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Abstract—Physiological measurement like surface electromyo-
graphy (sEMG) allows a deeper insight on interactions among
subsystems during the human motion coordination. In this paper,
we aim to investigate such interactions via functional muscle
networks during hand movements, especially when different hand
gestures are performed. It is achieved by considering muscle
connectivities using Granger Prediction of paired sEMG signals,
which were recorded from extrinsic muscles of the upper limb,
while participants were sitting upright and performing hand
gestures. It is found that by using muscle connectivities obtained
by applying the method of Granger Prediction as features,
although individual differences exist among subjects, significant
connections between pairs of muscles were observed through
permutation tests at a group level. Graph theory based on the
overall statistical result was used to visualise functional networks
by considering all the significant connections which were not
bidirectional. We found two distinct networks can be used to
represent the differences between two hand gestures. Such insight
of functional networks can be a potential candidate to interpret
the relationships between muscle pairs, which is helpful for
decoding hand gestures.

I. INTRODUCTION

Multi-channel surface electromyography (sEMG) signals

have been widely used to characterise muscle activities by

extracting the information generated via coordinated muscle

contractions. However, it is difficult to explore the deep infor-

mation hidden on those muscle signals when they are using

for classifying hand gestures or any other movements. Instead

of using black-box models, extracting meaningful features

allows us to gain a deeper insight into the muscular system.

Furthermore, we believe that such meaningful features with

the knowledge in muscle synergies are useful to not only

reduce the complexity of musculoskeletal system, but also

build robust classification models in practical applications [1].

Rather than investigating each muscle signal individually,

it could be more interesting to understand how muscles

coordinate and interact with each other as subsystems using

functional muscle networks. Basically, different connectivity

measurements were used to investigate the functional network,

either undirected muscle networks [1], [2], or directed muscle

networks [1]. For example, Granger Prediction (GP), also

known as Granger Causality in economic modelling, was often

used to estimate directed functional connectivity between two

discrete signals in the field of biomedical signal processing [3],

[4], [5]. It is effective to characterise the dynamic correlation

of both transient and intermittent signals such as neural and

muscular signals [6].

In this study, time domain GP was applied to analyse the

connectivities for upper limb muscles while subjects were

performed two different hand gestures. Furthermore, the re-

sults were analysed statistically using permutation tests to

correct for multiple comparison problems. Eventually, graph

theory was used to visualise functional networks based on the

statistical analysis at a group level.

II. DATA ACQUISITION

The data, consists 16 channels with 24-bit A/D converters,

was acquired using the g.USBamp amplifier with the sampling

rate of 4,800 Hz. A detailed description of the data can be

found in [2], [7]. Subjects were asked to perform a series

of hand gestures such as make a fist (Clench) or release and

spread all fingers wide (Stretch) five times with their right

elbows resting on the arm of a chair. Therefore, the dataset

used for the analysis contains five muscle contractions for

each gesture. Here only the middle three muscle contraction

segments were selected to investigate muscle connectivity. The

first muscle contraction segment for each subject was not

used because it was usually regarded as an adaptation exercise

while the reason for not selecting the last one is that it may

contain an incomplete muscle contraction cycle. Additionally,

this work focused on the extrinsic muscles of the forearm due

to the following facts:

1) These muscles located at the forearm are responsible for

finger movements when a fine-tuned hand gesture was

performed [8].

2) Subjects may tend to support their body using their

elbow so that causing bicep muscle contractions all the

time through the experiment.

3) The bicep muscles on the upper arm were near to the

heart, which may introduce electrocardiograph (ECG)

noise to the sEMG.

Therefore, two channels of sEMG in this dataset recorded from

the Biceps Brachii muscle were not considered in this project.

As shown in Table I, the mapping between the sEMG channel

numbers and the corresponding muscles were recorded. It can

be also noticed that some muscles were measured by two

channels because they have usually large surface areas.

III. METHODS

A. Signal Pre-Processing

We performed data pre-processing as follows. Firstly, a

third-order band-pass filter (20-400Hz Butterworth filter) was



TABLE I: sEMG Channels and Corresponding Muscles

Ch. Muscle Ch. Muscle

1 Extensor digitorum(upper) 10 Extensor digitorum(lower)

2 Anconeus 3 Flexor carpi ulnaris

8 Pronator teres (upper) 4 Pronator teres (lower)

5 Flexor carpi radialis (upper) 6 Flexor carpi radialis (lower)

7 Palmaris longus 9 Extensor carpi ulnaris

11 Extensor carpi radialis brevis 12 Extensor carpi radialis brevis

13 Abductor pollicis brevis 14 Abductor digiti minimi

designed. The purpose is to remove the baseline drift from

the data and also meaningless higher frequency components.

It is known that sEMG contains less information at frequency

range higher than about 400Hz. Moreover, a Second-Order

Infinite Impulse Response (IIR) notch filter was designed to

filter the power line noise (50Hz). Finally, all filtered data were

normalized by using the method of standard score.

B. Granger Prediction

It has been argued that the term like “Granger Prediction”

should be mentioned rather than “Granger Causality”, since

GP can only provide evidence in support of a hypothesis

about causal interactions rather than revealing it [3]. More

specifically, it is used for investigating direct statistical depen-

dencies or information flow between two or more variables by

describing observed data [4], [5]. The GP investigates if we

can predict the current value of Y based on the historical

values of both X and Y . In order to obtain GP values,

univariate and bivariate Autoregressive (AR) models were used

as shown in Eqs. 1, 2 and 3.

Xt =

k∑

n=1

anXt−n + ext (1)

Xt =
k∑

n=1

anXt−n +
k∑

n=1

bnYt−n + exyt (2)

Yt =

k∑

n=1

cnYt−n +

k∑

n=1

dnXt−n + eyxt (3)

where X and Y are variables, t is time point, k is the

model order, the parameters an, bn, cn and dn are the model

coefficients, exyt and eyxt are the prediction errors when

predicting X (or Y ) using past values of themselves and Y
(or X). The GP in time domain is quantified by comparing

the variances of the errors from univariate and bivariate, i.e.,

the GPY→X is ln(var(ex)/var(exy)), and the GPX→Y is

ln(var(ex)/var(eyx)).
1) Model Order Selection Criteria: It is clear the choice

of AR model orders plays an important role in terms of the

prediction. The AR model with a lower order may fail to detect

true interaction, whereas an unnecessary larger order could

increase computation cost and cause overfitting problems.

Many statistical tests can be used to determine an ‘optimal’

model order such as Akaike Information Criterion (AIC) and

Bayes Information Criterion (BIC). In this context, the best

model order was selected using BIC because sEMG data is

considered as a large dataset and BIC could well compensate

for it [9] by the item of ln(n) shown in Eq. 4.

BIC = ln(det(E)) + (22m ln(n))n−1 (4)

where E is the error matrix obtained by fitting the bivariate

AR model, m is the order number and n is the number of

data points used for building a AR model. The institution

behind BIC is to trade off between the model predictability

and complexity. The first item shown in Eq. 4 rewards for

building model well and the second one penalises for building

complicated models indicated by an unnecessary large order

number m. Furthermore, the second term is divided by n,

which means it penalises less for longer dataset when using a

higher model order.

2) Window Selection: In order to obtain the paired muscle

connectivities over a period of time, a sliding window was

used to compute the GP over time. Firstly, window size is

supposed to be carefully selected for obtaining meaningful

features, as the GP may misrepresent the muscle connectivity

relationship whenever the window size is too small or too

large. A small window size may be sensitive to noise, whereas

important muscle connectivity information may be lost if

the window size is too large. Eventually, it is important to

consider the physical meaning behind selecting window size.

We selected the window size which covers at least the most

muscle contraction period. It is worth mentioning that AR

model can be built effectively only when a signal can be

considered as stationary. Even if most biomedical signals are

non stationary data, like EEG, EMG [3], [5], [4], [10], a

well selected window could be helpful to get approximately

stationary data.

In this project, a same window size was used for the data of

all conditions/gestures, electrode pairs, and subjects, in order

not to introduce bias to the GP prediction, although the time

duration for each subject to complete one cycle of a specific

gesture would be slightly different. Moreover, a series of tests

were performed here to check how many windows should

be used. As expected, more information would be obtained

by using more windows. To the best of our knowledge,

unlike sampling with Nyquist frequency, there is no universal

rules for selecting window numbers. After simple testing, for

each subject, 50 moving windows were selected to achieve

successive GP values in this project.

IV. RESULTS

A. Model Order Selection

Bayes Information Criterion was used for selecting model

order here as discussed in III-B1. Furthermore, as indicated

in II, each dataset has been segmented into five parts based

on the muscle contraction cycles and only the middle three

segmentations were used in this project. Here, only every first

segmentation was used to build AR models and the BIC values

were calculated by using their error matrices as shown in Eq. 4.



Remember, in terms of complex datasets, like many sub-

jects, two different conditions, 14 channels and three contrac-

tions in this project, BIC can be only used as a statistical

guide rather than a standard rule [3]. Here the BIC results

were considered by computing a range of orders from 1 to 60

repeatedly across 50 windows. An example of how to use BIC

to choose model order is shown below.

Fig. 1 shows model order selection as suggested by BIC

using the data from channel 1 and 2 to the condition of

’Clench’ for the first experimental subject while the x-axis

being order number and y-axis being mean BIC across 50

moving windows. It can be seen clearly the curve of BIC

is converged and the order was selected as 20 although it is

not the lowest point in the figure. The reason is that there is

no significant improvement of BIC after order 20. Brovelli et

al. [10] also suggested that a smaller model order could be

selected if no further substantial decreases at higher orders

are shown in BIC. It is also worth mentioning that only one

selected order should be applied in a project since the order

parameter may affect the results [3]. Eventually, the model

order has been selected as 20 in this project based on not only

the example shown in Fig. 1 but also other other computing

results which were not shown here.
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Fig. 1: An example of order selection

B. Directional Connectivity Analysis via GP

After both the model order, window size and window

number were selected, the GP values were computed among

all pairs of channels for each muscle contraction across all

7 subjects followed by a moving window. Therefore, under

each window, the GP values could be represented as a 14×14
matrix calculated via paired channels of sEMG data.

For example, the first column shows GP values from Chan-

nel 1 (Ch 1) to all other channels, whereas the first row

explains GP values from all other channels to Ch 1 over time

(3 × 50 time windows in total). Fig. 2 shows the mean and

standard deviation of the connectivity matrices for a subject,

Clench being the top panel and Stretch being the bottom panel.

The mean was calculated by averaging of 150 GP matrices for

each subject and the standard deviation was obtained using the
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Fig. 2: The mean and standard deviation of muscle connectiv-

ity matrices for a subject. (%)

same 150 matrices. The diagonal values were all set to 0, as

self connections within the same channel is not considered for

the analysis. A point (n, m) in this matrix shows the mean

GP value from channel n to m when n is not equal to m.

The GP values ranges from 0 to 1, the values in matrix were

transformed into percentage values for visualisation purpose.

It can be seen there are relatively stronger directional muscle

connections from Ch 4-7 to almost all channels shown in mean

matrices of Clench compared to Stretch. (Note: warmer colors

show stronger connections.) Basically, it is interesting to see

these muscles are classified to superficial compartment in the

forearm and all of them are originated from a common ten-

don [11]. Additionally, there is no significant difference for the

standard derivations of GP values obtained in the condition of

Clench. It may imply the hand muscle connectivities are quite

stable when this subject was performing Clench. However, it

dose not mean they are not stable when performing Stretch as

those standard derivations were obtained after normalization.

The full matrix results are not presented here due to lack of

space. As expected, the results show that there exist slightly

different patterns of connectivities across all subjects. In order

to quantitatively understand the GP differences between two

groups, we performed statistical analysis and visualisation

using graph theory in section IV-C and IV-D.

C. Statistical Analysis

To further determine if GP values can be used as features

to distinguish two gestures, non-parametric permutation test

was used to avoid multiple comparison problems. It was

achieved by shuffling condition labels across subjects. The GP

differences can be considered as normally distributed because

each of them is Chi-square distributed [3], [12].

The permutation test results are shown in Fig. 3. The

null hypothesis is the mean of the differences between two

conditions is the same as zero. Colour shown in dark blue (p-

value<0.05) indicates the null hypothesis is rejected, which
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means there is a significant difference between two GP gesture

matrices. The x-axis shows the number of the features (total

182). A lookup table has been provided in Fig. 4. For example,

the 27th feature is the directed connectivity from Ch 2 to

Ch 3 represented by its corresponding mean GP value. In

the top panel, the y-axis represents subject ID from subject

1 to 7. Each row indicates the statistical test result of an

individual subject. The bottom panel shows the statistical

analysis results for all subjects. The 50,000 permutations were

computed for a more strict alpha criterion set to 0.01, although

1,000 permutations with alpha = 0.05 were sufficient [13]. An

interesting finding was observed that for all subjects, signifi-

cant statistical connections were found even when individual

differences exist. In section IV-D, graph theory was applied to

gain a deeper insight of functional networks.

D. Visualisation with Graph Theory

Based on the statistic result for all subjects, the null hy-

pothesis could not be rejected among 17 features, as shown in

yellow in the bottom panel in Fig. 3. This means except the

connections of these 17 pairs of sEMG channels, all the other

connections were significant. Remember, GP has directionality

when calculating the connections. Some of the connections are

significant in both directions, whereas some of them are only

significant in one direction.

Therefore, graph theory was applied to visualise such com-

plicated relationships. Channel numbers refer to these one

Fig. 4: Feature Numbers (F.N.) Lookup Table

(a) Network 1: The Anterior Network

(b) Network 2: The Posterior Network

Fig. 5: Functional Connectivity Muscle Networks

directional connections were simply represented as nodes.

Then, the directionality of these connections was indicated

by arrows, as shown in Fig. 5. It can be noticed that all the

significant one-directional connections have been divided into

two distinct networks.

Network 1 is formed mainly from all the muscles in the

anterior side of the hand and forearm, except Ch 10 (Extensor

Digititorum), which is a long large muscle located in the centre

of the posterior side. The sEMG signal were recorded just

close to the wrist). The main coordinator of the Network 1

is Palmaris Longus (PL), recorded via Ch 7, which is the

centre of the functional network as shown in Fig. 5a. It is

located at the middle of the anterior side of the forearm in

charge of the coordination. On another note, Ch 13 and 14



were the only two channels recorded on hand muscles. Ch

13 recorded on muscle Abductor Pollicis Brevis (APB) is

responsible to extends/abduct the thumb while Ch14 recorded

on muscle Abductor Digiti Minimi (ADM) which is functional

to extends/abduct the little finger [14]. The connections from

Ch 7 to Ch 13 and 14, indicate the muscle (PL) located at the

forearm leads to the sEMG activities at the hand for finger

extensions and abductions respectively.

Another functional network is shown in Fig. 5b, which

contains muscles at the posterior of the forearm. Compared

to the Network 1, which involves a broader network, less

interactions were observed in the Network 2.

V. DISCUSSION AND CONCLUSION

This paper investigated functional networks using the

method of Granger Prediction for sEMG signal analysis. Sta-

tistical analysis were used to investigate interesting functional

connectivities. The functional networks built by connectivities

we found were used to interpret the muscle coordination

with consideration of signal connection directionality. A great

number of connections were significant, whereas only some

connections has information flow of one direction. These

single-direction connections led to two distinct functional

networks: the anterior network and the posterior network.

We also observed strong individual differences among sub-

jects, whereas significant connectivity features were found at

the group level. It suggests that the gestures differences can

be expressed and explained using the functional connectivity

networks. It is worth to note that we excluded two subjects

(athletes) who received physical training regularly and com-

peted on an monthly basis. The sEMG signals recorded from

the forearm of the athletes contain more noise, which might be

induced by a thicker muscle due to the exercise. It would be

of great interest to explore further how the functional network

differs between the two or more gestures and across different

subject groups.
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