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Abstract 26 

Adulteration is a recurrent issue found in fuel screening. Commercial diesel contamination by kerosene is highly 27 

difficult to be detected via physicochemical methods applied in market. Although the contamination may affect 28 

diesel quality and storage stability, there is a lack of efficient methodologies for this evaluation. This paper assessed 29 

the use of IR spectroscopies (MIR and NIR) coupled with partial least squares (PLS) regression, support vectors 30 

machine regression (SVR) and multivariate curve resolution with alternating least squares (MCR-ALS) calibration 31 

models for quantifying and identifying the presence of kerosene adulterant in commercial diesel. Moreover, 32 

principal component analysis (PCA), successive projections algorithm (SPA) and genetic algorithm (GA) tools 33 

coupled to linear discriminant analysis were used to observe the degradation behavior of 60 samples of pure and 34 

kerosene-added diesel fuel in different concentrations over 60 days of storage. Physicochemical properties of 35 

commercial diesel with 15% kerosene remained within conformity with Brazilian screening specifications; in 36 

addition, specified tests were not able to identify changes in the blends’ performance over time. By using 37 

multivariate classification, the samples of pure and contaminated fuel were accurately classified by aging level into 38 

two well-defined groups, and some spectral features related to fuel degradation products were detected. PLS and 39 

SVR were accurate to quantify kerosene in the 2.5–40% (v/v) range, reaching RMSEC<2.59% and RMSEP<5.56%, 40 

with high correlation between real and predicted concentrations. MCR-ALS with correlation constraint was able to 41 

identify and recover the spectral profile of commercial diesel and kerosene adulterant from the IR spectra of 42 

contaminated blends.  43 

Keywords: Diesel fuel, Adulteration, Kerosene, Multivariate analysis, Storage stability. 44 
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Introduction 54 

An increase in energy and fuel consumption worldwide has encouraged researchers to study new energy sources and 55 

look for the best ways to use them. Nowadays, the most important problem faced in the fuel screening field is 56 

adulteration, which occurs during the route between the refinery and gas stations to provide illegal profit to 57 

scammers [1,2]. In Brazil, gasoline adulteration is currently well controlled in the Fuel Quality Monitoring Program 58 

(PMQC) founded by the National Agency of Petroleum, Natural Gas and Biofuels (ANP), using specific analysis of 59 

markers added to solvents that can be used as contaminants [3]; however, there is no specific methodology for 60 

detecting adulterants in diesel, which is the most consumed fuel in the country [4,5]. 61 

Biodiesel, kerosene and vegetable oils are the main adulterants of diesel reported in literature due to its 62 

affordability and lower cost in comparison to the original fuel [6]. Biodiesel is a renewable fuel composed of esters 63 

that is blended into Brazilian diesel (10% v/v) due to ANP requirements for reducing the emission of harmful gases, 64 

but scammers have illegally added a greater amount of biodiesel due to its cheaper production [7]. Kerosene solvent 65 

is a cheap petroleum distillate that has similar hydrocarbon composition to diesel and is widely used for adulteration, 66 

making it practically impossible to detect this contaminant via physicochemical property tests and other univariate 67 

methods [8]. 68 

Fuel contamination can cause many problems to burning and storage quality, with the latter being directly 69 

associated with the oxidative stability of fuel and signifies how much they resist degradation processes. Diesel and 70 

mainly biodiesel components are susceptible to oxidation and hydrolysis reactions over time; thus, the composition 71 

of the fuel blend changes over time and the presence of an uncontrolled substance used for adulteration can exert 72 

some influence on the process, affecting its quality due to aging [9]. Despite this, ANP specifications do not regulate 73 

tests to observe the degradation level of commercial diesel over time due to the lack of a methodology that performs 74 

efficient quality screening of this parameter during fuel storage [5]. Therefore, mathematical tools provided by 75 

chemometrics enable analyzing multivariate results generated by simple techniques such as infrared (IR) 76 

spectroscopy in a way that statistical methods for univariate systems may be inadequate, with accurate, fast and 77 

detailed responses [10,11].  78 

Principal component analysis (PCA), successive projections algorithm (SPA) and genetic algorithm (GA) are 79 

techniques that promote intelligent experimental data reduction. PCA reduces data to principal components, while 80 

SPA and GA reduce it to selected variables. This procedure can improve the potential of the supervised linear 81 
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discriminant analysis (LDA) for discriminating the samples in their respective classes due to the lower data 82 

complexity. The combinations PCA-LDA, SPA-LDA and GA-LDA are often used in combination for a wide range 83 

of applications [12-15], but their potential is not widely explored for screening diesel quality [16]. 84 

In case of quantifying kerosene into commercial diesel fuel, the use of a calibration model capable to deal 85 

efficiently with non-linear relationships and high dimensional input vectors as support vectors machine regression 86 

(SVR) is crucial, since the widely used partial least squares (PLS) has limited performance with complex systems 87 

[17]. A promising tool for analyzing fuel adulteration is the multivariate curve resolution with alternating least 88 

squares (MCR-ALS). This technique stands out due to its capability to quantify and identify the analyte in the 89 

presence of interferences in samples, since these interferences are presented in the calibration samples [18]. In 90 

addition, this technique presents some advantages in relation to PLS, such as the smaller number of samples needed 91 

and the capacity to quantify and identify interferences (adulterants) in samples without previous knowledge of them, 92 

which can be called “second order advantage” [19]. 93 

This paper evaluates the efficiency of multivariate tools to solve important issues in diesel screening using NIR 94 

and MIR spectroscopies. PLS, SVR and MCR-ALS were applied to quantify and identify the presence of kerosene 95 

adulterant in commercial diesel. PCA-LDA, SPA-LDA and GA-LDA models were used to classify and observe the 96 

degradation behavior of pure and kerosene-added diesel fuel samples in different concentrations over 60 days of 97 

storage. Oxidative stability analysis were performed by PetroOxy accelerated oxidation method to compare with the 98 

classification results, in addition to atmospheric distillation, crystallization, specific mass and viscosity tests 99 

specified by ANP. 100 

 101 

Materials and Methods 102 

Sample Preparation 103 

Diesel S10B10 samples with 10% (v/v) of Brazilian commercial biodiesel (soybean oil biodiesel) and 10 mg kg-1 104 

sulfur were kindly donated by Clara Camarão Potiguar Refinery (RPCC) and mixed up to different concentrations of 105 

commercial kerosene solvent at the Energetic Technology Laboratory (LTEN) for simulating the adulteration 106 

process. The samples were divided in two datasets. In the first one, which involves classification models, were used 107 

concentrations in the range 5 to 25% (v/v), with increments of 2.5% (v/v) and precision of 0.05%. Each blend was 108 

divided into six parts of the same volume and placed in six different amber flasks, making a total of sixty samples. 109 
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All flasks were encoded, sealed and stored in a closed box at room temperature for sixty days, along with samples of 110 

pure S10B10. Six analysis periods were defined for monitoring physicochemical properties and MIR/NIR features 111 

of the mixtures during storage, namely days 0 (beginning of storage), 7, 15, 30, 45 and 60. 112 

For the second dataset, used for adulterant quantification with regression methods such as PLS, SVR and MCR-113 

ALS were produced 16 samples ranging from 2.5 to 40% (v/v). MIR and NIR spectra were recorded for modeling. 114 

 115 

Physicochemical Analysis 116 

All samples were submitted to MIR and NIR analysis on monitoring days, but only the pure S10B10 and 15% 117 

kerosene (Q0 and Q15) samples had some of their physicochemical properties evaluated in order to observe possible 118 

changes in composition and properties as a result of the added kerosene and/or storage time. Table 1 shows the 119 

reference methods of specified ANP physicochemical analysis, in addition to oxidative stability PetroOXY test, 120 

employed for monitoring samples Q0 and Q15 following regulations determined by ASTM International. In addition, 121 

some properties inferred for diesel S10B10 and kerosene solvent are depicted. 122 

 123 

Table 1. Physicochemical analysis and ASTM standards used in this work. 124 

125 
  126 

Spectral Data Analysis 127 

MIR measurements were carried out on a Shimadzu IRAffinity-1 spectrometer equipped with an attenuated total 128 

reflectance (ATR) sample holder and ZnSe crystal. The results were obtained in a wavenumber range from 700-129 
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4000 cm-1 with resolution of 4 cm-1 and 32 scans. NIR data were obtained using a spectrometer from ARCoptix with 130 

a quartz cuvette of 1.00 mm in transmission mode. The NIR readings were performed using ARCspectro software 131 

version 1.6 in a wavelength range from 1000-2500 nm and resolution of 8 nm.  132 

Data pre-treatment and construction of the classification and calibration models were performed using MATLAB 133 

R2012b software (MathWorks Inc., Natick, USA) with PLS Toolbox version 7.9.3 (Eigenvector Research, Inc., 134 

Manson, USA).  For the development of multivariate models, baseline correction, Savitzky-Golay smoothing 135 

(window of 15 points) and mean center were performed on the MIR spectra dataset for denoising; whereas the NIR 136 

data were pre-processed by using multiplicative scatter correction (MSC), Savitzky-Golay smoothing (window of 15 137 

points) and mean center.  138 

Before modeling, spectral data were divided into training (70%), validation (15%) and prediction (15%) sets for 139 

applying LDA to PCA, SPA and GA scores; and calibration (70%) and prediction (30%) sets for PLS regression, by 140 

applying the classic Kennard-Stone (KS) uniform sampling selection algorithm [24]. Cross-validation “leave-one-141 

out” was used for PLS. The overall methodology developed in this research is depicted in Scheme 1. 142 

 143 

Scheme 1. Process flow diagram of the methodology used in this work. 144 

 145 

Chemometric Methods 146 

Exploratory Analysis (PCA) and Variable Selection Methods (SPA and GA) 147 
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Principal component analysis (PCA) is an unsupervised classification method that decomposes a data set into 148 

orthogonal variables called principal components (PCs). This reduces the size of the data while retaining the 149 

variance in the data set [25]. PCA is calculated based on the maximum variance contained in the dataset in a 150 

descending order of importance, where the first PC contains the larger explained variance, followed by the second, 151 

and so on. In addition, PCA solves collinearity problems to reduce the data size and improves efficacy to highlight 152 

and visualize the variations and heterogeneities among the samples. The PCA decomposition takes the form of [26]: 153 

X = TPT + E           (1) 154 

where X is the spectral data set with n rows (samples) and m columns (wavelengths); T are the scores for all 155 

principal components a (a = 1, 2, 3, …, A), with size of n rows and A columns; P are the loadings for all principal 156 

components a, with size of m rows and A columns; and E is the residual matrix. 157 

Successive projection algorithm (SPA) and genetic algorithm (GA) are techniques used as variables selection. 158 

SPA is a technique that considers each spectral variable as a vector. In this analysis, an initial vector (initial variable) 159 

is used. Then, new vectors with their respective projections are added in a subset orthogonal to that initial vector. In 160 

this way, the SPA selects those variables with more differentiated projections. With this, collinearity problems are 161 

eliminated [27]. GA, on the other hand, has a process that mimics the principle of Darwin's theory of evolution. In 162 

this technique, a population of variables is chosen randomly. This population is composed of subsets of variables. 163 

For each subset a fitness value is assigned through the fitness function present in the GA routine. Based on this 164 

fitness the subsets of variables can be eliminated or "survived" in a step called selection. Then, the genetic operators 165 

mutation and crossover are triggered, where initially selected variables may become unselected (mutation) and 166 

characteristics of one subset can pass to another (crossover). This procedure is called generation. There are as many 167 

generations as requested, and finally, the best fit subset will be the one with the selected variables [28]. The 168 

reduction of the multicollinearity problems obtained by SPA is done through the minimum of the cost function G. 169 

The fitness of GA is also calculated with this function, but in this case the fitness is calculated as the inverse of the 170 

cost function G, which is defined as: 171 

𝐺 =  
1

𝑁𝑣
∑ 𝑔𝑛

𝑁𝑣
𝑁=1                                                                                                                                       (2) 172 

with gn being described as: 173 

𝑔𝑛 =  
𝑟2(𝑥𝑛,𝑚𝑙(𝑛))

𝑚𝑖𝑛𝑙(𝑚)≠𝑙(𝑛)𝑟2(𝑥𝑛,𝑚𝑙(𝑚))
                                                                                                                   (3) 174 
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where the numerator is the square of the Mahalanobis distance between the object xn of the class l(n) and the mean of 175 

its true class ml(n); and the denominator is the square of the Mahalanobis distance between the object xn and the 176 

center of the nearest wrong class. 177 

 178 

Linear Discriminant Analysis (LDA) 179 

Linear discriminant analysis (LDA) is a supervised classification technique that improves the segregation level and 180 

reveals clusters that are maximized based on the separation between multiple classes rather than variations within 181 

each group [29]. Since PCA, SPA and GA are exploratory analysis methods, they are only able to show a 182 

distribution pattern between samples. On the other hand, LDA is a supervised classification method capable of 183 

making an exact differentiation between the different data groups. Thus, the scores are utilized as discriminant 184 

variables for LDA technique in order to create a linear decision boundary between them [30]. The LDA 185 

classification score takes the form of: 186 

cf(x𝑖) = (x𝑖 − µ𝑘)TΣpooled
−1 (x𝑖 − µ𝑘) − 2 ln π𝑘                     (4) 187 

where 𝐱𝑖 is the measurement vector of sample i; µ𝑘 is the mean of class k; Σpooled is the pooled covariance matrix; and 188 

π𝑘 is the prior probability of class k. These parameters are calculated as [30]: 189 

µk=1nki=1nkxi                           (5) 190 

Σpooled =
1

𝑛
∑ 𝑛𝑘Σ𝑘

𝐾
𝑘=1                         (6) 191 

Σ𝑘 =
1

𝑛𝑘−1
∑ (x𝑖 − µ𝑘)(x𝑖 − µ𝑘)T𝑛𝑘

𝑖=1         (7) 192 

π𝑘 =
𝑛𝑘

𝑛
                          (8) 193 

where Σk is the variance covariance matrix of class k; nk is the number of samples of class k; n is the total number of 194 

samples in the training set; and K is the number of classes. 195 

 196 

Calibration Models 197 

Partial least squares (PLS) regression is a multivariate calibration technique that finds factors (latent variables, LVs) 198 

in the spectra set that explain its maximum variance by using the simultaneous decomposition of the spectral and 199 

concentration matrices. The spectra set X and the concentration set y are decomposed as follows [31]: 200 

X = TPT + E           (9) 201 
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y = UqT + f           (10) 202 

where T is the scores matrix of X; P is the loadings matrix of X; E is the residual matrix of X; U is the scores matrix 203 

of y; q is the loading vector of y; and f is the residual vector of y. 204 

     Support vector machines (SVM) is a supervised learning algorithm employed for training a computational system 205 

to recognize patterns and to perform further predictions. SVM for regression, called support vector regression (SVR) 206 

[32], is commonly employed in calibration problems for quantification purposes. SVR is based on estimating a 207 

response function for each sample spectrum as [33]: 208 

 f(x) = W∅(x) + b          (11) 209 

where the sample spectrum 𝑥 is non-linear mapped into a high-dimensional feature space Z by 𝑊∅(𝑥), in which 210 

∅: 𝑥𝑖 → 𝑧𝑖; and 𝑏 represents the bias parameters. 211 

     Multivariate curve resolution with alternating least squares (MCR-ALS) is a bilinear model that is the multi-212 

wavelength extension from Lambert-Beer’s law, and can be described by Equation 12 [34]: 213 

D = CST + E                                                                                                                                     (12) 214 

where D (𝑛 × 𝑚) is a data matrix containing the NIR or FTIR spectra of n samples for the m recorded wavelengths; 215 

C(𝑛 × 𝐴) and ST(𝐴 × 𝑚) are the matrices with the concentration and spectra profiles of 𝐴 pure components in the 216 

samples, respectively. E has the same size as D and contains the unexplained variance from the bilinear model, 217 

related as the experimental error [35]. 218 

     Some constraints must be applied to each iteration to reduce the number of possible solutions for C and ST, and to 219 

give chemical meaning to the results. Non-negativity constraint was applied in this work. This constraint forces the 220 

concentration and/or spectral profile to be equal or larger than zero [36]. The correlation constraint allows the 221 

construction of a model with a univariate internal calibration from the scores calculated by MCR against the 222 

reference values concentration, being able to predict the concentration of calibration and unknown samples, and the 223 

concentration of these samples has to be in the analytical range of the calibration set [18]. 224 

 225 

Figures of Merit (FOMs) 226 

In order to evaluate the predictive capacity and accuracy of multivariate calibration and classification models, a set 227 

of figures of merit was calculated (Table 2) [37]. 228 

 229 
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Table 2. Equations for calculating FOMs. 230 

 231 

 232 

Results and Discussion 233 

Physicochemical Analysis 234 

Fig. 1 depicts the results for the physicochemical evaluations. The distillation curves of samples with 0 and 15% 235 

kerosene performed on storage days 0 and 60 are indicated by Q0-0 and Q15-0 (Fig. 1a), Q0-60 and Q15-60 (Fig. 236 

1b). Atmospheric distillation is one of the most important physicochemical properties to detect fuel adulteration in 237 

Brazil, and is based on the boiling temperature profile of the sample components [6]. Although the insertion of 238 

kerosene caused a slight decrease in boiling points of the intermediary hydrocarbon fraction of the blends, the 239 

temperatures obtained were still in accordance with ANP specifications for commercial diesel [5] and did not 240 

change over storage time. 241 
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 242 

Fig. 1. Results for (a and b) atmospheric distillation, (c) PetroOxy, (d) specific mass at 20 °C, (e) kinematic 243 

viscosity at 40 °C and (f) cloud point tests for Q0 and Q15 samples during storage. 244 

 245 

The induction period (IP) of Q0 and Q15 blends (Fig. 1c) remained within a range of little variability between 246 

days 0 and 60 [38]. The addition of 15% kerosene to S10B10 diesel increased the IP of the mixtures, probably due to 247 

the initial dilution of biodiesel in the S10B10 mixture, thus reducing the number of unsaturated molecules and ester 248 

groups available to react and form oxidized by-products [39]. The decrease in specific mass at 20 °C and kinematic 249 

viscosity at 40 °C values (Fig. 1d and 1e) with kerosene contamination is an effect of its relatively lighter 250 

composition in comparison to diesel, and promoting the dilution of denser and more viscous diesel-biodiesel 251 
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components [40]. The cloud point of the mixtures also decreased after adding kerosene (Fig. 1f) by simply diluting 252 

the paraffin waxes and biodiesel ester chains [41,42]. 253 

According to the results shown above in Fig. 1, none of the physicochemical properties evaluated in this work 254 

were able to detect changes in the characteristics of the diesel-biodiesel blends, either pure or kerosene, during 255 

storage. In addition, the contaminated diesel S10B10 samples remained within the quality parameters of ANP 256 

Resolution N° 30 and the adulteration would easily go unnoticed by a common physicochemical evaluation. Thus, 257 

chemometric tools were applied to IR data for elucidating these issues. 258 

 259 

Infrared Spectroscopy 260 

The spectra obtained by MIR and NIR analysis for samples with 0 to 40% (v/v) kerosene on the initial day of 261 

storage are shown in Fig. 2a and 2b, respectively. 262 

 263 

 264 

Fig. 2. (a) MIR and (b) NIR spectra for samples with 0 to 40% (v/v) kerosene on the first day of storage. 265 
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In the IR spectra (Fig. 2) there is the presence of some characteristic absorption features of biodiesel and the 266 

petroleum distillates. For MIR (Fig. 2a), the bands at 2952-2853 cm-1 are related to anti-symmetric and symmetrical 267 

stretching modes of CH2, CH3 and CH biodiesel chains. The absorption feature at 1740 cm-1 refers to C=O stretching 268 

mode of saturated aliphatic esters, and those occurring at 1196 and 1168 cm-1 correspond to the C-O stretching mode 269 

of esters from the biodiesel. The bands at 1461 cm-1, 1377 cm-1 and 722 cm-1 are referent to angular C-H bond 270 

deformations [43]. 271 

There are bands at 2130 nm and 2375 nm in the NIR spectra (Fig. 2b) referent to combination C-H/C=O 272 

stretching and C-H deformation bands, and a C-H stretch/C-C stretching combination band, respectively. In addition, 273 

there are band suppressions at 1690-1800 nm, 2150 nm, 2400 nm and 2450 nm, referent to the 1st overtone of CH2 274 

symmetric stretching, combination C–H stretching/C=O stretching, combination C-H stretching/C-C stretching 275 

forming CH, and combination C-H stretching/C-C stretching forming CH2, respectively [44]. 276 

Although the increase of kerosene content in the samples promotes the biodiesel dilution (as can be seen in Fig. 277 

A1 of Online Resource 1), it does not linearly alter the intensity of the ester fingerprint region bands (2130 nm for 278 

NIR, 1740 cm-1 for MIR), thus precluding univariate quantification. 279 

 280 

Multivariate Calibration for Kerosene Quantification 281 

As spectroscopic techniques do not resolve the components in a sample, chemical information about single 282 

components is embedded in multiple bands in the spectra and spectroscopic instruments alone provide very limited 283 

information toward unambiguous identification of unknown mixtures [6,45]. In this case, chemometric tools are 284 

commonly employed.  285 

PLS regression was applied to the data using 4 LVs (99.94% explained variance) for MIR and 4 LVs (99.99% 286 

explained variance) for NIR data. SVR calibration models were obtained using 9 support vectors (SVs) for NIR and 287 

11 SVs for MIR. Thus, the SVR model was obtained using C (100), m (0.01) and Gamma (10) parameters, for both 288 

techniques, in order to find the best RMSEC value. The use of adequate parameters allows the adjustment of the e-289 

insensitive loss function and the e-tube, which prevents the model from overfitting [33]. The measured versus 290 

predicted concentration of kerosene (%) plots of PLS and SVR calibration models are found in the Online Resource 291 

1. Results for FOMs are depicted in Table 3. 292 

 293 



 

 

14 

 

Table 3. Figures of merit (FOMs) for PLS and SVR calibration models. 294 

 295 

The PLS model for MIR data shows satisfactory performance for quantifying the kerosene content in the 296 

adulterated samples, with a root mean square error of cross-validation (RMSECV) and prediction (RMSEP) equal to 297 

2.35% and 3.21%, respectively. Additionally, the model shows to be linear in the concentration range (R2 = 0.947). 298 

Similar results are observed for NIR data, where the RMSECV and RMSEP were respectively equal to 2.59% and 299 

3.74%. The growth in the residues is associated with the higher complexity of NIR data in comparison with MIR. 300 

The NIR spectra are composed of superposed overtone and combinations bands; whereas the MIR spectra are 301 

associated to fundamental vibration modes of the samples’ constituents, therefore being more sensible [6]. The 302 

SVR-NIR model presents a constant variance and low residues for both calibration and prediction samples, with a 303 

root mean square error of cross-validation (RMSECV) and prediction (RMSEP) equal to 5.07% and 5.56%, 304 

respectively, and a determination coefficient of 0.999. The same behavior occurs in SVR-MIR, where the RMSECV 305 

and RMSEP were equal to 3.85% and 5.99%, respectively, in addition to a determination coefficient of 0.988, which 306 

indicates good fit throughout the analytical ranges for both methods. 307 

The values of calibration, cross-validation and prediction errors obtained for this methodology are close to those 308 

observed in the literature for quantifying kerosene in diesel by another spectroscopic technique [46]. Results of 309 

paired t-tests and F-tests (Table 3) confirm that predicted concentrations were statistically equal to the reference 310 

concentrations and all the calibration models used in this work are valid for a confidence level of 95%. The low 311 

RMSE values and the high correlation coefficients demonstrate that these PLS models may be applied to quantify 312 
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kerosene volumetric concentration in diesel for controlling adulteration issues. Fig. 3 depicts the elliptical joint 313 

confidence region (EJCR) at 95% confidence level for the slope and intercept of the regression line in predicted 314 

versus reference values. The ellipse contains the ideal point (1,0) for slope and intercept, respectively, showing that 315 

the reference and predicted values are not significantly different at 95% confidence level for PLS-MIR, PLS-NIR, 316 

SVR-NIR and SVR-MIR; thus, no systematic errors were detected in calibration.  317 

 318 

Fig. 3. EJCR for the calibrations models to quantifying kerosene with (a) PLS-MIR, (b) SVR-MIR, (c) PLS-NIR 319 

and (d) SVR-NIR. 320 

 321 

    MCR-ALS was also applied to these data; however, it was not possible to quantify the concentration of kerosene 322 

with IR spectroscopy due to the non-correlation between samples. A low correlation coefficient and high errors were 323 

obtained for MIR, such as RMSEC and R2 of 20.79% and 0.470, respectively. Meanwhile, the recovered spectral 324 

profile (Sopt) of the adulterant could be calculated and is shown in Fig. 4a. 325 
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 326 

Fig. 4. Comparison between the original IR spectra (blue) and the Sopt obtained by MCR-ALS (red) for kerosene 327 

solvent using (a) MIR and (b) NIR data. 328 

 329 

The model was able to recover 3 Sopts, where Sopt1, Sopt2 and Sopt3 are the recovered profiles of diesel S10, 330 

kerosene and biodiesel, respectively, identifying the adulterant spectra despite the high chemical similarity between 331 

diesel and kerosene. This can be concluded because of the similarity between the spectral profiles and Sopts, 332 

presenting only a small difference in some band intensities due to the resemblance among the fuel and the adulterant. 333 

MCR-NIR presented lower RMSEC and higher R2 values than MCR-MIR (15.94% and 0.620, respectively). These 334 

results indicate better precision in the quantification process; meanwhile, this model is not reliable for quantifying 335 

kerosene content and may only be used for the Sopt recuperation (Fig. 4b). It was possible to recover two spectral 336 

profiles (Sopt1 and Sopt2), corresponding to the diesel/biodiesel blend and kerosene, respectively. 337 

Correlation analysis (R2) between kerosene spectra and the recovered profile was also performed and showed the 338 

resemblance among them. The R2 was of 0.977 and 0.990 for MCR-MIR and MCR-NIR. This method can be 339 

interesting to solve the big issue of identifying kerosene adulteration in commercial diesel, along with PLS and SVR 340 

calibration to efficiently quantify its content. 341 

 342 

Multivariate Classification for Fuel Aging 343 

By applying PCA to the preprocessed data, three PCs (87.53% of explained variance) were selected for MIR and 344 

three PCs (96.67% of explained variance) for NIR. Fig. 5 depicts the scores graph for the PCA models without LDA. 345 

The scores graph that best separated the sample classes under and over 30 days of storage in PCA was built using 346 

PC2 x PC3 for MIR and PC1 x PC2 for NIR (Fig. 5a and 5b). PCA was able to separate the samples with aging time 347 
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over and under 30 days of storage using MIR spectral data (Fig. 5a), detecting some compositional differences 348 

caused by the aging process to distinguish both classes. For NIR (Fig. 5b), group distribution was not satisfactory 349 

just with the exploratory analysis. Since PCA is used to get a view of the data in space and the important loadings 350 

for each PC, LDA is needed for enabling an accurate classification of the samples. 351 

 352 

Fig. 5. Scores plot for (a) MIR and (b) NIR spectra analyzed by PCA. 353 

 354 

The loadings profile of PCA-MIR model (Fig. 6) depicts the absorption features of the IR spectra that most 355 

influenced the segregation between the sample classes. The coefficients that most influenced PC1 were 356 

wavenumbers at 1740 cm-1, 1196 cm-1and 1168 cm-1, referent to biodiesel absorption bands (see Fig. 2a). This 357 

occurs since biodiesel is composed of esters, which have different spectroscopic characteristics than the 358 

hydrocarbons present in diesel and kerosene. Thus, the pattern recognition model was able to detect the influence of 359 

kerosene by the changes in biodiesel content into the blends. It can be proposed that PC1 was able to identify the 360 

influence of the increasing content of kerosene adulterant in the storage stability and in the degradation process of 361 
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the samples, as predicted by PetroOxy results. PC2 and PC3 were more influenced by wavenumbers that correspond 362 

to compounds that may have been produced in the degradation of the blends, such as aldehydes, phenols and amides 363 

(see Table 4), which justifies the good separation of classes with different storage times in the PCA scores (Fig. 5a). 364 

 365 

Fig. 6. PCA loadings profile for MIR. 366 

 367 

 368 

 369 
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 370 

Table 4. Absorption features that most influenced PC2 and PC3 in MIR loadings. 371 

 372 

 373 

In PCA-LDA, 10 PCs were selected for MIR and NIR (96.53% and 97.87% of explained variance, respectively) 374 

to classify the data according to its storage time (over and under 30 days of storage). SPA and GA algorithms 375 

provide a set of selected variables that promotes the higher inter-class segregation to be used in LDA. The selected 376 

variables for both SPA and GA are shown in Table 5. All the discriminant function (DF) plots for the models are 377 

presented on Online Resource 2. 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 
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 387 

Table 5. SPA and GA selected variables for MIR and NIR data. 388 

  389 

As also seen in PCA loadings (Table 4) for the model with good aging classification before applying LDA (PCA-390 

MIR), some of the SPA and GA selected variables for MIR and NIR are related to biodiesel content (~1748 cm-1 for 391 

MIR and ~2133 nm for NIR, for example)and probable products of sample degradation, such as aldehydes (1700-392 

1800 cm-1 for MIR), amides (~1530 cm-1 for MIR and ~1430 nm for NIR) and carboxylic acids (~1700 cm-1 for 393 

MIR and ~1920 nm for NIR) [43,47]. After this selection, LDA was applied in order to classify the samples into 394 

their correct classes. Sensitivity (Sens), specificity (Spec) and correct classification (CC) were calculated in order to 395 

infer the prediction performance for these models. Table 6 summarizes the results for figures of merit for the 396 

classification models. PCA-LDA and SPA-LDA reached 100% accuracy with both IR methods; although GA-LDA 397 

presented some lower results of sensitivity and correct classification for the sample class before 30 days of storage, 398 

its efficiency was still satisfactory (>85.7%). 399 
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Table 6. Figures of merit (FOMs) inferred for the classification work with PCA-LDA, SPA-LDA and GA-LDA 400 

models. 401 

  402 

These results show that PCA-LDA, SPA-LDA and GA-LDA models for both IR spectroscopies are capable of 403 

differentiating the monthly storage time of these fuels with good accuracy, unlike what can be observed in the 404 

physicochemical analysis results during storage, which were not able to detect changes in diesel-biodiesel samples 405 

with or without kerosene during the monitoring. Furthermore, NIR data can be recorded by portable instruments, 406 

enabling faster “in loco” inspection procedures with an effective and simple methodology with the combined 407 

classification models. PCA loadings detected the presence of adulteration by observing variations on biodiesel 408 

concentration, in addition to detect chemical species from decomposition reactions of the diesel-biodiesel-kerosene 409 

mixtures as the main features responsible for aging class separation, as well as SPA and GA selected variables. 410 

 411 

Conclusions 412 

The NIR and MIR spectra coupled to PLS and SVR models for quantifying kerosene content presented low RMSE 413 

values and high correlation between real and predicted concentrations, in spite of the similar chemical composition 414 
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of diesel and kerosene. MCR-ALS with correlation constraint was able to identify and recover the spectral profile of 415 

commercial diesel and kerosene adulterant from the IR spectra of contaminated blends. 416 

PCA-LDA, SPA-LDA and GA-LDA enabled correctly classifying diesel-biodiesel with kerosene in different 417 

degradation levels, separating these samples into two well-defined groups under and over thirty days of storage. The 418 

method was highly accurate and reliable for evaluating fuel storage stability. PCA loadings, as well as GA and SPA 419 

selected variables, detected that spectroscopic features related to degradation products such as amides, carboxylic 420 

acids and aldehydes were responsible for the classification by aging stage.  421 

The multivariate classification methodology developed in this paper is an efficient tool for classifying commercial 422 

diesel with kerosene adulterant by aging time and chemically observe the degradation phenomenon. Combining 423 

MCR-ALS with PLS or SVR models is powerful to solve the great issue in quantifying and identifying this 424 

adulteration, being interesting to improve the investigative process of adulteration in diesel fuel screening. The 425 

results of the study that we performed demonstrated good results in the quantification using these techniques. 426 

However, more in-depth studies with more sampling need to be performed in order to have a better validation of the 427 

technique and to be more certain. However, our results are encouraging. The evaluation method is simple, fast, does 428 

not require pretreatment of the samples, may be carried out “in loco” with portable NIR instruments and is low cost. 429 
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