resolution Analysis of the images is performed, by 

downscaling the input image by a fixed scaling factor. Windows of 24 x 24 pixels 

are extracted in the Window Extraction module for each of the scaled versions 

of the input image. The windows are analysed by a Nested Cascade of Boosted 

Classifier (Cascade Classification Module). The block diagram of the detection 

system is shown below in Figure 2.3. 

 

Figure 2.3: Block diagram of the detection system (Arenas et al., 2009) 

The system is composed by seven main modules Object Perception, 

Visual Tracking, Self-localization, Refereeing, Motion Control, Speech 

Synthesis, and Wireless Communications, and makes use of two databases: Rules 
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(input) and Game Statistics (output). The block diagram of the robot referee 

controller is shown in figure 2.4. 

 

Figure 2.4: Block diagram of the robot referee controller (Arenas et al., 2009) 

The Visual Tracking module is in charge of tracking the moving objects, 

i.e. the ball and the robot players. The implemented ball and player tracking 

system is built using the Mean Shift Algorithm, applied over the original image. 

The KF is employed to maintain an actualised feature model for mean shift. The 

Refereeing module is in charge of analysing the game dynamics and the actions 

performed by the players (e.g. kicking or passing), and detecting game relevant 

events (goal, ball out of the field, illegal defender, etc.). This analysis is carried 

out using information about static and moving detected objects, and the game 

rules, which are retrieved from the Rules database. Refereeing decisions (e.g. 

goal was scored by team A) are sent to the Speech Synthesis and Wireless 

Communication modules, motion orders that are sent to the Motion Control 

module, and game statistics (e.g. player 2 from team A score a goal) that are 
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stored in the corresponding database. This robot system is validated and 

characterized in real game situations with humanoid robot players. In their future 

implementations, they are planning to use multiple cameras to have more 

information of the activities in the field. Although their system is claimed to able 

to track all game moving objects and the lines in near real-time (up to 20 fps), 

satisfactory acquisition of the ball trajectory requires a high frame rate (at least 

50 frames per second) to reduce the problems caused by camera calibration and 

to reduce blur (Huang et al., 2012). The lower frame rate created a larger timing 

gap between frames, which is manifest as changes of shape and size of the image 

of the ball, resulting in a high number of false candidates and hence poor tracking 

performance. 

2.3.3 Tennis 

One of the early approaches of trajectory-based ball detection and 

tracking algorithm for broadcasting tennis video can be found in Yu’s paper (Yu 

et al., 2004). In that approach, the identified non-ball objects were firstly removed 

by filtering size, straight line, colour, shape, circularity, and isolation. After that, 

candidate classification method was used for detecting candidate objects for each 

frame. Then, the KF-based procedure was used for producing the candidate 

trajectories from each candidate feature image. After that, each candidate 

trajectory was evaluated by identifying the ball trajectories through a selection 

procedure. Unlike the other object-based algorithm, Yu’s approach (Yu et al., 

2004) did not decide whether an object is a ball. Instead, they decided whether a 

candidate trajectory was a ball trajectory. In Mukai’s work (Mukai et al., 2011), 
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tennis plays are analysed, and skills of players are evaluated quantitatively by 

computer vision technology. Two high-definition TV cameras (right and left) are 

used to detect 3D ball position and 2D player position. The ball trajectories and 

player positions of tennis singles games are detected from Stereo Images, and six 

skill parameters are calculated. The skill factors, as listed in Table 2.4, were 

analysed by regression of the skill scores from human evaluation with the player 

skill parameters which present in figure 2.5. 

Table 2.4: Six player skill evaluation method (Mukai et al., 2011) 
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Figure 2.5: The player skill parameters (Mukai et al., 2011) 

To eliminate misdetections caused by ball shadows on the tennis court, 

the ball position in the right and left images is detected by using three successive 

Images Subtraction Method  which is known as Frame Differencing (Mukai 

et al., 2011). The three images are previous, current and following frame images. 

Sequential images of 64 return strokes and 15 services by four players were 

analysed quantitatively. Since this was a pilot research, they only evaluated return 

strokes and services rather than building a complete system. In reality, it is 

necessary to evaluate all game elements including volleys and smash shots and 

those will be included in the further study of their research.  

2.3.4 Table Tennis 

Since this research is to investigate the best approach that can be effectively used 

for detecting and tracking a fast-moving table tennis ball for developing an 

automatic umpiring system, this section presents a wide coverage of the state-of-
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the-art research work regarding the technological development in table tennis. In 

fact, developing a table tennis match umpiring system is a very challenging task 

because it needs to produce the judgment within a few seconds or sooner after the 

rally is complete. The umpiring process involves a series of fast actions and is 

strictly governed by the Laws of Table Tennis stated in the ITTF Handbook 

(ITTF, 2018). It is even very difficult for human umpire since it often requires 

lots of professional judgment. The demand for timely and accurate observations 

of rallies imposed by the table tennis rules is also very high. A typical example 

of judging difficulty is to determine whether the ball hits the edge of the playing 

surface, which is a legal, or the side of the table, which is a foul. The prior 

development of high-motion table tennis ball tracking for umpiring applications 

can be found in Wong and Dooley’s papers (Wong and Dooley, 2010, 2011; 

Wong, 2007, 2008, 2009). Their research was aimed at assisting table tennis 

umpires to make an accurate judgment about services. Their pilot study mainly 

covered one (2.06.02) of many table tennis rules. The remaining rules were not 

considered and hence umpiring a table tennis match is still a fertile research area. 

The rules shown below in table 2.5 are directly related to services. 

Table 2.5: Table- tennis rules regarding the service 

Index Description 

2.06.01 Service shall start with the ball resting freely on the open palm of 

the server's stationary free hand. 

2.06.02 The server shall then project the ball near vertically upwards, 

without imparting spin, so that it rises at least 16 cm after leaving 
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the palm of the free hand and then falls without touching anything 

before being struck. 

2.06.03 As the ball is falling the server shall strike it so that it touches first 

his court and then, after passing over or around the net assembly, 

touches directly the receiver's court; in doubles, the ball shall touch 

successively the right half court of server and receiver. 

2.06.04 From the start of service until it is struck, the ball shall be above the 

level of the playing surface and behind the server's end line, and it 

shall not be hidden from the receiver by the server or his doubles 

partner or by anything they wear or carry. 

2.06.05 As soon as the ball has been projected, the server’s free arm shall 

be removed from the space between the ball and the net. Note: The 

space between the ball and the net is defined by the ball, the net and 

its indefinite upward extension. 

2.06.06 It is the responsibility of the player to serve so that the umpire or 

the assistant umpire can see that he complies with the requirements 

for a good service. 

2.06.06.01 If the umpire is doubtful of the legality of a service he may, on the 

first occasion in a match, declare a let and warn the server. 

2.06.06.02 Any subsequent service of the doubtful legality of that player or his 

doubles partner will result in a point to the receiver. 

2.06.06.03 Whenever there is a clear failure to comply with the requirements 

for a good service, no warning shall be given, and the receiver shall 

score a point. 
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From 2007 to 2011, Wong and Dooley (Wong and Dooley, 2010, 2011; 

Wong, 2007, 2008, 2009) tried to find the possible solutions for tracking the table 

tennis ball from live video images by experimenting various filtering, image 

segmentation and enhancement techniques. In the earlier stage of Wong’s 

research (Wong, 2007), Artificial Neural Network (ANN) is used for classifying 

the ball among the similar (color, size and shape) objects and identify whether 

the detected object is a ball on the palm, a ball in mid-air, or not a table tennis 

ball. While satisfactory results were achieved, Wong only covered the service 

part of the rallies, in which the ball is not travelling at very high speed. Moreover, 

ANN consumes a lot of processing time in training and requires substantial 

human effort such as manual labelling.  

In 2008 (Wong, 2008), Wong adopted a frame-based object segmentation 

method called Two-Pass Threshold Method (TPT). TPT uses different 

thresholds in each pass with the first applying a coarse threshold followed by a 

relaxed threshold.  In this method, a high threshold is firstly applied for removing 

most irrelevant objects and a low threshold is secondly applied for fully revealing 

the boundary of the objects detected in first pass. The benefit of TPT is it loosens 

threshold selection so the value in each pass can be less precisely set. To assess 

which candidate ball is the Object-Of-Interest (OOI), his system comprised a 

suite of algorithms that adaptively exploit spatial and temporal information such 

as size (maximum width, maximum height), shape (roundness, rounded upper 

contour), area (perimeter), motion and trajectory. His point-based and neural 

networks approaches were based on an image taken from a single angle which 

could not tackle the occlusion problem.  
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Therefore, Wong suggested in his 2009 paper (Wong, 2009) that the 

problem would be mitigated if multiple cameras are employed to get views from 

different angles. However, larger amounts of data feeding from multiple cameras 

will increase pressure on the processing workload and time. To improve time 

performance, he suggested implementing the system as a rule-based multi-agent 

system (Wong and Dooley, 2010, 2011) with artificial intelligence techniques. In 

this way, several tasks can be executed in parallel, for example, one agent can 

identify the ball while other can be checking the location of the ball and another 

can do the measurement. By working together, the agent system can 

simultaneously make several observations. 

For humanoid robots to play table tennis, a Physical Bouncing Model for 

predicting a trajectory of the table tennis ball (ping-pong) has been proposed by 

Bao (Bao et al., 2012). Four high-speed cameras and two low-speed cameras were 

used to grab and transfer images to a powerful vision processing industrial 

personal computer (PC). The sample rate of the cameras can reach up to 200 (fps), 

and a signal generator is used to synchronize these cameras as shown in figure 

2.6.  



54 
 

 

Figure 2.6: Multiple Camera-based Vision System (Bao et al., 2012) 

In their system, each camera pair covers one half of the ping-pong table 

and points at the opposite side so that the ball can’t be occluded by player or 

robot. The whole ping-pong table can be observed and then the whole ping-pong 

trajectory can be detected by merging the data from the two stereo pairs. Image 

acquisition, image processing, reconstruction and trajectory prediction are done 

on the computer. A nonlinear bouncing model based on the conservation of 

Momentum Theorem and Moment of Momentum Theorem to include the 

spin of the ball describes the collision between the ball and the table. The 

candidate hitting position and time are sent to the robots on both sides by the 

wireless communications module. 

The table tennis ball is governed by Newton’s Laws of Motion. Many 

players create a heavy spin on the ball and it has been observed that certain world-

class players had imparted spins on ping pong balls that were around 9,000 

revolutions per minute (rpm) (Table Tennis Master, 2017). A skilful table tennis 
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player can spin the ball exceeding 5000 rpm, while it is typically around 3000 

rpm for a novice (Tamaki et al., 2012).  A method for estimating the rotational 

velocity from the real image sequences of table tennis rallies has been developed 

by (Tamaki et al., 2012). Their spin measurement method is based on Inverse 

Compositional Image Alignment (ICIA) which accelerates computation. Wang 

(Wang et al., 2012) proposed a model of human behaviour imitation for a robot 

to play table tennis. Their main strategy is to record a video of the action in which 

people played table tennis, then to analyse the video of the bat trajectory. The 

movement of the robot’s racket is fitted through people hitting ball according to 

the trajectory of the racket. Since the key of the whole work is mainly about the 

racket, the first step of their research is extracting the racket in each frame of 

video by thresholding the red part of the image as shown in figure 2.7.  

 

Figure 2.7: Extraction of a racket (Wang et al., 2012) 
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It can be found that the RGB was heavily influenced by light. Therefore, 

Wang (Wang et al., 2012) extract the racket in image using HSV instead of RGB. 

After smoothing the image to eliminate distortion points, a Canny Edge Detector 

is used for detecting the range of edges in the grey-scale image as shown in figure 

2.8.  

 

Figure 2.8 (a):  Image after edge 

detection  

 

Figure 2.8 (b): Hough transform to 

obtain a straight line  

Figure 2.8: Edges Detection (Wang et al., 2012) 

After that, the Hough transform is used for detecting the straight lines in 

the edge image. Then 3D coordinates of the centre of the racket and racket posture 

are obtained via the PNP (Perspective-N-Point) positioning approach based on 

the intrinsic parameters of the camera. For calculating the centre and the posture 

of the racket, 3D coordinates of points are fitted by the RANSAC (Random 

Sample Consensus) algorithm. 

Another interesting approach of predicting the trajectory of the table 

tennis ball and its placement by using computer simulation for wheelchair player 

can be found in Chiu’s work (Chiu, Ching-Hua, et al., 2010).  Because wheelchair 

table tennis players are physically limited by their disability, they have to be 

trained efficiently for acquiring excellent skills and remarkable performance. 
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Two integral skills they must possess are the control of ball placement and tactics 

of competition.  

 

Figure 2.9: Wheelchair table tennis singles (Chiu, Ching-Hua, et al., 2010) 

To help such players, their study aimed to design a system which would 

be capable of predicting ball placement in table tennis singles. To this end, they 

adopted the Back-Propagation Neural Network (BPNN), whose structure 

consisted of an input layer (48 input neurons), a hidden layer (30 hidden neurons), 

and an output layer (12 output neurons). The ball placement parameters were first 

converted into training samples of the BPNN and then the learning algorithm of 

the BPNN was subsequently applied to the training samples. Finally, a recalling 

algorithm was used for predicting ball placement. (Yingzhu Li et al., 2010) 

proposed a real-time immersive table tennis game for two players with motion 

tracking. Additionally, a physics-based ball animation model is designed for 

the game, which includes fast detection of the ball colliding with table, net and 
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quick moving rackets. To achieve high-speed movement tracking of rackets and 

player viewpoints, hybrid inertia and ultrasonic sensing technology are used, with 

each player holding a hand tracker as grasping a racket and wearing a head 

tracker. To achieve visual immersion, two large rear projection stereoscopic 

screens as shown below in Figure 2.10 are used to provide an individual view for 

each player based on the player’s perspective. 

 

Figure 2.10: Two Players Play against Each Other (Yingzhu Li et al., 2010) 

By wearing a pair of polarised glasses, each player is able to see his/her 

own virtual racket, a standard table tennis table, and a flying ball, as well as the 

opponent’s avatar holding a racket, in 3D with an impression of depth. The 

system is shown to offer some unique features and form a good platform for the 

development of other immersive games for multiple players. The computing 

system consists of three PCs as shown below in figure 2.11 and each one runs on 

an Intel Xeon 3.06 GHz CPU with 2G RAMs and a 256 MB NVIDIA Quadro FX 
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3000 Graphic Card. One PC is used as the server to run the application program, 

which is responsible for the InterSense (Wormell and Foxlin, 2003)  tracking 

control, data processing and animation computation. The other two PCs are used 

as clients, where each one renders the scene according to the computation results 

sent from the server and drives a pair of projectors to provide an individual 

stereoscopic display according to the viewpoint of each player.  

 

Figure 2.11: Software Modules and Data Flow (Yingzhu Li et al., 2010) 

 

The communication between the server and two clients is based on the TCP/IP 

protocol, and data is transmitted through a 1G Ethernet connection. For the server 

computer, it runs the Motion Data Acquisition Module to acquire position and 

orientation data of the head and hand of each player from the tracking system 

based on the InterSense. The Motion Data Processing Module provides player 

viewpoints as well as positions and orientations of the virtual rackets and avatars 
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to be drawn by the two client computers. The Ball Animation and Audio 

Feedback Module provides the motion of the ball according to simplified physical 

laws and produces a sound if a collision is detected. For the two client computers, 

all fixed static virtual objects (e.g. table, wall and floor) are pre-computed, and 

each one runs its own Scene Generation Module to produce a stereo pair for each 

screen upon receiving the dynamic object data from the server.  

As shown in figure 2.12 and 2.13 a  high-speed stereo vision system with 

two smart cameras which adopt a distributed parallel processing architecture 

based on a local area network is presented in (Zhang et al., 2010).  

 

Figure 2.12: Distributed high-speed vision system (Zhang et al., 2010) 
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Figure 2.13: Distributed parallel processing architecture (Zhang et al., 2010) 

A computer receives the image coordinates of the ball from the cameras 

via the local area network and computes its 3D positions in the working frame. 

Then, the flying trajectory of the ball is estimated and predicted according to the 

measured positions, Flying and Rebound models. The main Motion Parameters 
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of the ball such as the Landing Point and Striking Point can be calculated from 

its Predicted Trajectory. In order to predict the 3D trajectory of the table tennis 

ball, the Aerodynamic Model of the ball flying in the sky and the Bouncing 

Model are established in Chen’s research (Chen et al., 2011). In their system, the 

Aerodynamic Model was used for estimating the trajectories of the flying table 

tennis ball and Bouncing Model was used for getting the velocity changes after 

bouncing. In the Bouncing Model, the vertical speed and the horizontal speed 

were treated separately. However, their prediction of the ball trajectory is done 

by solving only the Linear equation. There is no consideration for the Non-

linear equation and the spin of the ball is neglected.  

In the table tennis games, over a hundred points may be included, 

demanding a further analysis to compare the measurement of each important 

point. Most of the audiences are concerned not only by the final score but also by 

the match’s highlights and excitement. To provide valuable information for the 

semantic understanding of sports games, research investigating the ball hit 

detection in table tennis games is presented in (Zhang et al., 2006) based on audio 

analysis by employing Energy Peak Detection (EPD) and Mel Frequency 

Cepstral Coefficient-based (MFCC-based) Refinement (MBR). 

 

Figure 2.14: Framework of a ball hit detection system (Zhang et al., 2006) 
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Another system of extracting high-lever semantic features can be found 

in Chen and Zhang’s paper (Chen and Zhang, 2006). Their system was intended 

for automatically ranking the highlight levers and replaying some important 

information to referee for scoring a reasonable mark such ball position, table 

position, the player action, and the ball trajectory. 

 

Figure 2.15: Architecture of the framework (Chen and Zhang, 2006) 

To derive the ball trajectory in their system, all ball candidates were first detected 

using a feature-based approach such as colour, shape, size and position limits.  

The differences between the current frame and the next consecutive frame were 

calculated first to find out the changing part in the current video. Then a 

morphological filtering procedure was called to eliminate noise and connect near 

regions that belong to one object. Then both the motion and appearance 
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information were employed to find the best ball candidate by a Bayesian decision 

framework.  To derive the ball trajectory, the ball's dynamic and appearance 

parameters were updated by a KF and an incremental Bayesian algorithm. With 

those semantic features, they ranked the basic highlight lever with the feature 

statistic and measured the quality of the game from a fuzzy system. To measure 

their tracking performance, they employed the two most commonly used criteria: 

recall (the percentage of the number of correct detections from the actual balls) 

and precision (the percentage of the number of correct detections in all the 

detected balls). The 2004 Olympic Female Final, 2000 Olympic Male Final and 

2005 World Cup Male Final Games were selected to be the testing data with the 

resolution of (352*288) at 25 frames per second.  

To summarise, the revision of the state-of-the-art research work regarding 

the developments in table tennis was presented. Even though they all were related 

with table tennis, different applications use different techniques for extracting the 

racket, detecting the ball and predicting its trajectory. Based on the above 

literature, feature-based approaches such as colour, shape, and size are appearing 

to be a common technique in most table tennis ball detecting mechanisms. It was 

followed by predicting the trajectory of the ball in track. Since the above literature 

is selected from recently published papers, the multiple cameras-based approach 

also appears to be the selected approach of most researchers, since it can provide 

the stereo vision with depth information. Section 2.4 will discuss some of the 

recognisable commercial deployed systems regarding ball detection and tracking 

for the support of decision making.  
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2.4 Commercially Deployed Systems 

Computer vision technologies have been commercially deployed in tennis 

and football. Several systems have been used in real matches. The following 

subsections give an overview of such systems. 

2.4.1 Hawk-Eye 

Hawk-eye system is used in Wimbledon 2003 to produce a computer-

generated replay which can help the commentary team to analyse the play in eight 

main areas (McIlroy, 2008). It is the camera-based ball-tracking system that 

enables players to challenge line-calling decisions on the courts of major tennis 

events. It is also known as one of the most commonly used technologies in various 

sports for effective decision making (Bal and Dureja, 2012). 

 

Figure 2.16: Hawk-Eye System (Tsang, 2013) 
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Six to ten high-speed cameras are situated around the court to determine 

where the ball has bounced within five seconds of landing and whether it is in or 

out (Fowler, 2012). The system has a mean error of 3.6 mm and is resistant to 

wind, sunlight, artificial floodlights and overcast conditions (Hawk - Eye, 2017). 

Hawk-Eye use the Direct3D interface in Microsoft’s DirectX API to show the 

trajectory of the ball on a virtual court by rendering the graphics (Owens et al., 

2003). Hawk-Eye Innovations become world-leading ball tracking technology for 

the sporting such as tennis, football, and cricket because of the capability of 

providing the virtual replay and providing the statistical viewable track within 5 

seconds (Bal and Dureja, 2012) at the end of the rally. 

After initial use at the Davis Cup in the UK, Hawk-Eye tennis was 

deployed at the Masters’ Tournament in the United States and at the Queens 

tournament. (Owens et al., 2003) described a major design of the Hawk-Eye 

tennis ball tracking system as shown below in Figure 2.7. The system applied the 

3D model-based tracking approach to determine the registration features and 

corresponding image observation. Firstly, it extracts straight lines by use of 

spatially adaptive thresholding. To deal with the issue of distortion, the KF is 

used to determine the impact point. KF takes in the tracking data directly and 

iteratively tries a linear, quadratic and cubic model of the incoming and outgoing 

compound track to get the best estimate of the impact point possible. For 

predicting the flight or trajectory of the ball, Hawk-Eye used a Geometric 

algorithm which employs a triangulation process for 2D position calculation 

and depth calculation (McIlroy, 2008). A rule-based system is used to decide 

whether an impact is a bounce, a strike or a half volley, using the velocity 
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directions and positions to reduce the degrees of freedom. A simple distance 

metric is used to determine which impact point is the most likely one. Hawk-Eye 

has been put to a variety of uses, such as providing a way to collect interesting 

statistics, construct illustrative visual representations of the gameplay and even 

helping viewers to better understand the umpiring decisions (Bal and Dureja, 

2012).  

 

Figure 2.17: Block Diagram of Hawk-Eye tennis System (Owens et al., 2003) 

2.4.2 Goal-line 

Hawk-Eye has recently developed and tested a Goal-line technology 

(GLT) system to be used in football using the same technique as the systems seen 

in other sports (Fowler, 2012). GLT is six high-speed multi-cameras-based 

system used to determine when the ball has completely crossed the goal line with 

the assistance of electronic devices and at the same time, assisting the referee in 
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calling a goal or not. Starting from 2012, GLT is approved by the International 

Football Association Board (IFAB) as it meets the requirement of being accurate 

to +/-3cm and was used the first time at the 2012 FIFA Club World Cup in Japan 

(Hawk-Eye, 2018) . FIFA has recently confirmed GLT was used at the 2014 

World Cup in Brazil (BBC, 2018). 

 

Figure 2.18: GLT (Sports live production, 2013) 

2.4.3 GoalRef® 

GoalRef® is a second GLT system. It has reached an agreement with 

FIFA to be installed in football grounds around the world (Fowler, 2012).  

GoalRef® uses a microchip embedded in the ball. When it crosses the goal line, 

it interrupts a magnetic field and signals a goal. Three magnetic strips are placed 

inside the outer lining of the ball, between the bladder and the outer casing, and 

when the ball crosses the line these are detected by sensors inside the goalposts 

and crossbar. The sensors send out electronic waves which are disrupted when 
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the ball crosses the line, and a computer then sends a message to the match 

officials' watch receivers in less than a second (Dovaston and Correspondent, 

2012). 

 

Figure 2.19: FIFA picks Goal Control for Brazil 2014 (FIFA, 2013) 

However, there are a number of issues with Hawk-Eye and GLT. Firstly, 

the accuracy of both of the system is not 100%. There is still a need for an umpire, 

meaning human error has not been eliminated (Fowler, 2012). A second issue is 

a cost. To setup Hawk-Eye at a tennis tournament is about $60,000-$70,000 for 

one court (Hawk-Eye, 2018; Demaj, 2013) and with much of that cost going to 

installing the infrastructure. The cost of installation of the GLT is between 

£100,000 and £125,000 per stadium (BBC, 2018; Bal and Dureja, 2012). 

Although this is not an issue for Premier League teams, lower league teams may 

struggle to meet these costs. 
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2.5 Challenges and Possible Solutions 

When detecting and tracking a fast-moving object, difficulties can arise 

due to abrupt object motion, changing appearance patterns of both the object and 

the scene, non-rigid object structures, object-to-object and object-to-scene 

occlusions, intrinsic and extrinsic factors like deformation and camera motion. 

Moreover, many environmental and capturing factors can influence the detection 

accuracy including: 

 Image Distortion: When the object is travelling fast, if the shutter speed of 

the camera is not sufficiently high, the object can become blurred, colour 

faded and distorted in shape. 

 Multiple moving objects: Apart from the target object, some other 

surrounded objects exhibit different motion.  

 Uneven lighting: When detecting the object in an indoor environment, light 

sources are usually located in the ceiling, which tends to make the upper 

portion of an object appear brighter than the lower part. 

 Occlusion: The target object can be blocked by the other objects or it can 

disappear from view. 

 Merging: When the contrast between the object and background is low, the 

object may become indistinguishable from the background. 

 Object Confusion: Background and foreground objects which have a similar 

colour, size, and shape may be confused with the target object. 
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 Size: If the target object’s size is small, it will often only a few percent of the 

size of the frame, which renders conventional histogram-based detection 

methods unsuitable.  

 Time constraint: If the development is a real-time application, the latency 

incurred for detecting and tracking the ball must be minimised which prevents 

computationally intensive algorithms from being adopted. 

 Cost constraint: If the development is intended to be an affordable system, 

expensive equipment which provides higher precision are not employable. 

 Installation constraint: If the development is intended to be a movable and 

easily deployable system, it will not have a facility to fix the cameras high 

above the detected area to take aerial views. Obtaining aerial views is not 

always possible as most table tennis tournaments take place at multi-purpose 

sports venue and fixing cameras at the ceiling or high wall is not allowed. 

Among those challenges, one of the critical issues which come across is 

occlusion. Occlusion can happen when one part of the object occludes another 

(self-occlusion), when one or more objects occlude each other (inter-object 

occlusion) or when the target object becomes invisible from the camera 

viewpoints (out of camera-vision). Under occlusion conditions, the combination 

of different features such as colour, texture, shape, trajectory, speed, depth, etc 

can be taken into consideration.  

2.5.1 Marker-based Solution 

Object detection with the help of additional markers is another possible 

solution for the object merging problem. However, the proposed research is 
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intended to detect and track the table tennis ball from a real-world scene for 

umpiring purposes. During the match, players need to concentrate on the 

movement of the ball and it is not acceptable to apply a marker on the ball. 

Another disadvantage of this approach is the marker position on the object. The 

marker can only be detectable from a particular angle where the camera is set up. 

In reality, the spinning speed of table tennis ball can exceed 5000 rotations per 

minute (rpm) (Tamaki et al., 2012) and applying the marker on the table tennis 

ball for detection purpose is not practical. 

2.5.2 Multiple Cameras based Solution 

Early works (Tang et al., 2008; Wong, 2008; Chen and Zhang, 2006; 

Zaveri et al., 2004) were based on the use of a single camera. Later, researchers 

(Anuj and Krishna, 2017; Cheng et al., 2016; Takahashi et al., 2016; Liu et al., 

2014; Bal and Dureja, 2012; Bao et al., 2012; Chen et al., 2010, 2011; Zhang et 

al., 2010; Arenas et al., 2009; Owens et al., 2003) started to consider the added 

value of using multiple cameras to enhance object detection. Employing multiple 

cameras can be more effective in tracking objects which are occluded from a 

specific viewing angle. With multiple cameras, the chance of capturing the ball 

is higher and it is no doubt a better approach. An additional benefit is that the 

depth estimation can be driven from two overlapping conjunction views and it 

can be used to predict the 3D trajectory (Bao et al., 2012; Chen et al., 2010, 2011). 

One example of multi-view ball tracking and virtual replays for tennis ball 

tracking can be seen in (Pingali et al., 2000). To minimize occlusions, six static 

cameras were placed around a stadium with four cameras on the side and two at 
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the ends of the court. Each of the four side cameras is paired with one of the end 

cameras to form a set of four stereo pairs that track the ball in 3D. To get the 

result in real-time, a multi-threaded approach was used which means each camera 

pair is associated with a computing device and works together as distributed 

computing resources. To cope with environmental changes and illumination 

effect, auto-iris lenses were used with the cameras in their approach.  

However, synchronizing all networked cameras, maintaining continuous 

tracking, the huge quantity of incoming data increases computational overheads 

and makes the overall system complicated. Because of the varying lighting 

condition from different camera views and their positions, it is infeasible to 

ensure optimal monitoring among multiple cameras and synchronize all the 

detection processes by traditional approaches like human operators. In practice, 

developing a real-time tracking system needs not only a robust mechanism to 

detect but also it demands low computational algorithms to achieve the result as 

fast as possible. To solve this, one effective solution can be deploying a Multi-

Agent System (MAS) which is often concerned with the coordination of 

autonomous agents to perform tasks, so that it can achieve high-quality overall 

system performance.  

2.5.3 Multi-agent-based Solution 

A MAS is composed of multiple interacting computing elements, which 

are systems that can decide for themselves what they need to do in order to satisfy 

their design objectives (Wooldridge and Jennings, 1995). Agents can also be 

defined as sophisticated computer programs which have a capability of 
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interacting with other agents and act autonomously on behalf of their users across 

distributed environments to solve a growing number of complex problems 

(Wooldridge, 2008).  By this way, each agent can determine relative positions 

and orientations of all other agents performing tasks in its field of view. With the 

help of MAS, many observations can be made within a short period of time and 

can achieve the umpiring result in real-time. MAS are an increasing trend, used 

in various systems (Anuj and Krishna, 2017; Cañizares et al., 2017; Chakroun et 

al., 2011; Yongping Li et al., 2010; Katalenic et al., 2009) such as the detection 

of events in the sports video, segmentation and moving object tracking 

applications. 

A considerable amount of research effort (Shao and Xie, 2012; Swears 

and Hoogs, 2012; Chakroun et al., 2011; Katalenic et al., 2009; Chao and Jun, 

2008; Jin et al., 2006) has recently been focused on the cooperation of artificial 

intelligence systems in object detection and tracking. Their systems are 

implemented through detection algorithms that process images captured by 

cameras mounted on multiple computing agents that interact in a time-varying 

manner. In this way, each agent can determine relative positions and orientations 

of all other agents performing tasks in its field of view that can cover the 

occlusion. 

2.6 Artificial Intelligent Systems  

Research in Artificial Intelligent (AI) system is directed toward building 

a machine that can mimic or exceed human mental capabilities, including 
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reasoning, understanding and recognition (Hopgood, 2012). AI allows computer 

system to function in an intelligent manner which can learn on its own. 

2.6.1 Techniques of Intelligent Systems 

AI systems can be seen as three major types; computational intelligence 

systems, knowledge-based systems, and hybrid systems.  

 Computational intelligence (CI) includes artificial neural networks, genetic 

algorithms and other optimization algorithms which can learn for themselves 

from a set of data. 

 Knowledge-based systems (KBS) include expert and rule-based systems, 

object-oriented and frame-based systems, and intelligent agents.  

 Artificial Neural Network (ANN) (Caudill, 1987) is a computing system 

made up of a number of simple, highly interconnected processing elements, 

which process information by their dynamic state response to external inputs 

(Gerven and Bohte, 2018). ANN can be used to train a system by adjusting weight 

according to the input data. Although ANN can mimic the human brain and good 

at solving complex problems, it requires a huge amount of data and very 

computationally expensive to train.  

 Genetic Algorithms (GAs) (Mitchell, 1998) are adaptive heuristic search 

techniques used for finding optimized solutions to  search problems. Although 

GAs mimic biological evolution and can provide an optimal solution which can 

scale well (adjust) to higher dimensional problems, it is sensitive to the initial 

numerical populations used, require heavy simulation and slow in producing 

results.  
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The KBS (Grzegorz J. Nalepa, 2018) contains thousands of complex rules 

and facts in which those are represented explicitly and can be changed at will. 

Rules are an effective way of representing knowledge in many application 

domains. Although both of expert and rule-based systems are types of KBS, in 

which the knowledge is represented in a form of sets of rules, expert systems can 

offer advice, suggestions, or recommendations like a human expert. A key 

advantage of the rule-based system is their flexibility. In a fully automated 

system, the rules can perform their recommended actions rather than simply 

making a recommendation. The principle difference between a KBS from a 

conventional program is in KBS, it is easier to add new knowledge, either during 

program development or in the light of experience during the program’s lifetime.  

The Object-oriented programming (OOP) (Danny Poo, 2008) 

languages such as C++ or Java are widely used in the development of object-

oriented and frame-based systems. Both techniques assist the system by breaking 

down complex problems into simpler components, more maintainable, adaptable 

and reusable while maintaining the integrity of the system. 

Intelligent Agents (Kohei Arai, 2018; Wooldridge and Jennings, 1995) 

extend the ideas of object-oriented techniques. When a software system becomes 

larger and very complex to maintain as centralised system, the whole system can 

be broken down as modules and turn into agents which can make their own 

decisions based on its own experience and circumstances. Intelligent Agents are 

a software system that can learn through experience, adapt over time, response to 

the demands, provide reasoning capabilities and take care of specific tasks to 

meet their designed objectives.  
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A multi-agent system (MAS) (Wooldridge, 2008) is a computerized 

system composed of multiple interacting intelligent agents which are working 

together to solve problems that are difficult for an individual agent (single 

hardware or software) to solve. In MAS, agents can cooperate (or competitive) 

and negotiate with other agents, yet each agent can autonomously make its own 

decision to achieve their designed goals. It means agents cannot invoke the 

actions of another agent, but they can make requests. As a teamwork, MAS offers 

the benefits of; 

 Automation 

 Speed and efficiency 

 Robustness 

 Reliability and consistency 

 Ease in development 

 Scalability 

 Cost-effective 

than a large centralised system. 

2.6.2 Agent Tools and Languages  

The tools available to assist in developing intelligent systems can be 

divided into the following categories: 

 Agent-based modelling software such as NetLogo, JADE 

 Stand-alone packages such as expert system shells 

 KBS toolkits such as Flex 

 AI programming languages such as Lisp 
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 Libraries such as MATLAB 

 OOP languages such as C++, Java 

 Conventional programming languages such as C. 

Agent Communication Language (ACL), proposed by the Foundation for 

Intelligent Physical Agents (FIPA | IEEE, n.d.), is a proposed standard language 

for agent communications. The most popular ACLs are: 

 FIPA-ACL (by the FIPA, a standardization consortium) (Poslad, 2007) 

 KQML (Knowledge Query and Manipulation Language) (Finin et al., 1994) 

Agent-oriented programming (AOP) is a programming paradigm where the 

construction of the software is entered on the concept of software agents. OOP 

languages are based on AOP because of the clear separation of function, 

structure, and state. For the Java-platform one of the frameworks which meet the 

standard of FIPA is JADE. 

2.6.3 Application of Intelligent Systems 

In science, technology, and engineering, a large number of an intelligent 

system has been developed recently by using many different techniques. Multi-

agent systems have been applied in soccer forecasting (Cañizares et al., 2017), 

smart surveillance system (Eigenraam and Rothkrantz, 2016), decision-making 

system for sporting event (McNeill et al., 2016), social media sentiment detection 

such as Facebook and Twitter (Charaf et al., 2012), moving object tracking 

(Chakroun et al., 2011), sport event detection (Yongping Li et al., 2010), in line 

detection in sport images (Kamarposhty et al., 2009) and many other research 

areas. Among those, applying the multi-agent system in sports have substantially 
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grown during these years due to the requirement of real-time recognition of 

events in sport. Since each agent can take over an assigned task, a complex system 

can be divided, and a powerful collaboration of intelligent agents can increase the 

overall performance. 

 

2.7 Summary 

In brief, to achieve a high success rate in fast-moving object tracking, the 

main problems are lack of unique features, blurred motion, the complexity of 

background, easily affected by luminance, and multiple moving objects which 

make it difficult to distinguish the ball from its surroundings. To explore new 

ways to solve these problems, it is necessary to critically analyse and discuss an 

intensive survey of object detection literature. Therefore, a large variety of 

existing approaches for object segmentation, detection and tracking have been 

presented in the first part of this chapter. Merits and demerits of available 

methods have been discussed in detail as a comparative study. The second part 

of this chapter gave an overview of the computer vision technologies which have 

been employed in various sports. Although many publications related to ball 

tracking are available, the techniques that produce satisfactory results are usually 

object and application specific. It is, therefore, the survey of literature for this 

study focuses on tracking table tennis ball. The intensive survey reveals that two 

paper discusses tracking for umpiring purposes (Wong and Dooley, 2010) and 

(Byrd, 2015), while all the other papers discuss the development of playing 

robots. While satisfactory results were achieved, (Wong and Dooley, 2010) only 

covered the service part of the rallies, of which the ball is not traveling at very 
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high speed. On the other hand, an automatic scoring system was discussed by 

(Byrd, 2015) that tracked the table tennis ball in real-time relative to the table and 

net, and determined when a point is scored. However, the setting is based on a 

lab environment with the ball painted neon green against a uniformly black 

background. Such a setting significantly reduces the ball detecting difficulty, but 

it will not be acceptable for formal tournaments as the Law of Table Tennis 

mandates the colour of the ball to be either matt white or orange (ITTF, 2018). In 

summary, none of the literature reviewed addresses the challenges of tracking the 

ball in a complete rally and in a real match scene, which is an essential 

requirement for a realistic automatic umpiring system. It was followed by the 

revision of the state-of-the-art research work regarding the technological 

development in table tennis.  The last part of this chapter discusses the challenges 

that are frequently faced in object detection and tracking research and provides 

possible solutions including the AI systems. 



Chapter 3 

Research Methodology 

3.1 Introduction 

This chapter presents the research methodology adopted to design, 

develop as well as test and critically evaluate the new multi-agent system for 

video umpiring. Automatic umpiring systems are very complex in nature due to 

the architectures and the match environment in which they are deployed. The 

accuracy of 3D information is crucial when identifying the location of objects 

from video for umpiring purposes. This chapter presents the development 

methodology and tools used in assessing the overall performance of the proposed 

system. The remainder of the chapter is organised as follows: Section 3.2 

provides the research methodology while Section 3.3 explains about camera set 

up.  Section 3.4 and 3.5 describe building a research testbed and test sequences. 

Section 3.6 presents the evaluation methodology and finally, Section 3.7 

summarise the chapter.  

3.2 Research Methodology 

As mention in Chapter 1, table tennis has a myriad of diverse rules 

governing the legality of a rally and there are many technical challenges in 

developing a low-cost umpiring system. This combination of system requirement, 
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complexity and challenging variable environments leads to the design and 

analysis of problems that are not analytically tractable by applying existing 

toolkits. It requires a completely new testbed and a real implementation to be 

developed from scratch to investigate the feasibility the of system. The outcome 

is that it provides a valuable insight into system behaviour as well as performance 

and can identify the limitations. To meet the objectives which are set out in 

Section 1.3, the various phases of the adopted research methodology to fulfil the 

aim of automatic table tennis match umpiring are summarised as follows: 

 Critical review of object detection and tracking literature as well as AI 

systems and narrow down the research focus to ball detection and 

tracking.  

 Implement a test bed for experimenting variety of new techniques and 

investigate the suitability and expandability of the existing 

methodologies. 

 Identify the limitations of existing methods and develop a new algorithm 

to fulfil the system’s requirements.  

 Implement a ball tracking system which will be used as an underlying 

building block for the development of an umpiring system.  

 Rigorously test and critically evaluate the developed system for different 

table tennis sequences captured from real match scenes to validate its 

accuracy and robustness. 

 Compare the performance of the system against the ground truth provided 

by human umpires.  
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3.3 Camera Set up 

When the aim is a cost-effective system, the capturing devices should be 

buildable from affordable and off-the-shelf materials. It should also have speed 

and resolution that are high enough to capture the most important moments such 

as ball’s bounce or hit points. However, high-speed stereo cameras are expensive. 

Therefore, it was decided to utilise existing low-cost cameras from the Open 

University with acceptable capturing speed to create in-house stereo systems to 

balance between cost and accuracy of detection. In the course of this research, 

several table tennis sequences were filmed using up to 4 Casio EX-F1 cameras 

during table tennis matches. Three possible types of camera setup were 

experimented as follows:   

 Side-By-Side Stereo-view (Full-Table) 

 Side-By-Side Stereo-view (Half-Table)  

 Face-To-Face Multi-view (Half-Table)  

 

3.3.1 Configuration of Side-By-Side Stereo-view (Full-

Table)  

For the Side-By-Side (SBS) arrangement, two set of stereo visions (full-

table and half-table) are formed by pairing up two cameras next to each other and 

fixing them on camera mounts as shown in figures 3.1 and 3.2. In this way, similar 

results as taken by stereo cameras can be achieved while reducing the cost. Stereo 

vision is required rather than single vision because it can provide depth 

information from two overlapping conjunction views and can derive the 3D 
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trajectory. When capturing the sequences, the camera pairs are positioned at the 

location where the umpires would sit as shown in figures 3.1. 

 

Figure 3.1: SBS Stereo Camera (Full-Table) Set up 

In this setup, a pair of stereo cameras monitored the full length of the table 

at both sides. To achieve the whole table view, the constraint here is that the 

camera needs to be placed at a distance from the play (greater than 4 meters). As 

a result, the videos which were filmed from a long distance, do not have enough 

depth resolution to calculate precise real-world coordinates (X, Y, Z) of objects 

and this affected 3D reprojection. The accuracy of 2D to 3D reprojection become 

poor when the resolution of the camera is low, and the object is further away from 

the cameras. Moreover, the original size of table tennis ball is small, only 4 cm 

in diameter, and when capturing the full table view, the video image of the ball 

appears very small, 1.9 pixels, 0.005% of the whole frame. As larger image size 
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of the ball and clearer view of the play can provide higher detection rate, it is 

better to place the cameras at a closer position.  

3.3.2 Configuration of Side-By-Side Stereo-view 

(Half-Table)  

To resolve this, two pairs of stereo cameras were placed next to each other 

to monitor half the length of the table from the same side. Since they can capture 

from closer to the area of play (approximately 2 meters), the image of the ball 

appears bigger and clearer. The average radius of ball is around 3 pixels in the 

film and the result of 2D to 3D reprojection result is sufficient to umpire a rally. 

However, the trade-off of relocating these cameras to closer positions is that one 

pair can only capture approximately two thirds of the length of the table not the 

whole view. To cover the whole table, one pair monitors the left-half of the table 

while another pair monitors the right-half as shown in figure 3.2. This 

arrangement requires a mechanism to track a trajectory using join data from 

separate views. Moreover, it is undeniable that the ball can sometimes be 

occluded. For this scenario, the SBS cameras arrangement cannot provide much 

help to each other in ball detection and recovering mechanism as both cameras 

are placed next to each other, much of the same view and getting similar 

information. 
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Figure 3.2: SBS Stereo Camera (Half-Table) Set up 

To resolve this, this research proposed a new camera arrangement which 

is named Face-To-Face (FTF) to detect the 3D position of the ball using opposite 

facing cameras.  

3.3.3 Configuration of Face-To-Face Multi-View 

(Half-Table)  

In FTF arrangement, two pairs of opposite facing cameras were 

monitoring approximately half of the table. This is a new way of forming a stereo 

camera by pairing of opposite facing cameras. The trade-off of relocating these 

cameras to closer positions is they can only cover approximately two thirds of the 

length of the table, not the whole view. To cover the whole table, one pair 

monitors the left-half of the table while another pair monitors the right-half as 

shown in figure 3.3. As each individual camera does not have to cover the entire 
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table, the cameras can be placed closer to the objects of interest (e.g. ball and 

table) so that better depth resolution can be achieved when deriving their 3D 

positions and the objects also appear bigger in the views.  

 

Figure 3.3: FTF Stereo Camera (Half-Table) Set up 

However, this arrangement requires a mechanism to join a trajectory from 

separate views (the contributed method can be found in Chapter 5). Moreover, 

the drawback of the FTF configuration is that when the position of the ball is at 

or near the line that joins the principal points of the opposite facing cameras (see 

the red and yellow dotted lines in Figure 3.3), the 3D position cannot be 

determined using the triangulation equations, as the angles between the ball and 

the two cameras are equal to or close to zero. To overcome this problem, the 

position of the ball in these small regions will be extrapolated using a second 

order equation of motion, which can model the trajectory of the ball in a table 

tennis rally appropriately. 
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3.3.4 SBS Stereo Camera Calibration and 3D 

derivation  

One of the basic requirements in creating a stereo vision is to calibrate the 

two cameras in order to achieve the parameters that need to be used in derivation 

of 3D information. The calibration process aims to correct camera distortions 

such as the lens and transitional errors. It can be conducted in two ways. The first 

way is to check and adjust the cameras’ hardware and positions by using high 

precision optical tools which are expensive and can only be operated by trained 

professionals.  The second method is to use software to adjust the captured images 

from the cameras. In this research, the software calibration with chessboard 

approach  (Bradski and Kaehler, 2008a) was selected to compensate for the 

distortions because the corners of the squares in the chessboard are very easy to 

find as reference points by using computer vision algorithms and its geometry is 

very simple. It is also inexpensive and a widely used method by the research 

community. The figure 3.4 (a) and (b) shows the images of a chessboard being 

held at various orientations to provide enough information to completely solve 

for the locations of those images in global coordinates (relative to the camera) 

and the camera intrinsic. The intrinsic matrix contains the focal length expressed 

in pixel-related units and the principal point which locates the image centre, while 

the extrinsic matrices contain the rotation matrix and translation vector (Bradski 

and Kaehler, 2008a). 
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Figure 3.4 Chessboard calibration approach (Bradski and Kaehler, 2008a)  

 

Left View 

 

Right View 

 

Left View 

 

Right View 

 

Left View 

 

Right View 

Figure 3.5: Placing checkerboard at different locations  
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In software camera calibration, the first step is to correct the distortion 

caused by imperfection of the lens and its arrangement, while the second step is 

to correct the correspondence errors between two cameras. To correct lens 

distortion, a sequence of known patterns is first presented to the cameras. The 

software then mathematically creates an ideal pin-hole camera and distortion 

models based on the positions of a set of detected reference points. By evaluating 

the deviations between the detected and the known positions of the reference 

points, it is possible to derive the extrinsic and intrinsic matrices which can be 

used to correct the errors. These matrices are used for squeezing, stretching, 

rotating and translating different areas of an image in order to minimise the 

deviations between the detected and the known positions of the reference points. 

These parameters enable the software to mathematically correct the 

abovementioned errors. To summarise, stereo camera calibration involves: 

 Undistortion: Mathematically remove the radial and tangential lens 

distortion of the cameras.  

 Rectification: Adjust the images such that the angles of the cameras are 

aligned. The outputs of this step are images that are row-aligned and 

rectified. 

 Correspondence: Find the same features (the reference points) in the left 

and right camera views. Assuming the camera pair are horizontally 

aligned, the output of this step is a disparity map (d), where the disparities 

are the differences in X-coordinates on the image planes of the same 

feature viewed in the left and right cameras:  � =  �� − �� 
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 Reprojection: If the focal length of the cameras and the distance between 

them are known, then a depth map can be derived from the disparity map 

using the triangulation theory as shown in figure 3.6 below. 

 

��    = a + �1                                                         (1) 

��   = a – �2                                                         (2) 

� =  ��  – ��  = �1 +  �2                                                    (3) 

Where: 

a:  half of screen width  

x1, x2: the variable 

��, ��  ∶ the horizontal positions of the points in the left and right images 

c�
���� ,  c�

����� 
 :  the principal points 

O: the centre of projection 

T: the total length bet two Cameras: cm 

f:  the focal length of the camera. 

d:  disparity 

Z: the depth  

Figure 3.6: Triangulation theory for Z (Depth) derivation   
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Where: 

a:  half of screen width (512/2) 

x1, x2: the variable 

��, ��  ∶ the horizontal positions of the points in the left and right images 

c�
���� ,  c�

����� 
 :  the principal points 

O: the centre of projection 

T: the total length between two cameras: cm 

f:  the focal length of the camera. 

Z: the depth  

Figure 3.7: Triangulation theory for X and Y derivation 
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According to the equation (1), the 3D position of X and Y can be derived by using 

the following triangulation and geometry calculations based on the blue and red 

similar triangles in figure 3.7.         

�1   =  ��  - a                                                       (5)            

Based on equation (5), a is a half of the screen width (For example: 512 pixels/2).  

In this research, the table tennis sequences were filmed using up to four Casio 

Exilim Pro EX-F1 cameras with their built-in lenses set to the widest angle 

(36mm). The cameras come with a 1/1.8" (0.7144 cm Width x 0.5358 cm Height) 

CMOS sensor (Casio Exilim Pro EX-F1 Sensor Info & Specs, n.d.). To calculate 

the real-world 3D position of an object, its screen position (in pixel units) needs 

to be converted into a physical unit such as centimetre. This can be achieved by 

dividing its screen position by its sensor dimension, i.e., (horizontal 

position/0.71) and (vertical position/0.54). The resolution of the frame captured 

by the sensor is (512 x 384) pixels. Therefore, there is 716.69 pixels in one cm 

(512 pixels / 0.7144 cm = 716.69 or 384 pixels / 0.5358 cm = 716.69) for the 

Casio EX-F1 cameras.  

�

�
 =   

�

��
                                                                                                      

 � =   
�∗��

�
   

    X =   
�∗(��  � �)  

�
 

                  X =   
Z ∗ (��   −  

512
2 )  

�
 

   X =   
�∗�(�� � 

���

�
)/���.��� 

�
                             (6) 

Based on the similar triangles’ rules with the Y-axis perpendicular to the page: 
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Z

�
 =   

Y

y1
=  

Y

y�
 

                                                    Y =   
�∗��

�
                                                        (7)    

Here, assuming two cameras whose image planes are exactly coplanar with each 

other, and exactly parallel optical axes with equal focal length, �. The optical axis 

is the ray from the centre of projection, O through the principal point, c which is 

where the principal ray intersects the imaging plane. A point, P in the physical 

world is projected in the left and the right image views at �� and  �� . The disparity 

(d) between these views is defined simply by d =   �� −  ��. Since depth is 

inversely proportional to disparity, the depth, Z can be derived by using 

triangulation theory based on the blue and red similar triangles in figure 3.6.           

3.3.5 FTF Stereo Camera Calibration and 3D 

derivation  

For calibration purposes, a checkerboard was carefully placed at various 

known positions during filming as shown in Figure 3.8 and 3.9. This process 

provides a large set of reference points needed for training the error model which 

can be found in Chapter 5. The set of reference points in the checkerboard was 

also used for results comparison to assure that the system can provide the right 

2D to 3D reprojection results.   
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Figure 3.8: Calibration with a double-sided checkerboard  

 

 

 

Figure 3.9: Placing double-sided checkerboard at different location  
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The 3D positions derived from the FTF camera pair are computed using the 

following triangulation and geometry calculations as shown in figures 3.10 and 

3.11. 

C1

C2

P

θ1

θ2
f

x1
f

X

Z2

Z1

W/2

x2

T

W/2 X

Z

 

Figure 3.10: The aerial view of FTF camera pair 

The X and Z values of the 3D ball position in the FTF configuration can be derived 

as follows:  

� =         �� +  ��     

                   =      
�

��� Ɵ�
 + 

�

��� Ɵ�
   

                            =       �. �
��� Ɵ� + ��� Ɵ� 

��� Ɵ� . ��� Ɵ�
�   

 �   =      �. �
��� Ɵ� . ��� Ɵ� 

��� Ɵ� + ��� Ɵ�
�                             (8)  

where X is the value of horizontal 3D position of the ball (Distance), which can 

be derived from T, the distance between two cameras and the unknown values 
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��� Ɵ� and ��� Ɵ�. These unknown values can be found by equations (9) and 

(10): 

��� Ɵ� =   
��� −  

�
2 �

�
                                               (9) 

��� Ɵ� =       
�

�
2 −  ���

�
                                        (10) 

where tan Ɵ� and tan Ɵ� can be calculated by the triangulation and geometry 

calculations. In which, the known values x� and  x� are the screen coordinate of 

the centre of the ball in pixels, � stands for the screen width and � is the focal 

length of the cameras. After that, the 3D position of Z can be calculated by (11) 

and (12): 

�� =  
�

tan Ɵ�
                                                            (11) 

 �� =  
�

tan Ɵ�
                                                            (12) 

where Z1 and Z2 indicate the associated distance between the ball and each camera 

(Depth). Similarly, the Y value of the 3D ball position in the FTF configuration 

can be calculated as shown in figure 3.9. 
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Figure 3.11: The side view of FTF camera pair 
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�   =           Z� +  Z�                        

                                                 =    
�

tan Ɵ�
 + 

�

tan Ɵ�
     

                                                  =   �   .   ( 
tan Ɵ� + tan Ɵ� 

tan Ɵ� . tan Ɵ�
 ) 

                                              � =   �   .    ( 
tan Ɵ� . tan Ɵ� 

tan Ɵ� + tan Ɵ�
 )                                   (13) 

where Y is the value of vertical 3D position of the ball (Height) which can be 

derived from the known value T, the total length between two cameras and the 

values tan Ɵ� and tan Ɵ� which can be found by equations (14) and (15): 

tan Ɵ� =              
� 

�
2 −  y��

�
                                                       (14) 

   tan Ɵ� =    
�

�
2 −  y��

�
                                                                  (15) 

As above, tan Ɵ� and tan Ɵ� can also be calculated by the known values y� and 

 y� which are the screen coordinates of the centre of the ball on screen in pixels, 

� stands for the screen height and � is the focal length of the cameras. The 

calculated 3D results of the reference points on the net and table are shown in 

figures 3.12, 3.13 and 3.14. To synchronize all the (X, Y, Z) values of four 

cameras, one central point (one side of the top of the net) was set as an origin (0, 

0, 0) and that point is named as the Net Pole Origin (NPO). 
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Figure 3.12: Calculated 3D results based on Camera 1 and 4 

 

Figure 3.13: Calculated 3D results based on Camera 2 and 3 
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Figure 3.14: Calculated 3D results of reference points on table 

To verify the 3D derivation, the height and length of the net, and the 

length and width of the table were calculated based on the formula and compared 

with the actual measurements. Figures 3.15, 3.16 and 3.17 show 2D to 3D 

reprojection results. The average error is less than 1 cm. However, it is noticed 

that the length of two reference points, e.g. the height of the net, derived by the 

two camera pairs are slightly different. These small differences are due to the 

slight misalignments between opposite facing cameras and measuring errors. This 

problem will be addressed in Chapter 5 and the detailed discussion of error 

correction method can be found in Section 5.2. 
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Figure 3.15: Calculated 3D results for the Net (Height) 

 

Figure 3.16: Calculated 3D results for the Net (Length) 
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Figure 3.17: Calculated results for reference points on table 

3.4 Testbed Development 

The testbed is designed to take videos directly from Universal Serial Bus 

(USB) based cameras or from recorded video files for repeated testing. In this 

way, it has the flexibility in experimenting with different video sources such as 

live-fed video images. All experiments were conducted on a computer with an 

Intel® Core™ i7 CPU @ 2.80 GHz. To fulfil the aim of research, it is required 

to implement three essential developments: 

 Ball Detection Algorithm development  

 Multi-agent Umpiring System development  

 Bridge mechanism between Ball Detection Algorithm and Multi-Agent 

System. 
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The ball detection algorithm was developed for detecting the 3D location 

of the ball and the multi-agent umpiring system was developed for monitoring 

the status of the rally and determining when a fault occurs. The basic framework 

of the testbed was developed to accept either a SBS or FTF stereo camera 

configuration for experimenting with different ideas and evaluating the system.  

3.4.1 Selecting Platform and Tools 

 For Ball Detection Algorithm implementation, C++ was selected as the 

programming language as it provides facilities for low-level memory 

manipulation and is widely used in performance-critical applications. For 

computer vision research, the two most widely used tools are Open Source 

Computer Vision Library (OpenCV library 2017, n.d.) and Matrix Laboratory 

(MATLAB) (MathWorks, 2018, n.d.). OpenCV is a library of programming 

functions mainly aimed at real-time computer vision and image processing tasks. 

It was originally developed by Intel and subsequently became open-source. 

MATLAB is a matrix based general purpose mathematical tool with a 

programming environment. It is widely used by the industry and research 

communities. OpenCV was chosen for developing this research test bed because 

of the following reasons:  

 Cost: MATLAB costs about $2,000.00 per license. OpenCV is free, and 

it is an open source computer vision and machine learning software 

library. 



104 
 

 Speed: The source code of OpenCV is designed to be light weight with 

high computational efficiency. It has a strong focus on real-time 

applications and has been optimised to run faster.  

 Functionality: OpenCV provides more functions for image and video 

processing than MATLAB does. 

For the development of the Multi-Agent Umpiring System, Agent Based 

Modelling and Simulation (ABMS) tools were used instead of modelling with 

conventional programming tools which requires burden of housekeeping tasks 

such as memory management and synchronization mechanism. Among the most 

widely employed ABMS tools such as Swarm, Repast, NetLogo and Java Agent 

DEvelopment Framework (JADE) (Anon, 2017),  JADE was chosen in terms of 

following reasons: 

 Standardisation: JADE complies with the de facto standard set by FIPA 

(FIPA | IEEE, n.d.).  

 Expendability: JADE can be distributed across a network of computers 

and agents can be migrated from one machine to another if required. 

 Cost: JADE is an open-source, platform independent and widely used for 

agent frameworks. 

In developing separate solutions with two different integrated 

development environments (IDE), one challenge here is to bridge the two 

separately developed programs, the Ball Detection Algorithm in C++ and the 

Multi-Agent System in Java. One easiest solution is writing the C++ results of 

the Ball Detection Algorithm to text files and reading them on the other side with 

Java, where the Multi-Agent Umpiring System runs.  Instead of streaming data 
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to a file, a bridge was implemented by a socket program named PIPE as it can 

perform faster. PIPE is an inter-process communication mechanism which 

connects the output of one program to the input of another program without any 

temporary file. It creates a thread which has a two-way communication link 

between two programs running on either the same computer or the network. It 

has a structure in memory that holds the data that is written until it is read. This 

solution was adopted for bidirectional inter-process communication between 

these two essential developments and combined them into one system. The 

architecture of the system is as shown in figure 3.18.  

 

Figure 3.18: Research Implementation (System Architecture) 

To validate this PIPE solution works correctly, the ball detection results 

were printed at the C++ command-line interface before sending them out and 

counterchecking with the received data at the Multi-Agent Umpiring System’s 

Java Console.  
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3.5 Test Sequences 

To examine the capability of the ball detection algorithm, the system was 

tested against ten different types of sequences from OUTTDB (Wong and 

Dooley, 2017). These selected sequences demonstrate the ambiguous and 

challenging ball detection conditions such as a sudden change of trajectory, 

occlusion, uneven illumination, multiple object motions, blur and camera noise. 

Moreover, they were filmed to test the different camera setups. 

 

3.5.1 Single View  

Sequence 1 

The single-view sequence is extracted from one of the demonstration 

video files on the web site of the Umpires & Referees Committee of the ITTF 

(ITTF, 2018). This sequence is composed of 46 frames with (352*240) pixel 

resolution and a rate of 30 frames per second. The average radius of the image of 

ball is 4.5 pixels. Because of the low frame rate, object blurring and colour 

merging with the background can frequently occur. This sequence is selected to 

demonstrate the detection performance of the system during service as it was is 

used in Wong and Dooley (2010) for testing their algorithm, enabling a 

performance comparison. The following figure 3.19 shows one example frame of 

sequence 1 and a summary of the key features of the tested sequence 1 is shown 

in Table 3.1. 
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Figure 3.19: Example Frame in single-view sequence:  

A service is about to start 

 

 

Table 3.1: Summary of the features of Sequence 1 

Features of Sequence 1 Single-view sequence 

No of frames 46 

Identified ball locations 46 

Size of frame (pixels) 352×240 

Capture rate 30 fps 

Average radius of the ball 4.5 pixels 

Ball colour Orange 

Key detection challenges 
- Low frame rate 

- Object blurring, merging and occlusion 
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3.5.2 SBS Stereo-view (Full-Table) 

Sequence 2 

In this sequence, the stereo cameras were placed further away from the 

play (approximately 4 meters), to capture the full table view as shown in figure 

3.20. Although it can achieve the whole table wider view, the image size of the 

ball in the second sequence appears much smaller than the other nine sequences, 

and blurry. This increases the detection challenge. The average radius of the 

image of ball appears as only 1.95 pixels while the frame width and height are 

(512*384) pixel respectively. Since the background contains many white 

horizontal lines as well as ball-like objects, this creates challenging detection 

scenarios including colour merging and shape confusion. The following figures 

3.20 and 3.21 show the capturing arrangement and an example frame of a SBS 

Stereo-view (Full-table) sequence. A summary of the key features of the tested 

sequences 2 is shown in Table 3.2 below. 

 

Figure 3.20: SBS Stereo camera arrangement  



109 
 

 

Figure 3.21: SBS Stereo-view (Full-table) sequence  

 

Table 3.2: Summary of the features of Sequence 2 

Features of Sequence 2 Stereo view (Full-table)  

No of frames 200 

Identified ball locations 400 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 1.9 pixels 

Ball colour White 

Key detection challenges 

- Colour merging,  

- Object reflection,  

- Multiple moving objects,  

- Occlusion,  

- Complex background,  

- Very small ball’s size 
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3.5.3 SBS Stereo-view Sequence (Half-Table) 

Sequence 3 

This sequence is composed of 200 frames with (512*384) pixel resolution 

and a rate of 300 frames per second.  Due to the low resolution of the camera, the 

sequences appeared darker than the actual match scenery. To get clearer and 

bigger view of the play, the cameras were placed at a closer location to the table 

(approximately 2 meters) as shown in Figure 3.22. However, this sequence is 

selected to test if the developed algorithm is robust enough to detect the ball 

among confusing objects including ball like images (Score Card), moving parts 

of referee’s body and multiple light illuminations. The following figures 3.22 and 

3.23 show the capturing arrangement and an example frame of SBS Stereo-view 

(Half-table) sequence. A summary of the key features of the tested sequences 3 

is shown in Table 3.3 below. 

 

Figure 3.22: SBS camera arrangement  
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Figure 3.23 Example Frame of the ball crosses the scorecard (Left View)  

 

 

 

Table 3.3: Summary of the features of Sequence 3 

Features of Sequence 3 Stereo view (Half-table) sequence 

No of frames 200 

Identified ball locations 400 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

Colour merging, illumination, shape 

distortion, object reflection, multiple moving 

objects, occlusion 
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3.5.4 FTF Multi-View Sequences (Half-Table) 

The following multi-view sequences (Sequence 4 to 10) were filmed with 

the proposed FTF stereo camera arrangement as shown in figure 3.24. These 

sequences are comprised of different conditions of complete table tennis rallies. 

Those sequences were used as test sequences in Chapter (5) and (6) in which the 

different states of each rally are identified. Each view of the sequences has a 

resolution of 512×384 pixels and was captured at 300 frames per second (fps). 

The average radius of the image of ball is around 3 pixels. Instead of setting up 

the camera further away from the play (approximately 4 meters) to capture the 

full table view, the cameras were placed at a closer location with the table 

(approximately 2 meters) as shown in Figure 3.24.   

 

Figure 3.24: FTF Stereo camera arrangement  

  



113 
 

Sequence 4 

This sequence is composed of 900 frames and takes 3 seconds to 

complete a rally. Therefore, a total of 3600 ball locations (on each frame of each 

view for four cameras) is supposed to identify by the system and compared with 

the ground truth. As the rally is ended by hitting the net and multiple bounces on 

the opponent’s court, this sequence involves ball detection within multiple 

motion due to the net vibration. This sequence is selected to demonstrate the 

detection performance of the system during illumination and uneven lighting 

conditions.  The following figure 3.25 shows an example frame of sequence 4 in 

each view for four cameras. A summary of the key features of the tested multi-

view sequences are shown in Table 3.4 below.  

 

Table 3.4: Summary of the features of Sequence 4 

Features of Sequence 4 Stereo view (Full-table)  

No of frames 900 

Identified ball locations 3156 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

- Uneven illumination and light reflection 

- Hits the net, Cross over the net  

- Fault: double bounces on table 
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Camera 1 View at frame 750 Camera 2 View at frame 750 

 

Camera four views at frame 750 Camera 3 View at frame 750 

Figure 3.25: Example Frame: The ball is about to bounce on table  

 

Sequence 5 

This sequence is selected to demonstrate the detection performance of the 

system during service in which several occlusions occur when the ball is blocked 

by the player’s hand and his bat. This is a challenging sequence because the 

system needs to detect the ball among surrounding objects which exhibit different 

motions. The following figure 3.26 shows an example frame of sequence 5 in 

each view for four cameras. A summary of the key features of the tested multi-

view sequences is shown in Table 3.5 below. 
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Camera 1 View at frame 147 

 

Camera 2 View at frame 147 

Camera four views at frame 147 Camera 3 View at frame 147 

Figure 3.26: Example Frame: The server is about to serve the ball  

Table 3.5: Summary of the features of Sequence 5 

Features of Sequence 5 Multi-view (Half-table) sequence 

No of frames 900 

Identified ball locations 3282 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

- Partially see the service (From only Camera 1) 

- Multiple motion  

- Ball hits the net - Cross over the net 

- Disappearance from cameras up to 70 frames  

- Dropped under table  

- Fault:  ball not received 
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Sequence 6 

Among ten sequences, this is the longest rally and is composed of 1800 

frames. Although it is supposed to have 7200 ball locations (on each frame of 

each view for four cameras), only 6780 ball locations were identified by the 

system due to the ball reaching out of view or being invisible in cameras’ views. 

In the middle of the play (starting from frame 1570 till 1680), the ball reached 

out of all the four cameras’ views and disappeared for more than 100 frames. This 

is a challenging sequence because the system needs to be aware that the ball is 

temporarily out of all cameras’ scope and get ready to detect the returning ball. 

Since the rally is long, it challenges the system’s ability in handling and 

synchronising the ball’s position among different cameras. This sequence is 

selected to demonstrate the multi-view correction and prediction performance of 

the system during the ball disappearance from all cameras. The following figure 

3.27 shows an example frame of sequence 6 in each view. A summary of the key 

features of the tested multi-view sequences are shown in Table 3.6 below. 
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Camera 1 View at frame 1529 Camera 2 View at frame 1529 

Camera four views at frame 1529 Camera 3 View at frame 1529 

Figure 3.27: Example Frame: Ball about to disappear from all camera views 

 

Table 3.6: Summary of the features of Sequence 6 

Features of Sequence 6 Stereo view (Half-table) sequence 

No of frames 1800 

Identified ball locations 6780 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

- Complex background  

- Long rally  

- Multiple Occlusion 

- Fault: double bounces 
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Sequence 7 

In this sequence, the player is playing the ball in a diagonal direction and 

striking the ball with force. As the result, the ball is travelling with high speed 

motion and the apparent sizes of the ball in opposite cameras varies. This 

sequence is selected to demonstrate the detection performance of the ball’s shape 

variation, dynamic appearance changes and colour merging with background 

objects. Instead of bouncing at the receiver side, this rally is ended by the ball 

going beyond the table edge line without bouncing in the opponent’s court after 

being struck by the opponent. The following figure 3.28 shows an example frame 

of sequence 7 in each view for four cameras. A summary of the key features of 

the tested multi-view sequences is shown in Table 3.7 below. 

Camera 1 View at frame 433 Camera 1 View at frame 488 

 

Camera four views at frame 433 Camera four views at frame 488 

Figure 3.28: Example Frame: Ball about to bounce on table  

The Ball 
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Table 3.7: Summary of the features of Sequence 7 

Features of Sequence 7 Stereo view (Half-table) sequence 

No of frames 500 

Identified ball locations 1530 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

- Colour merging 

- Without bouncing at the receiver side 

- Goes over the table end line  

- Fault: Out 

 

Sequence 8 

The system was intended to test for identifying different types of faults 

such as faults due to multiple bounces, faults due to a return not bouncing on the 

right side of the table, and faults due to the ball hitting the floor. In this sequence, 

the receiver misses the ball after being struck by an opponent. The ball passes 

over beyond the player end line and it drops under the table. The following figure 

3.29 shows an example frame of sequence 8 in each view of cameras 1 and 4. The 

ball is out of view in cameras 2 and 3. A summary of the key features of the tested 

multi-view sequences are shown in Table 3.8 below. 
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Camera 1 View at frame 492 Camera 1 View at frame 518 

 

Camera four views at frame 518 

 

Camera four views at frame 518 

Figure 3.29 Example Frame: Server misses the ball   

Table 3.8 Summary of the features of Sequence 8 

Features of Sequence 8 Stereo view (Half-table) sequence 

No of frames 300 

Identified ball locations 722 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

- Uneven lighting 

- Receiver can not Hit 

- Miss the ball 

- Fault: not returning the ball 
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Sequence 9 

In this sequence, the ball progresses from being served until the rally is 

ended by the ball touching the corner of the table and dropping down to the floor. 

This also a challenging sequence because to be able to detect whether the ball 

touches the corner of the table or not, the system needs a robust ball detection 

algorithm. This sequence is selected to test whether the system can detect the ball 

location accurately or not and can identify the different type of mistakes. The 

following figure 3.30 shows an example frame of sequence 9 in each view for 

four cameras. A summary of the key features of the tested multi-view sequences 

is shown in Table 3.9 below. 

Camera 1 View at frame 35 Camera 2 View at frame 35 

Camera four views at frame 569 Camera 3 View at frame 569 

Figure 3.30: Example Frame: Ball touches the corner of table  
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Table 3.9: Summary of the features of Sequence 9 

Features of Sequence 9 Stereo view (Half-table) sequence 

No of frames 600 

Identified ball locations 1988 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

- Shape distortion 

- Partially see the service and multiple motion  

- The ball touches the edge of the table 

- Dropped under table 

- Fault: not returning the ball 

 

Sequence 10 

Among the ten sequences, this is the brightest one with a lot of light 

reflections. Since all windows are wide open, it has multiple moving background 

objects which can be confused and indistinguishable from the ball. In this 

sequence, the ball strongly hits with the net while it is crossing the receiver court 

to the server and the net gets several vibrations. This sequence is selected to 

demonstrate the detection performance of the system during multiple motion 

allied with object blurring and colour deviation impact due to the uneven lighting 

of the scene. The following figure 3.31 shows an example frame of sequence 10 

in each view for four cameras in which the ball is about to get struck by server. 

In this particular frame, only one camera can see the ball while it is out of view 

from the other cameras. A summary of the key features of the tested multi-view 

sequences is shown in Table 3.10 below. 
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Camera 1 View at frame 342 

 

Camera 2 View at frame 342 

Camera four views at frame 342 

 

Camera 3 View at frame 342 

Figure 3.31: Example Frame:  Ball is about to get strike by server  

 

Table 3.10: Summary of the features of Sequence 10 

Features of Sequence 10 Stereo view (Half-table) sequence 

No of frames 1200 

Identified ball locations 3740 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

- Very bright and the most complicated background 

- Multiple moving objects 

- The ball hits the net 

- Crosses over the net 

- Fault: double bounce 
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3.6 Evaluation Methodology 

To appraise the performance of any system, it is very important to choose 

the most appropriate and consistent assessment metrics. While there is a 

publication related with umpiring the service part of a table tennis rally (Wong 

and Dooley, 2010) comparing the result for single-view video, there are no stereo 

datasets available as a ground truth to compare the result. For that reason, a 

sensible way to evaluate the performance of the system is to compare the ball 

locations identified by an ordinary human (umpire) and the ball detection system. 

To create such a comparator (loosely referred to as the ground truth in this thesis), 

human volunteers were invited to identify the ball locations on each frame of each 

view. Those results have been maintained at the OUTTD (Wong and Dooley, 

2017) and shared with research community for non-commercial research 

purposes. 

3.6.1 Performance Metrics  

In statistics, the Root Mean Square Error (RMSE) is the standard 

deviation of the average of the squares of the errors that is, the difference between 

the estimator and what is estimated (Hyndman and Koehler, 2006). Throughout 

this thesis, the RMSE between the actual location of the ball and system detected 

location would naturally be considered as a measure of success. It is consistently 

applied as a comparator in critically evaluating the performance the performance 

of the system against the ground truth and the suite of developed algorithms in 

subsequent chapters. As it is targeted to be an umpiring system, it is necessary to 

achieve the high detection rate and low processing time. As a result, three key 



125 
 

quantitative parameters: the RMSE, detection rate and processing time have been 

used in this thesis as benchmarks to validate all the performance results.  

3.6.2 Software Code Validation 

When developing the software system, the code verification activity 

requires checking the code against human error. Throughout the implementation 

of the system, various code verification and validation techniques (Margaria and 

Steffen, 2016; Wallace et al., 1996)  are used to verify correct implementation of 

software design into code. To evaluate the source code for accuracy, correctness 

and testability, the code verification involves following tasks; 

 Cppcheck (Cppcheck - A tool for static C/C++ code analysis, n.d.) is used 

for detecting errors (static analysis checks) in the code. It provides unique 

code analysis to detect bugs and focuses on detecting undefined behaviour 

and dangerous coding constructs.  

 Breaking down the program and independently testing the functionality 

of each component and comparing the result with Visual Basic Editor and 

Microsoft Excel. 

 Evaluating source code for compliance with code standards and language 

standards.  

 For the Knowledge-Based System (KBS) development, conducting a 

logical versification of the structure of the knowledge and rules in the 

knowledge base for consistency, completeness, etc. 
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3.6.3 Quality Assessment Methods 

The system is tested against 10 table tennis match sequences which 

contain different events of a typical table tennis rally and can confidently be used 

to test the system. The ground truth’s trajectory is based on the set of ball 

locations identified by human volunteers on each frame of each view. If the 

system provides the trajectories that are well aligned with the ground truth’s, it 

indicates that the detection is successful throughout the whole sequence and 

acceptable for umpiring.  

Likewise, if the system can detect the ball with average RMSE less than 

the radius of the ball, the detection rate is acceptable for developing an umpiring 

system. While the detection rate is a concern, timing is also another consideration 

factor for developing an umpiring system. In computer science, a real-time 

system means the programs must produce a result within specified time 

constraints. The maximum acceptable delay might be somewhere between 3 and 

5 sec but different systems can have a range of acceptable durations to produce 

the results, and the acceptable delay depends on operational studies that assess 

human reactions to the system  (Ben-Ari, 2006). In this research, the system is 

designed with the acceptable delay of 0.028 sec per frame and 8.4 sec for 

processing 300 frames. If each agent of the MAS is run on a separate computer, 

this time is expected to be reduced to comparable time delay with human umpire. 

Detail result discussion can be found in Chapter 5, Section 5.6. 
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3.7 Summary 

This chapter describes the system development processes which are 

conducted in this thesis. The research methodology, testbed development, 

platform selection and tools used, and the experimental setup have been presented 

in this chapter. Finally, a brief discussion on the evaluation methodology together 

with the key performance indicators, validation procedure and quality assessment 

methods have been provided. The new ball detection algorithm developed will be 

presented in Chapter 4.  

 



Chapter 4 

Detecting a Table Tennis Ball for Umpiring  

(Contribution Chapter) 

4.1 Introduction 

 This chapter presents an implementation of block 4 (Ball Detection), part 

of the proposed framework which has presented in Chapter 1, figure 1.2. As 

mentioned in Chapter 1 and 2, tracking the location of a table tennis ball during 

a match for umpiring purposes is a challenging task for a number of reasons 

including: 

 the small size of the ball (40 mm in diameter) 

 the ball often travels at high speed (around 112.5 kilometres per hour) 

 multiple moving objects nearby (bat and players) 

 complicated backgrounds (advertising logos, audience) 

 uneven lighting 

 occlusion 

 the time constraint 

 the computational cost 

 the installation cost and etc. 
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 Since the ball often travels in high speed, the images of the ball are 

changing as it moves from one frame to another through the field of view of a 

camera. As a result, features of the ball such as colour, shape and size get distorted 

in captured image, and it may be deformed or blurred. To solve these problems, 

identifying the ball considering different features together with recovery 

mechanisms could overcome various detecting challenges and complement the 

weaknesses of each. However, a careful consideration of selecting the right 

method is important since too many combinations of different methods will slow 

down the system. While the overall process needs to be conducted in real-time, 

high detection rate also plays a crucial role in decision making, and wrong 

detections can seriously impact the automatic umpiring system.  

According to the survey in object detection and tracking literature in 

Chapter 2, feature based detection is the common methods in several 

publications. Even though they have achieved significant experimental results, 

many of them (Liu et al., 2014; Bao et al., 2012; Chen et al., 2010, 2011; Zhang 

et al., 2010; Arenas et al., 2009) have tested in ideal situations such as a laboratory 

environment for virtual gaming purposes rather than an actual match scene. In a 

laboratory environment, it is straightforward to identify the feature of the ball 

against a plain background (Fitriana et al., 2016; Qazi et al., 2015; Bao et al., 

2012; Chen et al., 2010, 2011; Arenas et al., 2009). However, detection becomes 

far more challenging when there is for example, another object with similar 

features adjacent to the target ball, while background clutter such as audience or 

advertising boards make consistent ball detection extremely difficult in some real 

match situations. Moreover, due to changes of illumination in the scene, there is 
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no guarantee that the feature will be same for the same ball in all frames. This 

leads to inaccurate detection with feature-based detection and tracking.  

While the proprietary ball detection systems such as Hawk-eye, Goal-

line and GoalRef® (Wei et al., 2016; Bal and Dureja, 2012; Dovaston and 

Correspondent, 2012; Owens et al., 2003) are applied in real matches, they have 

to employ multiple broadcast-grade high speed cameras and fit them at high 

locations to provide aerial views of the ball against a simple background of the 

court. The proposed automatic umpiring system is aimed to be portable and 

accessible to amateur users. The Hawk-eye system is fixed and expensive and is 

therefore not suitable.  

An alternative method is object detection and tracking based on its 

motion. As discussed in Chapter 2: Section 2.2, among several techniques in 

motion detection (Abdelli and Choi, 2017; Xu et al., 2017; Chakroun et al., 2011; 

Tong-yao, 2011, 2011; Zivkovic, 2004; Toyama et al., 1999), BS by frame 

differencing is widely applied with low complexity. While this method is simple 

and effective, it will only work if the surrounding area of the ball remains 

unchanged and the object is in motion across consecutive frames. Motion 

detection cannot detect stationary objects. Therefore, additional methods needed 

to be applied in order to detect a stopped ball. Moreover, not only the ball but 

also players and table tennis bats are moving with different motions in real table 

tennis match sequences. Therefore, ball detection purely based on motion is also 

prone to errors.  

As mentioned, the strength and weakness of different tracking algorithms 

in Chapter 2: Section 2.2.3, tracking is based on series of detection. While the KF 
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(R. E. Kalman 2001),  Extended KF (Yilmaz et al., 2006), Mean Shift Tracker 

(Comaniciu and Meer, 2002), Particle filter  (Wang et al., 2016) and Support 

Vector Machine (Zheng et al., 2012; Huang et al., 2006) are commonly used in 

tracking, most of these trackers perform as iterative methods by recursively 

updating an estimate location based on a series of measurements observed over 

time. This require high computation, time consumption and are not suitable for 

real-time tracking. On the other hand, Motion models have been widely used in 

ball tracking (Maksai et al., 2016; Seo and Wuest, 2016; Takahashi et al., 2015) 

because of their simplicity and low computation. While the motion model is 

generally reliable, the predicted location can be erratic if the detected location in 

the previous frame(s) is wrong. Although the predicted ball position can be used 

to recover for a few undetected frames, the tracking itself can get lost if detection 

is missed in several consecutive frames. To prevent this error from propagating, 

a new mechanism is required to evaluate and reset the centre of the predicted 

location whenever necessary. 

Another major challenge of detection and tracking is partial or full 

occlusion, which happens quite often in table tennis match sequences when the 

image of the ball is blocked by the players or their bats. To address this problem, 

multiple cameras approach has been incorporated for ball detection as explained 

in Chapter 2: Section 2.5.2. Although the chance of capturing the ball is higher 

with multi-view approach (Anuj and Krishna, 2017; Cheng et al., 2016; 

Takahashi et al., 2016; Liu et al., 2014; Bal and Dureja, 2012; Bao et al., 2012; 

Chen et al., 2010, 2011; Zhang et al., 2010; Arenas et al., 2009; Owens et al., 

2003), it increases the processing time and requires a high degree of co-ordination 
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between different views as well as an ability to resolve conflicts when 

inconsistent information is acquired.  

 To summarise, this chapter presents a multi-view detection and tracking 

strategy that addresses the problems described above and can track a table tennis 

ball efficiently. Like various approaches discussed in Chapter 2, the proposed 

system also follows the segmentation-detection-tracking of sequences, but 

emphasis on segmentation enhancement, develop a new inter-view correction 

technique for detection improvements and a mechanism for evaluating the 

tracking. The basic framework for the testbed has been developed for 

experimenting different ideas and evaluating the algorithm. The performance of 

the algorithm is critically evaluated with real match scenes sequences from the 

OUTTD (Wong and Dooley, 2017) as described in Section 3.4. Experimental 

results show that the developed algorithm is robust enough to distinguish the ball 

from a complex dynamic background and provides satisfactory precision in 

detecting and tracking. The remainder of the chapter is organised as follows: 

Section 2 presents the proposed detection and tracking strategy while Section 3 

briefly discusses the experimental setup and the chosen tested sequences. The 

outcome of the results and performance comparison are given to verify the 

effectiveness of the proposed algorithms in Section 4. Finally, a conclusion is 

provided in Section 5.  
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4.2 Ball Detection and Tracking Algorithm  

 While the ultimate goal is to build an automatic umpiring system, one 

important activity of such a system is to accurately and rapidly track the location 

of the ball during a match. For an affordable automatic umpiring system intended 

for wide use, a stereo system formed by pairing two single-view cameras was 

identified in previous chapters as being appropriate. This research exploits the 

best use of statistical analysis of visual features together with temporal analysis 

of motion information and develops a hybrid segmentation method which is 

named as Adaptive Colour Thresholding and Motion Detection (ACTMD) 

module for ball segmentation. A Second Order Motion Model (SOMM) 

module is implemented for predicting and tracking the travelling direction of the 

ball. It conducts by taking some measurements of the ball such as position, 

velocity, and acceleration. The SOMM module provides a guidance for both of 

detection and segmentation. Hence, the Feature based Ball Detection (FBD) is 

used for identifying the ball based on its features and evaluating with the closest 

location with the predicted ball’s position.  To address the problem of occlusion, 

multiple cameras have been incorporated in the algorithm and a new Inter-View-

Self-Correction (IVSC) module, which uses a positional information from 

another view to estimate the location of the ball in current view, is proposed. An 

additional benefit is that the depth information can be derived from two 

overlapping views and that information can be used to predict the 3D trajectory 

based on a triangulation theory which can be seen in Section 3.4.3.  
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 To summarise, Figure 4.1 illustrates the block diagram of the proposed 

system which consists of four main modules: 

 ACTMD module for segmentation,  

 SOMM module for trajectory prediction,  

 FBD module and  

 IVSC module.  

Predicted Position

Predicted Position

IVSC

SOMM

FBD

ACTMD

Left View Right View

Detected Position

3D Ball
 

ACTMD: Adaptive Colour Thresholding and Motion Detection 

SOMM: Second Order Motion Model 

FBD: Feature based Ball Detection 

IVSC: Inter-View Self-Correction 

Figure 4.1: Block diagram of the proposed system 
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The first step of the detection process is initialising the parameters such 

as frame rate, width and height, sensor size, camera’s position and other essential 

parameters that will be input to the system. The location of the ball, colour value, 

diameter and all other necessary parameters are then dynamically updated in 

subsequent frames. Only the essential region of a frame which contains the ball, 

known as the region of interest (ROI) is processed to improve the system 

efficiency. In Figure 4.2, the ROI which is defined as a small rectangle region 

with the width of the side set to two to three times of the diameter of the ball 

depending on the detection situation. This ensures that the region is a small 

portion of the frame yet big enough to fully contain the ball. As the location of 

the centre of ROI is controlled by the SOMM module, it can dynamically adjust 

to where the predicted centre of the ball is at each frame. By this way, it can 

narrow down the search area. 

Predicted ROI position

n-1th Frame Detected Ball position

nth Frames Detected Ball position

Ball

n+1th Frame Predicted Ball position

Ball

Ball

 

Figure 4.2: Predicted ROI position 

If the ball is undetected in a frame, ROI will increase and restore to its 

default size once the ball is found. If the ball reaches out of the camera’s viewing 
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angle, the ROI will expand its width and height, but the ROI cannot become larger 

than the frame size. If the ball goes out at the right or left corner, the ROI expands 

to full frame height as the ball may return from anywhere on that side. It is less 

likely to return from the other side because of the direction of play. After that, the 

image enclosed by ROI can then be converted to HSV colour space. In HSV, hue 

means the wavelength of the colour percept, Saturation stands for the amount of 

white light present in the colour and Value represents the intensity of the colour 

which is also known as brightness. By default, standard image capturing devices 

produce images in RGB colour space which stands for a combination of Red, 

Green, and Blue colour. To represent light intensity, the incoming input video 

stream composed of RGB colour is converted to HSV colour space and it is 

thresholded based on the maximum and minimum allowable colours, called a 

Binarization Process. 

4.2.1 Adaptive Colour Thresholding and Motion 

Detection (ACTMD)  

As mentioned in Section 4.1, employing either colour-based thresholding 

or motion-based segmentation alone is not good enough to reach the expected 

level of successful detection. The main problem of colour-based-segmentation 

method is that the colour values of the ball may be vary according to the lighting 

condition of the environment which requires the operator to manually change the 

colour range used to segment the ball (Putri et al., 2017). Moreover, the upper 

portion of the ball tends to be brighter than the lower part as light sources are 

usually located in the ceiling. When the ball is in high-motion, the image of the 
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ball is distorted, and its colour becomes blurred. That makes it very difficult to 

set a proper threshold in CT. Too-loose-threshold may result in too many 

irrelevant objects left in the binary image (Wong, 2008) which will waste a lot of 

processing time to analyse, but too-tight-threshold may filter out the right ball as 

the colour of the ball can be vary along the travelling due to the uneven lighting.  

On the other hand, while the adjacent frames differencing technique can 

roughly distinguish the moving objects from the background, the BS will work 

only if the background remains unchanged across the consecutive frames. The 

fluctuating intensity of the ball can be apparent if the video is captured at a rate 

much higher than the frequency of the electricity supply of the lights (e.g. 50 Hz). 

Moreover, BS doesn’t always provide the right segmentation when the ball is on 

the player’s palm with no motion, or there are multiple moving objects with 

similar motions. It is therefore desirable to have a combined CT and BS method 

with its thresholds dynamically updated.  

To complement this, the ACTMD module jointly uses the results of CT 

and BS under demanding situations such as colour matching or no motion. By 

automatically switching CT or BS method based on the segmented result, 

ACTMD becomes a very effective module to overcome the above segmentation 

problems. Figure 4.3 illustrates the block diagram of the proposed ACTMD.  
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ACTMD 

Left View Right View

Right ROILeft ROI

Left Camera Right Camera

SOMM

FBD
 

ACTMD: Adaptive Colour Thresholding and Motion Detection 

SOMM: Second Order Motion Model 

FBD: Feature based Ball Detection 

Figure 4.3: Block diagram of the proposed ACTMD 

The simplified Flowchart of the developed algorithm is shown below in figure 

4.4 in which Detected Ball means the successfully detected ball and Predicted 

Ball is the predicted location of the ball based on previous detection results. 
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Read Frame

1st Frame CT

BS

Interview Correction

Corrected?

Store Detected Ball

CT

No

Yes

Yes

Successful 
Detection ?

No

Tried Both Techniques?

Store Predicted Ball

No

No

Yes

Ball Detection

Update Background for Next Frame

Yes

Update Threshold Value for Next Frame

No End of file

Begin

Yes

Exit  

Where; 

CT: Colour Thresholding  

BS: Background Subtraction 

Figure 4.4: Flowchart of ACTMD module 
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 As the system can only establish the background based on the previous 

frame, BS is unusable for the first frame. Therefore, ACTMD subtract the ROI 

by predefined CT range. The predefined threshold value is used only for the first 

frame thresholding in the beginning. After that, that value will be automatically 

updated based on the result of detected ball. Once a ball is detected, the system 

will tune the colour thresholded value for next frame by extracting the pixels of 

an area at the detected location of the ball in the previous frame.  It will calculate 

the mean and standard deviation of the detected ball's inner HSV pixel values to 

reject outliers. The acceptable range of pixel values (Ri) is defined using Equation 

(1): 

          � (μ� − ����) < Ri < � (μ� + ����)                                     (1) 

where: i is the index of the colour channels. µi and σi are the mean and standard 

deviation colour values of the inner area of the previous detected ball (PDB).  

Whenever the system can successfully detect the ball, the µi and σi will be 

recalculated and the threshold margin will be dynamically updated to reflect the 

detected colour of the ball. While the system can automatically and adaptively 

update the threshold margin, the user can adjust the minimum and maximum 

threshold margin (whether to be a tight threshold or a relaxed threshold), by 

assigning the tolerance value (t) and the multiple value (��), where t and m are 

real number between 1 and 2. 

As for BS, ACTMD segment the candidate moving ball from the ROI by 

detecting its motion. The frame differencing is the common method used in BS 

based on motion. This method adopts pixel-based difference to find the moving 
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ball. Then, the image is binarised according to the segmented results. In the areas 

that contain moving objects, the pixels whose grey value is greater than a 

threshold are set to 1. Otherwise, the pixels are 0, i.e. 

��(�, �)  =  1,   �� ���(�, �)  ≥  ��                                    (2) 

where: ��(�, �)  is the value of pixel (x, y) in the binary image, and �� is a 

threshold for binarisation. ���(�, �) is the value of pixel (x, y) which is the result 

of frame differencing. Regarding with background updating, the system was 

tested to develop a background model by averaging a set of previous frames and 

kept continuous updating it.  While averaging a number of previous frames, a 

multiple duplication of balls from those frames are appeared as several white 

circle shadows in segmentation result and it becomes very difficult to select the 

right one. Moreover, due to the 50 Hz variation of the intensity of the lights, a 

good background could not be established this way. As a result, only the previous 

frame is used as the background. This simplifies the task and decreases the 

computation. However, the drawback of this approach is that when the ball is not 

traveling very fast, the images of the ball in the background and current frame are 

partially overlapped. The subtraction of these two images often results in two 

crescent-shaped objects situated at equal distance from the predicted ball location 

as shown in Figure 4.5. 
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Figure 4.5: Two crescent-shaped objects in ROI 

To remove the crescent corresponding to the ball image in the background, the 

direction of ball travel (calculated by SOMM) is used to guide the removal (e.g. 

if the ball is travelling from left to right, the crescent on the left will be removed).  

In that scenario where detection is unsuccessful due to no motion or 

several motions in the ROI, the segmentation will be attempted again with CT. If 

the candidate ball is found in the ROI, it will proceed to the detection stage for 

further identification, and the location of the centre of ROI will be dynamically 

updated to where the predicted centre of the ball is in the next frame. The 

predicted ball location is determined by the SOMM module which will be 

discussed next. 

4.2.2 Second Order Motion Model (SOMM) 

For tackling the sudden change of trajectory, the video should be filmed 

at a frame rate that is high enough to capture all the important movements of the 

ball but low enough to reduce processing time. To be within the capabilities of 

low-cost cameras, the maximum capture rate used was 300 frames per second 
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(fps), to capture the fast traveling ball more clearly and with less blurring. By this 

way, the displacement and velocity of the ball between succession frames become 

relatively smaller and a simple motion model can be used to model the trajectory. 

In SOMM module, a SOMM is used for predicting the locations of the next 

candidate balls, investigating the travelling speed, direction of the ball, and 

forming a trajectory. As the second order model requires at least two data points 

to calculate its velocity, the actual prediction will not take place until frame 2. As 

can be seen in equation (3), the predicted location is calculated by using the 

detected location for the current frame together with the ball locations from 

previous frames, so the predicted ball location of the � + 1�� frame ���� is given 

as:  

���� = �

��      

����  + ��∆�

���� + ��∆� +  
�

�
 �� ∆��  

         ��  � = 1 
        ��  � = 2

         ��  � ≥ 3 
                              (3) 

Where: ∆� =  1/���, ∆� is the time difference between the two frames in which 

the ball is successfully detected and �� is the ball’s acceleration at frame �. �� is 

the centre of the ball in the first frame. ���� is the detected ball location in the 

previous frame, �� is the velocity at frame �. Apart from tracking the centre of 

the ball, the SOMM also predicts the apparent radius of the ball in the next 

incoming frame by averaging the results of five previous frames. This 

information will be useful in umpiring whether the ball touches the table or not. 

The trajectory of the ball is estimated and predicted only in the frame where the 

ball was detected successfully with the total detection score higher than two. The 

assignment of detection score will be explained in coming section 4.2.3.  



144 
 

4.2.3 Feature-based Ball Detection (FBD)  

While the motion model is generally reliable, the predicted location can be 

erratic if the detected location in the previous frame(s) is wrong. To prevent errors 

from propagating, FBD module identifies another reference point which is called 

the centre of the object that is most likely the ball (OMLB) for predicted ball’s 

position evaluation. To achieve OMLB, FBD retrieves all the contours from the 

ACTMD’s segmented binary image. After that, a morphological opening and 

closing operation is applied to eliminate holes and very small objects from these 

contours. It is followed by Gaussian smoothing to reduce noises from the 

segmented contours. During contour detection, if only one contour is segmented 

from the binarised ROI, the system will select the centre of that contour as a 

reference point, OMLB. If more than one contours are segmented, the system will 

calculate the Euclidean distance between the centre of the predicted ball and the 

centre of each candidate contour until the end of candidate contours. A segmented 

object whose contour encloses the centre of the predicted location and with the 

shortest Euclidean distance between its centre and the predicted location, will be 

deemed the candidate ball and is assigned as the OMLB. The simplified 

Flowchart of the process of nearest contour detection to achieve OMLB is shown 

below in figure 4.6. 
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Figure 4.6: Process of nearest contour detection to achieve OMLB 
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In figure 4.6, if only one contour is segmented from ROI and its distance 

is significantly different from the predicted location, this may indicate that the 

predicted ball location has an error. In this scenario, the centre of predicted ball 

location will be reset to the centre of OMLB. As the contours of these objects are 

not necessarily circular, the centre of the object is therefore calculated by 

averaging positions of all the pixels enclosed by its contour.  

After identifying the OMLB, the FBD module identifies all segmented 

objects by comparing the expected features such as size, shape and location. In 

FBD, the detection procedure is improved by incorporating a variety of features 

and the characteristics of candidate balls are compared with the actual ball. The 

one with minimal error is deemed the detected ball. Since the image of a table 

tennis ball is most likely to be circular, the Hough Circle Transform (Bradski and 

Kaehler, 2008b) and Canny edge detector (Canny, 1986) along with an object 

evaluation technique is employed to the smoothed segmented objects for 

identifying the best candidate ball.  In the figure 4.7(a), the red circle is the 

circumference of the detected ball and the green point defines the centre position 

of the detected ball. The blue segmented object in figure 4.7(b) represents the 

predicted ball while, the green circumference is determined by employing nearest 

contour detection as OMLB. The multiple red circles in 4.7(b) are candidate 

circles which are detected by Hough Transform Algorithm. 
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Figure 4.7: (a) The region of interest 

(ROI), the circumference and the 

centre of the detected ball 

Figure 4.7: (b) The predicted ball,  

the circumference of OMLB  

and candidate circles 

   
Where: 

 

ROI 

  Candidate circles 

  Nearest Contour 

  OMLB 

Figure 4.7: Identifying the OMLB 

In FBD, the centre and radius of the ball is determined by finding the circle that 

is the best fit to the contour of the OMLB and nearest to the predicted location. 

To obtain a good fit, a large number of candidate circles need to be tried, but this 

has a cost implication. Therefore, the proposed strategy is to first generate many 

possible candidate balls but eliminate those that are of wrong sizes or orientations 

using a priori knowledge. To this end, the set of candidate circles produced by 

the Hough Transform are by applying the following four criteria:  

1. Location Assessment: The centre of the candidate circle is enclosed by 

the contour of OMLB. 

2. Distance Assessment: With the minimum Euclidean distance between 

the centre of that circle and the centre of predicted ball.  
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3. Size Assessment: With the smallest radius difference between the 

candidate circle and the predicted ball.  

4. Colour Assessment: With the smallest average RMSE between the 

candidate circle and the previous detected ball in HSV colour.  

The candidate ball that satisfies all above criteria is chosen to be a detected 

ball. Figure 4.8 illustrates the block diagram of the proposed ACTMD. To 

complement the block diagram, the process of FBD module is shown in 

Figure 4.9 below.  

FBD

Modified 
Hough 

Transform

Object that is most 
likely the ball 

(OMLB)

Left ROI Right ROI

Ball 
Detection

ACTMD

SOMM

IVSC
 

ACTMD: Adaptive Colour Thresholding and Motion Detection 

SOMM: Second Order Motion Model 

FBD: Feature based Ball Detection 

IVSC: Inter-View Self-Correction 

Figure 4.8: Block diagram of the proposed ACTMD 
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Figure 4.9 Flowchart of FBD module 
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 To enable the system to check how good of the detection is, a detection 

score (S) is used for evaluation. It is calculated based on the Euclidean distance 

and RMSE between the detected ball and the predicted ball, and the predefined 

threshold values as: 

 S� = �

��    (����[��]    < ����)                                              S� =  S� + 1;

��    (����   < ��   < ����)                                          S� =  S� + 1;
��    (���_����_����  <  ����������_���)         S� =  S� + 1;

             (4) 

Where: �� is the total number of detection score of the  ��� frame. If the Euclidean 

distance between the centre of detected ball and the centre of predicted ball; 

����[��] is less than the predefined distance; ����, one point will be awarded. 

Similarly, if the radius of the detected ball; �� is in between the predefined 

minimum radius; ���� and the maximum acceptable radius; ����, one point will 

be awarded. Likewise, the average RMSE between the detected ball’s HSV 

colour; ���_����_���� less than the acceptable threshold; ����������_���, one 

point will be awarded. As a result, if those deviations are smaller than or within 

the range of acceptable thresholds, one point each (three points maximum) will 

be awarded to its detection score for each satisfied criterion. This value will be 

used to guide the inter-view correction which will discussed in Section 4.2.4. 

4.2.4 Inter-View Self-Correction (IVSC)  

 The IVSC module corrects the detected ball location if the detection score 

of one view is lower than the other one. As shown in figure 4.10, the test bed 

employs a pair of cameras and will detect balls from both left and right views. 

With this arrangement, when the ball in one view is undetected or wrongly 
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detected, its location can be estimated using the location of the detected ball from 

the other view and the known disparity value from a previous frame where balls 

from both views are successfully detected.  

Likewise, if the ball is occluded by foreground object in one view, IVSC 

uses the positional information from another view to estimate the ball location of 

the current view.  To illustrate the need and subsequent role that IVSC plays in 

the detection process, Figure 4.25 provided the results comparison and the 

usefulness of IVSC in sequence 3 as an example. The IVSC is not only applied 

in sequence 3. It applied throughout all the tested sequences throughout thesis.  

In this way, the contribution of the IVSC module can significantly 

improve the detection accuracy and overcome the occlusion challenges. Finally, 

3D ball’s position is calculated using triangulation theory (Zhang, 2000). Detail 

explanation of stereo camera calibration and the calculation of 3D reprojection 

can be found in Chapter 3. By working together, the challenging task of tracking 

a high-motion ball during a match is successful, even though it was taken by two 

entry level high speed cameras. Figure 4.10 illustrates the block diagram of the 

proposed system which shows the interaction between all four main modules that 

explained above. 
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ACTMD: Adaptive Colour Thresholding and Motion Detection 

SOMM: Second Order Motion Model 

FBD: Feature based Ball Detection 

IVSC: Inter-View Self-Correction 

Figure 4.10: Block diagram of the proposed system 
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4.3 Tested Sequences and Experimental Results 

 The system was tested against three sequences from OUTTDB (Wong 

and Dooley, 2017).  These sequences were particularly filmed to cover different 

scenarios such as a single view, (full and half table) Stereo-view videos. These 

were selected to test the developed algorithm on challenging conditions such as 

a sudden change of trajectory, occlusion, uneven illumination, scale variation, 

deformation, motion blur, noise and disappearance from the point of view.  

4.3.1 Sequence 1: Results Discussion 

The first sequence is a single-view video extracted from one of the 

demonstration video files on the web site of the Umpires & Referees Committee 

of the ITTF. This sequence is composed of 46 frames with (352*240) pixel 

resolution and a rate of 30 frames per second. Because of the low frame rate, 

object blurring and colour merging with the background can frequently occur. 

This sequence is selected to demonstrate the detection performance of the system 

during service because it was used in Wong and Dooley (2010) for testing their 

algorithm and it enables a performance comparison.  

The figure 4.11 (a) and (b) shows an example of some experimental 

results of sequence 1. The blue and red circles show the predicted and detected 

ball positions of the ball. As the two circles are very close to each other, the blue 

circle is not clearly shown in the two figures. The green box represents the 

adaptive ROI which has an ability to automatically adjust its size according to the 

detection condition. x and y indicate the screen’s coordinate (pixel) positions 

where the left top corner of the screen is (0,0) and r stands for radius of the ball.  
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Frame No. 18 x y r Frame No. 18 x y r 

Ground Truth (pixels) 183 194 4 Ground Truth (pixels) 204 161 5 

System Result (pixels) 183 193 4 System Result (pixels) 205 163 4 

RMSE (2D) 1.5 pixels RMSE (2D) 2.7 pixels 

Detection Time 0.018 second Detection Time 0.018 second 

Figure 4.11: (a): A service is about 

to start. 

Figure 4.11: (b) The ball is about to 

be struck. 

Figure 4.11: Example Frame in tested sequence 1 

A summary of the sequence 1’s detection results and a trajectory comparison of 

the ground truth and the detected ball where the ball is located at the player's palm 

and served is shown in Figure 4.12. In figure 4.12, the ground truth’s trajectory 

is based on the set of ball locations identified by human volunteers on each frame 

of each view which is explained detail in Chapter 3. Since this research is targeted 

to be a real-time umpiring system, three key quantitative parameters, RMSE, 

Detection rate and Processing time have been used throughout this thesis as 

benchmarks to validate all the performance results. As can be seen in figure 4.12, 

it is clear from the comparison that the trajectories are highly aligned, indicating 

successful detection throughout the whole sequence. While the average radius of 

the ball in each frame is around 4.5 pixels, the system can detect the ball with 

RMSE 1.38 pixels. Since, the RMSE is less than the radius of the ball, the 



155 
 

detecting result is good enough for developing an umpiring system. The key 

features of the tested sequence 1 is shown in Table 4.1. 

Table 4.1: Summary of the features of tested Sequence 1 

Features of Tested sequence Sequence 1 

No of frames 46 

Size of frame (pixels) 352×240 

Capture rate 30 fps 

Average radius of the ball 4.5 pixels 

Ball colour Orange 

Key detection challenges 
Low frame rate, object blurring, merging, 

occlusion 

 

Ball at first frame 
(or) 

Incoming ball

The ball has been hit 
by the bat

 

Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average radius 

of the ball 

Average 

RMSE 

Detection 

time 

Sequence 1 46 100% 4.5 pixels 1.38 pixels 0.01 sec 

Figure 4.12: Trajectory Comparison between Ground Truth and Detected Balls  
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To derive 3D location of an object, it requires the 2D result from at least 

two views. Therefore, a single view result alone is not enough to calculate the 3D 

location of the ball which is an essential information to know for umpiring a rally. 

Typical example is whether the ball is served above the level of the playing 

surface or behind the server's end line. For this reason, the second and third 

sequences are captured during real matches with a custom-made stereo camera to 

achieve 3D location of the ball. 

4.3.2 Sequence 2: Results Discussion 

The second sequence is composed of 400 frames with (512*384) 

resolution and a rate of 300 frames per second.  Although it can achieve the whole 

table wider view, the size of the ball in this sequence appears much smaller and 

this increases the detection challenge. The following figure 4.13 shows one 

example frame of sequence 2. 

The ball

The player’s watch

Part of player’s palm

 

Figure 4.13: The full table view of tested Sequence 2 
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In sequence 2, the average radius of the image of ball appears as only 1.95 

pixels. The complex background contains many white horizontal lines as well as 

ball-like objects, so this creates a challenging detection scenario including colour 

merging and shape confusion.  

 

 

Frame No. 25 x y r Frame No. 25 y r r 

Ground Truth (pixels) 157 219 2 Ground Truth (pixels) 149 214 2 

System Result (pixels) 157 219 2 System Result (pixels) 148 213 2 

RMSE (2D) 0.12 pixels RMSE (2D) 1.5 pixels 

Detection Time 0.059 second Detection Time 0.059 second 

 

Figure 4.14: (a) Tested sequence 3: 

The ball is about to bounce on the 

table surface at Left Camera’s View 

at Frame No: 25 

 

Figure 4.14: (b) Tested sequence 3: 

The ball is about to bounce on the 

table surface at Right Camera’s 

View at Frame No: 25 

 

Figure 4.14: Example Frame in tested sequence 2 

The table 4.2 to 4.5 show the left and right (x, y) screen coordinate (pixels) to (X, 

Y, Z) 3D reprojection results in centimetres (cm) where; X stands for the ball’s 

horizontal running distance from the camera, Y indicates the ball’s vertical height 
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from the camera and Z is the depth, which indicates how far between the ball and 

the left camera. R stands for the radius of the detected ball in (cm). 

Table 4.2: Tested sequence 2: Ball 3D calculation results at Frame No 25 

Real world 3D Measurement X Y Z 

Ground Truth 85 cm 56 cm 640 cm 

System Result 82 cm 54 cm 619 cm 

RMSE (3D) 21.3 cm 

 

In the figure 4.15 demonstrate the result of IVSC in where, the green 

circumference defines the recovery position of that mis-detected ball’s location 

based on the positional information from the right view when the ball fails to be 

detected in in left view. 
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Frame No. 39 x y r Frame No. 39 x y r 

Ground Truth (pixels) 175 211 2 Ground Truth (pixels) 164 207 2 

System Result 171 212 3 System Result 165 208 2 

RMSE (2D) 3.7 pixels RMSE (2D) 2.2 pixels 

Detection Time 0.059 second Detection Time 0.059 second 

 

Figure 4.15: (a) Green Corrected 

Ball in Left Camera’s View Frame 

No: 39 (Corrected Result) 

 

Figure 4.15: (b) Red Detected Ball 

in Right Camera’s View Frame No: 

39 (Detected Result) 

Figure 4.15: Example Frame in tested sequence 2 

 

Table 4.3: Tested sequence 2: Ball 3D calculation results at Frame No: 39 

Real world 3D Measurement X Y Z 

Ground Truth 63 cm 44 cm 580 cm 

System Result 79 cm 53 cm 686 cm 

RMSE (3D) 107 cm 
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Frame No. 156 x y r Frame No. 156 x y r 

Ground Truth (pixels) 339 217 3 Ground Truth (pixels) 322 212 2 

System Result (pixels) 339 217 2 System Result (pixels) 321 212 2 

RMSE (2D) 0.8 pixels RMSE (2D) 1.3 pixels 

Detection Time 0.059 second Detection Time 0.059 second 

 

Figure 4.16: (a) Detected result of 

the ball when it is crossing scorecard 

at Left View Frame No: 156 

 

Figure 4.16: (b) Detected result of 

the ball when it is crossing 

scorecard at Right View Frame No: 

156 

Figure 4.16: Example Frame in tested sequence 2 

 

Table 4.4: Tested sequence 2: Ball 3D calculation results at Frame No: 156 

Real world 3D Measurement X Y Z 

Ground Truth 55 cm 41 cm 490 cm 

System Result 54 cm 40 cm 477 cm 

Average RMSE 12 cm 
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Frame No. 232 x y r Frame No. 232 x y r 

Ground Truth (pixels) 395 192 3 Ground Truth (pixels) 388 190 3 

System Result (pixels) 417 201 3 System Result (pixels) 385 189 2 

RMSE 24.08 pixels RMSE 3.6 pixels 

Detection Time 0.059 second Detection Time 0.059 second 

 

Figure 4.17: (a) Detected result of 

the ball after it got struck by the 

player in Left View Camera’s 

Frame No: 232 

(Incorrect detection) 

 

Figure 4.17: (b) Detected result of 

the ball after it got struck by the 

player in Right View Camera’s 

Frame No: 232 

(Correct detection) 

 

Figure 4.17: Example Frame in tested sequence 2 

 

Table 4.5: Tested sequence 2: Ball 3D calculation results at Frame No: 232 

Real world 3D Measurement X Y Z 

Ground Truth 125 cm 33 cm 662 cm 

System Result 77 cm 22 cm 352 cm 

Average RMSE 313 cm 
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Figure 4.18: (a) Incorrect detection -

Left Camera’s View at Frame No: 232 

Figure 4.18: (b) Correct detection - 

Right Camera’s at Frame No: 232 

Figure 4.18: Example segmented result of the ball when it got struck by player  

Figures 4.18 illustrates the Left and Right View’s detected result of the 

ball after it got struck by the player. As mentioned above, incorrect detection can 

occur when the ball comes toward to the player side, or after it struct by the 

player. As can be seen in figures 4.18 not only the ball, but also some parts of 

player hand as well as the bat appear in the segmented results, as they all hold 

similar colour features and motion. However, IVCA module is really helpful in 

that situation and the system is able to recover and continuously track the ball 

with only occasionally a small deviation. A trajectory comparison of the ground 

truth (red) and the detected ball (blue) of sequence 2 where the ball has travelled 

from left to right is shown in Figure 4.19 below. In that figure, the ball has 

travelled from left to right. After that, it hits with the table and bounce up. When 

the ball comes towards the player, it gets struck and bounces back to the opposite 

direction until the end of the rally. It is clear from the comparison that the 

trajectories are highly aligned, indicating successful detection throughout the 
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whole sequence. A summary of the key features of the tested sequences 2 is 

shown in Table 4.6 below. 

Table 4.6: Summary of the features of tested sequence 2 

Features of Tested sequence Sequence 2 

No of frames 400 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 1.95 pixels 

Ball colour White 

Key detection challenges 

Colour merging, Object reflection, Multiple 

moving objects, Occlusion, Complex 

background, Very small ball’s size 

 

Ball at first frame 
(or) 

Incoming ball

Outgoing ball

The ball has hit 
the table and 
bounced up

The ball has hit 
the bat and 

bounced back

The ball has hit 
the table and 
bounced up  

Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average radius 

of the ball 

Average 

RMSE 

Detection 

time 

Sequence 2 400 91% 1.95 pixels 1.9 pixels 59 ms 

 

Figure 4.19: Trajectory Comparison between Ground Truth and Detected Balls 
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4.3.3 Sequence 3: Results Discussion 

While the second sequence can show the full table view, the third sequence 

only shows the half length of the table. As it captures closer to the area of play 

(approximately 2 meters), the image of the ball appears bigger and clearer. The 

second sequence is composed of 200 frames with (512*384) resolution and a rate 

of 300 frames per second.  Due to the low resolution of the camera, sequence 3 

appears darker than the actual match scenery. However, this sequence is selected 

to showcase that the developed algorithm is robust enough to detect the ball 

among confusing objects which include ball like images, moving parts of 

referee’s body and multiple light illuminations. Figure 4.20 (a) and (b) illustrate 

the before and after detection results in which the colour of the ball is merging 

with the background objects, yet the system can successfully detect the ball in the 

situation of colour merging, illumination and shape distortion. 

 

Figure 4.20: (a) Tested sequence 3: 

Original Frame 

 

Figure 4.20 (b) Test sequence 3:  

Detection result 

Figure 4.20: Comparison between before and after detection results 

Figures 4.21 (a) and (b) demonstrate when the ball comes toward to the player 

and immediately after it got hit with the bat. In that moment, not only the ball but 

also the player’s hand appears in ROI with similar motion. When the ball is about 
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to get hit, not only the ball but also the player’s hand appears in the ROI and 

moves with similar motion. If the video is taken from a farther away location, the 

player’s thumb which is holding a bat can appear as a similar shape and 

comparable size as ball and moving with similar motion in the ROI. 

 

Figure 4.21 (a) The ball is about to 

get hit at Left Camera’s View  

 

Figure 4.21 (b) Thresholded Right 

Camera’s View Result  

Figure 4.21: Tested sequence 3: Example Frame No: 149 

If the system is solely depending on the MDA, this is the point where the system 

may fail to detect the ball. Similar situation is when the ball hits the net, the net 

will be vibrated, and this vibration will also be in the ROI. However, the 

developed system can detect this kind of difficult scenario with good detection 

results by the proposed adaptive segmentation approach. One of the advantages 

is in case detection fails by motion detection, the system can have another chance 

to segment again with CT by dynamically adapting and switching method. In 

here, it is required to discuss the choice of different orders motion model. 

According to the experimental results, if the algorithm is developed by a higher 

order motion model which relies on several previous detected ball locations; 
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 the predicted direction tends to be the same as the previous direction and it 

is difficult to pick up the abrupt trajectory change; 

 the system wrongly detects ball like objects on the player’s body when the 

ball comes toward to the player and immediately after it got hit with the bat. 

Therefore, the assumption is the higher order motion model has several delays in 

trajectory change whenever the ball bounces on the table or it is struck by the 

player. The analysis and simulation results indicate that the lower order motion 

model turns out to be the best fit for predicting the ball that has an abrupt 

trajectory change and, in SOMM, the predicted ball location is decided by a 

SOMM. Another challenging situation is when the ball is about to bounce, the 

reflection of white ball appears on the playing surface and it creates another ball 

like object in the ROI as can be seen in figure 4.21. Likewise, when the ball is 

travelling slowly or the point where it travels backward direction (bouncing 

back), the images of the ball in the background and current frame are partially 

overlapped and the thresholded result has two crescent shaped objects situated at 

equal distance from the predicted ball location as shown in figure 4.21 (b). Based 

on the travelling direction of ball, SOMM identify the right object and remove 

the crescent corresponding to the ball image in the background. The figure 4.22 

to 4.23 show some experimental results of sequence 3’s left view and right view 

and the table 4.7 shows the 3D calculation results of one example frame. As can 

be seen in figure 4.22, the white scorecard with number zeros create a challenging 

task in distinguishing the right ball among similar objects, yet the developed 

algorithm can provide the good detection results with those situations.  



167 
 

 

 

Frame No. 61 x y r Frame No. 61 x y r 

Ground Truth (pixels) 363 231 3 Ground Truth (pixels) 320 231 4 

System Result (pixels) 363 231 3 System Result (pixels) 319 231 3 

RMSE (2D) 0.4 pixels RMSE (2D) 0.76 pixels 

Detection Time 0.048 second Detection Time 0.048 second 

 

Frame No. 64 x y r Frame No. 64 x y r 

Ground Truth (pixels) 359 233 3 Ground Truth (pixels) 314 232 3 

System Result (pixels) 358 232 3 System Result (pixels) 313 232 3 

RMSE (2D) 1.06 pixels RMSE (2D) 0.76 pixels 

Detection Time 0.048 second Detection Time 0.048 second 

Figure 4.22 (a) Tested sequence 3: 

The ball is crossing the scorecard at 

Left Camera View  

Figure 4.22 (b) Tested sequence 3: 

The ball is crossing the scorecard at 

Right Camera View  

Figure 4.22: Example Frame of Tested sequence 3  
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Table 4.7: Tested sequence 3: Ball 3D calculation results at Frame No: 64 

Real world 3D Measurement X Y Z 

Ground Truth 40 cm 30 cm 283 cm 

System Result 39 cm 30 cm 283 cm 

RMSE 0.5 cm 

 

In these figures, the green box represents the cropped ROI, the blue and 

red circle indicate the predicted and detected positions of the ball. The small letter 

(x, y) indicate the screen’s coordinate (pixel) positions where the left top corner 

of the screen is (0,0) and r stands for radius of the ball. The table 4.8 and 4.9 

show the left and right (x, y) screen coordinate (pixels) to (X, Y, Z) 3D 

reprojection results in centimetres (cm) where; X stands for the ball’s horizontal 

running distance from the camera, Y indicates the ball’s vertical height from the 

camera and Z is the depth, which indicates how far between the ball and the left 

camera. R stands for the radius of the detected ball in (cm). Detail explanation of 

2D to 3D projection can be found in Chapter 3, Section 3.5.3.  
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Frame No. 101 x y r Frame No. 101 x y r 

Ground Truth (pixels) 277 259 3 Ground Truth (pixels) 233 257 3 

System Result (pixels) 276 258 3 System Result (pixels) 232 257 3 

RMSE (2D) 0.6 pixel RMSE (2D) 0.96 pixel 

Detection Time 0.043 second Detection Time 0.043 second 

 

Figure 4.23 (a) The ball is about to 

bounce on the table surface at left 

Camera View  

 

Figure 4.23 (b) Tested sequence 3: 

The ball is about to bounce on the 

table surface at right Camera 

View  

 

Figure 4.23:  Tested sequence 3 at Frame No: 101 

 

Table 4.8: Tested sequence 3: Ball 3D calculation results at Frame No: 101 

Real world 3D Measurement X Y Z 

Ground Truth 8 cm 41 cm 288 cm 

System Result 8 cm 40 cm 288 cm 

RMSE (3D) 0.6 cm 
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A summary of the key features of the tested sequence 3 is shown in Table 

4.9 below. Figure 4.24 shows the trajectory comparison between the ground truth 

and the detected balls where the ball has travelled from right to left. 

Table 4.9: Summary of the features of tested sequence 3 

Features of Tested sequence Sequence 3 

No of frames 200 

Size of frame (pixels) 512×384 

Capture rate 300 fps 

Average radius of the ball 3.4 pixels 

Ball colour White 

Key detection challenges 

Colour merging, illumination, shape 

distortion, object reflection, multiple moving 

objects, occlusion 

 

Ball at first frame 
(or) 

Incoming ball

Outgoing ball

The ball has hit 
the table and 
bounced up

The ball has hit 
the bat and 

bounced back

 

Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of the 

ball 

Average 

RMSE 

Detection 

time 

Sequence 3 200 95.5% 3.4 pixels 1.6 pixels 0.047 sec 

Figure 4.24 Trajectory Comparison between Ground Truth and Detected Balls  
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In figure 4.24, the ball is coming from the right corner of the frame at the starting 

point of the sequence 3. After that, it hits the table and bounce up.  When the ball 

comes toward to the player, it gets struck and bounces back in the opposite 

direction. 

According to the quantitative result, while the average radius of the ball 

is around 3.4 pixels, the average RMSE of 2D calculation results is around 1 to 2 

pixels. This contribute the actual 3D error of RMSE distance is less than 1 cm. If 

the RMS error between the detected location and the ground truth is less than the 

diameter of the ball, the detection is assumed to be correct and this provide 

enough information to umpire a rally. Moreover, the benefit of employing two 

cameras (in sequence 2 and 3) rather than a single camera (in sequence 1) is when 

the ball in one view is occluded or undetected, its location can be estimated by 

using the location of the detected ball from the other view and the known disparity 

value from a previous frame where balls from both views are successfully 

detected. With this arrangement, it can significantly improve the detection 

performance. The figure 4.25 illustrates the result comparison of before and after 

applying IVSC. In figure 4.25 (a) and (b), the detection rate of left single view is 

85% as well as the detection rate of right single view is 83%. After applying IVSC 

module, each view’s undetected ball location was estimated by using the detected 

ball location from the other view and the final detection results can be better as 

shown in figure 4.25 (c). 
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(a) Left View Detection Result 

before applying IVC module 

(b) Right View Detection Result 

before applying IVC module 

 

(c) Left and Right Detection Rate after IVSC 

 

Figure 4.25: Effectiveness of IVSC in Sequence 3 

85%

15%

Left View Ball Detection Result 
before IVCA

% of Detected Ball

% of Undetected Ball

83%

17%

Right View Ball Detection 
Result before IVCA

% of Detected Ball

% of Undetected Ball

97%

3%

After  IVSC Recovery Module 
(Combination of Left and Right)

% of Detected Ball % of Undetected Ball
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4.4 Performance Comparison 

 Table 4.10 (a) and (b) show the performance comparison between three 

sequences including the results comparison with (Wong and Dooley, 2010). The 

proposed system outperformed it on both detection rate and speed. Among the 

three tested sequences which have different filming scenarios, the detection 

results in sequence 1 is the best among the other sequences. The reason is the ball 

size in sequence 1 appears bigger than other sequences because it was taken closer 

and focused only the service part. The orange ball in sequence 1 is also an 

outstanding colour feature compared with the white one in the other two 

sequences. Although the sequence 2 provided the full table stereo-view which 

were filmed from a long distance, they do not have enough depth resolution to 

calculate precise real-world coordinates (X, Y, Z) of objects and it was affected 

in 3D reprojection. The worse is the resolution of the camera is low and depth 

information becomes unstable. This contributes to 3D reprojection; Z (Depth) 

error can be more than 100 cm. Moreover, the original size of table tennis ball is 

small which is only 4 cm in diameter and when capturing the full table view, the 

ball appears very small in video as 1.9 pixels, 0.005% of the whole frame. As the 

bigger ball and clearer view of the play can provide higher detection rate, it is 

better to place the cameras at closer position. The second sequence is taken 

around 4 meters further away from the camera and the table tennis table and the 

third sequence is taken around 2 meters. As a result, the average radius of the ball 

become bigger than the sequence 2 with the RMSE of 2D calculation results is 

reduce from 4 pixels in some frames to 1 pixels. Nevertheless, the average RMSE 



174 
 

between the detected location and the ground truth is less than the diameter of the 

ball. While the processing time is good enough for real-time umpiring, the 

proposed system can accurately track the balls with a high success rate, despite 

occlusion, colour merging, reflection, blurring and shape distortion occurring in 

all these tested sequences. Even with the very challenging Sequence 2, which has 

a complex background and a very small ball, the detection rate is still over 91%. 

The only occasions where the detection failed were when the ball was occluded 

or severely merged with the background. 

Table 4.10 (a): Performance comparison between three tested sequences 

Quantitative Result Sequence 1 Sequence 2 Sequence 3 

No of frames 46 400 200 

Size of frame (pixels) 352×240 512×384 512×384 

Detection rate 100% 91% 95.5% 

Average radius of the ball 4.5 pixels 1.95 pixels 3.4 pixels 

Average RMS error (X, Y, R) 1.38 pixels 1.9 pixels 1.6 pixels 

Average Processing time 0.018 sec 0.059 sec 0.047 sec 

 

Table 4.11 (b): Performance comparison between sequence 1 and  

(Wong and Dooley, 2010) 

Quantitative Result Sequence 1 (Wong and Dooley, 2010) 

No of frames 46 46 

Size of frame (pixels) 352×240 352×240 

Detection rate 100% 98% 

Average radius of the ball 4.5 pixels 4.5 pixels 

Average RMS error (X, Y, R) 1.38 pixels - 

Average Processing time 0.018 sec 0.1 sec 
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4.5 Summary 

 This chapter began with describing the strength and weakness of the 

existing ball detecting and tracking methods and identify the requirement for 

developing a new umpiring system. It was followed by the proposed algorithm 

which is designed with effective strategies. According to the experimental results, 

the assumption is made to film at enough depth to reproject the 3D results. In 

these experiments, a stereo vision is formed by pairing up two cameras and if the 

ball is occluded in one view (either left or right), the algorithm has a mechanism 

to recover by positional information from another view. However, there is a 

possibility that the ball can be totally blocked by the player, the bat, clothing, or 

for other reasons in both cameras’ view. Especially at the point where the ball 

flies’ closer to the player before it gets struck. Although the predicted ball 

position can be used to recover for a few frames, the prediction will be failed if 

detection is missed in several consecutive frames. One approach to overcome 

occlusion is to scale up the system by adding more cameras to monitor the ball at 

different angles. However, this requires a high degree of co-ordination between 

different views and an ability to resolve conflicts when inconsistent information 

is acquired. Moreover, adding more cameras will increase the processing 

workload and time. To tackle this problem, a multi-agent-based ball tracking 

system will be proposed in coming Chapter 5 by developing the system as 

artificial intelligence system. By this way, each camera pair can be associated 

with an agent that can independently detect and track the ball by parallel in 

different views and can improve the detection performance. 



Chapter 5 
 

A Scalable Multi-View Tracking System  

(Contribution Chapter) 

5.1 Introduction 

To improve the detection performance of the previously developed ball 

detection algorithm in Chapter 4, this chapter presents the design and 

development of block 5 (Multi-view Tracking), part of the proposed framework 

which has presented in Chapter 1, figure 1.2. While adding more cameras will 

increase the chance of detection, it is financially and technically challenging due 

to the limited number of cameras to form stereo visions, and the processing 

workload and time. As mentioned in Chapter 1, the system is intended to be 

developed with minimum hardware requirement, user friendly camera setup and 

ease of installation to fulfil the aim of a widely used low-cost solution. Therefore, 

for capturing different type of sequences, various camera distances and different 

camera setups were experimented with such as: 

 Single-view Video 

 SBS Stereo-view (Full-Table) 

 SBS Stereo-view (Half-Table)  

 FTF Multi-view (Half-Table) 
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as described in Chapter 3.  The single view, SBS Stereo-view (full and half table) 

were tested in the Chapter 4 and the results comparison can be found in Section 

4.4, showing that each setup can have an impact on the ball detection accuracy 

and the cost of the system.  In fact, the nearer the camera’s distance with the play, 

the clearer is the achievable resolution, and the camera’s setup height should be 

enough to capture the whole table surface. Therefore, the tested sequences in this 

chapter were filmed by placing cameras at a closer location with the playing 

surface to achieve a sufficient depth as shown in figure 5.1. 

 

Figure 5.1: FTF Stereo Camera Set up 

The detailed calibration process can be found in Chapter 3.  In the traditional way 

of arranging stereo cameras (SBS setup), it requires two cameras to form one 

stereo-view and four cameras can only give two stereo-views. In this camera 

setup, the 3D location of ball can be derived by pairing two cameras next to each 
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other (SBS) or facing opposite (FTF). In this way four stereo-views can be 

obtained by using only 4 cameras, which is more cost effective. Moreover, this 

camera setup is also helpful in difficult ball detection situations where the 

captured image of the ball can be confused with nearby or background objects 

during a match. Example images of these challenging situations are shown in 

Figure 5.2. 

Ball blurry Ball reflection Complex background 

Colour merging  Blurry ball with moving 

hand and bat 

Multiple moving objects 

(ball and spectators) 

Figure 5.2: Ball Detection Challenges 

If multiple opposite facing cameras monitor the playing surface, they can obtain 

different views of ball from different angles and provide higher detection 

opportunities in estimating the location of the ball by utilising the results from 

the opposing views. For example, if the image of the ball is merged with the 
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complex background in one view, it can be recovered by using the information 

from the opposite view. As a result, the chance of object confusion is reduced, 

and this can improve the detection rate which is essential in umpiring. While the 

multi-view approach strengthens the detection performance, it also has its own 

weakness in terms of data processing and memory requirements. Since these 

cameras are set up to monitor a closer view of the play, the output video cannot 

capture the whole scene but only a portion of the scene. The ball’s trajectory also 

breaks up and requires a mechanism to join a trajectory from separate views. It 

increases computation due to synchronising and processing data from multiple 

cameras.  

 To tackle these problems, this chapter presents a novel framework of a 

multi-view ball tracking system. It addresses the multi-view detection problems 

by integrating the previously developed ball detection algorithm with a Multi-

Agent System (MAS). The proposed design of the MAS enables the system to be 

computationally effective, lower in cost, portable and suitable for umpiring 

purposes. The remainder of the chapter is organised as follows: Section 2 briefly 

discusses the configuration of the cameras and the MAS architecture. It is 

followed by a detailed explanation of the implemented framework in Section 3. 

The techniques for compensating measuring errors are presented in Section 4. 

Experimental results and performance comparison are given to verify the 

effectiveness of the proposed algorithms in Section 5, while Section 6 discusses 

the limitation of the system and concludes the whole chapter. 
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5.2 Compensating Measuring Errors  

While the proposed camera configuration can provide more robust ball 

detection, experiments have shown that aligning these cameras is very difficult 

and time consuming. Any misalignments could lead to errors in the derived 3D 

position of the detected ball, which will affect the accuracy of the overall 

umpiring system. For this reason, an Error Model was developed to compensate 

for measurement errors, which can be represented by 3D vectors. Various 

experimental results and analyses showed that the measurement error exhibited a 

non-linear relationship to the ball location as shown in figure 5.3 and 5.5. 

Therefore, quadratic surfaces were chosen to model the measuring errors. The 

measurement error data were fitted to the surfaces using a standard Multivariate 

Polynomial Regression. The equation of the error model is represented by 

equation (1): 

�(�,�,�)  = �(�,�,�)  �,̂ �(�,�,�) �̂, �(�,�,�) ��                   (1) 

where �(�,�,�)  is the 3D error vector and �(�,�,�) , �(�,�,�) , �(�,�,�)  are functions 

determining the magnitudes of the (�,̂ �̂, ��) components respectively, and (x, y, z) 

are the measured ball location. In other words, the error model takes the 3D ball 

location as input and produces the error vector for that ball location. Equations 

(2), (3) and (4) define the quadratic surfaces of �(�,�,�) , �(�,�,�) , �(�,�,�)    

respectively, where an, bn, cn, dn, en, fn, gn, hn, in and jn are coefficients of the 

Quadratic surfaces, for n = 1, 2 and 3. 

�(�,�,�)  = a1x2+b1y2+c1z2+d1xy+e1xz+f1yz+g1x+h1y+i1z+j1              (2) 
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�(�,�,�) = a2x2+b2y2+c2z2+d2xy+e2xz+f2yz+g2x+h2y+i2z+j2              (3) 

�(�,�,�)  = a3x2+b3y2+c3z2+d3xy+e3xz+f3yz+g3x+h3y+i3z+j3              (4) 

To prevent overfitting, a small subset of 30 points was randomly selected from 

some known positions on the checkerboard as training data and 45 “unseen” 

points were chosen for testing. The detailed explanation of calibration with a 

double-sided checkerboard and deriving a large set of reference points on the 

checkerboard can be found in Chapter 3. Figures 5.3 and 5.5 show the 45 

uncompensated calculated (red) and expected (blue) ball locations for the pairs 

of cameras (1 and 4) and (2 and 3). Figure 5.4 and 5.6 show the results of 

corrected ball locations after error compensation is applied. The average 

Euclidean distance between the calculated and expected positions reduced from 

6.9 cm to 0.8 cm for one stereo pair (camera 1 and 4) and 10 cm to 0.9 cm the 

other stereo pair (camera 2 and 3). The experimental results from these tests 

indicate the developed error model can be used to significantly reduce the 

measuring errors. Although small magnitude errors still exist, the multi-view ball 

tracking system, which is to be explained in next section, can tolerate these errors. 



182 
 

 

Euclidean Distance Error (Expected vs Calculated)  

3D positions of the ball 

Minimum 

Error 

Maximum 

Error 

Average 

Error 

Standard 

Deviation 

4.8 cm 10.2 cm 6.9 cm 0.9 cm 

Figure 5.3: Uncompensated ball positions  

 

 

 

Euclidean Distance Error (Expected vs Calculated)  

3D positions of the ball 

Minimum 

Error 

Maximum 

Error 

Average 

Error 

Standard 

Deviation 

0.2 cm 3.1 cm 0.8 cm 0.4 cm 

Figure 5.4: Compensated ball positions  
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Euclidean Distance Error (Expected vs Calculated) 3D 

positions of the ball 

Minimum 

Error 

Maximum 

Error 

Average 

Error 

Standard 

Deviation 

7.1 cm 13.5 cm 10 cm 1.7 cm 

Figure 5.5: Uncompensated ball positions 

 

 

Euclidean Distance Error (Expected vs Calculated) 3D 

positions of the ball 

Minimum 

Error 

Maximum 

Error 

Average 

Error 

Standard 

Deviation 

0.1 cm 3.9 cm 0.9 cm 0.6 cm 

Figure 5.6: Compensated ball positions 
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5.3 Multi-View Ball Tracking System 

Although capturing images of an object from multiple angles can increase 

the chance of detection, careful consideration is needed in designing the 

configuration of the multi-view system, e.g., how many cameras are employed, 

where each camera is placed and how they are paired with other cameras to derive 

the 3D position of the object. To balance between cost and accuracy of detection, 

it was decided to employ four cameras, and they are placed at the positions as 

shown in figure 5.6. Four stereo-views was achieved by using four cameras. The 

3D positions of the objects can also be derived from either the opposite facing 

pairs, i.e., FTF or the SBS pairs. The detail methodology of 3D position 

derivation and verification process can be found in Section 3.5.  

In the figure 5.8, the four cameras jointly track the ball in the space within 

which the table and the players are situated. Each camera covers approximately 

two thirds of the length of the table but with a distinct perspective. With this 

arrangement, the main playing region is jointly covered by the four cameras and 

the coverage is overlapped around the net region, where attention is needed for 

umpiring. As each individual camera does not have to cover the entire table, the 

cameras can be placed nearer to the objects of interest (e.g. ball and table) so that 

better depth resolution can be achieved when deriving their 3D positions, and the 

objects also appear bigger in the views. The benefit is that the cameras can obtain 

distinct perspectives of the scene and can improve the detection.  

Because of the workload  in handling a huge amount of incoming data, it 

is necessary to develop a ball tracking framework which can facilitate tasks on a 
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multi-view system such as figuring out which camera pair will be used in 

analysing, when and where to turn on and turn off these cameras, and the results 

from which camera pairs will be set as higher priority among the detection results. 

As there are many observations such as sub-tasks for the system must be made, 

the choice of developing a system as a MAS turned out to be the best solution. A 

MAS can effectively manage the data generated by the multiple cameras situated 

at distinct positions. Since they all are linked by the MAS, the individual 

detection results can be jointly used to construct the whole trajectory. Moreover, 

a large amount of data from multi-view cameras can be processed in parallel and 

produce the result within a short period of time. For example, two or more agents 

could be used as Ball Detection Agents (BDA1, BDA2, etc...). These BDAs can 

detect the ball according to their point of view and can interact with each other in 

constructing a complete trajectory. By working together, the agent system can 

simultaneously make several observations. In the case of one ball detection agent 

not functioning, it will not affect the entire system and the other agents can 

continue to do their perspective task. Moreover, the developed system can be 

scaled up with more cameras to monitor the ball at different angles, in either a 

narrower or wider view. In this way, the system can overcome various detecting 

and tracking challenges in real match scenes and provide computational 

efficiency. In the implemented system, each camera pair is associated with a 

computing device (Agent) that can independently detect and track the ball in its 

associated views. The system is composed of two main agents: 

 Ball Detection Agent (BDA) 

 Multi-View Correction Agent (MVCA) 
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The BDAs detect the ball based on the same principle as the ball detection system 

which was presented in the Chapter 4 and showed robust ball detection, but only 

considered the conventional SBS camera configuration.  In this chapter, the 

system was modified to derive the ball’s 3D position from opposite-facing 

cameras. Furthermore, as the ball detection system was written in C++ while the 

MAS framework employed is written in Java, a pipe based inter-process 

communication module was developed to bridge the MAS and modified ball 

detection system as explained in detail in Section 3.4. While the BDAs take the 

responsibility of communication with the ball detection system, MVCA controls 

those BDAs by providing commands such as GET, SLEEP, WAKE and PUT.  

 The GET command is used for getting the ball detection results from 

BDAs. 

 The SLEEP command is used for suspending the detection process for a 

specified time.  

 The WAKE command is used for waking up from SLEEP and resume the 

detection. 

 The PUT command is used for sending the result back to BDAs for multi-

view correction. 

Figure 5.7 shows the connections and information flows within the system. At 

the start, the MVCA instructs (GET) all BDAs to report the ball position as it has 

an ability to automatically detect the number of different types of agents which 

are currently running in the system. If the ball is visible in a BDA’s view, it will 

return the ball position. Otherwise, it will state “No Ball” and hibernate. The 3D 
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position of the ball derived by a BDA is with respect to the principal point of one 

stereo camera as the origin. As the MAS system can have more than one BDA, 

the MVCA remaps the 3D ball position derived by each BDA into one real-world 

3D ball position by using a common origin as presented in Chapter 3, Section 

3.3.5.  

 

BDA: Ball Detection Agent 

MVCA: Multi-view Correction Agent 

Figure 5.7: Architecture of the MAS  

Since the MVCA maintains successive ball positions, it has an ability to predict 

the trajectory of the ball. In this way, the MVCA can check the consistency of the 

ball’s 3D position from multiple BDAs and use this information to derive the 

most likely ball position (Multi-view correction). Whenever the MVCA receives 

ball positions from a different BDA, it compares the incoming data with its 

predicted data. If the different is higher than the running average error and the 
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detection score of that BDA is low, the MVCA can recognise that an incorrect 

ball location is given by a particular BDA. For that scenario, the MVCA sends 

back (PUT) the corrected screen position of the ball to the BDA that manages 

that view for correction. To be able to send back (PUT) the 3D ball position or 

wake up (WAKE) the relevant BDA, the MVCA also has an ability to convert 

the real-world 3D ball position to a related 3D position of each BDA. Figure 5.8 

presents the multi-view cameras setup and different visible regions. Each 

opposite-facing pair of cameras is connected to a BDA. Each of the two BDAs 

detects the 2D screen position of the ball from each view, derives the 3D real 

world position of the ball and sends it to the MVCA for storage. The BDAs also 

provide the current frame number, the radius and the detection score of the current 

ball detection result to MVCA for further analysis. As the play region is 

monitored by multiple BDAs, the MVCA needs to know which regions of the 

play region are monitored by which BDAs. These 3D regions are defined based 

on the camera positions and inputted to MVCA during initialisation. Based on 

this knowledge, the MVCA can determine which visible region the current 

incoming ball position is located in and which type of command should be given 

to different BDAs such as GET, SLEEP, WAKE, PUT.  

As mentioned in Section 3.3.5, when the position of the ball reaches the 

vertical plane that joins the principal points of the opposite facing cameras, the 

3D position cannot be determined using the triangulation equations because the 

angles between the ball and the two cameras are zero. In fact, when the ball is 

near the plane, the calculated 3D position is erratic. As a result, a 3D region is 

defined as an Undetectable Region (UR) as shown in figure 5.8 with red dotted 
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lines. When the ball is crossing the UR, the MVCA extrapolates the 3D ball 

position based on the previous successful detection results. As each BDA only 

monitors a portion of the table, the MVCA selectively instructs which BDA to 

report the ball position and which to hibernate by determining which BDA(s) can 

view the ball. The MVCA will subsequently send the 3D ball position to other 

agents (not shown in Figure 5.8) for further umpiring purposes. The BDAs obtain 

the ball position through a pipe connection to the ball detection system which 

detects the ball from video feeds of the opposite facing cameras. The process 

continues until the ball appears in the Overlapping Region (OR) where the ball is 

visible by both camera pairs (the region near the net, the middle of the table as 

shown in Figure 5.8).  
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BDA-1: Ball Detection Agent 1 

BDA-2: Ball Detection Agent 2 

MVCA: Multi-view Correction Agent 

UR: Undetectable Regions (Red dotted lines) 

OR: Overlapping Region 

VRL: Visible Regions Left  

VRR: Visible Regions Right 

 

Figure 5.8: Multi-view Cameras setup and different visible regions 

While the ball is in the OR, the MVCA will receive the ball positions from 

different BDAs which are currently detecting the same ball at the same time. If 

the ball positions among BDAs are not consistent, the MVCA will choose the 3D 

ball position based on the previous successful detection history, predicted 
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trajectory and the confidence value of the different BDAs. As the ball is travelling 

from one end to the other end of the table, the ball will eventually disappear from 

the view of the BDA which initially observed the ball. When this happens, the 

MVCA will instruct that BDA to SLEEP, and the relevant BDA to wake up and 

report the ball position. The process continues until it reaches the end of the rally. 

 

5.4 Experimental Results 

The system was tested with ten 4-view video sequences captured at a 

match scene. Each view of the sequences has a resolution of 512×384 pixels and 

was captured at 300 frames per second (fps). The choice of this resolution was 

limited by the low-cost entry-level high-speed cameras that are employed. 

Although the capturing rate is sufficiently high enough to detect the high-speed 

flying ball, the video is of low contrast and appears dark. Cyclic variation of 

illumination is also noticed due to the capture rate being much higher than the 

frequency (50 Hz) of the alternating current ceiling lights. As mentioned in 5.1, 

sequence 1 to 3 are tested in the Chapter 4 and the rest of sequence 4 to 10 are 

tested in this chapter. The detailed explanation of the characteristic of tested 

sequences can be found in Section 3.5. Each sequence contains different events 

of a typical table tennis rally will have and can confidently be used to test the 

system. As explained in Section 3.3, a checkerboard was carefully placed at 

various known positions during the calibration process to get a set of reference 

points. The real-world distance (cm) between each camera and those reference 

points was carefully measured and it is used for results comparison to assure that 
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the system can provide the right 2D to 3D reprojection results.  The 3D derivation 

and evaluation methodology can be found in Chapter 3, Section 3.5. The detected 

2D ball locations on each view are compared with the ball locations identified by 

human volunteers to evaluate the detection performance of the system. Three key 

quantitative parameters, the average RMSE, Detection rate and Processing time, 

have been used throughout this thesis as benchmarks to validate the performance 

results. 

5.4.1 Sequence 4: Results Discussion 

 This four views sequence is composed of 3156 identified ball locations, 

taking 3 seconds to complete a rally.  The chosen sequence consists of a complete 

table tennis rally in which the ball is coming from Visible Region Right (VRR), 

bounces on its own court, and crosses over the net. When the ball is out of VRR 

and entering in the scope of Visible Region Left (VRL), it is continuously 

detected by BDA1 until the rally is ended with a fault. The fault occurs with 

double bounces on the opponent’s court after the ball hits the net and the net gets 

several vibrations. This sequence is selected to test the detection performance of 

the system during multiple motion and uneven lighting conditions. Figure 5.9 

shows an example frame of four views in which the left (top and bottom) is 

captured by opposite facing cameras 1 and 4, the right (top and bottom) is 

captured by camera 2 and 3. This figure shows the challenging environment of 

the ball detection among confusing objects. 
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Camera 1 View at frame 560 Camera 2 View at frame 560 

Camera four views at frame 560 Camera 3 View at frame 560 

Figure 5.9: Four views of sequence 4: The ball about to hit the net 

Figure 5.10 and 5.11 show the detection results of one example frame in which 

the ball is travelling against a similar colour background in visible region VRL. 

The visible region VRL is controlled by the BDA1 which is composed with the 

opposite-facing cameras Camera 1 and Camera 4. In these figures, the blue and 

red circles indicate the predicted and detected positions of the ball. The small 

letters (x, y) indicate the screen’s coordinate (pixel) positions where the left top 

corner of the screen is (0,0) and r stands for the radius of the ball. As mentioned 

in Section 3.3, a common point (Top of the Net Pole in front of Camera 1 and 

Camera 2) was set as a NPO (0, 0, 0) to synchronise all the 3D values of each 

BDA. Therefore, the 3D (X, Y, Z) reprojection results of (-54, 24, 31) can be 

The Ball The Ball 

The Ball The Ball 
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translated as: the ball is currently located at -54 cm on the left side, 24 cm above 

and 31 cm depth, measured from the NPO after applying the correction using the 

error model.  

 

 

Camera 1-Frame No. 282 x y r 

Ground Truth (pixels) 273 179 3 

System Result (pixels) 275 179 3 

RMSE (2D) 2 pixels 

Detection Time 0.028 seconds 

3D (X, Y, Z) based on BDA1 (-54, 24, 31) cm 

Figure 5.10: Detected results of the ball at Frame No: 282 (Camera 1)  
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Camera 4-Frame No. 282 X y r 

Ground Truth (pixels) 244 185 3 

System Result (pixels) 243 185 3 

RMSE (2D) 1 pixels 

Detection Time 0.028 seconds 

3D (X, Y, Z) based on BDA1 (-54, 24, 31) cm 

Figure 5.11: Detected results of the ball at Frame No: 282 (Camera 4) 
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Table 5.1 shows the quantitative result of each camera in this sequence. 

To visualise the detail detection-results of the whole rally in an image, figures 

A.1 to A.4 in the Appendix show the 2D flight path comparison between the 

ground truth and the detected ball locations by BDA1 and BDA2. Although 

detected ball trajectories are similar to the ground truth, the detection errors occur 

at the place where the ball hit the net and when the image of the ball is blocked 

by the players, their bats or net. However, the system is able to recover and 

resume successful detections. 

 

Table 5.1: Quantitative Result of each camera in sequence 4 

 BDA1 BDA2 

Quantitative Result Camera 1 Camera 4 Camera 2 Camera 3 

Total Frame 876 876 702 702 

Detection rate 92% 90%  83%  95% 

Average radius of the ball 3.5 pixels 

Average RMSE (X, Y, R) 3.2 pixels 3.9 pixels 3.6 pixels 2.1 pixels 

Average Processing time 0.027 seconds 
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5.4.2 Sequence 5: Results Discussion: 

This four views sequence is composed of 3282 identified ball locations 

and taking 3 seconds to complete a rally. As it is a complete rally, it consists of a 

service strike, the ball bouncing on the playing surface, the ball travelling back 

and forth across over the net, striking by the players, and an eventual foul. This 

represents a typical table tennis rally. The fault occurs when the ball drops under 

the table and disappears from all camera views. This is a challenging sequence 

because the system needs to detect the ball among surrounding objects which 

exhibit different motions. The figures 5.16 shows the detection results of frame 1 

from the view of BDA1 which is composed of Camera 1 and Camera 4. 

 

Camera 1-Frame No. 1 x y r  Camera 4-Frame No. 

1 

x y r 

Ground Truth (pixels) 91 190 5 Ground Truth (pixels) 508 169 4 

System Result (pixels) 91 191 5 System Result (pixels) 508 169 5 

RMSE (2D) 1 pixel  RMSE (2D) 1 pixel 

Detection Time 0.028 Detection Time 0.028 

3D (X, Y, Z) based on 

BDA1 

(-152, 22, 145) cm 3D (X, Y, Z) based on 

BDA1 

(-152, 22, 145) cm 

  

Figure 5.12: Example Results of BDA1 (Partially see the service) 

In the middle of the play (starting from frame 648 till 723), the ball reaches out 

of Camera 2 cameras’ views and disappears for more than 75 frames as shown in 
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figures 5.13 to 5.15. In this time, the system uses the information from Camera 3 

and waits for the ball return to derive the 3D location of the ball. At the same 

time, the system expands the ROI (the green rectangle shown in Figure 5.13) at 

where the ball last appears to increase the chance of finding the ball. In this way, 

the system can successfully capture the returning ball at frame 722 and can 

continue the detection as shown in figures 5.14 in which the green circle indicates 

the expected position of the returning ball and the red circle shows the detected 

location of the ball. As multiple occlusions occur very frequently, this selected 

sequence 2 is chosen to test the robustness of the inter-view correction, MVCA 

and SDA. 

 

Figure 5.13: The Outgoing ball from the view of Camera 2 at frame 648 
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Figure 5.14: The ball disappears from the view of Camera 2 

 

Figure 5.15: The returning ball after disappeared 
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Figure 5.16 to 5.19 show the views of the four cameras and the 

synchronous detection results at an example frame where the ball is crossing the 

OR and it is successfully detected by all four cameras.  

Camera 1-Frame No. 105 X y r 

Ground Truth (pixels) 363 208 3 

System Result (pixels) 363 207 3 

RMSE (2D) 1.4 pixels 

Detection Time 0.028 

3D (X, Y, Z) from BDA1 (-10, 12, 102) cm 

Figure 5.16: Camera 1: Detected results at Frame No: 105  
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Camera 2 -Frame No. 105 X y r 

Ground Truth (pixels) 135 209 3 

System Result (pixels) 134 209 4 

RMSE (2D) 1.4 pixels 

Detection Time 0.028 

3D (X, Y, Z) from BDA2 (-9, 12, 103) cm 

Figure 5.17: Camera 2: Detected results at Frame No: 105  
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Camera 3-Frame No. 105 X y r 

Ground Truth (pixels) 394 211 3 

System Result (pixels) 395 210 4 

RMSE (2D) 1.7 pixels 

Detection Time 0.028 

3D (X, Y, Z) from BDA2 (-9, 12, 103) cm 

Figure 5.18: Camera 3: Detected results at Frame No: 105  
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Camera 4-Frame No. 105 x y r 

Ground Truth (pixels) 135 212 3.2 

System Result (pixels) 136 211 3 

RMSE (2D) 1.4 pixels 

Detection Time 0.028 

3D (X, Y, Z) from BDA1 (-10, 12, 102) cm 

Figure 5.19: Camera 4: Detected results at Frame No: 105  

In figure 5.16 to 5.19, the 3D (X, Y, Z) reprojection results of BDA1 is (-10, 12, 

102) cm and BDA2 is (-9, 12, 103) cm respectively. As can be seen in these 

figures, BDA1 and BDA2 can produce slightly different 3D measurement results 

due to misalignments between the cameras, although the same ball was detected 

at some frames and at the same time. In this conflict scenario, the MVCA will 

decide the 3D position based on the predicted trajectory and the previous 

successful detection history of different BDAs. On this occasion, the MVCA 
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deems the result from BDA1 is more reliable and chooses (-10, 12, 102) cm as 

the ball location for this frame as presented in Table 5.2. 

Table 5.2: MVCA’s decided 3D result -Frame No. 105 from BDA1 

Real world 3D Measurement X Y Z 

System Result -10 cm 12 cm  102 cm 

 

Figure 5.20: Server to Receiver: 3D Ball Trajectory travelling 

 

Figure 5.21: Receiver to Server: 3D Ball Trajectory travelling Labels:  
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1: Start of the service at Frame 1,   

2: The ball bounces on the server side of the table 

3: The ball crosses over the net 

4: The ball bounces on the receiver side of the table 

5: The ball is struck by the receiver 

6: The ball bounces on the server side of the table 

7: The rally ends. 

To visualise the detail detection-result of whole rally in an image, figures 

A.5 to A.8 in the Appendix show the 2D flight path comparison between the 

ground truth and the detected ball locations by BDA1 and BDA2, and table 5.3 

shows the quantitative result of each camera in this sequence. 

Table 5.3: Quantitative Result of each camera in sequence 5 

 BDA1 BDA2 

Quantitative Result Camera 1 Camera 4 Camera 2 Camera 3 

Total Frame 860 834 773 773 

Detection rate 96% 98% 91% 96% 

Average radius of the ball 3.5 pixels 

Average RMSE (X, Y, R) 3.2 pixels 3.9 pixels 2.9 pixels 2.6 pixels 

Average Processing time 0.025 seconds 

 

 

5.4.3 Sequence 6: Results Discussion 

This four views sequence is composed of 6780 identified ball locations 

taking 6 seconds to complete a rally. Among the ten sequences, this is the longest 

rally and is composed of 1800 frames. In the middle of the play (starting from 

frame 1325 till 1484), the ball reaches out of all cameras’ views and disappears 
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for more than 150 frames. This is a challenging sequence because the system 

needs to be aware that the ball is temporarily out of all the cameras’ scope and 

get ready to detect the returning ball. Since the rally is long, it challenges the 

system’s ability of handling and synchronising the ball’s position among different 

cameras. This sequence is selected to demonstrate the multi-view correction, and 

the prediction performance of the system during the ball disappearance from all 

cameras. After the ball travels back and forth across the playing surface multiple 

times, a fault occurs by the ball hitting the net and bouncing back on the player’s 

own court.  To visualise the detailed detection results of the whole rally in an 

image, figures A.9 to A.12 in the Appendix show the flight path history of the 

ball detected by BDA1 and BDA2, and table 5.4 shows the quantitative result of 

each camera in this sequence. 

Table 5.4: Quantitative Result of each camera in sequence 6 

 BDA1 BDA2 

Quantitative Result Camera 1 Camera 4 Camera 2 Camera 3 

Total Frame 1593 1593 1797 1797 

Detection rate 94 % 88% 93 % 90 % 

Average radius of the ball 3.5 pixels 

Average RMSE (X, Y, R) 1.1 pixels 1.1 pixels 3.5 pixels 2.5 pixels 

Average Processing time 0.028 sec 

 

5.4.4 Sequence 7: Results Discussion 

This four views sequence is composed of 1530 identified ball locations 

taking 2 seconds to complete a rally. In this sequence, the player is playing the 

ball in a diagonal direction and striking the ball with force. As the result, the ball 
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is travelling at high speed and the sizes of the ball in opposite cameras appear 

varies. When the ball is in high-motion, the image of the ball is distorted and its 

colour becomes blurred. This sequence is selected to test the detection 

performance of dynamic velocity changes, the ball’s apparent shape variation, 

and colour merging with background objects. Instead of bouncing at the receiver 

side, this rally is ended when the ball goes beyond the table edge line without 

bouncing in the opponent’s court after being struck by the opponent. To visualise 

the detail detection results of whole rally in an image, figures A.13 to A.16 in the 

Appendix shows the flight path history of the ball detected by BDA1 and BDA2, 

and table 5.5 shows the quantitative result of each camera in this sequence. 

Table 5.5: Quantitative Result of each camera in sequence 7 

 BDA1 BDA2 

Quantitative Result Camera 1 Camera 4 Camera 2 Camera 3 

Total Frame 325 325 440 440 

Detection rate 99% 89%  87%  75% 

Average radius of the ball 3.5 pixels 

Average RMSE (X, Y, R) 1.1 pixels 3.6 pixels 1.6 pixels 1.1 pixels 

Average Processing time 0.027 sec 

 

5.4.5 Sequence 8: Results Discussion 

This four views sequence is composed of 722 identified ball locations and 

takes 2.5 seconds to complete a rally. The system was intended to test for 

identifying different types of fault such as faults due to multiple bounces, faults 

due to a return not bouncing on the right side of the table and faults due to the 
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ball hitting the floor. In this sequence, the receiver misses the ball after being 

struck by an opponent. The ball passed over beyond the table edge line and it 

drops under the table. To visualise the detail detection results of whole rally in an 

image, figures A.17 to A.20 in the Appendix show the flight path history of the 

ball detected by BDA1 and BDA2, and table 5.6 shows the quantitative result of 

each camera in this sequence. 

Table 5.6: Quantitative Result of each camera in sequence 8 

 BDA1 BDA2 

Quantitative Result Camera 1 Camera 4 Camera 2 Camera 3 

Total Frame 245 245 116 116 

Detection rate 98% 99%  97%  79% 

Average radius of the ball 3.5 pixels 

Average RMSE (X, Y, R) 2.6 pixels 2.7 pixels 2.1 pixels 3.2 pixels 

Average Processing time 0.021 sec 

 

As can be seen if figure 5.39, the system can successfully detect the ball bounce 

on the playing surface which is very close with the server end line. However, the 

detection can be lost when the image of the ball is dissolved in colour match 

background for several frames as shown in 5.40. However, the system can use 

the information from the opposite facing camera and continue to derive the 3D 

information by prediction. That predicted position will be used for umpiring. 
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5.4.6 Sequence 9: Results Discussion 

This four views sequence is composed of 1988 identified ball locations 

and takes 2 seconds to complete a rally. In this sequence, the ball progresses from 

being served until the rally is ended by the ball touching the corner of the table 

and dropping down to the floor. Detecting the service part is challenging as there 

are several occlusions. To visualise the detail detection results of whole rally in 

an image, figures A.21 to A.24 in the Appendix show the flight path history of 

the ball detected by BDA1 and BDA2. As can be seen in figures, several detection 

errors occur at the place where the image of the ball is blocked by the player’s 

hand and his bat. However, the system can detect the peak point of the ball, which 

is the necessary information to measure the ball rise for umpiring. Another 

challenging point in this sequence is detecting whether the ball touches the corner 

of the table or not. The system can identify the corner touches based on the 

detected location and the rate of change of velocity of the ball. The following 

table 5.7 shows the quantitative result of each camera in this sequence.  

Table 5.7: Quantitative Result of each camera in sequence 9 

 BDA1 BDA2 

Quantitative Result Camera 1 Camera 4 Camera 2 Camera 3 

Total Frame 565 565 429 429 

Detection rate 84% 79%  98%  89% 

Average radius of the ball 3.5 pixels 

Average RMSE (X, Y, R) 3.5 pixels 3 pixels 1.1 pixels 2.7 pixels 

Average Processing time 0.039 sec 
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5.4.7 Sequence 10: Results Discussion 

This four views sequence is composed of 4492 identified ball locations 

and takes 4 seconds to complete a rally. Among the ten sequences, this is the 

brightest one with a lot of light reflections. Since all the windows are wide open, 

it has multiple moving background objects which can be confused and 

indistinguishable with the ball. In this sequence, the ball strongly hits the net 

while it is crossing the receiver court to the server and the net gets several 

vibrations. This sequence is selected to demonstrate the detection performance of 

the system during multiple motion allied with object blurring and colour 

deviation impact by the uneven lighting of the scene. To visualise the detail 

detection results of whole rally in an image, figures A.25 to A.28 in the Appendix 

show the flight path history of the ball detected by BDA1 and BDA2, and table 

5.8 shows the quantitative result of each camera in this sequence. 

Table 5.8: Quantitative Result of each camera in sequence 10 

 BDA1 BDA2 

Quantitative Result Camera 1 Camera 4 Camera 2 Camera 3 

Total Frame 565 565 429 429 

Detection rate 84% 79%  98%  89% 

Average radius of the ball 3.5 pixels 

Average RMSE (X, Y, R) 3.5 pixels 3 pixels 1.1 pixels 2.7 pixels 

Average Processing time 0.039 sec 
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5.5 Result Comparison 

The ball tracking system has been tested with a set of video sequences of 

a complete rally captured at a real match scene. Although the system overcame 

various detection challenges, some errors do occur where the ball hits the net or 

when the image of the ball is blocked by the players’ bats or net. Errors occur 

especially at a region where the position of the ball is near the plane that joins the 

principal points of the opposite facing cameras. This means the 3D positions of 

the ball estimated by the second-order equation of motion can sometimes be 

inaccurate. Nevertheless, successful detections resume shortly after the ball 

passes that region. The detected ball trajectories are similar to the ground truth. 

The table 5.9 presents the quantitative result comparison of each tested sequence 

and identifies the system performance based on the experimental results of all 

sequences.  

Overall, the system detection rate is 94%. While the average radius of the 

ball in each frame is around 3.5 pixels, the system can detect the ball with RMSE 

2.4 pixel (due to large detection errors in a few occasions). This contribute the 

actual 3D error of RMSE distance is less than 2 cm. If the RMS error between 

the detected location and the ground truth is less than the diameter of the ball, the 

detection is assumed to be correct and this provides enough information to umpire 

a rally. The results video of playable file can be found in the OU library’s 

database (ordo.open.ac.uk, 2019). 
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Table 5.9: Quantitative Result of each tested sequence and result comparison 

Quantitative Result 
Sequence 

1 

Sequence 

2 

Sequence 

3 

Sequence 

4 

Sequence 

5 

Sequence 

6 

Sequence 

7 

Sequence 

8 

Sequence 

9 

Sequence 

10 

Total Frame 184 1160 800 3156 3240 6780 1530 722 1988 4492 

Detection rate 100% 91% 96% 90% 96% 92% 87% 95% 87% 92% 

Average radius of the 

ball in pixels 
4.5  1.95 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

Average RMSE  

(X, Y, R) in pixels 
1.38  1.9  1.6 3.2  3.2  2.1  1.9 2.7  2.6  2.5  

Average Processing 

time (Seconds) 
0.01  0.059  0.047 0.027 0.025 0.028 0.027 0.021 0.039 0.027 

System Performance Based on 10 different Sequences 

System Detection Rate 94% (Based on 10 different sequences) 

System Average RMSE 

(X, Y, R) 
2.4 pixels 

System Detection Time 0.028 seconds 

Processing time for 1 

second video (300 fps) 
8.4 seconds 



213 
 

5.6 Summary  

This chapter presents a MAS-based ball-tracking system, which is 

designed to be low-cost, portable and fit for umpiring purposes. A multi-view 

camera configuration was designed such that a minimum number of cameras 

were required, yet it was able to cover a large area and provide enough video 

clarity for tackling the detection challenges. Furthermore, a measurement error 

correction model was derived, and it can significantly reduce the detection 

errors. As the cameras do not need to be fixed to the ceiling, the system is 

portable, which is very important as most table tennis tournaments take place at 

multi-purpose sport venues where installation of fixed equipment is not 

permissible.  Although the experiment took place on a single computer, the 

design of the tracking system enables agents to be executed on a network of 

computers. This can spread the workload over a number of computers and 

significantly improve the overall performance such that real-time tracking is 

achievable. The average time taken to detect the ball from a frame is 0.028 sec. 

If each agent of the MAS (such as BDA1, BDA2 and MVCA) is run on a 

separate computer, this time is expected to be reduced to an acceptable delay 

for making an umpiring decision. The agent-based design also enables the 

system to be scalable. For example, if a larger playing area needs to be covered, 

more cameras (and agents) can be added to the system without significantly 

changing the program.  



Chapter 6 
 

A Multi-Agent System for Umpiring  

(Contribution Chapter) 

6.1  Introduction 

 This chapter presents the design and development of block 6 (Umpiring 

Rallies), part of the proposed framework which has presented in Chapter 1, 

figure 1.2. The aim of this research is to develop an intelligent system which 

can track the location of the ball from live video images and evaluate a rally 

according to the standardised table tennis rules. As table tennis is a fast sport, 

judging its rallies is a complex task and requires a lot of decisions. The demand 

for timely and accurate observations of a rally imposed by the table tennis rules 

is also very high. Some of the judgements described by the table tennis rules 

(Delano and L.F. (n.d.), 2018) are very challenging even for professionally 

trained umpires, because many observations are required within a very short 

period of time. A particular example is whether the ball hits the edge of the table 

or rises above the minimum height requirement during services. To achieve that, 

the analysis must be conducted very quickly, and produce reliable judgements 

rapidly and consistently.  

While the ultimate goal is to build an automatic umpiring system, one 

important requirement of such a system is to accurately and rapidly track the 

location of the ball during a match. The results of ball location play a crucial 
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role in analysing rallies and can seriously impact the decision making. 

Especially, the main difficulties of tracking the ball in a match are that the view 

of the ball can be occluded or merged with the background and becomes very 

difficult to detect. Example images of these challenging detection situations are 

shown in Figure 6.1 in which the image of the ball is blurry, colour matched 

with nearby objects, and very difficult to detect after it gets struck by the player. 

To tackle these problems, the previous chapter 5 proposed a multi-view ball 

tracking system by integrating the developed ball detection algorithm in chapter 

4 with the concept of a MAS. Based on the experimental results, employing 

multiple cameras has been very helpful in detecting objects which are occluded 

from one viewing angle and the detection performance has been improved. With 

the effective coordination of agents, the system has been scalable and larger 

amounts of data fed from multiple cameras can be processed in parallel. If a 

larger playing area needs to be covered, more cameras (and agents) can be added 

to the system without significantly changing the program.  

To sum up, this chapter presents an extended development of a multi-

agent system for evaluating table tennis rallies.  The developed system is 

composed of multiple interacting computing agents, which can perform specific 

tasks and decide for themselves what they need to do in order to achieve their 

objectives. The remainder of the chapter is organised as follows: Section 2 

briefly provides the laws of table tennis. It is followed by the detailed 

explanation of the proposed state machine for analysing table tennis rallies in 

Section 3. The architecture, the roles and responsibilities of each agent are 

presented in Section 4. Experimental results and performance comparison are 
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given to verify the effectiveness of the proposed system in Section 5. The 

system has been compared against the judgements of human umpires for both 

accuracy and rate of response.  

 

Figure 6.1: A blurry ball in each consecutive frame  
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6.2 Summarised Table Tennis Laws 

The following descriptions are summarised rules based on ITTF (ITTF, 

2018). At the beginning of the play, service shall start with the ball resting freely 

on the open palm of the server’s stationary free hand. The server shall then 

project the ball near vertically upwards, without imparting spin, so that it rises 

at least 16 cm after leaving the palm of the free hand and then falls without 

touching anything before being struck. As the ball is falling, the server shall 

strike it so that it touches first his or her court and then touches directly the 

receiver's court; in doubles, the ball shall touch successively the right half court 

of server and receiver. From the start of service until it is struck, the ball shall 

be above the level of the playing surface and behind the server's end line, and it 

shall not be hidden from the receiver by the server or his or her doubles partner 

or by anything they wear or carry.  

As soon as the ball has been projected, the server’s free arm and hand 

shall be removed from the space between the ball and the net. The space 

between the ball and the net is defined by the ball, the net and its indefinite 

upward extension. It is the responsibility of the player to serve so that the umpire 

can be satisfied that he or she complies with the requirements of the Laws, and 

either may decide that a service is incorrect. If the umpire is not sure about the 

legality of a service he or she may, on the first occasion in a match, interrupt 

play and warn the server; but any subsequent service by that player which is not 

clearly legal shall be considered incorrect. Exceptionally, the umpire may relax 

the requirements for a correct service where he or she is satisfied that 
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compliance is prevented by physical disability. Figure 6.2 demonstrates an 

example of the serve and the play of table tennis in which the server (in light 

blue) serves the ball and the receiver (in black) waits to return the ball. 

 

Figure 6.2: Demonstration of serve and play (Expert Table Tennis, 2013) 

In the figure 6.2, both of the white and black lines are legal serves yet 

the white line represents a long serve in which the ball goes diagonally across 

the table from corner-to-corner, just catching the end line of the table and the 

black line represents a short serve, to the middle of the table, with a second 

bounce just clipping the end-line of the table. The ball, having been served or 

returned, shall be struck so that it touches the opponent’s court, either directly 

or after touching the net assembly (ITTF, 2018).  



219 
 

During the service, if the ball touches the net and still bounces on the 

opponent’s side of the table, the service must be replayed and is called a Net 

Ball.  However, if the ball touches the net and does not bounce on the 

opponent’s side of the table, the server loses the point. In singles, the server 

shall first make a service, the receiver shall then make a return and thereafter 

server and receiver alternately shall each make a return. A player strikes the ball 

if he or she touches it in play with his or her racket, held in the hand, or with his 

or her racket hand below the wrist. However, Faulty Conditions can occur 

when a player obstructs the ball which means: 

 if a player, or anything the player wears or carries, touches the ball in 

play when it is above or travelling towards the playing surface; 

 if the ball passes over the player court or beyond his or her end line 

without touching his or her court, after being struck by an opponent;  

 if the ball, after being struck by an opponent, passes through the net or 

between the net and the net post or between the net and playing surface; 

 if an opponent deliberately strikes the ball twice in succession. 

To this end, a purpose-built computer vision system could help evaluate 

these difficult observations. This chapter presents a prototype system which has 

been built and a variety of complex table tennis rallies were evaluated with the 

developed system. The developed system has an ability to declare when and 

what kind of fault occurs such as a fault due to double bounce, a fault due to a 

return not bouncing on the right side of the table, or a fault due to the ball 

dropping under table and hitting the floor etc. 
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6.3 Proposed State Machine for Analysing Rallies 

To umpire the legality of the play, it is required to analyse table tennis 

rallies and implement some statistical rules for evaluation. Typically, a rally can 

be classified and identified as 14 possible states which are: 

 State 1: Ball on palm 

 State 2: Ball leaves palm and rises up 

 State 3: Ball reaches its peak 

 State 4: Ball is falling 

 State 5: Ball is initially struck by the server 

 State 6: Ball initially bounces on the server side 

 State 7: Ball crosses over the net (server to receiver) 

 State 8: Ball bounces on the receiver court  

 State 9: Ball is struck by the receiver 

 State 10: Ball crosses over the net (receiver to server) 

 State 11: Ball bounces on the server side 

 State 12: Ball is struck by the server 

 State 13: Ball touches the net 

 State 14: Net ball 

Figure 6.3 illustrates the detected states of a table tennis rally in which the 

numbered blue circles indicate the different states and the red circles represent 

the faulty states.  
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U: Under the level of the playing surface 

F: Front of server end line 

H: Not high enough (distance between ball leave palm and peak is less than 16 cm) 

M: Multiple Bounces 

S: Skip a state 

D: Disappear  

 
Start of the rally 

 

End of the rally or Exit with fault 

Figure 6.3: Detected States of a table tennis rally 

 

In the figure 6.3, the abbreviations U, F, H, M, S, and D stand for the distinct 

types of possible faults that can lead to the end of the rally.  
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 U: the rally is identified as faulty due to the ball being served below the 

level of the playing surface or dropped under the table. 

 F: a faulty service because the ball is served in front of the server end line.  

 H: the ball is not projected vertically upwards or not high enough (distance 

between ball leave palm and peak is less than 16 cm). 

 M: the rally is faulty due to multiple bounces on the table. 

 S: the rally skips a state or misses a step and exits as faulty. 

 D: the ball disappears and didn’t reappear within the acceptable time 

interval. 

Among the six possible faults which are experimented upon in this chapter, U, 

F, H, and D can be found during a service and U, M, S, and D can happen at 

any stage for the rest of the rally.  The blue arrow indicates that the ball is 

advancing from State to State and the red arrow illustrates that the ball is in play 

one state after another until the rally is ended by any type of fault. Each step of 

the evaluations is explained below in detail. 

State 1: Ball on palm - First, the system must be able to distinguish whether 

the match is in play mode or not. Determining the start of a rally is challenging 

because many players have different pre-service actions, such as tossing the ball 

on their bats, table or the floor. Furthermore, there are a large variety of services 

the player can adopt. However, the server is required to place the ball on the 

open palm of his/her stationary free hand before the service starts. The ball 

usually stays on the open palm for one to a few seconds before the service starts. 

Based on this, as soon as the system can detect a short pause with the ball 
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stationary, it is used to identify the start of the service. From the start of service 

until the ball is struck, the ball should be above the level of the playing surface 

and behind the server's end line. If the ball is under the playing surface (U) or 

in front of server end line (F), the system will alert and exit with a fault as shown 

in figure 6.3. The server shall then project the ball near vertically upwards. 

State 2: Ball leaves palm and rises up - When the system can detect the ball’s 

rise, the state machine will switch to state 2 which is ball leaves palm and rises 

up.  In this state, the ball should be above the level of the playing surface and 

behind the server's end line. If not, the system will identify whether the faulty 

state is caused by U which is under the level of the playing surface or F, in front 

of the server end line. There is also another possible faulty situation that the 

server may project the ball with force and the ball might go beyond the view. 

For this scenario, the system will try to trace back the returning ball by 

expanding the detection region as explained in chapter 4. If the ball does not 

return until the specified time, the system will alert and exit while declaring the 

fault D, Disappear. 

State 3: Ball reaches its peak - As soon as the system can detect the peak of 

the ball’s rise (a frame before falling), the state machine will switch to state 3. 

Then the system will make a necessary measurement such as the degree of the 

rise and the height. In this state, not only should the ball be above the level of 

the playing surface, it should also be behind the server's end line and rise at least 

16 cm after leaving the palm of the free hand. Then, the ball should fall without 

touching anything before it is struck. If not, the system will identify whether the 
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faulty state is caused by any one of the four possible faults U, F, H, D and 

terminate. 

State 4: Ball is falling - When the system can detect the ball’s fall, the state 

machine will switch to state 4 which is ball falling.  The faulty possibilities of 

this state are as the same as state 2. In this state, the ball should be above the 

level of the playing surface and behind the server's end line. If not, the system 

will identify whether the faulty state is caused by U which is under the level of 

the playing surface or F, front of server end line or D, disappear.  

State 5: Ball is initially struck by the server - During the time when the ball 

is rising upward and falling downward without touching anything before it is 

struck, the displacement of the ball is nearly stable. As soon as the system can 

detect the sudden change of ball’s velocity, it is assumed that the ball is struck 

by the server. From the start of service until it is struck, the ball should be above 

the level of the playing surface and behind the server's end line, and it should 

not be hidden from the receiver by the server. Otherwise, the system will 

identify whether the faulty state is caused by U which is under the level of the 

playing surface or F, front of server end line or S, miss to get struck, or D, 

disappear. 

State 6: Ball initially bounces on the server side - According to the table 

tennis rules, the ball initially needs to touch server’s court after it has been struck 

by him or her. In this state, the system needs to detect the ball’s bounce. If the 

system can identify that the ball touches the level of playing surface and its 

velocity changes, the state machine will switch to state 6 which is server bounce. 
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In this state, the fault can be due to U which is the ball drops under the table or 

M, multiple bounces on its own court or S, doesn’t bounce at all and crosses 

over the net or D, disappear from the view until the acceptable time limit. 

State 7: Ball crosses over the net (server to receiver) - After the previous state 

6, as soon as the system can detect the ball crosses over the net, it will switch to 

state 7 which is ball crosses over the net. Sometimes, the running ball may touch 

the net assembly. At that time, the system will announce the touch net and 

switch to state 13. Although the ball touches the net, if it can successfully reach 

the opponent's court, it is acceptable and either directly or after touching the net 

assembly (Net Ball).  

State 8: Ball bounces on the receiver court - If the ball touches directly the 

receiver's court, after crossing over the net from server to receiver, the system 

switches to state 8, receiver bounce. In this state, the system needs to detect the 

ball’s bounce. If the system can identify that the ball is touching the level of the 

playing surface and its velocity changes, the state machine will switch from 

state 7 to 8 which is server bounce. In this state, the fault can be due to U which 

is the ball drops under the table or M, multiple bounces on its own court or S, 

doesn’t bounce at all or D, disappear from the view until the acceptable time 

limit. 

State 9: Ball is struck by the receiver - After the previous state 8, as soon as 

the system can detect the sudden change of the ball’s velocity and if the ball is 

travelling in a backward direction, it is assumed that the ball is being struck by 

the receiver. From the start of service until it is struck, the ball should be above 
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the level of the playing surface and behind the server's end line, and it shall not 

be hidden from the receiver by the server. In this state, the fault can be due to U 

which is the ball drops under the table or M, multiple bounces on receiver court 

or S, doesn’t get struck at all or D, disappear from the view until the acceptable 

time limit. 

State 10: Ball crosses over the net (receiver to server) - After the previous 

state 9, as soon as the system can detect the ball crosses over the net, it will 

switch to state 10 which is ball crosses over the net. Like previous states, the 

faulty state can be caused by either one of the three possible faults such as U, S, 

D and terminate. 

State 11: Ball bounces on the server side - After the previous state 10, as soon 

as the system can detect the ball bounce on the server side, the state machine 

will switch to state 11 which is server bounce. Although the name and condition 

of detecting the bounce are similar to state 6, the previous state identifier is 

different. State 6 will only happen once in a rally although state 11 will happen 

again and again until the end of the rally. However, the fault can happen the 

same as state 6 such as the rally is ended due to U which is the ball drops under 

the table or M, multiple bounces on the table or S, doesn’t bounce at all or D, 

disappear from the view and didn’t come back until the acceptable time interval. 

State 12: Ball is struck by the server - After the previous state 11, as soon as 

the system can detect the ball is being struck and if the ball is travelling in a 

backward direction, it will switch to state 12, server strike. In this state, the same 

faulty possibilities can be due to U, M, S or D. 
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State 13: Ball touches the net - As the ball is falling at state 4, the server should 

strike at state 5 so that it touches first his or her court at state 6 and then touches 

directly the receiver's court state 6. However, if the ball touches the net and does 

not bounce on the opponent’s side of the table, the server loses the point and the 

system identifies a fault.  

State 14: Net ball - During the service, if the ball touches the net at state 13 and 

still bounces on the opponent’s side of the table, the service must be replayed, 

and the system is switched to state 14 which is Net Ball. 

6.4 Multi-Agent System for Umpiring Table 

Tennis Rallies 

To achieve umpiring decisions within a short period of time, more 

agents have been developed to reinforce the previously developed multi-agent 

ball detection system. Instead of one agent struggling to perform many tasks 

such as detecting, trajectory constructing, analysing that constructed trajectory 

and identifying the state of the rally, the proposed system is composed of five 

different types of agents which have specific knowledge and can individually 

perform an assigned task. This approach simplifies the implementation of a 

multi-agent automatic umpiring system and improves the overall performance. 

To contribute to the development of an automatic umpiring system, the system 

is composed of the following agents: 

 Ball Detection Agents (BDAs) 

 Multi-view Correction Agent (MVCA) 



228 
 

 Trajectory Construction Agent (TCA) 

 Feature Detection Agent (FDA) 

 State Detection Agent (SDA) 

Ball Detection Agent (BDA): The BDA takes the responsibility of detecting 

and tracking the ball and determining the 3D location of the ball from a stereo 

view. It detects the 2D screen position of the ball from each view, derives the 

3D real-world position of the ball and sends it to the MVCA. BDA also provides 

the current frame number, the radius and the detection score of the current ball 

detection result to MVCA for further analysis. As the system is developed as 

scalable, there can be more than one BDA according to the requirement and 

facility such as available number of cameras. If there are more cameras, the 

system can have more BDAs.  

Multi-View Correction Agent (MVCA): The MVCA controls the BDAs by 

issuing commands such as GET, WAKE, PUT and SLEEP as explained detail 

in Chapter 5. At the start, the MVCA instructs all BDAs to report the ball 

position as it has an ability to automatically detect how many different types of 

agents are currently running in the system. If the ball is visible in a BDA’s view, 

it will return the ball position. Otherwise, it will state “No Ball” and hibernate. 

Since the MVCA maintains successive ball positions, it has an ability to predict 

the trajectory of the ball for each BDA. In this way, the MVCA can check the 

consistency of the ball’s 3D position from multiple BDAs and use this 

information to derive the most likely ball position. Whenever the MVCA 

receives ball positions from a different BDA, it compares the incoming data 



229 
 

with its predicted data. If the gap is higher than the average error and the 

detection score of that BDA’s detection is low, the MVCA can recognise that 

an incorrect ball location is given by a view. For that scenario, the MVCA sends 

back the corrected screen position of the ball to the BDA that manages that view 

for correction. After that, the MVCA sends the corrected ball positions from all 

BDAs to the TCA.   

Trajectory Construction Agent (TCA): As soon as the TCA receives the 

corrected ball position from the BDAs via the MVCA, it constructs the joint 

trajectory. While the ball is in an overlapping area, the TCA will receive the 

duplicated ball positions from different BDAs which are currently detecting the 

same ball at the same time. If the ball positions among BDAs are not 

synchronised, the TCA will choose the most accurate 3D position based on the 

history of the detection performance, predicted trajectory and the detection 

score of the different BDAs. Like the MVCA which has an ability to predict the 

trajectory of the ball for each BDA, the TCA also has a predictor that estimates 

the whole trajectory by combining the results from all BDAs. In case any BDAs 

cannot detect the ball for some reason, the TCA can provide the approximate 

3D ball location based on the knowledge of previous successful detection 

results. To prevent any misalignment errors that can occur while the ball is 

crossing from one visible region to another, the TCA smoothens out the whole 

trajectory based on the running average error before sending the results to the 

FDA for further analysis.  
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Feature Detection Agent (FDA): The FDA detects the trigger for changing 

one state to another. To understand the pattern of the ball’s trajectory, the FDA 

analyses all the coordinates of the ball’s 3D position. It considers, for example, 

whether the horizontal running displacement (X) or vertical height (Y) or the 

depth (Z) are increasing or decreasing, a sudden change of velocity or no 

movement at all, or the direction of the movement. Moreover, the FDA also 

detects the trigger of whether the ball gets struck, bounces on the table, crosses 

over the net, or touches the net. In terms of evaluating the correct play, the FDA 

also identifies whether the height of the ball is above or below or touching the 

table. Moreover, the FDA analyses whether the ball is travelling within or 

outside of the playing surface. In this way, the FDA can provide to the SDA 

knowledge of what kind of features are happening and where and when they 

occur. 

State Detection Agent (SDA): The SDA controls the state machine and update 

the current state of the rally by analysing the features provided from the FDA. 

The SDA decides the current state, the previous state of the ball, what kind of 

features are currently and previously happening in the rally, and whether the 

rally is legal or not. To correctly identify the current state of the rally, the SDA 

learns the behaviour of the play and clarifies whether the current play is right or 

wrong by detecting every possible fault in each state such as whether the ball is 

served behind the server end-line or bounces on the correct ends of the table and 

so on. Figures 6.4 and 6.5 summarise the developed multi-agents and their 

functions, in which the arrow indicates the interaction between agents. BADs 

are used for detecting, tracking and reprojecting the ball 2D measurement into 
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3D. The MVA is developed for correcting errors using inter-view information 

and central control of BDAs. The TCA is mainly used for constructing the joint 

3D trajectory and predicting the whole trajectory. The FDAs detect triggers for 

each state change. The SDA analyses features of the 3D trajectory and identifies 

each state change as well as faults. Depending on the system requirement, 

varying number of instances of all these types of agents can be added to 

reinforce the performance.  

 

Where:  

BDA1, BDA2 = Ball Detection Agents 

MVA = Multiview Managing Agent 

TCA = Trajectory Construction Agent 

FDA = Feature Detection Agent 

SDA = State Detection Agent 

Figure 6.4: Relationship between Multi-agents  
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Figure 6.5: Multi-agents and their Responsibility 
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As specialised agents concentrate on performing their own task, many 

observations can be made in parallel. This approach can spread the workload 

over a number of agents and significantly improve the overall performance. 

Besides the agent abstraction, each agent can inquire the relative positions and 

orientations of all other agents performing tasks in its field of view. The system 

provides peer-to-peer agent communication based on the asynchronous message 

passing paradigm and the automatic agent discovery mechanism. Not only can 

these agents act autonomously, they also have a capability of interacting with 

other agents and utilising the results of one agent for another. Incorporating 

multiple agents and working together, the system can assist a human umpire by 

continuously providing the precise ball location in any possible situation, 

analysing the trajectory of a rally and determining the legality of the play. If 

necessary, the system can be expanded by increasing the number of agents to 

perform more sophisticated tasks. The developed system can be distributed 

across machines by moving agents from one machine to another when required.  

 

6.5 Results and Discussion 

The system was tested with several 4-view video sequences captured at 

a match scene. Each view of sequences has a resolution of 512×384 pixels and 

was captured at 300 frames per second (fps). As the system is primarily 

designed to aid umpires, the video was taken at a position and an angle similar 

to the umpire’s perspective. This chapter provides an example of seven tested 

sequences which comprised different conditions of complete table tennis rallies 



234 
 

in which the different states of each rally are identified. A summary of the key 

features of the tested sequences is shown in Table 6.1 below.  

 

Table 6.1: Summarisation of the tested sequences’ characteristics 

Sequence Cover the state Characteristic 
End the rally 

due to 

4 State 5 to 13 
- Hits the net 

- Cross over the net 

M: Double 

Bounces 

5 State 1 to 12 

- Partially see the service 

- Drop down the table 

- Disappear from all views 

D: Disappear 

6 State 3 to 12 
- The longest rally 

- Double bounces  

M: Multiple 

Bounces 

7 State 6 to 12 

- Without bouncing at the 

receiver side 

- It goes over and 

disappeared 

O: Over Edge 

line  

D: Disappear 

8 State 5 to 8 - Receiver misses the ball  S: Skip the state 

9 State 1 to 10 

- Partially see the service 

- The ball touches the 

corner of the table 

- Drop down the table and  

- Disappear from all views 

U: Under table 

10 State 4 to 11 

- Very bright  

- The most complicated 

background 

- The ball hits the net 

- The ball crosses over the 

net and has multiple 

bounces on the table 

M: Multiple 

Bounces 
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6.5.1 Sequence 4: Results Discussion 

The chosen sequence consists of a complete table tennis rally in which the 

ball comes from VA2, bounces on its own court, and crosses over the net. When 

the ball is out of VA2 and entering in the scope of VA1, it was continuously 

detected by BDA1. The rally is ended by hitting the net with multiple bounces 

on the opponent’s court. As can be seen in the figure 6.5, the whole trajectory 

is constructed based on the results of BDA1 (PC1) and BDA2 (PC2). The figure 

6.6 shows the results of a multi-agent system for sequence 4 in which the ball 

is travelling from state 5 to state 12. The table 6.2 and the figure 6.7 present the 

comparison of state change frame. The system can identify every state correctly 

with the detailed 3D ball detection results with the average of 2 frames delay.  

Table 6.2: Sequence 4 - State Change frame comparison 

State 
Ground Truth 

Frame No 

Detected Frame 

No 
Frame Delay 

Average 

Frame Delay 

5 1 1 0 

2 

6 45 45 0 

7 88 88 0 

8 188 192 4 

9 236 242 6 

10 316 316 0 

11 374 379 5 

12 463 469 6 

7 550 550 0 

8 628 628 0 

12 632 632 0 
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Camera 1 

 

 
Camera 2 

 

Camera 4 

 

 
Camera 3 

 

 
 

 
 

 

Figure 6.6: Sequence 4 - 3D Detected Joint Trajectory  
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Figure 6.7: Sequence 4 - Results of multi-agent system 

 

Figure 6.8: Sequence 4 - State Change Frame Comparison  
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6.5.2 Sequence 5: Results Discussion 

This sequence consists of a complete table tennis rally in which the ball is 

served from VA1, is struck by the server, bounces on its own court, and crosses 

over the net. When the ball was out of VA1 and entering in the scope of VA2, 

it was continuously detected by BDA2 and so on until the rally was ended by 

the ball dropping under the table and disappearing from the view of all BDAs 

over the acceptable time interval and with the fault of D: Disappear. As can be 

seen in the figure 6.8, the whole trajectory is constructed based on the results of 

BDA1 (PC1) and BDA2 (PC2). The figure 6.9 provide the results of a multi-

agent system for sequence 5. The table 6.3 and the figure 6.10 present the 

comparison of state change frame. The system can identify every state correctly 

with the detailed 3D ball detection results with the average of 4 frames delay.  

Table 6.3: Sequence 5 - State Change frame comparison 

State 
Ground Truth 

Frame No 
Detected Frame 

No 
Frame Delay 

Average 
Frame Delay 

4 5 5 0 

4 

5 20 20 0 
6 50 65 15 
7 119 119 0 
8 186 187 1 
9 270 277 7 
10 343 343 0 
11 373 386 13 
12 448 456 8 
7 545 545 0 
8 603 606 3 
9 704 711 7 
10 769 769 0 
11 798 798 0 
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Figure 6.9: Sequence 5 - 3D Detected Joint Trajectory  
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Figure 6.10: Sequence 5 - Results of multi-agent system 
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6.5.3 Sequence 6: Results Discussion 

Among the ten sequences, the sequence 6 is the longest sequence which 

is composed of 1800 frames. The system can identify every state correctly with 

the detailed 3D ball detection results with the average of 2 frames delay. The 

rally is ended by the ball crosses over the net and has multiple bounces on the 

table. To get the overall idea, the table 6.4 shows the state change frame 

comparison, figure 6.11 shows the joint trajectory history of BDA1 and BDA2. 

The figure 6.12 and 6.13 provide the results of a multi-agent system.  

Table 6.4: Sequence 6 - State Change frame comparison 

State 
Ground Truth 

Frame No 
Detected Frame 

No 
Frame Delay 

Average 
Frame Delay 

6 35 35 0 

2 

7 105 105 0 
8 160 154 6 
9 180 170 10 
10 313 313 0 
11 369 370 1 
12 450 450 0 
7 529 529 0 
8 606 600 6 
9 640 640 0 
10 752 752 0 
11 810 810 0 
12 869 875 6 
7 952 952 0 
8 992 998 6 
9 1078 1078 0 
10 1213 1213 0 
11 1311 1313 2 
12 1483 1483 0 
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Figure 6.12: Sequence 6 - 3D Detected Joint Trajectory  
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Figure 6.13: Sequence 6 - Results of multi-agent system 

 

Figure 6.14: Sequence 6 - State Change Frame Comparison
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6.5.4 Sequence 7: Results Discussion 

In this sequence, the ball is entering the camera view by state 5 

(Beginning Server Strike) and the system is detected from state 6 (Server 

Bounce) to state 12 (Looping Server Strike). The rally is ended by the ball goes 

beyond the server end-line without bouncing in the opponent’s court after being 

struck by the opponent. As can be seen in the figure 6.14, the whole trajectory 

is constructed based on the results of BDA1 (PC1) and BDA2 (PC2). The figure 

6.15 provide the results of a multi-agent system for sequence 4 in which the ball 

is travelling from state 5 to state 10. The table 6.5 and the figure 6.16 present 

the comparison of state change frame. The system can identify every state 

correctly with the detailed 3D ball detection results with the average of 3 frames 

delay. 

Table 6.5: Sequence 7 - State Change frame comparison 

State 
Ground Truth 

Frame No 

Detected Frame 

No 

Frame 

Delay 

Average 

Frame Delay 

5 1 1 0 

3 

6 19 20 1 

7 110 108 2 

8 153 153 0 

9 180 168 12 

10 297 297 0 
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Figure 6.15: Sequence 7 - 3D Detected Joint Trajectory  
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Figure 6.16: Sequence 7 - Results of multi-agent system 

 

 

Figure 6.17: Sequence 7 - State Change Frame Comparison 
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6.5.5 Sequence 8: Results Discussion 

In this sequence, the ball is entering the camera view by state 4 (Falling) 

and the system is detected from state 5 (Beginning Server Strike) until state 8 

(Receiver Bounce). The rally is ended by the receiver misses the ball. The whole 

trajectory is constructed based on the results of BDA1 (PC1) and BDA2 (PC2). 

The system can identify every state correctly with the detailed 3D ball detection 

results with the average of 2 frames delay. To get the overall idea, the table 6.6 

shows the state change frame comparison, figure 6.17 shows the joint trajectory 

history of BDA1 and BDA2, and figure 6.18 and 6.19 show the result of multi-

agent system. 

Table 6.6: Sequence 8 - State Change frame comparison 

State 
Ground Truth 

Frame No 

Detected Frame 

No 

Frame 

Delay 

Average 

Frame Delay 

5 1 1 0 

2 

6 10 15 5 

7 93 93 0 

8 166 170 4 

10 238 238 0 
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Figure 6.18: Sequence 8 - 3D Detected Joint Trajectory  
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Figure 6.19: Sequence 8 - Results of multi-agent system 

 

 

 

Figure 6.20: Sequence 8 - State Change Frame Comparison 
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6.5.6 Sequence 9: Results Discussion 

In this sequence, the BDA1 can partially see the service and the ball 

progresses from state 1 (On Palm) to 10 (Crossover Net). The rally is ended by 

the ball touched the corner of the table and dropping under the table. As can be 

seen in figure 6.20 below, the system can detect the corner-touch and can 

identify every state correctly with the detailed 3D ball detection results with the 

average of 2 frames delay. To get the overall idea, the table 6.7 shows the state 

change frame comparison, figure 6.21 shows the joint trajectory history of 

BDA1 and BDA2, and figure 6.22 shows the result of multi-agent system. 

 

Table 6.7: Sequence 9 - State Change frame comparison 

State 
Ground Truth 

Frame No 

Detected Frame 

No 
Frame Delay 

Average 

Frame Delay 

1 1 1 0 

2 

2 22 22 0 

3 40 43 3 

4 41 44 3 

5 102 105 3 

6 130 135 5 

7 188 188 0 

8 257 260 3 

9 319 320 1 

10 407 407 0 

10 510 510 0 
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Figure 6.21: Sequence 9 - 3D Detected Joint Trajectory  
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Figure 6.22: Sequence 9 - Results of multi-agent system 

 

 

Figure 6.23: Sequence 9 - State Change Frame Comparison 
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6.5.7 Sequence 10: Results Discussion 

Among the ten sequence, this sequence is filmed with very bright and the 

most complicated background. In this sequence, the ball is entering the camera 

view by state 4 (Falling) and the system is detected from state 5 (Beginning 

Server Strike) to state 12 (Looping Server Strike). The rally is ended by the ball 

crosses over the net and has multiple bounces on the table. As can be seen in 

the figure 6.23, the whole trajectory is constructed based on the results of BDA1 

(PC1) and BDA2 (PC2). The system can identify every state correctly with the 

detailed 3D ball detection results with the average of 4 frames delay. To get the 

overall idea, the table 6.8 shows the state change frame comparison, figure 6.23 

shows the joint trajectory history of BDA1 and BDA2, and the figures 6.24 and 

6.25 shows the result of multi-agent system. 

Table 6.8: Sequence 10 - State Change frame comparison 

State 
Ground Truth 

Frame No 
Detected Frame 

No 
Frame 
Delay 

Average 
Frame Delay 

5 1 1 0 

4 

6 43 45 2 
7 88 88 0 
8 171 173 2 
9 234 236 2 
10 336 336 0 
11 427 431 4 
12 510 528 18 
7 590 591 1 
8 673 674 1 
9 820 820 0 
10 911 911 0 
11 1000 986 14 
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Figure 6.24: Sequence 10 - 3D Detected Joint Trajectory  
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Figure 6.25: Sequence 10 - Results of multi-agent system 

 

Figure 6.26: Sequence 10 - State Change Frame Comparison 
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6.6 Result Comparison 

The system has been tested against the judgements of a human umpire. Both 

the accuracy and response rate have been considered. As shown in result 

discussion of each sequence, the system can identify different states of 

situations where a point was awarded, such as whether the ball was over the 

server end-line, bounced on the server side of the table or crossed over the net. 

Moreover, the system has an ability to declare when a fault occurs such as a 

fault due to double bounce, a fault due to a return not bouncing on the right side 

of the table, or a fault due to the ball drop under table and hitting the floor etc. 

Based on seven different sequences, the system can evaluate the entire rally 

through recorded video sequences of live play with 100% state detection rate 

with the average of 3 frames delay. 

Table 6.9: System Average Frame Delay 

Sequence 

Number 

Number of Delay 

Frame in State Change 

Average Frame 

Delay 

State 

Detection 

Rate 

4 2 

3 100% 

5 4 

6 2 

7 3 

8 2 

9 2 

10 4 
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6.7 Summary 

This chapter began with the main difficulties of tracking the ball in a match 

scene and the requirement of the incorporation of MAS. Subsequently, the 

multi-agent state machine was presented to critically analyse table tennis rallies 

and develop decision making techniques for providing a judgement. The 

proposed system was applied to a variety of complex table tennis rallies and 

some successful results were obtained. The system is able to track the ball, 

identify the state and can provide the decision about whether the ball goes under 

the playing surface or bounces multiple times on the table. As this is a pilot 

study, the focus is on the development of the techniques, rather than building a 

complete system. Therefore, some of the details of the table tennis rules will not 

be considered. As table tennis rules are revised from time to time, they may be 

changed in the future. The system is therefore implemented as a rule-based 

system to allow the efficient update of the rules. 



Chapter 7 

Future Work  

 

There are a number of potential opportunities to extend the multi-view 

umpiring framework presented in this thesis, as well as exploring other domains 

for its applicability. Some of these prospective research avenues will now be 

reviewed.  

1. The presented work had the clear overarching objective of achieving 

umpiring system without incurring high computational cost. Table tennis is 

the selected game to test the idea of this research. This thesis has constructed 

a complete ball’s trajectory from multiple cameras, determined the legality 

of it, evaluated it according to the rules and decided autonomously by 

identifying the different states of rally. The system can identify a number of 

fault conditions, e.g. fault due to multiple bounces, fault due to not bouncing 

on the right side of the table, fault due to the ball dropping to the floor etc. 

Because of a limited time-frame of PhD research, this study was focused on 

developing the algorithms and techniques, rather than building a complete 

commercial product. Therefore, some states and situations were not cover 

in this research such as doubles player’s rules and scoring the match. It 

would be insightful to investigate more detail states, more complex 

scenarios and continue to develop up to a complete umpiring system till 
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points are awarded. The addition of a set of agents that covers all the rules 

of the table tennis is the obvious first extension of this research. 

2. Moreover, it is crucial to achieve a result as real-time to umpire a match. 

Another important future work is to develop a mechanism to reduce the 

computation. One possible way is to implement a new strategy which 

dynamically adjust the detection frame rate depends on the speed of the ball. 

When the ball travels slow, the rate of change of its velocity and acceleration 

is not much different and it is not necessary to detect the ball at every single 

available frame. By skipping some frames, it could reduce the processing 

time. 

3. When the environment is complex and the needs of capturing the same 

object with different background, the contributed 3D derivation exploiting 

the proven FTF camera configuration can be used for identifying the real-

world location of object. Moreover, the presented technique of multi-view 

auto correction and continuous tracking across multiple cameras observed 

by multi-agent approach can be extended to multiple moving objects 

tracking instead of one. 

4. However, the current limitation of FTF cameras configuration is it fails to 

work out the 3D position of the ball when the ball is near the plane where 

the principal points of the opposite facing cameras joined. When the ball is 

in that region, the developed system has been extrapolated the ball positions 

by using the result from previous frames. A better solution is capturing the 

scenes with a larger OR between the SBS and to develop a strategy to 
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intelligently choose between using the FTF and SBS cameras for working 

out the 3D position.  

5. The ability to detect and evaluate the correspondences 3D position between 

the object and its reference points can also be applied in rule-based decision-

making system. One promising area of investigation would be to extend this 

framework to 3D automatic sport video umpiring such as football, cricket, 

tennis, volleyball, baseball, basketball, snooker, golf and etc. More 

functions could be inspired from the leading innovator in sports technology, 

Hawk-Eye which have gained popularity in the camera-based ball detection 

system due to its ability in tracking the ball, virtual display of it, providing 

the broadcast enhancement and assists officials when awarding points that 

played sports fairer and more engaging with the audience. 



Chapter 8 

Conclusion 

 

Object tracking and evaluating its 3D position are increasingly used for 

innovative computer vision research including an automatic sport umpiring. To 

umpire a match automatically, first essential component is to detect the 3D 

position of object and use it to compare with the other reference points or lines 

for assessment. Although numerous methods have progressed rapidly in the last 

decades, detecting and tracking is still a challenging task when the object of 

interest (ball) has small size, fast movement across complex background, 

sudden change of trajectory and illumination changes. Due to this, the most 

useful features of object such as colour, shape and size become distorted and 

causes the detecting and tracking task to be difficult. Although powerful kernel-

based tracking and classifier-based detection methods such as Kalman, 

Extended KF, Mean Shift Tracker, Particle filter and Support Vector Machine 

are widely employed in this area, they either imply a significant computational 

cost or time. While demanding reliable detection results for umpiring, 

conducting the whole tracking and evaluation process are required to finish in 

real-time. This limits the system not to develop with high computational 

algorithms. Although the proprietary decision support systems such as Hawk-

eye provides good detection results, its hardware setup is fixed, expensive and 
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the need of an aerial view which are not applicable for the proposed low-cost 

and portable umpiring system. 

In this thesis, a new multi-view ball detecting, and tracking strategy has 

been presented which comprises a suite of innovative algorithms to improve the 

detection performance by features based detecting and segmenting the object 

from the background using adaptive CT in combination with motion detection 

method. A new inter-view correction technique has been developed to recover 

the detection failure between different views. As well as, a new multi-agent 

framework has also been developed to enhance the tracking performance, lower 

the computational time complexity, simplicity, extendibility and it has been 

critically evaluated using several table tennis match sequences. In this way, this 

research makes three original contributions to the object detection, tracking and 

umpiring domain, which are summarised as follows: 

 The first significant contribution is a reliable ball detection strategy that 

accurately detects the location of ball in low resolution sequences. The 

ACTMD technique for object segmentation which has a capability to 

flexibly segment the ball from the background was developed for 

recomputing the threshold level and automatically updating between two 

effective visual and motion detection techniques based on the current 

results. Moreover, a new IVSC mechanism, which uses a positional 

information from another view to estimate the location of the object in 

current view, is developed to recover the detection failure. Rigorous 

experiments confirm that the IVSC improved the detection rate of individual 

views such as left view (83% detection rate) and right view (85% detection 
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rate) to 97% (combined view detection rate) as discussed detail in Section 

4.3. 

 The second significant contribution is a novel framework for ball tracking 

using on a multi-view system which reduce occlusion, improve detection 

and continuous tracking the object among capturing devices. A new way of 

FTF camera configuration allows the system to capture the object at 

different angles, in either a closer or wider view. The developed Error Model 

reduces the calibration and misalignment errors from 10 cm to less than 1 

cm as presented detail in Section 5.3. The development of artificial 

intelligence tracking technique allows the system to simultaneously process 

the data in parallel, automatically turn on and turn off the unnecessary 

cameras (that the ball is out of its view), identifies the favourable results 

when conflict results are occurred and reconstructs the broken trajectory to 

be a complete one. It provides the user with the flexibility to trade between 

speed and tracking ability. 

 The third significant contribution is a new state-machine based evaluation 

system for analysing table tennis rallies. The developed intelligent system 

can analyse the table tennis rallies, automatically evaluate its legality and 

identify the current state of rally. This means the developed multi-agent 

umpiring system is computationally more efficient, adaptive and flexible in 

changes at will than the conventional umpiring system. Finally, several table 

tennis match sequences have been tested for evaluation and experimental 

results have been conclusively confirm that the average detection rates are 

over 94% among sequences and 100% umpiring results. 
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In summarising, this new automatic system for real-time video umpiring makes 

a notable contribution to the detecting, tracking and evaluating performance of 

video sequences characterised by illumination, noises and multiple occlusion 

conditions. Most importantly, it offers a flexible, adaptable and scalable solution 

for tracking, assisting decision and providing a measurement evidence not only 

be executed in sport video sequences, but also extendable to the 3D computer 

vision domain in the future. 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 1 876 92% 3.5 pixels 3.2 pixels 0.029 sec 

Figure A.1: Sequence 4 - Camera 1: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 2 702 83% 3.5 pixels 3.6 pixels 0.024 sec 

Figure A.2: Sequence 4 - Camera 2: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 3 702 95% 3.5 pixels 2.1 pixels 0.024 sec 

Figure A.3: Sequence 4 - Camera 3: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 4 876 90% 3.5 pixels 3.9 pixels 0.029 sec 

Figure A.4: Sequence 4 - Camera 4: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 1  860  96% 3.5 pixels 3.2 pixels 0.028 sec 

Figure A.5: Sequence 5 - Camera 1: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 2 773  91% 3.5 pixels 2.9 pixels 0.022 sec 

Figure A.6: Sequence 5 - Camera 2: 2D Trajectory comparison 



272 
 

 

 

 

Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 3 773 96% 3.5 pixels 2.6 pixels 0.022 sec 

Figure A.7: Sequence 5 - Camera 3: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 4 834 98% 3.5 pixels 3.9 pixels 0.028 sec 

Figure A.8: Sequence 5 - Camera 4: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 1 1593  94% 3.5 pixels 1.1 pixels 0.028 sec 

Figure A.9: Sequence 6 - Camera 1: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 2 1797 93% 3.5 pixels 3.5 pixels 0.028 sec 

Figure A.10: Sequence 6 - Camera 2: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 3 1797  90% 3.5 pixels 2.5 pixels 0.025 sec 

Figure A.11: Sequence 6 - Camera 3: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 4  1593  88% 3.5 pixels 1.1 pixels 0.029 sec 

Figure A.12: Sequence 6 - Camera 4: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 1 325 99% 3.5 pixels 1.1 pixels 0.028 sec 

FigureA.13: Sequence 7 - Camera 1: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 2  440  87% 3.5 pixels 1.6 pixels 0.028 sec 

Figure A.14: Sequence 7 - Camera 2: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 3  440  75% 3.5 pixels 1.1 pixels 0.025 sec 

Figure A.15: Sequence 7 - Camera 3: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 4 325  89 % 3.6 pixels 3.6 pixels 0.026 sec 

Figure A.16: Sequence 7 - Camera 4: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 1  245  98% 3.5 pixels 2.6 pixels 0.021 sec 

Figure A.17: Sequence 8 - Camera 1: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 2  116  97% 3.5 pixels 2.1 pixels 0.02 sec 

Figure A.18: Sequence 8 - Camera 2: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 3 116  79 % 3.5 pixels 3.2 pixels 0.028 sec 

Figure A.19: Sequence 8 - Camera 3: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 4  245  99% 3.5 pixels 2.7 pixels 0.021 sec 

Figure A.20: Sequence 8 - Camera 4: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 1 565  84 % 3.5 pixels 3.5 pixels 0.052 sec 

Figure A.21: Sequence 9 - Camera 1: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 2  429  98% 3.5 pixels 1.1 pixels 0.028 sec 

Figure A.22: Sequence 9 - Camera 2: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 3 429  89% 3.5 pixels 2.7 pixels 0.025 sec 

Figure A.23: Sequence 9 - Camera 3: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 4  565  79% 3.5 pixels 3 pixels 0.052 sec 

Figure A.24: Sequence 9 - Camera 4: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 1 1146  91% 3.5 pixels  3.5 pixels 0.028 sec 

Figure A.25: Sequence 10 - Camera 1: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 2 1100  95% 3.5 pixels 3.2 pixels 0.028 sec 

Figure A.26: Sequence 10 - Camera 2: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 3  1100  95% 3.5 pixels 1.6 pixels 0.025 sec 

Figure A.27: Sequence 10 - Camera 3: 2D Trajectory comparison 
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Quantitative 

Result 

Total 

frames 

Detection 

rate 

Average 

radius of ball 

Average 

RMSE 

Detection 

time 

Camera 4 1146  86% 3.5 pixels 1.8 pixels 0.028 sec 

Figure A.28: Sequence 10 - Camera 4: 2D Trajectory comparison 
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