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ON THE SEMI-CENTRE OF A POISSON ALGEBRA

CESAR LECOUTRE & LEWIS TOPLEY

Abstract. If g is a Lie algebra then the semi-centre of the Poisson algebra
Spgq is the subalgebra generated by adpgq-eigenvectors. In this paper we
abstract this definition to the context of integral Poisson algebras. We
identify necessary and sufficient conditions for the Poisson semi-centre Asc to
be a Poisson algebra graded by its weight spaces. In that situation we show
the Poisson semi-centre exhibits many nice properties: the rational Casimirs
are quotients of Poisson normal elements and the Poisson Dixmier–Mœglin
equivalence holds for Asc.

1. Introduction

Throughout this paper ❦ is a field of characteristic zero, all vector spaces
are defined over ❦, and g will be a Lie algebra. The symmetric algebra Spgq
carries a natural structure of a Poisson algebra. It is easy to see that the
subalgebra Spgqg Ď Spgq consisting of elements annihilated by adpgq coincides
with the Poisson centre. The semi-invariants are, by definition, the common
eigenvectors for adpgq and the algebra Spgqsc which they generate is know as the
Poisson semi-centre. This is a Poisson commutative subalgebra of Spgq graded
by the weight space decomposition of adpgq.

Over the years the study of semi-centres has motivated a sizable body of
research, see [1, 2, 7, 8, 9, 14] and the references therein. Since this topic
arose in the context of invariant theory some of the central questions are the
polynomiality and factoriality of semi-centres. One notable outlet for the study
of semi-invariants lies in the computation of the rational invariants of Spgq.
By the results of Rentschler and Vergne, Dixmier’s fourth problem is in fact
equivalent to the statement that the centre of FracSpgq is purely transcendental
over ❦, see [15] and [1, Problèmes]. Thanks to [2] every rational invariant is
a quotient of elements of Spgqsc with the same weight, and so the theory of
semi-invariants appears naturally in some important classical problems.

The purpose of this article is to define and study of the Poisson semi-centre
Asc of an arbitrary integral Poisson algebra A, by which we mean a Poisson al-
gebra which is also an integral domain. We recall that a Poisson normal element
a P A is such that tA, au Ď Aa, equivalently the principal ideal Aa is Poisson,
and our first observation is that when A “ Spgq the Poisson semi-invariants of
Spgq are precisely the same as Poisson normal elements (Lemma 2.1). With
this in mind we define the Poisson semi-centre Asc of A to be the subalgebra
generated by the Poisson normal elements. In general this subalgebra need not
be a Poisson subalgebra (see Example 2.3), and even when it is, it need not

1



2 CESAR LECOUTRE & LEWIS TOPLEY

be Poisson graded by the weight spaces for the Hamiltonian derivations (see
Example 2.9). To remedy this we begin the paper by identifying a necessary
and sufficient condition for Asc to be a Poisson algebra graded by the Poisson
weight space decomposition, as we now explain.

Since A is assumed to be a domain, it is easily shown that for every Poisson
normal element a P A there exists a Poisson derivation λ : A Ñ A such that

tb, au “ λpbqa for all b P A (Lemma 2.5).

The additive submonoid of Der❦pAq generated by these derivations will be de-
noted ΛpAq. In Proposition 2.6 we show that Asc is a Poisson subalgebra of A
graded by the weight space decomposition if and only if ΛpAq is an abelian Lie
submonoid of Der❦pAq, and we refer to the latter condition as the abelian weight
property. We provide a large family of Poisson algebras satisfying this property,
including symmetric algebras Spgq of Lie algebras, Poisson affine spaces, semi-
classical limits of various quantised coordinate rings (see [6]) and the algebras
Apn, aq studied by Sierra and the first author in [12].

Motivated by the close connection between the semi-centre Spgqsc and the
centre of the Poisson quotient field FracSpgq (see [2]) we investigate the rela-
tionship between Poisson ideals, normal elements and the centre of the fraction
field of the semi-centre. Some of our results are gathered together here; see
Propositions 3.6 and 3.9.

Proposition 1.1. Let A be an integral Poisson algebra with the abelian weight
property and such that Asc is finitely generated. Then the following hold:

(i) Every nonzero Poisson ideal of Asc contains a nonzero Poisson normal
element;

(ii) Every rational Casimir of Asc is a quotient of two normal elements
weighted by the same derivation.

If A is an integral Poisson algebra and a, b P A are normal elements weighted
by the same derivation, then it is easily seen that ab´1 lies in the centre of
FracA.

Question 1.2. Does every element of the centre of FracA arise as the quotient
of two normal elements?

When A is a given Poisson algebra, calculating the rational Casimirs is a
challenging problem - we remarked earlier that this is equivalent to Dixmier’s
fourth problem in the case of symmetric algebras of Lie algebras. One poten-
tial use for such information is to characterise the Poisson primitive ideals of
P-SpecpAq via the Poisson Dixmier–Mœglin equivalence. Recall that a Poisson
prime ideal I Ď A is called locally closed if tIu is a locally closed subset of the
Poisson spectrum P-SpecpAq; I is called Poisson primitive if it is the largest
Poisson ideal contained in some maximal ideal of A; finally, I is called rational
if the Poisson centre of the quotient field of A{I is algebraic over ❦. Thanks
to [13, 1.7, 1.10] we know that every locally closed ideal is primitive and every
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primitive ideal is rational. Brown and Gordon asked whether all three proper-
ties might coincide [3], and when they do we say that A satisfies the Poisson
Dixmier–Mœglin equivalence. Using Proposition 1.1 we prove the following.

Theorem 1.3. Let A be an integral Poisson algebra with the abelian weight
property and such that Asc is finitely generated. The Poisson Dixmier–Mœglin
equivalence holds for Asc.

We now describe the structure of this paper. In §2 we discuss the definition
of the Poisson semi-centre and the abelian weight property, showing that some
familiar examples of Poisson algebras satisfy this property. In §3 we consider a
class of finitely generated Poisson algebras axiomatising the algebras Asc where
A is a integral Poisson algebra with the abelian weight property. We call these
Poisson algebras generalised Poisson affine spaces and we prove Proposition 1.1
in the context of such algebras, from which we deduce Theorem 1.3.

Acknowledgements: The second author is grateful for the support of EPSRC
grant EP/N034449/1.

2. The Poisson semi-centre and the abelian weight property

Suppose that g is a Lie algebra over ❦. If txi | i P Iu is a basis for g then the
symmetric algebra Spgq carries a natural structure of a Poisson algebra with
bracket:

tf, gu “
ÿ

i,jPI

Bf

Bxi

Bg

Bxj
rxi, xjs (2.1)

for f, g P Spgq. The invariants of Spgq are the elements Spgqg :“ tf P Spgq |
adpgqf “ 0u and the semi-invariants are defined to be

tf P Spgq | adpgqf Ď ❦fu.

An easy calculation using (2.1) shows that the Poisson centre of Spgq is equal to
Spgqg. The algebra which is generated by the set of all semi-invariants is known
as the semi-centre Spgqsc, and it has been the focus of much research over the
years. The Poisson normal elements of Spgq are defined to be the elements
f P Spgq such that tSpgq, fu Ď Spgqf .

Lemma 2.1. The Poisson normal elements of Spgq are precisely the semi-
invariants.

Proof. If a is a semi-invariant then using (2.1) we see that a is Poisson normal.
Conversely if a is Poisson normal, then for any x P g there exists λpxq P A such
that tx, au “ λpxqa. We deduce that λpxq P ❦ using the fact that the Poisson
bracket (2.1) satisfies tSpgqi, Spgqju Ď Spgqi`j´1, where Spgq “

À

iě0
Spgqi is

the grading with g placed in degree 1. �

The above discussion leads us naturally to:

Definition 2.2. The semi-centre of a Poisson algebra A is the subalgebra Asc

generated by Poisson normal elements.
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One nice feature of the semi-centre Spgqsc is that it is Poisson commutative.
However outside the Lie theoretic setting, this fails immediately. To illustrate
what may go wrong we present a couple of examples. The first one shows that
in general Asc is not necessarily a Poisson subalgebra of A.

Example 2.3. Let A “ ❦rx, y, zs with brackets tx, yu “ xyz, tx, zu “ x and
ty, zu “ y. Then Asc “ ❦rx, ys is not closed under the Poisson bracket.

The following example shows that even when Asc is a Poisson subalgebra it
is not always Poisson commutative.

Example 2.4. LetA “ ❦rx1, ..., xns be a polynomial algebra and let pλi,jq1ďi,jďn P
Matnp❦q be a skew-symmetric matrix. Define a Poisson bracket on A by the
rule

txi, xju “ λi,jxixj (2.2)

This algebra is known as Poisson affine space and, since the generators x1, ..., xn
are Poisson normal we have A “ Asc is not Poisson commutative in general.
The Poisson torus T associated to A is the localisation of A at the generators

T “ ❦rx˘1

1
, ..., x˘1

n s

with Poisson bracket uniquely extended from the bracket of A.

We proceed to discuss the properties of normal elements. Recall that a
Poisson derivation λ P DerPpAq is a ❦-derivation of A which is also a derivation
of the Lie bracket t¨, ¨u of A.

Lemma 2.5. If A is an integral domain and a P A is Poisson normal then
there exists a Poisson derivation λ P DerPpAq such that

tb, au “ λpbqa. (2.3)

Proof. Since a is normal we have tb, au “ λpbqa for some linear map λ : A Ñ A.

We must check that λ is a Poisson derivation. For b, c P A we have

λpbcqa “ tbc, au “ tb, auc ` btc, au “ pλpbqc ` bλpcqqa,

and

λptb, cuqa “ ttb, cu, au “ ttb, au, cu ` tb, tc, au

“ tλpbqa, cu ` tb, λpcqau

“ tλpbq, cua ` λpbqta, cu ` tb, λpcqua ` λpcqtb, au

“ ptλpbq, cu ` tb, λpcquqa.

Since A is integral we conclude that

λpbcq “ λpbqc ` bλpcq; and

λptb, cuq “ tλpbq, cu ` tb, λpcqu

as required. �
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From henceforth we assume that A is an integral Poisson algebra. For any
λ P DerPpAq we make the notation

Aλ :“ ta P A | tb, au “ λpbqa for all b P Au

and write
ΛpAq :“ tλ P DerPpAq | Aλ ‰ 0u.

Since tA,❦u “ 0 we have 0 P ΛpAq and when a P Aλ and b P Aµ we have
ab P Aλ`µ by the Jacobi identity, so that ΛpAq is a commutative submonoid of
DerPpAq. This leads to an alternative description of the semi-centre

Asc “
à

λPΛpAq

Aλ. (2.4)

The derivations λ P ΛpAq will be referred to as the weights of A, whilst the
subspaces Aλ will be called the weight spaces.

Although the formula (2.4) defines a grading on Asc as an associative subal-
gebra of A, it does not in general define a Poisson grading (see Example 2.9). In
this paper we are interested in the case where Asc is a Poisson subalgebra which
is Poisson graded by (2.4), ie. tAλ, Aµu Ď Aλ`µ for λ, µ P Λ. The following
translates these properties into statements about Λ.

Proposition 2.6. Let A be an integral Poisson algebra. Then the following are
equivalent:

(i) rΛ,Λs “ 0;
(ii) Asc is a Poisson subalgebra of A and (2.4) is a Poisson grading.

If (i) or (ii) holds then we say that A has the abelian weight property. Fur-
thermore λpAµq Ď Aµ for all λ, µ P Λ.

Proof. Let λ, µ P Λ, pick x P Aλ, y P Aµ and a P A. We have

ta, tx, yuu “ tta, xu, yu ` tx, ta, yuu “ tλpaqx, yu ` tx, µpaqyu

“ tλpaq, yux ` λpaqtx, yu ` tx, µpaquy ` µpaqtx, yu

“ rµ, λspaqxy ` pµ ` λqpaqtx, yu.

If rΛ,Λs “ 0 then tAλ, Aµu Ď Aλ`µ and Asc is a Poisson algebra graded by its
weight spaces (2.4). The converse is clear from the equality

0 “ ta, tx, yuu ´ pµ ` λqpaqtx, yu “ rµ, λspaqxy

since A is integral.
Let a P Aλ be nonzero, and let b P Aµ, c P A. Then

tc, λpbqua “ tc, λpbqau ´ tc, auλpbq

“ tc, tb, auu ´ λpcqλpbqa

“ pλ ` µqpcqtb, au ´ λpcqλpbqa

“ pλ ` µqpcqλpbqa ´ λpcqλpbqa “ µpcqλpbqa.

Since A is an integral domain it follows that λpbq P Aµ and so λ preserves the
weight spaces for all λ P Λ. �
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Remark 2.7. When A has the abelian weight property, the Poisson normal
elements of Asc are precisely the elements homogeneous with respect to the
grading Asc “

À

λAλ. We shall use these two names interchangeably for such
elements. We also point out that homogeneous elements of degree zero are the
same as Poisson central elements.

The abelian weight property is reasonably natural as the next result illus-
trates.

Proposition 2.8. Let A be a Poisson algebra and S a multiplicative set in A.
If AS´1 has the abelian weight property then so does A.

Furthermore the following families of Poisson algebras satisfy the abelian
weight property:

(i) the symmetric algebras of Lie algebras;
(ii) Poisson affine spaces and Poisson tori, described in Example 2.4;
(iii) semiclassical limits of the following quantum algebras defined in [6, Sec-

tions 2.3-2.7]:
‚ quantum matrices;
‚ quantum symplectic spaces;
‚ quantum euclidean spaces;
‚ quantised Weyl algebras;
‚ quantum (anti-)symmetric matrices;

(iv) the Poisson algebras Apn, aq from [12].

Proof. There is Lie algebra embedding form DerPpAq into DerPpAS´1q extend-
ing derivations via the Leibniz rule. If a is normal in A (with weight λ) the
following computation shows it is also normal in AS´1:

tbs´1, au “ ´bs´2ts, au ` s´1tb, au “
`

λpbqs´1 ´ bs´2λpsq
˘

a.

Thus if ΛpAq is not abelian, then neither is ΛpAS´1q. This proves the first
claim.

We now verify that the examples listed in the proposition satisfy the abelian
weight property.

(i) Let g be a Lie algebra. Since the maps λ P ΛpSpgqq are derivations and
Spgq is generated by g it suffices to show that rλ, µspgq “ t0u for all λ, µ P
ΛpSpgqq. By Lemma 2.1 the Poisson normal elements of Spgq are actually semi-
invariants and so λ, µ send g Ñ ❦. It follows that λ ˝µpgq “ µ ˝λpgq “ t0u and
as a result rλ, µspgq “ t0u.

(ii) Now let A “ ❦rx1, ..., xns. For i “ 1, ..., n we let xi P Aλi
for λ1, ..., λn P

ΛpAq and write Bi :“ B
Bxi

. It follows from (2.2) that λj “
řn

i“1
λi,jxiBi for

λi,j P ❦. Since the derivations txiBi | i “ 1, ..., nu pairwise commute it follows
immediately that the same is true for λ1, ..., λn. The monoid of weights of the
torus ❦rx˘1

1
, ..., x˘1

n s is generated by the weights t˘λi | i “ 1, ..., nu and so is
abelian.

(iii) These Poisson algebras are all Poisson iterated Ore extensions to which
the Poisson deleting derivations algorithm [10] can be applied, and therefore
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they localise to Poisson tori [11, Theorem 5.3.2]. The result then follows from
the first claim along with part (ii).

(iv) Fix n ě 1 and a P ❦. By [12, Lemma 3.26] the Poisson algebra
A “ Apn, aq has a localisation A˝ which is isomorphic to the Poisson algebra
❦rY ˘1

0
, X, Y2, ..., Yns with nonzero Poisson brackets

tX,Yiu “ pa ` iqY0Yi.

It is straightforward to see that its semi-centre is ❦rY ˘1

0
, Y2, . . . , Yns and that the

monoid of weights is generated by the commuting set t˘aY ˘1

0
BX , pa` iqY0BX |

i “ 2, ..., nu. �

Despite holding for the families described in the proposition, the next exam-
ple shows that the abelian weight property is not guaranteed.

Example 2.9. Every Poisson bracket on A “ ❦rx, ys is determined by a choice
of tx, yu thanks to the derivation rule and skew-symmetry. Furthermore, every
possible choice actually defines a Poisson bracket. If we define tx, yu “ pxy for
some p P A then both x and y are normal and so the resulting Poisson structure
satisfies Asc “ A. The weights of x and y are respectively λx “ ´pyBy and
λy “ pxBx. Since rλx, λyspxq “ ´λxppqx and rλx, λyspyq “ λyppqy it follows
that A has the abelian weight property if and only if p P ❦.

3. Generalised Poisson affine space and the Poisson

Dixmier–Mœglin Equivelence

In this section we investigate algebraic and geometric properties of P-SpecAsc

and so we restrict ourselves to the case where the semi-centre is finitely gener-
ated. We remark that this is not always the case as shown in [2, Section 5]. Our
results focus on the case where the semi-centre is a Poisson algebra graded by
its weight space decomposition. In view of Proposition 2.6 the most appropriate
way to discuss such algebras seems to be via the following axiomatisation.

Definition 3.1. We say that a Poisson algebra A is a generalised Poisson affine
space if

(i) A is an integral domain generated over ❦ by Poisson normal elements
x1, ..., xn with weights λ1, ..., λn;

(ii) the weights pairwise commute.

The next lemma shows that the axioms of a generalised Poisson affine space
are passed down to all prime Poisson quotients, making them amenable to
inductive arguments.

Lemma 3.2. When A is a generalised Poisson affine space and I is a prime
Poisson ideal, A{I is a generalised Poisson affine space.

Proof. Let x1, ..., xn be Poisson normal generators of A. We can suppose that
there is 1 ď m ď n such that tx1, ..., xmuXI “ H and txm`1, ..., xnu Ď I. Then
the images x1, ..., xm in A{I are normal generators in A{I. Since the latter is
an integral domain Lemma 2.5 tells us that there are derivations λ1, ..., λm of
A{I such that ta, xiu “ λipaqxi for all i “ 1, ...,m. For all a P I we have
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ta, xiu “ λipaqxi P I and since I is prime and xi R I we deduce that λipaq P I.
In other words, λipIq Ď I and the map λi is just the map induced by λi on
the quotient A{I. Finally, since tλi | i “ 1, ...,mu pairwise commute we may
conclude that the same is true for tλi | i “ 1, ...,mu. �

Example 3.3. The Poisson affine space of Example 2.4 is a generalised Poisson
affine space, thanks to Lemma 2.8. Further examples can be obtained by:

(i) forming a Poisson affine space over some ground ring K, which is a
finitely generated commutative ❦-algebra;

(ii) taking a prime Poisson quotient of any generalised Poisson affine space.

In order to prove Theorem 1.3 we actually prove the following result, which
is equivalent.

Theorem 3.4. When A is a generalised Poisson affine space the Poisson
Dixmier–Mœglin equivalence holds for A.

For the rest of the section we assume A is a generalised Poisson affine space.
We let x1, ..., xn be the normal generators with weights λ1, ..., λn and we let Λ
be the monoid consisting of the weights of normal elements. Recall that, by
Lemma 2.6 the decomposition A “

À

λPΛAλ is a Poisson grading.

Lemma 3.5. Let Λ0 Ď Λ be any collection of derivations and suppose that for
all i “ 1, ..., n we have #tλpxiq | λ P Λ0u “ 1. Then #Λ0 “ 1.

Proof. Suppose that λ, µ P Λ0 and observe that λ ´ µ P DerPpAq. If λ ´ µ

vanishes on the generators x1, ..., xn then by the Leibniz rule it vanishes on all
of A. The lemma follows. �

The next proof follows the same principle as Artin’s linear independence of
characters of a group.

Proposition 3.6. Every nonzero Poisson ideal contains a nonzero homoge-
neous element.

Proof. Let I be a Poisson ideal. For each a P I we may decompose a “
ř

λPΛ aλ
with aλ P Aλ and write ℓpaq “ #Λpaq where Λpaq :“ tλ P Λ | aλ ‰ 0u. We
show that I contains an element with ℓpaq “ 1. Pick a P I such that ℓpaq ą 1 is
minimal. Recall that each xi is homogeneous of weight λi. By Proposition 2.6
the derivations λ P Λ preserve the grading and so for any i P t1, ..., nu we have

txi, au “
ÿ

λPΛpaq

λpxiqaλ P
à

λPΛpaq

Aλ`λi
.

From Lemma 3.5 there is some i P t1, ..., nu such that µ1pxiq ‰ µ2pxiq for some
µ1, µ2 P Λpaq. Thus, for this choice of i, the expression µ1pxiqa ´ txi, au is
non-zero, lies in I and has ℓpµ1pxiqa ´ txi, auq ă ℓpaq. This contradicts the
minimality of ℓpaq and the contradiction proves the claim. �

Remark 3.7. In general it is not true that every Poisson ideal in a generalised
affine Poisson space is generated by homogeneous elements. For example, let
A :“ ❦rx1, x2s with Poisson bracket given by tx1, x2u “ x1x2. It is not hard
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to see that the Poisson normal elements are precisely the monomials in x1, x2,
however for all s P ❦ the ideal px1, x2 ´ sq is Poisson.

We now recall a few facts about modules over Poisson algebras, required in
the proof of Proposition 3.9. A Poisson A-module is a vector space V equipped
with two linear maps A Ñ End❦pV q, which we write

a ÞÝÑ mpaq;

a ÞÝÑ δpaq,

such that m is a representation of A as an associative algebra, δ is a represen-
tation of A as a Lie algebra, and

δpabq “ mpaqδpbq ` mpbqδpaq; (3.1)

δpta, buq “ rδpaq,mpbqs. (3.2)

Obviously A is a Poisson module over itself, with δpaqb :“ ta, bu and mpaqb :“
ab. Poisson ideals of A provide more examples of Poisson modules, and yet
another source of examples is provided by the fraction field FracpAq which
inherits a Poisson structure from A and admits A as a Poisson subalgebra.

Lemma 3.8. Let W be a Poisson A-module and let U, V Ď W be Poisson
submodules. The set

pU : V q :“ ta P A | mpaqU Ď V and δpaqU Ď V u

is a Poisson ideal of A.

Proof. Let a P pU : V q, b P A and u P U . We have

mpabqu “ mpaqpmpbquq P V ;

mpta, buqu “ rδpaq,mpbqsu P V ;

δpabqu “ mpaqδpbqu ` mpbqδpaqu P V ;

δpta, buqu “ rδpaq, δpbqsu P V,

and so ab, ta, bu P pU : V q. �

The following result says that every rational Casimir is a quotient of two
normal elements. Our approach was inspired by the corresponding statement
in symmetric algebras of Lie algebras, first proven in [2].

Proposition 3.9. Consider the set

Qλ “ tab´1 | a, b P Aλu Ď FracpAq.

We have
CaspFracpAqq “

ď

λPΛ

Qλ.

In other words, every Casimir of FracpAq is a quotient of homogeneous elements
of A of same weight.
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Proof. The fact that the elements of Qλ are Casimirs follows from a short
calculation in FracpAq, which we leave to the reader. Let ab´1 P CaspFracpAqq
and consider the Poisson A-submodule U Ď FracpAq generated by ab´1. Since
ab´1 is a Casimir the map A Ñ U sending c to cab´1 is an isomorphism of
Poisson modules. According to the previous lemma the space pU : Aq is a
Poisson ideal of A. We claim that pU : Aq ‰ 0. For all c P A we have

b2cab´1 “ bca P A;

tb2, cab´1u “ 2btb, cab´1u “ 2btb, cuab´1 “ 2tb, cua P A.

It follows that b2 P pU : Aq ‰ 0. Now we may apply Proposition 3.6 to deduce
that pU : Aq contains a nonzero homogeneous element c P Aλ. By definition we
have cab´1 “ d P A and since ab´1 is a Casimir it follows that d P Aλ. Now we
have equality ab´1 “ dc´1 in FracpAq which shows that ab´1 P Qλ. �

Corollary 3.10. If CasFracA is a finite extension of ❦ then for every λ P Λ
and every a, b P Aλ there exists an algebraic relation between a and b, ie. there
is f P ❦rX,Y s such that fpa, bq “ 0.

Proof. Suppose that a, b P Aλ are algebraically independent. We claim that the
set

"

a

b ´ sa
| s P ❦

*

is a ❦-linearly independent subset of FracCaspAq. Since ❦ is a field of charac-
teristic zero it has infinite cardinality and so this claim will prove the lemma.
Since these are fractions of Poisson normal elements of the same weight λ they
are Casimirs as claimed. Suppose that s1, ..., sn P ❦ are distinct elements and
suppose that t1, ..., tn P ❦ are some elements such that

ÿ

i

ti
a

b ´ sia
“ 0.

Clearing the denominators and using the fact that ❦ra, bs is an integral domain
we get

ÿ

i

ti
ź

j‰i

pb ´ sjaq “ 0.

Since this equation holds in the polynomial ring ❦ra, bs it holds modulo the
ideal pb ´ sjaq � ❦ra, bs with k “ 1, ..., n. This gives tk “ 0 for k “ 1, ..., n and
this proves the claim. �

Proof of Theorem 3.4. By [13, 1.7, 1.10] the locally closed ideals are Poisson
primitive and the latter ideals are rational, so it suffices to check that rational
ideals are locally closed. If I is a Poisson prime ideal of A, then A{I is a
generalised Poisson affine space by Lemma 3.2. After replacing A by A{I, this
reduces the proof to showing that if Cas FracA is a finite extension of ❦ then
the zero ideal in A is locally closed.

Let I be an nonzero Poisson prime ideal. We claim that I contains at least
one of the generators x1, ..., xn. By Proposition 3.6 we know that there is a
nonzero element a P I X Aλ for some λ P Λ. By Lemma 2.6 the monoid Λ is
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finitely generated by the weights λ1, ..., λn of the generators x1, ..., xn and so we
may assume that λ “

řn
i“1

miλi for non-negative integers m1, ...,mn. It follows
that b :“ xm1

1
¨ ¨ ¨xmn

n P Aλ.
Consider the polynomial ring R :“ krX,Y s and define a Λ-grading on R by

placing both X and Y in degree λ. Consider the homomorphism

φ : R ÝÑ A;

X ÞÝÑ a;

Y ÞÝÑ b.

It is evidently a homogeneous morphism with respect to the Λ-gradings on
A and R, and so the kernel is homogeneously generated. Furthermore, by

Corollary 3.10, Kerφ ‰ 0, and so we can choose fpX,Y q “
řd

i“0
siX

iY d´i

where s0, ..., sd P ❦ such that fpa, bq “ 0. If si “ 0 for i ă d then this relation
says that sda

d “ 0. Since A is an integral domain we know that this is not the
case. Hence si ‰ 0 for some i ă d. Suppose that m “ minti | si ‰ 0u and
observe that

fpa, bq “ am
d

ÿ

i“m

sia
i´mbd´i “ 0.

Using the fact that A is an integral domain once again we see that

d
ÿ

i“m

sia
i´mbd´i “ 0

with sm ‰ 0. We can rewrite this as

smbd´m “ ´
d

ÿ

i“m`1

sia
i´mbd´i P I

We have now shown that I contains a monomial of the form b “ xm1

1
¨ ¨ ¨xmn

n .
Since I is prime it must be that it contains one of the elements x1, ..., xn as
claimed.

The deductions made above imply that the zero ideal is equal to the following
open subset of P-SpecpAq:

tp0qu “
n

č

i“1

tP P P-SpecpAq | pxiq Ć P u.

As a consequence p0q is locally closed and the proof is complete. �

Remark 3.11. In this paper we assumed throughout that A is an integral do-
main, however this hypothesis can be removed when A is noetherian, reduced
and the minimal prime ideals p1, ..., pn are pairwise coprime. When A is such a
Poisson algebra the p1, ..., pn are all Poisson [16, Lemma 1.1] and so the natural
map A Ñ A{p1 ˆ¨ ¨ ¨ˆA{pn is a Poisson homomorphism. The map is surjective
by the Chinese remainder theorem and the kernel is

Ş

i pi “ 0. Now our results
can be applied to each of the direct factors tA{pi | i “ 1, ..., nu. Geometrically
this just corresponds to a Poisson variety with disjoint irreducible components.
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