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A B S T R A C T

In the supply chain, the integration of the different processes is critical to obtain
high levels of coordination. Inventory control and its distribution are two of these
processes whose coordination have been demonstrated by researchers as key in or-
der to gain efficiency and effectiveness. They affect the synchronization of the supply
chain management. With the intention to contribute to the integration of these pro-
cesses and improve the problems of demand variability, we propose an integration
of operations research area and the help of metaheuristics in a multi-objective ap-
proach. The expected results are to reduce the costs associated with inventory and
its distribution, as well as to reduce the uncertainty in making decisions based on
demand.

This thesis presents methods for obtaining and analyzing near optimally solutions
for dynamic and stochastic inventory-routing problems. The methods include retail-
ers selection and clustering methods, algorithms and experiments on benchmark
instances. We focus on problems with one and several suppliers that serve several
dispersal geographically retailers.

The thesis contains four parts. In Part I, we focus on the literature review. We
first provide an overview of the literature on problems related to the coordination
of the inventory and its distribution. Then we make a point in four elements: infor-
mation management, inventory policies, stochastic demand and optimization meth-
ods. Also, we provide a scientometric analysis of the documentation collected in the
last ten years. We provide a thorough review of papers working with dynamic and
stochastic demand. The contributions of this part are i) the review of papers work-
ing with stochastic demand and stochastic lead times focusing on its stochastic and
multi-depot aspects, ii) identify critical factors for the performance of many logistics
activities and industries, iii) have shown that studying the behavior of the demand
and the lead time are essential in order to achieve a useful representation of the sys-
tem to take proper decisions and iv) provide the trends and patterns in the research
in IRP problems.

In Part II, we focus on the methodology of the research and of development. We
first introduce the problem, state of the science, the gaps in the literature, variables
under study, the instruments applied and assumptions. The development method-
ology is presented by a general model to address this type of research proposed in
this thesis. Here, the general development process, decomposition of the problem
and how the possible solutions are explained.. The importance of the this chapter is
provided an effective way to face IRP problems.

In Part III, the foundations in formulations for IRP problems are proposed. We
begin with the formulation of the TSP problems with variants for one and many
suppliers, likewise for VRP and IRP problems. The contributions of the model pre-
sented here aim identifying the variables and mathematical models frequently used
to deal with these problems.

In Part IV, we perform a single criteria objective and multi-criteria analysis of
the solutions for one and many suppliers instances. Our methods yield significant
improvements over a competing algorithm. Our contributions are i) propose three
new customer selection methods for a dynamic and stochastic inventory-routing
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problem, ii) perform a multi-criteria analysis of the solutions, comparing distribution
versus inventory management, iii) perform a single criteria objective experiment on
benchmark instances from the literature.

R E S U M E N

En la cadena de suministro, la integración de los diferentes procesos que la con-
forman, es fundamental para obtener altos niveles de coordinación. El control del
inventario y su distribución son dos de estos procesos, cuya coordinación ha sido
demostrada por los investigadores como clave para lograr mejoras en eficiencia y
efectividad. Estos a su vez, afectan la sincronización y la administración de la cadena
de suministro. Con el propósito de contribuir en la integración de éstos procesos y
mejorar los problemas derivados de la variabilidad de la demanda, se propone usar
los fundamentos del área de investigación de operaciones y la ayuda de metaheurís-
ticas en un enfoque multi-obejtivo. Los resultados esperados son reducir los costos
asociados a los procesos de inventario y distribución, así como también reducir la
incertidumbre en la toma de decisiones a partir de la demanda.

Ésta tesis presenta métodos para el análisis y obtención de soluciones cercanas
a las óptimas para problemas de inventario y routeo, dinámico y estocástico. Los
métodos incluyen selección de retailers y métodos de clustering, algoritmos y ex-
perimentos en instancias de prueba disponibles en la literatura. Se hace énfasis en
instancias de un solo proveedor y varios proveedores que sirven varios retailers dis-
tribuidos geográficamente.

La tesis está organizada en cuatro partes. En la Parte I, se revisa la literatura,
para ello, primero se presentan los problemas relacionados con la coordinación del
inventario y su distribución. Ésta revisión resalta cuatro elementos que han sido
identificados como claves en la literatura como son: la administración de la informa-
ción, políticas de inventario, demanda estocástica y métodos de optimización. Luego,
se presenta un análisis cienciometrico de la literatura encontrada en los últimos 10
años. La revisión de la documentación se realiza de manera exhaustiva trabajando
con demanda dinámica y estocástica. Las contribuciones de esta parte son: i) pro-
porcionar una revisión pertinente y actualizada de artículos que emplean demanda
estocástica, enfatizando en sus elementos dinámicos y estocásticos, así como también
en aspectos que permitan abordar problemas con múltiples depósitos, ii) identificar
factores críticos para el desempeño de actividades logísticas, iii) Demostrar que el
estudio de la demanda es esencial para lograr una representación útil del sistema, la
cual influye en la toma de decisiones y iv) proporcionar tendencias y patrones en la
investigación de problemas de IRP.

En la Parte II se aborda la metodología de la investigación y de desarrollo. Primero,
se presenta el problema, el estado de la ciencia y los gaps encontrados en la liter-
atura. Luego se identifican las variables de estudio, los instrumentos aplicados y los
supuestos utilizados. La metodología de desarrollo es presentada por medio de un
modelo general para abordar éste tipo de investigaciones que nosotros proponemos
en ésta tesis. Esta metodología aborda aspectos como: el procedimiento general de
desarrollo, la descomposición del problema y la forma en que se prueban las posibles
soluciones.

En la Parte III, se presentan los fundamentos en la formulación de IRP. Primero
se formulan los problemas TSP con variantes para un solo depósito y también para
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múltiples depósitos, igualmente se hace para VRP e IRP. La contribución de los
modelos presentados son la identificación de las variables y los modelos matemáticos
que frecuentemente son usados para tratar con éste tipo de problemas.

En la Parte IV se presentan dos experimentos. El primero para el análisis de in-
stancias con uno sólo depósito y en el segundo para analizar instancias con múltiples
depósitos. Los métodos usados producen mejoras sobre resultados obtanidos con al-
goritmos similares. Las contribuciones de ésta parte son: i) proponer tres nuevos
métodos para la selección de retailers para IRP dinámicos y estocásticos, ii) realizar
análisis multi-criterio de las soluciones, comparando la distribución con la adminis-
tración del inventario y iii) realizar análisis de un solo objetivo sobre instancias de
pruebas proporcionada por la literatura existente.
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1
I N T R O D U C T I O N

The coordination and the integration of the various components in the Supply Chain
(SC) management have become critical in gaining competitive advantage. The price
of the a product is the key for the competitiveness, but it is affected by the logistics
cost which increases their cost. A great proportion of the logistic costs correspond to
the transportation and inventory processes. The inventory represents a proportion of
net operating assets of approximately 37% in industry, 62% in distribution and 56%
in retail.

In turn, the variability of the demand information affects the integration of the SC.
The variability causes efficiency and efficacy losses influencing the decisions related
to inventory control. In addition, it is important to note that the inventory control
has to balance conflicting objectives due to two main reasons: i) economy of scale
and purchasing batch size and ii) uncertainty in offer and demand with production
and transportation lead time that inevitably creates the need for safety stock.

Besides that, the current models proposed in the literature are computationally
efficient but have some difficulties of implementation in the real world due to their
lack of flexibility when incorporating additional constraints. In this context, it is
mandatory to establish an optimal policy for the coordination of the flow of goods
and services along the SC. This policy is applicable in the process of distribution
and inventory in commercial relationships between companies. The overall costs are
minimized as well as the uncertainty in the decisions. The decisions to be taken are
related to how much to ship, when to ship and how to ship. These decisions are
taken in oder to decrease inventory and transportation cost, guaranteeing a certain
service level and adjusting to available resources.

Given the complexity of the optimization of the inventory and its distribution,
problems generally called as Inventory Routing Problem (IRP), the studies are ap-
proached from instances. Models usually include only the variables of interest ac-
cording to real-world problems. A basic problem to be considered have the follow-
ing characteristics: the SC contains one or more suppliers of products and several
geographically dispersed retailers. The Vendor Managed Inventory (VMI) policy is
followed and one only actor is responsible for taking decisions. The product de-
mand is assumed unknown and its is reveled gradually in a given planning horizon.
Each retailer has a capability of storage. One or several vehicles are used to transport
where its capacity is limited and each vehicle only does one trip by period.

The objective is to minimize the total cost of inventory and its distribution and
minimize or eliminate stock-outs in the retailers. The cost is related to the inventory
cost in the suppliers, the inventory cost in the retailers and the transportation cost.
Thus, it is necessary to determine the inventory level by period for each retailer and
to determine strategies that minimize the associated costs for the distribution routes
and inventory held.

The performance and coordination and integration of the components of the SC is
critical to gain competitive. The logistic costs, in special those related to inventory
and its distribution, do not add value to a product, but increase its price and pro-
duces losses of market, expensive products, and higher inventory levels than recom-
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mended. The most representative processes that add cost in the SC are the inventory
and transportation.

In this context, one must establish an optimal policy for the coordination of the
flow of goods and services along the SC in commercial relationships between sup-
pliers and companies. The main objective is to coordinate inventory control and its
distribution process in the SC, in order to reduce the cost and the uncertainly in the
taking decisions based on demand.

The work is divided in four parts. In Part II a global overview of the real situation
of the problems related to the coordination of the inventory and its distribution is
provided. This part is composed by two chapters. In Chapter 2, a state of the art is
provided, emphasizing five aspects:

• Problem, justification and necessity. The problem is presented under of an ap-
proach of structure of cost.

• Information management in the SC. Deals with the information as a key el-
ement to coordinate processes in the SC. In this context, the BullWhip Ef-
fect (BWE) is highlighted as a problem that causes efficiency and efficacy loses
and the necessity of centralize the decisions for reducing its variability.

• Inventory policies addresses the decisions that need to be taken when dealing
with the inventory and its distribution and as there can be controlled by means
of inventory policies

• Demand and lead time modeling under uncertainly deals with the demand
and as it is possible through of its estimation and its knowledge to have better
possibilities to avoid stock-outs, surplus and to reduce the BWE.

• Optimization methods, here, several methods for inventory optimization and
its distribution are showed. This methods take into account near-optimal solu-
tions which are obtained with heuristics and metaheuristics, in especial those
bio-inspired used in computer science.

In Chapter 3, a scientometric analysis is presented, empirically studying the evo-
lution of the research on IRP providing a view about groups of researchers, their re-
search productivity and impact, all that providing a better understanding of trends.
The chapter shows through of the relevant publications on DSIRP, the analysis of
number of publications per category, the analysis of citations per category, groups of
researchers, the trends and future work on the field.

In Part II, the methodological aspects are explained by referring two chapters. In
Chapter 4, the research methodology is addressed consider 7 aspects which they are
listed below:

• The scope and significance of the problem, here the research problem is pre-
sented, is delimited and is justified.

• The state of the science relates to objects of the study Inventory Routing Prob-
lems and inventory Control. These objects are addressed by means the topics
stated in the state of the art.

• Gaps in the literature specifies purpose, questions, hypothesis and contribu-
tions of the research.
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• Variables under study, here the independents, the dependents and the inter-
vening variables are identified.

• Operationalization of variables shows some metrics to evaluate the obtained
solutions.

• Instruments applied and data collection highlights the use of benchmark in-
stances.

• Assumptions. A set of assumptions are defined.

In Chapter 5 the details about the methodology of development are explained by
means of:

• Preliminary procedure of development shows the steps carried out to solve the
problem

• Initial decomposition to the problem shows the possible phases in that the
problem can be divided

• Testing feasible solutions indicates how the possible are the comparisons to
validate the performance of the algorithm.

In Part III, the background formulations for IRP is provided, step by step from
TSP problems to IRP with periods of time and multi suppliers versions.

Finally, in Part IV, two experiments were performed and two algorithms were
designed. In Chapter 7 a heuristic model to solve DSIRP is presented in order to test
many policies of reduction of cost in the SC. The results are analyzed taking into
account two approaches: with one objective and with two objectives. The tests allow
projecting future work. The chapter is divided in the following sections: In Section 7.2
we formally describe the problem. In Section 7.3 we present our solution procedure
which includes customer selection, quantities determination, and vehicle routing. In
Section 7.4, we present the results of extensive computational experiments and we
analyze the trade-off between inventory and transportation costs. We describe how
we can identify dominated solutions under a multi-objective optimization approach,
and we compare our solutions against the ones from the literature. In Section 7.5 we
present our conclusions and findings.

The second experiment in Chapter 8 is addressed. In this chapter a relatively sim-
ple but effective hybrid GA to solve the multi supplier DSIRP is explained and eval-
uated. In terms of reduction of average costs, the results will show a good performer
to compare them with a lower and higher boundaries from exact and heuristics de-
rived from literature.

And finally the conclusions and future work are provided.





Part I

L I T E R AT U R E R E V I E W





2
D Y N A M I C A N D S T O C H A S T I C I N V E N T O RY R O U T I N G
P R O B L E M ( D S I R P )

An article based on this chapter was published for Advances in Intelligent Systems
and Computing Volume 299, 2014, Pages 73-82 by Raúl Roldán, Rosa Basagoiti and
Enrique Onieva which has the title of Inventory routing problem with stochastic
demand and lead time: State of the art ([101]). The most recent version of this article
is currently accepted for publication in Journal of Applied Logic by Raúl Roldán,
Rosa Basagoiti and Leandro Coelho, which has the title A Survey on the Inventory
Routing Problem with Stochastic Lead Times and Demands ([98]).

The integration of the different processes that conform the supply chain (SC) is
fundamental to obtain a better coordination level. The inventory control and its dis-
tribution, are the processes that researches have found as the key in the loss of effi-
ciency and effectiveness in the field of logistics, affecting so the synchronization in
the SC management. In order to analyze the recent developments in the integration
of these processes, this paper analyzes the state of the art of the progress in informa-
tion management in the SC, the relationship of inventory policies and the demand
information, modeling demand and use of optimization methods in the search for
the appropriate solutions.

With the aim of providing a global overview of the real situation of the problems
related to the coordination of the inventory and its distribution, in this chapter a
state of the art is provided. We have identified four key elements that should be
taken into account to propose alternative solutions, so this study highlights: i) the
information management between different actors in the SC, since this determines
the evolution and quality of information, ii) inventory policies and their relation to
the demand information, in order to properly manage inventory levels, iii) stochastic
demand and lead time modeling, to understand and represent their behavior over
time and iv) optimization methods for the search of the most appropriate solution.

In this chapter, our goal is to provide an overview of the literature on problems
related to the coordination of the inventory and its distribution. We provide a thor-
ough review of papers working with stochastic demand and stochastic lead times,
as these are the factors identified as critical for the performance of many logistics
activities and industries.

In Section 2.1 the logistic cost and how they increase the price of the products is
dealt, difficulties to access for the new products to the markets and the inventory
levels increase. Section 2.2 deals with the information as a key element to coordinate
process in the SC. In this context, the BWE is highlighted as a problem that causes
efficiency and efficacy losses.

Three decisions that have to be taken when dealing with the inventory and its
distribution: i) when replenish, ii) how much to replenish and iii) how often the in-
ventory level is reviewed. These decisions can be taken by means of an inventory pol-
icy. Thus, Section 2.3 deals with the more important policies in uncertainly demand.
These policies can reduce directly the cost in SC, in special in the determination of
clients that should be served in every period.
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8 dynamic and stochastic inventory routing problem (dsirp)

Section 2.4 deals with the demand and lead time. Using the estimation and the
knowledge about the demand to have better possibilities to avoid stock-outs, surplus
and reduced the BWE. Here it is important to notice that an adequate model of the
demand is essential for this purpose. The section describes some models that have
been used to understand and explain the nature of the demand.

In Section 2.5 several methods for inventory optimization and its distribution are
showed. This methods take into account near-optimal solutions which are obtained
with heuristics and metaheuristics, in especial those bio-inspired used in computer
science.

In the final Section the conclusions are outlines taking into account all the previous
topics.

2.1 problem , justification and necessity

SC is defined by Blanchard [18], as the sequence of events that cover a product’s entire
life cycle, from conception to consumption and that involves different actors such as
suppliers, producers, distributors, transporters and clients among others, all of them
involved directly or indirectly in satisfying the request of a final client, "more and
more companies become aware of their SC performance, the coordination and the
integration of the various components in the SC management have become critical in
gaining competitive advantage" [88].

Figure 1: Actors of the supply chain

The study Guasch and Kogan [52] compares the logistics costs of the European
Organization for Economic Cooperation (OECD) and Latin America (LAC), in order
to find the impact of logistics cost on the price of the product. The authors conclude
that the costs associated with the inventory represents a proportion of the price of a
product that is in average approximately 19% (see Table 1), in contrast, in Singapore
that was ranked No.1 in the logistic performance index 2012, it is only 8.5% (see Fig-
ure 3). According with Guasch [51], the reduction in cost logistics can be evidenced
by two indicators: i) the increase in the proportion of demand of a product launched
on the market and ii) the increasing in the proportion of employment that can be
generated for some sectors of the economy (see Table 2). So, the increase in product
price obstructs the competitiveness and complicates the maintenance of inventory.

On the other hand, in Guasch [51], the logistics costs are divided in: administrative
costs, warehousing, inventory, transportation and licenses. From this study it can be
concluded that more than 69% of these costs are directly related to transportation
and inventory (see Figure 4). Just the inventory represents a proportion of net oper-
ating assets of approximately 37% in industry, 62% in distribution and 56% in retail
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Table 1: Proportion of costs associated with the inventory [52]

Element Average(%) Ranges(%)

Capital Cost 15,00 8-40

Taxes 1,00 0,35-1,52

Insurance 0,05 0,01-0,25

Obsolescence 1,20 0,5-3

Storage 2,00 0-4

TOTALS 19,25 9-50

Figure 2: Proportion of productivity gain versus logistics costs [52]

Figure 3: Proportion of the product value that corresponds to the inventory holding cost [52]
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Figure 4: Structure of logistics costs [51]

according to Timme and Williams-Timme [118] quoted by Moin and Salhi [88]. In
addition, it is important to note that the inventory control has to balance conflict-
ing objectives due to two main reasons: i) economies of scale and purchasing batch
and ii) uncertainty in offer and demand with production and transport lead time
inevitably create the need for safety stock.

Table 2: Impact generated by the reduction of logistics costs [51]

Sector Demand Increases Employment Increases

Agro-Industry 9% 5%

Wood and Furniture 10% 12%

Textiles 6% 7%

Leather and Shoes 12% 10%

Mining 7% 2%

In the specific case of Spain, Globalog [49] found opportunities for improvement
in the following aspects: i) inventory practices such as coding, classification, man-
agement of multi-echelon and Just In Time policy among others, ii) inventory man-
agement as modularity, backorder, Vendor Management Inventory (VMI) and de-
mand planning and iii) practical network optimization and warehouse management
as cross-docking and traceability among others.

A supply chain (SC) is defined as the system of organizations and flows of prod-
ucts, information and money spanning over the product’s entire life cycle, from
conception to consumption and final disposal. It involves different actors such as
suppliers, producers, distributors, transporters and retailers, among others. All of
them involved directly or indirectly in satisfying the request of a final client. Co-
ordination and integration of SC activities are now recognized as critical to obtain
competitive advantage [88]. Guasch and Kogan [52] observe that the logistics per-
formance directly affect the cost of the products and hence the overall performance
of an industry. These authors compare two economic organizations in order to find
the impact of logistics cost on the price of a product, and conclude that the costs as-
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sociated with inventory management represent about 19% of the price of a product
in countries with poor logistics systems, compared to 8% in countries with efficient
logistics networks. Guasch [51] conclude that the reduction in logistics costs can be
evidenced by two indicators, namely 1) the increase in the proportion of demand of a
product, and 2) the increase in the proportion of employment that can be generated
for some sectors of the economy. As a consequence, the increase in product price
obstructs the competitiveness and complicates the maintenance of inventory.

Logistics costs can be categorized administrative, warehousing, inventory, trans-
portation and licenses costs. Guasch [51] identifies that more than 69% of these are
directly related to transportation and inventory. Inventory management alone rep-
resents a proportion of net operating assets of approximately 37% in industry, 62%
in distribution and 56% in retail [118]. In addition, it is important to note that the
inventory control has to balance conflicting objectives due to two main reasons: 1)
economies of scale and purchasing large batch sizes, and 2) uncertainty in supply
and demand, which inevitably create safety stocks.

2.2 information management in the supply chain

The management and coordination of the information between the processes in the
SC is really important in order to take decisions. In Gavirneni, Kapuscinski, and
Tayur [47] the flow of information between a supplier and a client is analyzed, for
this, three situations are considered: i) there is no information for the supplier before
the request comes, ii) the supplier knows the policies that the client uses as well as
the final distribution processes and iii) the supplier has all the information about the
state of the client. The costs analysis indicates that the second configuration reduces
50% of the cost compared to the first configuration. When the second and the third
are compared, the cost reductions change in a wide range between 1% and 35%.

According to Psaraftis [93], the four dimensions of the information are evolution,
quality, availability and processing. Just the first and second components add ran-
domness. The evolution that the information experiences over the time highlights
that this can change during the execution of the preliminary planning, and its qual-
ity reflects the possibility of the existence of some amount of uncertainty and asym-
metric information between actors or entities.

The demand information experiences variability and amplification along the SC.
This effect is known as the Bull Whip Effect (BWE). Giard and Sali [48] argued that
the BWE is the main reason of the efficiency and efficacy loose in the SC. Chopra and
Meindl [29] states that the BWE can be damped by an improvement on the operative
performance and the design of rationing schemes in the products that present short-
age. In this way, some of the proposals are: reducing the replenishment lead-time,
reducing the lot size and taking into account historical data and the interchange of
information to limit the variability.

Accurate and timely information management can optimize the performance of
the SC. According with Wagner [121], although the SC involves several activities like
purchase, production, localization, marketing, inventory control and distribution, the
deep roots of the integration in the SC are in the last two activities, which are focused
in the efficiency of the channel and they coordinate the performance of the individual
entities in the satisfaction of the final client.

One way to reduce the effect of variability in the information is to assign the re-
sponsibility for management between activities to a single actor. This is achieved
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Figure 5: Inventory policies for ordering

with policies like Vendor Managed Inventory (VMI), which requires that the infor-
mation between actors be shared, in special with the actor who is going to take the
decisions.

2.3 inventory policies

Policies use to be based on three parameters, that can be related to the key questions
to solve inventory control: when replenish, how much to replenish and how often
the inventory level is reviewed. Wensing [124] highlights five policies according with
these parameters, which are described below. Figure 5 shows the behavior the each
policy in the time.

1. The policy (s,S) consists in ordering a variable quantity equal to the difference
between a value S and the current inventory position as soon as the inventory
level is less than a value s.

2. In (s,q), a fixed quantity q is ordered as soon as the inventory level is less than
a value s.

3. In the policy (t, s,S), the inventory level is revised in each time period t. In case
the inventory level is less than s, a quantity is ordered. The quantity ordered
Q is established from the difference between a fixed value S and the current
inventory level.

4. In (t, s,nq) each time period t the inventory level is revised, a multiple n of
the fixed quantity q is ordered if the inventory level is less than a value s.

5. In the policy (r,S), the inventory level is reviewed each time period r and the
difference between a fixed value S and the current inventory level is ordered.

2.4 stochastic demand and lead time modeling

Models of demands with Poisson were presented by Axsäter [10] and Axsäter [11]. Its
objective is to evaluate the total system costs for different inventory policies, and to
optimize the system. The result is an accurate methodology for analyzing inventory
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costs. In Chao and Zhou [22], it is addressed an inventory system with continuous
review in infinite horizon, where the sales price and inventory replenishment are de-
termined simultaneously. The demand process is modeled by a Poisson probability
distribution, with a arrival rate that depends on the price.

In the case of Normal probability distribution, in Berling and Marklund [14] an
approximate model for coordinating inventory control of a warehouse and multiple
clients is addressed. Results show a reduction in the holding inventory cost at least
30% the analyzed case study.

Queueing models have been used for representing systems in a SC. Saffari, As-
mussen, and Haji [103] considered a M/M/1 queuing system with a (s,q) inventory
policy and the possibility of lost sales, in which the demands arrive according to a
Poisson’s distribution and service times modeled by an exponential probability dis-
tribution. The aim of the study is to obtain reorder points and optimal quantities or-
der for several cases. They found that there is no difference between the length of the
queue size in the steady state model and in the classic M/M/1. Schwarz et al. [108]
addressed the study ofM/M/1 queues with attached inventory. The study considers
Poisson-distributed demand and service/lead times exponentially distributed.

In Saffari and Haji [104], it is presented a model for a SC consisting of two levels
for one supplier and several clients. They get the measures of long-term performance
of the system and present an optimization model to determine the parameters for an
inventory policy (s,q).

Another model for an inventory system with two suppliers is proposed by Song
and Zipkin [113], where one supplier responds best to demand that the other. One of
the nodes has a limit on its occupation, so, when an unit that arrives exceeds its limit;
it just bypasses the node. For the two suppliers is assumed constant lead time. The
demand is modeled as a continuous time flow with Poisson probability distribution
and linear ordering costs.

The impact of lead time on the inventory cost is analyzed in a model for single
product in continuous time by Song [115]. The variables of interest are the inventory
level and the behavior of average long-term cost. The study shows that a short lead
time requires higher inventory level. However, a higher lead time will not necessarily
result in a higher average cost.

2.5 optimization methods for the inventory and distribution

Optimization methods require information of current and historical inventory levels,
the behavior of the demand, the location and the transport costs, as well as the capac-
ity and availability of vehicles and drivers for deliveries. With this information it is
possible to find optimal solutions or, at least, near optimal solutions of distribution
and transport cost.

Coordination between inventory and transport can be faced from two perspectives:
i) from the transport process, where inventories constraints are added to Vehicle
Routing Problems (VRP) argued in Labadie and Prins [73], or ii) to approach it as a
variant of a problem of control of production and inventory, where a vehicle plays
the role of the production system in accordance with the arguments presented in
Reiman, Rubio, and Wein [97]. With both perspectives, the importance besides in the
interest of calculate the marginal profit (revenue minus delivery cost) for each client
and the delivery cost (routes, clients selection and the quantities allocated for each
client).
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The IRP works as a component integration element and according to Kleywegt,
Nori, and Savelsbergh [70], the IRP is one of the fundamental problems to be solved
in the application of business practices as VMI. An overview of IRP is provided by
Bertazzi, Savelsbergh, and Speranza [17] and Moin and Salhi [88].

Using the first approach and in terms of complexity, it is possible to decompose
the IRP. This may be originated from the needed of selecting the best route along
the clients. This problem is known as Travelling Salesman Problem (TSP), a classical
combinatorial optimization problem, whose details may be consulted in Matai, Mit-
tal, and Singh [85]. It is also necessary to add restrictions to routes to be followed by
vehicles, then this problem becomes in a VRP. The VRP, its variants and features can
be consulted in Toth and Vigo [119]. Thus, when the levels of consumption of the
clients and the need of suppliers to maintain a continuous replacement are consid-
ered in the model, an IRP system is created. An IRP fulfills three aims: i) To establish
the optimal inventory levels. ii) To plan volume and number of shipments and iii) to
ensure that deliveries to suit the requirements of each product.

In the search for the solution of the IRP, it is possible to seek the exact solution,
which usually takes a considerable investment of time calculation. The other option
is to search for a feasible solution (not necessarily the best) in a reasonable time,
although is possible to find in the literature hybrid approaches.

Heuristics and metaheuristics have been used in the search for a feasible solutions
in complex spaces. Evolutionary algorithms are widely used. These meta-heuristics
can be differentiated into a quite large set of algorithmic families representing bio-
inspired system, which mimic natural evolution. Simic and Simic [109] argued that
the complex optimization problems as IRP can be solved successfully by hybrid
approaches with techniques such as artificial neural networks, genetic algorithms,
tabu search, simulated annealing and evolutionary algorithms. Some bio-inspired
techniques to solve IRP are summarized in the Table 3.

An alternative to face complex problems is to decompose them. Thus, Archetti,
Doerner, and Tricoire [7] proposes a model that includes inventory control, routing
and delivery scheduling. The model is solved by decomposing the problem into
two phases, the first one is to create a scheduling and the second one is the design
of the routes. The second phase uses a VRP model with time windows. Variable
Neighborhood Search is used which is implemented by two destruction operators,
one to remove selected randomly travels and the other to eliminate stations.

In Christiansen et al. [30] the method is conformed by two components: a heuristic
construction algorithm and a genetic algorithm. The construction algorithm builds
a plan from scratch. It is deterministic, but has parameters that can be varied to
produce different plans. The genetic algorithm is used to search for parameters that
produce good plans by the construction heuristic.

Other application of genetic algorithms is the clustering of retails into m groups
in accordance with the number of vehicles available. In the Cheng and Wang [26]
this clustering information is then passed to sub-problems, and each sub-problem
optimizes its own routing sequence for replenish retails.

Metaheuristics such as simulated annealing and local search are used to evaluate
and improve initial solutions. In Li et al. [76], Liu and Lin [80] and Sajjadi and
Cheraghi [105] Simulated Annealing is used to improve initial solution obtained
from other heuristics and metaheuristics. In Qin et al. [94] local search methods are
used for to insert and to removal new replenishment points into a retailer’s schedule.
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Table 3: Metaheuristics used for IRP

Technique Use Ref. Use

Artificial Demand forecasting. [67] To predict the behavior

Neural Price forecasting. [91] of a variable interest

Networks To classify units of inventory.

To search for good parameters

for a function or heuristic. [30]

Genetic Clustering retails to replanish by [26] To find good solutions

Algorithms each of the vehicles available. [79] in large search spaces

To search optimal routes for

replanishment retails.

Replenishment policy for inserts

and removal new replenishment

point into a retailer?s schedule. [94] To avoid search of

Local Adjust the quantity to delivery to [68] solutions in spaces

Search retailer’s. previously visited

Exclusive operators for solve

special cases.

Simulated To improve an initial solution [76] To avoid premature

Annealing obtained from other heuristics [80] solutions which are

and metaheuristics. [105] not good enough
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Li et al. [76] focused the study on minimizing travel times in a context related to
law regulations about hours of service. The problem addressed considers a vendor,
multi-client, homogeneous fleet of vehicles and estimation of deterministic demand.
To evaluate the performance of the system, a Lagrangian relaxation approach was
used in order to obtain a lower bound for the solution of the problem. Compared
to this, the tabu search algorithm used shows to be close to the lower limits of the
problems for small to medium size.

The model presented in Agra et al. [3] includes multiple products, multiple sup-
pliers, multiple clients and heterogeneous fleet capacity. Also multiple period esti-
mation and deterministic demand. All this was used three heuristic methods: rolling
horizon (RH), local branching (LB) and feasibility pump (FP). In the case of RH the
planning horizon was decomposed into smaller time horizons. In the other hand,
LB seeks for local optimal solutions by restricting the number of variables that can
change their values and FP seeks for initial feasible solution. The results show better
solutions than those obtained with a single heuristic.

When IRP deals with stochastic demand, Bertazzi et al. [15] proposes a model
consisting on one supplier and a set of clients. A hybrid algorithm is used to solve
the problem. The estimated cost are obtained joining the exact solution of a mixed
integer linear programming with the branch and cut heuristic.

Another important variability term faced by an IRP model is the variability in
the travel times, which requires extra work on non-deterministic and probabilistic
approaches for some instances. In Reiman, Rubio, and Wein [97], the travel time
between clients is represented in the random variable by the idle time.

Dealing with complex problems, such as the IRP, it is common to place a set of
instances or testing problems available for other. Following this approach, Papageor-
giou et al. [90] creates a library composed of test instances for the maritime IRP,
it also creates a virtual community for discussion on topics such as mathematical
models of linear mixed integer programming, providing so, a framework with com-
mon characteristics for this type of problems. Resources are available online1. In the
specify case of routing vehicles, it is also possible to find the instance set proposed
by researchers belonging to CIRRELT, SCL, OR@Brescia and Logistics Management
Department of Helmut-Schmidt-Universitat, online 2 3 4 5. Other resources can be
finding in ths site by Adulyasak online 6. Instances were created for variants of the
problem of inventory and routing such as stochastic, dynamic, multi-product and
multi-vehicle along others.

New tends for Intelligent Data Analysis are presented in Corchado et al. [44].In
the first contribution applies principal component analysis for quantitative associa-
tion rules’ quality. From this analysis, a reduced subset of measures is selected to
be included in the fitness function in order to obtain better values for the whole set
of quality measures, and not only for those included in the fitness function. Other
contributions are technical for bio-inspired knowledge system for calculating param-
eters of functions.

According to Bertazzi et al. [15] the trend in IRP is to study it as a model system,
contrary to what is traditionally works IRP decomposition into simpler problems.

1 http://mirplib.scl.gatech.edu/
2 http://www.leandro-coelho.com/instances/
3 http://www.tli.gatech.edu/research/casestudies/irp2/
4 https://sites.google.com/site/orbrescia/home
5 http://www.hsu-hh.de/logistik/
6 https://sites.google.com /site/yossiriadulyasak/
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The working direction followed in IRP is to analyze the problem of distribution and
inventory control as a whole system. This is due to advances in the methods of the
solution both heuristic and exact and the increasing power of commercial software
for linear programming and mixed integer linear programming.

2.6 conclusions

Inventory policies are the core of the problems of inventory routing problems since
they determine the modeling of the problem but the objective function used, the
restrictions set as well as the optimization techniques used, play also an important
role. They determine the level of service of the SC, where the key is to correctly
study the behavior of the demand and the lead time in order to achieve a useful
representation of the system to take proper decisions.

The IRP is in the middle, between strategic, tactical and operational decisions of
the SC. Strategic, because it supports the policies governing the management, indica-
tors and targets related to business needs. Tactical, because it generates procedures
to be followed, monthly goals and work plans. Operational because it is required to
feedback to the system in order to keep it under control with the dynamic adjust-
ments the actual work load needs.





3
S C I E N T O M E T R I C A N A LY S I S O N D S I R P

The popularity and rapid development of Inventory Routing Problem as an area of
research has led to a huge amount of publications containing the achieved knowl-
edge. Due to the interdisciplinary nature of inventory routing problems that include
heuristics, operation research and management science, a scientometric study of the
area should shed some light on the topic. Empirically studying the evolution of the
research on this field will give a view about groups of researchers, their research
productivity and impact, all that providing a better understanding of trends. While
scientometric has a long tradition in many fields, we identify a lack of comprehensive
studies in the area of inventory routing. Based on bibliographic databases (Scopus
and Web of Science), this study applies a scientometric method to empirically anal-
yse the evolution and state of the Inventory Routing Problem research. We focus on
analysing variants of the problems where the inventory is revised periodically and
the decision making is affected by the dynamic variation of the demand that is re-
vealed as time goes by in the planning horizon. The results of this study provide a
better understanding of patterns, trends and other important factors as a basis for
directing research activities, sharing knowledge and collaborating in the operations
research area. It also makes reference to the transversal areas such as the mathemat-
ics and computer science.

3.1 introduction

The inventory administration, control and distribution is a topic of interest for the
researchers for the last three decades [37]). A great number of papers are written
every year proposing operational and tactical decisions in the supply chain, where
the coordination of inventory and transportation activities is important to gain com-
petitive advantages [88]. This problem is known as inventory routing problem, a
classical optimization problem that puts together different knowledge areas.
By considering the number of publications in the last ten years, we observe a contin-
uous and incremental interest in this topic, it becomes more and more important to
investigate the current state and evolution of IRP. One manner to analyze this evolu-
tion is by means of the Scientometric study. According to Lewis, Templeton, and Luo
[74], the Scientometric allows to quantize the studies as well as measuring and an-
alyzing science activities. Also, the Scientometric studies facilitate the development
and improvement of an academic discipline, serving as a vital basis for defining and
debating future research agendas [54].
The identification of research areas has been a perennial theme in scientometric.
A research area is defined as a set of papers or other biometrics units that define
a research topic and associated groups of research who share an interest in the
topic [110]. Using an scientometric study, it is possible to find information about
research activities in general, such as knowledge sharing, research quality, socio-
organizational structures, influential countries, affiliations, authors, development of
key topics, structural change, and economic impact of research that guide its work.
Due to the complexity of IRP, its analyzing require two elements that need to be
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taken into account. The first one consists of the versions of the problem that are
involved in the study and the second involves the knowledge areas these versions
are searching. The interest in this article is to analyze the versions of the problem
that have Dynamic and Stochastic demand with revision of the inventory in period
form. The study is focused on the subject areas related to operational research, social
sciences and business science.
In the literature, a lack of scientometric studies in IRP and its stochastic versions
has been detected. However, there are review papers which will be taken as a base
to find the key factors for the analysis. Those articles contain a large number of
references which are related and will be classified and analyzed. But still so, these
reviews lack the elements that distinguishes scientometrics studies such as: analysis
of publications per category, analysis of citations per category citation, identification
of the authors and the most representative groups of researchers among others.

As a stating point we have identified 8 of the most relevant review papers in our
opinion, according the amount of citations that these received. Also, we have high-
lighted the amount of papers that used in its studies and the specific key factors for
the analysis that these used, which will be discussed below. We our study besides
review the papers in IRP allows to know the state of the art of research of IRP, espe-
cially in stochastic, dynamic inventory routing problems with the periodic revision
of the inventory as well as its trends and patterns.

In Melo, Nickel, and Saldanha-Da-Gama [86] the decision on factory locations in-
volved in IRP are considered. They classified 139 papers by means which identified
four basic features that may be included in a facility location model to make it use-
ful in strategic supply chain planning: multi-layer facilities, multiple commodities,
single/multiple period(s), deterministic/stochastic parameters. Also, they classified
the literature according to some typical supply chain decisions namely, capacity, in-
ventory, procurement, production, routing, and the choice of transportation modes.
Though their classification clearly show that facility location is frequently combined
with inventory and production decisions and less frequently with procurement, rout-
ing and the choice of transportation modes.

Li and Wang [77], Andersson et al. [4] and Moin and Salhi [88] each cited 63,
125 and 49 papers respectively, Those works were emphasizing coordination mech-
anisms in the supply chain and inventory management and distribution. In Chris-
tiansen et al. [32] and Song and Furman [112], a review of trends in Maritime IRP

is analyzed with 132 and 12 articles cited respectively. In Ko, Tiwari, and Mehnen
[72] some applications of the soft computing in the IRP are analyzed with 188 pa-
pers cited. Ignaciuk and Bartoszewicz [63] analyzes strategics of efficient supply for
logistics systems in the industry of perishable food, In this study, a dynamic and
stochastic system was considered with the use of 35 references. In contrast, in our
work, we use more than 1000 bibliographic registers and cite more than 50 highlight-
ing papers for the scientometric analysis.

The main objective of this study is to provide a more comprehensive view on the
Inventory routing area within a relevant time frame of the last ten years in order to
present empirical and relevant findings. We focus on analyzing the IRP where the
inventory is revised periodically and the decision making is affected by the dynamic
variation in the demand. Information about the demand is revealed as time goes by
in the time horizon of planning. Therefore, in this paper we present a comprehensive
scientometric study that empirically explores publications related to Inventory Rout-
ing Problem covered by Elsevier’s Scopus and Thompson’s Web of Science databases
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from 2005 to 2014. We will analyze 934 papers cited by Scopus and 720 papers cited
by Web of Science.

The remainder of the paper is organized as follows: Section 3.2 focuses on the
methodology used for processing data. Section 3.3 is devoted to analyze publications
patterns. Citation patterns are reviewed in Section 3.4. Groups of investigators are
identified in Section 3.5. The paper is ended with conclusions, which emphasizes the
current status, trends and patterns found for this field of study.

3.2 collection of relevant publications on dsirp

The collection of relevant publications and citations establishes the foundation for
a scientometric analysis of a specific research area. As indicated before, this study
intends to cover a large part of peer-reviewed Inventory Routing Problem articles
published in the last ten years, specifically, our focus is on documents related to the
dynamic case for a periodically revised inventory. By this, we aim to obtain empirical
evidence for supporting the metascientific findings of this scientometric study. In this
section we describe our procedure regarding data collection and data processing and
knowledge extraction.

3.2.1 Data Collection

The data was recollected by means of Elsevier’s Scopus and Thomson’s Reuters Web
of Science databases. These databases were chosen for their relevance and reputation
in the fields of physical and social sciences. We analyze each database separately to
thereby complement and validate the results obtained.

A search equation was created in order to cover a large part of publications in
Inventory Routing Problem and in the specific topics that we want to deepen. The
equation was conformed by meanns of keywords chosen for their relevance regard-
ing three key questions for the problem: a) how the inventory is controlled, b) how
often the inventory is revised and c) how the information about the demand is rev-
eled. For a two words INVENTORY and ROUTING were selected ; for b another
two words POLICIES and PERIOD were selected, and for c only STOCHASTIC was
selected. The equation was used for search query in the title, abstract and keywords
for the documents contained in both bibliographic databases mentioned above.

The logical structure of this equation was (Inventory AND (Routing OR ( Peri-
odic AND ( Policy OR Stochastic)))), thus, three sets of words were considered: a)
Inventory – Routing, b) Inventory – periodic – policy and c) inventory – periodic
– stochastic. The union of the data collected by these sets conformed the data base
under study. The basic idea behind this specific equation is to get the documents
related all the knowledge areas involved in the subject under study. The search equa-
tion was applied on several specific subject areas. Seven of them were chosen for each
database due to their relevance in the field under study. Three of them were common
for both databases: mathematics, computer science and engineering, but the others
vary according to the categorization that each database had. In general, subject areas
related to operational research, social sciences and business science were included.

For the period of time from the year 2005 to 2014, the search query found 934

publications by Elsevier’s Scopus and 720 by Thomson-Reuters’s Web of Science (see
Table 4). A trend line of number publications per database and year can be observed
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Table 4: Number of publications per database and year

Data
Source

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 To-
tal

Scopus 50 50 59 99 95 116 95 101 125 144 934

WoS 44 54 45 70 76 70 67 84 98 112 720

in Figure 6, where we can speak of a growing number of publications and increasing
interest by the researchers. It is important to note that although the information
obtained have some similar registers, the work with each database independently,
instead of be redundant was complementary.
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Figure 6: Trend line of number publications per database and year

3.2.2 Data Processing and Knowledge Extraction

We used several attributes to analyze frequency, productivity, quality and impact of
the research into of the extensive information registers that were obtained. Below,
we described briefly, the methods that we have used in the data processing to obtain
trends and patterns, to highlight documents and researchers groups in specific topic
among other relevant information.

The data processing begins with the form in which the registries of the data base
are counted according to attributes that are analyzed. In most of the cases a simply
counting was sufficient, for these cases, a measure of frequency that coincide with
the criteria under related to was obtained and denoted with f. Also, for many other
attributes it was worthy to calculate the relative frequency denoted with fr. These
metrics could be used for the complete time horizon , namely ten years, or could be
presented per year.

For measuring the productivity and according with Heilig and Voss [54] in their
review of the literature, two could be of the methods to measure research productiv-
ity for the authors: straight count of the number of publications denoted by SCM and
author position in the author list, denoted by APM. The SCM as its name indicates,
assigns a score equal for each authors who his registered in the publication. APM in-
stead, assigns a higher score to the first author and the score decreases as the author
reaches the last position. We have used only these methods, because consider that
they both preserve properly the concepts we want to analyze.
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The impact that one publication generates in the research community is a measure
of its quality. We measure this impact counting the number of citations received by
the publication jointly with the longevity of the publication. Thus, we used the metric
NCII not only for this purpose but also to analyze the quality of the research through
the impact on new publications. We have used a NCII weighted denoted NCIIW. NCIIW

consists of using the metric that counts the number of citations that one author has
received by each publication depending on the author position, namely metric APM,
and then, joining it by the metric NCII.

Others metrics used were: Number of citation in Google Scholar (GS); SJR a measure
of scientific influence of scholarly journals that accounts for both the number of
citations received by a journal and the importance or prestige of the journals where
such citations come from; SNIP measures contextual citation impact by weighting
citations based on the total number of citations in a subject field; the impact factor IF

and the impact factor of the last 5 years 5YIF.
To ensure the accuracy of the results, the generated outputs are validated by man-

ual proof-reading activities, this way inconsistencies can be identified. This semi-
automatic process guarantees the quality of the results of the study.

3.3 analysis of the number of publications per category

In order to obtain patterns in the subject under study, the fields of information
databases by the number of publications were analyzed. For this purpose we used
specific perspectives such as academic disciplines, authors distributions, forms of
publication and publications by authors.

3.3.1 Academic Disciplines

The general structure and development of the Inventory Routing Problem research
can be observed through of the academic disciplines involved (see Table 5 and Table
6). At first, the average of publications percentage for a time horizon of ten years, we
can state that in the part five of average of number of publications by year can be
classified into at least one of the following three academic disciplines: Decision sci-
ence, Engineering and Operation research and management science. Secondly, the
first transversal areas that contributed in the research in area under study are the
Computer Science and Mathematics, this demonstrates their importance of the prob-
lem formulation and the techniques of solution. Finally, can be seen that for no more
than 6% of the publications was incorporating more specific areas such as: Social
science, Automation, Transportation, Economic, Econometric and finance.

3.3.2 Forms of the publication

The articles were the most common type of document analyzed in both databases. In
average, the were about 61% of documents per year in the Scopus database, whereas
in Web of Science they were about 75%. This difference for the number of articles
is compensated with the number of documents that are a result of the participation
in conferences like articles, conference review and proceedings with about 30% and
20% respectively. These result can be observed in the Tables 7 and 8.
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Table 5: Percentage of documents that were generated for each subject area per year on Sco-
pus database

Subject 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Av

Area % % % % % % % % % % %

Decisions Sciences 29.76 26.44 21.10 26.80 25.60 21.82 24.63 23.70 26.27 22.58 24.87

Engineering 17.86 32.18 27.52 19.59 19.81 24.55 20.20 24.17 23.92 26.45 23.62

Computer Science 8.33 5.75 8.26 18.04 23.67 20.45 19.21 21.33 15.29 15.81 15.61

Mathematics 14.29 12.64 15.60 10.82 11.59 15.00 12.81 15.64 16.08 10.97 13,54

Business, management and
Accounting

9.52 9.20 11.01 10.31 13.04 10.45 16.26 11.37 12.94 16.13 12.02

Scocial sciences 9.52 9.20 14.68 9.79 2.42 3.18 1.97 2.37 1.18 3.55 5,79

Economics, Econometric and
Finance

10.71 4.60 1.83 4.64 3.86 4.55 4.93 1.42 4.31 4.52 4.54

Table 6: Percentage of documents that were generated for each subject area per year on Web
of Science database

Subject 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Av

Area % % % % % % % % % % %

Operations Research &
Management Science

36.14 37.50 47.62 43.57 38.26 44.17 42.40 40.00 43.86 42.36 41.59

Engineering 16.87 20.19 15.48 22.86 20.13 15.83 25.60 18.67 25.15 22.66 20.34

Business & Economics 20.48 22.12 22.62 20.71 16.78 19.17 12.00 17.33 14.04 16.75 18.20

Computer Science 15.66 14.42 5.95 7.86 16.78 10.83 12.80 14.67 9.36 8.87 11.72

Mathematics 6.02 2.88 3.57 1.43 3.36 5.00 2.40 2.67 1.17 3.45 3.19

Automation & Control Systems 3.61 2.88 1.19 2.14 4.03 3.33 1.60 4.67 4.09 1.97 2.95

Transportation 1.20 0.00 3.57 1.43 0.67 1.67 3.20 2.00 2.34 3.94 2.00

Table 7: Percentage of documents classified by type in Scopus database
Document 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Av

Type % % % % % % % % % % %

Article 42.00 70.00 69.49 61.62 63.16 58.62 48.42 65.35 65.60 58.33 60.26

Conference Paper 36.00 24.00 27.12 34.34 29.47 34.48 37.89 16.83 25.60 19.44 28.52

Review 8.00 4.00 1.69 1.01 2.11 3.45 8.42 14.85 4.00 3.47 5.10

Conference
Review

4.00 0.00 0.00 3.03 5.26 2.59 1.05 2.97 3.20 5.56 2.77

Article in Press 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.60 13.19 1.48

Book Chapter 6.00 2.00 0.00 0.00 0.00 0.86 2.11 0.00 0.00 0.00 1.10

Book 2.00 0.00 0.00 0.00 0.00 0.00 2.11 0.00 0.00 0.00 0.41

Short Survey 0.00 0.00 1.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17

Note 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20

Table 8: Percentage of documents classified by type in Web of Science database
Document 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Av

Type % % % % % % % % % % %

Article 54.55 57.41 88.89 61.43 76.32 88.57 68.66 89.29 85.71 85.71 75.65

Proceedings Paper 29.55 22.22 8.89 25.71 19.74 7.14 16.42 4.76 4.08 5.36 14.39

Article; Proceedings
Paper

13.64 20.37 0.00 10.00 1.32 0.00 11.94 1.19 5.10 4.46 6.80

Review 2.27 0.00 2.22 2.86 2.63 4.29 2.99 4.76 4.08 3.57 2.97

Editorial Material 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.89 0.19
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Table 9 shows a list of journals and the related number of publications. Only taking
into account the European Journal of Operational Research and International Jour-
nal of production economics, the sum of their participation in the two databases is
about 15% in Scopus and 23% in Web of Science. IRP being an optimization problem,
there are journals of transversal areas to operational research area as is the computer
science. This is in particular evident in the database Web of Science with journals
as Computer & Operations research and Computers & Industrial Engineering. Also,
this is showed, in Table 10 where the five most important conferences appear. Besides
finding specialized conferences for industrial engineering, it appears also a confer-
ence related the industrial engineering with the computer science area (International
Conference on Computers and Industrial Engineering) that shows the relevance of
computers science area for IRP.

Table 9: Ranking of publications per journal
Scopus Database Web of Science Database

Rank Journal f fr% Rank Journal f fr%

1 European Journal of Operational
Research

73 7.79 1 European Journal of
Operational Research

89 12.36

2 International Journal of Production
Economics

64 6.83 2 International Journal of
Production Economics

78 10.83

3 Journal of Optimization Theory and
Applications

37 3.95 3 International Journal of
Production Research

39 5.42

4 Flexible Services and Manufacturing
Journal

30 3.20 4 Operations Research 34 4.72

5 Discrete Dynamics in Nature and
Society

28 2.99 5 Computers & Operations
Research

30 4.17

6 Socio-Economic Planning Sciences 20 2.13 6 Computers & Industrial
Engineering

24 3.33

7 Transportation Science 17 1.81 7 Naval Research Logistics 20 2.78

7 Operations Research/ Computer
Science Interfaces Series

17 1.81 8 Journal of the Operational
Research Society

16 2.22

Table 10: Ranking of publications per conferences
Scopus WoS

Conference Name f fr(%) f fr(%)

Annual Conference and Expo of the Institute of Industrial Engineers 21 8.24 – –

International Symposium on Inventories – – 19 13.38

International Conference on Computers and Industrial Engineering 17 6.67 – –

International Conference on Industrial Engineering and Engineering Management 12 4.71 16 11.27

Winter Simulation Conference 10 3.92 – –

3.3.3 Publications by Authors

With the aim to emphasize the authors with the highest number of publications and
the position that every of these authors has in the publication list of authors, Table
11 and Table 12 were created. In these tables, the number of publications per each
author and their position is considered as first, second, third, fourth or fifth coau-
thor. Afterwards, we use two different metrics to show their production: i) the SCM,
assigned the same punctuation to all publications reported, in this case of 1, by each
author are added and the results are shown in a column with the same name. ii)
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this second method applies APM in which a different punctuation is given for every
position, being the first position the one with the highest punctuation and succes-
sively descending this punctuation for the next positions until every punctuation is
calculated for every author. Taking into account that the highest number of authors
gathered article in the sample is 8, the maximum punctuation is this number. For
each author, their punctuations are multiplied by the number of publications respec-
tively and then the total obtained. The results are in the corresponding column for
both tables ordered in decreasing order of total punctuation by author.

Ignaciuk przemystaw, Bartoszewicz Andrzej and Laporte Gilbert are the most
prominent researchers. The first two researchers linked the research areas of com-
puter science and operations research, this is evident in their research topics for
the first one are logistic systems and supply chain management, congestion control
in data transmission networks, networked control systems, dynamical optimization
and robust control and for the second one are sliding mode control and congestion
control in communication networks. Regarding Laporte Gilbert in his expertize as
reported by HEC Montreal 1 are in Combinatorial optimization, Transportation and
Operational research. Also, according with google scholar other areas off his interest
are distribution management and mathematical programming.

Table 11: Top sixteen authors by APM metric in Scopus stating the number of publications in
each of the positions of authorship and using SCM and APM metrics

.

Rank Author 1st 2nd 3rd 4th 5th SCM *APM

1 Ignaciuk Przemystaw 15 – – – – 15 120

2 Bartoszewicz Andrzej – 16 – – – 16 112

3 Laporte Gilbert – 8 8 – 1 17 108

4 Aghezzaf El-Houssaine 3 9 1 – – 13 93

5 Chen Haoxun 1 5 8 – – 14 91

6 Li Jianxiang 8 1 2 – – 11 83

6 Christiansen Marielle 3 4 3 1 1 12 79

7 Chu Feng – 7 4 1 – 12 78

8 Zhou Sean X. 4 5 1 – – 10 73

9 Chao Xiuli 5 3 2 – – 10 73

10 Coelho Leandro C. 9 – – – – 9 72

11 Cordeau Jean-Francois 1 8 – 1 – 10 69

12 Bertazzi Luca 5 3 1 – – 9 67

13 Savelsbergh Martin W. P. 2 2 3 3 – 10 63

13 Zhang Jiang 5 2 1 – – 8 60

13 Wang Li 4 4 – – – 8 60

14 Louly Mohamed-Aly Ould 5 2 – 1 – 8 59

15 Cannella Salvatore 5 2 – – – 7 54

16 Song Jin-Hwa 2 3 1 1 1 8 52

16 Chen Yuerong 3 4 – – – 7 52

*the data with the same APM score, also obtained the same rank position

3.4 analysis of citations per category

Bearing in mind that the number of citations shows how often the publication is
referenced by other publications, in this sections we will be analyzing the impact

1 http://www.hec.ca/en/profs/gilbert.laporte.html
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Table 12: Top sixteen authors by APM metric in Web of Science stating the number of publi-
cations in each of the positions of authorship and using SCM and APM metrics

Rank Author 1st 2nd 3rd 4th 5th SCM *APM

1 Laporte Gilbert – 7 8 – 1 16 101

2 Zhou Sean X. 5 5 1 – – 11 81

3 Chao Xiuli 4 3 4 – – 11 77

4 Coelho Leandro C. 9 – – – – 9 72

5 Bertazzi Luca 5 3 1 – – 9 67

6 Aghezzaf El-Houssaine 3 5 1 – – 9 65

6 Christiansen Marielle 2 4 2 1 1 10 65

7 Savelsbergh Martin W. P. 2 1 3 3 – 9 56

8 Cordeau Jean-Francois – 7 – 1 – 8 54

9 Song Jin-Hwa 2 3 1 1 1 8 52

10 Louly Mohamed-Aly Ould 4 2 – 1 – 7 51

11 Chen Youhua (Frank) 2 4 1 – – 7 50

12 Archetti Claudia 6 – – – – 6 48

13 Speranza Maria Grazia – 2 2 4 – 8 46

13 Huh Woonghee Tim 4 2 – – – 6 46

13 Chew Ek Peng 4 2 – – – 6 46

14 Chu Feng – 4 2 1 – 7 45

15 Kiesmueller Gudrun P. 2 4 – – – 6 44

16 Janakiraman Ganesh – 5 1 – – 6 41

16 Cardos Manuel 2 1 3 – – 6 41

*the data with the same APM score, also obtained the same rank position

of the citations and its patterns. For that, the number of citations received were
analyzed for the time frame. The total number of citations obtained for the sample
was 5724 in scopus and 4996 in web of science with a mean of publication citations
of 6.11 and 6.94 respectively.

3.4.1 Citations by document type

The reviews most cited were Melo, Nickel, and Saldanha-Da-Gama [86] and Li and
Wang [77]. In the first one, a complete review of strategics in the design of supply
chain networks focuses in facility location was presented. Also, reviewed the opti-
mization methods for solving facility location problems in a supply chain context
and included practical applications of location models in SCM. And the second one,
a review of coordination mechanisms of supply chain systems in a framework that
is based on supply chain decision structure and nature of demand was presented.
This framework highlighted the behavioral aspects and information need in the co-
ordination of a supply chain.

The articles, specially the most cited ones, offer approximations to the boundaries
of knowledge of every subject. For this reason, being the most published type of
document and being among the most cited ones, we created a ranking of articles
in descending order of metric Normalized Citation Impact Index (NCII) for each
database in Table 14 and Table 15. The two articles most cited in Scopus were Mete
and Zabinsky [87] and Coelho, Cordeau, and Laporte [37]. In the first one, it was
develop a stochastic programming model to select the storage locations of medi-
cal supplies and required inventory levels for each type of medical supply. In the
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Table 13: Top five review papers by NCII metric in both databases
Scopus Web of Science

Year Review Rank NCII f FG Rank NCII f FG

2009 Facility location and supply chain management: A
review

– – – – 1 44.67 268 752

2007 Coordination mechanisms of supply chain systems – – – – 2 16.38 131 332

2010 Industrial aspects and literature survey: Combined
inventory management and routing

1 17.00 85 185 3 14.40 72 185

2013 Ship routing and scheduling in the new millennium 2 9.50 19 74 4 7.50 15 74

2010 A review of soft computing applications in supply
chain management

– – – – 5 5.80 29 70

2007 Inventory routing problems: A logistical overview 3 8.00 64 143 – – – –

2013 A maritime inventory routing problem: Practical
approach

4 6.50 13 47 – – – –

2012 LQ optimal sliding-mode supply policy for
periodic-review perishable inventory systems

5 5.00 15 20 – – – –

second one, a comprehensive review of literature in IRP is presented. It is based
on categorize IRP with respect to their structural variants and with respect to the
availability of information on customer demand. Regarding to Web of Science, the
reviews most cited were Chen and Vairaktarakis [25] and Yu and Egbelu [127]. In the
first one, an integrated scheduling model of production and distribution operations
by applications in the computer and food catering service industries were studied.
The problem consisted in to find a joint schedule of production and distribution
such that an objective function that takes into account both customer service level
and total distribution cost is optimized. The second one aims to find the best truck
docking or scheduling sequence for both inbound and outbound trucks to minimize
total operation time when a temporary storage buffer to hold items temporarily is
located at the shipping dock were found. Also, the product assignment to trucks
and the docking sequences of the inbound and outbound trucks are all determined
simultaneously.

3.4.2 Citations by Journals

With the aim of identifying the most specialized journals in IRP document publica-
tions, two tables (see Table 16 and 17) with the most cited journals was created for
each database. The results show that the journals obtained appear with high impact
factor usually in Q1 quartile for the ranking of publications classified by topics.

3.4.3 The most cited authors

The number of citations every author receives is important to detect those authors
that most contribute to the growth of the specific subject area. To give an impartial in-
dicator of the most important authors according to the number of citations received,
the metric NCII is used again, adapting it as an individual productivity measure.
Thus, we calculate the weighted metric NCII according as we have naming NCIIW. In
this case the punctuation’s authors are multiplied by the value of NCII instead that
theirs number of publications.
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Table 14: Top ten by NCII metric in Scopus database
Rank Year Article *NCII f FG

1 2010 Stochastic optimization of medical supply loca-
tion and distribution in disaster management

18.20 91 184

2 2014 Thirty years of inventory routing 12.00 12 73

3 2007 Incorporating inventory and routing costs in
strategic location models

11.50 92 191

4 2005 Distribution network design: New problems
and related models

11.10 111 238

5 2006 Vehicle routing scheduling for cross-docking in
the supply chain

8.67 78 157

6 2010 Incorporating location, routing and inventory
decisions in supply chain network design

8.40 42 91

7 2009 Inventory inaccuracy in retail stores due to theft:
An analysis of the benefits of RFID

7.83 47 78

8 2012 The inventory-routing problem with transship-
ment

7.67 23 56

8 2012 On the Bullwhip Avoidance Phase: The Synchro-
nised Supply Chain

7.67 23 33

9 2009 Vehicle routing with cross-docking 7.33 44 106

10 2010 LQ optimal sliding mode supply policy for peri-
odic review inventory systems

7.20 36 45

*the data with the same NCII score, also obtained the same rank position

Table 15: Top ten by NCII of the best articles in Web of Science database
Rank Year Article *NCII f FG

1 2005 Integrated scheduling of production and distri-
bution operations

11.60 116 267

2 2008 Scheduling of inbound and outbound trucks in
cross docking systems with temporary storage

10.00 70 200

3 2010 Stochastic optimization of medical supply loca-
tion and distribution in disaster management

9.40 47 184

3 2010 Quality. safety and sustainability in food distri-
bution: a review of quantitative operations man-
agement approaches and challenges

9.40 47 112

4 2014 Thirty Years of Inventory Routing 9.00 9 73

5 2005 Distribution network design: New problems
and related models

8.60 86 238

6 2007 Incorporating inventory and routing costs in
strategic location models

8.38 67 191

7 2013 The exact solution of several classes of inventory
routing problems

6.50 13 44

7 2013 A maritime inventory routing problem: Practical
approach

6.50 13 47

8 2007 Inventory routing problems: a logistical
overview

6.25 50 143

9 2012 The inventory routing problem with transship-
ment

6.00 18 56

9 2009 Vehicle routing with cross docking 6.00 36 106

9 2012 Consistency in multi vehicle inventory routing 6.00 18 41

9 2007 A branch and cut algorithm for a vendor man-
aged inventory routing problem

6.00 48 116

10 2010 A Branch and Price Method for a Liquefied Nat-
ural Gas Inventory Routing Problem

5.40 27 64

*the data with the same NCII score. also obtained the same rank position
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Table 16: Journal citations in Scopus Database stating frequency f, number of paper n and
relative frequency f/n, also include SJR, SNIP, IF and 5YIF metrics

Rank Journal name f n fr SJR SNIP IF 5YIF

1 European Journal of Operational Research 1112 73 15.23 2.60 2.50 1.84 2.63

2 International Journal of Production Economics 677 64 10.58 2.39 3.20 2.08 2.59

3 Computers and Operations Research 373 28 13.32 2.97 3.03 1.72 2.34

4 Operations Research 371 37 10.03 3.45 1.93 1.50 2.50

5 Transportation Science 246 14 17.57 3.14 2.93 2.29 2.91

6 Journal of the Operational Research Society 188 11 17.09 1.39 1.23 0.91 1.27

7 Computers and Industrial Engineering 186 20 9.30 1.72 2.38 1.69 2.38

8 International Journal of Production Research 154 30 5.13 1.33 1.73 1.32 1.25

9 Manufacturing and Service Operations
Management

131 13 10.08 2.64 1.58 1.45 2.69

10 Naval Research Logistics 105 17 6.18 1.13 0.74 1.04 1.24

Table 17: Journal citations in WoS Database stating frequency f, number of paper n and
relative frequency f/n, also include SJR, SNIP, IF and 5YIF metrics

Rank Journal name f n fr SJR SNIP IF 5YIF

1 European Journal of Operational Research 1356 89 15.24 2.60 2.50 1.84 2.63

2 International Journal of Production Economics 518 78 6.64 2.39 3.20 2.08 2.59

3 Computers and Operations Research 358 30 11.93 2.97 3.03 1.72 2.34

4 Operations Research 311 34 9.15 3.45 1.93 1.50 2.50

5 Management Science 199 8 24.88 3.65 3.10 1.73 3.30

6 Transportation Science 198 14 14.14 3.14 2.93 2.29 2.91

7 International Journal of Production Research 186 39 4.77 1.33 1.73 1.32 1.25

8 Journal of the Operational Research Society 176 16 11.00 1.39 1.23 0.91 1.27

9 Computers and Industrial Engineering 165 24 6.88 1.72 2.38 1.69 2.38

10 Manufacturing and Service Operations
Management

106 14 7.57 2.64 1.58 1.45 2.69
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In Table 18 shows the top twenty best authors for each database. The table in-
cludes the rank, author, the weighted metric NCIIW, the number of citations f and
the number of publications n and relative frequency fr.

Table 18: Top twenty cited authors by NCIIW, stating number of citations f, number of publi-
cations n and relative frequency

Scopus Database Web of Science Database

Rank Author NCIIW f n fr Rank Author NCIIW f n fr

1 Laporte Gilbert 428.08 253 17 14.88 1 Teresa Melo 376.00 275 2 137.50

2 Christiansen
Marielle

331.27 199 12 16.58 2 Laporte Gilbert 366.00 214 16 13.38

3 Coelho Leandro
C.

310.67 75 9 8.33 3 Nickel Stefan 329.00 275 2 137.50

4 Cordeau
Jean-Francois

279.33 108 10 10.80 4 Saldanha-da-
Gama
F.

282.00 275 2 137.50

5 Ignaciuk
Przemystaw

221.07 108 15 7.20 5 Coelho Leandro
C.

276.00 69 9 7.67

6 Bartoszewicz
Andrzej

193.43 108 16 6.75 6 Christiansen
Marielle

266.53 161 10 16.10

7 Bertazzi Luca 189.34 126 9 14.00 7 Cordeau
Jean-Francois

244.67 94 8 11.75

8 Andersson
Henrik

175.33 109 5 21.80 8 Bertazzi Luca 174.12 132 9 14.67

9 Song Jin-Hwa 165.71 112 8 14.00 9 Song Jin-Hwa 153.46 100 8 12.50

10 Savelsbergh
Martin

158.24 143 10 14.30 10 Archetti Claudia 150.00 88 6 14.67

11 Cannella
Salvatore

155.68 87 7 12.43 11 Andersson
Henrik

139.53 90 5 18.00

12 Ciancimino Elena 151.53 87 6 14.50 12 Li Xiuhui 131.00 131 1 131.00

13 Mete Huseyin
Onur

145.60 91 1 91.00 13 Speranza Maria
Grazia

125.85 127 8 15.88

14 Lokketangen
Arne

135.60 142 5 28.40 14 Savelsbergh
Martin

123.06 105 9 11.67

15 Archetti Claudia 131.00 86 5 17.20 15 Lokketangen
Arne

120.93 124 6 20.67

16 Zhou Sean X. 130.47 67 10 6.70 16 Wang Qinan 118.63 132 2 66.00

17 Zabinsky Zelda B. 127.40 91 1 91.00 17 Zhou Sean X. 116.40 61 11 5.55

18 Moin Noor
Hasnah

125.75 96 5 19.20 18 Chao Xiuli 103.02 61 11 5.55

19 Kjetil Fagerholt 125.50 61 6 10.17 19 Fagerholt Kjetil 101.75 49 6 8.17

20 Aghezzaf
El-Houssaine

124.32 114 13 8.77 20 Hoff Arild 100.80 72 1 72.00

3.5 groups of researchers

In this section we identified groups of the researchers that we considered impor-
tant by their contributions. We assumed that the best groups also have the best
researchers. For this reason the main factor in the selection of the groups are the best
researchers as well as the connections that they have with other researchers and the
number of the documents that they generated. The results obtained are showed in
the summarized in the Figures 7 and 8.

Based on the research groups, the topics of interest of each group was identified
and highlighted according with the publications of the most impact. Below, the in-
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Figure 7: Groups of researchers in Scopus database. The groups 11, 12 and 13 were not
highlighted
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Figure 8: Groups of researchers in Web of Science database. The groups 4 and 9 were not
highlighted



34 scientometric analysis on dsirp

formation obtained is summarized. The groups of investigators identified in the two
databases are:

Group 1: group with Chinese researches that involves severals institutions School of
Management, University of Science and Technology of China, Department of
Automatic Control, Beijing Institute of Technology, Rotterdam School of Man-
agement, Erasmus University Rotterdam, School of Management, Lanzhou
University, Industrial Systems Optimization Laboratory, Charles Delaunay In-
stitute of Technology of Troyes and Laboratoire IBISC, Université d’Evry. Their
research interests include Performance evaluation of distribution strategies for
the inventory routing problem [75], inventory routing problems with split de-
livery and stochastic demand study [129], also it is common that uses the
Lagrangian relaxation method [128]. The most prominent researchers in this
group are Feng Chu, Jianxiang Li, Haoxun Chen and YU Yugang.

Group 2: composed by Researchers Chisteansen, Andersson, Fagerholt and Lokke-
tangen among others. The contributions of this group are generally affiliated
to Norwegian University of Science and Technology, Department of Industrial
Economics and Technology Management: this group specializes in Maritime
IRP problems or MIRP [4] and [31], also have worked Rolling horizon heuris-
tics for solved problems of optimization [96].

Group 3: In this group, Coelho, Cordeau and Laporte were identified as the most
outstanding researchers. This group of researchers based in Canada that in-
volves the following institutions: HEC Montreal, Department of Logistics and
Operations Management, CIRRELT and Laval University. We highlight of this
group contributions on issues of heuristics for IRP in special Branch-and-cut
[43], and [1], IRP with transshipments [41] and Stochastic and Dynamic IRP

[42].

Group 4: Przemyslaw Ignaciuka and Andrzej Bartoszewiczb. They form a group
of researchers based in Poland in the Institute of Technical and Institute of
Automatic Control of the University of Lodz. The most notable contributions
of this group are related to applications of sliding-mode control and discrete-
time dynamical optimization in inventory ([60], [61], [62], [63], [64], [66] and
[65]).

Group 5: In this group we found researchers of the Brescia University such as
Bertazzi, Archetti and Speranza. This group specializes in foundations of IRP

in special contributions in the formulation of problems [9], contributions in
Stochastic IRP with stock-out [15] and the Branch-and-cut heuristic [8].

Group 6: El-Houssaine Aghezzaf, Birger Raa and Yiqing Zhong form a group of re-
searchers based in Belgium in department of Industrial Management at Ghent
University. The most notable contributions of this group are related to cyclical
distribution plan and designing distribution patterns for long-term inventory
routing [2] and [95].

Group 7: Alexandre Dolgui, Mohamed-Aly Louly and Christian Prins affiliated to
University of Technology of Troyes in Charles Delaunay Institute. Their re-
search interests include applications of combinatorial optimization to trans-
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portation and supply chain, production planning and stochastic models for
inventory control [19] and [81].

Group 8: Savelsberg, Song Jin-Hwa, Doerner and Furman of an Interagency group
that involves the institutions of University of Newcastle, School of Mathemat-
ical and Physical Sciences, Australia, Georgia Tech and ExxonMobil Research
and Engineering Company. This group specializes in the maritime IRP problem
or MIRP [114], stochastic inventory routing problem with direct deliveries [71],
the heuristics branch-price-cut [55] and Variable neighborhood search [50].

Group 9: Salvatore Cannella, and Elena Ciancimino affiliated to faculty of engineer-
ing in the University of Palermo and Italian National Research Council (CNR).
The most notable contributions of this group are related to increasing levels of
shared information [20] and analysis of bullwhip effect in multi-echelon supply
chain [33] and [34].

Group 10: Zhou, SX and Chao, XL conforms a group that involves severals insti-
tutions such as Department of Systems Engineering and Engineering Manage-
ment The Chinese University of Hong Kong, Department of Industrial and Op-
erations Engineering, University of Michigan. This group specializes in Stochas-
tic inventory system [23], Finite ordering capacity [24], Optimal pricing deci-
sion and reverse logistic [132].

Group 11: A group of the Universidad Politécnica de Madrid constituted by Manuel
Cardos and Eugenia Babiloni. The most important contributions of this group
is to propose exact and approximate calculation of the cycle service level in
periodic review inventory policies [21] and [12].

Group 12: E.P Chew and L.H. Lee are a group of researchers is the department
of industrial and system engineering. National University of Singapore. They
analyze of the impact of the random lead time in the supply chain [28] and
also study the dynamic rationing problem for multiple demand classes with
Poisson demands [58] and [27].

Group 13: Ganesh Janakiraman, Woonghee Tim Huh and Bijvank in Unites States
group that include the institutions Department of Industrial Engineering and
Operations Research, Columbia University, Stern School of Business, New York
University. Their research interests focus on inventory theory where one of his
interest topics is the (s,S) policy [56] and [57].

3.6 conclusions

By detecting the lack of scientometrics studies in the subject of IRP, a study of this
type is presented, which puts special emphasis on stochastic and dynamic version of
the inventory routing problem with periodic revision of the inventory. For this pro-
pose, one search equation was used in which were chosen the keywords as well as
subject areas the more interest for the IRP. The study collects 934 papers from Scopus
and 720 from Web Science. The analysis focuses on number of publications, number
of citations and detection of the groups of researchers. For the data processing, met-
rics to measure the productivity and quality were used such as Supply Chain Man-
agement (SCM), Author Position Method (APM) and Normalized Citation Impact In-
dex (NCII). A new metric called Normalized Citation Impact Index weighted (NCIIW)
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that uses the criteria of the APM and NCII metric was used for the identification of
the prominent authors. This metric allows relating the number of citations and the
longevity of the publications to the author position. The most outstanding publi-
cations are identified, cited and referenced in this paper such as reviews, articles
and conferences articles. Also, the journals and the conferences more used for the
researcher to publish their results were highlighted. Based on the information of
prominent authors, their connections with other authors and the number of their
joint publications are used to identify the leading groups of rresearchers and their
research and expertise. Finally, a journey through all tables in the paper allows us
to know the state of the art of research of IRP, especially in stochastic, dynamic in-
ventory routing problems with the periodic revision of the inventory as well as its
trends and patterns.
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4
R E S E A R C H M E T H O D O L O G Y

The research methodology applies a positivist research paradigm in which, an hy-
pothesis is tested by experiments. Thus, a conceptual design allows to define the
hypothesis of the research from gaps in the literature and corresponding research
questions. In order to relate the research methodology with the development method-
ology this chapter is divided in two parts.

In Section 4.1, the research methodology is explained by referring to seven aspects:
i) the scope and significance of the problem, ii) the state of the science, iii) gaps in
the literature, iv) variables under study, v) operationalization of variables, vi) instru-
ments applied, data collection and vii) assumptions.

In Section 5 the development research methodology is explained by means of: i)
preliminary procedure of development, ii) initial decomposition to the problem and
iii) testing feasible solutions.

4.1 research methodology

4.1.1 The scope and significance of the problem

The coordination and the integration of the various components in the SC manage-
ment have become critical in gaining competitive advantage. The price of the a prod-
uct is the key for the competitiveness, but it is affected by the logistics cost which
increase their cost. A greater proportion of the logistic costs correspond to the trans-
portation and inventory processes. The inventory represents a proportion of net op-
erating assets of approximately 37% in industry, 62% in distribution and 56% in
retails.

In turn, the variability of the demand information affects the integration of the SC.
The variability causes efficiency and efficacy losses influencing the decisions related
to inventory control. In addition, it is important to note that the inventory control
has to balance conflicting objectives due to two main reasons: i) economy of scale
and purchasing batch size and ii) uncertainty in offer and demand with production
and transportation lead time that inevitably creates the need for safety stock.

Besides that, the current models proposed in the literature are computationally
efficient but have some difficulties at implementation time in the real world, due
to the lack of flexibility incorporating additional constraints. In this context, it is
mandatory to establish an optimal policy for the coordination of the flow of goods
and services along the SC. This policy is applicable in the process of distribution
and inventory in commercial relationships between companies. The overall costs are
minimized as well as the uncertainty in the decisions. The decisions to be taken are
related to how much to ship, when to ship and how to ship. These decision are taken
in oder to decrease inventory and transportation cost, guaranteeing certain service
level and adjusting to available resources.

Given the complexity of the IRP, studies are approached from instances of it, so
models usually include only the variables of interest according to real-world prob-
lems. So, the basic problem to be considered have the following characteristics:

39
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The SC is conform by one or many supplier(s) of product (It may be a factory
or a provider) and several geographically dispersed retailers. The policy of inven-
tory management called VMI is followed and only one actor is responsible of taking
decisions. The study is focused in the analysis of inventory systems with stochastic
demand and lead time. The product demand that is assumed unknown is from retail-
ers to supplier, but its probability distribution is know and it is analyzed in discrete
time. Each retailer has a capability of storage its own inventory with a maximum
allowable limit. The vehicles used for transportation have limited capacity and the
vehicle only does one travel by period.

The objective of analysis of the problem is to minimize the total cost of inventory
and its distribution without causing stock-outs in the retailers, thus, it is necessary to
determine the inventory level by period for each retailer and to determine strategies
that minimize the associated costs for the distribution routes and inventory hosted.

4.1.2 The state of the science

According to the problem, the study objects that are Inventory Routing Problem and
Inventory Control were identified. After conducting a review of the epistemologi-
cal aspects of the objects of study, the following ontological elements that allow to
conceptualize the problem were identified and delimited: information management,
relationship of inventory policies with the demand information, demand and lead
time modeling under uncertain demand, and optimization methods for single and
multi suppliers.

With the aim of providing a global overview of the real situation of the problem
related to the coordination of the inventory and its distribution, a state of the art is
provided in [102] in which the objects of study were explained.

4.1.3 Gaps in the literature

The following describes the research purpose, research questions, research hypothe-
sis and research contributions.

4.1.3.1 Objectives

The main objective and the specific objectives are defined considering the require-
ments that should fulfill a coordination policy in a SC.

Main Objective

The main objective is to coordinate inventory control and its distribution process in
the SC, in order to reduce the costs and the uncertainty at the time of taking decisions
based on demand. This coordination needs to fulfill the following characteristics:

• Reduce the time for the planning of a shipment.

• Increase the use of available resources.

• Select the retailers to be replenished.

• Determine when the chosen retailers are going to be replenished
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• Determine how many units of product should be replenished to each retailer
along the SC

The coordination will enable the measurement of the different factors influencing
the process. Thus, the objective of the thesis concentrate in two points:

• Minimize the cost of inventory with low stock-out

• Minimize the transportation costs.

To achieve these main objectives, it is necessary to consider the following specific
objectives:

Specific Objectives

Three specific objectives have been defined, the first is related to the modeling of the
demand, the second is related to find areas for improvement and the last one about
the test results.

• Relate the behavior of the SC with network flow optimization to implement
solutions and methods of artificial intelligence.

• Establish specific points of improvement in studies cases that demonstrate the
benefits of the coordination.

• Contrast the results in simulated contexts for different configurations to obtain
conclusions with respect to the different techniques that can be employed in
each of the cases.

4.1.3.2 Research Questions

The research questions identified are:

• What are the challenges in heuristic and metaheuristic methods to reduce com-
puting time and find near-optimal solutions in inventory and distribution prob-
lems?

• How to dynamically configure inventory policies in the SC so that the effects of
uncertain demand is reduced?

• How to reduce the effects of uncertain demand in SC so that the probability of
stockouts decrease?

• How the SC can obtain a balance between different objectives that improve
performance and allow comparable benefits for its different actors?

4.1.3.3 Research Hypothesis According to the Impact Areas

The set of hypotheses of the research work are grouped by areas of impact identified.
Five hypothesis were defined and described next. The expected areas of impact to
be analyzed with the proposed coordination are the following:

• To reduce the time for obtaining one near-optimal solution
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• To join tactical and operational decisions

• To balance routes and cost

• To minimize transportation and inventory cost at the same time

• To enhance the service level

Reduce the time to obtain one near-optimal solution

One of the outcomes expected is to reduce the time to obtain a near-optimal solu-
tion. This is required due the dynamism of the system in real contexts where it is
necessary to take decisions quickly. Therefore the following hypotheses have been
made:

1. The IRP is a NP-Hard problem because it encompasses several classes of the
well-known Multi-depot and Periodic Vehicle Routing Problem (VRP). Heuris-
tics methods could be used to obtain a solution in a optimal time.

2. There is a near-optimal inventory level for each retailer that is better that pre-
defined policies of replenishment which is possible to calculate dynamically.
This is due to conventional forms to manage the inventory that presents prob-
lems related to the use of resources, load balancing of work and the priorities
allocation which can be solved using VMI.

Join tactical operations with operational decisions

Another result is to achieve an integration of the type of decisions that can be taken
in the SC, in this case, the tactical decisions are joined with operational solutions. This
is due to the fact that when processes are integrated, more efficacy and efficiency is
archived. These are the hypotheses that represent that idea:

3. An allocation scheme on two levels: the first one level performs the selection
of retailers to server and the second one seeks the optimal route for distribu-
tion, this allows to join the tactical decision from inventory policies with the
operational decisions of its transportations.

Balance the routes and cost

The balance in the SC is a characteristic that determines the maturity level, this bal-
ance can be observed in balanced routes and profits balanced for every actor. Two
hypotheses are proposed:

6. Additional constraints in the SC will allow the searching of solutions with bal-
anced routes, which are interesting for the industry in complex nets.

7. The correct integration between transportation cost and inventory cost in a
optimized model will allow the balance in the profits for all the actors in the
SC.
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Reduce transportation and inventory cost at the same time

The expected outcome for the thesis is to reduce both transportation costs and inven-
tory costs. These are analyzed from a joint perspective and taking into account the
stochastic nature of the demand. One hypothesis have been considered:

8. The transportation cost and inventory cost can be reduced anticipating the
demand, taking advantage of the stochastic demand presents in the SC and
carefully selecting the solution in the Pareto Front.

Enhance the service level

The level of service is a parameter in this thesis. It is possible to reduce the probability
of stockout in a retailer, although it can increase the total cost in the process under
study. In this direction, the following hypothesis is defined:

9. The dynamic configuration of parameters for the inventory policy increases
the probability to choose, for the retailers, replenishment with more risk of
stock-out by each period.

4.1.3.4 Contributions

The contributions of the research are summarized in nine topics which are:

1. We review papers working with stochastic demand and stochastic lead times
focusing on its stochastic and multi-depot aspects.

2. We identify critical factors for the performance of many logistics activities and
industries.

3. We have show trends and patterns by means of tables in different topics of in-
terest for the researches, which allows to know the state of the research on IRP
field and specially in the topic of version stochastic, dynamic and the revision
periodic of the inventory.

4. We have shown that studying the behavior of the demand and the lead time
is essential in order to achieve a useful representation of the system to take
proper decisions.

5. We propose new customer selection methods for a dynamic and stochastic
inventory-routing problem

6. We perform a multi-criteria analysis of the solutions, comparing distribution
versus inventory management

7. We perform a single criteria objective experiment on benchmark instances from
the literature for single and multi suppliers.

8. We develop the Inventory Replenishment and Customer Selection Policies Al-
gorithm (IRCSPA) algorithm for solve the DSIRP with single supplier and Hy-
brid Genetic Algorithm with Network Flow Fitness (HGANFF) for solver the
Multi Depot Dynamic Stochastic Inventory Routing Problem (MDDSIRP).

9. Our methods yield improvements over a competing algorithm on average.
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4.1.4 Variables under study

The independent variables, the dependent variables and the intervening variables
are identified and are defined next.

4.1.4.1 Independents Variables

Three variables have been identified. These are inventory policies, inventory con-
straints and transportation constraints. A description of each one is shown next:.

Inventory policies

An inventory policy is a standard set of rules, boundaries and guidelines that pro-
vide the framework for an organization to make better informed and timely deci-
sions on which stock to purchase or manufacture, how much stock to purchase or
manufacture and where to store and distribute to customers.

Inventory constraints

Inventory constraints refer to so-called cumulative resources, which can store a sin-
gle or several different products and have a prescribed minimum and maximum
inventory, where the inventory is depleted and replenished over time.

Transportation constraints

A set of the transportation constraints can be defined to formulate the problem, this
depends on the instance to be analyzed. The most common constraints are related
to the number of the vehicles, capacity and time windows.

4.1.4.2 Dependents Variables

Four variables are identified and described next.

Inventory levels

A inventory level is defined as the current amount of a product that a business has
in stock. The inventory level and sales rate of a product will be used by a typical
inventory manager to determine the optimal time for either producing more, if they
are managing a manufacturer’s warehouse, or to order more if the product is being
stored as stock at a retail store.

The inventory levels depends on the inventory level at previous period It−1i the
quantity of inventory that arrives in the current period qti , the current demand dti
and the lost current demand lti . The Equation 1 shows this relation between the
variables.

Iti = I
t−1
i + qti − d

t
i + l

t
i (1)

Inventory Cost

Inventory costs are the costs related to storing and maintaining its inventory over a
certain period of time
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Transportation Cost

The expenses in which a company incurs when it transfers its inventory or other
assets to another location.

Computation time

Calculation time naturally depends on the used computer. Calculation time is most
of time only relevant for large data sets and most relevant is the speed of growth
of calculation time dependent on the size of the data set [123]. Our algorithms are
executed in typical working stations available in any office with normal conditions.
The is calculate as the time that take the algorithm to give an acceptable solution.
Through of experiments in instances of different sizes is possible to observe the
growth of calculation time.

4.1.4.3 Intervening variables

An intervening variable facilitates a better understanding of the relationship between
the independent and dependent variables when the variables appear not to have a
definite connection. In the inventory and its distribution, VMI policy can intervened
between the independent and dependent variables and reduce costs.

Vendor Managed Inventory

VMI is a family of business models in which the buyer of a product (retailer) provides
certain information about inventory to a supplier and it takes full responsibility for
maintaining an agreed inventory of the material, usually at the buyer’s consumption
location (usually a store). A third-party logistics provider can also be involved to
make sure that the buyer has the required level of inventory by adjusting the demand
and supply gaps.

4.1.5 Operationalization of variables

The models and methods used in this work are based in a structure of costs, which is
the most popular in industrial applications. The costs considered are basically two:
host inventory cost and lost sales for stock-outs, in this thesis called lost demand.
Eventually problems of production planning are studied added to IRP called. Also,
in the models considered it is assumed that basic conditions for the inventory are
given such as: probability distributions are know, lead times, service requirements,
inventory cost and for stock-outs along others. The same for transportation.

The metrics used in this work are taken of study [46] that compiles and synthesizes
important elements related to SC performance measurement. The performance mea-
sures are grouped by costs, flexibility and dynamism measures. Next, these metrics
are described:

Cost measures

The decision maker must evaluate all aspects that are incorporated in each link of
the chain. One effective measure of the performance of the SC is the cost. The costs
described below were those considered in this thesis
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• Distribution Costs: cost or expense incurred in moving goods from the supplier
to retailers. Also called distribution expenses.

• Inventory Costs: the costs related to storing and maintaining its inventory over
a certain period of time.

• Total Costs: Total cost refers to all the costs incurred to manufacture a product.
This includes costs of raw materials, labor, transportation, distribution, mar-
keting, administrative, overhead, as well as fixed costs such as acquisition of
property, machinery, and other longterm investments. however in this work
only inventory (with lost demand) and transportation cost are consider.

Flexibility measures

• Capacity Utilization: every company has capacity limitations on equipment;
the extent to which the company utilizes their equipment is capacity utilization.

• Delivery Flexibility: This measure assesses the company ability to schedule
delivery dates. If the company delivers the goods or products prior to an antic-
ipated date, the customer will likely be satisfied.

Measuring dynamism

According to [92] citing [59] and [82] different problems (or instances of a same
problem) can have different levels of dynamism, which can be characterized by two
dimensions: the frequency of changes and the urgency of requests. The former is the
rate at which new information becomes available, while the latter is the time gap
between the disclosure of a new request and its expected service time.

4.1.6 Instruments applied and data Collection

According to [102], dealing with complex problems, such as the IRP, it is common to
place a set of instances or testing problems available for others. In the specific case
of routing vehicles, it is also possible to find instance sets proposed by researchers
belonging to CIRRELT, SCL, OR@Brescia and Logistics Management Department of
Helmut-Schmidt-Universitat, online 1 2 3 4.

This instances are called Benchmark Instances. In this research the Coelho in-
stances are used.

The results obtained in this research are tested with the best-solutions of the
benchmarking. As the results are obtain with metaheuristics methods and hybrid
algorithm.

4.1.7 Assumptions

• There is a centralized decision model that allows to only one "decision maker"
to realize optimization actions in SC.

1 http://www.leandro-coelho.com/instances/
2 http://www.tli.gatech.edu/research/casestudies/irp2/
3 https://sites.google.com/site/orbrescia/home
4 http://www.hsu-hh.de/logistik/
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• The decision maker has access to historic demand information of each retailer.
This information relates specifically to the mean and variance by time unit.
Also, the decision maker knows the probability distributions of the orders of
retailers.

• The demand data are analyzed in time discrete intervals, generally in days.

• The probability of distribution of the leadtime is known.





5
D E V E L O P M E N T M E T H O D O L O G Y

A version of this work was presented and published in proceeding abstracts of the
International Conference on Operational Research KOI 2014 by Raúl Roldán, Rosa
Basagoiti and Enrique Onieva which has the title A Framework in the Formulation
and Solution of Inventory Routing Problems ([100]). The abstract is presented below.

Researchers who investigate in fields relate with optimization problems in Supply Chain
(SC), in special those that involve the process of inventory and its distribution, find difficulties
to relate the knowledge areas such as operation research and computer science, organizing
the procedure and evaluating the solutions obtained. After analyzing this problem, a simple
framework has been developed to use in the searching of near-optimal solutions in the field
of Inventory Routing Problems (IRP). In this paper this framework is described in detail,
and all the phases to follow are introduced step by step. Although some of these phases can
be extended for other type of optimization problem in the SC, the literature of this study
is focused in IRP. This field has been chosen due to its importance in the real world, and
its great relevance in the literature. The use of benchmark instances for evaluating results
is highlighted and these instances are organized according the concrete problem for which
are used. Also, some key elements to face the problem are presented such as the information
management, relationship of inventory policies with the demand information, demand and
lead time modeling and optimization methods. These elements are organized and classified for
use case.

The methodology followed in this work is based on an incremental and iterative
development. In [35] the terms incremental and interactive are defined. In an iterative
development rework (to make continuous changes in order to improve) scheduling
strategy is used, where time is set aside to revise and improve parts of the system (see
Figure 9). In an incremental development, staging and scheduling strategy is used,
in which various parts of the system are developed at different times or rates and
integrated as they are completed (see Figure 10). The idea behind these methods
is to develop a system through repeated cycles (iterative) and in smaller portions
at a time (incremental). It is important to notice that neither strategy presupposes,
requires, or implies the other. It is possible to use both of them or alone.

The unified process, iterative and incremental, can be divide into four phases:

Figure 9: An iterative model to develop systems

49
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Figure 10: Iterative and incremental development methods put together

1. To define the problem: for this phase, the requirements of the system, such
as, the transportation net, routes, transportation and inventory constraints are
needed. The knowledge of the experts and personal experiences are important
to achieve a adequate configuration of the problem. All the information about
the problem allows to build an instance. An instance is a set of characteristics
of the problem that will be analyzed, which are determined by the definition
and constraints of the system. New characteristics are added to this instance,
as previous stages are overcomed, and a new instance of the problem is formu-
lated.The definition of the problem needs the identification of the variables of
the system and this is a complete task to be integrated in the development.

2. To use instance: as the system requirements are captured, it is necessary to
choose some benchmark instances. The benchmark instances to select depends
on the instances of problem analyzed, then these need to be changed according
to the definition phase. Sometimes, instances that have been used by others
researchers can be used. For another situations it is necessary to create them.
In this work, a mathematical model is defined to test the selected benchmark
instances and the consistency of the identified variables.

3. To design an algorithm: in order to obtain a near-optimal solution for the in-
stances of the problem, an algorithm is designed and parametrized. The algo-
rithm is tested and its parameters modified according to the solutions required.
Generally, the problem is decomposed in parts according the state of the art,
technological background and the technique to be used. General parts identi-
fied so far are: a)selecting or clustering the retailers for one or many suppli-
ers, b)loading the vehicle or fleet of vehicles available, c)calculating the near-
optimal solution and d)calculate the inventory, transportation and lost demand
costs. Many versions of the algorithm are implemented and each version is an
incremental development that can be integrated in the system.

4. To evaluate the solution: the algorithm is tested with the benchmark instances
and previous research analysis results. Exact models are developed for better
understanding the quality of the results. If instances have already been tested
by other researchers the results obtained will be compared to their results.

These phases are repeated according to what is required in the development.The
integration of all these parts with the incremental and iterative development, allows
to propose a model for coordination of the IRP.
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Figure 11 depicts the general procedure we have followed in the development of
this work. This is explained from the point of view of the actions that should follow
a researcher interested in addressing the field of the IRP problems.

Next, a initial decomposition of the problem is provided in order to create parts
that can be solved independently and then integrated together. The procedure de-
scribed below was used in Chapter 7. Also, a preliminary procedure for the develop-
ment was presented in the Chapter 8.

5.1 initial decomposition of the problem

Integrating the inventory and its distribution, the Inventory Routing Problem arises,
which is an NP-hard problem. This research is focused on obtaining the near-optimal
solutions to the problem instead of obtaining its optimal solution. Therefore, heuris-
tics and metaheuristics in conjunction with intelligence artificial methods are ap-
plied.

The procedure of solution is composed of 4 phases:

• Selecting and clustering retailers: the retailers are selected by means of inven-
tory policies, this guides the optimization process

• To Load the Vehicles: in order to load the vehicle it is necessary to take account
of the capacity constraints. In case that some retailers cannot be served, these
should be prioritized for the next time period.

• To Calculate Routes: A traveling salesmen problem is used to determine the
near-optimal route that allows to minimize transportation costs.

• To Replenish Inventory levels: The inventories levels of the clients are replen-
ished and the total costs calculated.

5.2 preliminary procedure to the development

A initial procedure to analyze the SC have been considered. This procedure is com-
posed of the following stages:

• Optimize statistic instances with the following characteristics: one product, one
or many supplier(s), one or fleet of vehicle(s) with finite capacity and infinity
capacity in the supplier. Results can be observed in the outcomes variables
such as: inventory cost, transportation cost and lost demand cost. The level of
service is also considered.

• Incorporate the historic data to reduce the bull-wild effect and compare the
improvement. Measure the quality of the historic data by means of relative
error and absolute error.

• Calculate the optimal inventory level for each retailer and measure the impact
on other indicators.

• Incorporate more vehicles controlling their capacity and compare the results

• Incorporate more suppliers and compare the results

• Compare the results with the results provided by exact methods.
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5.3 testing feasible solutions

Feasible solutions are tested by means of the comparison between the near opti-
mal solution benchmark instances with near-optimal solution obtained with the pro-
posed optimization algorithm.





Part III

B A C K G R O U N D F O R M U L AT I O N S
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B A C K G R O U N D F O R M U L AT I O N S F O R A D S I R P

6.1 introduction

In this chapter we perform a review of the most important mathematical models that
are foundation to face the IRP. In order of complexity, it is possible to decompose the
IRP in different sub-problems. One of them is motivated by the need of selecting the
best route to go from one deposit to a set of clients. This problem is known as the
Travelling Salesman Problem (TSP), a classical combinatorial optimization problem.
TSP details may be consulted in Matai, Mittal, and Singh [85]. Since it is also impor-
tant to transport products, it is necessary to add restrictions to routes to be fulfill
by vehicles, then this problem becomes a VRP. The VRP, variants and features can be
consulted in Toth and Vigo [119]. Additionally, when the levels of consumption of
clients and suppliers in order to maintain a continuous replacement are considered,
an IRP is generated. An IRP fulfills three aims: i) establish the optimal inventory lev-
els, ii) plan the volume and number of shipments and iii) ensure that deliveries suit
the requirements of each product.

In Section 6.2 we present four TSP mathematical formulations. The versions, basic
TSP, mTSP, Multi-Supplier TSP and Multi-supplier mTSP are presented. In Appendix
A the dataset used are described. The following problem, the VRP, in Section 6.3 is
presented. For the VRP problem 5, the variants, are chosen, CVRP (with homoge-
neous and heterogeneous fleet), VRPTW, and Multi-supplier and Periodic VRP. The
dataset used can be found in Appendix B. For last, the mathematical model for IRP
problems are presented in Section 6.4. In this section, the versions basic IRP, Multi-
period and Multi-supplier and Multi-period IRP are formulated. The dataset for IRP,
in Appendix C are described. For all Models are tested in CPLEX.

6.2 travelling salesman problem

The TSP is the first problem which reference should be made to address the optimiza-
tion of logistic processes of inventory and distribution. In a SC), the TSP can be used
to find the optimal route to visit a set of geographically distributed retailers starting
from and returning to the depot. The objective is to minimize the travel time or the
total travel costs. Four of the main mathematical models of linear programming to
this problem are reviewed from Section 6.2.1 to Section 6.2.4. The different types of
TSP are showed in the Figure 12 by means of a example with 10 retailers.

6.2.1 Basic TSP

Given a set of retailers n, and the cost of travel c (or distance) between each possible
pairs ij, the TSP, is to find the best possible way of visiting all the retailers and
returning to the starting supplier with one only vehicle, that minimizes the travel
cost (or travel distance) z.

57
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Figure 12: Feasible solutions for different types of TSP

The problem is defined on a graph G = (V ;A) where V = 1, ...,m + n are all
elements of the vertex set, with m and n as the number of suppliers and retailers
respectively and A is the arc set, for all pair (i, j) ∈ V where i 6= j. The vertex
contains the supplier set D, where D = 1, ...,m and the retailers set V ′ where V ′ =
m+ 1, ..,m+n.

In the first model we consider one supplier (m = 1) and several retailers. For
all node pairs (i, j), let xi,j be a binary variable, taking the value 1 if and only if
the vehicle from node i to node j. Also, for i ∈ V ′ let ui be a continuous variable
representing the position of node i in the tour. Thus the problem is to find variables
xij and ui where i, j ∈ V and m+ n are all the nodes that should be traveling that
minimize of the transportation cost cij given by the following objective function:

minimize
∑
i∈V

∑
j∈V

cijxij (2)

subject to

∑
j∈V

xij = 1 ∀i ∈ V (3)

∑
j∈V

xji = 1 ∀i ∈ V (4)

ui − uj + |V |xij 6 |V |− 1 ∀i, j ∈ V ′ (5)

1 6 ui 6 |V | ∀i ∈ V ′ (6)

xij = 0, 1 ∀i, j ∈ V (7)
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The Constraint 3 guarantees that only one arc starts on the node i. The Constraint
4 guarantees that only one arc finishes on the node j. Together the Constraints 3 and
4 ensure that the vehicle arrives at and departs from each node exactly once. The
Constraint 5 avoids sub-routes and together with the bounds of Constraint 6 ensure
that each retail is in a unique position. Finally, Constraint 7 is the bounds definition
of the binary variable x ensures that the only values are 0 and 1.

6.2.2 Multi-Travelling TSP

For this problem, several routes are found, one for each tour T such that each tour
originates and ends at the supplier where it began (see Figure 12 part b). Similar to
the first model we consider one supplier (m = 1) and several retailers where each
retailers i, i ∈ V ′ is visited exactly once, and total cost are minimized.

For all node pairs (i, j), let xi,j be a binary binary, taking the value 1 if and only if
the vehicle from node i to node j. Also, for i, j ∈ V ′ let yij be a continuous variable
representing the position of node i in the tour. Thus, the problem consists in finding
variables xij and yij where i, j ∈ V and i, j is the number of the nodes that should
be traveling. In this model, T is a parameter that should be defined beforehand. The
aim is to minimize the transportation cost cij for all routes, according to the number
of tours defined, given by the following objective function:

minimize
∑
i∈V

∑
j∈V

cijxij (8)

subject to

∑
j∈V

xij = 1 ∀i ∈ V ′ (9)

∑
j∈V

xji = 1 ∀i ∈ V ′ (10)

∑
i∈V

xi1 = T (11)

∑
j∈V

x1j = T (12)

∑
j∈V

yij −
∑
j∈V

yji = 1 i ∈ V ′ (13)

yij 6 (|V |+ 1− T)xij ∀i, j ∈ V (14)

xij = 0, 1 ∀i, j (15)
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yij > 0 ∀i, j (16)

The Contraint 9 and 10 are equal to the ones in the previous model. The Con-
straints 11 and 12 assign to the supplier the number of travels that should perform
according to parameter T given beforehand. From 13 it allows that at least one arc
leads out from any retailer. It is important to note that all tours include to the sup-
plier.

For route balancing, it is possible to add the Equation 17, where L and U are the
lower and upper bounds on the number of retailers traveled.

xi1L 6 yi1 6 xi1U ∀i ∈ V ′ (17)

6.2.3 Multi-Supplier TSP

In Multi-supplier problems, we have m suppliers which should be used as starting
points to travel a set of retailers and each retail should be visiting only supplier. Also,
the route starts and ends in the same supplier. Thus, the problem consists in finding
variables xij and yij where i, j ∈ V and i, j is the number of the nodes that should be
traveling. The aim is to minimize the transportation cost cij for all routes using the
following objective function

minimize
∑
i∈V

∑
j∈V

cijxij (18)

subject to

∑
j∈V

xij = 1 ∀i ∈ V (19)

∑
j∈V

xij = 1 ∀i ∈ V (20)

∑
j∈V

yij = 0 ∀i ∈W (21)

∑
j∈V

yij −
∑
j∈V

yji = 1 i ∈ V ′ (22)

yij 6 (|V |− 1)xij ∀i, j ∈ V (23)

xij = 0, 1 ∀i, j (24)
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yij > 0 ∀i, j (25)

The Constraint 19 and 20 are equal than the previous models. The Constraint 21

and 22 assigned to supplier the number of travels that should perform according to
parameter T given beforehand. From 23 and on, it allows that, at least, one arc leads
out from each one of the retailers. It is important to note that all tours include the
supplier.

As the previous model, the equation 26 may be used if it is required to balance
the routes that correspond to each supplier, where L and U are the lower and upper
bounds on the number of traveled retailers. This equation is applied to each supplier.

xi1L 6 yi1 6 xi1U ∀i ∈ V ′, j ∈W (26)

6.2.4 Multi-Supplier and Multi-Travelling TSP

In Multi-supplier problem we have m suppliers which may be used as starting point
to create the routes. For each supplier, multi-tours are allowed and these tours should
start and ends in the i-th supplier; cij will be the traveling cost from node i to node
j .

minimize
∑
i∈V

∑
j∈V

cijxij (27)

subject to

∑
j∈V

xij = 1 ∀i ∈ V ′ (28)

∑
j∈V

xji = 1 ∀i ∈ V ′ (29)

∑
j∈V

xij = T ∀i ∈ D (30)

∑
j∈V

xji = T ∀i ∈ D (31)

L 6
∑
i∈V

yij 6 U ∀j ∈ D (32)

xijLT 6 yij 6 xijUT ∀i ∈ V ,∀j ∈ D (33)
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∑
i∈V

yij == |V | ∀j ∈ D (34)

∑
j∈V

yij = 0 ∀i ∈ D (35)

∑
j∈V

yij −
∑
j∈V

yji = 1 i ∈ V ′ (36)

yij 6 (|V |− 1)xij ∀i, j ∈ V (37)

xij = 0, 1 ∀i, j (38)

yij > 0 ∀i, j (39)

The Constraint 28 and 29 are equal than the previous models. The Constraint 30

and 31 assigned to supplier the number of travels that should perform according to
parameter T given beforehand. From 32 and on, it allows that, at least, one arc leads
out from each one of the retailers. It is important to note that all tours include the
supplier.

For route balancing, it is possible to add the Equation 36, where L and U are the
lower and upper bounds on the number of traveled retailers.

As the previous model, the equation 26 may be used if it is required to balance
the routes that correspond to each supplier, where L and U are the lower and upper
bounds on the number of traveled retailers. This equation is applied to each supplier.

6.3 vehicle routing problem

The solution of a VRP calls for the determination of a set of routes, each performed
by a single or set of vehicles that start and end at its own supplier, such that all the
requirements of the retailers are fulfilled, all the operational constraints are satisfied,
and the global transportation cost is minimized. In this section, we describe the typi-
cal characteristics of the routing and scheduling problems by considering their main
components (road network, retailers, suppliers and vehicles). We take into account
some different operational constraints that can be imposed on the construction of
the routes, and the possible objectives to be achieved in the optimization process.

We first describe the Capacitated Vehicle Routing Problem (CVRP), which is the sim-
plest and most studied member of the family, then we introduce the Vehicle Routing
Problem with Time Windows (VRPTW), Multi-Vehicle VRP with homogeneous fleet ,
Multi-Vehicle VRP with heterogeneous fleet , Multi-Vehicle and Multi-Supplier VRP
with homogeneous fleet and Multi-Vehicle and Multi-Supplier VRP with heteroge-
neous fleet.
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6.3.1 Homogeneous fleet CVRP

In this model, a non-negative load di associated with each node i, where i ∈ V ′, is
given to be delivered by K vehicles in an equal number of routes. It is necessary to
find T routes of minimal total cost that leave a supplier m = 1, visit each node only
once, and return to the supplier. The vehicles start to travel with the total load of the
retail’s route, and in each stop j, each vehicle is unloaded by the extra load dj. There
is a limit Q on vehicle capacity (homogeneous fleet) and the amount to be delivered
in each tour cannot exceed this limit.

The objective is to minimize the total transportation cost for the routes. Also, to
minimum the number of routes for the set of identical vehicles K. It is noted that the
accumulated service up to any node does not exceed a positive number Q (vehicle
capacity).

For the one supplier (m = 1) specific case, the formulation can be reduced to the
following model. The problem will be to find variables xij, yij and K, where i, j ∈ V
and i, j is the number of the nodes that vehicles should be traveling that minimize of
the transportation cost cij given by the following objective function:

minimize
∑
i∈V

∑
j∈V

cijxij (40)

subject to

∑
j∈V

xij = 1 ∀i ∈ V ′ (41)

∑
j∈V

xji = 1 ∀i ∈ V ′ (42)

∑
j∈V ′

x1j = K (43)

∑
j∈V ′

xj1 = K (44)

∑
j∈V

yij −
∑
j∈V

yji = di ∀i ∈ V ′ (45)

djxij 6 yij ∀i 6= j ∈ V (46)

yij <= (Q− di)xij ∀i 6= j ∈ V (47)

xij = 0, 1 ∀i, j ∈ V (48)
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It is important to note that it is possible to fix the number of vehicles beforehand
changing the variable K by a constant.

Another extension of this delivery problem is the case in which the number of
vehicles K is not given beforehand, and there is an extra fixed cost ck associated
with each additional vehicle used for delivery. Thus, the objective function referred
to Equation 40 should be changed by Equation 49 and the constraint referred to
Equation 43 and 44 should be replaced by 50 .

minimize
∑
i∈V ′

∑
j∈V

cijxij +
∑
j∈V

(c1j + ck)x1j (49)

∑
j∈V

x1j =
∑
j∈V

xj1 (50)

6.3.2 Heterogeneous fleet CVRP

In this version of the VRP, a fleet a vehicles with different characteristics is used.
Vehicle type h has a capacity Qh, and a fixed cost Pmh, for using vehicle type h from
the supplier m = 1. There is a limit Tih on the number of vehicle type h which may
originate from the supplier; cijh is the traveling cost from node i to node j using
vehicle type h. We assume that a node is serviced by just one vehicle.

minimize
∑
i∈V ′

∑
j∈V

∑
h∈H

cijhxijh +
∑
j∈V ′

∑
h∈H

(c1jh + Pih)x1jh (51)

subject to

∑
i∈V

∑
h∈H

xijh = 1 ∀j ∈ V ′ (52)

∑
j∈V

xijh −
∑
j∈V

xjih = 0 ∀h ∈ H, ∀i ∈ V (53)

∑
j∈V ′

xijh 6 Kih ∀h ∈ H,∀i ∈ D (54)

∑
j∈V

yij −
∑
j∈V ′

yji = di ∀i ∈ V ′ (55)

yij 6
∑
h∈H

Qhxijh ∀i ∈ V ′, ∀j ∈ V ,∀h ∈ H (56)

xijh = 0, 1 ∀i, j ∈ V , ∀h ∈ H (57)

yij > 0 ∀i, j ∈ V (58)
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6.3.3 Multi-Supplier with Homogeneous fleet CVRP

Several depots m, are available to service retailers in the Multi-depot VRP (MDVRP),
k representing the number of vehicles avaibles at each depot. In this cases, the vertex
contains the supplier set D, where D = 1, ...,m and the retailers set V ′ where V ′ =
m+ 1, ..,m+n.

minimize
∑
i∈V ′

∑
j∈V

cijxij +
∑
i∈D

∑
j∈V ′

(cij + Pi)xijh (59)

subject to

∑
i∈V

xij = 1 ∀j ∈ V ′ (60)

∑
j∈V

xij −
∑
j∈V

xji = 0 ∀i ∈ V (61)

∑
j∈V ′

xij 6 Ki ∀i ∈ D (62)

∑
j∈V

yij −
∑
j∈V ′

yji = di ∀i ∈ V ′ (63)

yij 6
∑
h∈H

Qhxijh ∀i ∈ V ′,∀j ∈ V ,∀h ∈ H (64)

xijh = 0, 1 ∀i, j ∈ V , ∀h ∈ H (65)

yij > 0 ∀i, j ∈ V (66)

6.3.4 Multi-Supplier with heterogeneous fleet CVRP

In Multi-supplier delivery problems, we have m suppliers which may be used as
starting points for routes. One extra restriction exists: a tour will always return to
the same supplier from which is started. Different types of vehicles may be used for
performing the deliveries. Truck type h has a capacity Qh, and a fixed cost Pmh for
using vehicle type h from the m− th supplier; there is a limit Tih on the number of
vehicle type h which may originate from the i-th supplier; cijh is the traveling cost
from node i to node j using vehicle type h. We assume that a node is serviced by
just one vehicle.

minimize
∑
i∈V ′

∑
j∈V

∑
h∈H

cijhxijh +
∑
i∈D

∑
j∈V ′

∑
h∈H

(cijh + Pih)xijh (67)
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subject to

∑
i∈V

∑
h∈H

xijh = 1 ∀j ∈ V ′ (68)

∑
j∈V

xijh −
∑
j∈V

xjih = 0 ∀h ∈ H, ∀i ∈ V (69)

∑
j∈V ′

xijh 6 Kih ∀h ∈ H,∀i ∈ D (70)

∑
j∈V

yij −
∑
j∈V ′

yji = di ∀i ∈ V ′ (71)

yij 6
∑
h∈H

Qhxijh ∀i ∈ V ′, ∀j ∈ V ,∀h ∈ H (72)

xijh = 0, 1 ∀i, j ∈ V ,∀h ∈ H (73)

yij > 0 ∀i, j ∈ V (74)

6.3.5 Heterogeneous fleet VRPTW

According with Toth and Vigo [119], the VRPTW is an important problem occurring
in many distribution systems. The VRPTW can be defined as follows. Each retail can
be serviced only within a specified time interval or time window and a set A of arcs
with nonnegative weights, dij, and with associated travel times, tij. The travel time,
tij, includes a service time si at node i, and a vehicle is permitted to arrive before the
opening of the time window, and wait at no cost until service becomes possible, but
it is not permitted to arrive after the latest time window. The objective is to minimize
the total transportations cost of the routes. Also, the minimum number of routes, for
a set of identical vehicles K, is found, in this manner each node is reached within its
time window and the accumulated service up to any node does not exceed a positive
number Q (vehicle capacity). The formulation can be reduced as following:

minimize
∑
h∈H

∑
i∈V

∑
j∈V

cijhxijh (75)

subject to

∑
h∈H

∑
j∈V ′

xjih = 1 ∀i ∈ V ′ (76)
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∑
j∈V ′

x1jh = 1 ∀k ∈ K (77)

∑
j∈V ′

xijh −
∑
j∈V ′

xjih = 0 ∀h ∈ H,∀i ∈ V ′ (78)

∑
i∈V ′

∑
j∈V ′

dixijh ∀h ∈ H (79)

yjh− yih > si + tij−M(1− xijh) ∀i, j ∈ V ′,h ∈ K (80)

Ei 6 yih 6 Li ∀h ∈ H,∀i ∈ V ′ (81)

xij = 0, 1 ∀i, j ∈ V , ∀h ∈ H (82)

yik > 0 ∀h ∈ H,∀i ∈ V ′ (83)

6.3.6 Multi-Supplier and periodic CVRP

A time dimension is introduced in the Periodic VRP (PVRP) as route planning is to
be performed over a horizon of t periods. Multi Depot and Periodic Vehicle Routing
Problem (MDPVRP) extends the two previous problem setting, asking for selection of
a depot for each retail, with services in different periods to the same retail being
required to originate at the same depot.

minimize
∑
t∈P ′

∑
i∈V ′

∑
j∈V

∑
h∈H

cijhxijht +
∑
t∈P ′

∑
i∈D

∑
j∈V ′

∑
h∈H

(cijh + Pih)xijht (84)

subject to

∑
i∈V

∑
h∈H

xijh = 1 ∀j ∈ V ′ (85)

∑
j∈V

xijh −

m+n∑
j=1

xjih = 0 ∀h ∈ H, ∀i ∈ V (86)

∑
j∈V ′

xijh 6 Kih ∀h ∈ H, ∀i ∈ D (87)
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∑
j∈V

yij −
∑
j∈V ′

yji = di ∀i ∈ V ′ (88)

yij 6
∑
h∈H

Qhxijh ∀i ∈ V ′, ∀j ∈ V , ∀h ∈ H (89)

xijh = 0, 1 ∀i, j ∈ V ,∀h ∈ H (90)

yij > 0 ∀i, j ∈ V (91)

6.4 inventory routing problem

When inventory constraints are taken into account in models such as those described
in the previous section, we are faced with an IRP. We described a model IRP for one
period of time with lost demand. A second model is presented similar to before,
but now including several periods into time horizon. The last model included multi-
suppliers, multi-vehicles and heterogeneous fleet.

6.4.1 Basic IRP

According to [41], in a IRP, both the suppliers and retailers incur unit inventory
holding costs hi per period (i ∈ V), and each retailer has an inventory holding
capacity Ui. The quantity of product made available at the supplier is Rt. We assume
that suppliers has enough inventory to meet all the demand and that inventories
are not allowed to be negative, i.e., the suppliers can only ship what he holds in
stock with no backlogging option. At the beginning of the period the decision maker
knows the current inventory level of the suppliers and of the retailers I0i∀i ∈ V , and
receives the information on the demand d of each retailer i for each time period t.

The solution to the problem should determine which retailers to serve using the
supply’s vehicle and which route to use in one time period. In this special case there
is one supplier, so m = 1.

Ii = I
0
i + R

0
i ∀i ∈W (92)

Ii = I
0
i + qi − di + Li ∀i ∈ V ′ (93)

minimize
∑
i∈V

hiIi +
∑
i∈V ′

ziLi +
∑
i∈V

∑
j∈V

cijxij (94)

subject to

qi 6 ui 6 Q ∀i ∈ V ′ (95)
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0 6 Ii 6 Ui ∀i ∈ V ′ (96)

Ii >
∑
j∈V ′

qj ∀i ∈W (97)

∑
j∈V

xij = 1 ∀i ∈ V (98)

∑
j∈V

xji = 1 ∀i ∈ V (99)

Ui
∑
j∈V ′

xji − Ii 6 qi 6 Ui − Ii ∀i ∈W (100)

ui − uj +Q(xij) 6 (Q− qj) ∀i, j ∈ V ′ (101)

qi 6 Ui
∑
j∈V

xji ∀i ∈ V ′ (102)

In the case to want include lost demand it is necessary change the constraint

6.4.2 Multi-Period IRP

The solution to the problem should determine which retailers to serve using the sup-
plier’s vehicles and which route to use for several time periods in the time horizon.
In this special case there is one supplier, so m = 1. The constraints used in this
model have already explained in previews models. However, all restrictions used in
IRP models, again be explained in Model 8.3.1.

minimize
∑
t∈P

∑
i∈V

hiI
t
i +
∑
t∈P

∑
i∈V ′

ziL
t
i +
∑
t∈P

∑
i∈V

∑
j∈V

cijxijt (103)

subject to

levels inventory equations

Iit = I
t−1
i + Rti ∀i ∈ D,∀t ∈ P (104)

Iit = I
t−1
i + qti − d

t
i + L

t
i ∀i ∈ V ′,∀t ∈ P (105)

Lit > 0 ∀i ∈ V ′, ∀t ∈ P (106)
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route constraints

∑
j∈V

xtij = 1 ∀t ∈ P, ∀i ∈ V ′, (107)

∑
j∈V

xtji = 1 ∀t ∈ P, ∀i ∈ V ′, (108)

∑
i∈V

xi1t = 1 ∀t ∈ P (109)

∑
i∈V

x1it = 1 ∀t ∈ P (110)

vehicle capacity constraints

∑
j∈V

utij −
∑
j∈V

utji = q
t
i ∀i ∈ V ′,∀t ∈ P (111)

0 6 utij 6 Qx
t
ij ∀i, j ∈ V , ∀t ∈ P (112)

inventory constraints

qti 6 Ui − I
t
i ∀i ∈ V ′,∀t ∈ P (113)

qti > Ui
∑
j∈V ′

xtij − I
t
i ∀i ∈ V ′,∀t ∈ P (114)

qti 6 Ui
∑
j∈V

xtij ∀i ∈ V ′,∀t ∈ P (115)

0 6 Iti 6 Ui i ∈ V ′, t ∈ P (116)

Iti > sq
t
i ∈ D, t ∈ P (117)

6.4.3 Multi-Supplier, multi-period and heterogeneous fleet IRP

We now extended the formulation given by [41]. The problem is defined as a graph
G = (V ;A) where V = 1, ...,m+ n is the vertex set and A is the arc set. The vertex
contains the supplier set D, where D = 1, ...,m and the retailers set V ′ where V ′ =
m+ 1, ..,m+ n. Both the suppliers and retailers incur unit inventory holding costs
hi per period (i ∈ V), and each retailer has an inventory holding capacity Ui. The
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length of the planning horizon is p and, at each time period t ∈ T = 1, ...,p. The
quantity of product made available at the supplier is Rt. We assume the suppliers
has enough inventory to meet all the demand during the planning horizon and that
inventories are not allowed to be negative, i.e., the suppliers can only ship what he
holds in stock with no backlogging option. At the beginning of the planning horizon
the decision maker knows the current inventory level of the suppliers and retailers
I0i∀i ∈ V , and receives the information about the demand dti of each retailer i for
each time period t.

Let be Qih: vehicle capacity, v: number of vehicles, n: number of retailers, m:
number of suppliers and p: number of periods.

Iti = I
t−1
i + Rti ∀i ∈ D,∀t ∈ P (118)

The inventory level at the suppliers in period t is calculated by Equation 151 and
is defined at the beginning of the period and given by its previous inventory level
It−1i , plus the inventory made available in period Rti . The total load shipping in the
supplier given by

∑
j∈V u

t
ij, where i ∈ D and lost demand in the suppliers is not

allowed, by this reason civ[i][t] >=
∑
j∈D u

t
ij.

Iti = I
t−1
i + qti − d

t
i + L

t
i ∀i ∈ V ′,∀t ∈ P (119)

Likewise, the inventory level at retailers in period t is calculated by the Equation
152, where the inventory level is updated using its previous inventory level It−1i ,
plus the quantity of product qti shipping in the period t, plus the real demand dti
and the lost demand Lti .

Let be NVih the amount of vehicles assigned to supplier i of the type of vehicle
h. Then, the amount of vehicles that supplier i has assigned is given for NHi =∑
h∈HNVih ∀i ∈ D.
An Integer Programming formulation is used for the problem. In equation 153,

the objective function is presented. The objective is the reduction of the total costs
considering the hosting inventory, lost demand and transportation costs, consisting
this last one, route costs and vehicle costs.

minimize
∑
t∈P

∑
i∈V

hiI
t
i +
∑
t∈P

∑
i∈V ′

ziL
t
i +
∑
t∈P

∑
i∈V ′

∑
j∈V

cijhxijht+
∑
t∈P

∑
i∈D

∑
j∈V ′

(cijh+kih)xijht

(120)

Several constraints are defined for transportation, vehicles and inventories. The
first set of Constraints 154 to 157 refer to the supplier’s vehicles fleet.

The constraints 154 refers to number of vehicles that can be used by supplier i in
each period of time.
subject to

∑
j∈V ′

∑
h∈H

xijht <= NHi ∀i ∈ D, t ∈ P (121)
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The Constraint 155 refers to that each retailer can be visited by one only vehicle of
a same type.

∑
j∈V ′

xijht <= 1 ∀i ∈ D,h ∈ H, t ∈ P (122)

The Constraint 156 is for flow conservation and according to that, the number of
vehicles entering one node should be the same that the number of vehicles leaving
it.

∑
j∈V

xijht =
∑
j∈V

xjjht ∀i ∈ D,∀h ∈ H,∀t ∈ P (123)

The Constraint 157 correspond with a sub-tour elimination constraints:∑
j∈V

uijt −
∑
j∈V ′

ujit = q
t
i ∀i ∈ V ′,∀t ∈ P (124)

The Constraints 158 to 160 ensures that the quantities to be delivered to each retail
on assigned routes, do not exceed restrictions of capacity of the vehicles, suppliers
or retailers.

The constraints related to quantities delivered ensure that the quantity delivered
by the supplier’s vehicles to each retail i in each period t could fill the retail’s inven-
tory capacity if the retail is served, and will be zero otherwise.

∑
j∈V

uijt −
∑
j∈V ′

ujit = q
t
i ∀i ∈ V ′,∀t ∈ P (125)

The Constraint 158 ensures that the retail visited receives the amount of product
that has been determined.

0 <= uijt <=
∑
h∈H

Qhxijht ∀i ∈ V ′,∀j ∈ V ,∀t ∈ P (126)

In the Constraint 159 ensures that the amount of product being transported in
vehicles type h, do not exceed its capacity.

Iti >=
∑
j∈V ′

ujit ∀i ∈ S, ∀t ∈ P (127)

The Constraint 160 established the supplier’s inventory must be greater than the
amount of inventory it delivered in each period.

qti <= Ui − I
t−1
i ∀i ∈ V ′,∀t ∈ P (128)

∑
j∈V

xijhtUi <= q
t
i <=

∑
j∈V ′

xijhtUi − i
t
i ∀i ∈ V ′,∀h ∈ K, ∀t ∈ P (129)
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The Constraints 161 and 162 ensures that the amount of product to ship to retailers
not exceeding its maximum capacity to storage.

0 <= iti <= Ui; ∀i ∈ V ,∀t ∈ P (130)

The Constraints 163 established inventory in the suppliers and retailers must be
greater than zero and less than its maximum capacity.

xijht ∈ 0, 1 ∀i, j ∈ V ,∀h ∈ K,∀t ∈ P (131)

Finally, the constraint 163 and 164 ensures the integrability and non negativity of
the variables

6.5 conclusions

We formulated the TSP problem as the first problem to address the optimization of
logistic process distribution. Besides that, the IRP was presented by means of four
versions and identified variables of interest and developed mathematical models.
The process of distribution is complemented with the addition of the concept of ca-
pacitive vehicles and the inclusion of VRP formulations. We formulated five of the
most representative versions of this problem. The integration of the logistic process
of inventory was included and tree variants of the IRP problems were formulated. We
adapted benchmark instances available in the literature to each formulated model.
Therefore, we provided a complete review of the variables and mathematical mod-
els used in the TSP, VRP and IRP problems, in order to stablish a foundation for
addressing the integrated model for MDSIRP.
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I N V E N T O RY R E P L E N I S H M E N T A N D C U S T O M E R S E L E C T I O N
P O L I C I E S A L G O R I T H M ( I R C S PA )

An article based on this chapter is currently subjected to the final review for pub-
lication in Computers & Operations Research by Raúl Roldán, Rosa Basagoiti and
Leandro Coelho, which has the title Robustness of inventory replenishment and cus-
tomer selection policies ([99]).

7.1 introduction

Supply chain performance, coordination and integration are some key success factors
in obtaining competitive advantages [88]. Inventory and distribution management
are two main activities towards that integration, and are said to account for more
than 60% of the total logistics costs [51]. The integration of inventory and distribution
decisions gives rise to the inventory-routing problem (IRP), which has been studied
for the past few decades and has received much attention lately [37]. However, most
of these studies focus on optimizing a problem for which all information is known
a priori, which is often not the case in practice.

The demand information in an IRP can be static when customers demand are
known before the planning, or in a dynamic context in which it is gradually revealed
over time [16, 39]. The dynamic and stochastic IRP (DSIRP) aims not at providing
a static output, but rather a solution strategy that uses the revealed information,
specifying which actions must be taken as time goes by [13]. Recently, Bertazzi et
al. [16] and Solyali, Cordeau, and Laporte [111] and Coelho, Cordeau, and Laporte
[39] have solved DSIRPs with the goal of minimizing the total inventory, distribution
and shortage cost. They considered at least one of the classical inventory policies, i.e.,
maximum level or order-up-to. They tested their algorithms on instances containing
several customers and periods.

An overview of state of the art of IRPs is provided in Roldán, Basagoiti, and Onieva
[102] where some key elements were identified that should be taken into account
to propose alternative solutions to DSIRPs. The information management between
different stakeholders in the supply chain is one of them, since this determines the
evolution and quality of shared information. It is necessary to establish inventory
management policies, which requires the information sharing between stakeholders.
Inventory policies and their relation to the information on the demand is another
one, in order to properly manage inventory levels. Finally, one must decide which
optimization technique to use in order to make the best use of the available data.

The choice of which inventory policy to apply largely influences the cost of the
optimization process. Typically, it uses three key parameters affecting the inventory
control: when replenish, how much to replenish, and how often the inventory level
is reviewed. For the periodic review inventory system, Wensing [124] describes three
policies. One is the order-up-to (OU) which refers to a (t,S) system. Here, in each
period t, the quantity delivered is that to fill the inventory capacity up to S. Other
policies are the (t, s,S) and the (t, s,q). In the former, the customer is served if the
inventory level is less than s. In the latter, the replenishment level q is flexible but

77
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bounded by the storage capacity. The policies should be articulated with strategies
for clients selection, because sometimes it is not possible to serve all clients due to
vehicle capacities, and in such cases, it is necessary to prioritize some of them.

Several other exact and metaheuristic methods have been used to find feasible solu-
tions for this problem and its variants, such as the vehicle routing, where branch-and-
cut and evolutionary algorithms are widely used. Simic and Simic [109] argue that
for complex optimization problems such as the IRP, hybrid methods with techniques
such as artificial neural networks, genetic algorithms, tabu search, simulated anneal-
ing and evolutionary algorithms can be successfully applied. Some of the techniques
used to solve IRPs are summarized next. Genetic algorithms have been employed by
Christiansen et al. [30] and Liu and Lee [79], who clustered customers in geographi-
cal areas to serve them together. Local search operators were explored by Javid and
Azad [68] and Qin et al. [94], who changed the delivery schedule for customers and
adjusted the quantities deliveries accordingly. Li et al. [78] and Liu and Lin [80] and
Sajjadi and Cheraghi [105] used simulated annealing to integrate location decisions
into the IRP. Adaptive large neighborhood search [38] and a hybrid of mathematical
programming and local search [6] have also been used. Finally, exact methods relying
on branch-and-cut [8, 40] and branch-cut-and-price [45] have also been developed.

In this paper we study a DSIRP in which decisions must be made without future
information about the demand, which is gradually revealed over time. We propose
a new three-step solution algorithm, which is flexible enough to consider several
inventory replenishment policies. We are then able to evaluate and compare the
performance of our policies on demand satisfaction, average inventory kept at the
customers’ site, transportation cost, and total cost. Moreover, we show the effect of
integrating tactical and operational decisions into the same solution algorithm. We
compare the performance of our algorithm on benchmark instances available in the
literature, and our results show that the right combination of inventory replenish-
ment policies and customer selection can yield significant savings.

The remainder of this paper is organized as follows. In Section 7.2 we formally
describe the problem. In Section 7.3 we present our solution procedure which in-
cludes customer selection, quantities determination, and vehicle routing. In Section
7.4, we present the results of extensive computational experiments and we analyze
the trade-off between inventory and transportation costs. We describe how we can
identify dominated solutions under a multi-objective optimization approach, and we
compare our solutions against the ones from the literature. In Section 7.5 we present
our conclusions and findings.

7.2 problem description

The IRP under study consists of one supplier and several retailers as depicted in
Figure 18. We assume that the supplier has enough inventory to satisfy the demand
of its customers. Customers demand are gradually revealed over time, thus it is said
to be dynamic and unknown to the decision maker at the time all decisions are
made. The problem is defined over several periods, typically days, and without loss
of generality we assume the demand becomes known at the end of the period. This
demand can encompass a set of products organized in a pallet, and we will then treat
a single commodity as it is done in other IRPs. The supplier has a single capacitated
vehicle to distribute the products and to satisfy the final demand of the customers.
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Supplier Retailers
Final

Customers

Information Flow
Product Flow

1
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Figure 13: A typical IRP instance with one supplier, n retailers, and a set of final customers
representing the demand of the retailers

The IRP is defined with a graph G = (V,A), where V = {0, . . . ,n} is the vertex set
and A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. Vertex 0 represents the supplier and the
remainder vertices of V ′ represent n retailers. The problem is defined over a finite
time horizon H = {1, . . . ,p}.

The costs incurred are the total of inventory and transportation costs. Inventory
costs include the inventory holding and shortage penalties. A transportation cost
is paid for each arc traversed by the vehicle. The transportation cost is based on a
symmetric distance matrix.

Let n represent the number of customers, each with an initial inventory I0i , and
let the demand of customer i in period t be dti . Each customer has a maximum
inventory capacity Ci, and a unit holding cost hi is due. Shortages are penalized
with z per unit.

A single vehicle with capacity Q is available at the depot. The depot has an initial
inventory I00, and inventories incur a unit holding cost h0. A symmetric transporta-
tion cost cij is known. We denote It0 the inventory level at the depot in period t, Iti
the inventory level at customer i at the end of period t, and lti its lost demand. Let
qti be the quantity of product delivered in period t to customer i.

At the end of each period t, the inventory level Iti for each customer i is updated
based on its demand dti , its lost sales lti , the inventory level at previous period It−1i ,
and the quantity qti delivered to it. A solution to the problem determines the periods
in which each customer must be visited, how much to deliver to each of them, and
how to create vehicle routes that start at the supplier visit all customers selected to
receive a delivery in the period, and return to the supplier location. All capacities
must be respected, and stockouts are penalized in order to be avoided.

7.3 solution algorithm

Our algorithm, Inventory Replenishment and Customer Selection Policies Algorithm
(IRCSPA) called, works by decomposing the problem into smaller parts and by solv-
ing them using specialized algorithms. The first part of our solution methodology
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determines which customers to be visited in each period. This can be done in differ-
ent ways depending on which inventory replenishment strategy is used. We describe
the details of this algorithm in Section 7.3.1. The second part of the IRCSPA algorithm
determines how much to deliver to each customer in each period. At this phase, the
selection of customers is already done, and one must then respect the capacity of the
vehicle. The details on how we determine delivery quantities are described in Section
7.3.2. The third and last part of IRCSPA is to create vehicle routes. This problem can
be solved by different algorithms. Here, we use a specialized exact algorithm. It is
briefly described in Section 7.3.3. A flowchart of our solution method to the problem
is depicted in Figure 14.

Inventory
policy

DemandP
information

Select
customers

toPreplenish

InventoryP
constraints

Determinate
delivery

quantities

Transportation
constraints

Compute
vehicle
routes

Routing
constraints

Who,Pwhen
andPhowPmuch

toPreplenish

OutputsConstraintsPhasesPofPthePalgorithmInputs

Figure 14: Overview of the main parts of IRCSPA algorithm

7.3.1 Selecting customers to replenish

The selection of customers to replenish on a given period depends on the inventory
policy used. In what follows we enumerate several different policies organized in
four groups in Table 19. They are described next.

1. Fixed quantity policy: in this policy, the customer always receives a fixed quan-
tity. The fixed quantities for each customer is defined as a fraction θ of its
maximum inventory level, i.e., their inventory capacity. In our experiments, we
have set θ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We note that for
θ = 0.0, nothing is shipped and in case of θ = 1.0 this policy coincides with
the order-up-to (OU) one. Anything in between yields a maximum level (ML)
policy.

2. OU policy: the decision maker enforces an OU policy, meaning that whenever
a customer is visited, the quantity delivered is that to fill its inventory capacity.

3. Look ahead: the decision maker knows a one-step ahead demand. In this case,
the delivery quantities are equal to the forthcoming demand.

4. (s, S): the decision maker implements an (s,S) inventory policy. The value of S
is set as the inventory capacity, and the parameter s is used to determine when
to replenish. This (s,S) policy consists in ordering a variable quantity equal to
the difference between S and the current inventory position Iti as soon as the
inventory level is less than s. The parameter s can be set in some different ways
as follows:

a) The parameter s is determined for each retailer as one fraction α of the
inventory capacity, where α = {0.25, 0.50, 0.75}.
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b) The values of the parameter s are computed for each retailer using the
mean over its historical data.

c) The value of the parameter s is calculated for each retailer using the
mean plus a safety stock, computed as s = µH + zβσH, where β is the
probability of a stock-out and zβ is the order quantile of the demand
distribution. Here, 1−β usually refers to the service level.

d) The value of the parameter s is equal to the one-step ahead demand.

Table 19: Different possible inventory policies

Group Variant Policy Decision

1 qit = θCi ML and OU ML, if Iti + qi < C
t
i

OU, otherwise

2 qit = C
t
i − I

t
i OU OU, if Cti − Ii > 0

0, otherwise

3 qit = D
t
i ML and OU ML, if Iti +Qi < C

t
i

OU, otherwise

4 si = αSi (s,S) Si − I
t
i , if Iti < si

si = µHi (s,S) 0, otherwise

si = µHi + σHizβ (s,S)

si = d
t
i (s,S)

Under policies 1–3 of Table 19, all retailers are set to be visited in every period,
and under policies 4 only those whose inventory level is below the reorder point s
are selected. In our tests, we have chosen policies 1 and 4a as they are representative
of all the possible combinations of parameters and policies.

7.3.2 Determining delivery quantities

It is possible that after having selected the customers and an inventory policy, the
capacity of the vehicle is not sufficient to guarantee that the policy is fully respected.
Different strategies can be applied in order to rectify the situation. In this work, three
different strategies are studied.

1. Big Orders First (BOF): under this strategy we prioritize customers requiring
more products.

2. Lowest Storage First (LSF): here, we prioritize customers with the low storage
capacity.

3. Equal Quantity Discount (EQD): in this strategy, we subtract the same amount
to all orders until all customers can be served.

For the first and second strategies, it is important to notice that the last customer
selected will be replenished with the remaining capacity of the vehicle.
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7.3.3 Computing vehicle routes

The remaining step in IRCSPA is to create vehicle routes of minimum distance, leav-
ing the supplier, visiting all selected customers in each period, and returning to the
supplier. This problem is an instance of the traveling salesman problem (TSP) [5], a
classical combinatorial optimization problem. Solutions for the TSP can be obtained
by a myriad of heuristic and exact algorithms. One of these, Concorde [5], is a pub-
licly available algorithm for solving TSPs to optimality. We use this algorithm to
obtain solutions for the TSPs arising in our solution method.

At this point, IRCSPA determines the inventory level of each customer, all the in-
curred costs, and the procedure is repeated for the next period of the planning hori-
zon.

7.4 computational experiments

We have implemented IRCSPA algorithm in Matlab 2009b running under Windows 8.1.
All computations were performed on a personal computer with Intel Core i3-2370M
running at 2.40GHz and with 8GB of RAM memory. We have used the large dataset
of instances from Coelho, Cordeau, and Laporte [39]. For early tests we have chosen
to use the large instances containing 20 periods, ranging from five to 200 customers,
for a total of 10 instances. They are identified as IRP-n-p-i, indicating n customers,
and p periods. Each instance was tested under the two proposed inventory policies
(with 10 different values for the parameter θ and three values for the parameter α),
and for each one of three customer selection strategies.

7.4.1 A multi-objective optimization analysis

Multi-objective optimization aims at finding Pareto-optimal set or Pareto front con-
sisting of several solutions balancing conflicting objectives. Thus, a multi-objective
optimization problem deals with simultaneous optimization of two or more objec-
tives which are contradictory, because improvement in any objective is not possible
without degradation in other objectives.

This is a case of the objective of the minimization of transportation cost and mini-
mization of inventory cost. Hence there cannot be a single optimum solution which
simultaneously optimizes both objectives. The resulting outcome of a multi-objective
optimization is a set of optimal solutions with a varying degree of objective values.
This set of solutions is called the non-dominated set or Pareto optimal set. Because
minimization of transportation cost and minimization of inventory cost cannot be
achieved at the same time, there exists a trade-off between them. This type of system
clearly represents a multi-objective optimization situation, in which one looks for a
compromise policy, based on a number of options.

We have then solved the instances of the problem using the different methods pro-
posed in this paper. Non-dominated solutions found by the procedure were drawn
as points in a plane, with the Y axis representing the transportation cost and the X
axis representing the inventory costs. In what follows, each figure depicts the Pareto
frontier points with annotations for the total average cost, delivery quantity strategy
and inventory policy.
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In Figure 15 we show the dominant solutions for the fixed quantity policies under
the BOF and LSF delivery strategies. For BOF, three possibilities of replenishment to
customers are obtained. The one with q = 0.3C provides a lower inventory cost than
those with q = 0.9C and q = 1.0C, although the latter yields a lower transportation
cost. For the LSF strategy we see five distinct solutions. The EQD policy did not yield
different solutions.
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Figure 15: Pareto frontier for the fixed quantity policy with two different customer selection
strategies. The EQD strategy did not yield different solutions.

In Figure 20 we show the dominant solutions for the reorder point policies under
the BOF, LSF and EQD delivery strategies. For each delivery policy, three distinct and
non-dominated solutions were obtained. The lowest transportation cost was always
achieved with α = 0.25 at the expense of a very high inventory cost. Alternatively,
α = 0.75 provided the lowest inventory costs, but very high transportation costs.

7.4.2 Single objective: total cost minimization

In order to minimize the total cost of inventory and distribution, we have tested the
same policies and compared our solutions against those from the literature.

Since this problem allows stockouts, a quick way to find feasible solutions and
a benchmark value other than solutions listed in the literature is the case in which
the supplier chooses not to replenish, and thus pay the stockout costs. This strategy,
also called "wait and see” and coincides with policy number one with θ=0.0. We
show its cost in Table 20. The total cost of the system was separated in its inventory,
transportation, and stockout components. Obviously, this policy does not perform
well and its costs are significantly higher than those of Coelho, Cordeau, and Laporte
[39].

The first of our proposed policies rely on the supplier replenishing each retailer
with a predetermined quantity, as computed from policy one from Table 19. Ob-
serve that we have evaluated ten different values for the parameter θ. Under these
fixed quantity policies, we note that all strategies of delivery quantities presented in
Section 7.3.2 (BOF, LSF, and EQD) yielded the same transportation costs due to the
vehicle capacity never being exceeded. For this reason, the transportation cost is sta-
ble throughout the ten values of θ, whereas stockouts costs are drastically reduced,
at the expense of a slight increase on inventory holding costs. The reduction of the
average total costs from the 0.5Ci to 1.0Ci policies are very similar and yield the best
comparison against the results of Coelho, Cordeau, and Laporte [39]. The difference
in these values arises in the average stockout: while in Coelho, Cordeau, and Laporte
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Figure 16: Pareto frontier for the reorder point policy with three different customer selection
strategies.

Table 20: Detailed costs for the first policy θ=0.0 compared with those of Coelho, Cordeau,
and Laporte [39]

Instance
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [39]

IRP-5-20 298.37 0.00 45588.00 45886.37 17188.00

IRP-10-20 487.07 0.00 91020.00 91507.07 20182.80

IRP-15-20 842.72 0.00 153808.00 154650.72 33848.20

IRP-25-20 1233.55 0.00 275068.00 276301.55 36455.10

IRP-50-20 2913.80 0.00 506978.00 509891.80 58807.70

IRP-75-20 4025.12 0.00 822502.00 826527.12 77171.90

IRP-100-20 5067.09 0.00 1169380.00 1174447.09 90398.00

IRP-125-20 6870.42 0.00 1349788.00 1356658.42 106242.00

IRP-150-20 7313.46 0.00 1608706.00 1616019.46 114352.00

IRP-200-20 9642.02 0.00 2151808.00 2161450.02 138854.00

Average 3869.36 0.00 817464.60 821333.96 69349.97
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[39] there is no stockout, in our policies low values are obtained. Overall, the fixed
quantity policy does not outperform the solutions obtained by Coelho, Cordeau, and
Laporte [39].

Table 21: Detailed costs for the fixed quantity policy compared those of Coelho, Cordeau,
and Laporte [39]. All customer selection strategies yielded the same solution.

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [39]

q = 0.1Ci 3689.84 63028.93 545634.20 612352.97 69349.97

q = 0.2Ci 4616.62 63028.93 275232.80 342878.35 69349.97

q = 0.3Ci 8268.17 63028.93 115060.60 186357.69 69349.97

q = 0.4Ci 9576.26 63028.93 47539.00 120144.19 69349.97

q = 0.5Ci 10712.07 63028.93 1047.80 74788.80 69349.97

q = 0.6Ci 10925.41 63028.93 337.20 74291.54 69349.97

q = 0.7Ci 10935.15 63028.93 182.80 74146.88 69349.97

q = 0.8Ci 10937.22 63028.93 123.00 74089.15 69349.97

q = 0.9Ci 10938.00 63028.93 111.60 74078.53 69349.97

q = 1.0Ci 10938.34 63028.93 109.20 74076.47 69349.97

The second of our proposed policies is based on replenishments triggered by a
reorder point as proposed by item 4a of Table 19. The results obtained are presented
in Table 22 for the Big Orders First policy, in Table 23 for the Lowest Storage First
policy, and in Table 24 for the Equal Quantity Discount policy. Here, we have tested
three different values for the parameter α, and the results show that α = 0.50S
yields the best solution cost across all three policies. Moreover, all three policies have
outperformed the solutions of Coelho, Cordeau, and Laporte [39], with an average
total cost reduced by about 20%.

Table 22: Detailed costs for the reorder point policy under the BOF customer selection strat-
egy, compared to those of Coelho, Cordeau, and Laporte [39]

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [39]

s = 0.25S 6844.48 36718.53 22631.00 66194.01 69349.97

s = 0.50S 8391.94 43360.32 3313.20 55065.46 69349.97

s = 0.75S 10371.04 58312.87 136.40 68820.31 69349.97

Having identified that the reorder point policies are the best ones proposed in
this paper, we have then applied all its variants, comprising three values of the pa-
rameter α and three customer selection strategies, to all instances of the dataset of
Coelho, Cordeau, and Laporte [39]. Like those authors, we also report our findings
by grouping instances into small, medium and large. These are reported in Table
25 and show that IRCSPA algorithm can always find better solutions than those of
Coelho, Cordeau, and Laporte [39]. It also shows that, as previously expected, the
policy with α = 0.50S yields the best results. All customer selection methods per-
formed well, but the LSF outperformed the other two by a small margin.
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Table 23: Detailed costs for the reorder point policy under the LSF customer selection strat-
egy, compared to those of Coelho, Cordeau, and Laporte [39]

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [39]

s = 0.25S 6827.28 36601.67 18023.40 61452.35 69349.97

s = 0.50S 8388.97 43249.28 2697.60 54335.85 69349.97

s = 0.75S 10371.04 5 height8312.87 136.40 68820.31 69349.97

Table 24: Detailed costs for the reorder point policy under the EQD customer selection strat-
egy, compared to those of Coelho, Cordeau, and Laporte [39]

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [39]

s = 0.25S 6792.95 37341.31 20012.60 64146.85 69349.97

s = 0.50S 8406.25 43827.92 2632.20 54866.37 69349.97

s = 0.75S 10371.04 58312.87 136.40 68820.31 69349.97

It is relevant to notice that the running times remain low even when the size
of the instance increases, unlike the method of Coelho, Cordeau, and Laporte [39].
The difference in our running times between small and large instances is less than
one second, which represents approximately doubling the running time, and never
achieving two seconds for the large instances. Those of Coelho, Cordeau, and La-
porte [39] increase significantly faster, achieving more than 400 seconds. Finally, one
can observe that IRCSPA algorithm can better manage the trade-off between stockout
costs and overall costs. With respect to the competition, our average lost demand is
about four times as high, but the overall cost is significantly decreased.

We have performed sensitivity analyses to identify how the IRCSPA perform and
how the solutions change when the distribution capacity is drastically reduced. This
experiment is motivated by the fact that for the first policy, the vehicle capacity
was not binding. Thus, we have reduced it by 50%. These results are no longer
comparable to those of the literature, and a much higher level of lost demand is
incurred. The results of these new tests indicate that under the fixed quantity policy,
serving big orders first gives significantly better results than prioritizing customers
based on their inventory capacities and on decreasing delivery quantities equally
among all customers. Moreover, using the reorder point method does not yield better
results than the fixed order, despite having some configurations with similar results.

7.5 conclusions

In this paper we have solved the Dynamic and Stochastic Inventory-Routing Problem
(DSIRP). This problem appears in the literature as that of managing inventory control
and distribution simultaneously, minimizing the total inventory holding, transporta-
tion, and stockout costs. Customer demands are revealed dynamically over time,
thus one must derive a policy to serve customers accordingly. We have proposed
several policies and tested different configurations of the fixed quantity and of the
reorder point policies. If the vehicle capacity is not sufficient, we have created three
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strategies to prioritize some customers. We have tested our policies on a large dataset
contaning up to 20 periods and 200 customers, and our results significantly improve
upon those available in the literature.



8
T H E H Y B R I D G E N E T I C A L G O R I T H M W I T H N E T W O R K F L O W
F I T N E S S A L G O R I T H M ( H G A N F F )

In vendor-managed inventory, a supplier must determine which customers to visit,
how much to replenish, and how to combine them into vehicle routes. This gives rise
to the inventory-routing problem. In this paper we analyze a distribution system in
which the supplier disposes of several depots and a heterogeneous fleet, and the cus-
tomers present a dynamic and stochastic demand. In this paper we propose a sim-
ple yet effective hybrid genetic algorithm composed of three main components. The
first component is a classical genetic algorithm, in which we encode the assignment
of customers to depots, obtaining a replenishment schedule pattern. The second
component determines vehicle utilization and delivery quantities, and is obtained
efficiently in polynomial time for each chromosome. In the final one, demands are
realized, total costs consisting of inventory, transportation and lost demand costs are
computed, and an acceptance criterion is applied, which corresponds to the fitness
value in the genetic algorithm. From a methodological perspective, we propose five
new crossover operators and new mutation operators, which have been tested and
their performance analyzed on classical benchmark instances. Our method , jointly
managing the available stock on many depots, yield an average of 25% improvement
over a competing algorithm without transshipment and 18% when the competing
algorithm uses transshipment (using the same vehicles).In this chapter a relatively
simple but effective hybrid GA to solve the MDDSIRP will be explained and evaluated.
The hybrid GA, called HGANFF , was designed following the methodological process
explained in Section 5. The incremental parts of the system were: i) manage instances,
ii) mathematical modeling, iii) hybrid algorithm and iv) network flow; which are in-
tegrated according to the system requirements. In turn, the system follows a iterative
process which begins with the definition of the initial requirements of the system. In
each iterative cycle, i) one instance is adapted to the available information, ii) the
higher and lower boundary to this instances is obtained, iii)An hybrid solution is
obtained for it and iv) the solution is evaluated. When a iterative cycle ends, a new
version of the hybrid algorithm is created. The combination of the iterative and in-
cremental development allows the solutions to be evaluated properly according to
the boundaries found. In terms of reduction of average costs, the results will show a
good performance compared with a lower and higher boundaries. In Figure 17 the
development methodology used is shown.

The lowers boundaries were provided by the CPLEX implementation and higher
boundaries(derived from literature and aggregating costs of individually solved one
supplier and many retailers inventory routing problems). Using the solution of a
mathematical model for MDDSIRP, a lower limit was established. This model includes
an additional relaxation rule, where all suppliers freely could distribute its products
to retailers using available vehicles, that is, retailers can be replenished by many
suppliers. As for the upper limit, it is set by the results obtained for a single supplier
of Coelho heuristic model, but adapted by us to multi suppliers. Starting from three
of the Coelho instances, all of them with an equal number of retailers assigned to one
unique supplier, are grouped together to formulate a new multi supplier instance

89
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(a) Iterative Development Cycle (b) Incremental Development Parts

Figure 17: Iterative and incremental development methods put together for the HGANFF algo-
rithm

with 3 suppliers that could replenish to any retailer. Therefore, we assume that this is
a particular case in which each supplier has been assigned to a group of retailers and
then, any accommodation or modification in this assignment should enhance this
solution comming from the superposition of instances. For benchmarking, the high
boundaries can be calculated as the adding of all the costs of the individual instances
used. Regarding to the new hybrid algorithm we propose, one additional constraint
is imposed, where each supplier will be assigned to replenish a given group of
retailers by each time period. A retailer should be replenished as he demands, or
not, depending on the inventory cost, lost demand cost and transportation cost. We
assume that it is possible to obtain a better solution than previously mentioned high
boundary but hardly enhance the lower boundary. This is due to the additional
constraint we establish related to only one supplier replenisihing each retailer.

8.1 introduction

In this section we briefly review the existing research on multi-depot IRPs (MDDSIRP)
as a complement to Chapter 2. Our focus is on the most relevant elements for the
heuristics to solve MDDSIRP problems with many suppliers and heterogeneous ve-
hicle fleet. The objective function will be to minimize the costs of the inventory and
transportation of products from many suppliers to many retailers using heteroge-
neous vehicles. The IRP with multi-depots shows a lack of papers that address the
problem in depth its mathematical formulation and implementation. However, we
revised several papers that have partially addressed this issue, as well as others that
bring different points of view. For instance, a similar procedure to that we will pro-
pose, was implementing by [107]. In this paper, a flow-based mathematical formu-
lation and variable neighborhood search implementation for a special case of a VRP

that includes Multi-Supplier and Heterogeneous Fleet or Depot and Heterogeneous
Fleet Vehicle Routing Problem (MDHFVRP) was proposed. A mathematical formula-
tion was given and lower as well as upper bounds are produced using a three hour
execution time of CPLEX. The variable neighborhood search that incorporates new
features in addition to the adaptation of several existing neighborhoods and local
search operators was proposed. Also, the algorithm was equipped with a scheme
for determining borderline retailers, a multi-level heuristic acting as the local search
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engine, Dijkstra’s algorithm for determining the optimal clustering, a diversification
procedure and a mechanism to aggregate the routes from different suppliers and dis-
aggregate them into corresponding suppliers accordingly. The difference with our
algorithm is that we incorporate inventory constraints and the generic algorithms
was used.

In the next paragraphs, we can find more details of the formulation and imple-
mentation. The purpose of this paper is to show simple modifications of some well
known methods to allow for variable running costs; and also to assess the effect
of neglecting such variability. Interesting numerical results, measured in terms of
changes in total cost or/and fleet configuration, are found at no extra computational
effort.

Considering that the use of clustering methods is important to solve the MDDSIRP
problems as can be observed in the literature review presented in Chapter 2, we
now mention some of the techniques applied MDDSIRPs. Generally the clustering
is decomposed into its two natural components: (1) clustering of edges into feasible
routes and (2) actual route construction, with possible feedback loops between the
two stages. To bring an overview of the using of these techniques, we trough of the
some implementations will describe by means recent articles how the clustering is
applied.

For instance, Luo and Chen [83] and Luo and Chen [84] implemented an algorithm
that generates clusters randomly to perform the clustering analysis considering the
depots as the centroids of the clusters for the retailers. Afterwards, they implemented
the local depth search for every cluster, and then, a readjustment of the solutions
was performed. In a next step, a new clustering analysis was performed to generate
new clusters according to the best solution achieved by the preceding process. The
improved path information was inherited to the new clusters, and local search for
every cluster was used again iteratively. The process continued until the convergence
criteria was satisfied.

Similar process was followed by Zeng, He, and Zheng [131] and He et al. [53], who
classified the retailers in certain and uncertain assignment to a supplier, according
to the distances of that retailers to suppliers. Their method created an iterative mod-
ification of those assignments. When each retailer corresponds to only one supplier,
the MDVRP was solved as a single supplier VRP for each supplier in the system.

Xu and Xiao [125], Yücenur and Demirel [130] and Salhi, Thangiah, and Rahman
[106] used a technique that allowed implementing a new type of geometric shape
based genetic clustering algorithm which could be used effectively to route vehicles
if the new shapes have the capability to adapt to the route shapes, resulting in the
minimization of the routing cost. The GA is used to adaptively search for the at-
tributes of a set of shapes (example circles) that clusters retailers using the routing
cost as the fitness value for the individual chromosomes.

Wang [122] used a typical procedure which consist on the decomposition of a
multi suppliers to a single supplier IRP problem. A heuristic was used to simplify the
multi-depot problem into a single depot problem. The maximal route is improved
with the highest number of retailers and similarly also, by exchanging customers
between routes.

Other techniques besides grouping have been used to deal with the MDDSIRP
problem. In [117] and [116], a tactical model comprises the models of optimal supply
distribution on the battlefield and of optimal reconnaissance by unmanned aerial
vehicles used by the military. They used ant colony optimization algorithm with five
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special forms to select the supplier that should cluster the retailers. These forms
include selection of suppliers through a random manner, shortest distance, probabil-
ities according the distance traveled so far and pheromone trails.

Finally, Nananukul [89] illustrated how customers’ demands pattern and holding
costs could affect their clustering decision. A basic model for clustering customers
called multi-period clustering problem was introduced, taking into consideration the
demand pattern and holding costs. In this method, an enhanced K-means algorithm
was used to construct an initial solution. A novel feature of the algorithm was to
create adaptive core clusters which are used in the clustering process instead of the
original data points. The neighborhoods of the solution space consist of two types
of moves: reassigning customers to clusters and rescheduling the delivery quantity
from one period to another. You et al. [126] used clustering and location-based heuris-
tics to group the customers into a number of small clusters and solved the routing
problem within each cluster independently. By iteratively changing the customers in
the clusters, they obtained a near-optimal solution within the required computational
time. The clustering method was integrated into a multi-period two-stage stochastic
mixed-integer nonlinear programming model that considered the uncertain demand
as random variable.

8.2 multi-supplier , multi-period and heterogeneous fleet irp

The problem under study contains one supplier with many depots, as depicted in
Figure 18, who must satisfy the demand of many customers, and we assume that
the supplier has enough inventory to satisfy the demand of the customers. The sup-
plier disposes of a set of heterogeneous vehicles located at each depot. The demand
of each customer is gradually revealed over time, thus it is said to be dynamic and
unknown to the decision maker at the time all decisions are made. The problem
is defined over several periods, typically days, and without loss of generality we
assume the demand becomes known at the end of the period. We consider the max-
imum level (ML) inventory policy, which allows the supplier to freely detertime the
quantity to deliver to the customers, limited only by their inventory capacity.

Formally, the MDDSIRP is defined on a graph G = (V,A), where V = {1, . . . ,m,m+

1, . . . ,m+n} is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. The vertices
of S = {1, . . . ,m} represents them depots, and the remainder vertices of V ′ = V\S rep-
resent n customers. The problem is defined over a finite time horizon P = {1, . . . , t}.

The costs incurred are the total of inventory and transportation costs. Inventory
costs include the inventory holding and shortage penalties. A transportation cost is
paid for each arc used by the vehicles and by a fixed vehicle utilization cost. The
transportation cost is based on a symmetric distance matrix.

An limited heterogeneous fleet with different capacities is available at each node
of S. Let H represent the number of vehicles types, each indexed by h and with
capacity Qh, and let the number vehicles of type h available at each depot i ∈ S be
Nhi. Thus, for convenience, let Ni be the number of vehicles available at depot i, i.e.,
Ni =

∑H
h=1Nhi. The usage of of vehicle h by depot i incurs a fixed cost khi.

Each node of i ∈ V starts with an initial inventory I0i , and the demand of cus-
tomer i ∈ V ′ in period t is denoted dti , which is not known until the end of period
t. Depots receive/produce a quantity rit per period. Each node has a maximum in-
ventory capacity Ui, and a unit holding cost hi is due. Shortages at the customers
are penalized with zi per unit, but no stockout is allowed at the depots. We denote
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Iti the inventory of node i in period t, and lti the lost demand of customer i. Let cij
represent a symmetric transportation cost, and vih a fixed vehicle cost.

At the beginning of each period t, the inventory level Iti for each depot i ∈ S is
updated based on its previous inventory level, on the quantity of products shipped
to customers in the previous period, and on the quantity of products rit becoming
available. For each customer, the inventory level is updated based on its demand,
lost sales, deliveries, and previous inventory level.

A solution to the problem determines the periods in which each customer must
be visited, how much to deliver to each of them, and how to create vehicle routes.
All capacities must be respected and inventory and transportation costs must be
minimized. Since demand is dynamic and stochastic, the output is a policy that
determines how the decisions should evolve as a function of the demand in real-
time. We consider the inventory policy of maximum level (ML) which allows the
supplier to freely choose the quantity to deliver to the customers, limited only by the
inventory capacity at the retailers.

Suppliers Retailers
Final

Customers

Information Flow

Product Flow

1

2

n

.

.

.

1

2

n

.

.

.

Figure 18: A typical MDDSIRP instance with many suppliers, n retailers, and a set of final
customers representing the demand of the retailers

The IRP is defined with a graph G = (V,A), where V = {1, . . . ,m, . . . ,n} is the
vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. Vertex 1, 2...m represents
the supplier S and the remainder vertices of V ′ represent retailers. The problem is
defined over a finite time horizon P = {1, . . . , t}.

The costs incurred are the total of inventory and transportation costs. Inventory
costs include the inventory holding and shortage penalties. A transportation cost is
paid for each arc traversed by the vehicle type. This transportation cost is based on
a symmetric distance matrix. There is also a extra fixed cost associated with each
additional vehicle used.

A vehicle fleet with different capacities is available per each supplier. Let h repre-
sent the number of vehicles types, each with a capacity Qh, and let the number of
one type vehicles available per each supplier i be NV[i][h]. Also, consider NHi as the
amount of vehicles that the supplier i has available. It is important to note that each
type of vehicle used by one supplier i has an associated cost of kih.
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Let m and n represent the number of suppliers and retailers respectively, each
with an initial inventory I0i∀i ∈ V , and let the demand of customer i in period t be
dti∀i ∈ V ′ . Each customer has a maximum inventory capacity Ui, and a unit holding
cost hi is due. Shortages are penalized with z per unit.

The suppliers has an initial inventory I0i , and inventories incur a unit holding cost
hi ∀i ∈ S. A symmetric transportation cost cij ∀i, j ∈ V ′ and fixed cost by utilization
of the vehicle vih ∀i ∈ Sandh ∈ H are known . We denote Iti the inventory level
at the supplier in period t ∀i ∈ S, Iti the inventory level at Retailer i at the end of
period t, and lti its lost demand ∀i ∈ V ′. Let qti be the quantity of product delivered
in period t to customer i.

At the begin of each period t , the inventory level Iti for each supplier i ∈ S

is updated based on quantity of product available Rt and the inventory level at
previous period It−1i . We assume the suppliers have enough inventory to meet all
the demand during the planning horizon and that inventories are not allowed to be
negative, i.e., the suppliers can only ship what he holds in stock with no backlogging
option. At the end of each period t, the inventory level Iti for each customer i ∈ V ′
is updated based on its demand dti , its lost sales lti , the inventory level at previous
period It−1i , and the quantity qti delivered to it.

A solution to the problem determines the periods in which each retailer must be
visited, how much to deliver to each of them, and how to create vehicle routes that
start at the supplier visit all retailers selected to receive a delivery in the period, and
return to the supplier location. All capacities must be respected, and that stockouts
are penalized in order to be avoided. In general, the output is a policy that prescribes
how the decisions should evolve as a function of the demand in real-time.

8.3 mathematica model for the mddsirp

minimize
∑
t∈P

∑
i∈V

hiI
t
i +
∑
t∈P

∑
i∈Vc

ziL
t
i +
∑
t∈P

∑
i∈Vc

∑
h∈H

∑
d∈Vd

Khdx
dt
dih+

∑
t∈P

∑
i∈V

∑
j∈V

∑
h∈H

∑
d∈Vd

cijx
dt
ijh

(132)

∑
j∈V

xdtijh +
∑
j∈V

xdtjih = 2ydtih i ∈ Vc,h ∈ H,d ∈ Vd, t ∈ P (133)

∑
i∈V

xdtijh =
∑
i∈V

xdtjih j ∈ V ,h ∈ H,d ∈ Vd, t ∈ P (134)

ydtdh 6
∑
i∈V

∑
j∈V

xdtijh h ∈ H,d ∈ Vd, t ∈ P (135)

2ydtdh 6
∑
j∈Vc

xdtjdh +
∑
j∈Vc

xdtdjh h ∈ H,d ∈ Vd, t ∈ P (136)

xdtijh = 0 i ∈ Vc, j ∈ Vd, j 6= d,h ∈ H,d ∈ Vd, t ∈ P (137)
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xdtijh = 0 i ∈ Vd, i 6= d, j ∈ Vc,h ∈ H,d ∈ Vd, t ∈ P (138)

∑
j∈Vc

∑
h∈H

xdtijh 6 nv[i][h] i ∈ Vd,d ∈ Vd, t ∈ P (139)

∑
i∈V

utij −
∑
i∈V

utji = q
t
j j ∈ Vc, t ∈ P (140)

∑
i∈Vd

∑
j∈Vc

utij =
∑
j∈Vc

qtj t ∈ P (141)

utij 6
∑
h∈H

∑
d∈Vd

(Qh − qi)x
dt
ijh i ∈ V , j ∈ Vc, t ∈ P (142)

0 6 xdtijh 6 1 i, j ∈ V ,h ∈ H,d ∈ Vd, t ∈ P (143)

0 6 ydtih 6 1 i ∈ V ,h ∈ H,d ∈ Vd, t ∈ P (144)

Iti >
∑
j∈Vc

utji i ∈ Vd, t ∈ P (145)

qti 6 (Ui − I
t−1
i ) i ∈ Vc, t ∈ P (146)

∑
j∈V

xdtijh 6 qti (147)

qti 6
∑
j∈Vc

Uix
dt
ijh − Iti i ∈ Vc,h ∈ H, t ∈ P (148)

0 6 Iti j ∈ V , t ∈ P (149)

Iti 6 Ui i ∈ V , t ∈ P (150)
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8.3.1 Multi-Supplier, multi-period and heterogeneous fleet IRP

We now extended the formulation given by [41]. The problem is defined as a graph
G = (V ;A) where V = 1, ...,m+ n is the vertex set and A is the arc set. The vertex
contains the supplier set D, where D = 1, ...,m and the retailers set V ′ where V ′ =
m+ 1, ..,m+ n. Both the suppliers and retailers incur unit inventory holding costs
hi per period (i ∈ V), and each retailer has an inventory holding capacity Ui. The
length of the planning horizon is p and, at each time period t ∈ T = 1, ...,p. The
quantity of product made available at the supplier is Rt. We assume the suppliers
has enough inventory to meet all the demand during the planning horizon and that
inventories are not allowed to be negative, i.e., the suppliers can only ship what he
holds in stock with no backlogging option. At the beginning of the planning horizon
the decision maker knows the current inventory level of the suppliers and retailers
I0i∀i ∈ V , and receives the information about the demand dti of each retailer i for
each time period t.

Let be Qih: vehicle capacity, v: number of vehicles, n: number of retailers, m:
number of suppliers and p: number of periods.

Iti = I
t−1
i + Rti ∀i ∈ D,∀t ∈ P (151)

The inventory level at the suppliers in period t is calculated by Equation 151 and
is defined at the beginning of the period and given by its previous inventory level
It−1i , plus the inventory made available in period Rti . The total load shipping in the
supplier given by

∑
j∈V u

t
ij, where i ∈ D and lost demand in the suppliers is not

allowed, by this reason civ[i][t] >=
∑
j∈D u

t
ij.

Iti = I
t−1
i + qti − d

t
i + L

t
i ∀i ∈ V ′,∀t ∈ P (152)

Likewise, the inventory level at retailers in period t is calculated by the Equation
152, where the inventory level is updated using its previous inventory level It−1i ,
plus the quantity of product qti shipping in the period t, plus the real demand dti
and the lost demand Lti .

Let be NVih the amount of vehicles assigned to supplier i of the type of vehicle
h. Then, the amount of vehicles that supplier i has assigned is given for NHi =∑
h∈HNVih ∀i ∈ D.
An Integer Programming formulation is used for the problem. In equation 153,

the objective function is presented. The objective is the reduction of the total costs
considering the hosting inventory, lost demand and transportation costs, consisting
this last one, route costs and vehicle costs.

minimize
∑
t∈P

∑
i∈V

hiI
t
i +
∑
t∈P

∑
i∈V ′

ziL
t
i +
∑
t∈P

∑
i∈V ′

∑
j∈V

cijhxijht+
∑
t∈P

∑
i∈D

∑
j∈V ′

(cijh+kih)xijht

(153)

Several constraints are defined for transportation, vehicles and inventories. The
first set of Constraints 154 to 157 refer to the supplier’s vehicles fleet.

The constraints 154 refers to number of vehicles that can be used by supplier i in
each period of time.
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subject to

∑
j∈V ′

∑
h∈H

xijht <= NHi ∀i ∈ D, t ∈ P (154)

The Constraint 155 refers to that each retailer can be visited by one only vehicle of
a same type.

∑
j∈V ′

xijht <= 1 ∀i ∈ D,h ∈ H, t ∈ P (155)

The Constraint 156 is for flow conservation and according to that, the number of
vehicles entering one node should be the same that the number of vehicles leaving
it.

∑
j∈V

xijht =
∑
j∈V

xjjht ∀i ∈ D,∀h ∈ H,∀t ∈ P (156)

The Constraint 157 correspond with a sub-tour elimination constraints:∑
j∈V

uijt −
∑
j∈V ′

ujit = q
t
i ∀i ∈ V ′,∀t ∈ P (157)

The Constraints 158 to 160 ensures that the quantities to be delivered to each retail
on assigned routes, do not exceed restrictions of capacity of the vehicles, suppliers
or retailers.

The constraints related to quantities delivered ensure that the quantity delivered
by the supplier’s vehicles to each retail i in each period t could fill the retail’s inven-
tory capacity if the retail is served, and will be zero otherwise.

∑
j∈V

uijt −
∑
j∈V ′

ujit = q
t
i ∀i ∈ V ′,∀t ∈ P (158)

The Constraint 158 ensures that the retail visited receives the amount of product
that has been determined.

0 <= uijt <=
∑
h∈H

Qhxijht ∀i ∈ V ′,∀j ∈ V ,∀t ∈ P (159)

In the Constraint 159 ensures that the amount of product being transported in
vehicles type h, do not exceed its capacity.

Iti >=
∑
j∈V ′

ujit ∀i ∈ S,∀t ∈ P (160)

The Constraint 160 established the supplier’s inventory must be greater than the
amount of inventory it delivered in each period.

qti <= Ui − I
t−1
i ∀i ∈ V ′,∀t ∈ P (161)
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∑
j∈V

xijhtUi <= q
t
i <=

∑
j∈V ′

xijhtUi − i
t
i ∀i ∈ V ′,∀h ∈ K, ∀t ∈ P (162)

The Constraints 161 and 162 ensures that the amount of product to ship to retailers
not exceeding its maximum capacity to storage.

0 <= iti <= Ui; ∀i ∈ V , ∀t ∈ P (163)

The Constraints 163 established inventory in the suppliers and retailers must be
greater than zero and less than its maximum capacity.

xijht ∈ 0, 1 ∀i, j ∈ V ,∀h ∈ K, ∀t ∈ P (164)

Finally, the constraint 163 and 164 ensures the integrability and non negativity of
the variables

8.4 solution algorithm

In this section we present the hybrid GA we propose for the solution of the MDDSIRP.
Our algorithm is based on the framework of the hybrid GA of Vidal et al. [120] for the
multi-depot and periodic VRP. However, our algorithm includes the exact solution of
a network flow and of a traveling salesman problem as part of the evaluation of each
chromosome. New crossover operators are also proposed. This type of algorithm is
highly suitable for the problem at hand because of its generality and flexibility. It can
simultaneously handle several families of hard constraints and it conducts a highly
diversified search through the multiplicity of its operators.

A general view of our hybrid GA is presented in Algorithm 1. It starts by gener-
ating a random population, in which each individual represents a schedule pattern
of service. This pattern is used to determine which customers to visit in each time
period, including the information about which depot to use. The schedule pattern
is then used to instanciate a network flow, whose optimal solution determines the
best way to distribute the products from depots to customers in each period. Inven-
tory costs are obtained from this solution. Routing costs are computed solving a TSP
instance for each vehicle used. The total of the inventory and transportation costs
constitute the fitness value. Finally, the population is updated through genetic oper-
ators such as elitism, crossover and mutation, and a new generation is obtained. The
process is iterated until a stopping criteria is satisfied.

We now describe each feature of our algorithm, which is composed of four main
components. The main genetic framework is described in Section 8.4.1; the network
flow problem used to compute vehicle utilization and inventory costs is presented in
Section 8.4.2; the routing aspect is detailed in Section 8.4.3; and the acceptance and
stopping criteria is presented in Section 8.4.4.

8.4.1 Genetic algorithm

In our implementation, each chromosome represents a replenishment scheduling
pattern in which customers are assigned to depots in each day. The representation
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Algorithm 1 General procedure of our hybrid genetic algorithm

1: Create a randomly generated population to represent scheduling patterns
2: while Stopping criteria is not met do
3: for each new individual do
4: Determine vehicle utilization, inventory and demand satisfaction by

means of a network flow problem
5: Determine transportation costs as the sum of the solutions of TSPs for

each vehicle and period
6: Evaluate the fitness of each individual as sum of inventory and transporta-

tion costs
7: end for
8: Evolve the current population by applying selection, crossover, mutation and

elitism operators on its individuals
9: end while

10: return the best individual of the population

of a chromosome is described in Section 8.4.1.1. We then create an initial population
by creating a set of randomly chosen chromosomes, as detailed in Section 8.4.1.2.
Genetic operators such as selection, crossover and mutation are discussed in Section
8.4.1.3. An stopping criteria is also defined and presented in Section 8.4.4.

8.4.1.1 Representation of the chromosomes

In Figure 19, two feasible forms to group retailers are showed. The links among these
nodes do not represents the order at the time to be served, these only represent the
group of retailers that belong to the same group. Inspired by the work of Vidal et al.
[120], the individuals representing them in our implementation are represented by a
set of two chromosomes: the first one, called the Customer Schedules Chromosome
(CSC), encodes which depot serves the customer in each period, if any; the second,
called the Giant Tour Chromosome (GTC), contains for each combination (Supplier,
Period), a sequence of customers without trip delimiters, obtained by concatenating
all routes from each depot for each period. We illustrate these two chromosomes
in Figure 20, in which two feasible solutions are represented: in Part (a) the CSC
chromosome, and in Part (b) the GTC chromosome.

Regarding the search space, the number of possible combinations is (m+1)(n∗H)−

1. For instance, the search space in a problem with 3 depots, 45 customers and 5 pe-
riods is 2.91× 10135. It is important to note that because lost sales are allowed in our
problem, all possibilities that can be generated for the RSC and GTC chromosomes
are feasible.

8.4.1.2 Initial population

We generate a set of initial chromosomes by randomly assigning customers to depots
and to periods.

8.4.1.3 Genetic operators

The operators we have designed for our algorithms are described next.
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Figure 19: MDDSIRP feasible scheduling for a instance of two depots, ten customers and two
periods
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Figure 20: Chromosome representation of one feasible scheduling solution
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selection A selection operator chooses chromosomes from the current popu-
lation for reproduction. In our algorithm, parent selection is performed through a
binary tournament. Two different chromosomes are selected from the population
and the chromosome with better fitness is chosen. The procedure is performed twice
to select the two parent individuals, namely P1 and P2. Selection is done with re-
placement, which means that the same chromosome can be selected more than once
for reproduction.

crossover Crossover is the main genetic operator and consists of swapping chro-
mosome parts between parents P1 and P2 . Crossover is not performed on every pair
of selected individuals, and its frequency is controlled by a crossover probability. We
have developed five crossover operators. These operators are described next and the
general procedure to implement the crossover operator is shown in Algorithm 2.

Algorithm 2 Crossover operations of our algorithm

1: while population is completed do
2: Select two parent solutions P1 and P2 by binary tournament
3: if crossover probability if accepted then
4: Generate offspring C1 and C2 by crossover operations
5: Insert C1 and C2 into the population
6: else
7: Insert P1 and P2 into the population
8: end if
9: end while

Five different operators were developed. The first one was based in the work of
Vidal et al. [120]. We used the periodic crossover with insertions (PIX) operator dedi-
cated to periodic vehicle routing problems and adapted it for the IRP. PIX crossovers
use two giant tours and the basic procedure is represented in Figure 21.

4 7 5 81 43 97 2 61 62

4 7 2 89 15 1064 8 5

4 7 8 65

1 2 62

108 5

81 43 7

4 7 8 651 2 62108 581 43 7

Inheritance 
Parent 1

Inheritance 
Parent 2

Giant tour

Figure 21: Procedure to generate an offspring by PIX crossover

The second and third operators are 2-point and 3-point crossover, respectively (de-
noted as CX2 and CX3). The CSC is used to produce an offspring with heritage pat-
terns regarding periods and depot assignment. The basic procedure is represented
in the Figure 22.

The fourth crossover method takes into account ideas from the convex set theory
and the work of Kaelo and Ali [69]. In the case of the CSC each value is a number
between 0 to m and an arithmetic crossover (AMX) is used. Simple arithmetic opera-
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Figure 22: Procedure to generate two offspring by CX2 and CX3 operators

tors are defined as the convex combination of two vectors (chromosomes) according
to Equation 165:

C1 = αP1 + (1−α)P2. (165)

Where the α is an uniform random number r/m equal, where r is a random
integer number in the range of 0 and m. The application of a linear combination
in this operator with a parameter α ∈ [0, 1] as a method of gene recombination
guarantees closeness of this operator. This procedure can be used twice to generate
two offspring.

The last operator developed is an average crossover (AVX) that takes two parents
and returns one offspring as described by Equation 166:

C1 =
1

2
(P1 + P2). (166)

mutation Several mutation operators are used to avoid the algorithm being
stuck in local optima. These are described next.

1. Flip-Addition (FA): this is a gene mutation operator. The genes of the offspring
are changed according to a probability. The change consists of increasing its
current value in one. If the gene has the value of m (the maximum allowed),
its value is changed to zero.

2. Flip-Random (FR): likewise, this operator changes genes of the offspring. The
change is to assign a value different from the current gene value. The value
must lie between [0,m].

3. Scramble-Depot: This is a permutation operator that changes the current depot
for each customer in a random way. The genes of the offspring are changed
according to a probability.

4. Insertion: The insertion mutation operator selects a gene randomly and inserts
it at a random position. This procedure, that is a permutation operator, pro-
duces a displacement of the genes located between the two positions inter-
changed.
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5. Power Mutation (PM): The power mutation operator is based on a power dis-
tribution. Its distribution is shown in Equation 167.

f(x) = ρxρ−10 6 x 6 1 (167)

PM =

{
if t < α x− γ(x− l)

Otherwise x+ γ(u− x)
(168)

Where γ follows the power distribution, t = x−l
u−l , l and u are lower and upper

bounds, in this case l = 0 and u = m. Let be α be a number draw from
a uniform distributed between 0 and 1. The strength of power mutation is
governed by the index of the mutation ρ. For small values of ρ less disturbance
in the solution is expected. For large values of ρ more diversity is achieved.
The probability of producing a mutated solution on left (right) side of the Ci is
proportional to distance of x from l (u) and the new mutated solution always
remains feasible.

8.4.2 The minimum-cost flow problem

All information regarding scheduling patterns is passed to a network flow solver to
simultaneously optimize inventory, delivery quantities, lost demand and vehicles to
be used. A minimum cost network flow is computed in order to obtain the best way
to distribute the products from depots to customers for each period. This is done
following the developments proposed in Coelho, Cordeau, and Laporte [38, 39].

8.4.3 Routing

Once the CSC determines which vehicles from each depot to assign to each customer,
and the network flow has computed delivery quantities that respect vehicle capaci-
ties, one must route customers in vehicle routes starting and finishing at the depots.
The problem can be decomposed by depot, by vehicle and by period. Thus, the solu-
tion is equivalent to the solution of a TSP, one for each combination of vehicle, depot
and period. We solve several TSPs and compute the total transportation cost of the
chromosome.

8.4.4 Stopping criteria

In our implementation, we have limited the number of generations to 100, and the
maximum number of iterations without improvement to 10.

8.5 computational results

Our (HGANFF) algorithm was coded in C++ using Microsoft Visual Studio 2012. We
used the algorithm for the minimum-cost flow problem to solve the second level
problem(once the genetic algorithm decided the suppliers attending each retailer). It
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was run on an Intel Core 5-4210M 2.60GHz and 8 GB RAM laptop PC. The mathe-
matical model was coded in C++ using IBM Concert Technology and CPLEX 12.6.1
with four threads. Also at this level, Concorde Algorithm was used to calculate the
near-optimal routes for the retailers assigned to each vehicle. Computations were
executed in a laptop PC with Windows operating system.

To evaluate the performance of our algorithms, we have used the instances of the
IRP generated and solved to near-optimality by [42]. These instances are for one
single supplier and were adapted for the MDDSIRP problem. Three of the smallest
instances, those that used 5, 10 and 15 retailers (each instance has 5 different ver-
sions), were grouped together in order to formulate a new multi supplier instance
with 3 suppliers and 15, 30 and 45 retailers respectively (There were 6 forms to group
them) and the details about their generation can be consulted in Appendix D. For
benchmarking, the overall high boundaries for the costs of the created new instances
can be calculated as the adding of all the costs of the individual instances because,
we assume that this is a particular solution in which each supplier has a group of
retailers previously assigned.

In the Coelho, Cordeau, and Laporte [42] instances, a vehicle with a given capacity
was used to perform the routes. For the new instances, we tested the utilization of 2
types of vehicles of different capacity, where each supplier could use one vehicle of
each type. To establish the capacity for each type of vehicle, we sum the independent
capacity of the each vehicle of the Coelho instance and according to this data, chosen
and taken the 40% of it for the first vehicle type and 60% for the second one. Con-
sidering that this value is a key in the construction of the routes, we have decided to
divide the instances in those with high, medium and low vehicle capacity and test
the algorithm for all of them. For this reason, 9 cases are reported, 3 for each capacity
(15, 30 and 45 retailers).

In Coelho, Cordeau, and Laporte [42] 2 types of the solutions are presented. In
the first one, the total costs are calculated as a reaction to the previous day demand.
In the second one, transshipment is allowed . As mentioned before, these values are
taken as the hight boundary for the comparison of our results.

There are no previously reported solutions for the MDDSIRP since we are intro-
ducing the problem in this paper. For this reason, we have compared our HGANFF

algorithm against the optimal solutions obtained with the mathematical model de-
scribed in the section 8.2 and used this results as a lower boundary. Two executions
were performed, in the first one, CPLEX compiler was run for 4500 seconds as time
limit, therefore the problem of the system going out memory was avoided. For the
second one, in order to avoid big losses due to the lost demand, the lost demand cost
was penalized, multiplying it by 10.

In Tables 26 to 28 we reported the heuristic solutions present by Coelho, Cordeau,
and Laporte [42] and denoted as Coelho RS (reactive standard), and Coelho TRS
(transshipment and reactive). The solutions obtained with the HGANFF algorithm and
its variants were denoted as GA PIX, GA CX2, GA CX3, GA AMX and GA AMX-
AVX (as well as the version for 10 ∗ losses). Finally, the optimal solutions obtained
by the mathematical model for the two executions mentioned (CPLEX 4500 sec and
CPLEX 10 ∗ losses) were also added to the table.

Regarding the content of the columns of these tables, 10 columns were used to
present type of technique used to solve the problem, number of generations used
by the algorithm, inventory hosting cost of the solution, the lost demand cost, trans-
portation costs and overall costs (as the sum of inventory losses and transportation),
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mean of the lost demand cost by period, as well as the percentage of gap respect to
the lower bounds found by the CPLEX implementation.

The Results for HGANFF for high capacity vehicles are reported in Table 26, medium
capacity in Table 27 and low capacity in Table 28. In each table the average of three
instances tested are showed such as 15, 30 and 45 retailers, all with 3 suppliers. In
accordance with the instances that were generated, each supplier has two vehicles
available, one with higher capacity than the other. However, in the case of high ve-
hicles capacity, the suppliers only have the need to use one type of them to face the
retailers demand on each period of the time. As the capacity of the vehicles decreases
for the other two cases, the suppliers begin to use both types of vehicles and con-
sequently, the total costs are higher. For this reason, we decided to test three cases
of vehicles capacity. It is important to note that in the Coelho instances solutions,
we assume that three vehicles were used, meanwhile, in our solutions, to be 3 three
supplier and 2 vehicles type, with one only vehicle type by retailer, the amount of
vehicles can reach to 6.

The results show that in all the three cases (high, medium and low vehicles capac-
ity), we have enhanced the overall costs in the solutions, with respect of RS and TRS
reactive solutions of Coelho, Cordeau, and Laporte [42] with the GA−AMX−AVX

algorithm variant (only in one case with GACX2). Also, the average lost demand
cost was improved in special for the 10 ∗ losses solutions, tested for all GA algo-
rithms. Using the GA−AMX−AVX algorithm, improvements in both figures were
achieved.

Regarding the computation time, the solutions obtained with GA−AMX−AVX

get the alternative solution in less time than the optimal solution calculated by
CPLEX, when original losses are implemented as 10 ∗ losses. The computation times
of Coelho instances can not be compared, because it is not possible superimpose the
computation times.

Out of the 9 instances tested, our HANDOFF algorithm was able to match the
solution values on 100% of instances, also, it improved the solution values near to
10% of the cases of the reactive form and these solutions showed an competitive
performance with respect the optimal values given by CPLEX.

8.6 conclusions

We have implement an algorithm to solve the multi-supplier and multi-vehicle Dynamic-
Inventory-Routing Problem, were the retailers are clustered by suppliers and each
supplier has one fleet of vehicles of different type available. This problem is very
difficult to solve exactly but it is possible to generate good enough solutions in a lim-
ited time horizon. Comparative tests on a large set of artificial instances have shown
that our algorithm can produce high quality solutions within reasonable computing
times.
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9
C O N C L U S I O N S

In this thesis we have introduced, modeled and solved several types of inventory-
routing problems. In particular, we have identified opportunities for new research
in single and multi-supplier IRPs, increased flexibility and robustness within these
problems and developed hybrid algorithms for their solution. In the next paragraphs,
we outline our main findings as well as suggestions for future research.

We have proposed a comprehensive literature review in Chapters 2 and 3. Through
the review of papers dealing with stochastic demand and lead time, focusing on
its stochastic and multi-supplier aspects, we have identified critical factors for the
performance of many logistic activities and industries. Also, we have shown that
studying the behavior of the demand and the lead time is essential to achieve a
meaningful representation of the system to make proper decisions. By detecting the
lack of scientometrics studies, we proposed a study of this type for the IRP. We used
the key elements identified to design a search equation for extracting and collecting
information from Scopus and Web of Science databases. Our study showed trends
and patterns by means of tables in different topics of interest for each research. This,
in turn, has enabled us to understand the state of the research in the area of the IRP,
specifically for its stochastic, dynamic and under periodic revision of the inventory
versions. Moreover, we identified prolific researchers and research groups in the
most representative fields of study in IRP.

We have presented in Chapter 4 our research methodology. By the gaps identified
in the literature, future work and research questions, we propose a general way to
address future research of IRPs. Also, we identified areas of impact which the re-
searchers with interest might further develop. We established the most important
operational variables to address the IRP research and evaluated heuristic and exact
techniques. In Chapter 5, a consistent methodology for this development was pre-
sented. This methodology is based on iterative and incremental developments. The
unified process was divided into four phases and tasks that could be integrated. The
first phase was to define the problem and the integration was an identification of
variables under study. For the second one, the use of instances was required and
the mathematical model was used as an integrated task. In the third phase, the de-
sign of an algorithm was proposed where each version could be used to integrate it
within the development. Finally, for the last phase, an evaluation of the solutions was
carried out. The integration of all the phases of development allows us to propose
several models to coordinate IRP systems.

In Chapter 6, we formulated the TSP as being the first problem in which we need
to address in order to optimize product distribution. Bearing this in mind, the IRP
was presented by means of four versions and we identified variables of interest and
developed mathematical models. The process of distribution is complemented with
the addition of the concept of capacitated vehicles and the inclusion of VRP formu-
lations. We formulated six of the most representative versions of this problem. The
integration of the logistic process of inventory management was included and three
variants of the IRP were formulated. We adapted benchmark instances available in
the literature for each formulated model. Therefore, we provided a complete review
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of the variables and mathematical models used in the TSP, VRP and IRPs, in order
to provide a foundation for addressing the integrated model for MDDSIRP.

We have introduced robustness of inventory replenishment and retailer selection
policies in Chapter 7. Our analysis was conducted on the single-supplier case. New
retailer selection methods for a dynamic and stochastic inventory-routing problem
was proposed. We have developed an algorithm, called IRCSPA, which works by de-
composing the problem into smaller parts and by solving them using specialized
algorithms. The first part of our solution methodology was to determine which cus-
tomers to visit in each period; the second part of the solution algorithm determined
how much to deliver to each customer in each period; the last part was to create
vehicle routes. A multi-criteria analysis of the costs associated with the solutions,
comparing distribution versus inventory management was performed. Also, a sin-
gle criteria objective experiment was performed, showing that our methods yield an
average of 20% improvement over a competing algorithm.

Finally in Chapter 8, we used mathematical models and heuristic algorithms to de-
sign and implement a hybrid algorithm called HGANFF (Hybrid Genetic Algorithm
Netwok Flow) 2to solve the MDDSIRP problem. The algorithm framework proposed
for HGANFF was made up of four main components. The first component was a ge-
netic algorithm, which in each iteration, suppliers are assigned to many retailers for
each period of time obtaining the replenishment scheduling pattern. For the second
component, the information of the scheduling pattern was passed to a network flow
solver to optimize the delivery quantities and vehicles to be used. In the third com-
ponent, the retailers were replenished using using a fleet available at each supplier.
In the final one, an acceptance and stopping criteria was applied to obtain the so-
lution as the sum of inventory cost, lost demand and transportation cost. We used
this value as the fitness value in the genetic algorithm. Regarding the genetic algo-
rithm, we proposed five new crossover operators, which have been tested and their
performance analyzed. Likewise, we propose new mutation operators to use in com-
bination with other operators in the HGANFF. For the analysis of the results, a single
criteria objective experiment was performed. Also, we proposed new benchmarks
instances to test MDDSIRPs. Our methods, jointly managing the available inventory
on many depots, yield an average of 25% improvement over a competing algorithm
without transshipment and 18% when the competing algorithm uses transshipment
(using the same vehicles).

There are two possible extensions to our work. These are related to flexibility and
consistency of the solutions. As flexibility we refer to allow direct shipments and
allow movements of products among retailers, as long as the retailer faces stock-
outs. Often flexibility is achieved by using outsourced carriers and it is defined in
the terms of their contracts which are distance- and volume-dependent. Although
the flexibility is a good alternative for eliminating the stock outs, this increases the
total costs. It is important to notice that our algorithms has achieved solutions with
very low losses without using transshipment. Further tests will show their power
at the time of finding solutions without stock-outs and costs associated with these
solutions.

The other extension is related to consistency, to add quality of the service to the
solutions. In our work, consistency appears in an indirect manner at the time of
doing several tests with many different inventory policies and service levels in the
Chapter 7. However, these characteristics can be used directly in the IRP through
the use of fleet size and managing vehicle load, as well as analyzing the frequency
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of the deliveries, and to quantities delivered which have not been tested enough.
Furthermore, in Chapter 8, we begin to introduce consistency to test solutions with
different vehicle capacities. We believe that we can still make many contributions in
this direction.

The IRP was introduced approximately 30 years ago and has since evolved into a
rich research area. We believe this thesis has helped fill some gaps in this body of
knowledge and will stimulate other researchers to pursue the study of this fascinat-
ing field.





Part V

A P P E N D I X





A
D ATA S E T F O R T S P F O R M U L AT I O N S

The instances processed by Coelho in [36] were used and adapted, if needed, for
testing all the models. Also, new instances by combining them were created. In some
cases the Coelho instances were used partially and in others, some data was added.
All cases are explained in the following paragraphs where instances initially created
for one supplier and several retailers step by step will be modified. For a better
understanding, we have included an example with a small instance.

The instances explained here was used for testing the lineal programming mathe-
matical models in Section 6.2 which were solved with CPLEX in version 12.6.1.

In this appendix there are 4 type of instances:

• TSP Basic

• mTSP, Multi-Travelling TSP

• Multi-supplier TSP

• Multi-supplier and Multi Tour TSP

These instances correspond to the ones used in each TSP model formulated in
Section 6.2.

In a TSP basic instance, the first line contains the data of retailers number n. In
the second line, the supplier identification number idS and its location in Cartesian
coordinates xS and yS are given. From third line to the last and until to complete the
data for all the retailers, the identification number of retailer idR and its location xR
and yR are given. Below, an example for a instance of 1 supplier and 10 retailers is
presented:

10

1 90 184

1 249 483

2 470 415

3 136 385

4 143 124

5 334 89

6 168 359

7 265 313

8 271 265

9 149 381

10 356 378

In mTSP, the information about the number of vehicles that perform the routes
was needed. Similar to the previous instances, the first line is used to indicate that
the instance is for n retailers, but adding the number of vehicles (VN), as the pre-
vious example, the second line brings the identification number and coordinates of
suppliers. Next lines, show the identification number and coordinates of the retailers.
Below an example for an instance of 1 supplier and 10 retailers and two vehicles is
presented:
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10 2

1 90 184

1 249 483

2 470 415

3 136 385

4 143 124

5 334 89

6 168 359

7 265 313

8 271 265

9 149 381

10 356 378

Regarding Multi-supplier TSP, the number of suppliers that replenish retailers and
the number retailers is required. In this case, the first line is used to indicate that the
instance is for m supplier and n retailers, as the previous instance, the second line
has the identification numbers and coordinates of suppliers and next lines shows
the identification numbers and coordinates of the retailers. Below, an example for an
instance of 2 suppliers and 10 retailers is presented:

2 10

1 90 184

2 110 200

1 249 483 98

2 470 415 35

3 136 385 60

4 143 124 65

5 334 89 41

6 168 359 83

7 265 313 12

8 271 265 94

9 149 381 75

10 356 378 44

The last type instance, the Multi-supplier and Multi Tour TSP, uses three data in
the first line such as suppliers numbers, retailers numbers and vehicles numbers. As
there are two suppliers, the lines two and three are used to define their coordinates,
the number of vehicles of each type and the fixed cost by vehicle type. For the
remaining lines, the coordinates, and demand for each retailer are defined. Below,
an example for an instance of 2 suppliers, 10 retailers and 2 vehicles is presented:

2 10 2

1 90 184

2 110 200

1 249 483 98

2 470 415 35

3 136 385 60

4 143 124 65

5 334 89 41

6 168 359 83

7 265 313 12

8 271 265 94

9 149 381 75

10 356 378 44



B
D ATA S E T F O R V R P F O R M U L AT I O N S

The instances processed by Coelho in [36] were used and adapted, if needed, for
testing all the models. Also, new instances by combining them were created. In some
cases the Coelho instances were used partially and in others, some data was added.
All cases are explained in the following paragraphs where instances initially created
for one supplier and several retailers step by step will be modified. For a better
understanding, we have included an example with a small instance.

The instances explained here were used for testing the lineal programming math-
ematical models in Section 6.3 which were solved with CPLEX in version 12.6.1.

In this appendix there are 4 type of instances:

• CVRP homogeneous fleet

• CVRP heterogeneous fleet

• Multi supplier CVRP homogeneous fleet

• Multi-supplier CVRP heterogeneous fleet

• Multi-supplier CVRPTW heterogeneous fleet

These type of instances correspond to the ones used in each VRP model that was
formulated in Section 6.3

In a CVRP homogeneous fleet type instance, the first line contains the data of the
retailers amount n and the vehicle capacity Q. Also, in this line, it is possible to set
the amount of vehicles to use indicated with the parameter K. In the second line,
the supplier identification number idS and its location in Cartesian coordinates xS
and yS are given. From the third line to the last and until to complete the data for
all retailers, the identification number of retailer idR and its location xR and yR are
given. Below an example for an instance of 10 retailers, and 1 vehicle is presented:

10 855

1 409 104

2 160 499

1 299 144

2 175 140

3 137 216

4 47 455

5 104 82

6 246 264

7 25 145

8 341 169

9 450 449

10 208 334

In a CVRP heterogeneous fleet type instance, the first line contains the data retail-
ers amount n, the vehicle capacityQh by type and the fixed cost chmh corresponding
to each vehicle type h. In second line, the identification supplier number idS and its
location in Cartesian coordinates xS and yS are given. From the third line to the last
and until to complete the data for all retailers, the identification number of retailer
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idR and its location xR and yR are given. Below, an example for an instance of 10
retailers, and 2 vehicles type is presented:
10 393 462 0 . 3 0 . 5

1 409 104

1 299 144

2 175 140

3 137 216

4 47 455

5 104 82

6 246 264

7 25 145

8 341 169

9 450 449

10 208 334

In a Multi supplier CVRP homogeneous fleet, the first line contains the number
of suppliers, retailers amount n and the vehicle capacity Q. Also, in this line, it
is possible to agree the amount of vehicle to use indicated with the parameter K.
In second line, the supplier identification number idS and its location in Cartesian
coordinates xS and yS are given. From third line to the last and until to complete
the data for all retailers, the identification number of retailer idR and its location xR
and yR are given. Below, an example for an instance of 2 suppliers, 10 retailers and
1 vehicle type is presented:
2 10 855

1 409 104

2 160 499

1 299 144

2 175 140

3 137 216

4 47 455

5 104 82

6 246 264

7 25 145

8 341 169

9 450 449

10 208 334

In a Multi supplier CVRP heterogeneous fleet, the first line contains the number
of suppliers, retailers amount n, the vehicle capacity Qh by type and the fixed cost
chmh corresponding to each vehicle type h. In the second line, the identification sup-
plier number idS and its location in Cartesian coordinates xS and yS are given. From
third line to the last and until to complete the data for all retailers, the identification
number of retailer idR and its location xR and yR are given. Below, an example for
an instance of 2 suppliers, 10 retailers and 2 vehicles type is presented:
2 10 393 462 0 . 3 0 . 5

1 409 104

2 160 499

1 299 144

2 175 140

3 137 216

4 47 455

5 104 82

6 246 264

7 25 145

8 341 169

9 450 449

10 208 334
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In the Multi-supplier CVRPTW heterogeneous fleet instance type, it is necessary to
add the date for the time window and the service time. In the first line the number of
retailers, the vehicle capacity Qh by type and the fixed cost chmh corresponding to
each vehicle type h is set. Only one supplier is considered. The second line defines
the coordinates of the supplier, time windows and service time. In the remaining
lines the coordinates, demand, time windows and service time for each retailer is
defined. Below, an example for an instance of 2 suppliers, 10 retailers, 2 vehicles
type, time windows and service time is presented:

2 10 393 462 0 . 3 0 . 5

1 409 104 0 300 0

2 160 499

1 299 144

2 175 140

3 137 216

4 47 455

5 104 82

6 246 264

7 25 145

8 341 169

9 450 449

10 208 334





C
D ATA S E T F O R I R P F O R M U L AT I O N S

The instances used to test the models are described in this section.
The instances processed by Coelho in [36] were used and adapted, if needed, for

testing all the models. Also, new instances by combining them were created. In some
cases the Coelho instances were used partially and in others, some data was added.
All cases are explained in the following paragraphs where instances initially created
for one supplier and several retailers step by step will be modified. For a better
understanding, we have included an example with a small instance.

For Section 6.4.1, the start inventory data and the inventory capacity are taken into
account.

In this appendix there are 3 type of instances:

• IRP basic formulation

• Multi Period IRP

• Multi supplier and Multi period IRP heterogeneous fleet

In IRP basic formulation, the first line contains the number of retailers and vehicle
capacity. In the second line, the information of the supplier is defined as follows:
coordinates, starting inventory, available inventory and host inventory cost. For the
retailers, coordinates, starting inventory, demand, inventory capacity, host inventory
cost and penalty cost for lost demand are defined. Below, an example for an instance
of 10 retailers and 1 vehicle is presented:

10 934

0 90 184 1810 1369 0 . 0 1

1 249 483 200 98 300 0 . 0 4 8

2 470 415 31 35 62 0 . 0 9 18

3 136 385 61 60 122 0 . 0 5 10

4 143 124 210 65 280 0 . 0 8 16

5 334 89 51 41 102 0 . 0 9 18

6 168 359 76 83 152 0 . 0 7 14

7 265 313 42 12 56 0 . 0 8 16

8 271 265 178 94 267 0 . 0 8 16

9 149 381 228 75 304 0 . 0 6 12

10 356 378 110 44 165 0 . 0 2 4

For Multi Period IRP additional data for each time period is added. In the first
line, the number of retailers, number of periods and vehicle capacity are defined. In
the second line, coordinates, starting inventory, available inventory for each period
and host inventory cost are defined. In the remaining lines, data for each retailer is
defined: coordinates, starting inventory, demand for each period, inventory capacity,
host inventory cost and penalty by lost demand. Below, an example for an instance
of 10 retailers, 5 periods of time and 1 vehicle is presented:

10 5 934

0 90 184 1810 1369 1372 1371 1371 1368 0 . 0 1

1 249 483 200 98 103 97 106 94 300 0 . 0 4 8

2 470 415 31 35 17 36 34 34 62 0 . 0 9 18

3 136 385 61 60 64 56 60 60 122 0 . 0 5 10
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4 143 124 210 65 63 75 75 73 280 0 . 0 8 16

5 334 89 51 41 54 47 52 42 102 0 . 0 9 18

6 168 359 76 83 68 72 77 81 152 0 . 0 7 14

7 265 313 42 12 16 0 5 3 56 0 . 0 8 16

8 271 265 178 94 92 85 86 90 267 0 . 0 8 16

9 149 381 228 75 75 76 73 80 304 0 . 0 6 12

10 356 378 110 44 61 52 57 54 165 0 . 0 2 4

For the last type, Multi supplier and Multi period IRP with heterogeneous fleet, it
is necessary to add data such as vehicle capacity, number of vehicles by supplier and
type and cost by vehicle utilization. The description of the instances is as following:
the first line has the number of retailers, number of suppliers, number of vehicle
types, number of periods and vehicles capacity. The next two lines defines the data
for the supplier as follows: the coordinates, starting inventory, available inventory
for each period, host inventory cost, number of vehicles by type and utilization cost
for vehicle type. In the remaining lines, the coordinates, starting inventory, demand
by period of time, inventory capacity, host inventory cost and lost demand cost per
unit are established for each retailer. Below, an example for an instance of 2 suppliers,
10 retailers, 3 vehicles type and 5 periods of time is presented:

2 10 3 5 200 300 434

1 90 184 910 669 572 871 871 568 0 . 0 1 2 3 4 0 ,1 0 ,2 0 ,3
2 150 200 900 700 800 500 500 800 0 . 0 2 1 2 1 0 ,2 0 ,4 0 ,6
1 249 483 200 98 103 97 106 94 300 0 . 0 4 8

2 470 415 31 35 17 36 34 34 62 0 . 0 9 18

3 136 385 61 60 64 56 60 60 122 0 . 0 5 10

4 143 124 210 65 63 75 75 73 280 0 . 0 8 16

5 334 89 51 41 54 47 52 42 102 0 . 0 9 18

6 168 359 76 83 68 72 77 81 152 0 . 0 7 14

7 265 313 42 12 16 0 5 3 56 0 . 0 8 16

8 271 265 178 94 92 85 86 90 267 0 . 0 8 16

9 149 381 228 75 75 76 73 80 304 0 . 0 6 12

10 356 378 110 44 61 52 57 54 165 0 . 0 2 4



D
D ATA S E T F O R M D D S I R P F O R M U L AT I O N S

The instances used to test this type of models are described in this section.
The instances processed by Coelho in [36] were used and adapted, if needed, for

testing all the models. Also, new instances by combining them were created. In some
cases the Coelho instances were used partially and in others, some data was added.
All cases are explained in the following paragraphs where instances initially created
for one supplier and several retailers step by step will be modified. For a better
understanding, we have included an example with a small instance.

These instances are for one single supplier and were adapted for the MDDSIRP
problem. Three of these smallest instances, those 5, 10 and 15 retailers (each instance
with 5 different versions), were grouped in order to formulate a new multi supplier
instance with 3 suppliers and 15, 30 and 45 retailers respectively (There are 6 forms to
group it). For benchmarking, the overall high boundaries for the costs of the created
new instance can be calculated as the adding of all costs of the individual instances
used. We assumed that this is a particular case in which each supplier has previously
assigned a group of retailers.

For theses instances, it is necessary to add data such as vehicle capacity, number
of vehicles by supplier and type and cost by vehicle utilization by supplier. The de-
scription of the instances is as following: in the first line has the number of retails,
number of supplier, number of vehicle types, number of periods and vehicles capac-
ity. The next two lines defines the data for the supplier as follows: the coordinates,
starting inventory, available inventory for each period, host inventory cost, number
of vehicles by type and utilization cost for vehicle type. In the remaining lines, the
coordinates, starting inventory, demand by period of time, inventory capacity, host
inventory cost and lost demand cost per unit are established for each retailer. Below,
an example for an instance of 3 suppliers, 15 retailers, 2 vehicles type and 5 periods
of time is presented:

3 15 2 5 502 753

1 409 104 830 671 667 667 673 668 0 . 0 1 1 1 0 ,5 0 ,6
2 160 499 1 . 031 657 647 652 651 659 0 . 0 1 1 1 0 ,5 0 ,6
3 316 252 726 644 643 644 643 646 0 . 0 1 1 1 0 ,5 0 ,6
1 299 144 132 58 48 41 48 55 176 0 . 0 4 8

2 175 140 178 86 92 80 91 82 267 0 . 0 7 14

3 137 216 74 32 37 42 30 45 111 0 . 0 6 12

4 47 455 76 35 42 37 33 30 114 0 . 0 8 16

5 104 82 108 50 53 41 59 50 162 0 . 0 7 14

6 246 264 150 81 79 85 62 70 225 0 . 0 8 16

7 25 145 104 46 53 44 42 49 156 0 . 0 6 12

8 341 169 37 33 37 40 36 37 74 0 . 0 3 6

9 450 449 162 53 60 50 59 53 216 0 . 0 8 16

10 208 334 270 92 89 92 86 90 360 0 . 0 7 14

11 403 237 201 66 70 67 65 70 268 0 . 0 8 16

12 395 36 36 18 0 10 8 6 48 0 . 0 3 6

13 250 117 83 74 74 83 83 100 166 0 . 0 7 14

14 182 357 68 28 36 33 31 34 102 0 . 0 5 10

15 496 202 71 72 74 65 73 67 142 0 . 0 7 14
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