Journal of Physics: Conference Series

PAPER « OPEN ACCESS

Probabilistic soft sets and dual probabilistic soft sets in decision making
with positive and negative parameters

To cite this article: F Fatimah et al 2018 J. Phys.: Conf. Ser. 983 012112

View the article online for updates and enhancements.

This content was downloaded from IP address 181.215.76.203 on 06/04/2018 at 13:40


https://doi.org/10.1088/1742-6596/983/1/012112

International Conference on Mathematics, Science and Education 2017 (ICMSE2017) IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 983 (2018) 012112 doi:10.1088/1742-6596/983/1/012112

Probabilistic soft sets and dual probabilistic soft sets in
decision making with positive and negative parameters

F Fatimah'", D Rosadi’> and R B F Hakim?

L Department of Mathematics, Universitas Terbuka, Indonesia
2Department of Mathematics, Universitas Gadjah Mada, Indonesia
3Department of Statistics, Universitas Islam Indonesia, Indonesia

*Corresponding author: fatia@ecampus.ut.ac.id

Abstract. In this paper, we motivate and introduce probabilistic soft sets and dual probabilistic
soft sets for handling decision making problem in the presence of positive and negative
parameters. We propose several types of algorithms related to this problem. Our procedures are
flexible and adaptable. An example on real data is also given.

1. Introduction

Decision making with positive and negative attributes has been investigated carefully in various fields.
For example, in consumer relationship management, a company collects information about consumers
complaints to get to know the market sensing [1]. Another example, one needs to combine the opposite
criteria such as benefits versus costs, and opportunities versus risks using analytic hierarchy process
approach to solve it [2].

One of the theories that can handle decision making problem is soft set theory. The main advantage
of soft set is its high flexibility in describing problem. In soft set, we may use various forms of
parameterization to describe an object [3]. Many scholars proposed various extended soft sets to deal
with decision making problems under uncertainty [4-14]. Nevertheless, soft set theory has not been
applied in decision making with positive and negative parameters until what Alcantud & Mathew [6]
did. They proposed separable fuzzy soft sets. Fatimah et al. [7] explicated that probabilistic soft sets and
dual probabilistic soft sets could be considered as fuzzy soft sets with an additional structure. Hence, we
propose several algorithms of the probabilistic soft sets and dual probabilistic soft sets for handling this
issue.

This paper is organized as follows. Section 2 recalls the basic definitions of soft set, probabilistic soft
set, and dual probabilistic soft set. In Section 3, we propose decision making algorithms for positive and
negative parameters using probabilistic soft sets and dual probabilistic soft sets. An application oriented
real data is given in Section 4. We conclude in Section 5.

2. Soft set, probabilistic soft set, and dual probabilistic soft set
In this section, we recall the definitions of soft set, probabilistic soft set, and dual probabilistic soft set.
Let U as a set of objects, E be a set of parameters where U, E are nonempty finite sets,and A € E.

Definition 1 [3] A soft set (F, A) over U is defined as a mapping from set A to the power set of U, i.e.
F:A-2Y,
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In other words, a soft set is considered as a parameterized family of subsets of U. Considering an
example [3], U is a set of houses and E be a set of parameters as follows: expensive, beautiful, wooden,
cheap, in the green surroundings, modern, in good repair, and in bad repair. Soft set (F, E) means that
the characteristic of houses U is evaluated based on parameters E. In this example, we can see that some
parameters may be regarded as negative i.e. ‘expensive’, and ‘in bad repair’.

Zhu [14] introduced an extended model of soft set theory combining probabilistic and soft set. It was
called a probabilistic soft set. Its definition as follows.

Definition 2 [14] A probabilistic soft set (F, A) over U is defined as a mapping from set A to the power
set of probability distributions D (U), i.e. F: A = D(U).

Equivalenty [7], a probabilistic soft set is defined by F(e;) € D(U) ,Ve; € A. Therefore for i =
1,2,..,m and j = 1,2,..,n, it can be stated as F(e;) = P(a;;)/(u;) where ¥, P(a;;) =1, 0 <

Definition 3 [7] A dual probabilistic soft set (F,U) over A is defined as a mapping from set U to the
power set of probability distributions D (A), i.e. F: U — D(A).

Thus, a dual probabilistic soft set can be denoted by F(u;) € D(A), Vu; € U. It implies that F (u;) =
P(ay;)/(e;) where ¥7_, P(a;;) = 1,0 < P(a;;) < 1.

Soft set, probabilistic soft sets, and dual probabilistic soft sets could be represented in tabular forms.
Rows indicate objects U, and columns indicate parameters A. In a soft set, all cells are either 0 or 1.
Then, in probabilistic soft sets and dual probabilistic soft sets, all cells are in interval [0,1] with
requirements as in the explanation of Definitions 2 & 3 mentioned above.

3. Generalization of probabilistic soft sets and dual probabilistic soft sets algorithms
Fatimah et al [7] discussed about the concepts of probabilistic soft sets and dual probabilistic soft sets.
They proposed decision making algorithms which were appropriate for positive parameters. In relation
to this assumption, decision makers may meet with both positive and negative parameters or just
consider negative ones. In order to accommodate all needs of the decision makers, we introduce
generalization of probabilistic soft sets and dual probabilistic soft sets algorithms which are extension
forms of the algorithms in Fatimah et al [7]. These mechanisms are applicable for both positive and
negative parameters.
All our algorithms use the same first step (input) as follows.
Step 1. Input a set of objects U = {u;,i = 1,2, ..., m}, and a set of parameters E = {ej,j =1,2, n}
ACE.
. For the probabilistic soft sets, input a table of (F,A) and let P(a;;) = F(e;)(u;) be the
entries of its tabular representation whereby Y™, P(al-j) =1forj=12,..,n
ii. For the dual probabilistic soft sets, input a table of (F,U) and let P(a;;) = F(u;)(e;) be
the entries of its tabular representation whereby Z?=1 P(al-j) =1fori=1,2,..,m.

Algorithm 1 Generalization of Probabilistic Soft Sets-Choice Values (GPSS-CV)
Step 2. Forall i = 1,2, ...,m, find choice values (c;) by using an operation table as follows:
i. If A means a set of positive parameters then ¢; = ¥7_; P(a;).
ii. If A means a set of negative parameters then ¢; = Y7, —P(ay;).
iii. If A has both positive and negative parameters then ¢; = cpo5 + Cpeg Where ¢, =
Y P(a;;) and cpey = Xs—P(a;;) for all r positive parameters and s negative
parameters.
Step 3. Find the decision:
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I. For a single decision, find k for which ¢, = max;=; __m,c;. Then u, is the optimal
choice object. If ¢; attains its maximum value at more than one index k, then any one
of them could be chosen by decision maker.

ii. For multiple decisions, rank decisions u; from the highest to lowest c;.

Algorithm 2 Generalization of Probabilistic Soft Sets-Minimax (GPSS-M)
Step 2. Find M; as follows:

i If A means a set of positive parameters then M; is the maximum for each column e;.

ii. If A means a set of negative parameters then M; is the minimum for each column e;.

iii. If A has both positive and negative parameters then M; is the maximum for each column
e; Which means positive and M; is the minimum for otherwise.

Step 3. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting
the corresponding cell in that table from the M; at its column.

Step 4. Find the maximum of each row wu;. It is denoted by Minimax;.

Step 5. Find the decision:

i. For a single decision, find k for which Minimax;, = min;=; n,Minimax;. Then u
is the optimal choice object. If we obtain more than one index k then any one of wu;
could be chosen by decision maker.

ii. For multiple decisions, rank decisions u; from the lowest to highest Minimax;.

Algorithm 3 Generalization of Probabilistic Soft Sets-Opportunity Cost (GPSS-OC)
Step 2. Find M; as follows:

I If A means a set of positive parameters then M; is the maximum for each column e;.

ii. If A means a set of negative parameters then M; is the minimum for each column e;.

iii. If A has both the positive and negative parameters then M; is the maximum for each
column e; which means positive and M; is the minimum for otherwise.

Step 3. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting
the corresponding cell in that table from the M; at its column.

Step 4. Find the opportunity cost (0C;) values as a sum of each row u; fori = 1,2, ..., m.

Step 5. Find the decision:

i. For a single decision, find k for which 0Cy, = min;=, _,,0C;. Then u, is the optimal
choice object. If we obtain more than one index k then any one of u;, could be chosen
by decision maker.

ii. For multiple decisions, rank decisions u; from the lowest to highest OC;.

Algorithm 4 Generalization of Probabilistic Soft Sets-Weighted Choice Values (GPSS-WCV)
Step 2. Make a table according to the weighted parameters W = {w;,j = 1,2,...,n} ie., ij(aij) =
P(ai}-) X wj, Vj.
Step 3. Forall i = 1,2,...,m, find weighted choice values (wc;) by using an operation table as follows:
i. If A means a set of positive parameters then wc; = X7_; B, (a;;).
ii. If A means a set of negative parameters then we; = Y7, —ij(al- i)
iii. If A has both positive and negative parameters then wc; = wcyos + Wepeg Where
WCpos = 2r ij(al- ;) and wepey = X —ij(al- ;) for all r positive parameters and s
negative parameters.
Step 2. Find the decision:
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I. For a single decision, find k for which wc, = max;=1 _nwc;. Then uy is the optimal
choice object. If we obtain more than one index k then any one of u; could be chosen
by decision maker.

ii. For multiple decisions, rank decisions u; from the highest to lowest wc;.

Algorithm 5 Generalization of Probabilistic Soft Sets-Weighted Minimax (GPSS-WM)

Step 2. Make a table according to the weighted parameters W = {w;,j = 1,2,...,n} ie., B, (a;) =

P(aij) X wj, Vj.

Step 3. Find wM; as follows:
I. If A means a set of positive parameters then wM; is the maximum for each column e;.
ii. If A means a set of negative parameters then wM; is the minimum for each column e;.
iii. If A has both the positive and negative parameters then wM; is the maximum for each

column e; which means positive and wM; is the minimum for otherwise.

Step 4. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting
the corresponding cell in that table from the wM; at its column.

Step 5. Find the maximum of each row wu;. It is denoted by wMinimax;.
Step 6. Find the decision:
I. For a single decision, find k for which wMinimax), = min;=; _nwMinimax;. Then
uy, is the optimal choice object. If we obtain more than one index k then any one of u;
could be chosen by decision maker.
ii. For multiple decisions, rank decisions u; from the lowest to highest wMinimax;.

Algorithm 6 Generalization of Probabilistic Soft Sets-Weighted Opportunity Cost (GPSS-WOC)

Step 2. Make a table according to the weighted parameters W = {wj,j =1,2, n} ie., ij(aij) =

P(aij) X wj, Vj.

Step 3. Find wM; as follows:
i If A means a set of positive parameters then wM; is the maximum for each column e;.
ii. If A means a set of negative parameters then wM; is the minimum for each column e;.
iii. If A has both the positive and negative parameters then wM; is the maximum for each

column e; which means positive and wM; is the minimum for otherwise.

Step 4. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting
the corresponding cell in that table from the wM; at its column.

Step 5. Find the weighted opportunity cost (wOC;) values as a sum of each row u; fori = 1,2, ..., m.
Step 6. Find the decision:
i For a single decision, find k for which wOCy = min;=; ,wOC;. Then u, is the

optimal choice object. If we obtain more than one index k then any one of u,, could be
chosen by decision maker.
ii. For multiple decisions, rank decisions u; from the lowest to highest wOC;.

Algorithm 7 Generalization of Probabilistic Soft Sets & Dual Probabilistic Soft Sets-Positive Matrices
Step 2. Forall i = 1,2,...,m, and p;; denotes every cell (i, /) then use an operation table as follows:

i. If e; is a negative parameter then p;; = —P(a;;).
ii. If e; is a positive parameter then p;; = P(a;;).
Step 3. Construct a matrix C = (c;;) __where:
I. If i # j, c;j is the number of parameters for which the value of w; is strictly greater than the
value of u;. Thus, ¢;; is the number of parameters j for which p;; — p,; > 0, or the number
of positive values in the finite sequence p;; — Pim1, Piz — Pmzs > Pin — Pmn-
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ii. If i=j, ¢;j=n(m—1)—¢; where t; = ¥{c,;:q #j,q =1,..,m} is the sum of the
nondiagonal elements in column j of C. This means that we define c;; as the number such
that column i in € sums up to n(m — 1).

Step 4. Compute one eigenvector H = (H,, ...., H},) associated with the dominant eigenvalue of the
matrix which isn(m — 1).
Step 5. Find the decision:

i For a single decision, find k for which H,, = max;-; ., H;. Then u, is the optimal choice
object. If H; attains its maximum value at more than one index k, then any one of them
could be chosen by decision maker.

ii. For multiple decisions, rank decisions u; from the highest to lowest H;.

4. An application oriented real data sets
In the following example, we use a real case study to apply one of our algorithms. The real data sets are
from Statistical Yearbook of Indonesia 2016, BPS-Statistics Indonesia [15].

Table 1 Distribution of household’s population

e e, es e, es ee ey eg eq eqo Total

u; 0064 0056 0345 0313 0092 0064 0023 0.039 0.004 0.001
u, 0143 0180 0329 0.135 0047 0079 0032 0030 0.023 0.001
uz 0117 0.050 0345 0.206 0079 0.100 0.068 0.017 0.017 0.002
u, 0005 0.104 0460 0.164 0070 0010 0.004 0.009 0.174 0.000
us 0106 0.026 0226 0.286 0178 0011 0.009 0.053 0.104 0.001
ue 0172 0058 0182 0351 0105 0020 0.013 0.045 0.053 0.001
u; 0090 0042 0136 0.241 0360 0059 0.051 0.016 0.002 0.002
ug 0021 0067 0187 0421 0228 0036 0.027 0.007 0.006 0.000
ug 0016 0.085 0520 0275 0086 0002 0009 0.03 0.003 0.000
u, 0116 0010 0661 0121 0050 0.023 0.015 0.002 0.002 0.000
uy; 0144 0145 0706 0.004 0.000 0.00 0.000 0.000 0.000 0.001
u, 0070 0211 0352 0193 0038 0092 0040 0.003 0.001 0.001
w3 0148 0176 0169 0.298 0.038 0.129 0.031 0.004 0.006 0.001
uy, 0115 0.086 0223 0470 0.026 0.029 0.007 0.000 0.044 0.000
uys 0095 0237 0237 0259 0024 0121 0.020 0.004 0.003 0.000
u 0053 0258 0462 0108 0048 0.029 0.033 0.004 0.003 0.000
uy; 0256 0.070 0390 0.052 0010 0.162 0.021 0.010 0.031 0.000
wg 0143 0123 0157 0389 0036 0.128 0.015 0.006 0.002 0.001
ue 0139 0.036 0051 0184 0062 0329 0116 0.038 0.044 0.002
uzy 0031 0.032 0164 0057 0047 0089 0.047 0.119 0413 0.002
uy; 0083 0137 0335 0077 0071 0012 0016 0.189 0.082 0.000
uy;; 0307 0108 0225 0077 0134 0010 0.002 0.117 0.020 0.000
uyz; 0227 0.027 059 0031 0032 0014 0016 0.037 0.022 0.000
uy, 0113 0.025 0513 0024 0013 0018 0.009 0061 0.219 0.004
uzs 0.097 0.074 0370 0204 0051 0.175 0.016 0.03 0.011 0.000
uze 0.093 0157 0202 0.133 0047 0247 0.040 0.080 0.003 0.000
uy; 0153 0177 0253 0194 0059 0.098 0.042 0012 0.013 0.000
uzg 0.36 0.097 0205 0.288 0050 0.52 0.031 0.013 0.28 0.001
uze 0159 0112 0262 0318 0048 0062 0.022 0016 0.000 0.002
uz 0.091 0101 0150 0.06 0.071 0.150 0.115 0.111 0.005 0.001
uz; 0123 0.083 0136 0.287 0.047 0260 0.034 0.009 0.021 0.001
uz, 0176 0.029 0139 0337 0101 0.148 0.016 0.036 0.019 0.000
uzz; 0.064 0.031 0365 0.144 0045 0081 0.070 0.075 0.125 0.000
uz, 0058 0.016 0203 0.051 0.033 0.127 0.272 0.087 0.53 0.001

=

PR RPRRPRPRRPRRPRRPRPRPRPREPRPRPEPREPREPRERPRPREPRERRERRPREPREPRERLRRERRERRERRERERER

Let a set of provinces in Indonesia, U = {Aceh (u4), Sumatera Utara (u,), Sumatera Barat (u3), Riau
(uy), Jambi (us), Sumatera Selatan (ug), Bengkulu (u;), Lampung (ug), Kepulauan Bangka Belitung
(uq), Kepulauan Riau (u44), DKI Jakarta (uq1), Jawa Barat (u43), Jawa Tengah (uq3), DI Yogyakarta
(uq4), Jawa Timur (u4g), Banten (u4), Bali (u17), Nusa Tenggara Barat (u4g), Nusa Tenggara Timur
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(uq9), Kalimantan Barat (u,), Kalimantan Tengah (u,4), Kalimantan Selatan (u;5), Kalimantan Timur
(uy3), Kalimantan Utara (u,4), Sulawesi Utara (u,5), Sulawesi Tengah (u,e), Sulawesi Selatan (uy-),
Sulawesi Tenggara (u,g), Gorontalo (u,q), Sulawesi Barat (u3q), Maluku (u34), Maluku Utara (us;),
Papua Barat (u33), Papua (u34)}. Consider a set of drinking water sources E = {piped water (e),
pumped water (e), bottled water (e3), protected well (e4), unprotected well (es), protected spring (eg),
unprotected spring (e-), surface water (eg), rainwater collection (eq), other (e19)}. The negative
parameters are es, e, eg, and eqq. Distribution of households population according to province and
source of drinking water in 2015 are described in Table 1.

Therefore, Table 1 is a dual probabilistics soft sets (cf., Definition 3). We run the code of Algorithm
7 using R version 3.3.1, PC Intel(R)core(TM)-i3 with 4GB RAM, and Windows 7 as operating system.
The eigen dominan is 330 and the optimal province is DI Yogyakarta. The top 6 provinces are uq4 >
Uy7 > Ugs > Ugz > Ups > Uypg.

5. Conclusion

In this paper, we have acquainted decision making algorithms of probabilistic soft sets and dual
probabilistic soft sets for positive and negative parameters. We believe that our algorithms can be
applied either in illustrative examples or in real data sets. We also believe that these procedures deserve
farther studies such as comparison with separable fuzzy soft sets.
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